WO2020213550A1 - Coating liquid for paper and coated paper using same - Google Patents
Coating liquid for paper and coated paper using same Download PDFInfo
- Publication number
- WO2020213550A1 WO2020213550A1 PCT/JP2020/016242 JP2020016242W WO2020213550A1 WO 2020213550 A1 WO2020213550 A1 WO 2020213550A1 JP 2020016242 W JP2020016242 W JP 2020016242W WO 2020213550 A1 WO2020213550 A1 WO 2020213550A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ethylene
- paper
- vinyl alcohol
- alcohol copolymer
- mass
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
- C08K5/098—Metal salts of carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L29/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
- C08L29/02—Homopolymers or copolymers of unsaturated alcohols
- C08L29/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H19/00—Coated paper; Coating material
- D21H19/10—Coatings without pigments
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H19/00—Coated paper; Coating material
- D21H19/10—Coatings without pigments
- D21H19/14—Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
- D21H19/20—Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
Definitions
- the present invention relates to a coating liquid for paper containing an ethylene-vinyl alcohol copolymer. It also relates to coated paper and release paper using the same. It should be noted that this application claims the priority of Japanese Patent Application No. 2019-077137 filed on April 15, 2019, and the whole thereof is cited as a part of this application by reference.
- Polyvinyl alcohol (hereinafter, may be abbreviated as "PVA") is known as a water-soluble synthetic polymer, and is a raw material for vinylon, which is a synthetic fiber, a paper processing agent, a fiber processing agent, an adhesive, and an emulsion. It is widely used as a stabilizer for polymerization and suspension polymerization, an inorganic binder, a film, and the like. In particular, it is known that by applying PVA to paper, it is possible to enhance paper strength, make it water resistant, make it oil resistant, and impart gas barrier properties, and it is widely used. PVA is also used as an inorganic binder and a dispersion stabilizer, and as an auxiliary agent for imparting functionality to paper.
- PVA is used as a sealing layer (barrier layer) for the purpose of reducing voids between pulp fibers constituting the paper and improving the surface yield of the silicone coated on the paper surface.
- a sealing layer barrier layer
- partially saponified PVA is known to have excellent barrier properties.
- partially saponified PVA is inferior in water resistance, there is a problem that PVA is eluted and blocked by humidification in an adhesive processing process or the like. Further, there is a problem that the water-dispersed varnish cannot be used in the post-processing process.
- Patent Document 1 describes that both barrier properties and water resistance can be achieved by using a mixture of an ethylene-vinyl alcohol copolymer and carboxymethyl cellulose.
- the ethylene-vinyl alcohol copolymer contains a hydrophobic ethylene unit, it is less soluble in water than unmodified PVA, and remains undissolved when preparing an aqueous solution (hereinafter, "insoluble matter”). It may be abbreviated as.).
- insoluble matter aqueous solution
- the degree of saponification is lowered in order to suppress the formation of insoluble matter, the particles may aggregate with each other during dissolution to form a powder.
- the barrier property may be reduced because they become minute defects on the coated surface.
- the present invention has been made to solve the above problems, and an object of the present invention is to provide a coating liquid for paper containing an ethylene-vinyl alcohol copolymer.
- An object of the present invention is to provide a coated paper and a release paper having excellent water resistance and barrier properties by using the coating liquid for paper.
- the above problem is a coating liquid for paper containing an ethylene-vinyl alcohol copolymer (A) and an alkali metal salt (B) of a carboxylic acid; the ethylene unit of the ethylene-vinyl alcohol copolymer (A).
- the content is 1 mol% or more and less than 20 mol%, and the crystallinity Cw (30 ° C) in water at 30 ° C and the crystallinity Cw (70 ° C) in water at 70 ° C determined by pulse NMR are expressed by the following formulas (70 ° C).
- the viscosity average degree of polymerization of the ethylene-vinyl alcohol copolymer (A) is preferably 900 to 2400. It is also preferable that the degree of saponification of the ethylene-vinyl alcohol copolymer (A) is 90 to 98.5 mol%.
- a coated paper in which the coating liquid is applied to the surface of the paper.
- a preferred embodiment of the coated paper is a release paper base paper.
- a release paper in which a release layer is formed on a sealing layer formed by applying the coating liquid to paper is also a suitable embodiment.
- the release layer contains a silicone resin.
- the coated paper coated with the coating liquid of the present invention has excellent barrier properties and water resistance. Therefore, it is preferably used for release paper. Further, the coating liquid for paper of the present invention has excellent water resistance and is also excellent in blocking resistance, and a water-dispersible varnish can be used in the post-processing step.
- the coating liquid for paper of the present invention is a coating liquid containing an ethylene-vinyl alcohol copolymer (A) and an alkali metal salt (B) of a carboxylic acid; the ethylene-vinyl alcohol copolymer (A).
- the ethylene unit content of ethylene is 1 mol% or more and less than 20 mol%, and the crystallinity in water at 30 ° C. Cw (30 ° C.) and the crystallinity in water at 70 ° C. Cw (70 ° C.) determined by pulse NMR.
- the ethylene-vinyl alcohol copolymer (A) contained in the paper coating liquid of the present invention has an ethylene unit content of 1 mol% or more and less than 20 mol%, and is subjected to pulse NMR (nuclear magnetic resonance absorption method).
- pulse NMR nuclear magnetic resonance absorption method
- a major feature is that the required crystallinity in water Cw (30 ° C.) at 30 ° C. and crystallinity Cw (70 ° C.) in water at 70 ° C. satisfy the above formula (I). This point will be described below.
- the pulse NMR apparatus has a static magnetic field generated by an electromagnet in the apparatus.
- a static magnetic field the direction of nuclear spins of hydrogen nuclei is oriented in the same direction as the static magnetic field.
- T 2 relaxation or lateral relaxation the process until the direction of the excited nuclear spins macroscopically returns to the original static magnetic field direction.
- the magnetization intensity (y) at time (t) is determined by the following equation using the relaxation intensity (A), relaxation time (Tau) and constant (y 0 , W) in the excited state. It is indicated by (II).
- the hydrogen nucleus decays while exchanging energy with other hydrogen nuclei. Therefore, when the molecular motion of the sample is high, the interaction with the protons adjacent to each other is small, so that the energy decay of the entire system is unlikely to occur and the relaxation time becomes long. On the other hand, when the molecular motility is low, the relaxation time becomes short. Therefore, in the case of a crystalline polymer material, the relaxation time is short in the crystalline portion and long in the amorphous portion.
- a crystalline portion and an amorphous portion are present, and in the transition curve, the sum of the relaxation component derived from the crystalline portion having a short relaxation time and the relaxation component derived from the amorphous portion having a long relaxation time is observed.
- the relaxation intensity derived from the crystalline portion is A 1
- the relaxation intensity derived from the amorphous portion is A 2
- the relaxation time derived from the crystalline portion is Tau 1
- the relaxation time derived from the amorphous portion Tau 2
- time (t) The magnetization intensity (y) of the entire sample in the above is expressed by the following equation (III) using a constant (y 0 ).
- y 0 is a component derived from thermal noise derived from the measuring device, is a parameter that does not depend on time t, and does not affect the values of relaxation intensity (A 1 ) and (A 2 ).
- a 1 / (A 1 + A 2 ) derived from this equation is the crystallinity obtained by pulse NMR.
- a pulse sequence called a Solid-echo method is used for the measurement using pulse NMR.
- the ratio of the crystalline component and the amorphous component in the polymer sample can be obtained from the transition curve measured by pulse NMR.
- the ethylene-vinyl alcohol copolymer is a hydrophilic polymer having a large number of hydroxyl groups, and swells in water to reduce the crystallinity, but the degree of swelling is greatly affected by the water temperature. The higher the water temperature, the higher the degree of swelling, and as a result, the degree of crystallinity decreases.
- the ethylene-vinyl alcohol copolymer (A) is a water-soluble polymer, but in order to dissolve the once crystallized ethylene-vinyl alcohol copolymer (A) in water, high temperature conditions and a stirring operation are performed. is necessary. Therefore, the sample does not dissolve and only swells when it is allowed to stand in water at 30 ° C. or 70 ° C., and exists in a solid state. Therefore, in the pulse NMR measurement, the measurement is performed in the solid state.
- the ethylene-vinyl alcohol copolymer (A) of the present invention satisfies the following formula (I).
- the crystallinity in water (Cw) is not determined by the absolute value of the relaxation time, but the relaxation intensity (A 1 ) and (A 2 ), which are the ratios of the system divided into two components having different relaxation times. ) Is a parameter determined by. Since the relaxation intensities (A 1 ) and (A 2 ) are not affected by the change in the resonance frequency, the value of the crystallinity (Cw) in water is not affected by the resonance frequency.
- [(100-Cw (30 ° C.)) / 100] represents the ratio of the amorphous portion at 30 ° C., and takes a value of 0 to 1.
- [Cw (30 ° C.)-Cw (70 ° C.)] is an index of the difference in crystallinity in water between 30 ° C. and 70 ° C., that is, the amount of increase in amorphous portion with an increase in water temperature, and a value of 0 to 100 Take.
- the formula (I) obtained by multiplying these is an index of the easy solubility of the ethylene-vinyl alcohol copolymer (A), and the value of the formula (I) has a large absolute value [Cw (30 ° C.)-. Cw (70 ° C)] has a greater effect.
- an ethylene-vinyl alcohol copolymer having an ethylene unit content of 1 mol% or more and less than 20 mol% is soluble in water because the ethylene unit content is low.
- Such a water-soluble ethylene-vinyl alcohol copolymer usually has a large value of [(100-Cw (30 ° C.)) / 100] and a value of [Cw (30 ° C.)-Cw (70 ° C.)].
- the value of the formula (I) becomes small, and the value of [(100-Cw (30 ° C.)) / 100] is small, and [Cw (30 ° C.)-Cw (70 ° C.)] Since the value of is large, the value of the formula (I) may be large as a result.
- the lower limit of the formula (I) is preferably 5 or more, and more preferably 6 or more.
- the upper limit of the formula (I) is preferably 21 or less, and more preferably 20 or less.
- the sample of ethylene-vinyl alcohol copolymer (A) was allowed to stand in H 2 Od 2 at each temperature (30 ° C., 70 ° C.) for 40 minutes, and then the temperature was the same as that at the time of standing.
- Pulse NMR measurement is performed at the temperature of.
- the range of 0 to 0.8 ms of the obtained transition curve is fitted by the above equation (III) using the error least squares method.
- the ethylene-vinyl alcohol copolymer (A) satisfying the above formula (I) produces less insoluble matter and aggregates derived from the splicing powder when dissolved in water. Therefore, for example, an emulsion polymerization stabilizer.
- an emulsion polymerization stabilizer By emulsion polymerization of an ethylenically unsaturated monomer using an ethylene-vinyl alcohol copolymer (A), it is possible to obtain an aqueous emulsion having less agglomerates and excellent water adhesion and film forming properties. it can.
- the ethylene-vinyl alcohol copolymer (A) satisfying the above formula (I) is a special method for producing an ethylene-vinyl alcohol copolymer, which comprises a polymerization step, a saponification step, a pulverization step, a liquid removal step and a drying step. Can be obtained by This manufacturing method will be described in detail later.
- an ethylene-vinyl alcohol copolymer (A) satisfying the above formula (I) and having excellent solubility in water can be obtained for the first time. It was.
- the ethylene-vinyl alcohol copolymer (A) will be described in more detail.
- the ethylene-vinyl alcohol copolymer (A) can be obtained by including a step of saponifying the ethylene-vinyl ester copolymer obtained by copolymerizing ethylene and vinyl ester.
- the vinyl ester used include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, vinyl versatic acid and the like. Of these, vinyl acetate is preferable.
- the content of ethylene units in the ethylene-vinyl alcohol copolymer (A) is 1 mol% or more and less than 20 mol%. When the content of ethylene units is less than 1 mol%, the water-resistant adhesiveness of the obtained aqueous emulsion is lowered.
- the ethylene unit content is preferably 1.5 mol% or more, and more preferably 2 mol% or more. On the other hand, when the content of ethylene units is 20 mol% or more, the ethylene-vinyl alcohol copolymer (A) becomes insoluble in water, making it difficult to prepare an aqueous solution.
- the content of ethylene units is preferably 15 mol% or less, more preferably 10 mol% or less, and further preferably 8.5 mol% or less.
- the content of ethylene units can be determined from, for example, 1 H-NMR of an ethylene-vinyl ester copolymer which is a precursor of an ethylene-vinyl alcohol copolymer (A) or a revinegared product.
- the ethylene-vinyl ester copolymer of the sample was reprecipitated and purified three times or more using a mixed solution of n-hexane and acetone, and then dried under reduced pressure at 80 ° C. for 3 days to have an ethylene-vinyl ester copolymer for analysis. Make a coalescence.
- the ethylene-vinyl ester copolymer for analysis is dissolved in DMSO-d 6 and measured at 1 H-NMR (500 MHz) at 80 ° C.
- the ethylene unit content was determined using the peak derived from the main chain methine of vinyl ester (4.7 to 5.2 ppm) and the peak derived from ethylene and the main chain methylene of vinyl ester (0.8 to 1.6 ppm). Can be calculated.
- the degree of saponification of the ethylene-vinyl alcohol copolymer (A) is not particularly limited, but is preferably 80 to 99.99 mol%. If the degree of saponification is less than 80 mol%, the solubility of the ethylene-vinyl alcohol copolymer (A) in the obtained aqueous solution becomes insufficient.
- the saponification degree is more preferably 82 mol% or more, further preferably 85 mol% or more, and particularly preferably 90% or more. On the other hand, when the saponification degree exceeds 99.99 mol%, it tends to be difficult to stably produce the ethylene-vinyl alcohol copolymer (A).
- the saponification degree is more preferably 99.5 mol% or less, further preferably 99 mol% or less, and particularly preferably 98.5 mol% or less.
- the saponification degree of the ethylene-vinyl alcohol copolymer (A) can be measured according to JIS K6726 (1994).
- the viscosity average degree of polymerization of the ethylene-vinyl alcohol copolymer (A) is not particularly limited, but is preferably 200 to 5000. When the viscosity average degree of polymerization is less than 200, the storage stability of the obtained aqueous emulsion is lowered.
- the viscosity average degree of polymerization is more preferably 250 or more, further preferably 300 or more, even more preferably 400 or more, and particularly preferably 900 or more.
- the viscosity average degree of polymerization exceeds 5000, the viscosity of the ethylene-vinyl alcohol copolymer aqueous solution becomes too high, and it tends to be difficult to handle.
- the viscosity average degree of polymerization is more preferably 4500 or less, further preferably 4000 or less, still more preferably 3500 or less, and particularly preferably 2400 or less.
- the viscosity average degree of polymerization P can be measured according to JIS K6726 (1994). That is, the ethylene-vinyl alcohol copolymer (A) was re-saponified to a saponification degree of 99.5 mol% or more, purified, and then measured in water at 30 ° C. from the ultimate viscosity [ ⁇ ] (L / g). Can be obtained by.
- P ([ ⁇ ] x 10000 / 8.29) (1 / 0.62)
- the ethylene-vinyl alcohol copolymer (A) may contain a monomer unit other than the vinyl alcohol unit, the ethylene unit and the vinyl ester unit as long as the effect of the present invention is not impaired.
- monomers include ⁇ -olefins such as propylene, n-butene, and isobutylene; acrylic acid and salts thereof; acrylic acid esters; methacrylate and salts thereof; methacrylic acid esters; acrylamide; N-methylacrylamide, N.
- -Acrylamide derivatives such as ethyl acrylamide, N, N-dimethylacrylamide, diacetone acrylamide, acrylamide propanesulfonic acid and its salts, acrylamide propyl dimethylamine and its salts or quaternary salts thereof, N-methylol acrylamide and its derivatives; methacrylamide Acrylamide derivatives such as N-methylmethacrylate, N-ethylmethacrylate, methacrylamidepropanesulfonic acid and its salts, methacrylamidepropyldimethylamine and its salts or quaternary salts thereof, N-methylolmethacrylamide and its derivatives; Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether, stearyl vinyl
- Vinyl halides such as vinyl and vinyl fluoride; vinylidene halides such as vinylidene chloride and vinylidene fluoride; allyl compounds such as allyl acetate and allyl chloride; unsaturated dicarboxylic acids such as maleic acid, itaconic acid and fumaric acid and salts thereof. Alternatively, an ester thereof; a vinylsilyl compound such as vinyltrimethoxysilane; isopropenyl acetate and the like can be mentioned.
- the content of these monomers varies depending on the purpose and use of use, but is preferably 10 mol% or less, more preferably less than 5 mol%, still more preferably less than 1 mol%. It is particularly preferably less than 0.5 mol%.
- a preferred method for producing the ethylene-vinyl alcohol copolymer (A) is a polymerization step of copolymerizing ethylene and a vinyl ester to obtain an ethylene-vinyl ester copolymer; saponifying the ethylene-vinyl ester copolymer.
- a method for producing an ethylene-vinyl alcohol copolymer which comprises a deflating step of obtaining deflated particles; and a drying step of removing the rest of the solvent from the deflated particles by heating to obtain dry particles.
- the deflated particles contain 40 to 65% by mass of the solvent, and the content of the deflated particles passing through a sieve having an opening of 5.6 mm is 80% by mass or more, and the opening is 1
- the deflated particles obtained by pulverizing the solid block after the saponification step and then deflating the solid block as in the above production method contain a specific ratio of solvent and have a specific particle size distribution. Therefore, when preparing an aqueous solution of the ethylene-vinyl alcohol copolymer (A), the powder does not form a powder and the dissolution rate increases.
- each step of the manufacturing method will be described in detail.
- Examples of the method for copolymerizing ethylene and vinyl ester include known methods such as a massive polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method. Of these, a bulk polymerization method or a solution polymerization method in which polymerization is carried out in a solvent-free environment or in an organic solvent such as alcohol can be usually adopted, but the solution polymerization method is preferable.
- Examples of the alcohol include lower alcohols such as methanol and ethanol, and methanol is particularly preferable. In the polymerization operation, any of the batch method, the semi-batch method and the continuous method can be adopted.
- Examples of the polymerization reactor include a batch reactor, a tubular reactor, and a continuous tank reactor.
- the initiators used in the copolymerization include 2,2'-azobis (isobutyronitrile), 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), and 2,2'-azobis. Examples thereof include azo-based initiators such as (2,4-dimethyl-valeronitrile), benzoyl peroxide, n-propylperoxydicarbonate, and known initiators such as peroxide-based initiators.
- the polymerization temperature is not particularly limited, and is preferably about 0 to 180 ° C, more preferably room temperature to 160 ° C, and even more preferably 30 to 150 ° C.
- vacuum boiling polymerization or normal pressure non-boiling polymerization can be selected.
- pressure non-boiling polymerization or pressure boiling polymerization can be selected.
- the ethylene pressure in the polymerization reactor at the time of polymerization is preferably 0.01 to 0.9 MPa, more preferably 0.05 to 0.7 MPa, still more preferably 0.1 to 0.65 MPa.
- the polymerization rate at the outlet of the polymerization reactor is not particularly limited, but is preferably 10 to 90%, more preferably 15 to 85%.
- a chain transfer agent may coexist for the purpose of adjusting the viscosity average degree of polymerization of the obtained ethylene-vinyl ester copolymer.
- the chain transfer agent include aldehydes such as acetaldehyde, propionaldehyde, butyraldehyde and benzaldehyde; ketones such as acetone, methyl ethyl ketone, hexanone and cyclohexanone; mercaptans such as 2-hydroxyethanethiol; thiocarboxylic acids such as thioacetic acid; trichloroethylene and perchloro. Examples thereof include halogenated hydrocarbons such as ethylene.
- aldehydes and ketones are preferably used.
- the amount of the chain transfer agent added is determined according to the chain transfer constant of the chain transfer agent to be added and the viscosity average degree of polymerization of the target ethylene-vinyl ester copolymer, but is usually 100 parts by mass of the vinyl ester used. It is 0.1 to 10 parts by mass with respect to.
- the ethylene-vinyl ester copolymer obtained in the polymerization step is saponified in an organic solvent by an alcohol decomposition or hydrolysis reaction in the presence of a catalyst.
- a catalyst used in the saponification step include basic catalysts such as sodium hydroxide, potassium hydroxide and sodium methoxydo; or acidic catalysts such as sulfuric acid, hydrochloric acid and p-toluenesulfonic acid.
- the organic solvent used in the saponification step is not particularly limited, and examples thereof include alcohols such as methanol and ethanol; esters such as methyl acetate and ethyl acetate; ketones such as acetone and methyl ethyl ketone; aromatic hydrocarbons such as benzene and toluene. These can be used alone or in combination of two or more. Above all, it is convenient and preferable to carry out the saponification reaction in the presence of sodium hydroxide, which is a basic catalyst, using methanol or a mixed solution of methanol and methyl acetate as a solvent.
- alcohols such as methanol and ethanol
- esters such as methyl acetate and ethyl acetate
- ketones such as acetone and methyl ethyl ketone
- aromatic hydrocarbons such as benzene and toluene.
- the amount of the saponification catalyst used is preferably 0.001 to 0.5 in terms of molar ratio to the vinyl ester monomer unit in the ethylene-vinyl ester copolymer.
- the molar ratio is more preferably 0.002 or more.
- the molar ratio is more preferably 0.4 or less, and further preferably 0.3 or less.
- the preferred embodiment of the saponification step is as follows. First, a saponification catalyst such as sodium hydroxide is added to the ethylene-vinyl ester copolymer solution obtained in the polymerization step and mixed.
- the solvent at this time is preferably methanol. Although it is a uniform liquid at the beginning of mixing, when the saponification reaction proceeds and the vinyl ester units in the polymer are saponified and converted to vinyl alcohol units, the solubility in the solvent decreases and the polymer precipitates in the solution. To do. At this time, the solution contains methyl acetate produced by alcoholesis with methanol. As the saponification reaction progresses, the amount of polymer precipitated gradually increases to form a slurry, which then loses its fluidity. Therefore, in order for the saponification reaction to proceed uniformly, it is important to mix sufficiently until the fluidity is lost.
- a saponification catalyst such as sodium hydroxide
- the method of mixing the ethylene-vinyl ester copolymer solution and the saponification catalyst is not particularly limited, and various methods such as a static mixer, a kneader, and a stirring blade can be adopted, but using a static mixer continuously and uniformly mixes. It is preferable to be able to do it.
- a saponification catalyst is added to the ethylene-vinyl ester copolymer solution after the polymerization step in a pipe connected to the polymerization tank, and then the mixture is passed through a static mixer to obtain a paste.
- the temperature of the reaction solution in the static mixer is usually 20 to 80 ° C.
- the method for advancing the saponification reaction of the ethylene-vinyl ester copolymer in the paste that has passed through the static mixer is not particularly limited, but the paste is placed on a moving belt and the belt is kept at a constant temperature.
- a method in which the saponification reaction proceeds while moving in a dripping tank is preferable.
- the paste on the belt loses its fluidity and becomes a solid state, and the saponification reaction proceeds in the solid state.
- the saponification reaction can be continuously carried out in a solid state, and a solid block containing an ethylene-vinyl alcohol copolymer and a solvent can be obtained.
- the saponification temperature is preferably 20 to 60 ° C. If the saponification temperature is too low, the reaction rate will decrease.
- the saponification temperature is more preferably 25 ° C. or higher, and even more preferably 30 ° C. or higher. On the other hand, if the saponification temperature is too high, a large amount of solvent evaporates, the content of the solvent in the obtained solid block becomes low, and the solubility of the obtained ethylene-vinyl alcohol copolymer deteriorates.
- the saponification temperature is more preferably 55 ° C. or lower, and even more preferably 50 ° C. or lower.
- the saponification time is preferably 5 minutes or more and 2 hours or less.
- the saponification time is more preferably 8 minutes or more, and even more preferably 10 minutes or more.
- the saponification time is more preferably 1 hour or less, and further preferably 45 minutes or less.
- the crusher used at this time is not particularly limited as long as it can adjust the rotation speed of the crusher and the like to obtain a particle size distribution described later, and a known crusher or crusher can be used. Due to the mechanical properties of the ethylene-vinyl alcohol copolymer obtained through the saponification step, a cutting type crusher such as a cutter mill, a guillotine type cutting machine, a reciprocating cutter type, a uniaxial, biaxial or triaxial shear crusher is preferable.
- the Rockwell hardness (HRC) of the crushing blade that comes into contact with the solid block during crushing is preferably 40 to 70.
- the hardness is more preferably 45 or more. On the other hand, the hardness is more preferably 65 or less.
- the rotation speed of the crushing blade is preferably 200 to 550 rpm. The rotation speed is more preferably 225 rpm or more, and further preferably 250 rpm or more. On the other hand, the rotation speed is more preferably 500 rpm or less, and further preferably 450 rpm or less.
- a crusher equipped with a crushing blade having a Rockwell hardness of less than 40 and operated at a rotation speed of more than 550 rpm has been generally used. Since the Rockwell hardness of the crushing blade used is low, the crushing blade is easily worn, and uneven crushing is likely to occur due to cutting with the worn crushing blade. Further, when the solid block is crushed at a high rotation speed, the solid block vibrates greatly up and down at the crusher inlet due to the impact of the crushing, resulting in uneven breakage during crushing. Due to such circumstances, it has been difficult to stably obtain particles having a specific particle size distribution, which will be described later.
- the wet particles may be washed by adding a washing step for the purpose of removing impurities such as sodium acetate.
- the cleaning liquid include lower alcohols such as methanol and ethanol, lower fatty acid esters such as methyl acetate, and mixtures thereof.
- the conditions of the washing step are not particularly limited, but it is preferable to wash at a temperature of 20 ° C. to the boiling point of the washing liquid for about 30 minutes to 10 hours.
- the deflated particles are obtained by mechanically deflating a part of the solvent from the wet particles.
- the liquid remover used at this time is preferably a centrifugal liquid remover.
- the centrifugal deliquescent machine is preferably one capable of continuous centrifugal deliquescent. Examples include a liquid machine. Conventionally, a squeeze deflating machine has been used to deflate pulverized particles.
- the deflated particles thus obtained contain a solvent of 40 to 65% by mass.
- the content of the solvent is less than 40% by mass, the particles that are overdried will be mixed, and the ethylene-vinyl alcohol copolymer that is difficult to dissolve after the drying step will be mixed, which satisfies the above formula (I).
- the ethylene-vinyl alcohol copolymer (A) to be used cannot be obtained.
- the content of the solvent is preferably 42% by mass or more, and more preferably 45% by mass or more.
- the content of the solvent is preferably 62% by mass or less, and more preferably 59% by mass or less.
- the solvent content is the average value of the deflated particles.
- the content of the solvent in the deflated particles is preferably 3% by mass or more lower than the content of the solvent in the wet particles, more preferably 5% by mass or more, and further preferably 10% by mass or more.
- the content of the particles passing through the sieve having a mesh size of 5.6 mm is 80% by mass or more, and the content rate of the particles passing through the sieve having a mesh size of 1.0 mm is less than 2% by mass. It is important that That is, it is important that it does not contain many coarse particles and also does not contain many fine particles.
- the mesh opening of the sieve conforms to the nominal opening of JIS Z8801-1 (2006).
