WO2020215346A1 - Appareil et procédé d'essai de cisaillement triaxial direct de roche - Google Patents

Appareil et procédé d'essai de cisaillement triaxial direct de roche Download PDF

Info

Publication number
WO2020215346A1
WO2020215346A1 PCT/CN2019/084898 CN2019084898W WO2020215346A1 WO 2020215346 A1 WO2020215346 A1 WO 2020215346A1 CN 2019084898 W CN2019084898 W CN 2019084898W WO 2020215346 A1 WO2020215346 A1 WO 2020215346A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
confining pressure
shear
shearing
tested
Prior art date
Application number
PCT/CN2019/084898
Other languages
English (en)
Chinese (zh)
Inventor
刘造保
邵建富
张超
谢守益
沈挽青
蔡力聪
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2020215346A1 publication Critical patent/WO2020215346A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/24Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0025Shearing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0256Triaxial, i.e. the forces being applied along three normal axes of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle

Definitions

  • the invention belongs to the technical field of rock experiments, and in particular relates to a rock triaxial direct shearing experimental device and method.
  • Rocks are subjected to three-dimensional ground stress in the formation.
  • the shear failure process and shear strength of rock under three-dimensional stress are issues that generally require attention in rock engineering design.
  • the shear strength of rock is generally determined approximately by means of shear box and conventional triaxial direct shear experiments.
  • confining pressure ie, normal force
  • the existing shear box experiment device and the conventional rock direct shear device cannot achieve self-balance of confining pressure on the loading surface, which leads to the triaxial direct shear experiment under high confining pressure which is prone to deflection end squeezing effect, and the displacement is relatively high. There are large errors in the measured stress and displacement when large, resulting in the inaccurate acquisition of the shear strength.
  • the purpose of the present invention is to provide a rock triaxial direct shear experiment device and method, which are used to obtain the shear strength and triaxial shear failure process of the rock under triaxial stress, and provide an accurate evaluation method for rock engineering design and construction safety And basis.
  • a three-axis direct shearing experimental device for rock which includes a confining pressure self-balanced shearing component and a soft sample sealing sleeve.
  • the two ends of the sample to be tested are respectively provided with confining pressure self-balanced shearing components, and the soft sample is sealed
  • the sleeve is sleeved on the sample to be tested and the outer side of the confining pressure self-balancing shearing component at both ends thereof.
  • the confining pressure self-balancing shearing component includes a shear base, a metal backing plate and a confining pressure self-balancing body.
  • the cutting base is in flat contact with the side of the axis of the end face of the sample to be tested, the contact area is 1/2 of the area of the end of the sample, the cutting base is provided with a right-angled guide hole, and the confining pressure self-balancing body is one end
  • a thin-walled hollow body with a lead-out pipeline is provided.
  • the lead-out pipeline communicates with the outside of the sample to be tested through a guide hole provided on the shear base.
  • the metal backing plate is a thin metal plate whose cross-section is 1/2 of the cross section of the test sample, the side surface of the confining pressure self-balancing body is in close contact with the shear base, and the bottom surface of the confining pressure self-balancing body is tightly connected to the other side of the axis of the end face of the test sample through a metal gasket For fitting contact, the two confining pressure self-balancing shear components are arranged antisymmetrically with the center of the sample to be tested.
  • a sealing ring is arranged at the junction of the lead-out pipeline of the confining pressure self-balancing body and the guide hole on the shear base.
  • the soft sample sealing sleeve and the confining pressure self-balancing body are made of high-strength flexible materials.
  • the soft sample sealing sleeve and the confining pressure self-balancing body are made of rubber materials.
  • a rock triaxial direct shearing experiment method adopts the aforementioned rock triaxial direct shearing experimental device, including the following steps:
  • Step 1 Insert the lead-out pipeline of the confining pressure self-balancing body into the guide hole on the shearing base, and place the metal backing plate on the surface of the sample to be tested, and the shearing base, confining pressure self-balancing body, and metal pad
  • the sheet and the sample to be tested are fixed to each other, and the soft sample sealing sleeve is sleeved on the outer side of the sample to be tested and the confining pressure self-balancing components at both ends, and the guide hole on the shear base is not affected by the soft test.
  • the sample sealing sleeve is covered, and the two ends of the soft sealing sleeve are tightened with hoop rings to make the soft sample sealing sleeve closely fit the shear base, and cut the installed sample containing the sample to be tested.
  • the experimental device is placed in the place where the sample to be tested is placed on the ordinary three-axis experimental device;
  • Step 2 Use hydraulic oil to apply confining pressure outside the entire experimental device.
  • the confining pressure value can be equal to the average value of the in-situ stress of the rock to be tested.
