WO2020215523A1 - 基于微流体控制与贾敏效应观测的实验系统及其实验方法 - Google Patents

基于微流体控制与贾敏效应观测的实验系统及其实验方法 Download PDF

Info

Publication number
WO2020215523A1
WO2020215523A1 PCT/CN2019/098775 CN2019098775W WO2020215523A1 WO 2020215523 A1 WO2020215523 A1 WO 2020215523A1 CN 2019098775 W CN2019098775 W CN 2019098775W WO 2020215523 A1 WO2020215523 A1 WO 2020215523A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
liquid
pressure
micro
experiment
Prior art date
Application number
PCT/CN2019/098775
Other languages
English (en)
French (fr)
Inventor
王刚
陈建强
刘义鑫
刘昆轮
刘学麟
刘旭东
唐翔宇
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2020215523A1 publication Critical patent/WO2020215523A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/061Counting droplets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0636Focussing flows, e.g. to laminate flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces

Definitions

  • the purpose of the present invention is to provide an experimental system and an experimental method based on microfluidic control and Jiamin effect observation, which is easy to operate and can better control the size of microfluidic droplets.
  • An experimental system based on microfluidic control and Jia Min effect observation which includes a pressure drive device, a data acquisition device, a graphics acquisition device, and also includes a micro silicon chip with a photolithographic micron-level channel. One side is connected to the pressure driving device, and the other side is connected to the data acquisition device, and the graphics acquisition device is located directly above the micro silicon chip;
  • the pressure driving device is used for fluid injection and pressure control of the experimental system
  • the graphic acquisition device is used for shooting and recording the deformed image of the fluid droplet in the microchannel, and observing the two-phase interface.
  • the parameters obtained in the experiment are comprehensive, true and reliable; and the entire experimental device has a simple structure and easy operation.
  • This is mainly due to the adoption of two types of devices: image acquisition and auxiliary data acquisition. Their working principles are different, and the types of data collected are also different.
  • the image acquisition obtains intuitive images of droplet deformation and graphical information such as interface curvature.
  • Auxiliary data collection obtains relevant numerical information such as injection pressure and flow rate.
  • the two types of data are complementary. By substituting the processed data into formula calculations, you can finally obtain important data such as surface tension. At the same time, the two data can also have a mutual verification effect.
  • the above-mentioned micro-silicon chip is divided into three layers: upper, middle and lower layers, the upper and lower layers are transparent upper cover and lower pad, and the middle layer is a channel layer of lithographic micron-level channels; the aforementioned channel layer , Divided into two parts, the front part is a cross-shaped channel, the upper and lower ends of the cross are the gas inlets, the left side of the cross is the liquid inlet, the right side of the cross connects the back half, the second half is a straight channel, the front part of the channel It is a circular section channel with a diameter of 10 microns, the middle section is reduced to a circular section channel with a diameter of 5 microns, and the latter section is expanded into a circular section channel with a diameter of 10 microns.
  • the cross-shaped microchannel in the first half cooperates with the pressurized gas to control the generation of liquid beads of different sizes.
  • the microchannel throat with the diameter of the second half reduced from 10 microns to 5 microns can simulate the conditions of the Jamin effect.
  • the water injection port, the micro channel and the water outlet are at the same level to eliminate the influence caused by the difference in gravity.
  • the above technical scheme adopts the method of cross-shaped microchannels to control the droplet size, which is suitable for various fluids. It can also be replaced with up and down pressurized water to control the bubble size of the gas injected at the left end, or pressurized water up and down.
  • the oil injected at the left end is controlled to generate oil droplets of the required size to meet the needs of the experiment.