- the content of the particles passing through the sieve having a mesh size of 5.6 mm in the liquid removal particles is 80% by mass or more.
- high temperature or long-term drying is required in order to sufficiently dry to the center of the particles, and the energy required for drying increases.
- crystallization of smaller particles progresses too much, and ethylene-vinyl alcohol copolymer particles that are difficult to dissolve after the drying step are mixed.
- the presence of coarse particles causes uneven heat transfer in the dryer. Due to the above circumstances, the ethylene-vinyl alcohol copolymer (A) satisfying the above formula (I) cannot be obtained.
- the content of the particles passing through the sieve having a mesh size of 5.6 mm is preferably 82% by mass or more, and more preferably 85% by mass or more.
- the content of the particles passing through the sieve having a mesh size of 5.6 mm is preferably 99% by mass or less, and more preferably 98% by mass or less.
- the content of the deflated particles passing through the sieve having a mesh size of 1.0 mm is less than 2% by mass.
- the fine particles are subsequently dried to allow the fine particles to crystallize too much, and a large amount of ethylene-vinyl alcohol copolymer particles that are difficult to dissolve after the drying step are mixed. It ends up.
- the fine particles stay at the bottom of the dryer and receive excessive heat to increase the crystallinity, and ethylene-vinyl alcohol copolymer particles having reduced solubility are mixed. Due to these circumstances, the ethylene-vinyl alcohol copolymer (A) satisfying the above formula (I) cannot be obtained.
- the content of the particles passing through the sieve having a mesh size of 1.0 mm is preferably 1.9% by mass or less, and more preferably 1.8% by mass or less.
- the content of the particles passing through the sieve having a mesh size of 1.0 mm is preferably 0.05% by mass or more, and more preferably 0.1% by mass or more.
- An ethylene-vinyl alcohol copolymer can be obtained by subjecting the deflated particles to a drying step after the deflating step.
- a drying step After the deflating step.
- the temperature of the particles at the time of drying is preferably 80 to 120 ° C. If the temperature is too low, the production efficiency will decrease. The temperature is more preferably 90 ° C. or higher. On the other hand, if the temperature is too high, particles that crystallize too much are generated, and the solubility is deteriorated. The temperature is more preferably 110 ° C. or lower.
- the drying time is preferably 2 to 10 hours, more preferably 3 to 8 hours.
- the particles of the ethylene-vinyl alcohol copolymer (A) obtained in the additional pulverization step preferably have a content of particles passing through a sieve having a mesh size of 2.5 mm or more of 80% by mass or more.
- the dissolution rate becomes low when the particles of the ethylene-vinyl alcohol copolymer (A) are dissolved in water to prepare an aqueous solution. It requires heating at high temperature for a long time.
- the content of the particles passing through the sieve having a mesh size of 2.5 mm is more preferably 83% by mass or more, and further preferably 85% by mass or more.
- the particles of the ethylene-vinyl alcohol copolymer (A) preferably have a content of 80% by mass or more of the particles passing through a sieve having a mesh size of 1.0 mm.
- the content of the particles passing through the sieve having a mesh size of 1.0 mm is more preferably 83% by mass or more, and further preferably 85% by mass or more.
- the particles of the ethylene-vinyl alcohol copolymer (A) obtained in the additional pulverization step preferably have a content of particles passing through a sieve having a mesh size of 0.15 mm of 20% by mass or less.
- the content of the particles passing through the sieve having a mesh size of 0.15 mm is more preferably 17% by mass or less, and further preferably 15% by mass or less.
- the coating liquid of the present invention is characterized by containing an alkali metal salt (B) of a carboxylic acid.
- the content ratio of the alkali metal salt (B) of the carboxylic acid to 100 parts by mass of the ethylene-vinyl alcohol polymer (A) is 0.001 to 1 part by mass in terms of mass of the alkali metal, and 0.01 to 0.9. By mass is preferable, and 0.02 to 0.8 parts by mass is more preferable. If the content exceeds 1 part by mass, the barrier property and water resistance of the coated paper are lowered.
- the content of the alkali metal salt (B) of the carboxylic acid (in terms of the mass of the alkali metal) is determined by ashing the coating liquid dried on a platinum crucible and then analyzing the obtained ash by ICP emission analysis. It can be obtained from the amount of alkali metal ions obtained by measurement.
- the alkali metal salt (B) of the carboxylic acid is not particularly limited.
- the method of incorporating the alkali metal salt (B) of a specific amount of carboxylic acid in the coating liquid is not particularly limited.
- an alkali metal salt of the carboxylic acid obtained by neutralizing the carboxylic acid in the saponification step is blended. Examples thereof include a method of dissolving the ethylene-vinyl alcohol copolymer in water.
- the method for producing the coating liquid for paper of the present invention is not particularly limited.
- the paper coating liquid of the present invention can be obtained by dissolving the particles of the ethylene-vinyl alcohol copolymer (A) satisfying the formula (I) in water.
- a suitable production method includes a method in which particles of an ethylene-vinyl alcohol copolymer (A) satisfying the above formula (I) and containing an alkali metal salt (B) of a carboxylic acid are dissolved in water.
- a method of dissolving the particles of the ethylene-vinyl alcohol copolymer (A) satisfying the above formula (I) and the alkali metal salt (B) of the carboxylic acid in water can be mentioned. Be done.
- the paper coating liquid of the present invention contains, if necessary, a water resistant agent such as glioxal, urea resin, melamine resin, polyvalent metal salt, water-soluble polyamide resin; a plasticizer such as glycols and glycerin; ammonia, caustic soda. , Sodium carbonate, phosphoric acid and other pH adjusters; defoaming agents; mold release agents; surfactants; colorants such as pigments and other various additives may be added.
- a water resistant agent such as glioxal, urea resin, melamine resin, polyvalent metal salt, water-soluble polyamide resin
- a plasticizer such as glycols and glycerin
- ammonia caustic soda.
- Sodium carbonate, phosphoric acid and other pH adjusters defoaming agents
- mold release agents surfactants
- colorants such as pigments and other various additives may be added.
- the coating liquid for paper of the present invention contains various modified PVAs such as unmodified PVA, carboxyl-modified PVA, sulfonic acid group-modified PVA, acrylamide-modified PVA, cationic-group-modified PVA, and long-chain alkyl-group-modified PVA; casein.
- modified PVAs such as unmodified PVA, carboxyl-modified PVA, sulfonic acid group-modified PVA, acrylamide-modified PVA, cationic-group-modified PVA, and long-chain alkyl-group-modified PVA; casein.
- Raw starch (wheat, corn, rice, horse bells, sweet potato, tapioca, sago palm), raw starch decomposition products (dextrin, etc.), starch derivatives (oxidized starch, etherified starch, esterified starch, cationized starch, etc.) ), Seaweed polysaccharides (soda alginate, carrageenan, agar (agarose, agaropectin), starch, etc.), water-soluble cellulose derivatives (carboxyalkyl cellulose, alkyl cellulose, hydroxyalkyl cellulose, etc.) and other water-soluble polymers; styrene- Synthetic resin emulsions such as butadiene copolymer latex, polyacrylic acid ester emulsion, vinyl acetate-ethylene copolymer emulsion, vinyl acetate-acrylic acid ester copolymer emulsion, etc. are used in combination as long as the effects of the present invention are
- the concentration of the ethylene-vinyl alcohol copolymer (A) in the coating liquid in the present invention depends on the coating amount (increase in the dry mass of the paper generated by the coating), the apparatus used for the coating, the operating conditions, and the like. Although it is arbitrarily selected depending on the situation, 1.0 to 10% by mass is preferable, and 2.0 to 9.0% by mass is more preferable.
- the coating amount can be arbitrarily selected according to the properties of the paper to be coated, but is preferably about 0.3 to 3.0 g / m 2 per side of the normal paper.
- the viscosity of the coating liquid is preferably about 0.001 to 1 Pa ⁇ s at 40 ° C.
- the coating liquid of the present invention which is an aqueous solution or an aqueous dispersion
- a known method such as a size press, a gate roll coater, a simsizer, a bar coater or the like
- a method of coating on both sides is usually used, and a method of impregnating paper with a coating liquid may be used.
- the coated paper can be dried by a known method, for example, hot air, infrared rays, a heating cylinder or a method in which these are combined, and the dried coated paper is subjected to humidity control and calendar treatment.
- the barrier property can be further improved.
- the calendar processing conditions it is preferable that the roll temperature is room temperature to 100 ° C. and the roll linear pressure is 20 to 300 kg / cm.
- the coating paper using the coating liquid of the present invention is not particularly limited, but a release paper is preferable.
- the release paper has a sealing layer (barrier layer) formed by applying the paper coating liquid on the base material (paper). That is, a release paper in which a release layer is formed on a sealing layer formed by applying the coating liquid of the present invention to paper is a preferred embodiment.
- the paper used is not particularly limited, and examples thereof include paperboards such as Manila balls, white balls, and liners; printing papers such as general high-quality paper, medium-quality paper, and gravure paper.
- the release paper further has a release layer formed on the sealing layer.
- the release layer is not particularly limited, but a silicone resin is preferable.
- the silicone resin is not particularly limited, and known silicone resins can be used. Examples of such silicone resins include solvent-based silicones, solvent-free silicones, and emulsion-type silicones.
- the release layer of the release paper of the present invention includes pigments, fluorescent whitening agents, dyed substances for fluorescent whitening agents, defoaming agents, mold release agents, and colorants that can be generally used for papermaking.
- Various commonly used chemicals such as water retention agents can be appropriately blended.
- the coating liquid for the release layer can be applied with general coated paper application equipment, for example, blade coater, air knife coater, transfer roll coater, gate roll size press, 2-roll size press, rod metering.
- the coating liquid can be applied to the base paper in one layer or multiple layers by an on-machine coater or an off-machine coater provided with a coating device such as a size press coater or a curtain coater.
- a coating device such as a size press coater or a curtain coater.
- the coating amount of the release layer is preferably 0.3 to 1.8 g / m 2 in terms of dry mass, and more preferably 0.5 to 1.5 g / m 2 .
- the method for producing the release paper of the present invention is not particularly limited. It can be produced by applying the coating liquid of the present invention to paper to form a sealing layer, and then applying the coating liquid for a release layer on the sealing layer.
- Examples of the water-dispersible varnish used in the post-processing step include conjugated diene latex such as styrene-butadiene copolymer latex, methyl methacrylate-butadiene copolymer latex, and styrene-methyl methacrylate-butadiene copolymer latex; acrylic.
- conjugated diene latex such as styrene-butadiene copolymer latex, methyl methacrylate-butadiene copolymer latex, and styrene-methyl methacrylate-butadiene copolymer latex
- Acrylic latex such as polymer latex or copolymer latex of acid ester and / or methacrylic acid ester
- vinyl latex such as ethylene-vinyl acetate polymer latex, etc., and one or more of these. Can be appropriately selected and used.
- the coated paper coated with the coating liquid for paper of the present invention has a transmittance of 20000 seconds measured using a Wangken type slippery air permeability tester according to JIS P 8117 (2009).
- the above is preferable, the one for 23000 seconds or more is more preferable, and the one for 25,000 seconds or more is further preferable.
- the voids between the pulp fibers constituting the paper can be reduced and the barrier property can be improved.
- the release paper base paper having the sealing layer formed by applying the coating liquid of the present invention to the paper base material can have an excellent barrier property against an organic solvent or the like.
- the surface yield of the silicone resin can be improved when the release layer is applied on the sealing layer.
- the coating liquid for paper of the present invention the water absorption degree measured by the Cobb method when the contact time between the coated paper and water is 60 seconds according to JIS P 8140 (1998). , 70 g / m 2 or less is preferable, 50 g / m 2 or less is more preferable, and 45 g / m 2 or less is further preferable. As a result, the water resistance of the sealing layer in the release paper is improved, and a water-dispersible varnish can be used in the post-processing step.
- the present invention includes various combinations of the above configurations within the technical scope of the present invention as long as the effects of the present invention are exhibited.
- the coated paper coated with the coating liquid of the present invention has excellent water resistance and barrier properties. Therefore, the coated paper is suitably used for, for example, a release paper. Further, the coating liquid for paper of the present invention is excellent in blocking resistance due to the improvement of water resistance, and a water-dispersible varnish can be used in the post-processing step.
- the content of ethylene units is determined by using the peak derived from the main chain methine of vinyl ester (4.7 to 5.2 ppm) and the peak derived from ethylene and the main chain methylene of vinyl ester (0.8 to 1.6 ppm). Calculated.
- Viscosity average degree of polymerization of ethylene-vinyl alcohol copolymer (A) The viscosity average degree of polymerization of the ethylene-vinyl alcohol copolymer (A) was determined by the method described in JIS K6726 (1994).
- the alkali metal salt content of the carboxylic acid of the ethylene-vinyl alcohol copolymer (A) is determined by the ICP emission of Jarrel Ash after the ethylene-vinyl alcohol copolymer (A) is incinerated. It was determined by measuring the amount of alkali metal in the obtained ash using an analyzer "IRIS AP".
- solubility (mass%) A / B ⁇ 100 was calculated.
- the calculated solubility was evaluated according to the following criteria. A: 60% by mass or more B: 50% by mass or more and less than 60% by mass C: less than 50% by mass
- the alkali metal salt content of the carboxylic acid in the coating liquid (in terms of the mass of the alkali metal) is determined by the ICP luminescence analyzer "IRIS AP" manufactured by Jarrel Ash after ashing the coating liquid dried in a platinum crucible. It was determined by measuring the amount of alkali metal in the obtained ash content using.
- Water absorption of coated paper As an index of water resistance of coated paper, a water absorption tester (trade name: Garecob size tester, manufactured by Kumagai Riki Kogyo Co., Ltd.) is used by the Cobb method according to JIS P 8140 (1998). The water absorption was measured.
- Toluene colored red was applied on the coated surface of the sample (5 x 5 cm), and after drying, the degree of strike-through to the back surface (occurrence of small red spots or coloring of the entire coated surface) was determined according to the following criteria. .. A: No spots were generated on the back surface. B: Spots were generated, but the colored area was 20% or less of the toluene-coated surface. C: The colored area was more than 20% and less than 80% of the coated surface. D: The colored area was 80% or more of the coated surface.
- the polymerization liquid was continuously taken out from the continuous polymerization tank so that the liquid level in the polymerization tank became constant.
- the polymerization rate at the outlet of the continuous polymerization tank was adjusted to 30%.
- the residence time of the continuous polymerization tank was 5 hours.
- the temperature at the outlet of the continuous polymerization tank was 60 ° C.
- the polymerization solution was recovered from the continuous polymerization tank, and the unreacted vinyl acetate monomer was removed by introducing methanol vapor into the recovered solution, and the methanol solution (concentration: 32% by mass) of the ethylene-vinyl ester copolymer (PVAc) was removed. ) Was obtained.
- the solid block obtained in the saponification step was pulverized with a uniaxial shear crusher to obtain wet particles.
- the crusher was equipped with a crushing blade having a Rockwell hardness of 45, and the rotation speed of the crushing blade was 250 rpm.
- Liquid removal process By deflating the wet particles obtained in the pulverization step with a screw discharge type centrifugal deflated machine, the proportion of particles that have passed through a sieve having a mesh size of 5.6 mm is 94% by mass, and the mesh size is 1.0 mm. Liquid particles having a content of 1.6% by mass and a content of a solvent of 58% by mass were obtained. Table 2 summarizes the crushing conditions and the liquid removal conditions.
- the deliquescent particles of 600 kg / hr (solid content) obtained in the deliquescent step were continuously supplied to a dryer whose temperature inside the dryer was controlled so that the particle temperature was 100 ° C.
- the average residence time of the particles in the dryer was 4 hours.
- the dried particles obtained in the drying step were additionally pulverized with a hammer mill and passed through a filter having a mesh size of 1.4 mm to obtain an ethylene-vinyl alcohol copolymer 1.
- the content of ethylene units in the copolymer 1 was 2 mol%, the viscosity average degree of polymerization was 1700, and the saponification degree was 93.0 mol%.
- the content of the alkali metal salt (sodium acetate) of the carboxylic acid was 0.33 parts by mass in terms of mass of alkali metal (sodium equivalent) with respect to 100 parts by mass of the copolymer 1.
- the Cw (30 ° C.) of the copolymer 1 was 9.7%, the Cw (70 ° C.) was 2.1%, and the value of the formula (I) was 6.9. Further, in the entire copolymer 1, the ratio of passing through the filter having a mesh size of 2.5 mm was 99% by mass, and the ratio of passing through the filter having a mesh size of 1.0 mm was 94% by mass. The percentage that passed through the 15 mm filter was 5% by mass. Table 3 shows the results of evaluating the powdering property and solubility of the copolymer 1 according to the above method.
- Ethylene-vinyl alcohol copolymers (copolymers 2 to 11) by the same method as in Example 1 except that the polymerization conditions, saponification conditions, pulverization conditions, and liquid removal conditions were changed as shown in Tables 1 and 2.
- the content of the obtained copolymer in ethylene units, the degree of polymerization, the degree of saponification, the content of the alkali metal salt of carboxylic acid, the particle size, the degree of crystallinity in water at 30 ° C. and 70 ° C., and the value of the formula (I) are set.
- Table 3 summarizes the results of evaluation according to the above-mentioned method and the results of evaluation of the powdering property and solubility of the obtained copolymer according to the above-mentioned method.
- Example 1 (Making coated paper) Copolymer 1 was added to ion-exchanged water heated to 85 ° C. and stirred for 45 minutes to obtain a solution having a solid content concentration of 7% by mass.
- the alkali metal salt (B) of the carboxylic acid in this solution was 0.33 parts by mass with respect to 100 parts by mass of the copolymer 1.
- a test sim sizer manufactured by Kumagai Riki Kogyo Co., Ltd.
- PPC plane paper copier
- the coated paper was dried in a hot air dryer at 100 ° C. for 5 minutes.
- the coating amount of the obtained coated paper was adjusted to 0.5 g / m 2 in terms of solid content.
- the obtained coated paper was humidity-controlled at 20 ° C. and 65% RH for 72 hours, and then the physical properties of the coated paper were evaluated. The results are shown in Table 4.
- Examples 2 to 7, Comparative Examples 1 to 3, 5 A coated paper was prepared in the same manner as in Example 1 except that the copolymers 2 to 11 shown in Table 4 were used instead of the copolymer 1 of Example 1. Table 4 shows the results of evaluating the physical properties of the coated paper.
- a test sim sizer manufactured by Kumagai Riki Kogyo Co., Ltd.
- PPC plane paper copier
- the coated paper was dried in a hot air dryer at 100 ° C. for 5 minutes.
- the coating amount of the obtained coated paper was adjusted to 0.5 g / m 2 in terms of solid content.
- the obtained coated paper was humidity-controlled at 20 ° C. and 65% RH for 72 hours, and then the physical properties of the coated paper were evaluated. The results are shown in Table 4.
- the coated papers obtained by applying the coating liquids obtained in Examples 1 to 7 have a long air permeability value and are excellent in barrier properties. And, in fact, it is also excellent in toluene barrier property. Therefore, the coated paper on which the sealing layer is formed by using the coating liquid of the present invention has a high surface yield of the silicone resin and is peeled off when the release layer is applied on the sealing layer. It was found that it has sufficient performance to produce paper.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Paper (AREA)
Abstract
This coating liquid for paper contains an ethylene-vinyl alcohol copolymer (A) and an alkali metal salt (B) of carboxylic acid, wherein: the content of an ethylene unit in the ethylene-vinyl alcohol copolymer (A) is 1-20 mol% (exclusive of 20); the degree of crystallinity Cw(30ºC) in water at 30ºC and the degree of crystallinity Cw(70ºC) in water at 70ºC, as measured by pulsed NMR, satisfy the formula (I); and the alkali metal salt (B) of carboxylic acid is contained in an amount of 0.001-1 part by mass, in terms of the mass of alkali metal, with respect to 100 parts by mass of the ethylene-vinyl alcohol copolymer (A). Consequently, provided is a coating liquid for paper having excellent water resistance and excellent barrier properties.
Description
本発明は、エチレン-ビニルアルコール共重合体を含有する紙用塗工液に関する。また、それを用いた塗工紙及び剥離紙に関する。なお、本願は2019年4月15日出願の日本国特許出願第2019-077137号の優先権を主張するものであり、その全体を参照により本出願の一部をなすものとして引用する。
The present invention relates to a coating liquid for paper containing an ethylene-vinyl alcohol copolymer. It also relates to coated paper and release paper using the same. It should be noted that this application claims the priority of Japanese Patent Application No. 2019-077137 filed on April 15, 2019, and the whole thereof is cited as a part of this application by reference.
ポリビニルアルコール(以下、「PVA」と略記することがある。)は、水溶性の合成高分子として知られており、合成繊維であるビニロンの原料、紙加工剤、繊維加工剤、接着剤、乳化重合及び懸濁重合用の安定剤、無機物のバインダー、フィルム等の用途に広く用いられている。特にPVAを紙に塗工することで、紙力増強、耐水化、耐油化、ガスバリア性付与等が可能となることが知られており、広く利用されている。また、PVAは、無機のバインダーや分散安定剤として、紙への機能性付与の助剤としても使用されている。
Polyvinyl alcohol (hereinafter, may be abbreviated as "PVA") is known as a water-soluble synthetic polymer, and is a raw material for vinylon, which is a synthetic fiber, a paper processing agent, a fiber processing agent, an adhesive, and an emulsion. It is widely used as a stabilizer for polymerization and suspension polymerization, an inorganic binder, a film, and the like. In particular, it is known that by applying PVA to paper, it is possible to enhance paper strength, make it water resistant, make it oil resistant, and impart gas barrier properties, and it is widely used. PVA is also used as an inorganic binder and a dispersion stabilizer, and as an auxiliary agent for imparting functionality to paper.
塗工紙のうち、特に剥離紙においては、紙を構成するパルプ繊維間の空隙を低減させ、紙表面に塗工するシリコーンの表面歩留まりを向上させる目的で、目止め層(バリア層)としてPVAが一般的に用いられている。中でも部分けん化PVAは、バリア性に優れることが知られている。
Of the coated papers, especially release papers, PVA is used as a sealing layer (barrier layer) for the purpose of reducing voids between pulp fibers constituting the paper and improving the surface yield of the silicone coated on the paper surface. Is commonly used. Among them, partially saponified PVA is known to have excellent barrier properties.
しかしながら、部分けん化PVAは、耐水性に劣るため、粘着加工工程などでの加湿によりPVAが溶出し、ブロッキングするという問題があった。さらに、後加工工程で水分散ワニスが使用できないという問題があった。
However, since partially saponified PVA is inferior in water resistance, there is a problem that PVA is eluted and blocked by humidification in an adhesive processing process or the like. Further, there is a problem that the water-dispersed varnish cannot be used in the post-processing process.
上記課題に対し、特許文献1では、エチレン―ビニルアルコール共重合体とカルボキシメチルセルロースの混合物を用いることで、バリア性と耐水性を両立できることが記載されている。
In response to the above problem, Patent Document 1 describes that both barrier properties and water resistance can be achieved by using a mixture of an ethylene-vinyl alcohol copolymer and carboxymethyl cellulose.
しかしながら、当該エチレン-ビニルアルコール共重合体は疎水性のエチレン単位を含んでいるため、未変性のPVAよりも水への溶解性が低く、水溶液を調製する際に溶け残り(以下、「不溶分」と略記することがある。)を生じる場合があった。一方で、不溶分の生成を抑制するためにけん化度を下げると、溶解時に粒子同士が凝集して継粉となる場合がある。不溶分や継粉を含む水溶液を紙用塗工液として使用した場合、それらが塗工面の微小欠点となるためにバリア性が低減する場合があった。
However, since the ethylene-vinyl alcohol copolymer contains a hydrophobic ethylene unit, it is less soluble in water than unmodified PVA, and remains undissolved when preparing an aqueous solution (hereinafter, "insoluble matter"). It may be abbreviated as.). On the other hand, if the degree of saponification is lowered in order to suppress the formation of insoluble matter, the particles may aggregate with each other during dissolution to form a powder. When an aqueous solution containing an insoluble matter or a step powder is used as a coating liquid for paper, the barrier property may be reduced because they become minute defects on the coated surface.
本発明は、上記課題を解決するためになされたものであり、エチレン-ビニルアルコール共重合体を含む紙用塗工液を提供することを目的とする。そして、当該紙用塗工液を使用することにより、耐水性及びバリア性に優れる塗工紙及び剥離紙を提供することを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a coating liquid for paper containing an ethylene-vinyl alcohol copolymer. An object of the present invention is to provide a coated paper and a release paper having excellent water resistance and barrier properties by using the coating liquid for paper.
上記課題は、エチレン-ビニルアルコール共重合体(A)及びカルボン酸のアルカリ金属塩(B)を含む紙用塗工液であって;前記エチレン-ビニルアルコール共重合体(A)のエチレン単位の含有率が1モル%以上20モル%未満であり、パルスNMRで求められる30℃での水中結晶化度Cw(30℃)及び70℃での水中結晶化度Cw(70℃)が下記式(I)を満たし、かつ前記エチレン-ビニルアルコール共重合体(A)100質量部に対して、前記カルボン酸のアルカリ金属塩(B)をアルカリ金属の質量換算で0.001~1質量部含む、紙用塗工液を提供することによって解決される。
The above problem is a coating liquid for paper containing an ethylene-vinyl alcohol copolymer (A) and an alkali metal salt (B) of a carboxylic acid; the ethylene unit of the ethylene-vinyl alcohol copolymer (A). The content is 1 mol% or more and less than 20 mol%, and the crystallinity Cw (30 ° C) in water at 30 ° C and the crystallinity Cw (70 ° C) in water at 70 ° C determined by pulse NMR are expressed by the following formulas (70 ° C). It satisfies I) and contains 0.001 to 1 part by mass of the alkali metal salt (B) of the carboxylic acid with respect to 100 parts by mass of the ethylene-vinyl alcohol copolymer (A) in terms of mass of alkali metal. It is solved by providing a coating liquid for paper.
このとき、前記エチレン-ビニルアルコール共重合体(A)の粘度平均重合度が900~2400であることが好ましい。また、前記エチレン-ビニルアルコール共重合体(A)のけん化度が90~98.5モル%であることも好ましい。
At this time, the viscosity average degree of polymerization of the ethylene-vinyl alcohol copolymer (A) is preferably 900 to 2400. It is also preferable that the degree of saponification of the ethylene-vinyl alcohol copolymer (A) is 90 to 98.5 mol%.
上記課題は、前記塗工液が紙の表面に塗工されてなる塗工紙を提供することによっても解決される。このとき、当該塗工紙の好適な実施態様は剥離紙原紙である。また、前記塗工液を紙に塗工して形成された目止め層の上に剥離層が形成されてなる剥離紙も好適な実施態様である。このとき、剥離層がシリコーン樹脂を含むことが好ましい。
The above problem is also solved by providing a coated paper in which the coating liquid is applied to the surface of the paper. At this time, a preferred embodiment of the coated paper is a release paper base paper. Further, a release paper in which a release layer is formed on a sealing layer formed by applying the coating liquid to paper is also a suitable embodiment. At this time, it is preferable that the release layer contains a silicone resin.