  • the hydraulic oil is applied to the outer periphery of the sample through the soft sample sealing sleeve
  • Axial pressure is applied to the end axis of the specimen through the shear base.
  • hydraulic oil enters the confining pressure self-balancing body through the guide hole on the shear base, and passes through the confining pressure self-balancing body Apply an axial confining pressure equal to the radial confining pressure to both ends of the sample;
  • Step 3 Keep the confining pressure constant, apply axial shear force on the two shear bases at the same time until the sample is broken, and record the shear force and deformation during the destruction of the sample, that is, the sample triaxial The stress-strain curve of the shear failure process, and obtain the triaxial shear strength of the sample.
  • the invention determines the experimental confining pressure value according to the in-situ stress of the deep engineering, and carries out the direct shear test under the action of the confining pressure of the sample.
  • the shear force is not limited by the confining pressure and shear displacement. Therefore, the present invention
  • the triaxial shear test with high confining pressure and large shear deformation can be carried out, and the triaxial shear strength of the sample to be tested can be obtained more accurately, and the effective evaluation of the shear mechanical behavior of deep engineering rock mass can be realized.
  • Figure 1 is a schematic cross-sectional structure diagram of the shearing experiment device of the present invention.
  • Fig. 2 is a schematic sectional view of B-B in Fig. 1;
  • Figure 3 is a schematic diagram of the force applied to the sample during the shear experiment of the present invention.
  • soft sample sealing sleeve 1 soft sample sealing sleeve 1; sample to be tested 2; shear base 3; confining pressure self-balancing body 4; pilot hole 5; metal backing plate 6; sealing ring 7.
  • the present invention provides a rock triaxial direct shear experiment device, which includes a confining pressure self-balancing shear component and a soft sample sealing sleeve 1. Both ends of the sample 2 to be tested are The confining pressure self-balancing shearing part is fixed, and the soft sample sealing sleeve 1 is sleeved on the sample 2 to be tested and the outer side of the confining pressure self-balancing shearing part at both ends thereof.
  • the confining pressure self-balancing shearing part includes shears.
  • the cutting base 3, the metal backing plate 6 and the confining pressure self-balancing body 4 are in contact with one side of the end surface of the sample 2 to be tested, and the contact area is 1/2 of the end area of the sample 2,
  • the shear base 3 is provided with a right-angled guide hole 5,
  • the metal backing plate 6 is a thin metal plate, the cross section of which is half of the cross section of the sample 2 to be tested, and the confining pressure self-balancing body 4 It is a thin-walled cavity with an outlet pipeline at one end, and the outlet pipeline communicates with the outside of the sample 2 to be tested through the guide hole 5 provided on the shear base 3.
  • the base 3 is in close contact with each other.
  • the bottom surface of the confining pressure self-balancing body 4 is in close contact with the metal gasket 6 provided on the other side of the end surface of the sample 2 to be tested. To achieve the purpose of shearing sample 2.
  • a metal backing plate 6 is provided between the confining pressure self-balancing body 4 and the sample 2 to be tested, and the metal backing plate 6 is in close contact with the confining pressure self-balancing body 4.
  • a sealing ring 7 is provided at the junction of the guide hole 5 and the confining pressure self-balancing body 4.
  • the soft sample sealing sleeve 1 and the confining pressure self-balancing body 4 are made of rubber material
  • a rock high confining pressure and large deformation triaxial direct shear experiment method adopts the aforementioned rock triaxial direct shear experiment device, including the following steps:
  • Step 1 Fix the sample 2 to be tested between the two confining pressure self-balanced shearing parts, and set the soft sample sealing sleeve 1 on the sample 2 to be tested and the confining pressure self-balanced shearing at both ends On the outside of the components, place the installed experimental device at the place where the sample to be tested is placed on the ordinary three-axis experimental device;
  • Step 2 Use hydraulic oil to apply confining pressure P C outside the entire shearing experiment device.
  • the confining pressure value can be equal to the average value of the in-situ stress of the rock sample to be tested, as shown in Figure 3.
  • the hydraulic oil passes through the soft
  • the sample sealing sleeve 1 applies lateral confining pressure to the outer circumference of the sample 2 to be tested, and applies axial pressure to the end axis of the sample 2 through the shear base 3.
  • the hydraulic oil passes through the guide hole 5 Enter the confining pressure self-balancing body 4, and apply an axial pressure equivalent to the radial confining pressure to both ends of the sample 2 to be tested through the confining pressure self-balancing body 4;
  • Step 3 Keep the confining pressure constant, apply the axial shear force F to the two shear bases 3 at the same time until the sample 2 to be tested is broken, and record the shear force and the shear force during the failure of the sample 2 to be tested. Deformation is to obtain the stress-strain curve of the test sample 2 during the triaxial shear failure process, and obtain the triaxial shear strength (the peak stress of the stress-strain curve) of the test sample 2.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