  • the above-mentioned data acquisition device includes a pressure sensor, a measuring capillary tube and a computer, the outlet of the rear circular cross-section channel in the rear half of the channel layer is in communication with the above-mentioned measuring capillary tube, and the above-mentioned pressure sensor The above computer connection.
  • the above-mentioned pressure driving device includes an injection pump, a gas cylinder, a check valve, a three-way, a pressure control valve, and a hose.
  • the above-mentioned injection pump is connected to one port of the above-mentioned three-way through the above-mentioned hose.
  • the other port of the micro silicon chip is connected to the liquid inlet of the micro silicon chip, and the other port of the above-mentioned tee is connected to the pressure sensor; the steel cylinder is connected to the gas inlet of the micro silicon chip, and the micro silicon chip is fixed on the microscope On the workbench.
  • the above-mentioned image acquisition device includes a microscope and a camera, and the above-mentioned camera is installed on the photographing tube of the above-mentioned microscope and connected to the above-mentioned computer.
  • Another task of the present invention is to provide an experimental method based on microfluidic control and Jamin effect observation, which includes the following steps:
  • the syringe pump At the beginning of the experiment, set the syringe pump to start injecting the configured liquid at a certain flow rate, observe its injection pressure data through the pressure sensor, and record it in the computer; observe the movement of the configured liquid in the cross channel through a microscope, and adjust the gas
  • the injection pressure causes the gas injected in the upper and lower channels of the cross-shaped channel to cut off the liquid to form droplets, and continuously control the gas and liquid pressure to obtain multiple droplets of different sizes;
  • the droplet is deformed at the throat due to the change of the channel diameter.
  • the deformation process is captured by the microscope and photographed by the camera and displayed on the computer monitor.
  • the surface tension change of the droplet can be analyzed through the curvature of the interface of the droplet;
  • the fluid flowing through the channel finally flows into the horizontal measuring capillary.
  • the stopwatch starts timing from the liquid flowing into the measuring capillary, and the flow rate data can be obtained through the volume and time of the liquid in the capillary;
  • the experiment is easy to operate, and the acquired fluid motion parameters are relatively comprehensive, which can fully meet most research needs, and truly reproduce the Jia Min effect in the microchannel, and the experimental cost is low, and the experimental data is true and reliable.
  • the experimental device is simple, low-cost, and easy to operate.
  • the experimental system of the present invention uses a cross-shaped channel model to control the size of the droplets and bubbles generated by controlling the pressure, and realize the research on the Jamin effect by setting the throat to observe the deformation , Compared with the prior art, two-phase microfluidic control can be realized through simple methods;
  • the experimental method of the present invention realizes the observation of the deformation of various fluids at the throat and the analysis of the force by changing the fluid used in the experiment. It has high visibility, true and reliable calculation results, simple operation, and cost With low advantages, it can better realize the size control of microfluidic droplets, and this method can also be used to control the size of oil droplets, bubbles, etc.
  • the present invention proposes an experimental system and an experimental method based on microfluidic control and Jamin effect observation.
  • the present invention will be described in detail below with reference to specific embodiments.
  • the structure of the micro-silicon chip is shown in Fig. 2 and Fig. 3 in detail. It includes an upper layer 210, a middle layer 220, and a lower layer 230.
  • the upper and lower layers are transparent upper covers and lower pads, and the middle layer is a channel layer engraved with channels.