本発明の塗工液を塗工した塗工紙はバリア性、耐水性に優れる。したがって、好適には、剥離紙に用いられる。さらに、本発明の紙用塗工液は優れた耐水性により、耐ブロッキング性にも優れるとともに、後加工工程で水分散性ワニスを使用することができる。
The coated paper coated with the coating liquid of the present invention has excellent barrier properties and water resistance. Therefore, it is preferably used for release paper. Further, the coating liquid for paper of the present invention has excellent water resistance and is also excellent in blocking resistance, and a water-dispersible varnish can be used in the post-processing step.
本発明の紙用塗工液は、エチレン-ビニルアルコール共重合体(A)及びカルボン酸のアルカリ金属塩(B)を含む塗工液であって;当該エチレン-ビニルアルコール共重合体(A)のエチレン単位の含有率が1モル%以上20モル%未満であり、パルスNMRで求められる30℃での水中結晶化度Cw(30℃)及び70℃での水中結晶化度Cw(70℃)が下記式(I)を満たし、かつエチレン-ビニルアルコール共重合体(A)100質量部に対して、カルボン酸のアルカリ金属塩(B)をアルカリ金属の質量換算で0.001~1質量部含む、ことを特徴とする。
The coating liquid for paper of the present invention is a coating liquid containing an ethylene-vinyl alcohol copolymer (A) and an alkali metal salt (B) of a carboxylic acid; the ethylene-vinyl alcohol copolymer (A). The ethylene unit content of ethylene is 1 mol% or more and less than 20 mol%, and the crystallinity in water at 30 ° C. Cw (30 ° C.) and the crystallinity in water at 70 ° C. Cw (70 ° C.) determined by pulse NMR. Satisfies the following formula (I), and 0.001 to 1 part by mass of the alkali metal salt (B) of the carboxylic acid in terms of mass of the alkali metal with respect to 100 parts by mass of the ethylene-vinyl alcohol copolymer (A). It is characterized by including.
[エチレン-ビニルアルコール共重合体(A)]
本発明の紙用塗工液に含まれるエチレン-ビニルアルコール共重合体(A)は、エチレン単位の含有率が1モル%以上20モル%未満であり、パルスNMR(核磁気共鳴吸収法)で求められる30℃での水中結晶化度Cw(30℃)と70℃での水中結晶化度Cw(70℃)が上記式(I)を満足することが大きな特徴である。この点について以下に説明する。 [Ethylene-vinyl alcohol copolymer (A)]
The ethylene-vinyl alcohol copolymer (A) contained in the paper coating liquid of the present invention has an ethylene unit content of 1 mol% or more and less than 20 mol%, and is subjected to pulse NMR (nuclear magnetic resonance absorption method). A major feature is that the required crystallinity in water Cw (30 ° C.) at 30 ° C. and crystallinity Cw (70 ° C.) in water at 70 ° C. satisfy the above formula (I). This point will be described below.
本発明の紙用塗工液に含まれるエチレン-ビニルアルコール共重合体(A)は、エチレン単位の含有率が1モル%以上20モル%未満であり、パルスNMR(核磁気共鳴吸収法)で求められる30℃での水中結晶化度Cw(30℃)と70℃での水中結晶化度Cw(70℃)が上記式(I)を満足することが大きな特徴である。この点について以下に説明する。 [Ethylene-vinyl alcohol copolymer (A)]
The ethylene-vinyl alcohol copolymer (A) contained in the paper coating liquid of the present invention has an ethylene unit content of 1 mol% or more and less than 20 mol%, and is subjected to pulse NMR (nuclear magnetic resonance absorption method). A major feature is that the required crystallinity in water Cw (30 ° C.) at 30 ° C. and crystallinity Cw (70 ° C.) in water at 70 ° C. satisfy the above formula (I). This point will be described below.
(水中結晶化度)
まず、パルスNMRによってポリマー試料を測定することの意味を説明する。パルスNMR装置には装置中の電磁石によって発生した静磁場が存在する。静磁場中では水素核の核スピンの向きが静磁場と同方向に配向する。ここにパルス磁場を与えると、水素核の核スピンは静磁場方向から90°倒れた励起状態になる。その後、励起された核スピンの向きが巨視的に元の静磁場方向に戻るまでの過程をT2緩和、もしくは横緩和と呼び、この過程に要する時間を緩和時間(Tau)と呼ぶ。単一成分の緩和の場合、時間(t)における磁化強度(y)は、励起状態での緩和強度(A)、緩和時間(Tau)及び定数(y0、W)を用いて、以下の式(II)で示される。なお、Wはワイブル係数であり、W=1の時に式(II)はExp型に、W=2の時はGauss型になる。一般的なポリマー試料の場合は1≦W≦2である。 (Crystallinity in water)
First, the meaning of measuring a polymer sample by pulse NMR will be described. The pulse NMR apparatus has a static magnetic field generated by an electromagnet in the apparatus. In a static magnetic field, the direction of nuclear spins of hydrogen nuclei is oriented in the same direction as the static magnetic field. When a pulsed magnetic field is applied here, the nuclear spins of the hydrogen nuclei are excited by 90 ° from the direction of the static magnetic field. After that, the process until the direction of the excited nuclear spins macroscopically returns to the original static magnetic field direction is called T 2 relaxation or lateral relaxation, and the time required for this process is called relaxation time (Tau). In the case of single-component relaxation, the magnetization intensity (y) at time (t) is determined by the following equation using the relaxation intensity (A), relaxation time (Tau) and constant (y 0 , W) in the excited state. It is indicated by (II). W is a Weibull coefficient, and when W = 1, the equation (II) becomes an Exp type, and when W = 2, it becomes a Gauss type. In the case of a general polymer sample, 1 ≦ W ≦ 2.
まず、パルスNMRによってポリマー試料を測定することの意味を説明する。パルスNMR装置には装置中の電磁石によって発生した静磁場が存在する。静磁場中では水素核の核スピンの向きが静磁場と同方向に配向する。ここにパルス磁場を与えると、水素核の核スピンは静磁場方向から90°倒れた励起状態になる。その後、励起された核スピンの向きが巨視的に元の静磁場方向に戻るまでの過程をT2緩和、もしくは横緩和と呼び、この過程に要する時間を緩和時間(Tau)と呼ぶ。単一成分の緩和の場合、時間(t)における磁化強度(y)は、励起状態での緩和強度(A)、緩和時間(Tau)及び定数(y0、W)を用いて、以下の式(II)で示される。なお、Wはワイブル係数であり、W=1の時に式(II)はExp型に、W=2の時はGauss型になる。一般的なポリマー試料の場合は1≦W≦2である。 (Crystallinity in water)
First, the meaning of measuring a polymer sample by pulse NMR will be described. The pulse NMR apparatus has a static magnetic field generated by an electromagnet in the apparatus. In a static magnetic field, the direction of nuclear spins of hydrogen nuclei is oriented in the same direction as the static magnetic field. When a pulsed magnetic field is applied here, the nuclear spins of the hydrogen nuclei are excited by 90 ° from the direction of the static magnetic field. After that, the process until the direction of the excited nuclear spins macroscopically returns to the original static magnetic field direction is called T 2 relaxation or lateral relaxation, and the time required for this process is called relaxation time (Tau). In the case of single-component relaxation, the magnetization intensity (y) at time (t) is determined by the following equation using the relaxation intensity (A), relaxation time (Tau) and constant (y 0 , W) in the excited state. It is indicated by (II). W is a Weibull coefficient, and when W = 1, the equation (II) becomes an Exp type, and when W = 2, it becomes a Gauss type. In the case of a general polymer sample, 1 ≦ W ≦ 2.
T2緩和の場合、水素核は他の水素核とエネルギー交換を行いながら減衰する。したがって、試料の分子運動性が高い場合、相互に近接するプロトンとの相互作用が小さいため系全体のエネルギー減衰が起こりにくく、緩和時間が長くなる。一方、分子運動性が低い場合には、緩和時間が短くなる。したがって、結晶性ポリマー材料であれば、結晶部では緩和時間が短く、非晶部では緩和時間が長くなる。実際の結晶性ポリマーでは、結晶部と非晶部が存在し、その緩和曲線では緩和時間の短い結晶部由来の緩和成分と緩和時間の長い非晶部由来の緩和成分の和が観測される。結晶部由来の緩和強度をA1、非晶部由来の緩和強度をA2、結晶部由来の緩和時間をTau1、非晶部由来の緩和時間をTau2、とすれば、時間(t)における試料全体の磁化強度(y)は定数(y0)を用いて、以下の式(III)で示される。なお、y0は、測定装置由来の熱ノイズに由来する成分であって、時間tに依存しないパラメータであり、緩和強度(A1)及び(A2)の値には影響しないため、水中結晶化度(Cw)はy0の影響を受けない。結晶成分はGauss型緩和を示すことが多いため、式(III)の結晶成分を表す第1項においてはW=2で固定した。この式から導かれるA1/(A1+A2)が、パルスNMRによって得られる結晶化度である。本明細書において、パルスNMRを用いた測定にはSolid-echo法と呼ばれるパルスシークエンスを使用した。
In the case of T 2 relaxation, the hydrogen nucleus decays while exchanging energy with other hydrogen nuclei. Therefore, when the molecular motion of the sample is high, the interaction with the protons adjacent to each other is small, so that the energy decay of the entire system is unlikely to occur and the relaxation time becomes long. On the other hand, when the molecular motility is low, the relaxation time becomes short. Therefore, in the case of a crystalline polymer material, the relaxation time is short in the crystalline portion and long in the amorphous portion. In an actual crystalline polymer, a crystalline portion and an amorphous portion are present, and in the transition curve, the sum of the relaxation component derived from the crystalline portion having a short relaxation time and the relaxation component derived from the amorphous portion having a long relaxation time is observed. If the relaxation intensity derived from the crystalline portion is A 1 , the relaxation intensity derived from the amorphous portion is A 2 , the relaxation time derived from the crystalline portion is Tau 1 , and the relaxation time derived from the amorphous portion is Tau 2 , then time (t). The magnetization intensity (y) of the entire sample in the above is expressed by the following equation (III) using a constant (y 0 ). Note that y 0 is a component derived from thermal noise derived from the measuring device, is a parameter that does not depend on time t, and does not affect the values of relaxation intensity (A 1 ) and (A 2 ). Crystallinity (Cw) is not affected by y 0 . Since the crystal component often exhibits Gauss-type relaxation, it was fixed at W = 2 in the first term representing the crystal component of the formula (III). A 1 / (A 1 + A 2 ) derived from this equation is the crystallinity obtained by pulse NMR. In the present specification, a pulse sequence called a Solid-echo method is used for the measurement using pulse NMR.
以上のようにして、ポリマー試料中の結晶成分と非晶成分の割合を、パルスNMRで測定される緩和曲線から得ることができる。エチレン-ビニルアルコール共重合体は多数の水酸基を有する親水性ポリマーであり、水中では膨潤して結晶化度が低下するが、その程度は水温の影響を大きく受ける。水温が高くなれば膨潤度が大きくなり、その結果結晶化度は低下する。本発明では、パルスNMRで求められる30℃での水中結晶化度Cw(30℃)(%)及び70℃での水中結晶化度Cw(70℃)(%)に着目した。ここで、エチレン-ビニルアルコール共重合体(A)は水溶性ポリマーであるが、一旦結晶化したエチレン-ビニルアルコール共重合体(A)を水に溶解させるためには、高温の条件や撹拌操作が必要である。したがって、30℃や70℃の水中に静置した程度では試料は溶解せず膨潤するだけであり、固体の状態で存在する。したがって、上記パルスNMR測定では固体状態で測定を行っている。
As described above, the ratio of the crystalline component and the amorphous component in the polymer sample can be obtained from the transition curve measured by pulse NMR. The ethylene-vinyl alcohol copolymer is a hydrophilic polymer having a large number of hydroxyl groups, and swells in water to reduce the crystallinity, but the degree of swelling is greatly affected by the water temperature. The higher the water temperature, the higher the degree of swelling, and as a result, the degree of crystallinity decreases. In the present invention, attention was paid to the crystallinity Cw (30 ° C.) (%) in water at 30 ° C. and the crystallinity Cw (70 ° C.) (%) in water at 70 ° C., which are obtained by pulse NMR. Here, the ethylene-vinyl alcohol copolymer (A) is a water-soluble polymer, but in order to dissolve the once crystallized ethylene-vinyl alcohol copolymer (A) in water, high temperature conditions and a stirring operation are performed. is necessary. Therefore, the sample does not dissolve and only swells when it is allowed to stand in water at 30 ° C. or 70 ° C., and exists in a solid state. Therefore, in the pulse NMR measurement, the measurement is performed in the solid state.
本発明のエチレン-ビニルアルコール共重合体(A)は下記式(I)を満足する。ここで、水中結晶化度(Cw)は緩和時間の絶対値で決定されるものではなく、系を緩和時間の異なる2成分に分割したそれぞれの比率である緩和強度(A1)及び(A2)によって決定されるパラメータである。この緩和強度(A1)及び(A2)は共鳴周波数の変化には影響されないため、水中結晶化度(Cw)の値は共鳴周波数の影響を受けない。
The ethylene-vinyl alcohol copolymer (A) of the present invention satisfies the following formula (I). Here, the crystallinity in water (Cw) is not determined by the absolute value of the relaxation time, but the relaxation intensity (A 1 ) and (A 2 ), which are the ratios of the system divided into two components having different relaxation times. ) Is a parameter determined by. Since the relaxation intensities (A 1 ) and (A 2 ) are not affected by the change in the resonance frequency, the value of the crystallinity (Cw) in water is not affected by the resonance frequency.
上記式(I)において、[(100-Cw(30℃))/100]は、30℃での非晶部の比率を表しており、0~1の値をとる。また[Cw(30℃)-Cw(70℃)]は、30℃と70℃の水中結晶化度の差、すなわち水温上昇に伴う非晶部増加量の指標であり、0~100の値をとる。したがって、これらを掛け合わせた式(I)はエチレン-ビニルアルコール共重合体(A)の易溶解性の指標であり、式(I)の値には絶対値の大きい[Cw(30℃)-Cw(70℃)]の方が大きく影響する。通常エチレン単位の含有率が1モル%以上20モル%未満のエチレン-ビニルアルコール共重合体は、エチレン単位の含有率が少ないため水に溶解する。このような水溶性のエチレン-ビニルアルコール共重合体は、通常[(100-Cw(30℃))/100]の値が大きく、かつ[Cw(30℃)-Cw(70℃)]の値が小さいため、結果として式(I)の値が小さくなる場合と、[(100-Cw(30℃))/100]の値が小さく、かつ[Cw(30℃)-Cw(70℃)]の値が大きいため、結果として式(I)の値が大きくなる場合がある。すなわち、式(I)の値が4未満の場合は、低温で溶解しやすい一方で継粉となりやすく、さらに一度生成した継粉は水に溶解しにくいため、全溶するまでの溶解時間が長くなる。式(I)の下限は好適には5以上であり、より好適には6以上である。一方、式(I)の値が22を超える場合は、水への溶解性が低下し、全溶するまでの溶解時間が長くなる。式(I)の上限は好適には21以下であり、より好適には20以下である。上記式(I)が特定の範囲を満たすことで、溶解速度が速く、かつ溶解時に継粉になりにくいエチレン-ビニルアルコール共重合体(A)が得られる。
In the above formula (I), [(100-Cw (30 ° C.)) / 100] represents the ratio of the amorphous portion at 30 ° C., and takes a value of 0 to 1. Further, [Cw (30 ° C.)-Cw (70 ° C.)] is an index of the difference in crystallinity in water between 30 ° C. and 70 ° C., that is, the amount of increase in amorphous portion with an increase in water temperature, and a value of 0 to 100 Take. Therefore, the formula (I) obtained by multiplying these is an index of the easy solubility of the ethylene-vinyl alcohol copolymer (A), and the value of the formula (I) has a large absolute value [Cw (30 ° C.)-. Cw (70 ° C)] has a greater effect. Generally, an ethylene-vinyl alcohol copolymer having an ethylene unit content of 1 mol% or more and less than 20 mol% is soluble in water because the ethylene unit content is low. Such a water-soluble ethylene-vinyl alcohol copolymer usually has a large value of [(100-Cw (30 ° C.)) / 100] and a value of [Cw (30 ° C.)-Cw (70 ° C.)]. As a result, the value of the formula (I) becomes small, and the value of [(100-Cw (30 ° C.)) / 100] is small, and [Cw (30 ° C.)-Cw (70 ° C.)] Since the value of is large, the value of the formula (I) may be large as a result. That is, when the value of the formula (I) is less than 4, it is easy to dissolve at a low temperature, but it is easy to form a splicing powder, and since the splicing powder once formed is difficult to dissolve in water, it takes a long time to dissolve completely. Become. The lower limit of the formula (I) is preferably 5 or more, and more preferably 6 or more. On the other hand, when the value of the formula (I) exceeds 22, the solubility in water decreases and the dissolution time until total dissolution becomes long. The upper limit of the formula (I) is preferably 21 or less, and more preferably 20 or less. When the above formula (I) satisfies a specific range, an ethylene-vinyl alcohol copolymer (A) having a high dissolution rate and less likely to form a powder during dissolution can be obtained.
測定に際しては、エチレン-ビニルアルコール共重合体(A)の試料を、各温度(30℃、70℃)のH2O-d2中に40分静置した後に、静置時の温度と同一の温度下でパルスNMR測定を行う。得られた緩和曲線の0~0.8msの範囲を、上記式(III)にて誤差最小二乗法を用いてフィッティングする。
In the measurement, the sample of ethylene-vinyl alcohol copolymer (A) was allowed to stand in H 2 Od 2 at each temperature (30 ° C., 70 ° C.) for 40 minutes, and then the temperature was the same as that at the time of standing. Pulse NMR measurement is performed at the temperature of. The range of 0 to 0.8 ms of the obtained transition curve is fitted by the above equation (III) using the error least squares method.
上記式(I)を満足するエチレン-ビニルアルコール共重合体(A)は、水に溶解させた場合に、継粉に由来する不溶物や凝集物の生成が少ないため、例えば、乳化重合安定剤としてエチレン-ビニルアルコール共重合体(A)を用いてエチレン性不飽和単量体を乳化重合することで、凝集物の生成が少なく、耐水接着性及び造膜性に優れる水性エマルジョンを得ることができる。
The ethylene-vinyl alcohol copolymer (A) satisfying the above formula (I) produces less insoluble matter and aggregates derived from the splicing powder when dissolved in water. Therefore, for example, an emulsion polymerization stabilizer. By emulsion polymerization of an ethylenically unsaturated monomer using an ethylene-vinyl alcohol copolymer (A), it is possible to obtain an aqueous emulsion having less agglomerates and excellent water adhesion and film forming properties. it can.
上記式(I)を満足するエチレン-ビニルアルコール共重合体(A)は、重合工程、けん化工程、粉砕工程、脱液工程及び乾燥工程を含む、特別なエチレン-ビニルアルコール共重合体の製造方法によって得ることができる。この製造方法については後に詳細に説明する。本発明においては、このような特別な製造方法を採用することによって、上記式(I)を満足し、水に対する溶解性に優れたエチレン-ビニルアルコール共重合体(A)を初めて得ることができた。以下、エチレン-ビニルアルコール共重合体(A)についてより詳細に説明する。
The ethylene-vinyl alcohol copolymer (A) satisfying the above formula (I) is a special method for producing an ethylene-vinyl alcohol copolymer, which comprises a polymerization step, a saponification step, a pulverization step, a liquid removal step and a drying step. Can be obtained by This manufacturing method will be described in detail later. In the present invention, by adopting such a special production method, an ethylene-vinyl alcohol copolymer (A) satisfying the above formula (I) and having excellent solubility in water can be obtained for the first time. It was. Hereinafter, the ethylene-vinyl alcohol copolymer (A) will be described in more detail.
(ビニルエステル)
エチレン-ビニルアルコール共重合体(A)は、エチレンとビニルエステルを共重合して得られたエチレン-ビニルエステル共重合体をけん化する工程を含んで得られる。用いられるビニルエステルとしては、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニル及びバーサティック酸ビニル等が挙げられ、中でも酢酸ビニルが好ましい。 (Vinyl ester)
The ethylene-vinyl alcohol copolymer (A) can be obtained by including a step of saponifying the ethylene-vinyl ester copolymer obtained by copolymerizing ethylene and vinyl ester. Examples of the vinyl ester used include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, vinyl versatic acid and the like. Of these, vinyl acetate is preferable.
エチレン-ビニルアルコール共重合体(A)は、エチレンとビニルエステルを共重合して得られたエチレン-ビニルエステル共重合体をけん化する工程を含んで得られる。用いられるビニルエステルとしては、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニル及びバーサティック酸ビニル等が挙げられ、中でも酢酸ビニルが好ましい。 (Vinyl ester)
The ethylene-vinyl alcohol copolymer (A) can be obtained by including a step of saponifying the ethylene-vinyl ester copolymer obtained by copolymerizing ethylene and vinyl ester. Examples of the vinyl ester used include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, vinyl versatic acid and the like. Of these, vinyl acetate is preferable.
(エチレン単位の含有率)
エチレン-ビニルアルコール共重合体(A)のエチレン単位の含有率は1モル%以上20モル%未満である。エチレン単位の含有率が1モル%未満の場合は、得られる水性エマルジョンの耐水接着性が低下する。エチレン単位の含有率は、好適には1.5モル%以上であり、より好適には2モル%以上である。一方、エチレン単位の含有率が20モル%以上の場合は、エチレン-ビニルアルコール共重合体(A)が水に不溶となり、水溶液の調製が困難となる。エチレン単位の含有率は、好適には15モル%以下であり、より好適には10モル%以下であり、さらに好適には8.5モル%以下である。 (Ethylene unit content)
The content of ethylene units in the ethylene-vinyl alcohol copolymer (A) is 1 mol% or more and less than 20 mol%. When the content of ethylene units is less than 1 mol%, the water-resistant adhesiveness of the obtained aqueous emulsion is lowered. The ethylene unit content is preferably 1.5 mol% or more, and more preferably 2 mol% or more. On the other hand, when the content of ethylene units is 20 mol% or more, the ethylene-vinyl alcohol copolymer (A) becomes insoluble in water, making it difficult to prepare an aqueous solution. The content of ethylene units is preferably 15 mol% or less, more preferably 10 mol% or less, and further preferably 8.5 mol% or less.
エチレン-ビニルアルコール共重合体(A)のエチレン単位の含有率は1モル%以上20モル%未満である。エチレン単位の含有率が1モル%未満の場合は、得られる水性エマルジョンの耐水接着性が低下する。エチレン単位の含有率は、好適には1.5モル%以上であり、より好適には2モル%以上である。一方、エチレン単位の含有率が20モル%以上の場合は、エチレン-ビニルアルコール共重合体(A)が水に不溶となり、水溶液の調製が困難となる。エチレン単位の含有率は、好適には15モル%以下であり、より好適には10モル%以下であり、さらに好適には8.5モル%以下である。 (Ethylene unit content)
The content of ethylene units in the ethylene-vinyl alcohol copolymer (A) is 1 mol% or more and less than 20 mol%. When the content of ethylene units is less than 1 mol%, the water-resistant adhesiveness of the obtained aqueous emulsion is lowered. The ethylene unit content is preferably 1.5 mol% or more, and more preferably 2 mol% or more. On the other hand, when the content of ethylene units is 20 mol% or more, the ethylene-vinyl alcohol copolymer (A) becomes insoluble in water, making it difficult to prepare an aqueous solution. The content of ethylene units is preferably 15 mol% or less, more preferably 10 mol% or less, and further preferably 8.5 mol% or less.
エチレン単位の含有率は、例えばエチレン-ビニルアルコール共重合体(A)の前駆体又は再酢化物であるエチレン-ビニルエステル共重合体の1H-NMRから求められる。試料のエチレン-ビニルエステル共重合体の再沈精製をn-ヘキサンとアセトンの混合溶液を用いて3回以上行った後、80℃で3日間減圧乾燥して分析用のエチレン-ビニルエステル共重合体を作製する。分析用のエチレン-ビニルエステル共重合体をDMSO-d6に溶解し、80℃で1H-NMR(500MHz)測定する。ビニルエステルの主鎖メチンに由来するピーク(4.7~5.2ppm)とエチレン及びビニルエステルの主鎖メチレンに由来するピーク(0.8~1.6ppm)を用いてエチレン単位の含有率を算出できる。
The content of ethylene units can be determined from, for example, 1 H-NMR of an ethylene-vinyl ester copolymer which is a precursor of an ethylene-vinyl alcohol copolymer (A) or a revinegared product. The ethylene-vinyl ester copolymer of the sample was reprecipitated and purified three times or more using a mixed solution of n-hexane and acetone, and then dried under reduced pressure at 80 ° C. for 3 days to have an ethylene-vinyl ester copolymer for analysis. Make a coalescence. The ethylene-vinyl ester copolymer for analysis is dissolved in DMSO-d 6 and measured at 1 H-NMR (500 MHz) at 80 ° C. The ethylene unit content was determined using the peak derived from the main chain methine of vinyl ester (4.7 to 5.2 ppm) and the peak derived from ethylene and the main chain methylene of vinyl ester (0.8 to 1.6 ppm). Can be calculated.
(けん化度)
エチレン-ビニルアルコール共重合体(A)のけん化度に特に制限はないが、80~99.99モル%が好ましい。けん化度が80モル%未満の場合は、得られる水溶液におけるエチレン-ビニルアルコール共重合体(A)の溶解性が不十分となる。けん化度は、より好適には82モル%以上であり、さらに好適には85モル%以上であり、特に好ましくは90%以上である。一方、けん化度が99.99モル%を超える場合は、エチレン-ビニルアルコール共重合体(A)を安定に製造することが困難となる傾向がある。けん化度は、より好適には99.5モル%以下であり、さらに好適には99モル%以下であり、特に好適には98.5モル%以下である。エチレン-ビニルアルコール共重合体(A)のけん化度はJIS K6726(1994年)に準じて測定できる。 (Saponification degree)
The degree of saponification of the ethylene-vinyl alcohol copolymer (A) is not particularly limited, but is preferably 80 to 99.99 mol%. If the degree of saponification is less than 80 mol%, the solubility of the ethylene-vinyl alcohol copolymer (A) in the obtained aqueous solution becomes insufficient. The saponification degree is more preferably 82 mol% or more, further preferably 85 mol% or more, and particularly preferably 90% or more. On the other hand, when the saponification degree exceeds 99.99 mol%, it tends to be difficult to stably produce the ethylene-vinyl alcohol copolymer (A). The saponification degree is more preferably 99.5 mol% or less, further preferably 99 mol% or less, and particularly preferably 98.5 mol% or less. The saponification degree of the ethylene-vinyl alcohol copolymer (A) can be measured according to JIS K6726 (1994).