La présente invention concerne un appareil et un procédé d'essai de cisaillement triaxial direct de roche. Ledit appareil comprend des mécanismes de cisaillement d'équilibrage de pression de confinement et un manchon d'étanchéité d'échantillon souple (1) ; les mécanismes de cisaillement d'équilibrage de pression de confinement sont fixés aux deux extrémités d'un échantillon (2), et le manchon d'étanchéité d'échantillon souple (1) est emmanché à l'extérieur de l'échantillon (2) et des mécanismes de cisaillement d'équilibrage de pression de confinement aux deux extrémités de ceux-ci ; les mécanismes de cisaillement d'équilibrage de pression de confinement comprennent chacun une base de cisaillement (3), la base de cisaillement (3) est en contact avec un côté d'une partie d'extrémité de l'échantillon (2), une chambre est formée entre la base de cisaillement (3), l'autre côté de la partie d'extrémité de l'échantillon (2) et le manchon d'étanchéité d'échantillon souple (1), un corps de cavité élastique adapté à la forme de la chambre est disposé dans la chambre, la base de cisaillement (3) est pourvue d'un conduit d'équilibrage, une extrémité du conduit d'équilibrage étant en communication avec une cavité à l'intérieur du corps de cavité élastique, l'autre extrémité du conduit d'équilibrage est en communication avec l'extérieur du manchon d'étanchéité d'échantillon souple (1), et les deux mécanismes de cisaillement d'équilibrage de pression de confinement sont agencés de façon opposée. En appliquant une pression de confinement d'autoéquilibrage à la périphérie externe et aux parties d'extrémité de l'échantillon (2) et en conduisant un essai de cisaillement sur l'échantillon (2), un essai d'évaluation sur le comportement mécanique de cisaillement de la masse rocheuse d'ingénierie profonde est réalisé, et l'erreur expérimentale est réduite.
PCT/CN2019/084898 2019-04-26 2019-04-29 Appareil et procédé d'essai de cisaillement triaxial direct de roche WO2020215346A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910341635.0 2019-04-26
CN201910341635.0A CN110044730B (zh) 2019-04-26 2019-04-26 一种岩石三轴直接剪切实验装置和方法

Publications (1)

Publication Number Publication Date
WO2020215346A1 true WO2020215346A1 (fr) 2020-10-29

Family

ID=67279466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084898 WO2020215346A1 (fr) 2019-04-26 2019-04-29 Appareil et procédé d'essai de cisaillement triaxial direct de roche

Country Status (2)

Country Link
CN (1) CN110044730B (fr)
WO (1) WO2020215346A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113702151A (zh) * 2021-07-14 2021-11-26 长沙理工大学 一种移动便携式自动化剪切仪