  • the channel layer can be divided into two parts, the front half is a cross-shaped channel, the upper and lower ends of the cross are the gas inlets, the left side of the cross is the liquid inlet, the right side of the cross connects the back half, and the second half is a straight through Channel, the front part of the channel is a circular cross-section channel with a diameter of 10 microns, the middle section is reduced to a circular cross-section channel with a diameter of 5 microns, and the back section is expanded into a circular cross-section channel with a diameter of 10 microns, and finally flows out of the channel and enters the measuring capillary .
  • the cross-shaped microchannel in the first half cooperates with the pressurized gas to control the generation of liquid beads of different sizes.
  • the microchannel throat with the diameter of the second half reduced from 10 microns to 5 microns can simulate the conditions of the Jamin effect.
  • the water injection port, the micro channel and the water outlet are at the same level to eliminate the influence caused by the difference in gravity.
  • the channel layer includes a vertical channel outlet 221, a horizontal channel inlet 222, a channel intersection 223, a vertical channel inlet 224, a channel constriction 225, a horizontal narrow channel 226, and a horizontal channel outlet 227.
  • the pressure driving device includes a micro injection pump 101, a gas cylinder 104, a check valve 102, a three-way 106, a pressure control valve 105 and a hose 103.
  • the injection pump is connected to one port of the three-way 106 through a hose, and the other of the three-way
  • the port is connected with the liquid inlet in the micro silicon chip, and the other port of the tee is connected with a pressure sensor;
  • the steel cylinder is connected with the gas inlet of the micro silicon chip, and the micro silicon chip is fixed on the microscope workbench.
  • the present invention preferably selects an auto-focusing and auto-scanning microscope, which can make the experiment more convenient, simple, and has strong operability. At the same time, it can also observe and record the relatively fast process of the fluid interface flowing through the microchannel in time.
  • the above-mentioned data acquisition device is composed of a pressure sensor 403, a measuring capillary 402, a stopwatch, and a computer 401, and is used for auxiliary data collection and processing.
  • the pressure sensor is connected to the computer through a data line 404.
  • the test system of the present invention realizes the observation of fluid deformation in the micro-channel through the combination of a high-power microscope and a high-speed camera; the experimental device can control the size of the generated droplets or bubbles through the control of the cross-shaped microchannel and the gas and hydraulic pressure
  • the purpose of size by setting a throat that transitions from a channel with a diameter of 10 microns to a channel with a diameter of 5 microns to simulate the Jamin effect condition, it is possible to analyze the transition of droplets or bubbles from a channel of 5 microns to a channel of 10 microns through visual observation and image processing
  • the deformation of the position, combined with the various parameters obtained by the auxiliary measurement can calculate and analyze the surface tension changes of the droplets or bubbles.
  • the first step is to prepare for the experiment:
  • the microscope is aligned with the center of the cross channel, automatically focuses, adjusts the picture definition, and makes it projected on the computer monitor clearly.
  • the invention adopts a cross-shaped micro-channel to realize the method of controlling the droplet size, which is suitable for various fluids. It can also be replaced with up and down pressurized water to control the bubble size of the gas injected at the left end, or pressurized water up and down to control the left end
  • the injected oil generates oil droplets of the required size to meet the needs of the experiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种基于微流体控制与贾敏效应观测的实验系统及其实验方法,实验系统包括压力驱动装置(100)、数据采集装置(400)、图形采集装置(300)和内有光刻微米级通道的微硅芯片(200),微硅芯片(200)的一侧连接压力驱动装置(100),另一侧连接数据采集装置(400),图形采集装置(300)位于微硅芯片(200)的正上方;压力驱动装置(100)用于实验系统的流体注入与压力控制;数据采集装置(400)用于辅助数据的收集与处理;图形采集装置(300)用于拍摄记录流体液滴在微通道内的变形图像,并观察其两相界面情况;实验方法包括实验准备和实验及数据收集的步骤;微硅芯片(200)采用十字形通道模型,通过控制压力,控制生成的液滴与气泡尺寸,并通过设置喉道观测变形实现对贾敏效应的研究,能够通过简单的方法实现两相微流体控制。