エチレン-ビニルアルコール共重合体(A)のけん化度に特に制限はないが、80~99.99モル%が好ましい。けん化度が80モル%未満の場合は、得られる水溶液におけるエチレン-ビニルアルコール共重合体(A)の溶解性が不十分となる。けん化度は、より好適には82モル%以上であり、さらに好適には85モル%以上であり、特に好ましくは90%以上である。一方、けん化度が99.99モル%を超える場合は、エチレン-ビニルアルコール共重合体(A)を安定に製造することが困難となる傾向がある。けん化度は、より好適には99.5モル%以下であり、さらに好適には99モル%以下であり、特に好適には98.5モル%以下である。エチレン-ビニルアルコール共重合体(A)のけん化度はJIS K6726(1994年)に準じて測定できる。 (Saponification degree)
The degree of saponification of the ethylene-vinyl alcohol copolymer (A) is not particularly limited, but is preferably 80 to 99.99 mol%. If the degree of saponification is less than 80 mol%, the solubility of the ethylene-vinyl alcohol copolymer (A) in the obtained aqueous solution becomes insufficient. The saponification degree is more preferably 82 mol% or more, further preferably 85 mol% or more, and particularly preferably 90% or more. On the other hand, when the saponification degree exceeds 99.99 mol%, it tends to be difficult to stably produce the ethylene-vinyl alcohol copolymer (A). The saponification degree is more preferably 99.5 mol% or less, further preferably 99 mol% or less, and particularly preferably 98.5 mol% or less. The saponification degree of the ethylene-vinyl alcohol copolymer (A) can be measured according to JIS K6726 (1994).
(粘度平均重合度)
エチレン-ビニルアルコール共重合体(A)の粘度平均重合度に特に制限はないが、200~5000が好ましい。粘度平均重合度が200未満の場合は、得られる水性エマルジョンの保管安定性が低下する。粘度平均重合度は、より好適には250以上であり、さらに好適には300以上であり、さらにより好適には400以上であり、特に好適には900以上である。一方、粘度平均重合度が5000を超える場合は、エチレン-ビニルアルコール共重合体水溶液の粘度が高くなりすぎ、取り扱いが困難となる傾向がある。粘度平均重合度は、より好適には4500以下であり、さらに好適には4000以下であり、さらにより好適には3500以下であり、特に好適には2400以下である。粘度平均重合度PはJIS K6726(1994年)に準じて測定できる。すなわち、エチレン-ビニルアルコール共重合体(A)をけん化度99.5モル%以上に再けん化し、精製した後、30℃の水中で測定した極限粘度[η](L/g)から次式により求めることができる。
P=([η]×10000/8.29)(1/0.62) (Viscosity average degree of polymerization)
The viscosity average degree of polymerization of the ethylene-vinyl alcohol copolymer (A) is not particularly limited, but is preferably 200 to 5000. When the viscosity average degree of polymerization is less than 200, the storage stability of the obtained aqueous emulsion is lowered. The viscosity average degree of polymerization is more preferably 250 or more, further preferably 300 or more, even more preferably 400 or more, and particularly preferably 900 or more. On the other hand, when the viscosity average degree of polymerization exceeds 5000, the viscosity of the ethylene-vinyl alcohol copolymer aqueous solution becomes too high, and it tends to be difficult to handle. The viscosity average degree of polymerization is more preferably 4500 or less, further preferably 4000 or less, still more preferably 3500 or less, and particularly preferably 2400 or less. The viscosity average degree of polymerization P can be measured according to JIS K6726 (1994). That is, the ethylene-vinyl alcohol copolymer (A) was re-saponified to a saponification degree of 99.5 mol% or more, purified, and then measured in water at 30 ° C. from the ultimate viscosity [η] (L / g). Can be obtained by.
P = ([η] x 10000 / 8.29) (1 / 0.62)
エチレン-ビニルアルコール共重合体(A)の粘度平均重合度に特に制限はないが、200~5000が好ましい。粘度平均重合度が200未満の場合は、得られる水性エマルジョンの保管安定性が低下する。粘度平均重合度は、より好適には250以上であり、さらに好適には300以上であり、さらにより好適には400以上であり、特に好適には900以上である。一方、粘度平均重合度が5000を超える場合は、エチレン-ビニルアルコール共重合体水溶液の粘度が高くなりすぎ、取り扱いが困難となる傾向がある。粘度平均重合度は、より好適には4500以下であり、さらに好適には4000以下であり、さらにより好適には3500以下であり、特に好適には2400以下である。粘度平均重合度PはJIS K6726(1994年)に準じて測定できる。すなわち、エチレン-ビニルアルコール共重合体(A)をけん化度99.5モル%以上に再けん化し、精製した後、30℃の水中で測定した極限粘度[η](L/g)から次式により求めることができる。
P=([η]×10000/8.29)(1/0.62) (Viscosity average degree of polymerization)
The viscosity average degree of polymerization of the ethylene-vinyl alcohol copolymer (A) is not particularly limited, but is preferably 200 to 5000. When the viscosity average degree of polymerization is less than 200, the storage stability of the obtained aqueous emulsion is lowered. The viscosity average degree of polymerization is more preferably 250 or more, further preferably 300 or more, even more preferably 400 or more, and particularly preferably 900 or more. On the other hand, when the viscosity average degree of polymerization exceeds 5000, the viscosity of the ethylene-vinyl alcohol copolymer aqueous solution becomes too high, and it tends to be difficult to handle. The viscosity average degree of polymerization is more preferably 4500 or less, further preferably 4000 or less, still more preferably 3500 or less, and particularly preferably 2400 or less. The viscosity average degree of polymerization P can be measured according to JIS K6726 (1994). That is, the ethylene-vinyl alcohol copolymer (A) was re-saponified to a saponification degree of 99.5 mol% or more, purified, and then measured in water at 30 ° C. from the ultimate viscosity [η] (L / g). Can be obtained by.
P = ([η] x 10000 / 8.29) (1 / 0.62)
(他の単量体単位)
エチレン-ビニルアルコール共重合体(A)は、本発明の効果を損なわない範囲であれば、ビニルアルコール単位、エチレン単位及びビニルエステル単位以外の単量体単位を含有していてもよい。このような単量体としては、プロピレン、n-ブテン、イソブチレン等のα-オレフィン;アクリル酸及びその塩;アクリル酸エステル;メタクリル酸及びその塩;メタクリル酸エステル;アクリルアミド;N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸及びその塩、アクリルアミドプロピルジメチルアミン及びその塩またはその4級塩、N-メチロールアクリルアミド及びその誘導体等のアクリルアミド誘導体;メタクリルアミド;N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸及びその塩、メタクリルアミドプロピルジメチルアミン及びその塩またはその4級塩、N-メチロールメタクリルアミド及びその誘導体等のメタクリルアミド誘導体; メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のビニルエーテル;アクリロニトリル、メタクリロニトリル等のニトリル;塩化ビニル、フッ化ビニル等のハロゲン化ビニル;塩化ビニリデン、フッ化ビニリデン等のハロゲン化ビニリデン;酢酸アリル、塩化アリル等のアリル化合物;マレイン酸、イタコン酸、フマル酸等の不飽和ジカルボン酸及びその塩またはそのエステル;ビニルトリメトキシシラン等のビニルシリル化合物;酢酸イソプロペニル等が挙げられる。これらの単量体の含有率は、使用される目的や用途等によって異なるが、好ましくは10モル%以下であり、より好ましくは5モル%未満であり、さらに好ましくは1モル%未満であり、0.5モル%未満であることが特に好ましい。 (Other monomer units)
The ethylene-vinyl alcohol copolymer (A) may contain a monomer unit other than the vinyl alcohol unit, the ethylene unit and the vinyl ester unit as long as the effect of the present invention is not impaired. Examples of such monomers include α-olefins such as propylene, n-butene, and isobutylene; acrylic acid and salts thereof; acrylic acid esters; methacrylate and salts thereof; methacrylic acid esters; acrylamide; N-methylacrylamide, N. -Acrylamide derivatives such as ethyl acrylamide, N, N-dimethylacrylamide, diacetone acrylamide, acrylamide propanesulfonic acid and its salts, acrylamide propyl dimethylamine and its salts or quaternary salts thereof, N-methylol acrylamide and its derivatives; methacrylamide Acrylamide derivatives such as N-methylmethacrylate, N-ethylmethacrylate, methacrylamidepropanesulfonic acid and its salts, methacrylamidepropyldimethylamine and its salts or quaternary salts thereof, N-methylolmethacrylamide and its derivatives; Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether, stearyl vinyl ether; nitriles such as acrylamide and methacrylnitrile; chloride. Vinyl halides such as vinyl and vinyl fluoride; vinylidene halides such as vinylidene chloride and vinylidene fluoride; allyl compounds such as allyl acetate and allyl chloride; unsaturated dicarboxylic acids such as maleic acid, itaconic acid and fumaric acid and salts thereof. Alternatively, an ester thereof; a vinylsilyl compound such as vinyltrimethoxysilane; isopropenyl acetate and the like can be mentioned. The content of these monomers varies depending on the purpose and use of use, but is preferably 10 mol% or less, more preferably less than 5 mol%, still more preferably less than 1 mol%. It is particularly preferably less than 0.5 mol%.
エチレン-ビニルアルコール共重合体(A)は、本発明の効果を損なわない範囲であれば、ビニルアルコール単位、エチレン単位及びビニルエステル単位以外の単量体単位を含有していてもよい。このような単量体としては、プロピレン、n-ブテン、イソブチレン等のα-オレフィン;アクリル酸及びその塩;アクリル酸エステル;メタクリル酸及びその塩;メタクリル酸エステル;アクリルアミド;N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸及びその塩、アクリルアミドプロピルジメチルアミン及びその塩またはその4級塩、N-メチロールアクリルアミド及びその誘導体等のアクリルアミド誘導体;メタクリルアミド;N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸及びその塩、メタクリルアミドプロピルジメチルアミン及びその塩またはその4級塩、N-メチロールメタクリルアミド及びその誘導体等のメタクリルアミド誘導体; メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のビニルエーテル;アクリロニトリル、メタクリロニトリル等のニトリル;塩化ビニル、フッ化ビニル等のハロゲン化ビニル;塩化ビニリデン、フッ化ビニリデン等のハロゲン化ビニリデン;酢酸アリル、塩化アリル等のアリル化合物;マレイン酸、イタコン酸、フマル酸等の不飽和ジカルボン酸及びその塩またはそのエステル;ビニルトリメトキシシラン等のビニルシリル化合物;酢酸イソプロペニル等が挙げられる。これらの単量体の含有率は、使用される目的や用途等によって異なるが、好ましくは10モル%以下であり、より好ましくは5モル%未満であり、さらに好ましくは1モル%未満であり、0.5モル%未満であることが特に好ましい。 (Other monomer units)
The ethylene-vinyl alcohol copolymer (A) may contain a monomer unit other than the vinyl alcohol unit, the ethylene unit and the vinyl ester unit as long as the effect of the present invention is not impaired. Examples of such monomers include α-olefins such as propylene, n-butene, and isobutylene; acrylic acid and salts thereof; acrylic acid esters; methacrylate and salts thereof; methacrylic acid esters; acrylamide; N-methylacrylamide, N. -Acrylamide derivatives such as ethyl acrylamide, N, N-dimethylacrylamide, diacetone acrylamide, acrylamide propanesulfonic acid and its salts, acrylamide propyl dimethylamine and its salts or quaternary salts thereof, N-methylol acrylamide and its derivatives; methacrylamide Acrylamide derivatives such as N-methylmethacrylate, N-ethylmethacrylate, methacrylamidepropanesulfonic acid and its salts, methacrylamidepropyldimethylamine and its salts or quaternary salts thereof, N-methylolmethacrylamide and its derivatives; Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether, stearyl vinyl ether; nitriles such as acrylamide and methacrylnitrile; chloride. Vinyl halides such as vinyl and vinyl fluoride; vinylidene halides such as vinylidene chloride and vinylidene fluoride; allyl compounds such as allyl acetate and allyl chloride; unsaturated dicarboxylic acids such as maleic acid, itaconic acid and fumaric acid and salts thereof. Alternatively, an ester thereof; a vinylsilyl compound such as vinyltrimethoxysilane; isopropenyl acetate and the like can be mentioned. The content of these monomers varies depending on the purpose and use of use, but is preferably 10 mol% or less, more preferably less than 5 mol%, still more preferably less than 1 mol%. It is particularly preferably less than 0.5 mol%.
[エチレン-ビニルアルコール共重合体(A)の製造方法]
エチレン-ビニルアルコール共重合体(A)の好適な製造方法は、エチレンとビニルエステルとを共重合してエチレン-ビニルエステル共重合体を得る重合工程;前記エチレン-ビニルエステル共重合体をけん化して、エチレン-ビニルアルコール共重合体と溶媒とを含む固体ブロックを得るけん化工程;前記固体ブロックを粉砕してウェット粒子を得る粉砕工程;前記ウェット粒子から前記溶媒の一部を機械的に脱液して脱液粒子を得る脱液工程;及び前記脱液粒子から前記溶媒の残部を加熱することにより除去して乾燥粒子を得る乾燥工程;を含むエチレン-ビニルアルコール共重合体の製造方法であって;
前記脱液粒子が40~65質量%の前記溶媒を含有し、かつ
前記脱液粒子中の、目開き5.6mmの篩を通過する粒子の含有率が80質量%以上であり、目開き1.0mmの篩を通過する粒子の含有率が2質量%未満である製造方法である。 [Method for producing ethylene-vinyl alcohol copolymer (A)]
A preferred method for producing the ethylene-vinyl alcohol copolymer (A) is a polymerization step of copolymerizing ethylene and a vinyl ester to obtain an ethylene-vinyl ester copolymer; saponifying the ethylene-vinyl ester copolymer. A saponification step of obtaining a solid block containing an ethylene-vinyl alcohol copolymer and a solvent; a pulverization step of crushing the solid block to obtain wet particles; mechanically removing a part of the solvent from the wet particles. A method for producing an ethylene-vinyl alcohol copolymer, which comprises a deflating step of obtaining deflated particles; and a drying step of removing the rest of the solvent from the deflated particles by heating to obtain dry particles. hand;
The deflated particles contain 40 to 65% by mass of the solvent, and the content of the deflated particles passing through a sieve having an opening of 5.6 mm is 80% by mass or more, and the opening is 1 This is a production method in which the content of particles passing through a 0.0 mm sieve is less than 2% by mass.
エチレン-ビニルアルコール共重合体(A)の好適な製造方法は、エチレンとビニルエステルとを共重合してエチレン-ビニルエステル共重合体を得る重合工程;前記エチレン-ビニルエステル共重合体をけん化して、エチレン-ビニルアルコール共重合体と溶媒とを含む固体ブロックを得るけん化工程;前記固体ブロックを粉砕してウェット粒子を得る粉砕工程;前記ウェット粒子から前記溶媒の一部を機械的に脱液して脱液粒子を得る脱液工程;及び前記脱液粒子から前記溶媒の残部を加熱することにより除去して乾燥粒子を得る乾燥工程;を含むエチレン-ビニルアルコール共重合体の製造方法であって;
前記脱液粒子が40~65質量%の前記溶媒を含有し、かつ
前記脱液粒子中の、目開き5.6mmの篩を通過する粒子の含有率が80質量%以上であり、目開き1.0mmの篩を通過する粒子の含有率が2質量%未満である製造方法である。 [Method for producing ethylene-vinyl alcohol copolymer (A)]
A preferred method for producing the ethylene-vinyl alcohol copolymer (A) is a polymerization step of copolymerizing ethylene and a vinyl ester to obtain an ethylene-vinyl ester copolymer; saponifying the ethylene-vinyl ester copolymer. A saponification step of obtaining a solid block containing an ethylene-vinyl alcohol copolymer and a solvent; a pulverization step of crushing the solid block to obtain wet particles; mechanically removing a part of the solvent from the wet particles. A method for producing an ethylene-vinyl alcohol copolymer, which comprises a deflating step of obtaining deflated particles; and a drying step of removing the rest of the solvent from the deflated particles by heating to obtain dry particles. hand;
The deflated particles contain 40 to 65% by mass of the solvent, and the content of the deflated particles passing through a sieve having an opening of 5.6 mm is 80% by mass or more, and the opening is 1 This is a production method in which the content of particles passing through a 0.0 mm sieve is less than 2% by mass.
上記製造方法のように、けん化工程後の固体ブロックを粉砕してから脱液して得られる脱液粒子が、特定割合の溶媒を含み、かつ特定の粒度分布を有することが重要であり、これらによって、エチレン-ビニルアルコール共重合体(A)の水溶液を調製する際に、継粉にならず、溶解速度が大きくなる。以下、製造方法の各工程について詳細に説明する。
It is important that the deflated particles obtained by pulverizing the solid block after the saponification step and then deflating the solid block as in the above production method contain a specific ratio of solvent and have a specific particle size distribution. Therefore, when preparing an aqueous solution of the ethylene-vinyl alcohol copolymer (A), the powder does not form a powder and the dissolution rate increases. Hereinafter, each step of the manufacturing method will be described in detail.
(重合工程)
エチレンとビニルエステルとの共重合の方法としては、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等の公知の方法が挙げられる。中でも、無溶媒又はアルコール等の有機溶媒中で重合する塊状重合法や溶液重合法を通常採用できるが、溶液重合法が好ましい。上記アルコールとしては、メタノール、エタノール等の低級アルコールが挙げられ、メタノールが特に好ましい。重合操作にあたっては、回分法、半回分法及び連続法のいずれの重合方式も採用できる。重合反応器としては、回分反応器、管型反応器、連続槽型反応器等が挙げられる。共重合に使用される開始剤としては、2,2'-アゾビス(イソブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチル-バレロニトリル)、過酸化ベンゾイル、n-プロピルパーオキシジカーボネート等のアゾ系開始剤または過酸化物系開始剤等の公知の開始剤が挙げられる。 (Polymerization process)
Examples of the method for copolymerizing ethylene and vinyl ester include known methods such as a massive polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method. Of these, a bulk polymerization method or a solution polymerization method in which polymerization is carried out in a solvent-free environment or in an organic solvent such as alcohol can be usually adopted, but the solution polymerization method is preferable. Examples of the alcohol include lower alcohols such as methanol and ethanol, and methanol is particularly preferable. In the polymerization operation, any of the batch method, the semi-batch method and the continuous method can be adopted. Examples of the polymerization reactor include a batch reactor, a tubular reactor, and a continuous tank reactor. The initiators used in the copolymerization include 2,2'-azobis (isobutyronitrile), 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), and 2,2'-azobis. Examples thereof include azo-based initiators such as (2,4-dimethyl-valeronitrile), benzoyl peroxide, n-propylperoxydicarbonate, and known initiators such as peroxide-based initiators.
エチレンとビニルエステルとの共重合の方法としては、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等の公知の方法が挙げられる。中でも、無溶媒又はアルコール等の有機溶媒中で重合する塊状重合法や溶液重合法を通常採用できるが、溶液重合法が好ましい。上記アルコールとしては、メタノール、エタノール等の低級アルコールが挙げられ、メタノールが特に好ましい。重合操作にあたっては、回分法、半回分法及び連続法のいずれの重合方式も採用できる。重合反応器としては、回分反応器、管型反応器、連続槽型反応器等が挙げられる。共重合に使用される開始剤としては、2,2'-アゾビス(イソブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチル-バレロニトリル)、過酸化ベンゾイル、n-プロピルパーオキシジカーボネート等のアゾ系開始剤または過酸化物系開始剤等の公知の開始剤が挙げられる。 (Polymerization process)
Examples of the method for copolymerizing ethylene and vinyl ester include known methods such as a massive polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method. Of these, a bulk polymerization method or a solution polymerization method in which polymerization is carried out in a solvent-free environment or in an organic solvent such as alcohol can be usually adopted, but the solution polymerization method is preferable. Examples of the alcohol include lower alcohols such as methanol and ethanol, and methanol is particularly preferable. In the polymerization operation, any of the batch method, the semi-batch method and the continuous method can be adopted. Examples of the polymerization reactor include a batch reactor, a tubular reactor, and a continuous tank reactor. The initiators used in the copolymerization include 2,2'-azobis (isobutyronitrile), 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), and 2,2'-azobis. Examples thereof include azo-based initiators such as (2,4-dimethyl-valeronitrile), benzoyl peroxide, n-propylperoxydicarbonate, and known initiators such as peroxide-based initiators.
重合温度に特に限定はなく、0~180℃程度が好ましく、室温~160℃がより好ましく、30~150℃がさらに好ましい。重合時に使用する溶媒の沸点以下で重合する際は減圧沸騰重合、常圧非沸騰重合のいずれも選択できる。また重合時に使用する溶媒の沸点以上で重合する際は加圧非沸騰重合、加圧沸騰重合のいずれも選択できる。
The polymerization temperature is not particularly limited, and is preferably about 0 to 180 ° C, more preferably room temperature to 160 ° C, and even more preferably 30 to 150 ° C. When polymerizing below the boiling point of the solvent used for polymerization, either vacuum boiling polymerization or normal pressure non-boiling polymerization can be selected. Further, when polymerizing above the boiling point of the solvent used at the time of polymerization, either pressure non-boiling polymerization or pressure boiling polymerization can be selected.
重合時における重合反応器内のエチレン圧力は0.01~0.9MPaが好ましく、0.05~0.7MPaがより好ましく、0.1~0.65MPaがさらに好ましい。重合反応器出口での重合率は特に限定されないが、10~90%が好ましく、15~85%がより好ましい。
The ethylene pressure in the polymerization reactor at the time of polymerization is preferably 0.01 to 0.9 MPa, more preferably 0.05 to 0.7 MPa, still more preferably 0.1 to 0.65 MPa. The polymerization rate at the outlet of the polymerization reactor is not particularly limited, but is preferably 10 to 90%, more preferably 15 to 85%.
重合工程において、得られるエチレン-ビニルエステル共重合体の粘度平均重合度を調節すること等を目的として、連鎖移動剤を共存させてもよい。連鎖移動剤としては、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、ベンズアルデヒド等のアルデヒド;アセトン、メチルエチルケトン、ヘキサノン、シクロヘキサノン等のケトン;2-ヒドロキシエタンチオール等のメルカプタン;チオ酢酸等のチオカルボン酸;トリクロロエチレン、パークロロエチレン等のハロゲン化炭化水素等が挙げられる。中でも、アルデヒド及びケトンが好適に用いられる。連鎖移動剤の添加量は、添加する連鎖移動剤の連鎖移動定数及び目的とするエチレン-ビニルエステル共重合体の粘度平均重合度に応じて決定されるが、通常、使用するビニルエステル100質量部に対して0.1~10質量部である。
In the polymerization step, a chain transfer agent may coexist for the purpose of adjusting the viscosity average degree of polymerization of the obtained ethylene-vinyl ester copolymer. Examples of the chain transfer agent include aldehydes such as acetaldehyde, propionaldehyde, butyraldehyde and benzaldehyde; ketones such as acetone, methyl ethyl ketone, hexanone and cyclohexanone; mercaptans such as 2-hydroxyethanethiol; thiocarboxylic acids such as thioacetic acid; trichloroethylene and perchloro. Examples thereof include halogenated hydrocarbons such as ethylene. Of these, aldehydes and ketones are preferably used. The amount of the chain transfer agent added is determined according to the chain transfer constant of the chain transfer agent to be added and the viscosity average degree of polymerization of the target ethylene-vinyl ester copolymer, but is usually 100 parts by mass of the vinyl ester used. It is 0.1 to 10 parts by mass with respect to.
(けん化工程)
重合工程で得られたエチレン-ビニルエステル共重合体を、有機溶媒中において、触媒の存在下で加アルコール分解又は加水分解反応によってけん化する。けん化工程で用いられる触媒としては、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド等の塩基性触媒;または、硫酸、塩酸、p-トルエンスルホン酸等の酸性触媒が挙げられる。けん化工程で用いられる有機溶媒は特に限定されないが、メタノール、エタノール等のアルコール;酢酸メチル、酢酸エチル等のエステル;アセトン、メチルエチルケトン等のケトン;ベンゼン、トルエン等の芳香族炭化水素等が挙げられる。これらは1種を単独で、または2種以上を併用して使用できる。中でも、メタノール、又はメタノールと酢酸メチルとの混合溶液を溶媒として用い、塩基性触媒である水酸化ナトリウムの存在下にけん化反応を行うのが簡便であり好ましい。けん化触媒の使用量は、エチレン-ビニルエステル共重合体中のビニルエステル単量体単位に対するモル比で0.001~0.5が好ましい。当該モル比は、より好適には0.002以上である。一方、当該モル比は、より好適には0.4以下であり、さらに好適には0.3以下である。 (Saponification process)
The ethylene-vinyl ester copolymer obtained in the polymerization step is saponified in an organic solvent by an alcohol decomposition or hydrolysis reaction in the presence of a catalyst. Examples of the catalyst used in the saponification step include basic catalysts such as sodium hydroxide, potassium hydroxide and sodium methoxydo; or acidic catalysts such as sulfuric acid, hydrochloric acid and p-toluenesulfonic acid. The organic solvent used in the saponification step is not particularly limited, and examples thereof include alcohols such as methanol and ethanol; esters such as methyl acetate and ethyl acetate; ketones such as acetone and methyl ethyl ketone; aromatic hydrocarbons such as benzene and toluene. These can be used alone or in combination of two or more. Above all, it is convenient and preferable to carry out the saponification reaction in the presence of sodium hydroxide, which is a basic catalyst, using methanol or a mixed solution of methanol and methyl acetate as a solvent. The amount of the saponification catalyst used is preferably 0.001 to 0.5 in terms of molar ratio to the vinyl ester monomer unit in the ethylene-vinyl ester copolymer. The molar ratio is more preferably 0.002 or more. On the other hand, the molar ratio is more preferably 0.4 or less, and further preferably 0.3 or less.
重合工程で得られたエチレン-ビニルエステル共重合体を、有機溶媒中において、触媒の存在下で加アルコール分解又は加水分解反応によってけん化する。けん化工程で用いられる触媒としては、水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシド等の塩基性触媒;または、硫酸、塩酸、p-トルエンスルホン酸等の酸性触媒が挙げられる。けん化工程で用いられる有機溶媒は特に限定されないが、メタノール、エタノール等のアルコール;酢酸メチル、酢酸エチル等のエステル;アセトン、メチルエチルケトン等のケトン;ベンゼン、トルエン等の芳香族炭化水素等が挙げられる。これらは1種を単独で、または2種以上を併用して使用できる。中でも、メタノール、又はメタノールと酢酸メチルとの混合溶液を溶媒として用い、塩基性触媒である水酸化ナトリウムの存在下にけん化反応を行うのが簡便であり好ましい。けん化触媒の使用量は、エチレン-ビニルエステル共重合体中のビニルエステル単量体単位に対するモル比で0.001~0.5が好ましい。当該モル比は、より好適には0.002以上である。一方、当該モル比は、より好適には0.4以下であり、さらに好適には0.3以下である。 (Saponification process)
The ethylene-vinyl ester copolymer obtained in the polymerization step is saponified in an organic solvent by an alcohol decomposition or hydrolysis reaction in the presence of a catalyst. Examples of the catalyst used in the saponification step include basic catalysts such as sodium hydroxide, potassium hydroxide and sodium methoxydo; or acidic catalysts such as sulfuric acid, hydrochloric acid and p-toluenesulfonic acid. The organic solvent used in the saponification step is not particularly limited, and examples thereof include alcohols such as methanol and ethanol; esters such as methyl acetate and ethyl acetate; ketones such as acetone and methyl ethyl ketone; aromatic hydrocarbons such as benzene and toluene. These can be used alone or in combination of two or more. Above all, it is convenient and preferable to carry out the saponification reaction in the presence of sodium hydroxide, which is a basic catalyst, using methanol or a mixed solution of methanol and methyl acetate as a solvent. The amount of the saponification catalyst used is preferably 0.001 to 0.5 in terms of molar ratio to the vinyl ester monomer unit in the ethylene-vinyl ester copolymer. The molar ratio is more preferably 0.002 or more. On the other hand, the molar ratio is more preferably 0.4 or less, and further preferably 0.3 or less.