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113109181B (zh) * 2021-04-19 2022-02-15 东北大学 高温高压常规三轴直剪破裂渗流耦合测试装置及使用方法
CN113295552B (zh) * 2021-04-19 2022-05-20 东北大学 高温高压真三轴直剪破裂渗流耦合测试装置及使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817946A (en) * 1996-10-28 1998-10-06 Test Quip, Inc. Gyratory compaction apparatus for creating compression and shear forces in a sample material
CN102901676A (zh) * 2012-10-31 2013-01-30 河海大学 一种竖向直接剪切试验装置
CN105158087A (zh) * 2015-09-18 2015-12-16 中钢集团马鞍山矿山研究院有限公司 一种利用岩石三轴压缩仪进行岩石剪切试验的改进方法
CN105203411A (zh) * 2015-11-06 2015-12-30 武汉大学 一种适用于三轴压力室的裂隙剪切-渗流耦合试验系统及试验方法
CN106442172A (zh) * 2016-11-09 2017-02-22 中国科学院武汉岩土力学研究所 多相流‑应力耦合岩芯剪切试验装置及其方法
CN107748110A (zh) * 2017-09-19 2018-03-02 太原理工大学 微机控制电液伺服岩石三轴动态剪切渗流耦合多功能试验方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2933495B1 (fr) * 2008-07-07 2013-01-18 Univ Lille Sciences Tech Cellule triaxiale de geomateriaux sous pression et cisaillement
CN202916155U (zh) * 2012-10-31 2013-05-01 河海大学 一种竖向直接剪切试验装置
CN103604702B (zh) * 2013-11-28 2016-06-22 中国科学院武汉岩土力学研究所 一种测试岩石断裂韧度的试验装置
CN107884288B (zh) * 2017-12-18 2023-09-26 成都理工大学 高温下含断续节理的岩石压缩剪切试样制作及试验方法
CN108007786B (zh) * 2017-12-29 2024-05-14 成都东华卓越科技有限公司 一种双层压力室及外体变测量系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817946A (en) * 1996-10-28 1998-10-06 Test Quip, Inc. Gyratory compaction apparatus for creating compression and shear forces in a sample material
CN102901676A (zh) * 2012-10-31 2013-01-30 河海大学 一种竖向直接剪切试验装置
CN105158087A (zh) * 2015-09-18 2015-12-16 中钢集团马鞍山矿山研究院有限公司 一种利用岩石三轴压缩仪进行岩石剪切试验的改进方法
CN105203411A (zh) * 2015-11-06 2015-12-30 武汉大学 一种适用于三轴压力室的裂隙剪切-渗流耦合试验系统及试验方法
CN106442172A (zh) * 2016-11-09 2017-02-22 中国科学院武汉岩土力学研究所 多相流‑应力耦合岩芯剪切试验装置及其方法
CN107748110A (zh) * 2017-09-19 2018-03-02 太原理工大学 微机控制电液伺服岩石三轴动态剪切渗流耦合多功能试验方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113702151A (zh) * 2021-07-14 2021-11-26 长沙理工大学 一种移动便携式自动化剪切仪
CN113702151B (zh) * 2021-07-14 2024-04-09 长沙理工大学 一种移动便携式自动化剪切仪

Also Published As

Publication number Publication date
CN110044730A (zh) 2019-07-23
CN110044730B (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2020215346A1 (fr) Appareil et procédé d'essai de cisaillement triaxial direct de roche
CN107687973B (zh) 利用霍普金森压杆测试岩石材料动态点载荷强度的方法
CN109738302B (zh) 一种用于岩石直剪-渗流的试验装置及方法
EP3642594B1 (fr) Procédé et appareil d'essai de tuyau
WO2018086185A1 (fr) Dispositif de mesure de contrainte circonférentielle et axiale utilisé pour un spécimen de type roche
CN108645720A (zh) 用于测试岩石剪胀增渗效果的剪切盒、实验方法和装置
CN103471907B (zh) 一种应用于岩石三轴试验中的双剪切夹具及试验方法
US2655182A (en) Pipe testing head assembly
US20120081713A1 (en) Test block for use in a welding process
Bellotti et al. Cylinder tests: experimental technique and results
US4120230A (en) Self-straining bolts
CN104596695A (zh) 一种精确控制铆接结构中铆钉预紧力的加载装置
JP2002296125A (ja) 残留応力測定方法
CN110873620A (zh) 一种螺栓预紧力测试与疲劳试验装置
CN108106933B (zh) 建材抗压强度的斜压检测夹具及斜压检测方法
CN101819115B (zh) 利用同心圆柱型试样测试脆性材料抗剪强度的方法
CN214667419U (zh) 力标准器及液压承载装置
CN205301090U (zh) 防砂筛管水压试验装置
CN210888922U (zh) 一种有玻璃窗的保压舱结构
GB1257835A (fr)
CN111781064A (zh) 一种用于岩石和混凝土的单轴压缩试验装置及其使用方法
CN112903451A (zh) 一种环形岩石试样直接拉伸试验仪器
CN111289370A (zh) 一种实体混凝土抗压强度圆环拉切法检测装置
CN112834112B (zh) 一种力标准器及液压承载装置
US3494181A (en) Sensing assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926510

Country of ref document: EP

Kind code of ref document: A1