Description

基于微流体控制与贾敏效应观测的实验系统及其实验方法 技术领域
本发明涉及一种用于微流体控制与贾敏效应观测的微米通道实验系统及其实验方法,尤其涉及一种基于两相流动的微流体控制与贾敏效应观测的微米通道实验系统及其实验方法。
背景技术
微流体技术,是上世纪90年代兴起的一门多学科交叉的科技前沿工程技术,着重研究特征尺寸在数百微米以下的通道中的流动规律。带动了化学、生物、岩土等学科从宏观现象研究到微观现象分析的革命性进展。对微流体的控制一直是微流体技术最为重要的一个环节,由于不同行业的研究需要不同,控制的精度要求也不相同。现有微流体实验装置的微流体控制大多用于化学及生物领域,其控制精度大,但同时也复杂,难操作,成本高。现有微流体实验装置的观测装置主要技术方案一是依靠PIV(图像离子测速)或LDV(激光测速)方法,这两种方法都采用了粒子跟踪技术,对粒子以及粒子运动的观察设备要求十分高。二是直接观测流体运动,这种方法简单,设备要求低,但获得的数据单一,并没有太高的实际研究意义。
贾敏效应是一种阻力效应,液体中气泡或者气体中的液滴由于界面张力而力图保持成球形。当这些气泡或者液滴通过细小的孔隙喉道时,由于孔道和喉道的半径差使得气泡或油滴两端的弧面毛管力表现为阻力,若要通过半径较小的喉道必须拉长并改变形状,这种变形将消耗一部分能量,从而减缓气泡或液滴运动,增加额外的阻力,这种现象称为贾敏效应。贾敏效应对石油的采集率、煤层的注水效果等工程问题有着重要的影响。
发明概述
技术问题
问题的解决方案
技术解决方案
本发明的目的在于提供一种基于微流体控制与贾敏效应观测的实验系统及其实验方法,其操作方便,能较好的实现对微流体液滴的尺寸控制。
本发明的任务之一在于提供一种基于微流体控制与贾敏效应观测的实验系统,其采用了如下技术方案:
一种基于微流体控制与贾敏效应观测的实验系统,其包括压力驱动装置、数据采集装置、图形采集装置,还包括内有光刻微米级通道的微硅芯片,所述的微硅芯片的一侧连接所述压力驱动装置,另一侧连接所述数据采集装置,所述的图形采集装置位于所述微硅芯片的正上方;
所述的压力驱动装置用于实验系统的流体注入与压力控制;
所述的数据采集装置用于辅助数据的收集与处理;
所述的图形采集装置用于拍摄记录流体液滴在微通道内的变形图像,并观察其两相界面情况。
上述技术方案直接带来的有益技术效果为:
实验所获得参数全面、真实、可靠;且整个实验装置结构简单、操作简便。这主要是由于采取了图像采集与辅助数据采集两类装置,其工作原理各不相同,所采集的数据类型也不相同,图像采集获得的是液滴变形的直观图像,界面弧度等图形信息,辅助数据采集获得的是注入压力以及流速等相关数值信息。两类数据是互补的,通过将这些数据处理后代入公式计算,最终能获得表面张力等重要数据,同时两数据还能起到相互检验的效果。
作为本发明的一个优选方案,上述的微硅芯片分为上、中、下三层,上、下层为透明的上盖和下垫,中层为光刻微米级通道的通道层;上述的通道层,分为前后两部分,前半部分为十字形通道,十字的上下两端为气体进入口,十字左侧为液体进入口,十字右侧连接后半部分,后半部分为一条直通道,通道前段为直径为10微米的圆形截面通道,中段缩小为直径为5微米的圆形截面通道,后段又扩张为直径为10微米的圆形截面通道。
上述技术方案直接带来的有益技术效果为:
前半部分十字形微通道与有压气体相互配合实现对不同大小尺度液珠的生成的控制,后半部分直径从10微米缩小到5微米的微通道喉道,可模拟贾敏效应的条件,同时注水口、微通道和出水口处以同一水平,排除因重力差造成的影响。
上述技术方案中采用十字形微通道来实现液滴大小的控制的方法,适用于各种流体,也可以替换成上下注加压水控制左端注入的气体的气泡尺寸,或者上下加加压水,控制左端注入的油生成所需要尺寸的油滴来满足实验需要。
作为本发明的另一个优选方案,上述的数据采集装置包括压力传感器、测量毛细管及计算机,上述通道层后半部分的后段圆形截面通道的出口与上述的测量毛细管连通,上述的压力传感器与上述的计算机连接。
进一步的,上述的压力驱动装置包括注射泵、气体钢瓶、止逆阀、三通、压力控制阀及软管,上述的注射泵通过上述软管与上述三通的一个端口相连,上述的三通的另一端口与微硅芯片中的液体进入口相连,上述的三通的再一端口连接上述压力传感器;上述钢瓶与上述的微硅芯片的气体进入口相连,上述的微硅芯片固定在显微镜工作台上。