けん化工程の好適な実施態様は以下の通りである。まず、重合工程において得られたエチレン-ビニルエステル共重合体溶液に対し、水酸化ナトリウムのようなけん化触媒を添加して混合する。この時の溶媒は、メタノールであることが好ましい。混合当初は均一な液体であるが、けん化反応が進行してポリマー中のビニルエステル単位がけん化されてビニルアルコール単位に変換されると、溶媒への溶解度が低下して、ポリマーが溶液中に析出する。このとき、溶液中にはメタノールによるアルコリシスで生成した酢酸メチルが含まれる。けん化反応が進行するに従って、ポリマーの析出量が徐々に増加してスラリー状になり、その後流動性を失う。したがって、けん化反応を均一に進行させるためには流動性を失うまでに十分に混合することが重要である。
The preferred embodiment of the saponification step is as follows. First, a saponification catalyst such as sodium hydroxide is added to the ethylene-vinyl ester copolymer solution obtained in the polymerization step and mixed. The solvent at this time is preferably methanol. Although it is a uniform liquid at the beginning of mixing, when the saponification reaction proceeds and the vinyl ester units in the polymer are saponified and converted to vinyl alcohol units, the solubility in the solvent decreases and the polymer precipitates in the solution. To do. At this time, the solution contains methyl acetate produced by alcoholesis with methanol. As the saponification reaction progresses, the amount of polymer precipitated gradually increases to form a slurry, which then loses its fluidity. Therefore, in order for the saponification reaction to proceed uniformly, it is important to mix sufficiently until the fluidity is lost.
エチレン-ビニルエステル共重合体溶液とけん化触媒を混合する方法は特に限定されず、スタティックミキサー、ニーダー、攪拌翼など様々な方法が採用できるが、スタティックミキサーを用いることが、連続的に均一に混合できて好ましい。この場合、重合槽に接続された配管中で重合工程後のエチレン-ビニルエステル共重合体溶液にけん化触媒を添加し、その後スタティックミキサーを通過させて混合してペーストを得る。スタティックミキサー中の反応液の温度は通常20~80℃である。
The method of mixing the ethylene-vinyl ester copolymer solution and the saponification catalyst is not particularly limited, and various methods such as a static mixer, a kneader, and a stirring blade can be adopted, but using a static mixer continuously and uniformly mixes. It is preferable to be able to do it. In this case, a saponification catalyst is added to the ethylene-vinyl ester copolymer solution after the polymerization step in a pipe connected to the polymerization tank, and then the mixture is passed through a static mixer to obtain a paste. The temperature of the reaction solution in the static mixer is usually 20 to 80 ° C.
スタティックミキサーを通過したペースト中のエチレン-ビニルエステル共重合体のけん化反応を進行させる方法は特に限定されないが、移動するベルトの上に当該ペーストを載置して、当該ベルトを一定の温度に保たれた槽の中で移動させながらけん化反応を進行させる方法が好適である。ベルト上のペーストは流動性が失われて固体状態となり、さらに固体状態でけん化反応が進行する。この方法によって、固体状態で連続的にけん化反応を進行させることができ、エチレン-ビニルアルコール共重合体と溶媒とを含む固体ブロックが得られる。けん化温度は好適には20~60℃である。けん化温度が低すぎる場合には反応速度が低下する。けん化温度はより好適には25℃以上であり、さらに好適には30℃以上である。一方、けん化温度が高すぎると、多量の溶媒が蒸発して、得られる固体ブロック中の溶媒の含有率が低くなり、得られるエチレン-ビニルアルコール共重合体の溶解性が悪化してしまう。けん化温度は、より好適には55℃以下であり、さらに好適には50℃以下である。けん化時間は5分以上2時間以下であることが好ましい。けん化時間はより好適には8分以上であり、さらに好適には10分以上である。また、けん化時間はより好適には1時間以下であり、さらに好適には45分以下である。
The method for advancing the saponification reaction of the ethylene-vinyl ester copolymer in the paste that has passed through the static mixer is not particularly limited, but the paste is placed on a moving belt and the belt is kept at a constant temperature. A method in which the saponification reaction proceeds while moving in a dripping tank is preferable. The paste on the belt loses its fluidity and becomes a solid state, and the saponification reaction proceeds in the solid state. By this method, the saponification reaction can be continuously carried out in a solid state, and a solid block containing an ethylene-vinyl alcohol copolymer and a solvent can be obtained. The saponification temperature is preferably 20 to 60 ° C. If the saponification temperature is too low, the reaction rate will decrease. The saponification temperature is more preferably 25 ° C. or higher, and even more preferably 30 ° C. or higher. On the other hand, if the saponification temperature is too high, a large amount of solvent evaporates, the content of the solvent in the obtained solid block becomes low, and the solubility of the obtained ethylene-vinyl alcohol copolymer deteriorates. The saponification temperature is more preferably 55 ° C. or lower, and even more preferably 50 ° C. or lower. The saponification time is preferably 5 minutes or more and 2 hours or less. The saponification time is more preferably 8 minutes or more, and even more preferably 10 minutes or more. The saponification time is more preferably 1 hour or less, and further preferably 45 minutes or less.
(粉砕工程)
けん化工程で得られた固体ブロックを粉砕することによって溶媒を含有するウェット粒子が得られる。このとき用いられる粉砕機は、粉砕機の回転数等を調整して、後述する粒度分布にできるものであれば特に限定されず、公知の粉砕機、破砕機を使用できる。けん化工程を経て得られるエチレン-ビニルアルコール共重合体の力学的特性上、カッターミル、ギロチン式切断機、往復カッター式、一軸、二軸、三軸せん断破砕機等の切断型破砕機が好ましい。粉砕の際に固体ブロックと接触する破砕刃のロックウェル硬度(HRC)は40~70であることが好ましい。当該硬度は45以上であることがより好ましい。一方、当該硬度は65以下であることがより好ましい。また、破砕刃の回転数は200~550rpmであることが好ましい。当該回転数は、225rpm以上であることがより好ましく、250rpm以上であることがさらに好ましい。一方、当該回転数は、500rpm以下であることがより好ましく、450rpm以下であることがさらに好ましい。 (Crushing process)
Wet particles containing a solvent can be obtained by pulverizing the solid block obtained in the saponification step. The crusher used at this time is not particularly limited as long as it can adjust the rotation speed of the crusher and the like to obtain a particle size distribution described later, and a known crusher or crusher can be used. Due to the mechanical properties of the ethylene-vinyl alcohol copolymer obtained through the saponification step, a cutting type crusher such as a cutter mill, a guillotine type cutting machine, a reciprocating cutter type, a uniaxial, biaxial or triaxial shear crusher is preferable. The Rockwell hardness (HRC) of the crushing blade that comes into contact with the solid block during crushing is preferably 40 to 70. The hardness is more preferably 45 or more. On the other hand, the hardness is more preferably 65 or less. The rotation speed of the crushing blade is preferably 200 to 550 rpm. The rotation speed is more preferably 225 rpm or more, and further preferably 250 rpm or more. On the other hand, the rotation speed is more preferably 500 rpm or less, and further preferably 450 rpm or less.
けん化工程で得られた固体ブロックを粉砕することによって溶媒を含有するウェット粒子が得られる。このとき用いられる粉砕機は、粉砕機の回転数等を調整して、後述する粒度分布にできるものであれば特に限定されず、公知の粉砕機、破砕機を使用できる。けん化工程を経て得られるエチレン-ビニルアルコール共重合体の力学的特性上、カッターミル、ギロチン式切断機、往復カッター式、一軸、二軸、三軸せん断破砕機等の切断型破砕機が好ましい。粉砕の際に固体ブロックと接触する破砕刃のロックウェル硬度(HRC)は40~70であることが好ましい。当該硬度は45以上であることがより好ましい。一方、当該硬度は65以下であることがより好ましい。また、破砕刃の回転数は200~550rpmであることが好ましい。当該回転数は、225rpm以上であることがより好ましく、250rpm以上であることがさらに好ましい。一方、当該回転数は、500rpm以下であることがより好ましく、450rpm以下であることがさらに好ましい。 (Crushing process)
Wet particles containing a solvent can be obtained by pulverizing the solid block obtained in the saponification step. The crusher used at this time is not particularly limited as long as it can adjust the rotation speed of the crusher and the like to obtain a particle size distribution described later, and a known crusher or crusher can be used. Due to the mechanical properties of the ethylene-vinyl alcohol copolymer obtained through the saponification step, a cutting type crusher such as a cutter mill, a guillotine type cutting machine, a reciprocating cutter type, a uniaxial, biaxial or triaxial shear crusher is preferable. The Rockwell hardness (HRC) of the crushing blade that comes into contact with the solid block during crushing is preferably 40 to 70. The hardness is more preferably 45 or more. On the other hand, the hardness is more preferably 65 or less. The rotation speed of the crushing blade is preferably 200 to 550 rpm. The rotation speed is more preferably 225 rpm or more, and further preferably 250 rpm or more. On the other hand, the rotation speed is more preferably 500 rpm or less, and further preferably 450 rpm or less.
従来、けん化工程で得られた固体ブロックの粉砕には、ロックウェル硬度40未満の破砕刃を備え、550rpmを超える回転数で運転される粉砕機が一般的に用いられていた。使用される破砕刃のロックウェル硬度が低いために、破砕刃の摩耗が進行しやすく、摩耗した破砕刃で切断したことによる粉砕ムラが生じやすかった。また、高回転数で固体ブロックを粉砕した場合は、粉砕の衝撃によって固体ブロックが破砕機投入口で大きく上下に振動してしまい、粉砕時の破断ムラが生じてしまっていた。このような事情により、従来は、後述する特定の粒度分布を有する粒子を安定的に得ることが困難であった。一方、破砕刃のロックウェル硬度が70を超える場合は、高硬度である一方で靱性が低下するために、粉砕時に破砕刃の微小チッピングが発生してしまい、それにより粉砕ムラを生じる傾向がある。また、粉砕機の回転数が200rpm未満の場合は、粉砕効率が低下する傾向がある。
Conventionally, for crushing a solid block obtained in a saponification step, a crusher equipped with a crushing blade having a Rockwell hardness of less than 40 and operated at a rotation speed of more than 550 rpm has been generally used. Since the Rockwell hardness of the crushing blade used is low, the crushing blade is easily worn, and uneven crushing is likely to occur due to cutting with the worn crushing blade. Further, when the solid block is crushed at a high rotation speed, the solid block vibrates greatly up and down at the crusher inlet due to the impact of the crushing, resulting in uneven breakage during crushing. Due to such circumstances, it has been difficult to stably obtain particles having a specific particle size distribution, which will be described later. On the other hand, when the Rockwell hardness of the crushing blade exceeds 70, the toughness is lowered while the hardness is high, so that minute chipping of the crushing blade occurs during crushing, which tends to cause uneven crushing. .. Further, when the rotation speed of the crusher is less than 200 rpm, the crushing efficiency tends to decrease.
(洗浄工程)
粉砕工程の後、必要に応じて、酢酸ナトリウム等の不純物の除去を目的に洗浄工程を加えてウェット粒子を洗浄してもよい。洗浄液としては、メタノール、エタノール等の低級アルコール、酢酸メチル等の低級脂肪酸エステル、及びそれらの混合物などが挙げられる。洗浄工程の条件は特に限定されないが、20℃~洗浄液の沸点の温度で、30分~10時間程度洗浄することが好ましい。 (Washing process)
After the pulverization step, if necessary, the wet particles may be washed by adding a washing step for the purpose of removing impurities such as sodium acetate. Examples of the cleaning liquid include lower alcohols such as methanol and ethanol, lower fatty acid esters such as methyl acetate, and mixtures thereof. The conditions of the washing step are not particularly limited, but it is preferable to wash at a temperature of 20 ° C. to the boiling point of the washing liquid for about 30 minutes to 10 hours.
粉砕工程の後、必要に応じて、酢酸ナトリウム等の不純物の除去を目的に洗浄工程を加えてウェット粒子を洗浄してもよい。洗浄液としては、メタノール、エタノール等の低級アルコール、酢酸メチル等の低級脂肪酸エステル、及びそれらの混合物などが挙げられる。洗浄工程の条件は特に限定されないが、20℃~洗浄液の沸点の温度で、30分~10時間程度洗浄することが好ましい。 (Washing process)
After the pulverization step, if necessary, the wet particles may be washed by adding a washing step for the purpose of removing impurities such as sodium acetate. Examples of the cleaning liquid include lower alcohols such as methanol and ethanol, lower fatty acid esters such as methyl acetate, and mixtures thereof. The conditions of the washing step are not particularly limited, but it is preferable to wash at a temperature of 20 ° C. to the boiling point of the washing liquid for about 30 minutes to 10 hours.
(脱液工程)
粉砕工程後、場合によっては洗浄工程後、前記ウェット粒子から前記溶媒の一部を機械的に脱液することによって脱液粒子が得られる。このとき用いられる脱液機は、遠心脱液機が好ましい。遠心脱液機としては、連続的な遠心脱液が可能なものが好ましく、例えば自動排出型遠心脱液機、スクリュー排出型遠心脱液機、振動排出型遠心脱液機、押し出し板型遠心脱液機等が挙げられる。従来、粉砕粒子の脱液には圧搾脱液機が使用されていた。しかしながら、得られる脱液粒子の溶媒含有率を上記特定の範囲にするためには圧搾強度を強める必要があり、その結果脱液粒子の変形や破壊が生じて粒度分布が後述する範囲を外れていた。すなわち、従来の方法では、後述する脱液粒子の粒度分布及び溶媒含液率の値を同時に達成することは困難であった。脱液工程においては、上述する遠心脱液機を用いることで、後述する粒度分布及び溶媒含有率を有する脱液粒子を容易に得ることができる。 (Liquid removal process)
After the pulverization step, and in some cases, after the washing step, the deflated particles are obtained by mechanically deflating a part of the solvent from the wet particles. The liquid remover used at this time is preferably a centrifugal liquid remover. The centrifugal deliquescent machine is preferably one capable of continuous centrifugal deliquescent. Examples include a liquid machine. Conventionally, a squeeze deflating machine has been used to deflate pulverized particles. However, in order to bring the solvent content of the obtained deflated particles into the above-mentioned specific range, it is necessary to increase the pressing strength, and as a result, the deflated particles are deformed or broken, and the particle size distribution is out of the range described later. It was. That is, it has been difficult to simultaneously achieve the particle size distribution of the deflated particles and the solvent liquid content, which will be described later, by the conventional method. In the liquid removal step, by using the above-mentioned centrifugal liquid removal machine, liquid removal particles having a particle size distribution and a solvent content described later can be easily obtained.
粉砕工程後、場合によっては洗浄工程後、前記ウェット粒子から前記溶媒の一部を機械的に脱液することによって脱液粒子が得られる。このとき用いられる脱液機は、遠心脱液機が好ましい。遠心脱液機としては、連続的な遠心脱液が可能なものが好ましく、例えば自動排出型遠心脱液機、スクリュー排出型遠心脱液機、振動排出型遠心脱液機、押し出し板型遠心脱液機等が挙げられる。従来、粉砕粒子の脱液には圧搾脱液機が使用されていた。しかしながら、得られる脱液粒子の溶媒含有率を上記特定の範囲にするためには圧搾強度を強める必要があり、その結果脱液粒子の変形や破壊が生じて粒度分布が後述する範囲を外れていた。すなわち、従来の方法では、後述する脱液粒子の粒度分布及び溶媒含液率の値を同時に達成することは困難であった。脱液工程においては、上述する遠心脱液機を用いることで、後述する粒度分布及び溶媒含有率を有する脱液粒子を容易に得ることができる。 (Liquid removal process)
After the pulverization step, and in some cases, after the washing step, the deflated particles are obtained by mechanically deflating a part of the solvent from the wet particles. The liquid remover used at this time is preferably a centrifugal liquid remover. The centrifugal deliquescent machine is preferably one capable of continuous centrifugal deliquescent. Examples include a liquid machine. Conventionally, a squeeze deflating machine has been used to deflate pulverized particles. However, in order to bring the solvent content of the obtained deflated particles into the above-mentioned specific range, it is necessary to increase the pressing strength, and as a result, the deflated particles are deformed or broken, and the particle size distribution is out of the range described later. It was. That is, it has been difficult to simultaneously achieve the particle size distribution of the deflated particles and the solvent liquid content, which will be described later, by the conventional method. In the liquid removal step, by using the above-mentioned centrifugal liquid removal machine, liquid removal particles having a particle size distribution and a solvent content described later can be easily obtained.
こうして得られる脱液粒子が、40~65質量%の溶媒を含有することが重要である。溶媒の含有率が40質量%未満の場合、乾燥しすぎた粒子が混じることになって、乾燥工程後に溶解しにくいエチレン-ビニルアルコール共重合体が混じることになり、上記式(I)を満足するエチレン-ビニルアルコール共重合体(A)が得られない。溶媒の含有率は、好適には42質量%以上であり、より好適には45質量%以上である。一方、溶媒の含有率が65質量%を超える場合、粒子の表面と内部で熱履歴に差が生じて、上記式(I)を満足するエチレン-ビニルアルコール共重合体(A)が得られないし、乾燥に必要なエネルギーが増加する。溶媒の含有率は、好適には62質量%以下であり、より好適には59質量%以下である。溶媒の含有率は、脱液粒子の平均値である。脱液粒子における溶媒の含有率は、ウェット粒子における溶媒の含有率に比べて、3質量%以上低いことが好ましく、5質量%以上低いことがより好ましく、10質量%以上低いことがさらに好ましい。
It is important that the deflated particles thus obtained contain a solvent of 40 to 65% by mass. When the content of the solvent is less than 40% by mass, the particles that are overdried will be mixed, and the ethylene-vinyl alcohol copolymer that is difficult to dissolve after the drying step will be mixed, which satisfies the above formula (I). The ethylene-vinyl alcohol copolymer (A) to be used cannot be obtained. The content of the solvent is preferably 42% by mass or more, and more preferably 45% by mass or more. On the other hand, when the content of the solvent exceeds 65% by mass, a difference in thermal history occurs between the surface and the inside of the particles, and the ethylene-vinyl alcohol copolymer (A) satisfying the above formula (I) cannot be obtained. , The energy required for drying increases. The content of the solvent is preferably 62% by mass or less, and more preferably 59% by mass or less. The solvent content is the average value of the deflated particles. The content of the solvent in the deflated particles is preferably 3% by mass or more lower than the content of the solvent in the wet particles, more preferably 5% by mass or more, and further preferably 10% by mass or more.
また、前記脱液粒子中の、目開き5.6mmの篩を通過する粒子の含有率が80質量%以上であり、目開き1.0mmの篩を通過する粒子の含有率が2質量%未満であることが重要である。すなわち、粗大粒子を多く含まず、しかも微粒子も多く含まないことが重要である。本発明において、篩の目開きは、JIS Z 8801-1(2006年)の公称目開きに準拠する。
Further, the content of the particles passing through the sieve having a mesh size of 5.6 mm is 80% by mass or more, and the content rate of the particles passing through the sieve having a mesh size of 1.0 mm is less than 2% by mass. It is important that That is, it is important that it does not contain many coarse particles and also does not contain many fine particles. In the present invention, the mesh opening of the sieve conforms to the nominal opening of JIS Z8801-1 (2006).
前記脱液粒子中の目開き5.6mmの篩を通過する粒子の含有率は80質量%以上である。脱液粒子が粗大粒子を多く含んでいる場合には、その粒子の中心まで十分に乾燥するために高温又は長時間の乾燥が必要になり、乾燥に必要なエネルギーが増加する。しかも高温又は長時間の乾燥を施すことによって、より小さい粒子の結晶化が進行し過ぎて、乾燥工程後に溶解しにくいエチレン-ビニルアルコール共重合体粒子が混じることになる。また、粗大粒子の存在によって乾燥機内での伝熱ムラが生じてしまう。以上のような事情によって、上記式(I)を満足するエチレン-ビニルアルコール共重合体(A)が得られない。目開き5.6mmの篩を通過する粒子の含有率は、好適には82質量%以上であり、より好適には85質量%以上である。一方、生産効率を考慮すれば、目開き5.6mmの篩を通過する粒子の含有率は、好適には99質量%以下であり、より好適には98質量%以下である。
The content of the particles passing through the sieve having a mesh size of 5.6 mm in the liquid removal particles is 80% by mass or more. When the deflated particles contain a large amount of coarse particles, high temperature or long-term drying is required in order to sufficiently dry to the center of the particles, and the energy required for drying increases. Moreover, by drying at high temperature or for a long time, crystallization of smaller particles progresses too much, and ethylene-vinyl alcohol copolymer particles that are difficult to dissolve after the drying step are mixed. In addition, the presence of coarse particles causes uneven heat transfer in the dryer. Due to the above circumstances, the ethylene-vinyl alcohol copolymer (A) satisfying the above formula (I) cannot be obtained. The content of the particles passing through the sieve having a mesh size of 5.6 mm is preferably 82% by mass or more, and more preferably 85% by mass or more. On the other hand, considering the production efficiency, the content of the particles passing through the sieve having a mesh size of 5.6 mm is preferably 99% by mass or less, and more preferably 98% by mass or less.
前記脱液粒子中の目開き1.0mmの篩を通過する粒子の含有率は2質量%未満である。脱液粒子が微粒子を多く含んでいる場合には、その後に乾燥を施すことによって、当該微粒子の結晶化が進行し過ぎて、乾燥工程後に溶解しにくいエチレン-ビニルアルコール共重合体粒子が多く混じってしまう。また、微粒子が乾燥機の底部に滞留して過剰に熱を受けて結晶化度が高くなりすぎ、やはり溶解性が低下したエチレン-ビニルアルコール共重合体粒子が混じる。これらの事情によって、上記式(I)を満足するエチレン-ビニルアルコール共重合体(A)が得られない。目開き1.0mmの篩を通過する粒子の含有率は、好適には1.9質量%以下であり、より好適には1.8質量%以下である。一方、生産効率を考慮すれば、目開き1.0mmの篩を通過する粒子の含有率は、好適には0.05質量%以上であり、より好適には0.1質量%以上である。
The content of the deflated particles passing through the sieve having a mesh size of 1.0 mm is less than 2% by mass. When the deliquescent particles contain a large amount of fine particles, the fine particles are subsequently dried to allow the fine particles to crystallize too much, and a large amount of ethylene-vinyl alcohol copolymer particles that are difficult to dissolve after the drying step are mixed. It ends up. In addition, the fine particles stay at the bottom of the dryer and receive excessive heat to increase the crystallinity, and ethylene-vinyl alcohol copolymer particles having reduced solubility are mixed. Due to these circumstances, the ethylene-vinyl alcohol copolymer (A) satisfying the above formula (I) cannot be obtained. The content of the particles passing through the sieve having a mesh size of 1.0 mm is preferably 1.9% by mass or less, and more preferably 1.8% by mass or less. On the other hand, considering the production efficiency, the content of the particles passing through the sieve having a mesh size of 1.0 mm is preferably 0.05% by mass or more, and more preferably 0.1% by mass or more.
(乾燥工程)
脱液工程後に前記脱液粒子を乾燥工程に供することで、エチレン-ビニルアルコール共重合体を得ることができる。具体的には、円筒乾燥機を使用する熱風乾燥が好ましく、乾燥時の粒子の温度は80~120℃が好ましい。当該温度が低すぎると、生産効率が低下する。当該温度は90℃以上がより好ましい。一方、当該温度が高すぎると、結晶化が進行しすぎる粒子が生じ、溶解性が悪化する。当該温度は110℃以下がより好ましい。また、乾燥時間は2~10時間が好ましく、3~8時間がより好ましい。乾燥時の条件を上記範囲にすることで、式(I)を満たすエチレン-ビニルアルコール共重合体を簡便に製造できる。 (Drying process)
An ethylene-vinyl alcohol copolymer can be obtained by subjecting the deflated particles to a drying step after the deflating step. Specifically, hot air drying using a cylindrical dryer is preferable, and the temperature of the particles at the time of drying is preferably 80 to 120 ° C. If the temperature is too low, the production efficiency will decrease. The temperature is more preferably 90 ° C. or higher. On the other hand, if the temperature is too high, particles that crystallize too much are generated, and the solubility is deteriorated. The temperature is more preferably 110 ° C. or lower. The drying time is preferably 2 to 10 hours, more preferably 3 to 8 hours. By setting the drying conditions within the above range, an ethylene-vinyl alcohol copolymer satisfying the formula (I) can be easily produced.
脱液工程後に前記脱液粒子を乾燥工程に供することで、エチレン-ビニルアルコール共重合体を得ることができる。具体的には、円筒乾燥機を使用する熱風乾燥が好ましく、乾燥時の粒子の温度は80~120℃が好ましい。当該温度が低すぎると、生産効率が低下する。当該温度は90℃以上がより好ましい。一方、当該温度が高すぎると、結晶化が進行しすぎる粒子が生じ、溶解性が悪化する。当該温度は110℃以下がより好ましい。また、乾燥時間は2~10時間が好ましく、3~8時間がより好ましい。乾燥時の条件を上記範囲にすることで、式(I)を満たすエチレン-ビニルアルコール共重合体を簡便に製造できる。 (Drying process)
An ethylene-vinyl alcohol copolymer can be obtained by subjecting the deflated particles to a drying step after the deflating step. Specifically, hot air drying using a cylindrical dryer is preferable, and the temperature of the particles at the time of drying is preferably 80 to 120 ° C. If the temperature is too low, the production efficiency will decrease. The temperature is more preferably 90 ° C. or higher. On the other hand, if the temperature is too high, particles that crystallize too much are generated, and the solubility is deteriorated. The temperature is more preferably 110 ° C. or lower. The drying time is preferably 2 to 10 hours, more preferably 3 to 8 hours. By setting the drying conditions within the above range, an ethylene-vinyl alcohol copolymer satisfying the formula (I) can be easily produced.
(追加粉砕工程)
乾燥工程後、さらに粒径を小さくするために、追加粉砕工程を設けることが好ましい。これによって、水への溶解速度が大きい粒子にすることができる。追加粉砕工程で使用する粉砕機は、前記粉砕工程で用いたのと同様の粉砕機を用いることができる。 (Additional crushing process)
After the drying step, it is preferable to provide an additional pulverization step in order to further reduce the particle size. As a result, the particles can be made into particles having a high dissolution rate in water. As the crusher used in the additional crushing step, the same crusher used in the crushing step can be used.
乾燥工程後、さらに粒径を小さくするために、追加粉砕工程を設けることが好ましい。これによって、水への溶解速度が大きい粒子にすることができる。追加粉砕工程で使用する粉砕機は、前記粉砕工程で用いたのと同様の粉砕機を用いることができる。 (Additional crushing process)
After the drying step, it is preferable to provide an additional pulverization step in order to further reduce the particle size. As a result, the particles can be made into particles having a high dissolution rate in water. As the crusher used in the additional crushing step, the same crusher used in the crushing step can be used.
追加粉砕工程で得られたエチレン-ビニルアルコール共重合体(A)の粒子は、目開き2.5mmの篩を通過する粒子の含有率が80質量%以上であるものであることが好ましい。目開き2.5mmの篩を通過する粒子が80質量%未満の場合、エチレン-ビニルアルコール共重合体(A)の粒子を水に溶解させて水溶液を調製する際に、溶解速度が低くなり、高温で長時間の加熱が必要となる。目開き2.5mmの篩を通過する粒子の含有率が83質量%以上であることがより好ましく、85質量%以上であることがさらに好ましい。さらに、エチレン-ビニルアルコール共重合体(A)の粒子は、目開き1.0mmの篩を通過する粒子の含有率が80質量%以上であることが好ましい。これにより、水への溶解速度がより一層向上する。目開き1.0mmの篩を通過する粒子の含有率が83質量%以上であることがより好ましく、85質量%以上であることがさらに好ましい。
The particles of the ethylene-vinyl alcohol copolymer (A) obtained in the additional pulverization step preferably have a content of particles passing through a sieve having a mesh size of 2.5 mm or more of 80% by mass or more. When the number of particles passing through the sieve having a mesh size of 2.5 mm is less than 80% by mass, the dissolution rate becomes low when the particles of the ethylene-vinyl alcohol copolymer (A) are dissolved in water to prepare an aqueous solution. It requires heating at high temperature for a long time. The content of the particles passing through the sieve having a mesh size of 2.5 mm is more preferably 83% by mass or more, and further preferably 85% by mass or more. Further, the particles of the ethylene-vinyl alcohol copolymer (A) preferably have a content of 80% by mass or more of the particles passing through a sieve having a mesh size of 1.0 mm. As a result, the dissolution rate in water is further improved. The content of the particles passing through the sieve having a mesh size of 1.0 mm is more preferably 83% by mass or more, and further preferably 85% by mass or more.
一方、追加粉砕工程で得られたエチレン-ビニルアルコール共重合体(A)の粒子は、目開き0.15mmの篩を通過する粒子の含有率が20質量%以下のものであることが好ましい。目開き0.15mmの篩を通過する粒子の含有率が20質量%を超える場合、エチレン-ビニルアルコール共重合体(A)を含む水溶液中に継粉が発生しやすくなる傾向がある。目開き0.15mmの篩を通過する粒子の含有率が17質量%以下であることがより好ましく、15質量%以下であることがさらに好ましい。
On the other hand, the particles of the ethylene-vinyl alcohol copolymer (A) obtained in the additional pulverization step preferably have a content of particles passing through a sieve having a mesh size of 0.15 mm of 20% by mass or less. When the content of the particles passing through the sieve having a mesh size of 0.15 mm exceeds 20% by mass, splicing tends to easily occur in the aqueous solution containing the ethylene-vinyl alcohol copolymer (A). The content of the particles passing through the sieve having a mesh size of 0.15 mm is more preferably 17% by mass or less, and further preferably 15% by mass or less.
[カルボン酸の金属塩(B)]
本発明の塗工液はカルボン酸のアルカリ金属塩(B)を含むことを特徴とする。エチレン-ビニルアルコール系重合体(A)100質量部に対するカルボン酸のアルカリ金属塩(B)の含有割合はアルカリ金属の質量換算で0.001~1質量部であり、0.01~0.9質量部が好ましく、0.02~0.8質量部がより好ましい。含有量が1質量部を超える場合には塗工紙のバリア性、耐水性が低下する。この理由は明らかとはなっていないが、カルボン酸のアルカリ金属塩(B)が過剰に存在するとエチレン-ビニルアルコール共重合体(A)の水溶性が低下し、不溶物の増加や生成された継粉の溶解不良を招くためと推定される。一方、含有量が0.001質量部未満とすることはエチレン-ビニルアルコール共重体(A)の製法上困難であり、達成するためには過剰な洗浄作業等を要するために製造コストの増加を招く。 [Metal salt of carboxylic acid (B)]
The coating liquid of the present invention is characterized by containing an alkali metal salt (B) of a carboxylic acid. The content ratio of the alkali metal salt (B) of the carboxylic acid to 100 parts by mass of the ethylene-vinyl alcohol polymer (A) is 0.001 to 1 part by mass in terms of mass of the alkali metal, and 0.01 to 0.9. By mass is preferable, and 0.02 to 0.8 parts by mass is more preferable. If the content exceeds 1 part by mass, the barrier property and water resistance of the coated paper are lowered. Although the reason for this has not been clarified, the excessive presence of the alkali metal salt (B) of the carboxylic acid reduces the water solubility of the ethylene-vinyl alcohol copolymer (A), resulting in an increase in insoluble matter and formation. It is presumed that this is because the splicing powder is poorly dissolved. On the other hand, it is difficult to make the content less than 0.001 part by mass due to the manufacturing method of the ethylene-vinyl alcohol copolymer (A), and excessive cleaning work or the like is required to achieve the content, which increases the manufacturing cost. Invite.
本発明の塗工液はカルボン酸のアルカリ金属塩(B)を含むことを特徴とする。エチレン-ビニルアルコール系重合体(A)100質量部に対するカルボン酸のアルカリ金属塩(B)の含有割合はアルカリ金属の質量換算で0.001~1質量部であり、0.01~0.9質量部が好ましく、0.02~0.8質量部がより好ましい。含有量が1質量部を超える場合には塗工紙のバリア性、耐水性が低下する。この理由は明らかとはなっていないが、カルボン酸のアルカリ金属塩(B)が過剰に存在するとエチレン-ビニルアルコール共重合体(A)の水溶性が低下し、不溶物の増加や生成された継粉の溶解不良を招くためと推定される。一方、含有量が0.001質量部未満とすることはエチレン-ビニルアルコール共重体(A)の製法上困難であり、達成するためには過剰な洗浄作業等を要するために製造コストの増加を招く。 [Metal salt of carboxylic acid (B)]
The coating liquid of the present invention is characterized by containing an alkali metal salt (B) of a carboxylic acid. The content ratio of the alkali metal salt (B) of the carboxylic acid to 100 parts by mass of the ethylene-vinyl alcohol polymer (A) is 0.001 to 1 part by mass in terms of mass of the alkali metal, and 0.01 to 0.9. By mass is preferable, and 0.02 to 0.8 parts by mass is more preferable. If the content exceeds 1 part by mass, the barrier property and water resistance of the coated paper are lowered. Although the reason for this has not been clarified, the excessive presence of the alkali metal salt (B) of the carboxylic acid reduces the water solubility of the ethylene-vinyl alcohol copolymer (A), resulting in an increase in insoluble matter and formation. It is presumed that this is because the splicing powder is poorly dissolved. On the other hand, it is difficult to make the content less than 0.001 part by mass due to the manufacturing method of the ethylene-vinyl alcohol copolymer (A), and excessive cleaning work or the like is required to achieve the content, which increases the manufacturing cost. Invite.
本発明において、カルボン酸のアルカリ金属塩(B)の含有量(アルカリ金属の質量換算)は白金ルツボ上で乾固させた塗工液を灰化したのち、得られた灰分をICP発光分析により測定して得たアルカリ金属イオン量から求めることができる。
In the present invention, the content of the alkali metal salt (B) of the carboxylic acid (in terms of the mass of the alkali metal) is determined by ashing the coating liquid dried on a platinum crucible and then analyzing the obtained ash by ICP emission analysis. It can be obtained from the amount of alkali metal ions obtained by measurement.
本発明において、カルボン酸のアルカリ金属塩(B)は特に制限されない。例えば、酢酸ナトリウム、酢酸カリウム、プロピオン酸ナトリウム、プロピオン酸カリウム、グリセリン酸ナトリウム、グリセリン酸カリウム、リンゴ酸ナトリウム、リンゴ酸カリウム、クエン酸ナトリウム、クエン酸カリウム、乳酸ナトリウム、乳酸カリウム、酒石酸ナトリウム、酒石酸カリウム、サリチル酸ナトリウム、サリチル酸カリウム、マロン酸ナトリウム、マロン酸カリウム、コハク酸ナトリウム、コハク酸カリウム、マレイン酸ナトリウム、マレイン酸カリウム、フタル酸ナトリウム、フタル酸カリウム、シュウ酸ナトリウム、シュウ酸カリウム、グルタル酸ナトリウム、グルタル酸カリウム、アビエチン酸ナトリウム、アビエチン酸カリウム、ソルビン酸ナトリウム、ソルビン酸カリウム、2,4,6-オクタトリエン-1-カルボン酸ナトリウム、2,4,6-オクタトリエン-1-カルボン酸カリウム、エレオステアリン酸ナトリウム、エレオステアリン酸カリウム、2,4,6,8-デカテトラエン-1-カルボン酸ナトリウム、2,4,6,8-デカテトラエン-1-カルボン酸カリウム、レチノイン酸ナトリウム、レチノイン酸カリウム、などが挙げられる。
In the present invention, the alkali metal salt (B) of the carboxylic acid is not particularly limited. For example, sodium acetate, potassium acetate, sodium propionate, potassium propionate, sodium glycerate, potassium glycerate, sodium malate, potassium malate, sodium citrate, potassium citrate, sodium lactate, potassium lactate, sodium tartrate, tartrate. Potassium, sodium salicylate, potassium salicylate, sodium malate, potassium malonate, sodium succinate, potassium succinate, sodium maleate, potassium maleate, sodium phthalate, potassium phthalate, sodium oxalate, potassium oxalate, glutaric acid Sodium, potassium glutarate, sodium avietate, potassium avietate, sodium sorbate, potassium sorbate, sodium 2,4,6-octatriene-1-carboxylate, 2,4,6-octatorien-1-carboxylic acid Potassium, Sodium Eleostearate, Potassium Eleostearate, Sodium 2,4,6,8-Decatetraene-1-carboxylate, Potassium 2,4,6,8-Decatetraene-1-carboxylate, Sodium retinoate, Examples include potassium retinoate.
本発明において、特定量のカルボン酸のアルカリ金属塩(B)を塗工液に含有させる方法は特に制限されない。例えば、1)エチレン-ビニルアルコール共重合体、カルボン酸のアルカリ金属塩をともに水に溶解する方法、2)エチレン-ビニルエステル共重合体を溶媒中においてけん化するに際し、けん化触媒としてアルカリ金属を含有するアルカリ性物質を使用することで得た、カルボン酸のアルカリ金属塩が配合されたエチレン-ビニルアルコール共重体を水に溶解する方法、3)重合工程で使用する酢酸ビニルなどの原料ビニルエステルモノマーの加アルコール分解を抑制する目的で添加されるカルボン酸がけん化工程で中和されることで得られた、カルボン酸のアルカリ金属塩が配合されたエチレン-ビニルアルコール共重体を水に溶解する方法、4)ラジカル重合を停止させるために添加する禁止剤として共役二重結合を有するカルボン酸を用いた場合に、当該カルボン酸がけん化工程で中和されて得られるカルボン酸のアルカリ金属塩が配合されたエチレン-ビニルアルコール共重体を水に溶解する方法、などが挙げられる。
In the present invention, the method of incorporating the alkali metal salt (B) of a specific amount of carboxylic acid in the coating liquid is not particularly limited. For example, 1) a method of dissolving both an ethylene-vinyl alcohol copolymer and an alkali metal salt of a carboxylic acid in water, and 2) an alkali metal as a saponification catalyst when the ethylene-vinyl ester copolymer is saponified in a solvent. A method of dissolving an ethylene-vinyl alcohol copolymer containing an alkali metal salt of a carboxylic acid in water, which is obtained by using an alkaline substance, and 3) a raw material vinyl ester monomer such as vinyl acetate used in the polymerization step. A method of dissolving an ethylene-vinyl alcohol copolymer containing an alkali metal salt of a carboxylic acid in water, which is obtained by neutralizing the carboxylic acid added for the purpose of suppressing alcohol decomposition in a saponification step. 4) When a carboxylic acid having a conjugated double bond is used as a prohibitive agent added to terminate radical polymerization, an alkali metal salt of the carboxylic acid obtained by neutralizing the carboxylic acid in the saponification step is blended. Examples thereof include a method of dissolving the ethylene-vinyl alcohol copolymer in water.
本発明の紙用塗工液の製造方法は特に限定されない。前記式(I)を満たすエチレン-ビニルアルコール共重合体(A)の粒子を水に溶解させることによって、本発明の紙用塗工液を得ることができる。好適な製造方法としては、前記式(I)を満たしカルボン酸のアルカリ金属塩(B)を含むエチレン-ビニルアルコール共重合体(A)の粒子を水に溶解させる方法が挙げられる。また、他の好適な製造方法としては、前記式(I)を満たすエチレン-ビニルアルコール共重合体(A)の粒子と、カルボン酸のアルカリ金属塩(B)とを水に溶解させる方法が挙げられる。
The method for producing the coating liquid for paper of the present invention is not particularly limited. The paper coating liquid of the present invention can be obtained by dissolving the particles of the ethylene-vinyl alcohol copolymer (A) satisfying the formula (I) in water. A suitable production method includes a method in which particles of an ethylene-vinyl alcohol copolymer (A) satisfying the above formula (I) and containing an alkali metal salt (B) of a carboxylic acid are dissolved in water. Further, as another suitable production method, a method of dissolving the particles of the ethylene-vinyl alcohol copolymer (A) satisfying the above formula (I) and the alkali metal salt (B) of the carboxylic acid in water can be mentioned. Be done.
<塗工紙の製造>
本発明の紙用塗工液には、必要に応じてグリオキザール、尿素樹脂、メラミン樹脂、多価金属塩、水溶性ポリアミド樹脂等の耐水化剤;グリコール類、グリセリン等の可塑剤;アンモニア、カセイソーダ、炭酸ソーダ、リン酸等のpH調節剤;消泡剤;離型剤;界面活性剤;顔料等の着色剤等の各種の添加剤を添加してもよい。さらに、本発明の紙用塗工液には、無変性PVA、カルボキシル変性PVA、スルホン酸基変性PVA、アクリルアミド変性PVA、カチオン基変性PVA、長鎖アルキル基変性PVA等の各種の変性PVA;カゼイン、生澱粉(小麦、コーン、米、馬鈴しょ、甘しょ、タピオカ、サゴ椰子)、生澱粉分解産物(デキストリン等)、澱粉誘導体(酸化澱粉、エーテル化澱粉、エステル化澱粉、カチオン化澱粉等)、海藻多糖類(アルギン酸ソーダ、カラギーナン、寒天(アガロース、アガロペクチン)、ファーセルラン等)、水溶性セルロース誘導体(カルボキシアルキルセルロース、アルキルセルロース、ヒドロキシアルキルセルロース等)等の水溶性高分子;スチレン-ブタジエン共重合体ラテックス、ポリアクリル酸エステルエマルジョン、酢酸ビニル-エチレン共重合体エマルジョン、酢酸ビニル-アクリル酸エステル共重合体エマルジョン等の合成樹脂エマルジョンを、本発明の効果を阻害しない範囲で併用してもよい。 <Manufacturing of coated paper>
The paper coating liquid of the present invention contains, if necessary, a water resistant agent such as glioxal, urea resin, melamine resin, polyvalent metal salt, water-soluble polyamide resin; a plasticizer such as glycols and glycerin; ammonia, caustic soda. , Sodium carbonate, phosphoric acid and other pH adjusters; defoaming agents; mold release agents; surfactants; colorants such as pigments and other various additives may be added. Further, the coating liquid for paper of the present invention contains various modified PVAs such as unmodified PVA, carboxyl-modified PVA, sulfonic acid group-modified PVA, acrylamide-modified PVA, cationic-group-modified PVA, and long-chain alkyl-group-modified PVA; casein. , Raw starch (wheat, corn, rice, horse bells, sweet potato, tapioca, sago palm), raw starch decomposition products (dextrin, etc.), starch derivatives (oxidized starch, etherified starch, esterified starch, cationized starch, etc.) ), Seaweed polysaccharides (soda alginate, carrageenan, agar (agarose, agaropectin), starch, etc.), water-soluble cellulose derivatives (carboxyalkyl cellulose, alkyl cellulose, hydroxyalkyl cellulose, etc.) and other water-soluble polymers; styrene- Synthetic resin emulsions such as butadiene copolymer latex, polyacrylic acid ester emulsion, vinyl acetate-ethylene copolymer emulsion, vinyl acetate-acrylic acid ester copolymer emulsion, etc. are used in combination as long as the effects of the present invention are not impaired. May be good.
本発明の紙用塗工液には、必要に応じてグリオキザール、尿素樹脂、メラミン樹脂、多価金属塩、水溶性ポリアミド樹脂等の耐水化剤;グリコール類、グリセリン等の可塑剤;アンモニア、カセイソーダ、炭酸ソーダ、リン酸等のpH調節剤;消泡剤;離型剤;界面活性剤;顔料等の着色剤等の各種の添加剤を添加してもよい。さらに、本発明の紙用塗工液には、無変性PVA、カルボキシル変性PVA、スルホン酸基変性PVA、アクリルアミド変性PVA、カチオン基変性PVA、長鎖アルキル基変性PVA等の各種の変性PVA;カゼイン、生澱粉(小麦、コーン、米、馬鈴しょ、甘しょ、タピオカ、サゴ椰子)、生澱粉分解産物(デキストリン等)、澱粉誘導体(酸化澱粉、エーテル化澱粉、エステル化澱粉、カチオン化澱粉等)、海藻多糖類(アルギン酸ソーダ、カラギーナン、寒天(アガロース、アガロペクチン)、ファーセルラン等)、水溶性セルロース誘導体(カルボキシアルキルセルロース、アルキルセルロース、ヒドロキシアルキルセルロース等)等の水溶性高分子;スチレン-ブタジエン共重合体ラテックス、ポリアクリル酸エステルエマルジョン、酢酸ビニル-エチレン共重合体エマルジョン、酢酸ビニル-アクリル酸エステル共重合体エマルジョン等の合成樹脂エマルジョンを、本発明の効果を阻害しない範囲で併用してもよい。 <Manufacturing of coated paper>
The paper coating liquid of the present invention contains, if necessary, a water resistant agent such as glioxal, urea resin, melamine resin, polyvalent metal salt, water-soluble polyamide resin; a plasticizer such as glycols and glycerin; ammonia, caustic soda. , Sodium carbonate, phosphoric acid and other pH adjusters; defoaming agents; mold release agents; surfactants; colorants such as pigments and other various additives may be added. Further, the coating liquid for paper of the present invention contains various modified PVAs such as unmodified PVA, carboxyl-modified PVA, sulfonic acid group-modified PVA, acrylamide-modified PVA, cationic-group-modified PVA, and long-chain alkyl-group-modified PVA; casein. , Raw starch (wheat, corn, rice, horse bells, sweet potato, tapioca, sago palm), raw starch decomposition products (dextrin, etc.), starch derivatives (oxidized starch, etherified starch, esterified starch, cationized starch, etc.) ), Seaweed polysaccharides (soda alginate, carrageenan, agar (agarose, agaropectin), starch, etc.), water-soluble cellulose derivatives (carboxyalkyl cellulose, alkyl cellulose, hydroxyalkyl cellulose, etc.) and other water-soluble polymers; styrene- Synthetic resin emulsions such as butadiene copolymer latex, polyacrylic acid ester emulsion, vinyl acetate-ethylene copolymer emulsion, vinyl acetate-acrylic acid ester copolymer emulsion, etc. are used in combination as long as the effects of the present invention are not impaired. May be good.
本発明における塗工液中のエチレン-ビニルアルコール共重合体(A)の濃度は、塗工量(塗工により生じた紙の乾燥質量の増加)、塗工に使用する装置、操作条件等に応じて任意に選択されるが、1.0~10質量%が好ましく、2.0~9.0質量%がより好ましい。そして、塗工量は、塗工対象の紙の性状に応じて任意に選択することができるが、通常紙の片面当たり0.3~3.0g/m2程度が好ましい。また、塗工液の粘度は40℃において0.001~1Pa・s程度であることが好ましい。
The concentration of the ethylene-vinyl alcohol copolymer (A) in the coating liquid in the present invention depends on the coating amount (increase in the dry mass of the paper generated by the coating), the apparatus used for the coating, the operating conditions, and the like. Although it is arbitrarily selected depending on the situation, 1.0 to 10% by mass is preferable, and 2.0 to 9.0% by mass is more preferable. The coating amount can be arbitrarily selected according to the properties of the paper to be coated, but is preferably about 0.3 to 3.0 g / m 2 per side of the normal paper. The viscosity of the coating liquid is preferably about 0.001 to 1 Pa · s at 40 ° C.
水溶液或いは水性分散液である本発明の塗工液を紙に塗工する方法としては、公知の方法、例えば、サイズプレス、ゲートロールコーター、シムサイザー、バーコーター等の装置を用いて紙の片面又は両面に塗工する方法が通常用いられ、塗工液を紙に含浸させる方法を用いてもよい。また、塗工した紙の乾燥は、公知の方法、例えば、熱風、赤外線、加熱シリンダー又はこれらを組み合わせた方法により行うことができ、乾燥した塗工紙は、調湿及びカレンダー処理することにより、バリア性をさらに向上させることができる。カレンダー処理条件としては、ロール温度が常温~100℃、ロール線圧20~300kg/cmが好ましい。
As a method of applying the coating liquid of the present invention, which is an aqueous solution or an aqueous dispersion, to paper, one side of the paper or one side of the paper using a known method such as a size press, a gate roll coater, a simsizer, a bar coater or the like is used. A method of coating on both sides is usually used, and a method of impregnating paper with a coating liquid may be used. Further, the coated paper can be dried by a known method, for example, hot air, infrared rays, a heating cylinder or a method in which these are combined, and the dried coated paper is subjected to humidity control and calendar treatment. The barrier property can be further improved. As the calendar processing conditions, it is preferable that the roll temperature is room temperature to 100 ° C. and the roll linear pressure is 20 to 300 kg / cm.
本発明の塗工液を用いた塗工紙としては、特に限定されないが、剥離紙が好ましい。剥離紙は、前記紙用塗工液を塗工して形成された目止め層(バリア層)を基材(紙)の上に有する。すなわち、本発明の塗工液を紙に塗工して形成された目止め層の上に剥離層が形成されてなる剥離紙が、好適な実施態様である。用いられる紙としては特に制限はないが、マニラボール、白ボール、ライナー等の板紙;一般上質紙、中質紙、グラビア用紙等の印刷紙等が挙げられる。また、剥離紙は、目止め層の上に形成された剥離層をさらに有する。剥離層としては、特に限定されないが、シリコーン樹脂が好ましい。シリコーン樹脂は、特に限定されず、公知のものを使用することができる。このようなシリコーン樹脂としては、溶剤型シリコーン、無溶剤型シリコーン、エマルジョン型シリコーンが挙げられる。
The coating paper using the coating liquid of the present invention is not particularly limited, but a release paper is preferable. The release paper has a sealing layer (barrier layer) formed by applying the paper coating liquid on the base material (paper). That is, a release paper in which a release layer is formed on a sealing layer formed by applying the coating liquid of the present invention to paper is a preferred embodiment. The paper used is not particularly limited, and examples thereof include paperboards such as Manila balls, white balls, and liners; printing papers such as general high-quality paper, medium-quality paper, and gravure paper. In addition, the release paper further has a release layer formed on the sealing layer. The release layer is not particularly limited, but a silicone resin is preferable. The silicone resin is not particularly limited, and known silicone resins can be used. Examples of such silicone resins include solvent-based silicones, solvent-free silicones, and emulsion-type silicones.
本発明の剥離紙の剥離層には、上記以外にも、一般に製紙用途で使用できる顔料、蛍光増白剤、蛍光増白剤の被染着物質、消泡剤、離型剤、着色剤、保水剤等の通常使用される各種薬品を適宜配合することもできる。
In addition to the above, the release layer of the release paper of the present invention includes pigments, fluorescent whitening agents, dyed substances for fluorescent whitening agents, defoaming agents, mold release agents, and colorants that can be generally used for papermaking. Various commonly used chemicals such as water retention agents can be appropriately blended.
剥離層用塗工液の塗工は、一般の塗工紙用途設備で行えば足り、例えば、ブレードコーター、エアーナイフコーター、トランスファーロールコーター、ゲートロールサイズプレス、2-ロールサイズプレス、ロッドメタリングサイズプレスコーター、カーテンコーター等の塗工装置を設けたオンマシンコーター又はオフマシンコーターによって、原紙上に一層又は多層に分けて塗工液を塗工できる。中でも、オンマシンコーターに適するという点から、ゲートロールサイズプレス、2-ロールサイズプレス、ロッドメタリングサイズプレスコーターを用いることが好ましい。また、ドライヤーパートでの乾燥方法としては、例えば、熱回転ドラム、熱風加熱、ガスヒーター加熱、赤外線ヒーター加熱等の各種加熱乾燥方式を適宜採用することができる。剥離層の塗工量は乾燥質量で0.3~1.8g/m2が好ましく、0.5~1.5g/m2がより好ましい。
The coating liquid for the release layer can be applied with general coated paper application equipment, for example, blade coater, air knife coater, transfer roll coater, gate roll size press, 2-roll size press, rod metering. The coating liquid can be applied to the base paper in one layer or multiple layers by an on-machine coater or an off-machine coater provided with a coating device such as a size press coater or a curtain coater. Above all, it is preferable to use a gate roll size press, a 2-roll size press, and a rod metering size press coater from the viewpoint of being suitable for an on-machine coater. Further, as a drying method in the dryer part, for example, various heating and drying methods such as a hot rotating drum, hot air heating, gas heater heating, and infrared heater heating can be appropriately adopted. The coating amount of the release layer is preferably 0.3 to 1.8 g / m 2 in terms of dry mass, and more preferably 0.5 to 1.5 g / m 2 .
本発明の剥離紙の製造方法は特に限定されない。本発明の塗工液を紙に塗工して目止め層を形成し、当該目止め層の上に剥離層用塗工液を塗工することによって製造することができる。
The method for producing the release paper of the present invention is not particularly limited. It can be produced by applying the coating liquid of the present invention to paper to form a sealing layer, and then applying the coating liquid for a release layer on the sealing layer.
後加工工程で使用する水分散性ワニスとしては、例えば、スチレン-ブタジエン共重合体ラテックス、メチルメタクリレート-ブタジエン共重合体ラテックス、スチレン-メチルメタクリレート-ブタジエン共重合体ラテックス等の共役ジエン系ラテックス;アクリル酸エステルおよび/又はメタクリル酸エステルの重合体ラテックス若しくは共重合体ラテックス等のアクリル系ラテックス;エチレン-酢酸ビニル重合体ラテックス等のビニル系ラテックス等が挙げられ、これらの中から1種又は2種以上を適宜選択して使用することができる。
Examples of the water-dispersible varnish used in the post-processing step include conjugated diene latex such as styrene-butadiene copolymer latex, methyl methacrylate-butadiene copolymer latex, and styrene-methyl methacrylate-butadiene copolymer latex; acrylic. Acrylic latex such as polymer latex or copolymer latex of acid ester and / or methacrylic acid ester; vinyl latex such as ethylene-vinyl acetate polymer latex, etc., and one or more of these. Can be appropriately selected and used.