进一步的,上述的图形采集装置包括显微镜和摄像机,上述的摄像机安装在上述的显微镜的摄影接筒上,并且与上述的计算机连接。
本发明的另一任务在于提供一种基于微流体控制与贾敏效应观测的实验方法,其包括以下步骤:
a、实验准备:
根据实验需求,预先制备去离子水、一定浓度的表面活性剂溶液、含有纳米材料的纳米流体三种液体,取等体积的三种液体放入压力驱动装置的注射泵中;将各个实验装置连接好,并接通注水泵电源,注入流体,检查连接处的密封情况完好后,用注水泵注入空气,排空管道中的液体;用注射器针头在测量毛细管中间部位注入一滴水珠,封闭测量毛细管与外界的接触;接通各个实验装置电源,将注射泵数据归零;显微镜对准十字形通道中心位置,自动对焦,调整画面清晰度,使其清晰的投影到计算机显示器;
b、实验步骤及数据收集:
实验开始时,设置注射泵使其按一定流量开始注入配置好的液体,通过压力传 感器观测其注入压力数据,并记录在计算机里;通过显微镜观察配置好的液体在十字通道中的运动,调整气体注入压力,使十字形通道上下通道中注入的气体将液体掐断,形成液滴,不断控制气体和液体压力,得到多个不同大小的液滴;
得到液滴后,停止液体与气体注入,调整显微镜观察点至喉道处,自动对焦,使喉道处液滴运动情况呈现在计算机的显示器上,继续注射液体;
液滴在喉道处由于通道直径的变化会产生变形,其变形过程被显微镜捕捉,并被摄像机拍摄下来显示在计算机的显示器上,通过液滴的界面弧度可以分析其表面张力的变化情况;
流经通道的流体最后流入水平放置的测量毛细管,秒表从液体流入测量毛细管开始计时,通过毛细管内液体的体积与时间,可以得出其流量数据;
注射泵内更换成内有空气的注射器,注入空气,排空其中的流体,然后换下一种液体重复上述实验并记录相关数据。
上述技术方案直接带来的有益技术效果为:
实验操作简便,获取的流体运动参数较为全面,完全能够满足大部分研究需要,真实重现了微通道中贾敏效应的产生,且实验成本低,实验数据真实、可靠。
上述技术方案中“用注射器针头在测量毛细管中间部位注入一滴水珠,封闭毛细管与外界的接触”的目的是为了隔绝测量流体与外界大气接触,从而杜绝其因液面蒸发而产生的误差
发明的有益效果
有益效果
与现有技术相比,本发明带来了以下有益技术效果:
(1)实验装置简单、成本低、操作方便,本发明实验系统采用十字形通道模型,通过控制压力,控制生成的液滴与气泡尺寸,并通过设置喉道观测变形实现对贾敏效应的研究,相对于现有技术,能够通过简单的方法实现两相微流体控制;
(2)本发明的实验方法,通过更换实验所用流体,进而实现多种流体在喉道 处变形的观测与受力的分析,具有可视程度高,计算结果真实、可靠,且操作简单,成本低等优点,可以较好的实现对微流体液滴的尺寸控制,并且这种方法还可以用来控制油滴、气泡等的尺寸。
(3)形成的液滴与喉道的设置,满足了贾敏效应的发生条件,能够实现贾敏效应的观察与研究。
对附图的简要说明
附图说明
下面结合附图对本发明做进一步说明:
图1为本发明一种基于微流体控制与贾敏效应观测的实验系统的整体结构示意图;
图2为本发明微硅芯片的结构示意图;
图3为本发明微硅芯片的俯视图;
图中:100、压力驱动装置,101、微量注射泵,102、止逆阀,103、软管,104、气体钢瓶,105、压力控制阀,106、三通,200、微硅芯片,210、上层,220、中层,230、下层,221、垂直通道出口,222、水平通道入口,223、通道交叉口,224、垂直通道入口,225、通道缩口,226、水平窄通道,227、水平通道出口,300、图形采集装置,301、高速摄像机,302、显微镜,400、数据采集装置,401、计算机,402、测量毛细管,403、压力传感器,404、数据线。
发明实施例
本发明的实施方式
本发明提出了一种基于微流体控制与贾敏效应观测的实验系统及其实验方法,为了使本发明的优点、技术方案更加清楚、明确,下面结合具体实施例对本发明做详细说明。
结合图1至图3所示,本发明一种基于微流体控制与贾敏效应观测的实验系统,包括压力驱动装置100、数据采集装置400和图形采集装置300和微硅芯片200,其中,作为主要改进点的微硅芯片200,其中光刻有十字形微通道,与有压气体相互配合实现对不同大小尺度液珠的生成的控制,其中有直径从10微米缩小到5微米的微通道喉道,可模拟贾敏效应的条件;该微硅芯片的一侧连接压力驱动 装置,另一侧连接数据采集系统,正上方为图形采集装置。
具体的,微硅芯片的结构详见图2和图3所示,其包括上层210、中层220、下层230,其中上、下层为透明的上盖和下垫,中层为刻有通道的通道层,该通道层,可分为前后两部分,前半部分为十字形通道,十字上下两端为气体进入口,十字左侧为液体进入口,十字右侧连接后半部分,后半部分为一条直通道,通道前段为直径为10微米的圆形截面通道,中段缩小为直径为5微米的圆形截面通道,后段又扩张为直径为10微米的圆形截面通道,最终流出通道,进入测量毛细管。前半部分十字形微通道与有压气体相互配合实现对不同大小尺度液珠的生成的控制,后半部分直径从10微米缩小到5微米的微通道喉道,可模拟贾敏效应的条件,同时注水口、微通道和出水口处以同一水平,排除因重力差造成的影响。如图3所示,该通道层包括垂直通道出口221、水平通道入口222、通道交叉口223、垂直通道入口224、通道缩口225、水平窄通道226、水平通道出口227。
压力驱动装置包括微量注射泵101、气体钢瓶104、止逆阀102、三通106、压力控制阀105及软管103,注射泵通过软管与三通106的一个端口相连,三通的另一端口与微硅芯片中的液体进入口相连,三通的再一端口连接压力传感器;钢瓶与微硅芯片的气体进入口相连,微硅芯片固定在显微镜工作台上。本发明优选选用自动对焦、自动扫描的显微镜,能够使得实验更加方便,简单,可操作性强,同时也是为了能够及时观测并记录流体界面流经微通道这一比较快速的过程。
上述数据采集装置由压力传感器403、测量毛细管402、秒表、计算机401组成,用于辅助数据的收集与处理,压力传感器通过数据线404与计算机相连。
图形采集装置包括显微镜302和高速摄像机301,用于拍摄记录流体液滴在微通道内的变形图像,观察其两相界面情况。高速摄像机301接在高倍显微镜的摄影接筒上并通过数据线与计算机相连接。
本发明试验系统,通过高倍显微镜与高速摄像机相互结合,实现流体在微米通道中变形情况的观测;实验装置通过十字形微通道与气、液压力的控制,能达到控制生成液滴或者气泡的大小尺寸的目的;通过设置一个由直径10微米的通 道向直径5微米的通道过度的喉道模拟贾敏效应条件,能够通过肉眼观测和图像处理分析液滴或气泡在5微米通道到10微米通道过度处的变形情况,配合辅助测量得到的各项参数,能够计算分析出液滴或气泡的表面张力变化情况。
下面结合上述实验系统,来对本发明一种基于微流体控制与贾敏效应观测的实验方法做具体介绍。
具体实验方法为:
第一步,实验准备:
跟据实验需求,预先制备去离子水、有一定浓度的表面活性剂溶液、含有纳米材料的纳米流体三种液体。用三个相同型号的注射器分别吸取上述溶液适量,放入实验室注射泵。用软管将各个实验装置连接好,并接通注水泵电源,注入流体,检查连接处的密封情况完好后,用注水泵注入空气,排空管道中的液体。用注射器针头在测量毛细管中间部位注入一滴水珠,封闭毛细管与外界的接触。
先接通各设备电源,将注射泵数据归零。
显微镜对准十字通道中心位置,自动对焦,调整画面清晰度,使其清晰的投影到电脑显示器上。
第二步,实验步骤及数据收集:
实验开始时,设置注射泵使其按一定流量开始注入配置好的液体,压力传感器能观测其注入压力数据,并记录在计算机里。通过显微镜观察配置好的液体在十字通道中的运动,调整气体注入压力,使十字通道上下通道中注入的气体将液体掐断,形成液滴,不断控制气体和液体压力,得到多个不同大小的液滴。
得到液滴后,停止液体与气体注入,调整显微镜观察点,自动对焦,使喉道处液滴运动情况呈现在显示器上,继续注射。
液滴在喉道处由于通道直径的变化会产生变形,其变形过程就会被显微镜捕捉到并被高速摄像机拍摄下来显示在电脑上,通过液滴的界面弧度可以分析其表面张力的变化情况。
流经通道的流体最后流入水平放置的测量毛细管,秒表从液体流入测量毛细管开始计时,通过毛细管内液体的体积与时间,可以得出其流量数据。
注射泵内更换成内有空气的注射器,注入空气,排空其中的流体。然后换下一种液体重复上述实验并记录相关数据。
本发明采用十字形微通道来实现液滴大小的控制的方法,适用于各种流体,也可以替换成上下注加压水控制左端注入的气体的气泡尺寸,或者上下加加压水,控制左端注入的油生成所需要尺寸的油滴来满足实验需要。
本发明中未述及的部分借鉴现有技术即可实现。
需要说明的是,在本说明书的教导下本领域技术人员所做出的任何等同方式,或明显变型方式均应在本发明的保护范围内。

Claims (6)

  1. 一种基于微流体控制与贾敏效应观测的实验系统,其包括压力驱动装置、数据采集装置、图形采集装置,其特征在于:
    还包括内有光刻微米级通道的微硅芯片,所述的微硅芯片的一侧连接所述压力驱动装置,另一侧连接所述数据采集装置,所述的图形采集装置位于所述微硅芯片的正上方;
    所述的压力驱动装置用于实验系统的流体注入与压力控制;
    所述的数据采集装置用于辅助数据的收集与处理;
    所述的图形采集装置用于拍摄记录流体液滴在微通道内的变形图像,并观察其两相界面情况。
  2. 根据权利要求1所述的一种基于微流体控制与贾敏效应观测的实验系统,其特征在于:所述的微硅芯片分为上、中、下三层,上、下层为透明的上盖和下垫,中层为光刻微米级通道的通道层;所述的通道层,分为前后两部分,前半部分为十字形通道,十字的上下两端为气体进入口,十字左侧为液体进入口,十字右侧连接后半部分,后半部分为一条直通道,通道前段为直径为10微米的圆形截面通道,中段缩小为直径为5微米的圆形截面通道,后段又扩张为直径为10微米的圆形截面通道。
  3. 根据权利要求2所述的一种基于微流体控制与贾敏效应观测的实验系统,其特征在于:所述的数据采集装置包括压力传感器、测量毛细管及计算机,所述通道层后半部分的后段圆形截面通道的出口与所述的测量毛细管连通,所述的压力传感器与所述的计算机连接。
  4. 根据权利要求3所述的一种基于微流体控制与贾敏效应观测的实验系统,其特征在于:所述的压力驱动装置包括注射泵、气体钢瓶、止逆阀、三通、压力控制阀及软管,所述的注射泵通过所述软管与所述三通的一个端口相连,所述的三通的另一端口与微硅芯片中的液体进入口相连,所述的三通的再一端口连接所述压力传 感器;所述钢瓶与所述的微硅芯片的气体进入口相连,所述的微硅芯片固定在显微镜工作台上。
  5. 根据权利要求4所述的一种基于微流体控制与贾敏效应观测的实验系统,其特征在于:所述的图形采集装置包括显微镜和摄像机,所述的摄像机安装在所述的显微镜的摄影接筒上,并且与所述的计算机连接。
  6. 一种基于微流体控制与贾敏效应观测的实验方法,其特征在于,其采用权利要求5所述的基于微流体控制与贾敏效应观测的实验系统,所述实验方法依次包括以下步骤:
    a、实验准备:
    根据实验需求,预先制备去离子水、一定浓度的表面活性剂溶液、含有纳米材料的纳米流体三种液体,取等体积的三种液体放入压力驱动装置的注射泵中;将各个实验装置连接好,并接通注水泵电源,注入流体,检查连接处的密封情况完好后,用注水泵注入空气,排空管道中的液体;用注射器针头在测量毛细管中间部位注入一滴水珠,封闭测量毛细管与外界的接触;接通各个实验装置电源,将注射泵数据归零;显微镜对准十字形通道中心位置,自动对焦,调整画面清晰度,使其清晰的投影到计算机显示器;
    b、实验步骤及数据收集:
    实验开始时,设置注射泵使其按一定流量开始注入配置好的液体,通过压力传感器观测其注入压力数据,并记录在计算机里;通过显微镜观察配置好的液体在十字通道中的运动,调整气体注入压力,使十字形通道上下通道中注入的气体将液体掐断,形成液滴,不断控制气体和液体压力,得到多个不同大小的液滴;
    得到液滴后,停止液体与气体注入,调整显微镜观察点至喉道处,自动对焦,使喉道处液滴运动情况呈现在计算机的显示器上,继续注射液体;
    液滴在喉道处由于通道直径的变化会产生变形,其变形过程被显微镜捕捉,并被摄像机拍摄下来显示在计算机的显示器上,通过液滴的界面弧度可以分析其表面张力的变化情况;
    流经通道的流体最后流入水平放置的测量毛细管,秒表从液体流入测量毛细管开始计时,通过毛细管内液体的体积与时间,可以得出其流量数据;
    注射泵内更换成内有空气的注射器,注入空气,排空其中的流体,然后换下一种液体重复上述实验并记录相关数据。
PCT/CN2019/098775 2019-04-24 2019-08-01 基于微流体控制与贾敏效应观测的实验系统及其实验方法 WO2020215523A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910331289 2019-04-24
CN201910331289.8 2019-04-24

Publications (1)

Publication Number Publication Date
WO2020215523A1 true WO2020215523A1 (zh) 2020-10-29

Family

ID=68077120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098775 WO2020215523A1 (zh) 2019-04-24 2019-08-01 基于微流体控制与贾敏效应观测的实验系统及其实验方法

Country Status (2)

Country Link
CN (1) CN110302851A (zh)
WO (1) WO2020215523A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114308150A (zh) * 2021-12-07 2022-04-12 中国地质大学(武汉) 一种反馈控制式双脉冲驱动液滴生成系统及液滴生成方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110302851A (zh) * 2019-04-24 2019-10-08 山东科技大学 基于微流体控制与贾敏效应观测的实验系统及其实验方法
CN111103234A (zh) * 2019-12-13 2020-05-05 中国电子科技集团公司第七研究所 一种微流控芯片键合强度的测试装置及其测试方法
CN113393741A (zh) * 2021-05-18 2021-09-14 刘秋生 一种微重力环境下的大尺寸液滴相变过程观测的实验装置
CN114273106B (zh) * 2021-12-30 2023-02-03 杭州电子科技大学 气动微液滴发生器及其制备工艺
CN115165196A (zh) * 2022-07-13 2022-10-11 清华大学 微流控压力传感器、检测方法、设备、系统和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101294886A (zh) * 2008-06-11 2008-10-29 清华大学 一种用于快速测量界表面张力的微流控芯片装置
CN201166670Y (zh) * 2008-03-21 2008-12-17 西安交通大学 生物微流体实验的观测装置
CN102507528A (zh) * 2011-12-02 2012-06-20 徐州雷奥医疗设备有限公司 基于自聚焦透镜的微流体检测系统
US9534997B2 (en) * 2013-04-11 2017-01-03 National University Of Singapore Apparatus and method for visiometric disintegration
CN109142675A (zh) * 2018-08-03 2019-01-04 中国科学院力学研究所 一种微米毛细管气液动态相界面测试装置
CN109443993A (zh) * 2018-10-10 2019-03-08 中国石油天然气股份有限公司 界面变化观测系统和方法
CN110302851A (zh) * 2019-04-24 2019-10-08 山东科技大学 基于微流体控制与贾敏效应观测的实验系统及其实验方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109564231B (zh) * 2016-06-08 2023-01-06 加利福尼亚大学董事会 用于处理组织和细胞的方法和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201166670Y (zh) * 2008-03-21 2008-12-17 西安交通大学 生物微流体实验的观测装置
CN101294886A (zh) * 2008-06-11 2008-10-29 清华大学 一种用于快速测量界表面张力的微流控芯片装置
CN102507528A (zh) * 2011-12-02 2012-06-20 徐州雷奥医疗设备有限公司 基于自聚焦透镜的微流体检测系统
US9534997B2 (en) * 2013-04-11 2017-01-03 National University Of Singapore Apparatus and method for visiometric disintegration
CN109142675A (zh) * 2018-08-03 2019-01-04 中国科学院力学研究所 一种微米毛细管气液动态相界面测试装置
CN109443993A (zh) * 2018-10-10 2019-03-08 中国石油天然气股份有限公司 界面变化观测系统和方法
CN110302851A (zh) * 2019-04-24 2019-10-08 山东科技大学 基于微流体控制与贾敏效应观测的实验系统及其实验方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114308150A (zh) * 2021-12-07 2022-04-12 中国地质大学(武汉) 一种反馈控制式双脉冲驱动液滴生成系统及液滴生成方法
CN114308150B (zh) * 2021-12-07 2023-01-03 中国地质大学(武汉) 一种反馈控制式双脉冲驱动液滴生成系统及液滴生成方法

Also Published As

Publication number Publication date
CN110302851A (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
WO2020215523A1 (zh) 基于微流体控制与贾敏效应观测的实验系统及其实验方法
Yang et al. Mass transfer characteristics of bubbly flow in microchannels
CN105986789B (zh) 高含水油藏微观水驱剩余油水动力学表征方法
CN108393103A (zh) 一种可实现液滴尺寸不依赖流量的微流控芯片
Leung et al. Gravitational effect on Taylor flow in horizontal microchannels
CN102876563B (zh) 一种自动捕获单细胞的微流控芯片
CN115855358A (zh) 一种测量页岩油藏co2混相驱最小混相压力的装置与方法
CN111307714B (zh) 基于光流控热毛细微流涡旋的液滴操控芯片及其操控方法
Chao et al. Significance of gas-liquid interfaces for two-phase flows in micro-channels
Luo et al. Liquid flow pattern around Taylor bubbles in an etched rectangular microchannel
CN115569679A (zh) 一种快速测定露点泡点的微流控芯片
Motagamwala A microfluidic, extensional flow device for manipulating soft particles
Günther et al. Multiphase flow
McCabe et al. A micro-scale monopropellant fuel injection scheme using two-phase slug formation
CN109603934A (zh) 一种通过毛细管内部金属液滴位置变化测量微通道内部压力装置
CN113884275B (zh) 多孔介质过渡流中观测涡结构的装置及方法
US20230285971A1 (en) Droplet sorting chip
Błoński et al. Hydro-dynamically modified seeding for micro-PIV
Wright et al. Laser-based measurements of stratified liquid-liquid pipe flows interacting with jets in cross-flow
CN114798029B (zh) 测试孔喉结构两相界面稳定性的微流控芯片及其制备方法
US20230235270A1 (en) Device for homogenization of a multicomponent fluid
CN218459546U (zh) 一种液滴分选芯片
CN217431743U (zh) 一种基于机器视觉的微流控实时自动控制系统
Li et al. Quantifying the Dynamics of Water-CO2 Multiphase Flow in Microfluidic Porous Media Using High-Speed Micro-PIV
Wang et al. The transport and deformation of blood cells in micro-channel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925907

Country of ref document: EP

Kind code of ref document: A1