本発明の紙用塗工液が塗工された塗工紙としては、JIS P 8117(2009年)に準じて王研式滑度透気度試験機を用いて測定した透過度が、20000秒以上のものが好ましく、23000秒以上のものがより好ましく、25000秒以上のものがさらに好ましい。これによって、紙を構成するパルプ繊維間の空隙を低減させてバリア性を向上させることができる。そして、紙基材に本発明の塗工液を塗工して形成された目止め層を有する剥離紙原紙が、有機溶媒などに対する優れたバリア性を有することができる。その結果、目止め層の上に剥離層を塗工する際にシリコーン樹脂の表面歩留まりを向上させることができる。
The coated paper coated with the coating liquid for paper of the present invention has a transmittance of 20000 seconds measured using a Wangken type slippery air permeability tester according to JIS P 8117 (2009). The above is preferable, the one for 23000 seconds or more is more preferable, and the one for 25,000 seconds or more is further preferable. As a result, the voids between the pulp fibers constituting the paper can be reduced and the barrier property can be improved. Then, the release paper base paper having the sealing layer formed by applying the coating liquid of the present invention to the paper base material can have an excellent barrier property against an organic solvent or the like. As a result, the surface yield of the silicone resin can be improved when the release layer is applied on the sealing layer.
また、本発明の紙用塗工液としては、JIS P 8140(1998年)に準じ、塗工紙と水との接触時間を60秒としたときのコッブ(Cobb)法で測定した吸水度が、70g/m2以下のものが好ましく、50g/m2以下のものがより好ましく、45g/m2以下のものがさらに好ましい。これにより、剥離紙における目止め層の耐水性が良好になり、後加工工程において水分散性ワニスを使用することができる。
Further, as the coating liquid for paper of the present invention, the water absorption degree measured by the Cobb method when the contact time between the coated paper and water is 60 seconds according to JIS P 8140 (1998). , 70 g / m 2 or less is preferable, 50 g / m 2 or less is more preferable, and 45 g / m 2 or less is further preferable. As a result, the water resistance of the sealing layer in the release paper is improved, and a water-dispersible varnish can be used in the post-processing step.
本発明は、本発明の効果を奏する限り、本発明の技術的範囲内において、上記の構成を種々組み合わせた態様を含む。
The present invention includes various combinations of the above configurations within the technical scope of the present invention as long as the effects of the present invention are exhibited.
本発明の塗工液を塗工した塗工紙は耐水性に優れるとともに、バリア性にも優れる。したがって、該塗工紙は例えば剥離紙等に好適に用いられる。さらに、本発明の紙用塗工液は、耐水性の改善により、耐ブロッキング性にも優れるとともに、後加工工程で水分散性ワニスを使用することができる。
The coated paper coated with the coating liquid of the present invention has excellent water resistance and barrier properties. Therefore, the coated paper is suitably used for, for example, a release paper. Further, the coating liquid for paper of the present invention is excellent in blocking resistance due to the improvement of water resistance, and a water-dispersible varnish can be used in the post-processing step.
次に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[エチレン-ビニルアルコール共重合体(A)のエチレン単位の含有率]
エチレン-ビニルアルコール共重合体の前駆体又は再酢化物であるエチレン-ビニルエステル共重合体の1H-NMRから求めた。すなわち、得られたエチレン-ビニルエステル共重合体の再沈精製をn-ヘキサンとアセトンの混合溶液を用いて3回以上行った後、80℃での減圧乾燥を3日間行って、分析用のエチレン-ビニルエステル共重合体を作製した。分析用のエチレン-ビニルエステル共重合体をDMSO-d6に溶解し、80℃で1H-NMR(500MHz)測定した。ビニルエステルの主鎖メチンに由来するピーク(4.7~5.2ppm)とエチレン、ビニルエステルの主鎖メチレンに由来するピーク(0.8~1.6ppm)を用いてエチレン単位の含有率を算出した。 [Ethylene unit content of ethylene-vinyl alcohol copolymer (A)]
It was determined from 1 H-NMR of an ethylene-vinyl ester copolymer which is a precursor of an ethylene-vinyl alcohol copolymer or a revinegarized product. That is, the obtained ethylene-vinyl ester copolymer was redisposited and purified using a mixed solution of n-hexane and acetone three times or more, and then dried under reduced pressure at 80 ° C. for three days for analysis. An ethylene-vinyl ester copolymer was prepared. Ethylene for analysis - the vinyl ester copolymer dissolved in DMSO-d 6, and 1 H-NMR (500MHz) determined at 80 ° C.. The content of ethylene units is determined by using the peak derived from the main chain methine of vinyl ester (4.7 to 5.2 ppm) and the peak derived from ethylene and the main chain methylene of vinyl ester (0.8 to 1.6 ppm). Calculated.
エチレン-ビニルアルコール共重合体の前駆体又は再酢化物であるエチレン-ビニルエステル共重合体の1H-NMRから求めた。すなわち、得られたエチレン-ビニルエステル共重合体の再沈精製をn-ヘキサンとアセトンの混合溶液を用いて3回以上行った後、80℃での減圧乾燥を3日間行って、分析用のエチレン-ビニルエステル共重合体を作製した。分析用のエチレン-ビニルエステル共重合体をDMSO-d6に溶解し、80℃で1H-NMR(500MHz)測定した。ビニルエステルの主鎖メチンに由来するピーク(4.7~5.2ppm)とエチレン、ビニルエステルの主鎖メチレンに由来するピーク(0.8~1.6ppm)を用いてエチレン単位の含有率を算出した。 [Ethylene unit content of ethylene-vinyl alcohol copolymer (A)]
It was determined from 1 H-NMR of an ethylene-vinyl ester copolymer which is a precursor of an ethylene-vinyl alcohol copolymer or a revinegarized product. That is, the obtained ethylene-vinyl ester copolymer was redisposited and purified using a mixed solution of n-hexane and acetone three times or more, and then dried under reduced pressure at 80 ° C. for three days for analysis. An ethylene-vinyl ester copolymer was prepared. Ethylene for analysis - the vinyl ester copolymer dissolved in DMSO-d 6, and 1 H-NMR (500MHz) determined at 80 ° C.. The content of ethylene units is determined by using the peak derived from the main chain methine of vinyl ester (4.7 to 5.2 ppm) and the peak derived from ethylene and the main chain methylene of vinyl ester (0.8 to 1.6 ppm). Calculated.
[エチレン-ビニルアルコール共重合体(A)の粘度平均重合度]
エチレン-ビニルアルコール共重合体(A)の粘度平均重合度は、JIS K6726(1994年)に記載の方法により求めた。 [Viscosity average degree of polymerization of ethylene-vinyl alcohol copolymer (A)]
The viscosity average degree of polymerization of the ethylene-vinyl alcohol copolymer (A) was determined by the method described in JIS K6726 (1994).
エチレン-ビニルアルコール共重合体(A)の粘度平均重合度は、JIS K6726(1994年)に記載の方法により求めた。 [Viscosity average degree of polymerization of ethylene-vinyl alcohol copolymer (A)]
The viscosity average degree of polymerization of the ethylene-vinyl alcohol copolymer (A) was determined by the method described in JIS K6726 (1994).
[エチレン-ビニルアルコール共重合体(A)のけん化度]
エチレン-ビニルアルコール共重合体(A)のけん化度は、JIS K6726(1994年)に記載の方法により求めた。 [Saponification degree of ethylene-vinyl alcohol copolymer (A)]
The saponification degree of the ethylene-vinyl alcohol copolymer (A) was determined by the method described in JIS K6726 (1994).
エチレン-ビニルアルコール共重合体(A)のけん化度は、JIS K6726(1994年)に記載の方法により求めた。 [Saponification degree of ethylene-vinyl alcohol copolymer (A)]
The saponification degree of the ethylene-vinyl alcohol copolymer (A) was determined by the method described in JIS K6726 (1994).
[エチレン-ビニルアルコール共重合体(A)のカルボン酸のアルカリ金属塩含有量測定]
エチレン-ビニルアルコール共重合体(A)のカルボン酸のアルカリ金属塩含有量(アルカリ金属の質量換算)はエチレン-ビニルアルコール共重合体(A)を灰化した後に、ジャーレルアッシュ社製ICP発光分析装置「IRIS AP」を用いて、得られた灰分中のアルカリ金属量を測定することにより求めた。 [Measurement of alkali metal salt content of carboxylic acid of ethylene-vinyl alcohol copolymer (A)]
The alkali metal salt content of the carboxylic acid of the ethylene-vinyl alcohol copolymer (A) (in terms of the mass of the alkali metal) is determined by the ICP emission of Jarrel Ash after the ethylene-vinyl alcohol copolymer (A) is incinerated. It was determined by measuring the amount of alkali metal in the obtained ash using an analyzer "IRIS AP".
エチレン-ビニルアルコール共重合体(A)のカルボン酸のアルカリ金属塩含有量(アルカリ金属の質量換算)はエチレン-ビニルアルコール共重合体(A)を灰化した後に、ジャーレルアッシュ社製ICP発光分析装置「IRIS AP」を用いて、得られた灰分中のアルカリ金属量を測定することにより求めた。 [Measurement of alkali metal salt content of carboxylic acid of ethylene-vinyl alcohol copolymer (A)]
The alkali metal salt content of the carboxylic acid of the ethylene-vinyl alcohol copolymer (A) (in terms of the mass of the alkali metal) is determined by the ICP emission of Jarrel Ash after the ethylene-vinyl alcohol copolymer (A) is incinerated. It was determined by measuring the amount of alkali metal in the obtained ash using an analyzer "IRIS AP".
[エチレン-ビニルアルコール共重合体(A)の水中結晶化度]
エチレン-ビニルアルコール共重合体(A)の試料を、各温度(30℃、70℃)のH2O-d2中に40分静置した後に、静置時の温度と同一の温度下でパルスNMR測定を行った。得られた緩和曲線の0~0.8msの範囲を、下記式(III)にて誤差最小二乗法を用いてフィッティングした。 [Crystallinity of ethylene-vinyl alcohol copolymer (A) in water]
A sample of ethylene-vinyl alcohol copolymer (A) was allowed to stand in H 2 Od 2 at each temperature (30 ° C., 70 ° C.) for 40 minutes, and then at the same temperature as the standing temperature. Pulse NMR measurement was performed. The range of 0 to 0.8 ms of the obtained transition curve was fitted by the following equation (III) using the error least squares method.
エチレン-ビニルアルコール共重合体(A)の試料を、各温度(30℃、70℃)のH2O-d2中に40分静置した後に、静置時の温度と同一の温度下でパルスNMR測定を行った。得られた緩和曲線の0~0.8msの範囲を、下記式(III)にて誤差最小二乗法を用いてフィッティングした。 [Crystallinity of ethylene-vinyl alcohol copolymer (A) in water]
A sample of ethylene-vinyl alcohol copolymer (A) was allowed to stand in H 2 Od 2 at each temperature (30 ° C., 70 ° C.) for 40 minutes, and then at the same temperature as the standing temperature. Pulse NMR measurement was performed. The range of 0 to 0.8 ms of the obtained transition curve was fitted by the following equation (III) using the error least squares method.
[継粉性]
300mlセパラブルフラスコに蒸留水150mlを入れ、内温が70℃になるまで昇温した。昇温後、150rpmの攪拌下にエチレン-ビニルアルコール共重合体6gを添加した。添加直後のエチレン-ビニルアルコール共重合体粒子の状態を目視で観察し、以下のように評価した。
A:継粉にならない。
B:継粉になるが、5分間の攪拌により継粉が解消された。
C:継粉になり、5分間攪拌しても継粉は解消されなかった。 [Powderability]
150 ml of distilled water was placed in a 300 ml separable flask, and the temperature was raised until the internal temperature reached 70 ° C. After the temperature was raised, 6 g of an ethylene-vinyl alcohol copolymer was added under stirring at 150 rpm. The state of the ethylene-vinyl alcohol copolymer particles immediately after the addition was visually observed and evaluated as follows.
A: It does not become a powder.
B: The powder was sprinkled, but the powder was eliminated by stirring for 5 minutes.
C: The powder was sprinkled, and the sprinkled powder was not eliminated even after stirring for 5 minutes.
300mlセパラブルフラスコに蒸留水150mlを入れ、内温が70℃になるまで昇温した。昇温後、150rpmの攪拌下にエチレン-ビニルアルコール共重合体6gを添加した。添加直後のエチレン-ビニルアルコール共重合体粒子の状態を目視で観察し、以下のように評価した。
A:継粉にならない。
B:継粉になるが、5分間の攪拌により継粉が解消された。
C:継粉になり、5分間攪拌しても継粉は解消されなかった。 [Powderability]
150 ml of distilled water was placed in a 300 ml separable flask, and the temperature was raised until the internal temperature reached 70 ° C. After the temperature was raised, 6 g of an ethylene-vinyl alcohol copolymer was added under stirring at 150 rpm. The state of the ethylene-vinyl alcohol copolymer particles immediately after the addition was visually observed and evaluated as follows.
A: It does not become a powder.
B: The powder was sprinkled, but the powder was eliminated by stirring for 5 minutes.
C: The powder was sprinkled, and the sprinkled powder was not eliminated even after stirring for 5 minutes.
[溶解性]
500mlセパラブルフラスコに蒸留水288gを入れ、内温が85℃になるまで昇温した。昇温後、150rpmの攪拌下にエチレン-ビニルアルコール共重合体12gを添加した。添加後30分経過した段階でエチレン-ビニルアルコール共重合体水溶液を採取した。採取した水溶液をNo.5Aのろ紙でろ過し、そのろ液を125℃、3時間乾燥することで水溶液中に溶解したエチレン-ビニルアルコール共重合体の質量A(g)を求めた。また、試料のエチレン-ビニルアルコール共重合体粒子12gを125℃、3時間乾燥することで、その不揮発分量B(g)を求めた。そして、溶解度(質量%)=A/B×100を算出した。算出した溶解度は、以下の基準に従って評価した。
A:60質量%以上
B:50質量%以上60質量%未満
C:50質量%未満 [Solubility]
288 g of distilled water was placed in a 500 ml separable flask, and the temperature was raised until the internal temperature reached 85 ° C. After the temperature was raised, 12 g of an ethylene-vinyl alcohol copolymer was added under stirring at 150 rpm. An aqueous ethylene-vinyl alcohol copolymer was collected 30 minutes after the addition. The collected aqueous solution was referred to as No. The filter paper was filtered through a filter paper of 5A, and the filtrate was dried at 125 ° C. for 3 hours to determine the mass A (g) of the ethylene-vinyl alcohol copolymer dissolved in the aqueous solution. Further, 12 g of ethylene-vinyl alcohol copolymer particles of the sample were dried at 125 ° C. for 3 hours to determine the non-volatile content B (g). Then, solubility (mass%) = A / B × 100 was calculated. The calculated solubility was evaluated according to the following criteria.
A: 60% by mass or more B: 50% by mass or more and less than 60% by mass C: less than 50% by mass
500mlセパラブルフラスコに蒸留水288gを入れ、内温が85℃になるまで昇温した。昇温後、150rpmの攪拌下にエチレン-ビニルアルコール共重合体12gを添加した。添加後30分経過した段階でエチレン-ビニルアルコール共重合体水溶液を採取した。採取した水溶液をNo.5Aのろ紙でろ過し、そのろ液を125℃、3時間乾燥することで水溶液中に溶解したエチレン-ビニルアルコール共重合体の質量A(g)を求めた。また、試料のエチレン-ビニルアルコール共重合体粒子12gを125℃、3時間乾燥することで、その不揮発分量B(g)を求めた。そして、溶解度(質量%)=A/B×100を算出した。算出した溶解度は、以下の基準に従って評価した。
A:60質量%以上
B:50質量%以上60質量%未満
C:50質量%未満 [Solubility]
288 g of distilled water was placed in a 500 ml separable flask, and the temperature was raised until the internal temperature reached 85 ° C. After the temperature was raised, 12 g of an ethylene-vinyl alcohol copolymer was added under stirring at 150 rpm. An aqueous ethylene-vinyl alcohol copolymer was collected 30 minutes after the addition. The collected aqueous solution was referred to as No. The filter paper was filtered through a filter paper of 5A, and the filtrate was dried at 125 ° C. for 3 hours to determine the mass A (g) of the ethylene-vinyl alcohol copolymer dissolved in the aqueous solution. Further, 12 g of ethylene-vinyl alcohol copolymer particles of the sample were dried at 125 ° C. for 3 hours to determine the non-volatile content B (g). Then, solubility (mass%) = A / B × 100 was calculated. The calculated solubility was evaluated according to the following criteria.
A: 60% by mass or more B: 50% by mass or more and less than 60% by mass C: less than 50% by mass
[塗工液のカルボン酸のアルカリ金属塩含有量の測定]
塗工液のカルボン酸のアルカリ金属塩含有量(アルカリ金属の質量換算)は白金るつぼ内で乾固させた塗工液を灰化した後に、ジャーレルアッシュ社製ICP発光分析装置「IRIS AP」を用いて、得られた灰分中のアルカリ金属量を測定することにより求めた。 [Measurement of alkali metal salt content of carboxylic acid in coating liquid]
The alkali metal salt content of the carboxylic acid in the coating liquid (in terms of the mass of the alkali metal) is determined by the ICP luminescence analyzer "IRIS AP" manufactured by Jarrel Ash after ashing the coating liquid dried in a platinum crucible. It was determined by measuring the amount of alkali metal in the obtained ash content using.
塗工液のカルボン酸のアルカリ金属塩含有量(アルカリ金属の質量換算)は白金るつぼ内で乾固させた塗工液を灰化した後に、ジャーレルアッシュ社製ICP発光分析装置「IRIS AP」を用いて、得られた灰分中のアルカリ金属量を測定することにより求めた。 [Measurement of alkali metal salt content of carboxylic acid in coating liquid]
The alkali metal salt content of the carboxylic acid in the coating liquid (in terms of the mass of the alkali metal) is determined by the ICP luminescence analyzer "IRIS AP" manufactured by Jarrel Ash after ashing the coating liquid dried in a platinum crucible. It was determined by measuring the amount of alkali metal in the obtained ash content using.
[塗工紙の吸水性]
塗工紙の耐水性の指標として、JIS P 8140(1998年)に準じてコッブ(Cobb)法で、吸水度試験器(商品名:ガーレコブサイズテスター、熊谷理機工業社製)を用いて吸水度を測定した。 [Water absorption of coated paper]
As an index of water resistance of coated paper, a water absorption tester (trade name: Garecob size tester, manufactured by Kumagai Riki Kogyo Co., Ltd.) is used by the Cobb method according to JIS P 8140 (1998). The water absorption was measured.
塗工紙の耐水性の指標として、JIS P 8140(1998年)に準じてコッブ(Cobb)法で、吸水度試験器(商品名:ガーレコブサイズテスター、熊谷理機工業社製)を用いて吸水度を測定した。 [Water absorption of coated paper]
As an index of water resistance of coated paper, a water absorption tester (trade name: Garecob size tester, manufactured by Kumagai Riki Kogyo Co., Ltd.) is used by the Cobb method according to JIS P 8140 (1998). The water absorption was measured.
[塗工紙の透気度測定]
JIS P8117に準じて王研式滑度透気度試験器を用いてサンプルの透気度を測定した。
[塗工紙のトルエンバリア性評価] [Measurement of air permeability of coated paper]
The air permeability of the sample was measured using a Wangken-type slipperiness air permeability tester according to JIS P8117.
[Evaluation of toluene barrier property of coated paper]
JIS P8117に準じて王研式滑度透気度試験器を用いてサンプルの透気度を測定した。
[塗工紙のトルエンバリア性評価] [Measurement of air permeability of coated paper]
The air permeability of the sample was measured using a Wangken-type slipperiness air permeability tester according to JIS P8117.
[Evaluation of toluene barrier property of coated paper]
サンプルの塗工面上に赤に着色したトルエンを塗布(5×5cm)、乾燥後、裏面への裏抜け(小さな赤色の斑点の発生ないし塗布面全面の着色)の度合いを以下の基準に従って判定した。
A:裏面に斑点は発生しなかった。
B:斑点が発生したが着色面積はトルエン塗布面の20%以下だった。
C:着色面積は塗布面の20%より多く80%未満だった。
D:着色面積は塗布面の80%以上だった。 Toluene colored red was applied on the coated surface of the sample (5 x 5 cm), and after drying, the degree of strike-through to the back surface (occurrence of small red spots or coloring of the entire coated surface) was determined according to the following criteria. ..
A: No spots were generated on the back surface.
B: Spots were generated, but the colored area was 20% or less of the toluene-coated surface.
C: The colored area was more than 20% and less than 80% of the coated surface.
D: The colored area was 80% or more of the coated surface.
A:裏面に斑点は発生しなかった。
B:斑点が発生したが着色面積はトルエン塗布面の20%以下だった。
C:着色面積は塗布面の20%より多く80%未満だった。
D:着色面積は塗布面の80%以上だった。 Toluene colored red was applied on the coated surface of the sample (5 x 5 cm), and after drying, the degree of strike-through to the back surface (occurrence of small red spots or coloring of the entire coated surface) was determined according to the following criteria. ..
A: No spots were generated on the back surface.
B: Spots were generated, but the colored area was 20% or less of the toluene-coated surface.
C: The colored area was more than 20% and less than 80% of the coated surface.
D: The colored area was 80% or more of the coated surface.
[製造例1]
(重合工程)
還流冷却器、原料供給ライン、反応液取出ライン、温度計、窒素導入口、エチレン導入口及び攪拌翼を備えた連続重合槽を用いた。連続重合槽に酢酸ビニル671L/hr、メタノール147L/hr、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)の1%メタノール溶液2.6L/hrを定量ポンプを用いて連続的に供給した。槽内エチレン圧力が0.23MPaになるように調整した。重合槽内の液面が一定になるように連続重合槽から重合液を連続的に取り出した。連続重合槽出口の重合率が30%になるよう調整した。連続重合槽の滞留時間は5時間であった。連続重合槽出口の温度は60℃であった。連続重合槽より重合液を回収し、回収した液にメタノール蒸気を導入することで未反応の酢酸ビニルモノマーの除去を行い、エチレン-ビニルエステル共重合体(PVAc)のメタノール溶液(濃度32質量%)を得た。 [Manufacturing Example 1]
(Polymerization process)
A continuous polymerization tank equipped with a reflux condenser, a raw material supply line, a reaction liquid take-out line, a thermometer, a nitrogen inlet, an ethylene inlet and a stirring blade was used. A 1% methanol solution of vinyl acetate 671 L / hr, methanol 147 L / hr, and 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile) 2.6 L / hr in a continuous polymerization tank using a metering pump. Supplied continuously. The ethylene pressure in the tank was adjusted to 0.23 MPa. The polymerization liquid was continuously taken out from the continuous polymerization tank so that the liquid level in the polymerization tank became constant. The polymerization rate at the outlet of the continuous polymerization tank was adjusted to 30%. The residence time of the continuous polymerization tank was 5 hours. The temperature at the outlet of the continuous polymerization tank was 60 ° C. The polymerization solution was recovered from the continuous polymerization tank, and the unreacted vinyl acetate monomer was removed by introducing methanol vapor into the recovered solution, and the methanol solution (concentration: 32% by mass) of the ethylene-vinyl ester copolymer (PVAc) was removed. ) Was obtained.
(重合工程)
還流冷却器、原料供給ライン、反応液取出ライン、温度計、窒素導入口、エチレン導入口及び攪拌翼を備えた連続重合槽を用いた。連続重合槽に酢酸ビニル671L/hr、メタノール147L/hr、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)の1%メタノール溶液2.6L/hrを定量ポンプを用いて連続的に供給した。槽内エチレン圧力が0.23MPaになるように調整した。重合槽内の液面が一定になるように連続重合槽から重合液を連続的に取り出した。連続重合槽出口の重合率が30%になるよう調整した。連続重合槽の滞留時間は5時間であった。連続重合槽出口の温度は60℃であった。連続重合槽より重合液を回収し、回収した液にメタノール蒸気を導入することで未反応の酢酸ビニルモノマーの除去を行い、エチレン-ビニルエステル共重合体(PVAc)のメタノール溶液(濃度32質量%)を得た。 [Manufacturing Example 1]
(Polymerization process)
A continuous polymerization tank equipped with a reflux condenser, a raw material supply line, a reaction liquid take-out line, a thermometer, a nitrogen inlet, an ethylene inlet and a stirring blade was used. A 1% methanol solution of vinyl acetate 671 L / hr, methanol 147 L / hr, and 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile) 2.6 L / hr in a continuous polymerization tank using a metering pump. Supplied continuously. The ethylene pressure in the tank was adjusted to 0.23 MPa. The polymerization liquid was continuously taken out from the continuous polymerization tank so that the liquid level in the polymerization tank became constant. The polymerization rate at the outlet of the continuous polymerization tank was adjusted to 30%. The residence time of the continuous polymerization tank was 5 hours. The temperature at the outlet of the continuous polymerization tank was 60 ° C. The polymerization solution was recovered from the continuous polymerization tank, and the unreacted vinyl acetate monomer was removed by introducing methanol vapor into the recovered solution, and the methanol solution (concentration: 32% by mass) of the ethylene-vinyl ester copolymer (PVAc) was removed. ) Was obtained.
(けん化工程)
前記重合工程で得た、エチレン-ビニルエステル共重合体のメタノール溶液(濃度32質量%)に、けん化触媒である水酸化ナトリウムのメタノール溶液(濃度4質量%)を、前記エチレン-ビニルエステル共重合体中の酢酸ビニルユニットに対する水酸化ナトリウムのモル比が0.01となるように添加した。エチレン-ビニルエステル共重合体溶液及びけん化触媒溶液をスタティックミキサーで混合し混合物を得た。得られた混合物のペーストをベルト上に載置し、40℃で18分保持してけん化反応を進行させた。これにより、エチレン-ビニルアルコール共重合体と溶媒とを含む固体ブロックが得られた。重合条件及びけん化条件について、表1にまとめた。 (Saponification process)
A methanol solution of sodium hydroxide (concentration: 4% by mass) as a saponification catalyst is added to a methanol solution (concentration: 32% by mass) of the ethylene-vinyl ester copolymer obtained in the polymerization step, and the ethylene-vinyl ester copolymer weight is added. It was added so that the molar ratio of sodium hydroxide to the vinyl acetate unit in the coalescence was 0.01. The ethylene-vinyl ester copolymer solution and the saponification catalyst solution were mixed with a static mixer to obtain a mixture. The paste of the obtained mixture was placed on a belt and held at 40 ° C. for 18 minutes to allow the saponification reaction to proceed. As a result, a solid block containing an ethylene-vinyl alcohol copolymer and a solvent was obtained. The polymerization conditions and saponification conditions are summarized in Table 1.
前記重合工程で得た、エチレン-ビニルエステル共重合体のメタノール溶液(濃度32質量%)に、けん化触媒である水酸化ナトリウムのメタノール溶液(濃度4質量%)を、前記エチレン-ビニルエステル共重合体中の酢酸ビニルユニットに対する水酸化ナトリウムのモル比が0.01となるように添加した。エチレン-ビニルエステル共重合体溶液及びけん化触媒溶液をスタティックミキサーで混合し混合物を得た。得られた混合物のペーストをベルト上に載置し、40℃で18分保持してけん化反応を進行させた。これにより、エチレン-ビニルアルコール共重合体と溶媒とを含む固体ブロックが得られた。重合条件及びけん化条件について、表1にまとめた。 (Saponification process)
A methanol solution of sodium hydroxide (concentration: 4% by mass) as a saponification catalyst is added to a methanol solution (concentration: 32% by mass) of the ethylene-vinyl ester copolymer obtained in the polymerization step, and the ethylene-vinyl ester copolymer weight is added. It was added so that the molar ratio of sodium hydroxide to the vinyl acetate unit in the coalescence was 0.01. The ethylene-vinyl ester copolymer solution and the saponification catalyst solution were mixed with a static mixer to obtain a mixture. The paste of the obtained mixture was placed on a belt and held at 40 ° C. for 18 minutes to allow the saponification reaction to proceed. As a result, a solid block containing an ethylene-vinyl alcohol copolymer and a solvent was obtained. The polymerization conditions and saponification conditions are summarized in Table 1.
(粉砕工程)
前記けん化工程で得られた固体ブロックを一軸せん断破砕機で粉砕してウェット粒子を得た。当該破砕機にはロックウェル硬度が45の破砕刃が装着され、破砕刃の回転数は250rpmであった。 (Crushing process)
The solid block obtained in the saponification step was pulverized with a uniaxial shear crusher to obtain wet particles. The crusher was equipped with a crushing blade having a Rockwell hardness of 45, and the rotation speed of the crushing blade was 250 rpm.
前記けん化工程で得られた固体ブロックを一軸せん断破砕機で粉砕してウェット粒子を得た。当該破砕機にはロックウェル硬度が45の破砕刃が装着され、破砕刃の回転数は250rpmであった。 (Crushing process)
The solid block obtained in the saponification step was pulverized with a uniaxial shear crusher to obtain wet particles. The crusher was equipped with a crushing blade having a Rockwell hardness of 45, and the rotation speed of the crushing blade was 250 rpm.
(脱液工程)
前記粉砕工程で得られたウェット粒子を、スクリュー排出型遠心脱液機で脱液することで、目開き5.6mmの篩を通過した粒子の割合が94質量%であり、目開き1.0mmの篩を通過した粒子の割合が1.6質量%であり、溶媒の含有率が58質量%である脱液粒子を得た。粉砕条件及び脱液条件について、表2にまとめた。 (Liquid removal process)
By deflating the wet particles obtained in the pulverization step with a screw discharge type centrifugal deflated machine, the proportion of particles that have passed through a sieve having a mesh size of 5.6 mm is 94% by mass, and the mesh size is 1.0 mm. Liquid particles having a content of 1.6% by mass and a content of a solvent of 58% by mass were obtained. Table 2 summarizes the crushing conditions and the liquid removal conditions.
前記粉砕工程で得られたウェット粒子を、スクリュー排出型遠心脱液機で脱液することで、目開き5.6mmの篩を通過した粒子の割合が94質量%であり、目開き1.0mmの篩を通過した粒子の割合が1.6質量%であり、溶媒の含有率が58質量%である脱液粒子を得た。粉砕条件及び脱液条件について、表2にまとめた。 (Liquid removal process)
By deflating the wet particles obtained in the pulverization step with a screw discharge type centrifugal deflated machine, the proportion of particles that have passed through a sieve having a mesh size of 5.6 mm is 94% by mass, and the mesh size is 1.0 mm. Liquid particles having a content of 1.6% by mass and a content of a solvent of 58% by mass were obtained. Table 2 summarizes the crushing conditions and the liquid removal conditions.
(乾燥工程)
前記脱液工程で得られた脱液粒子600kg/hr(固形分)を粒子温度が100℃となるように乾燥機内の温度を制御した乾燥機に連続的に供給した。乾燥機内の粒子の平均滞留時間は4時間であった。 (Drying process)
The deliquescent particles of 600 kg / hr (solid content) obtained in the deliquescent step were continuously supplied to a dryer whose temperature inside the dryer was controlled so that the particle temperature was 100 ° C. The average residence time of the particles in the dryer was 4 hours.
前記脱液工程で得られた脱液粒子600kg/hr(固形分)を粒子温度が100℃となるように乾燥機内の温度を制御した乾燥機に連続的に供給した。乾燥機内の粒子の平均滞留時間は4時間であった。 (Drying process)
The deliquescent particles of 600 kg / hr (solid content) obtained in the deliquescent step were continuously supplied to a dryer whose temperature inside the dryer was controlled so that the particle temperature was 100 ° C. The average residence time of the particles in the dryer was 4 hours.
(追加粉砕工程)
前記乾燥工程で得られた乾燥粒子をハンマーミルで追加粉砕し、目開き1.4mmのフィルターを通過させて、エチレン-ビニルアルコール共重合体1を得た。共重合体1中のエチレン単位の含有率は2モル%であり、粘度平均重合度は1700であり、けん化度は93.0モル%であった。またカルボン酸のアルカリ金属塩(酢酸ナトリウム)の含有量は、100質量部の共重合体1に対して、アルカリ金属の質量換算(ナトリウム換算)で0.33質量部であった。共重合体1のCw(30℃)は9.7%であり、Cw(70℃)は2.1%であり、式(I)の値は6.9であった。また、共重合体1全体のうち、目開き2.5mmのフィルターを通過した割合は99質量%であり、目開き1.0mmのフィルターを通過した割合は94質量%であり、目開き0.15mmのフィルターを通過した割合は5質量%であった。共重合体1の継粉性及び溶解性を上述の方法に沿って評価した結果を表3に示す。 (Additional crushing process)
The dried particles obtained in the drying step were additionally pulverized with a hammer mill and passed through a filter having a mesh size of 1.4 mm to obtain an ethylene-vinyl alcohol copolymer 1. The content of ethylene units in the copolymer 1 was 2 mol%, the viscosity average degree of polymerization was 1700, and the saponification degree was 93.0 mol%. The content of the alkali metal salt (sodium acetate) of the carboxylic acid was 0.33 parts by mass in terms of mass of alkali metal (sodium equivalent) with respect to 100 parts by mass of the copolymer 1. The Cw (30 ° C.) of the copolymer 1 was 9.7%, the Cw (70 ° C.) was 2.1%, and the value of the formula (I) was 6.9. Further, in the entire copolymer 1, the ratio of passing through the filter having a mesh size of 2.5 mm was 99% by mass, and the ratio of passing through the filter having a mesh size of 1.0 mm was 94% by mass. The percentage that passed through the 15 mm filter was 5% by mass. Table 3 shows the results of evaluating the powdering property and solubility of the copolymer 1 according to the above method.
前記乾燥工程で得られた乾燥粒子をハンマーミルで追加粉砕し、目開き1.4mmのフィルターを通過させて、エチレン-ビニルアルコール共重合体1を得た。共重合体1中のエチレン単位の含有率は2モル%であり、粘度平均重合度は1700であり、けん化度は93.0モル%であった。またカルボン酸のアルカリ金属塩(酢酸ナトリウム)の含有量は、100質量部の共重合体1に対して、アルカリ金属の質量換算(ナトリウム換算)で0.33質量部であった。共重合体1のCw(30℃)は9.7%であり、Cw(70℃)は2.1%であり、式(I)の値は6.9であった。また、共重合体1全体のうち、目開き2.5mmのフィルターを通過した割合は99質量%であり、目開き1.0mmのフィルターを通過した割合は94質量%であり、目開き0.15mmのフィルターを通過した割合は5質量%であった。共重合体1の継粉性及び溶解性を上述の方法に沿って評価した結果を表3に示す。 (Additional crushing process)
The dried particles obtained in the drying step were additionally pulverized with a hammer mill and passed through a filter having a mesh size of 1.4 mm to obtain an ethylene-vinyl alcohol copolymer 1. The content of ethylene units in the copolymer 1 was 2 mol%, the viscosity average degree of polymerization was 1700, and the saponification degree was 93.0 mol%. The content of the alkali metal salt (sodium acetate) of the carboxylic acid was 0.33 parts by mass in terms of mass of alkali metal (sodium equivalent) with respect to 100 parts by mass of the copolymer 1. The Cw (30 ° C.) of the copolymer 1 was 9.7%, the Cw (70 ° C.) was 2.1%, and the value of the formula (I) was 6.9. Further, in the entire copolymer 1, the ratio of passing through the filter having a mesh size of 2.5 mm was 99% by mass, and the ratio of passing through the filter having a mesh size of 1.0 mm was 94% by mass. The percentage that passed through the 15 mm filter was 5% by mass. Table 3 shows the results of evaluating the powdering property and solubility of the copolymer 1 according to the above method.
[製造例2~11]
重合条件、けん化条件、粉砕条件及び脱液条件を表1及び表2に示すように変更した以外は、実施例1と同様の方法によりエチレン-ビニルアルコール共重合体(共重合体2~11)を製造した。得られた共重合体の、エチレン単位の含有率、重合度、けん化度、カルボン酸のアルカリ金属塩の含有量、粒度、30℃および70℃の水中結晶化度、式(I)の値を上述の方法に沿って評価した結果、並びに、得られた共重合体の継粉性及び溶解性を上述の方法に沿って評価した結果を表3にまとめて示す。 [Manufacturing Examples 2 to 11]
Ethylene-vinyl alcohol copolymers (copolymers 2 to 11) by the same method as in Example 1 except that the polymerization conditions, saponification conditions, pulverization conditions, and liquid removal conditions were changed as shown in Tables 1 and 2. Manufactured. The content of the obtained copolymer in ethylene units, the degree of polymerization, the degree of saponification, the content of the alkali metal salt of carboxylic acid, the particle size, the degree of crystallinity in water at 30 ° C. and 70 ° C., and the value of the formula (I) are set. Table 3 summarizes the results of evaluation according to the above-mentioned method and the results of evaluation of the powdering property and solubility of the obtained copolymer according to the above-mentioned method.
重合条件、けん化条件、粉砕条件及び脱液条件を表1及び表2に示すように変更した以外は、実施例1と同様の方法によりエチレン-ビニルアルコール共重合体(共重合体2~11)を製造した。得られた共重合体の、エチレン単位の含有率、重合度、けん化度、カルボン酸のアルカリ金属塩の含有量、粒度、30℃および70℃の水中結晶化度、式(I)の値を上述の方法に沿って評価した結果、並びに、得られた共重合体の継粉性及び溶解性を上述の方法に沿って評価した結果を表3にまとめて示す。 [Manufacturing Examples 2 to 11]
Ethylene-vinyl alcohol copolymers (copolymers 2 to 11) by the same method as in Example 1 except that the polymerization conditions, saponification conditions, pulverization conditions, and liquid removal conditions were changed as shown in Tables 1 and 2. Manufactured. The content of the obtained copolymer in ethylene units, the degree of polymerization, the degree of saponification, the content of the alkali metal salt of carboxylic acid, the particle size, the degree of crystallinity in water at 30 ° C. and 70 ° C., and the value of the formula (I) are set. Table 3 summarizes the results of evaluation according to the above-mentioned method and the results of evaluation of the powdering property and solubility of the obtained copolymer according to the above-mentioned method.
[実施例1]
(塗工紙の作製)
共重合体1を85℃に加温したイオン交換水に添加し、45分間撹拌して固形分濃度が7質量%の溶液を得た。この溶液中のカルボン酸のアルカリ金属塩(B)は100質量部の共重合体1に対して、0.33質量部であった。これを塗工液として、試験用シムサイザー(熊谷理機工業製)を用いて、坪量70g/m2、透気度20secのPPC(plain paper copier)用紙に300m/分の速度で塗工した。塗工された紙を100℃の熱風乾燥機で5分間乾燥した。得られる塗工紙の塗工量は固形分換算で0.5g/m2に調整した。得られた塗工紙を20℃、65%RHで72時間調湿後、塗工紙の物性を評価した。結果を表4に示す。 [Example 1]
(Making coated paper)
Copolymer 1 was added to ion-exchanged water heated to 85 ° C. and stirred for 45 minutes to obtain a solution having a solid content concentration of 7% by mass. The alkali metal salt (B) of the carboxylic acid in this solution was 0.33 parts by mass with respect to 100 parts by mass of the copolymer 1. Using this as a coating liquid, a test sim sizer (manufactured by Kumagai Riki Kogyo Co., Ltd.) was applied to PPC (plane paper copier) paper having a basis weight of 70 g / m 2 and an air permeability of 20 sec at a speed of 300 m / min. .. The coated paper was dried in a hot air dryer at 100 ° C. for 5 minutes. The coating amount of the obtained coated paper was adjusted to 0.5 g / m 2 in terms of solid content. The obtained coated paper was humidity-controlled at 20 ° C. and 65% RH for 72 hours, and then the physical properties of the coated paper were evaluated. The results are shown in Table 4.
(塗工紙の作製)
共重合体1を85℃に加温したイオン交換水に添加し、45分間撹拌して固形分濃度が7質量%の溶液を得た。この溶液中のカルボン酸のアルカリ金属塩(B)は100質量部の共重合体1に対して、0.33質量部であった。これを塗工液として、試験用シムサイザー(熊谷理機工業製)を用いて、坪量70g/m2、透気度20secのPPC(plain paper copier)用紙に300m/分の速度で塗工した。塗工された紙を100℃の熱風乾燥機で5分間乾燥した。得られる塗工紙の塗工量は固形分換算で0.5g/m2に調整した。得られた塗工紙を20℃、65%RHで72時間調湿後、塗工紙の物性を評価した。結果を表4に示す。 [Example 1]
(Making coated paper)
Copolymer 1 was added to ion-exchanged water heated to 85 ° C. and stirred for 45 minutes to obtain a solution having a solid content concentration of 7% by mass. The alkali metal salt (B) of the carboxylic acid in this solution was 0.33 parts by mass with respect to 100 parts by mass of the copolymer 1. Using this as a coating liquid, a test sim sizer (manufactured by Kumagai Riki Kogyo Co., Ltd.) was applied to PPC (plane paper copier) paper having a basis weight of 70 g / m 2 and an air permeability of 20 sec at a speed of 300 m / min. .. The coated paper was dried in a hot air dryer at 100 ° C. for 5 minutes. The coating amount of the obtained coated paper was adjusted to 0.5 g / m 2 in terms of solid content. The obtained coated paper was humidity-controlled at 20 ° C. and 65% RH for 72 hours, and then the physical properties of the coated paper were evaluated. The results are shown in Table 4.
[実施例2~7、比較例1~3、5]
実施例1の共重合体1に代えて、表4に示す共重合体2~11を用いたこと以外は実施例1と同様にして塗工紙を作製した。当該塗工紙の物性を評価した結果を表4に示す。 [Examples 2 to 7, Comparative Examples 1 to 3, 5]
A coated paper was prepared in the same manner as in Example 1 except that the copolymers 2 to 11 shown in Table 4 were used instead of the copolymer 1 of Example 1. Table 4 shows the results of evaluating the physical properties of the coated paper.
実施例1の共重合体1に代えて、表4に示す共重合体2~11を用いたこと以外は実施例1と同様にして塗工紙を作製した。当該塗工紙の物性を評価した結果を表4に示す。 [Examples 2 to 7, Comparative Examples 1 to 3, 5]
A coated paper was prepared in the same manner as in Example 1 except that the copolymers 2 to 11 shown in Table 4 were used instead of the copolymer 1 of Example 1. Table 4 shows the results of evaluating the physical properties of the coated paper.
[比較例4]
100質量部の共重合体3に対して1質量部の酢酸ナトリウムを混合し、得られた粉体を85℃に加温したイオン交換水に添加し、45分間撹拌して固形分濃度が7質量%の溶液を得た。この溶液中のカルボン酸のアルカリ金属塩(B)は100部の共重合体1に対して、1.8質量部であった。これを塗工液として、試験用シムサイザー(熊谷理機工業製)を用いて、坪量70g/m2、透気度20secのPPC(plain paper copier)用紙に300m/分の速度で塗工した。塗工された紙を100℃の熱風乾燥機で5分間乾燥した。得られる塗工紙の塗工量は固形分換算で0.5g/m2に調整した。得られた塗工紙を20℃、65%RHで72時間調湿後、塗工紙の物性を評価した。結果を表4に示す。 [Comparative Example 4]
1 part by mass of sodium acetate was mixed with 100 parts by mass of the copolymer 3, and the obtained powder was added to ion-exchanged water heated to 85 ° C. and stirred for 45 minutes to have a solid content concentration of 7. A mass% solution was obtained. The alkali metal salt (B) of the carboxylic acid in this solution was 1.8 parts by mass with respect to 100 parts of the copolymer 1. Using this as a coating liquid, a test sim sizer (manufactured by Kumagai Riki Kogyo Co., Ltd.) was applied to PPC (plane paper copier) paper having a basis weight of 70 g / m 2 and an air permeability of 20 sec at a speed of 300 m / min. .. The coated paper was dried in a hot air dryer at 100 ° C. for 5 minutes. The coating amount of the obtained coated paper was adjusted to 0.5 g / m 2 in terms of solid content. The obtained coated paper was humidity-controlled at 20 ° C. and 65% RH for 72 hours, and then the physical properties of the coated paper were evaluated. The results are shown in Table 4.
100質量部の共重合体3に対して1質量部の酢酸ナトリウムを混合し、得られた粉体を85℃に加温したイオン交換水に添加し、45分間撹拌して固形分濃度が7質量%の溶液を得た。この溶液中のカルボン酸のアルカリ金属塩(B)は100部の共重合体1に対して、1.8質量部であった。これを塗工液として、試験用シムサイザー(熊谷理機工業製)を用いて、坪量70g/m2、透気度20secのPPC(plain paper copier)用紙に300m/分の速度で塗工した。塗工された紙を100℃の熱風乾燥機で5分間乾燥した。得られる塗工紙の塗工量は固形分換算で0.5g/m2に調整した。得られた塗工紙を20℃、65%RHで72時間調湿後、塗工紙の物性を評価した。結果を表4に示す。 [Comparative Example 4]
1 part by mass of sodium acetate was mixed with 100 parts by mass of the copolymer 3, and the obtained powder was added to ion-exchanged water heated to 85 ° C. and stirred for 45 minutes to have a solid content concentration of 7. A mass% solution was obtained. The alkali metal salt (B) of the carboxylic acid in this solution was 1.8 parts by mass with respect to 100 parts of the copolymer 1. Using this as a coating liquid, a test sim sizer (manufactured by Kumagai Riki Kogyo Co., Ltd.) was applied to PPC (plane paper copier) paper having a basis weight of 70 g / m 2 and an air permeability of 20 sec at a speed of 300 m / min. .. The coated paper was dried in a hot air dryer at 100 ° C. for 5 minutes. The coating amount of the obtained coated paper was adjusted to 0.5 g / m 2 in terms of solid content. The obtained coated paper was humidity-controlled at 20 ° C. and 65% RH for 72 hours, and then the physical properties of the coated paper were evaluated. The results are shown in Table 4.
表4に示されるように、実施例1~7で得られた塗工液を塗工して得られた塗工紙は、透気度の値が長く、バリア性に優れている。そして実際にトルエンバリア性にも優れている。そのため、本発明の塗工液を用いて目止め層を形成した塗工紙は、当該目止め層の上に剥離層を塗工して形成する際に、シリコーン樹脂の表面歩留まりが高く、剥離紙を製造できる十分な性能を有していることがわかった。
As shown in Table 4, the coated papers obtained by applying the coating liquids obtained in Examples 1 to 7 have a long air permeability value and are excellent in barrier properties. And, in fact, it is also excellent in toluene barrier property. Therefore, the coated paper on which the sealing layer is formed by using the coating liquid of the present invention has a high surface yield of the silicone resin and is peeled off when the release layer is applied on the sealing layer. It was found that it has sufficient performance to produce paper.
As shown in Table 4, the coated papers obtained by applying the coating liquids obtained in Examples 1 to 7 have a long air permeability value and are excellent in barrier properties. And, in fact, it is also excellent in toluene barrier property. Therefore, the coated paper on which the sealing layer is formed by using the coating liquid of the present invention has a high surface yield of the silicone resin and is peeled off when the release layer is applied on the sealing layer. It was found that it has sufficient performance to produce paper.
Claims (7)
- エチレン-ビニルアルコール共重合体(A)及びカルボン酸のアルカリ金属塩(B)を含む紙用塗工液であって;
前記エチレン-ビニルアルコール共重合体(A)のエチレン単位の含有率が1モル%以上20モル%未満であり、
パルスNMRで求められる30℃での水中結晶化度Cw(30℃)及び70℃での水中結晶化度Cw(70℃)が下記式(I)を満たし、かつ
前記エチレン-ビニルアルコール共重合体(A)100質量部に対して、前記カルボン酸のアルカリ金属塩(B)をアルカリ金属の質量換算で0.001~1質量部含む、紙用塗工液。
The ethylene unit content of the ethylene-vinyl alcohol copolymer (A) is 1 mol% or more and less than 20 mol%.
The crystallinity in water Cw (30 ° C.) at 30 ° C. and the crystallinity Cw (70 ° C.) in water at 70 ° C. determined by pulse NMR satisfy the following formula (I), and the ethylene-vinyl alcohol copolymer (A) A coating liquid for paper containing 0.001 to 1 part by mass of the alkali metal salt (B) of the carboxylic acid with respect to 100 parts by mass of the alkali metal.
- 前記エチレン-ビニルアルコール共重合体(A)のけん化度が90~98.5モル%である、請求項1に記載の紙用塗工液。 The paper coating liquid according to claim 1, wherein the ethylene-vinyl alcohol copolymer (A) has a saponification degree of 90 to 98.5 mol%.
- 前記エチレン-ビニルアルコール共重合体(A)の粘度平均重合度が900~2400である、請求項1又は2に記載の紙用塗工液。 The paper coating liquid according to claim 1 or 2, wherein the ethylene-vinyl alcohol copolymer (A) has a viscosity average degree of polymerization of 900 to 2400.
- 請求項1~3のいずれかに記載の塗工液が紙の表面に塗工されてなる塗工紙。 A coated paper in which the coating liquid according to any one of claims 1 to 3 is applied to the surface of the paper.
- 剥離紙用原紙である請求項4に記載の塗工紙。 The coated paper according to claim 4, which is a base paper for release paper.
- 請求項1~3に記載の塗工液を紙に塗工して形成された目止め層の上に剥離層が形成されてなる剥離紙。 A release paper in which a release layer is formed on a sealing layer formed by applying the coating liquid according to claims 1 to 3 to paper.
- 剥離層がシリコーン樹脂を含む請求項6に記載の剥離紙。
The release paper according to claim 6, wherein the release layer contains a silicone resin.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-077137 | 2019-04-15 | ||
JP2019077137A JP2022088692A (en) | 2019-04-15 | 2019-04-15 | Paper coating liquid |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020213550A1 true WO2020213550A1 (en) | 2020-10-22 |
Family
ID=72837460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/016242 WO2020213550A1 (en) | 2019-04-15 | 2020-04-13 | Coating liquid for paper and coated paper using same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022088692A (en) |
WO (1) | WO2020213550A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200087860A1 (en) * | 2017-03-30 | 2020-03-19 | Kuraraycq., Ltd. | Release-paper base paper and method for producing same, and release paper |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63112794A (en) * | 1986-10-30 | 1988-05-17 | 株式会社クラレ | Surface treatment agent for paper |
JPH06306797A (en) * | 1993-04-21 | 1994-11-01 | Keiwa Shoko Kk | Mold release paper |
JP2000218743A (en) * | 1999-02-01 | 2000-08-08 | Kuraray Co Ltd | Production of laminate |
JP2016145263A (en) * | 2013-05-31 | 2016-08-12 | 株式会社クラレ | Polyvinyl alcohol and coating agent for paper containing the same |
JP2017177392A (en) * | 2016-03-28 | 2017-10-05 | ニチバン株式会社 | Tag slip layer assembly |
WO2018181762A1 (en) * | 2017-03-30 | 2018-10-04 | 株式会社クラレ | Release-paper base paper and method for producing same, and release paper |
JP6499813B1 (en) * | 2017-10-17 | 2019-04-10 | 株式会社クラレ | Ethylene-vinyl alcohol copolymer particles, production method thereof and use thereof |
WO2019117118A1 (en) * | 2017-12-12 | 2019-06-20 | 株式会社クラレ | Ethylene-vinylalcohol copolymer aqueous solution |
-
2019
- 2019-04-15 JP JP2019077137A patent/JP2022088692A/en active Pending
-
2020
- 2020-04-13 WO PCT/JP2020/016242 patent/WO2020213550A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63112794A (en) * | 1986-10-30 | 1988-05-17 | 株式会社クラレ | Surface treatment agent for paper |
JPH06306797A (en) * | 1993-04-21 | 1994-11-01 | Keiwa Shoko Kk | Mold release paper |
JP2000218743A (en) * | 1999-02-01 | 2000-08-08 | Kuraray Co Ltd | Production of laminate |
JP2016145263A (en) * | 2013-05-31 | 2016-08-12 | 株式会社クラレ | Polyvinyl alcohol and coating agent for paper containing the same |
JP2017177392A (en) * | 2016-03-28 | 2017-10-05 | ニチバン株式会社 | Tag slip layer assembly |
WO2018181762A1 (en) * | 2017-03-30 | 2018-10-04 | 株式会社クラレ | Release-paper base paper and method for producing same, and release paper |
JP6499813B1 (en) * | 2017-10-17 | 2019-04-10 | 株式会社クラレ | Ethylene-vinyl alcohol copolymer particles, production method thereof and use thereof |
WO2019117118A1 (en) * | 2017-12-12 | 2019-06-20 | 株式会社クラレ | Ethylene-vinylalcohol copolymer aqueous solution |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200087860A1 (en) * | 2017-03-30 | 2020-03-19 | Kuraraycq., Ltd. | Release-paper base paper and method for producing same, and release paper |
US11643781B2 (en) * | 2017-03-30 | 2023-05-09 | Kuraray Co., Ltd. | Release-paper base paper and method for producing same, and release paper |
Also Published As
Publication number | Publication date |
---|---|
JP2022088692A (en) | 2022-06-15 |
TW202100678A (en) | 2021-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI804540B (en) | Aqueous solution of ethylene-vinyl alcohol copolymer | |
TWI763938B (en) | Ethylene-vinyl alcohol copolymer particles, method for producing same and use thereof | |
JP6778279B2 (en) | Polyvinyl alcohol composition and its uses | |
JP6499813B1 (en) | Ethylene-vinyl alcohol copolymer particles, production method thereof and use thereof | |
US20240309248A1 (en) | Resin material, aqueous solution, and adhesive | |
WO2020213550A1 (en) | Coating liquid for paper and coated paper using same | |
WO2021075480A1 (en) | Coating agent for paper and coated paper using same | |
TWI853917B (en) | Coating liquid for paper and coated paper using same | |
JP6810305B1 (en) | Aqueous emulsion and adhesive using it | |
JPH08269288A (en) | Polyvinyl alcohol resin composition and paper coating agent composed mainly of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20791726 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20791726 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |