WO2020213525A1 - アンテナデバイス、ビームステアリングシステム、レーダ装置、及びレーダ装置を用いたセンサ - Google Patents

アンテナデバイス、ビームステアリングシステム、レーダ装置、及びレーダ装置を用いたセンサ Download PDF

Info

Publication number
WO2020213525A1
WO2020213525A1 PCT/JP2020/016117 JP2020016117W WO2020213525A1 WO 2020213525 A1 WO2020213525 A1 WO 2020213525A1 JP 2020016117 W JP2020016117 W JP 2020016117W WO 2020213525 A1 WO2020213525 A1 WO 2020213525A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
signal
detector
light
waveguide
Prior art date
Application number
PCT/JP2020/016117
Other languages
English (en)
French (fr)
Inventor
靖明 門内
Original Assignee
学校法人慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慶應義塾 filed Critical 学校法人慶應義塾
Priority to JP2021514922A priority Critical patent/JP7555597B2/ja
Publication of WO2020213525A1 publication Critical patent/WO2020213525A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/22Longitudinal slot in boundary wall of waveguide or transmission line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/26Surface waveguide constituted by a single conductor, e.g. strip conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path

Definitions

  • the present invention relates to an antenna technology capable of beam steering, a radar device using the antenna technology, and a sensor.
  • Millimeter-wave radar can roughly detect the presence or absence of a car or a person, but the accuracy of distance measurement is not so high.
  • a laser radar using a light wave near infrared light
  • terahertz waves between radio waves and light waves, it is possible to detect and discriminate objects with a resolution that is one digit or more higher than millimeter waves, and to reduce the required antenna size by one digit or more.
  • terahertz radar The technical barriers to the realization of terahertz radar are the difficulty of beam scanning and the difficulty of separating transmitted and transmitted waves. Beam scanning is difficult because there is currently no low-loss, integrateable phase shifter. Separation of transmitted and received waves is difficult because there is currently no low-loss, high-isolation circulator.
  • a general-purpose terahertz radar has not yet been realized, and for the purpose of research and development, a large-scale optical system and a reflector are combined to perform beam scanning by mechanical drive.
  • Non-Patent Document 1 In order to perform beam scanning without using a phase shifter or mechanical drive, a terahertz radar that scans a beam in a certain angle range using a microstrip-based leak wave antenna has been proposed (for example, Non-Patent Document 1). reference).
  • the terahertz radar using the above-mentioned leaky wave antenna uses one leaky wave antenna, and the receiver and the oscillator are arranged at the same position. Therefore, a circulator or a directional coupler is required, which increases the size and cost. In addition, the beam scanning angle range of a single leaky wave antenna may not be sufficient.
  • An object of the present invention is to provide an antenna device which has a small size and can be integrated and is suitable for beam scanning over a wider angle, and a radar device using the antenna device.
  • one or two or more antennas are used in the embodiment.
  • the antenna device comprises a waveguide having an incident end, a first antenna connected to the waveguide, and a second antenna.
  • the first antenna has at least one of a first signal radiated from the first antenna and reflected externally and returned, and a second signal radiated from the second antenna and reflected externally and returned. It is received in a direction in which the return light to the incident end is not generated in one antenna, and the received signal is combined with the first reference light that remains in the first antenna without being radiated from the first antenna.
  • the terahertz radar using this antenna structure has a higher resolution than the millimeter wave radar.
  • the scanning range of the beam is extended with a simple configuration by combining a single or two or more leaky wave antennas in different directions or in the same direction.
  • the receiver and oscillator can be arranged separately, eliminating the need for a means for separating transmitted and received waves such as a circulator, and reducing the size.
  • the emissivity adjustment mechanism is used to increase the efficiency of homodyne detection.
  • the antenna device of the embodiment is satisfactorily applied to a radar device, a biological sensor such as a heartbeat / pulse measurement, a sensor for measuring the mechanical properties of a measurement object, a gesture recognition of a finger, and the like.
  • FIG. 1A is a schematic view of a beam steering system 10A using a fast wave line type antenna device 20A
  • FIG. 1B is a schematic view of a beam steering system 10B using a slow wave line type antenna device 20B.
  • 1A and 1B show configuration examples in which the two antennas are oriented in different directions.
  • the antenna device 20A is different from the waveguide 11 extending from the first port P1 which is the incident end, the first antenna 12 extending in the first direction from the waveguide 11, and the first direction from the waveguide 11. It has a second antenna 13 extending in the second direction.
  • the first direction and the second direction may be 180 ° opposite to each other from the viewpoint of expanding the beam scanning range, but are necessarily 180 ° opposite depending on the nature, position, behavior, etc. of the object to be detected. It does not have to be the direction.
  • it may be an antenna extending in another direction at an angle of 120 °. From the viewpoint of detecting the structural anisotropy or the refractive index anisotropy of the object to be detected, it may be arranged at an angle of 90 ° so that the vibration directions of the electric field are orthogonal to each other.
  • the first detector 15 as a receiver is connected to the end of the first antenna 12.
  • a second detector 16 as a receiver is connected to the end of the second antenna 13.
  • the antenna device 20A has a three-port configuration having a first port connected to the frequency variable oscillator 14 and two ports connected to the first detector 15 and the second detector 16.
  • the frequency variable oscillator 14 is used as the oscillator and a general photodetector is used as the receiver, but the present invention is not limited to this example.
  • a wideband oscillator can be used as the oscillator, and a detector capable of frequency decomposition can be used as the receiver.
  • the beam steering system 10A includes an antenna device 20A and a frequency variable oscillator 14. By sweeping the frequency with the frequency variable oscillator 14, the beam emitted from the antenna device 20A is scanned in the xz plane.
  • the frequency band of the frequency variable oscillator 14 is, for example, a terahertz band (wavelength is 3 ⁇ m to 3 mm) covering from the mid-infrared region to the electromagnetic wave region, but is not limited thereto.
  • a frequency band of near-infrared light or visible light may be used in place of the terahertz wave or in addition to the terahertz wave.
  • the operation of the beam steering system 10A is as follows.
  • the light wave (for example, terahertz wave) output from the frequency variable oscillator 14 propagates through the waveguide 11 and is branched, and is incident on the first antenna 12 and the second antenna 13.
  • a part of the light wave propagating through the first antenna 12 leaks from the first antenna 12 and is radiated as synchrotron radiation DR1.
  • the remaining light is not emitted from the first antenna 12, stays in the first antenna 12 as the local light LO1, enters the first detector 15, and is used as the first reference signal.
  • Synchrotron radiation DR1 is emitted at a radiation angle ⁇ .
  • the radiation angle ⁇ is an angle formed by the normal of the propagation direction of the light wave and the radiation direction of the synchrotron radiation DR1.
  • Synchrotron radiation DR1 is emitted in the traveling direction and is emitted in a range from an acute angle to a right angle when viewed from the propagation direction.
  • the synchrotron radiation DR1 emitted from the first antenna 12 is reflected by an object existing in the environment, and is received by the second antenna 13 as a reflected signal RS1.
  • synchrotron radiation DR2 a part of the light waves propagating through the second antenna 13 leaks from the second antenna 13 and is radiated into the air as synchrotron radiation DR2.
  • the radiation direction of the synchrotron radiation DR2 also forms an acute angle with respect to the propagation direction.
  • the other part of the light is not emitted from the second antenna 13, but stays in the second antenna 13 as the local light LO2, enters the second detector 16, and is used as the second reference signal.
  • the synchrotron radiation DR2 emitted from the second antenna 13 is reflected by an object existing in the environment and is received by the first antenna 12 as a reflected signal RS2.
  • the reflected signal RS2 having the same frequency and the local light LO1 used as the first reference light are combined, mixed by the first detector 15, and the reflected signal RS2 is homodyne-detected.
  • the reflected signal RS1 having the same frequency and the local light LO2 used as the second reference light are combined, mixed by the second detector 16, and the reflected signal RS1 is homodyne-detected.
  • the first antenna 12, which is a leakage wave antenna receives the reflected signal RS2 in a direction in which the return light to the light source, that is, the frequency variable oscillator 14 does not occur, and combines with the local light LO1 staying in the first antenna 12. To do.
  • the second antenna 13 which is a leaky wave antenna, receives the reflected signal RS1 in a direction in which return light to the light source, that is, the frequency variable oscillator 14 does not occur, and combines with the local light LO2 staying in the second antenna 13.
  • the first detector 15 and the second detector 16 may be non-linear elements such as a Schottky barrier diode.
  • the radiation angles ⁇ of the synchrotron radiation DR1 and the synchrotron radiation DR2 change in the xz plane, and the radiation is emitted in different scanning directions.
  • the reflected signal RS2 is mixed with the first reference signal (local light LO1) by the first detector 15 and homodyne detected.
  • the reflected signal RS1 is mixed with the second reference signal (local light LO2) by the second detector 16 and homodyne detected.
  • the ratio of the synchrotron radiation radiated from the antenna and the reference light (or local light LO) that remains in the antenna without being radiated can be adjusted.
  • the slow wave line type antenna device 20B of FIG. 1B has a 3-port configuration similar to the antenna device 20A.
  • the antenna device 20B has a waveguide 11 extending from the first port P1, a first antenna 12A extending from the waveguide 11 in the first direction, and a second antenna 13A extending in a second direction different from the first direction. ..
  • the end of the first antenna 12A is the second port, and the end of the second antenna 13A is the third port.
  • the first antenna 12A has a leading waveguide 120 extending to the first detector 15 and a diffraction grating 126.
  • the lead waveguide 120 and the diffraction grating 126 may be formed, for example, as a conductive pattern on a polymer film.
  • the second antenna 13A also has a leading waveguide leading to the second detector 16 and a diffraction grating, like the first antenna 12A.
  • the diffraction grating 126 is formed by a branch pattern in the y direction provided alternately on both sides of the leading waveguide 120 extending in the x direction.
  • the pitch P of the branch pattern is set at an interval capable of diffracting the light wave propagating through the antenna.
  • the length l of the branch line is designed so that the power ratio of the waveguide light waveguideing through the leading waveguide 120 and the synchrotron radiation emitted in the air is an appropriate ratio.
  • the diffraction grating 126 may be formed of protrusions, slits, or the like in addition to the metal strip. Further, not only the branch pattern but also an arbitrary pattern capable of diffracting light waves such as a ladder pattern, a corrugated pattern, and a mianda pattern may be adopted.
  • the diffraction grating 126 radiates light waves into the air along the leading waveguide 120 with a constant phase delay distribution.
  • the synchrotron radiation DR1 emitted from the first antenna 12A is emitted at a radiation angle ⁇ in the direction opposite to the propagation direction.
  • the radial direction forms an obtuse angle with the propagation direction.
  • the synchrotron radiation DR2 emitted from the second antenna 13A is emitted at a radiation angle ⁇ in the direction opposite to the propagation direction by the diffraction grating provided on the second antenna 13A.
  • the radial direction forms an obtuse angle with the propagation direction.
  • the operation of the beam steering system 10B using the antenna device 20B is as follows.
  • the light wave output from the frequency variable oscillator 14 propagates through the waveguide 11 and is branched, and is incident on the first antenna 12A and the second antenna 13A.
  • a part of the light wave propagating through the first antenna 12A leaks from the first antenna 12A and is radiated as synchrotron radiation DR1 behind the propagation direction.
  • the other part of the light is not emitted from the first antenna 12A but stays in the first antenna 12A (local light LO1), enters the first detector 15, and is used as the first reference light.
  • the synchrotron radiation DR1 radiated from the first antenna 12A in the direction opposite to the propagation direction is reflected by an object existing in the environment, and is incident on the second antenna 13A from the side of the second detector 16 as a reflected signal RS1.
  • the reflected signal RS1 propagates toward the second detector 16 by the diffraction grating 126 of the second antenna 13A.
  • a part of the light wave propagating through the second antenna 13A leaks from the second antenna 13A and is radiated as synchrotron radiation DR2 behind the propagation direction.
  • the other part of the light is not emitted from the second antenna 13A but stays in the second antenna 13A (local light LO2), enters the second detector 16 and is used as the second reference light.
  • the synchrotron radiation DR2 radiated from the second antenna 13A in the direction opposite to the propagation direction is reflected by an object existing in the environment, and is incident on the first antenna 12A from the side of the first detector 15 as a reflected signal RS2.
  • the reflected signal RS2 is propagated toward the first detector 15 by the diffraction grating 126 of the first antenna 12A.
  • the reflected signal RS2 of the same frequency and the first reference light (local LO1) are mixed and homodyne detected.
  • the reflected signal RS1 having the same frequency and the second reference light (local LO2) are mixed and homodyne detected.
  • the synchrotron radiation angles ⁇ of the synchrotron radiation DR1 and DR2 change and are radiated in another scanning direction.
  • the reflected signal RS2 is mixed with the local light LO1 and homodyne detected by the first detector 15, and the reflected signal RS1 is mixed with the local light LO2 and homodyne detected by the second detector 16.
  • the fast wave line type antenna device 20A can distribute almost all of the light waves output from the frequency variable oscillator 14 to synchrotron radiation and local light, and the loss is small. However, since the waveguide 11, the first antenna 12, and the second antenna 13 are composed of a waveguide, they are bulkier than the antenna device 20B.
  • the slow-wave line type antenna device 20B can be formed as a conductive pattern or the like on a polymer film, and is thinner and smaller than the antenna device 20A, but some loss occurs due to the slow-wave line. ..
  • Either configuration of the antenna devices 20A and 20B may be adopted depending on the application of the antenna device 20, the allowable manufacturing conditions, and the like. Both the antenna devices 20A and 20B are suitable for beam steering.
  • FIG. 2 shows the appearance of the antenna device 20.
  • the antenna device 20A of FIG. 1A will be described as an example, but the principles of homodyne detection and beam steering also apply to the antenna device 20B of FIG. 1B.
  • a waveguide A, a waveguide B, and a waveguide C are formed inside the main body 21, and the antenna device 20 is covered with a cover 25.
  • the waveguide A corresponds to the waveguide 11 of FIG. 1A, and is, for example, an EIA standard waveguide (WR2.2).
  • the waveguide B corresponds to the first antenna 12 in FIG. 1A.
  • the waveguide C corresponds to the second antenna 13 of FIG. 1A.
  • the input end of the waveguide A corresponds to the first port P1 in FIG. 1A and is connected to the frequency variable oscillator 14.
  • the end of the waveguide B is connected to the exit end by the waveguide D and is connected to the first detector 15.
  • the end of the waveguide C is connected to the exit end by the waveguide E and is connected to the second detector 16.
  • Slits are formed on the upper surface of the main body 21 and the cover 25, and leakage waves are radiated from the slits.
  • FIG. 3 shows the radiation principle of the fast wave line type antenna device 20A.
  • the first antenna 12 of the pair of antennas is taken as an example, but the second antenna 13 also has the same configuration and radiation principle except that the propagation direction is reversed.
  • the first antenna 12 is formed of a waveguide (for example, a metal waveguide) 123 whose phase velocity exceeds the speed of light.
  • a waveguide for example, a metal waveguide
  • directional radiation is generated in the direction determined by the frequency (indicated by the synchrotron radiation "DR1" in the figure).
  • the remaining components remain in the first antenna as the local light LO1 and are used as the first reference light as described above. Since the local light LO1 is in the TE10 mode, it propagates while repeating multiple reflections in the xz plane in the waveguide 123.
  • K 0 is the wave number in the air
  • K g is the wave number in the waveguide 123.
  • Kp is the wave number of the diffraction grating 126.
  • each antenna is provided with an emissivity adjustment mechanism that makes it possible to adjust the ratio of the synchrotron radiation emitted from the antenna and the light that remains in the antenna and is used as reference light without being emitted.
  • an emissivity adjustment mechanism that makes it possible to adjust the ratio of the synchrotron radiation emitted from the antenna and the light that remains in the antenna and is used as reference light without being emitted.
  • it is necessary to enter the detector with a local light LO having a power suitable for detection as a reference light. This is because if the light wave is excessively radiated before reaching the detector, the power of the local light LO incident on the detector becomes insufficient, and it becomes difficult to detect the reflected signal RS.
  • the emissivity mechanism is configured by providing a fixed ratio of openings along the waveguide.
  • FIG. 4 is a schematic view of the film 22 as an example of the emissivity adjusting mechanism.
  • the film 22 is arranged, for example, on the slit 121 of the waveguide 123.
  • the film 22 has a carrier film 221 and a metal pattern 222 formed on one surface of the carrier film 221.
  • the film 22 is arranged so that the surface on which the metal pattern 222 is formed faces the surface 122 of the main body 21.
  • the carrier film 221 is a film that is transparent to a wavelength used, for example, a terahertz wave, and for example, a polymer film can be used. Thin plates such as non-doped silicon, Teflon®, quartz and the like may be used.
  • the metal pattern 222 is made of a material that is opaque to the wavelength used, for example, terahertz waves, and for example, copper, silver, gold, aluminum, indium, tin, zinc, etc. are used.
  • the metal pattern 222 has a periodic opening or grid 223. This pattern is formed by patterning a metal thin film by photolithography or the like.
  • the grid 223 is a grid extending in a direction parallel to the vibration direction of the electric field.
  • the grid 223 is formed periodically, but unlike the diffraction grating, it is formed at a period sufficiently smaller than the wavelength. Therefore, the opening of the grid 223 is in a cutoff state with respect to the local light LO1 propagating in the TE10 mode, and contributes to confining the local light LO1 in the waveguide 123 and lowering the emissivity.
  • the period and width of the grid 223 are set, for example, to divide the components of the synchrotron radiation and the waveguide light in half (1: 1), but are not limited to this ratio.
  • the metal pattern 222 does not necessarily have to be formed on the entire back surface of the carrier film 221.
  • the grid 223 may be formed only at the position corresponding to the slit 121. The details will be described later.
  • the metal pattern 222 does not necessarily have to be periodic.
  • the size, shape, number, and the like of the openings of the grid 223 may change non-uniformly in a range sufficiently smaller than the wavelength.
  • the emissivity can also be adjusted by adjusting the width of the slit 121 of the waveguide 123. In this case, since the slit 121 itself serves as an emissivity adjusting mechanism, the metal pattern 222 of the film 22 is unnecessary, but the film 22 may be used for the purpose of protecting the waveguide 123.
  • a mechanism in which an opening is integrally molded on a waveguide by 3D printing or injection molding may be used.
  • the amount of radiation can be adjusted by the length l of the branch line of the diffraction grating 126, and the film 22 does not necessarily have to be provided as the emissivity adjustment mechanism. ..
  • FIG. 5 is a diagram illustrating wave propagation inside the main body of the antenna device 20 of the embodiment.
  • the lower end of the waveguide A extending in the height direction (z direction) of the main body 21 is the first port P1 connected to the frequency variable oscillator 14, and a light wave of a desired band is input.
  • the width W in the cross section of the waveguide A is, for example, 570 ⁇ m and the length is 285 ⁇ m.
  • the waveguide A branches into a waveguide B serving as the first antenna 12 and a waveguide C serving as the second antenna 13.
  • the waveguide B and the waveguide C are grooves formed at the upper end of the main body 21, and the height h (that is, the depth of the groove) of the waveguide is, for example, 400 to 450 ⁇ m.
  • a waveguide is formed by covering this groove with a cover 25 having a slit 251.
  • the T junction 214 is formed by the protrusion 215 provided on the bottom surface side of the cover 25, and is divided into the waveguide B and the waveguide C.
  • the height of the protrusion 215 is about several tens of ⁇ m to 100 ⁇ m, and the width d in the propagation direction (x direction) is about 300 ⁇ m.
  • the light wave guided through the waveguide B is incident on the first detector 15 from the second port P2, which is a connection port with the first detector 15.
  • the light wave guided through the waveguide C is incident on the second detector 16 from the third port P3, which is a connection port with the second detector 16.
  • the waveguide B and the waveguide C near the upper surface of the main body 21 are connected to the second port P2 and the third port P3 by the waveguide D and the waveguide E that bend in an L shape inside the main body 21.
  • the second port P2 and the third port P3 may be arranged at positions where the waveguide B and the waveguide C are connected by a straight line.
  • FIG. 6A is an exploded perspective view of the antenna device 20 of FIG. A film 22 constituting an emissivity adjusting mechanism is inserted between the main body 21 and the cover 25.
  • the pattern of the grid 223 of the film 22 (see FIG. 4) and the slit 251 of the cover 25 are located above the first antenna 12 and the second antenna 13 extending on both sides of the T junction 214 in the main body 21.
  • FIG. 6B (a) is a perspective view of a state in which the film 22 constituting the emissivity adjusting mechanism is arranged on the upper surface 21t of the main body 21, and FIG. 6B (b) is a schematic perspective view of the film 22.
  • a metal pattern 222 having a periodic grid 223 is formed on the back surface of the carrier film 221 (the surface facing the upper surface 21t of the main body 21).
  • FIG. 6C is a perspective view showing a state in which the main body 21 is covered with the cover 25.
  • a film 22 constituting an emissivity adjusting mechanism is arranged between the main body 21 and the cover 25.
  • the leakage wave radiated from the opening of the metal pattern 222 of the film 22 is radiated into the air from the slit 251 of the cover 25.
  • FIG. 7 is a diagram of an electromagnetic field simulation of the antenna device 20 having the configuration of FIG. It can be seen from the waveguide B and the waveguide C that the beam is radiated in the direction determined by the frequency.
  • FIG. 8 shows an example of the metal pattern 222 of the film 22 constituting the emissivity adjusting mechanism.
  • the metal pattern 222A of FIG. 8A has a pattern of stripes 223A that repeats in the x direction, which is the propagation direction. Each stripe 223A is formed over the entire width direction (y direction) of the carrier film 221.
  • the metal pattern 222A allows synchrotron radiation to be extracted from between the stripes at a desired power ratio to waveguide light, but each stripe 223A may act as a metal line and leak in the y direction.
  • the metal pattern 222B has a grid 223B forming a ladder pattern 224 in order to prevent leakage in the y direction.
  • the length of the grid 223B in the y direction (vibration direction of the electric field) to a certain range, there is an air gap between the surface 122 of the main body 21 and the carrier film 221 or between the carrier film 221 and the cover 25.
  • FIG. 9 shows the periodic structure of the film 22 that constitutes the emissivity adjustment mechanism.
  • FIG. 9A is a pattern of the designed grid 223, and
  • FIG. 9B is a microscopic image of the actually produced grid.
  • the periodic structure that repeats in the x direction is determined to satisfy the following at the same time.
  • the period T of the stripe is reduced to the extent that the primary diffracted wave is not generated, that is, the pattern of the grid 223 does not function as a diffraction grating;
  • the ratio of the aperture width p and the stripe width q is adjusted so that the ratio of the power of the synchrotron radiation to the power of the waveguide light (local light) reaching the detector is 1: 1 or close to it.
  • the stripe width q should not be made too small in order to suppress the metal loss caused by the grid 223 of the stripe.
  • the opening width p is designed to be 140 ⁇ m
  • the stripe width q is designed to be 90 ⁇ m
  • the period T is designed to be 230 ⁇ m so as to satisfy the above conditions.
  • FIG. 10 is a diagram for explaining the antenna operation when the emissivity adjusting mechanism (for example, the film 22 described above) is provided in the slit of the main body 21.
  • the emissivity adjusting mechanism for example, the film 22 described above.
  • the synchrotron radiation DR1 is reflected by an object in the environment, and the reflected signal RS1 returned from the same direction as the radiation direction is waveguideed to the third port P3 through the waveguide C.
  • the synchrotron radiation DR2 is reflected by an object in the environment, and the reflected signal RS2 returned from the same direction as the radiation direction is waveguideed to the second port P2 through the waveguide B.
  • the local light LO1 and the reflected signal RS2 are obtained at the second port P2, and the local light LO2 and the reflected signal RS1 are obtained at the third port P3.
  • the reflected signal RS2 and the reflected signal RS1 use the local lights LO1 and LO2 as the first reference light and the second reference light, respectively, for homodyne detection. Will be done.
  • FIG. 11 is a schematic diagram of a radar device 100 using the antenna device 20.
  • the radar device includes the antenna device 20, the frequency variable oscillator 14 connected to the first port of the antenna device 20, and the first detector 15 and the second detector connected to the second port and the third port of the antenna device 20, respectively. It has a detector 16 and a processor 30 connected to the outputs of the first detector 15 and the second detector 16.
  • the frequency variable oscillator 14 is also connected to the processor 30 to control the sweep frequency and the sweep timing.
  • the antenna device 20 has a first antenna 12 and a second antenna 13 that are combined in different directions.
  • the first antenna 12 and the second antenna 13 are leaky wave antennas (LWA: Leaky-Wave Antenna), and may be either a fast wave line type or a slow wave line type.
  • LWA Leaky-Wave Antenna
  • the frequency variable oscillator 14 may be an electronic circuit or a variable wavelength laser.
  • a frequency multiplier 31 may be inserted between the frequency variable oscillator 14 and the antenna device 20.
  • a wideband oscillator may be used as the oscillator, and a detector capable of frequency decomposition may be used as the first detector 15 and the second detector 16.
  • the first detector 15 and the second detector 16 are, for example, Schottky barrier diodes, from an object in the environment using the local light LO as the reference light, as described with reference to FIGS. 1A and 1B.
  • the reflected signal RS is homodyne-detected.
  • the processor 30 calculates the position (distance and direction) of the object by using the detection results of the first detector 15 and the second detector 16.
  • FIG. 12 is a diagram illustrating the principle of radar operation.
  • the light wave input from the first port P1 branches and propagates to the first antenna 12 and the second antenna 13.
  • the object OB1 exists in the direction of the synchrotron radiation emitted from the first antenna 12
  • the light reflected by the object OB1 is reflected in the direction parallel to the synchrotron radiation and received by the second antenna 13.
  • the object OB2 exists in the direction of the synchrotron radiation emitted from the second antenna 13
  • the light reflected by the object OB2 is reflected in the direction parallel to the synchrotron radiation and received by the first antenna 12.
  • the background signal when there is no object in the environment is acquired in advance and stored in the internal or external memory of the processor 30.
  • the output voltages of the first detector 15 and the second detector 16 are acquired while sweeping the frequency with the frequency variable oscillator 14.
  • the frequency spectrum of the output of each detector is obtained by taking the difference between the output voltages of the first detector 15 and the second detector 16 and the background signal.
  • the left figure of FIG. 13 is an example of the frequency spectrum acquired by the detector.
  • a pair of detectors cover half of the space and the frequency spectra obtained from each are integrated.
  • the horizontal axis is the frequency to be swept, and the vertical axis is the output voltage of the detector. Since the beam angle radiated from the antenna device 20 changes with the frequency as shown in FIG. 17, the direction of the object can be calculated from the peak position of the frequency spectrum.
  • the first detector detects an object in the space on the side with the synchrotron radiation DR1
  • the second detector detects an object in the space on the side with the synchrotron radiation DR2.
  • a reflected signal on the time axis can be obtained as shown in the right figure of FIG.
  • the horizontal axis of FIG. 13 is time, and the vertical axis is the output voltage of the detector.
  • the distance is calculated from the time when the peak of the reflected signal is given, for example, by calculating the round-trip propagation time to the object based on the Time of Flight (ToF) method, multiplying the speed of light and dividing by 2.
  • TOF Time of Flight
  • the direction and distance are determined by one frequency sweep, and the two-dimensional position of the object (for example, the position in the xz plane) is determined.
  • the angle range is ⁇ 50 ° to ⁇ 60 °, that is, 100 ° to 120 °. Can be covered.
  • the position of the object can be specified in real time. Since the frequency range and frequency interval to be swept determine the distance resolution and the maximum distance that can be measured, respectively, the optimum value can be determined from the balance between the measurement range, spatial resolution, and measurement time that are desired to be achieved according to the application. .. In particular, for continuous tracking of objects, the range and spacing of sweep frequencies may be changed dynamically. This shortens the time required for sweeping and enables faster measurement. As will be described later with reference to FIGS. 19 and later, when the displacement of the object is small, the displacement can be accurately measured based on the phase difference of the received signal.
  • Three-dimensional localization is also possible by arranging the antenna devices 20A or 20B of FIG. 1A or FIG. 1B in the y direction and synthesizing the detection results obtained at each position in the y direction.
  • FIG. 14 is a diagram illustrating the principle of homodyne detection performed by each of the first detector 15 and the second detector 16.
  • the first detector 15 will be focused on and described.
  • the electric field amplitude of the reference wave (local light) waveguideed through the waveguide B is ⁇ 1
  • the electric field amplitude of the signal wave (reflected signal) reflected and returned from the outside is ⁇ 2.
  • is the angular frequency
  • c is the speed of light
  • R is the distance between the antenna and the object.
  • the first detector 15 and the second detector 16 are non-linear elements having square detection characteristics, and the output voltage V of the detector at the angular frequency ⁇ is represented by the equation (2).
  • the coefficient E1E2cos (2 ⁇ R / c) of the second term on the right side of the equation (2) represents the mixing of the reference wave (local light LO) and the signal wave (reflected signal RS). Since the output voltage V periodically fluctuates according to the angular frequency ⁇ , the unknown distance R is obtained by IFTing the angular frequency ⁇ with respect to the measured value of the output voltage V as shown in FIG.
  • FIG. 15 is a numerical simulation result of the radiation pattern by frequency sweep. This simulation result shows the magnitude of the absolute value of the instantaneous value of the electric field.
  • FIG. 16 shows the radiation pattern of the actually measured antenna.
  • 16 (A) shows a radiation pattern on the xz plane of FIG. 14, and
  • FIG. 16 (B) shows a cross section of each beam of the radiation pattern of FIG. 16 (A). It is confirmed that the radiation is as shown in the simulation of FIG.
  • FIG. 17 is a diagram showing theoretical values and experimental values of the radiation direction and beam width of the antenna device of the embodiment.
  • the horizontal axis of FIG. 17A is the frequency, and the vertical axis is the radiation angle. The more the frequency is swept to a higher frequency, the larger the beam's radiation angle (angle from the normal).
  • the theoretical value of the solid line and the experimental value shown by the data points here, the error bar represents the half width of the beam spread angle in FIG. 16A, not the error) are well fitted.
  • FIG. 17B is a model used in the calculation of the theoretical value of FIG.
  • the height a of the waveguide is 440 ⁇ m
  • the thickness d of the film 22 is 50 ⁇ m
  • the refractive index of the film 22 is n
  • the wave number in the direction along the trajectory when propagating while multiple reflections inside the waveguide is in the air.
  • represents the phase change when the wave motion in the waveguide is reflected by the grid, and is a parameter determined by the height a of the waveguide, the thickness d of the film, the refractive index n, and the like.
  • ⁇ -0.202 (radian) Is set to.
  • L is the distance between the antenna and the object.
  • the radiation angle ⁇ is designed to change over a wide range (scanning range is ⁇ 50 ° or more), and a relatively narrow beam width ⁇ w is realized.
  • FIG. 18 is a modified example of the slow wave line type antenna device of FIG. 1B.
  • the antenna device 20C has a waveguide 11 connected to the light source 44, a first antenna 12B branching from the waveguide 11 in the first direction, and a second antenna 13B branching in the second direction.
  • the first antenna 12B and the second antenna 13B are formed by a grating coupler.
  • the grating coupler can be obtained, for example, by forming a periodic structure of about a wavelength on the surface of an optical fiber or a silicon waveguide.
  • the antenna device 20C is realized by arranging the grating couplers in opposite directions or different directions.
  • the beam steering system 10C includes an antenna device 20C and a light source 44 connected to the first port P1 of the antenna device 20C. By sweeping the frequency with the light source 44, the synchrotron radiation DR1 and DR2 emitted from the antennas 12B and 13B can be scanned in the xz plane.
  • the antenna end of the first antenna 12B is connected to the first receiver 45.
  • the antenna end of the second antenna 13B is connected to the second receiver 46.
  • SSOCT Sestrept Source Optical Coherent Tomography: a method of sweeping a single wavelength
  • SDOCT Spectrum Domain Optical Coherent Tomography: a method of dispersing a wide band wavelength
  • a tunable laser can be used for the light source 44, and a photodiode can be used for the receivers 45 and 46.
  • a super luminescent diode can be used for the light source 44, and a CCD spectroscope can be used for the receivers 45 and 46.
  • the scanned beam does not necessarily have to be a terahertz wave, and may be infrared light, visible light, or the like.
  • the principle of homodyne detection in the first receiver 45 and the second receiver 46 is as described above. By connecting the outputs of the first receiver 45 and the second receiver 46 to the processor, a small radar device having a wide beam scanning angle is realized.
  • homodyne detection is performed on the premise that the frequency of the signal light RS received by the antenna and the frequency of the reference light (local light LO) staying at the antenna are equal. This is valid when the frequency sweep rate is not very fast.
  • the frequency sweep speed increases, there is a frequency difference between the signal light that is reflected and returned at a distance and the reference light that is immediately output from the transmitter. In that case, heterodyne detection is performed.
  • the frequency of the AC signal (interference signal) output from the detector or receiver By detecting the frequency of the AC signal (interference signal) output from the detector or receiver, the distance to the object can be identified.
  • the method of distance measurement at this time is the same method as that of the frequency modulation continuous wave (FMCW) radar.
  • FMCW frequency modulation continuous wave
  • the antenna device and radar device of the embodiment are also applicable to heterodyne detection.
  • ⁇ Detection of minute displacement> 19 to 22 are diagrams for explaining a detection method when the displacement of the object is minute.
  • the reflected signal from the object OB is from cos [ ⁇ t ⁇ (2 ⁇ R / c)] to cos [ ⁇ t ⁇ (2 ⁇ (R + ⁇ R) /). c)] changes.
  • the received signal before IFT is the detector (diode) output obtained by subtracting the background signal.
  • the spectrum at position A is the same data as the spectrum in FIG.
  • c is the speed of light
  • FW is the bandwidth of the received radar signal.
  • the bandwidth FW of the received signal is about 80 GHz, it cannot be read when ⁇ R is 1.8 mm or less.
  • the phase of the IFT is acquired instead of the absolute value of the IFT, and the displacement is obtained from the phase difference ⁇ of the two received signals.
  • the vertical axis of FIG. 21 represents the phase of the IFT of the two received signals.
  • FIG. 22 shows the phase difference ⁇ of the IFT signal of FIG. 21. Unlike FIG. 20, the peak of the phase difference appears clearly. From this peak position, the reference distance before displacement can be calculated. This method is called "phase sensitive detection".
  • the horizontal axis “time” in FIG. 22 is read as the reference distance R before displacement, and the vertical axis “phase difference” is read as displacement.
  • the displacement ⁇ R is determined by using the phase difference ⁇ .
  • ⁇ R ( ⁇ c / 2 ⁇ 0) ⁇ It is calculated by.
  • ⁇ 0 is the central angle frequency of the received radar signal.
  • ⁇ R is about ⁇ 0.12 mm.
  • a minus sign indicates that the object is approaching the radar.
  • the measurement resolution is improved. In this way, by using the phase difference of the received signal, it is possible to detect a minute displacement.
  • the minute displacement may be given from the outside of the object.
  • FIG. 23 is a schematic view of the sensor 50 in which the radar device 100 and the exciter 51 of the embodiment are combined.
  • the conventional vibration sensor it was limited to the case where the surface of the object was exposed.
  • the sensor 50 of the embodiment can actively measure the vibration even if the surface of the object OB is not exposed. This is because terahertz waves pass through plastic and cloth.
  • Vibration may be applied to the object OB from the outside.
  • an ultrasonic source that irradiates ultrasonic waves, or the like can be used.
  • Photoacoustic excitation or photomechanical excitation can be applied to the object OB remotely and non-contactly.
  • the vibrating body may be brought into contact with the object OB to vibrate.
  • the sensor 50 By using the sensor 50, it is possible to inspect the vibration state inside the object and the physical property state. It can be used to grasp the situation in the living body in the medical field. In addition, it is possible to measure the degree of stiff shoulders and the hardness of the muscles of the limbs while wearing clothes.
  • the exciter 51 and the beam steering system 10 are connected to the processor 30 of the radar device 100. It is desirable that the exciter 51 and the beam steering system 10 operate synchronously under the control of the processor 30.
  • the processor 30 has a memory 301.
  • the memory 301 corresponds to the information regarding the vibration applied to the object OB by the exciter 51 and the outputs of the first detector 15 and the second detector 16 (see FIG. 11) of the radar device 100 after the vibration is applied. It may be attached and recorded.
  • FIGS. 21 and 22 show an example in which the detection of the minute displacement shown in FIGS. 21 and 22 is applied to the biosensor.
  • a frequency sweep type oscillator and detector based on the configuration of FIG. 11 are used.
  • the radar device 100 can be used as a non-contact sensor such as a gesture sensor in addition to the biosensor.
  • FIG. 24 shows heart rate measurements based on the phase sensitive detections of FIGS. 21 and 22.
  • the subject sits in his clothes so that his chest is located at an angle of about 45 ° from the radar device 100 at a distance of about 20 cm.
  • an electrocardiogram ECG: electrocardiogram
  • ECG electrocardiogram
  • FIG. 25A shows the radar measurement result (circle) and the electrocardiographic waveform (solid line) of subject A.
  • FIG. 25B shows the radar measurement result (circle) and the electrocardiographic waveform (solid line) of another subject B.
  • the vertical axis on the left side of the graph is the ECG voltage, and the vertical axis on the right side is the IFT phase difference of the embodiment. Chest displacement synchronized with the electrocardiogram waveform was observed in all subjects.
  • ⁇ R is the displacement of the chest (minus sign when approaching the radar device 100)
  • c is the light velocity
  • ⁇ 0 is the central angle frequency of the sweep bandwidth
  • is the phase 1 of the IFT chest distance of the frequency sweep signal. It is the difference from the time before.
  • ⁇ 0 2 ⁇ ⁇ 440 GHz
  • is acquired every 30 ms, and the chest displacement of about 40 ⁇ m is actually measured immediately after the occurrence of ECG.
  • the radar device of the embodiment can be suitably applied to a biosensor. It is also applicable not only to heartbeat / pulse, but also to other vital signs such as blinking and shaking of the head, health care monitoring, and gesture recognition of fingers.
  • 26 and 27 are diagrams for explaining the ambiguity of the arrangement determination in radar ranging.
  • FIG. 26 consider the case where the two objects OB1 and OB2 are in the positional relationship of the arrangement A and the case where they are in the positional relationship of the arrangement B.
  • the signals obtained in the arrangement A and the arrangement B become the same only by collectively processing the frequency sweep results, and it becomes difficult to distinguish between the two. In this case, as described with reference to FIG. 13, it is necessary to distinguish the plurality of peaks by some method.
  • the batch processing method and the divided scanning method are combined to specify the correct combination of the angle ⁇ and the distance r.
  • FIG. 28 is a schematic diagram of the divided scanning method.
  • the frequency sweep range is divided into N sections in a predetermined direction. IFT is performed individually for each divided section to detect the presence / absence of an object and the distance r.
  • FIG. 29 is a flowchart of signal processing performed by the radar device of the embodiment. This processing flow is executed by the processor 30. First, the frequency sweep range and the number of divisions N are determined (S101). Beam scan the entire range of the determined frequency sweep (S102). The entire frequency range of the received reflected signal is collectively IFTed to calculate the direction ⁇ and the distance r of the object (S103). The result obtained by batch processing is referred to as "result A".
  • the obtained frequency spectrum is subjected to IFT for each frequency section divided into N, and the direction ⁇ and the distance r of the object are calculated (S104).
  • the result obtained by the division process is referred to as "result B".
  • the processes of steps S103 and S104 are in no particular order, and may be performed at the same time if parallel processing is possible.
  • the final position (direction and distance) of the object is specified (S105).
  • FIG. 30 is a diagram of signals obtained in steps S103 to 105 of FIG. 29.
  • FIG. 30A is the result A obtained in step S103.
  • the frequency spectra are collectively IFTed to obtain angle information ⁇ 1 and ⁇ 2 and distance information r1 and r2. In this state, the correct combination of angle and distance is unknown.
  • (B) of FIG. 30 is the result B obtained in step S104.
  • a part of the position information obtained by IFTing the frequency spectrum for each division section is shown.
  • the signal is obtained in a certain range including the distance r2.
  • distance information is not obtained in the frequency section including the angle ⁇ 2.
  • (C) of FIG. 30 is a signal obtained in step S105.
  • the combination ( ⁇ 1, r2) showing the correct position information is specified.
  • step S104 the presence / absence and distance of an object are detected for each divided frequency section, so that ambiguity in the positional relationship can be avoided.
  • the frequency band is narrowed, the resolution in the depth direction is reduced to 1 / N at the worst in each frequency section. Therefore, the product of the calculation result obtained from the divided scan and the position calculation result obtained by batch processing (the ambiguity of the positional relationship remains, but the resolution in the depth direction is high) is taken. As a result, it is possible to eliminate the ambiguity of the positional relationship while preventing the resolution in the depth direction from being lowered.
  • Example of antenna arrangement for close range measurement> 31 to 34 show an example of antenna arrangement suitable for measurement at a close distance.
  • the antenna arrangements in FIGS. 1A, 1B, and 18 assume that the distance to the object is approximately several tens of centimeters. With this distance, the angles between each of the first antenna 12 and the second antenna 13 and the object are almost equal. Therefore, it is easy for the second antenna 13 to receive the recursive backscatter of the wave emitted from the first antenna 12 (see FIGS. 1A and 1B).
  • FIG. 31 shows the antenna arrangement of the radar device 100A used at a close distance.
  • the radar device 100A uses any one of the first antenna 12 and the second antenna 13. In the example of FIG. 31, only the first antenna 12 is used.
  • the light wave radiated from the first antenna 12 is reflected by the object OB3 and received by the first antenna 12 as a reflected signal RS. Since the object OB3 is in a close distance to the first antenna 12, the reflection on the object OB3 is dominated by a component close to specular reflection.
  • the first antenna 12 receives the reflected signal RS reflected by the object OB3 in a direction in which no return light is generated to the light source, that is, the frequency variable oscillator 14, and combines with the local light LO staying in the first antenna 12.
  • the combined signal is received by the receiver 47 and processed by the processor 30.
  • FIG. 32 shows the antenna arrangement of the radar device 100B used at a close distance.
  • the first antenna 12 and the second antenna 13 are used so as to face in the same direction.
  • the first antenna 12 positively utilizes not only the reflected signal RS2 radiated from the second antenna 13 and returned, but also the reflected signal RS1 radiated and returned from the own antenna.
  • the second antenna 13 positively utilizes not only the reflected signal RS1 radiated from the first antenna 12 and returned, but also the reflected signal RS2 radiated and returned from the own antenna.
  • the reflected signals RS1 and RS2 received by the first antenna 12 are combined with the local light LO1 staying in the first antenna 12 and received by the receiver 45.
  • the reflected signals RS1 and RS2 received by the second antenna 13 are combined with the local light LO2 staying in the second antenna 13 and received by the receiver 46.
  • the detection results by the receivers 45 and 46 are processed by the processor 30.
  • This configuration makes effective use of the reflected signal, so the reception intensity is high and the measurement accuracy is improved.
  • the signals detected by the receivers 45 and 46 are digitally converted so that they can be applied to digital differential measurement.
  • FIG. 33 shows the antenna arrangement of the radar device 100C used at a close distance.
  • the first antenna 12 and the second antenna 13 are used with the same direction, and are received by a single receiver 47.
  • the first antenna 12 positively utilizes not only the reflected signal RS2 radiated from the second antenna 13 and returned, but also the reflected signal RS1 radiated and returned from the own antenna.
  • the second antenna 13 positively utilizes not only the reflected signal RS1 radiated from the first antenna 12 and returned, but also the reflected signal RS2 radiated and returned from the own antenna.
  • the difference from FIG. 32 is that the signal obtained by the first antenna 12 and the signal obtained by the second antenna 13 are superposed and detected by one receiver 47.
  • the signal detected by the receiver 47 includes a beat component including a sum and a difference between the signal received by the first antenna 12 and the signal received by the second antenna 13. If you want to extract only the difference from the beat signal, you may pass it through an analog low-pass filter.
  • FIG. 34 shows the antenna arrangement of the radar device 100D used at a close distance.
  • the signal obtained by the first antenna 12 and the signal obtained by the second antenna 13 are analog-synthesized by a synthesizer 55 such as a hybrid coupler, a magic tee, and a rat race coupler, and separated into two signals.
  • the receiver 45 and the receiver 46 detect the sum (A + B) and the difference (AB) of the two signals, for example, the signal A obtained by the first antenna 12 and the signal B obtained by the second antenna 13. ..
  • the difference or sum is calculated after the two received signals are digitally converted.
  • the analog synthesis result is digitally converted with higher accuracy without being affected by the DC offset. Can be measured.
  • the configuration that takes the difference between the two signals can be applied to three-dimensional measurement and differential measurement.
  • FIGS. 31 to 34 enable measurement at a close distance.
  • a pin badge type sensor incorporating a radar device 100 can be attached to the chest of clothing to measure heartbeat and the like. If it is a terahertz wave, it penetrates the clothes, so it is possible to measure non-contact with clothes.
  • FIGS. 32 to 34 as will be described later, light waves having different frequencies and phases may be emitted from the first antenna 12 and the second antenna 13. In this case, noise can be reduced.
  • ⁇ Other configuration examples> 35 to 37 show a configuration example using a reflector. These configuration examples are applied to measurements other than close range measurements.
  • FIG. 35 shows the antenna arrangement of the radar device 100E.
  • the radar device 100E uses one antenna (for example, the first antenna 12) and the reflector 56.
  • the first antenna 12 has a fast wave line.
  • the light wave output from the light source, for example, the frequency variable oscillator 14 and propagating through the first antenna 12 leaks from the fast wave line of the first antenna 12, is reflected by the reflector 56, and is emitted (synchrotron radiation DR).
  • the reflected light RS that is reflected and returned by a distant object is incident on the first antenna 12.
  • the reflected light RS incident on the first antenna 12 propagates in a direction that does not return to the frequency variable oscillator 14, and is combined with the local light LO that remains in the first antenna 12.
  • the signal in which the reflected light RS and the local light LO are superimposed is detected by the receiver 47.
  • one receiver 47 can measure the space on one side.
  • FIG. 36 is a schematic view of the antenna device 20E provided with the reflector 56.
  • 36A is a perspective view and FIG. 36B is a side view.
  • the first antenna 12 of the antenna device 20 has a slit 121 and a waveguide 123.
  • the light wave in the TE10 mode propagates in the waveguide 123, and a part of the propagated light leaks from the slit 121 at an angle ⁇ .
  • the leaked wave is reflected by the reflector 56 and radiated as synchrotron radiation DR.
  • the synchrotron radiation DR is reflected at a distance and the reflected light RS returns to the first antenna 12.
  • the reflected light RS is incident on the waveguide 123 from the slit 121, superposed on the local light LO, and detected by the receiver 47 (see FIG. 35).
  • the processing of the detected signal is as described with reference to FIG. With this configuration, one-sided space can be measured with a single receiver 47.
  • the leaked wave can be reflected by the reflector 56 to obtain synchrotron radiation DR.
  • FIG. 37 shows the antenna arrangement of the radar device 100F.
  • the radar device 100F is a combination of a configuration using the reflector 56 and the analog composite reception of FIG. 34.
  • a reflector 57 and a reflector 58 are provided on the first antenna 12 and the second antenna 13 facing the same direction, respectively.
  • the leaked wave of the first antenna 12 is reflected by the reflector 57 and becomes synchrotron radiation DR1.
  • the leaked wave of the second antenna 13 is reflected by the reflector 58 and becomes synchrotron radiation DR2.
  • the synchrotron radiation DR1 is reflected by a distant object, and the reflected light RS1 returns to the radar device 100F.
  • the reflected light DR2 is reflected by the same object, and the reflected light RS2 returns to the radar device 100F.
  • the reflected light RS1 and RS2 are incident on the first antenna 12 and are superposed on the local light LO1 that stays in the first antenna 12.
  • the first signal received by the first antenna 12 is input to the synthesizer 55 such as a hybrid coupler together with the local optical LO1.
  • the reflected lights RS1 and RS2 are incident on the second antenna 13 and are superposed on the local light LO2 that stays in the second antenna 13.
  • the second signal received by the second antenna 13 is incident on the synthesizer 55 together with the local light LO2.
  • the synthesizer 55 analog-synthesizes the signal obtained from the first antenna 12 and the signal obtained from the second antenna 13, and outputs two signals (the sum and difference of the first signal and the second signal).
  • the two outputs of the synthesizer 55 are detected by the receivers 45 and 46, respectively.
  • the detection sensitivity can be increased by increasing the intensity of the synchrotron radiation in the same direction and also using the reflected signal of the light wave radiated from the other antenna.
  • ⁇ Structure with a detour> 38 and 39 show a configuration in which a detour is provided in the antenna device so that the frequencies and phases of the synchrotron radiation emitted from the two antennas are different from each other.
  • the first antenna 12 and the second antenna 13 are directed in different directions.
  • the mode of interference between the reflected light RS and the local light LO is the same as in FIG. 1A.
  • a detour 111a having a length l is provided between the frequency variable oscillator 14 and the second antenna 13.
  • the first antenna 12 and the second antenna 13 are directed in the same direction.
  • the mode of interference between the reflected light RS and the local light is the same as in FIG. 32.
  • a detour 111b having a length l is provided between the frequency variable oscillator 14 and the second antenna 13.
  • the sweep frequency f of the transmitter is expressed as f (t) as a function of time t.
  • f (t) Assuming that the phase velocity of the light wave propagating in the detour 111 of length l is v, a time delay of l / v occurs in the detour 111.
  • the frequency of the synchrotron radiation DR1 (and the local light LO1) is expressed as f (t).
  • the frequency of the synchrotron radiation DR2 (and the local light LO2) is expressed as f (tl / v).
  • ⁇ Other antenna configuration examples The above-mentioned antenna arrangement examples can be combined with each other.
  • the configuration of detour 111 may be applied to radiate light waves of different frequencies and phases from the two antennas. This makes it possible to reduce noise.
  • Analog composite reception may be applied in all configurations using two antennas. This enables analog differential measurement.
  • a reflector 56 may be provided in the close-range measurement configuration of FIG. 32 to have a measurement configuration other than the close-range measurement, and reception may be performed without analog synthesis. In this case, digital differential measurement becomes possible.
  • the emissivity adjustment mechanism can be applied to any antenna arrangement.
  • the first antenna 12 and the second antenna 13 may be directed in different directions.
  • the measurement range is doubled.
  • the measurement efficiency is improved by pointing the two antennas in different directions.
  • the frequency and phase of the light waves radiated from the two antennas may be the same or different.
  • FIG. 40 is a table summarizing the antenna configurations of the embodiments.
  • the radar device 100 using the antenna device 20 of the embodiment is applicable to both measurement at a close distance and measurement at a distance other than the close distance.
  • the measurement at a close distance means that the mirror reflection component is predominantly received.
  • Measurements other than close range refers to the case where recursive backscatter is predominantly received.
  • the number of antennas used may be one or two or more for both the measurement at a close distance and the measurement other than the close distance.
  • the displacement at close-range can be measured with the minimum configuration.
  • the reflected light RS radiated from other antennas and returned can be positively utilized for measurement.
  • Analog differential measurement is realized in the configuration in which the light waves received by each antenna and superimposed on the local light are synthesized in analog. Noise can be reduced by using light waves having different frequencies and phases between the antennas.
  • the measurement range can be expanded.
  • one side space can be measured with a single receiver.
  • the signal obtained by each antenna may be analog-synthesized before being detected by the receiver, or may be detected by each receiver, digitally converted, and then synthesized.
  • a compact radar device can be realized without a reflector or mechanical drive.
  • the present invention has been described above based on a specific embodiment, the present invention is not limited to the above-mentioned example.
  • the first antenna 12 and the second antenna 13 may be formed of a transparent conductive thin film such as ITO, IZO, ZnO, and IGZO. By adjusting the diffraction pattern formed on the transparent conductive thin film, a slow wave line type antenna device can be obtained.
  • the first antenna and the second antenna may be grating couplers formed on a dielectric waveguide such as an optical fiber. At least a part of this grating coupler may function as an emissivity adjusting mechanism.
  • the aperture pattern does not necessarily have to be periodic, and the plurality of openings may be arranged irregularly or randomly. ..
  • Each opening does not necessarily have to be a rectangular opening, and may be an arrangement of openings such as a circle, a polygon, an ellipse, a crescent, a semicircle, and an arc.
  • the spacing between openings and the width and length (or diameter) of openings are set smaller than the wavelength used.
  • the width of the opening or slit When using a single opening or slit along the propagation direction of the leaky wave antenna as the emissivity adjustment mechanism, set the width of the opening or slit smaller than the wavelength used.
  • the width of the opening or slit may be constant or variable.
  • a reverse-tapered slit whose width increases as it advances in the propagation direction may be used within a range smaller than the wavelength used.
  • the same effect as that of the above-described embodiment can be obtained. That is, (1) By scanning the beam with the leaky wave antenna, the phase shifter becomes unnecessary, and the beam steering and radar device can be realized without using mechanical drive. (2) In a configuration in which at least two leaky wave antennas facing different directions are combined, the input point and the output point can be spatially separated, so that a circulator becomes unnecessary and a compact radar device is configured. (3) In the configuration example in which the entire oscillator, receiver, antenna, and interference system (detection) are configured on a waveguide basis, flat integration is possible with the minimum necessary elements, and transmission loss in the system is reduced. Can be minimized.
  • a plurality of sets of a first antenna, a second antenna, a first detector, and a second detector may be arranged to form a radar device that generates a stereoscopic image.
  • the output of all detectors is input to the processor 30 to generate the position and velocity of the object.
  • the light source may be provided for each antenna device, or one light source common to all antenna devices may be used.
  • the antenna device 20 having the first antenna and the second antenna extending in different directions any of the antenna devices of the above-described embodiment may be used.
  • the antenna device and radar device of the embodiment are small and have high resolution, and can be mounted on a drone or a wearable terminal which is a mobile body smaller than an automobile.
  • the 3-port antenna configuration scans the beam over a wide range and can be applied to non-contact sensors such as landing support based on spatial recognition, gesture recognition, and non-contact heart rate measurement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Waveguide Aerials (AREA)

Abstract

小型かつ集積可能な構成で、より広い角度に渡ってビーム走査するアンテナデバイスとこれを用いたレーダ装置を提供する。アンテナデバイスは、入射端を有する導波路と、前記導波路に接続される第1アンテナ、及び第2アンテナと、を有し、前記第1アンテナは、前記第1アンテナから放射され外部で反射されて戻ってきた第1信号と前記第2アンテナから放射され外部で反射されて戻ってきた第2信号の少なくとも一方を、前記第1アンテナ内で前記入射端への戻り光が生じない方向に受信し、受信した信号と、前記第1アンテナから放射されずに前記第1アンテナ内に留まる第1参照光を合波する。

Description

アンテナデバイス、ビームステアリングシステム、レーダ装置、及びレーダ装置を用いたセンサ
 本発明は、ビームステアリングが可能なアンテナ技術と、これを利用したレーダ装置、及びセンサに関する。
 近年、76GHz帯をはじめとするミリ波を用いたレーダが車載応用をはじめ急速に普及している。ミリ波レーダは車や人の有無を大まかに検出することが可能であるが、測距の精度はそれほど高くない。一方、光波(近赤外光)を用いたレーザレーダは指向性の強いビームで高精度の測距が可能であるが、天候や遮蔽等の影響を受けやすい。
 電波と光波の間のテラヘルツ波を用いることで、ミリ波よりも一桁以上高い分解能で物体を検知、判別するとともに、必要なアンテナサイズを一桁以上、小型化することができる。
 テラヘルツレーダの実現に向けて技術的な障壁となるのは、ビーム走査の困難さと、送受信波の分離の困難さである。ビーム走査が困難なのは、現時点で低損失かつ集積可能な移相器がないからである。送受信波の分離が困難なのは、現時点で低損失かつ高アイソレーションのサーキュレータがないからである。汎用的なテラヘルツレーダは未だ実現されておらず、研究開発等の目的で、大掛かりな光学系や反射鏡を組み合わせて、機械駆動でビーム走査している。
 移相器や機械駆動を用いることなくビーム走査をするために、マイクロストリップベースの漏れ波アンテナを用いて、一定の角度範囲にビーム走査するテラヘルツレーダが提案されている(たとえば、非特許文献1参照)。
Murano, K. et al. "Low-Profile Terahertz Radar Based on Broadband Leaky-Wave Beam Steering", IEEE Trans. Terahertz Sci. Technol. 7, 1-10 (2017)
 上記の漏れ波アンテナを用いたテラヘルツレーダは、一本の漏れ波アンテナを用い、受信器と発振器が同じ位置に配置される。そのため、サーキュレータもしくは方向性結合器が必要となり、サイズとコストが増大する。また、一本の漏れ波アンテナのビーム走査角度範囲だけでは不十分な場合がある。
 本発明は、小型かつ集積可能な構成で、より広い角度に渡るビーム走査に適したアンテナデバイスと、これを用いたレーダ装置を提供することを目的とする。
 上記の目的を実現するため、実施形態では、1本または2本以上のアンテナを使用する。
 本発明のひとつの態様では、アンテナデバイスは、入射端を有する導波路と、前記導波路に接続される第1アンテナ、及び第2アンテナを有し、
 前記第1アンテナは、前記第1アンテナから放射され外部で反射されて戻ってきた第1信号と前記第2アンテナから放射され外部で反射されて戻ってきた第2信号の少なくとも一方を、前記第1アンテナ内で前記入射端への戻り光が生じない方向に受信し、受信した信号と、前記第1アンテナから放射されずに前記第1アンテナ内に留まる第1参照光とを合波する。
 上記の構成により、小型かつ集積が容易で、より広い角度に渡るビーム走査に適したアンテナ構造が実現する。このアンテナ構造を用いたテラヘルツレーダは、ミリ波レーダと比較して高い分解能を有する。
実施形態の速波線路型アンテナの基本概念を説明する図である。 実施形態の遅波線路型アンテナの基本概念を説明する図である。 実施形態のアンテナデバイスの外観を示す図である。 速波線路型アンテナの放射原理を説明する図である。 アンテナデバイスに適用される放射率調整機構を示す図である。 実施形態のアンテナデバイスの本体内部の導波路構造を説明する図である。 図5のアンテナデバイスの分解斜視図である。 本体に放射率調整機構を載せた状態を示す図である。 本体にカバーをかぶせた状態を示す図である。 図5の構成の電磁界シミュレーションを示す図である。 放射率調整フィルムのパターン例を示す図である。 放射率調整フィルムの周期構造を示す図である。 放射率調整フィルムを用いたアンテナデバイスの放射例を示す模式図である。 実施形態のアンテナを用いたレーダ装置の模式図である。 レーダ動作の原理を説明する図である。 レーダ装置の測距の原理を説明する図である。 ホモダイン検波の原理を説明する図である。 周波数掃引による放射パターンのシミュレーション結果の図である。 実測されたアンテナの放射パターンを示す図である。 実施形態のアンテナの放射方向とビーム幅の理論値と実験値を示す図である。 図1Bの遅波線路型アンテナの変形例である。 物体の変位が微小な場合の検出方法を説明する図である。 物体の変位が微小な場合のToF法の困難性を説明する図である。 物体の変位が微小な場合の実施形態の測距手法を説明する図である。 物体の変位が微小な場合の実施形態の測距手法を説明する図である。 実施形態のレーダ装置と加振器を組み合わせたセンサの模式図である。 実施形態のレーダ装置を利用した心拍計測のセットアップを示す模式図である。 実施形態のレーダシステムによる心拍計測結果を示す図である。 別の被験者のレーダシステムによる心拍計測結果を示す図である。 位置決定のあいまいさを説明する図である。 位置決定のあいまいさを説明する図である。 位置決定のあいまいさを解決する手法を説明する図である。 実施形態のレーダ装置で行われる信号処理のフローチャートである。 図29の処理の各工程で得られる信号の図である。 レーダ装置の変形例1であり、1本のアンテナを用いた構成例である。 レーダ装置の変形例2であり、同じ方向を向く2本のアンテナを用いた構成例である。 レーダ装置の変形例3であり、2本のアンテナ出力を合成して1つの受光器で受信する構成例である。 レーダ装置の変形例4であり、ハイブリッドカプラを介して2つの受光器で受信する構成例である。 レーダ装置の変形例5であり、反射板を用いた構成例である。 反射板付きのアンテナデバイスの構成例である。 レーダ装置の変形例6であり、2本のアンテナを有するアンテナデバイスに反射板を組み合わせた構成例である。 レーダ装置の変形例7であり、異なる方向を向いたアンテナに迂回路を組み合わせた構成例である。 レーダ装置の変形例8であり、同じ方向を向いたアンテナに迂回路を組み合わせた構成例である。 実施形態と変形例の構成と機能をまとめた図である。
 実施形態では、単一、または2本以上の漏れ波アンテナを、互いに異なる方向、または同じ方向に組み合わせることで、簡単な構成でビームの走査範囲を拡張する。受信器と発振器を別々に配置することが可能になり、サーキュレータ等の送受信波の分離手段が不要になって、小型化が実現される。一つの構成例では、放射率調整機構を用いることで、ホモダイン検波の効率を高める。実施形態のアンテナデバイスは、レーダ装置、心拍/脈拍計測等の生体センサ、測定対象物の機械的性質を測定するセンサ、あるいは手指のジェスチュア認識などに良好に適用される。
 <アンテナデバイスの基本構造>
 図1Aと図1Bは、実施形態のアンテナの基本概念を説明する図である。図1Aは速波線路型のアンテナデバイス20Aを用いたビームステアリングシステム10Aの模式図、図1Bは遅波線路型のアンテナデバイス20Bを用いたビームステアリングシステム10Bの模式図である。図1A、及び図1Bでは、2本のアンテナを異なる方向に向けた構成例を示す。
 図1Aで、アンテナデバイス20Aは、入射端となる第1ポートP1から延びる導波路11と、導波路11から第1の方向に延びる第1アンテナ12と、導波路11から第1の方向と異なる第2の方向に延びる第2アンテナ13を有する。第1の方向と第2の方向は、ビーム走査範囲を広げる観点から、180°互いに逆方向であってもよいが、検知対象となる物体の性質、位置、挙動等によっては、必ずしも180°逆方向でなくてもよい。たとえば、120°の角度で別方向に延びるアンテナであってもよい。検知対象の物体の構造異方性あるいは屈折率異方性を検出する観点から、電場の振動方向が直交するように90°の角度で配置されていてもよい。
 第1アンテナ12の端部は、受信器としての第1検出器15が接続されている。第2アンテナ13の端部に、受信器としての第2検出器16が接続されている。アンテナデバイス20Aは、周波数可変発振器14に接続される第1ポートと、第1検出器15及び第2検出器16に接続される2つのポートを有する、3ポート構成である。
 図1A及び図1Bの例では、発振器として周波数可変発振器14を用い、受信器として一般的な光検出器を用いているが、この例に限定されない。後述するように、発振器として広帯域発振器を用い、受信器として周波数分解が可能な検出器を用いることができる。
 ビームステアリングシステム10Aは、アンテナデバイス20Aと周波数可変発振器14を含む。周波数可変発振器14で周波数を掃引することにより、アンテナデバイス20Aから放射されるビームをxz面内で走査する。周波数可変発振器14の周波数帯は、たとえば、中赤外領域から電磁波領域までをカバーするテラヘルツ帯(波長が3μm~3mm)であるが、これに限定されない。テラヘルツ波に替えて、またはテラヘルツ波に加えて、近赤外光や可視光の周波数帯を用いてもよい。
 ビームステアリングシステム10Aの動作は以下のとおりである。周波数可変発振器14から出力される光波(たとえばテラヘルツ波)は、導波路11を伝搬して分岐され、第1アンテナ12と第2アンテナ13に入射する。第1アンテナ12を伝搬する光波の一部は、第1アンテナ12から漏れ出て、放射光DR1として放射される。残りの光は、第1アンテナ12から放射されずに、ローカル光LO1として第1アンテナ12内に留まり、第1検出器15に入射して第1参照信号として用いられる。
 放射光DR1は、放射角θで放射される。放射角θは、光波の伝搬方向の法線と放射光DR1の放射方向が成す角度である。放射光DR1は、進行方向に向かって放射され、伝搬方向からみて鋭角から直角の範囲で放射される。
 第1アンテナ12から放射された放射光DR1は、環境内に存在する物体で反射され、反射信号RS1として、第2アンテナ13で受信される。
 同様に、周波数可変発振器14から出力される光波(たとえばテラヘルツ波)のうち、第2アンテナ13を伝搬する光波の一部は、第2アンテナ13から漏れ出て、放射光DR2として空中に放射される。放射光DR2の放射方向も、伝搬方向に対して鋭角を成す。光の他の部分は第2アンテナ13から放射されずに、ローカル光LO2として第2アンテナ13内に留まり、第2検出器16に入射して第2参照信号として用いられる。
 第2アンテナ13から放射された放射光DR2は、環境内に存在する物体で反射され、反射信号RS2として、第1アンテナ12で受信される。
 第1アンテナ12で、同じ周波数の反射信号RS2と、第1参照光として用いられるローカル光LO1が合波され、第1検出器15で混合されて反射信号RS2がホモダイン検波される。第2アンテナ13で、同じ周波数の反射信号RS1と、第2参照光として用いられるローカル光LO2が合波され、第2検出器16で混合されて反射信号RS1がホモダイン検波される。このとき、漏れ波アンテナである第1アンテナ12は、反射信号RS2を、光源すなわち周波数可変発振器14への戻り光が生じない方向に受信し、第1アンテナ12内に留まるローカル光LO1と合波する。漏れ波アンテナである第2アンテナ13は、反射信号RS1を、光源すなわち周波数可変発振器14への戻り光が生じない方向に受信し、第2アンテナ13内に留まるローカル光LO2と合波する。第1検出器15と第2検出器16は、たとえば、ショットキーバリアダイオードのような非線形素子であってもよい。
 周波数可変発振器14で周波数が掃引されると、xz面内で放射光DR1と放射光DR2の放射角θが変化して、別の走査方向に放射される。次の放射角θでも、第1検出器15で反射信号RS2が第1参照信号(ローカル光LO1)と混合されてホモダイン検波される。第2検出器16で反射信号RS1が第2参照信号(ローカル光LO2)と混合されてホモダイン検波される。この構成により、ビーム走査とホモダイン検波を実現することができる。
 後述するように、第1アンテナ12と第2アンテナ13において、アンテナから放射される放射光と、放射されずにアンテナ内に留まる参照光(またはローカル光LO)の割合は調整可能である。
 図1Bの遅波線路型のアンテナデバイス20Bは、アンテナデバイス20Aと同様に、3ポート構成である。アンテナデバイス20Bは、第1ポートP1から延びる導波路11と、導波路11から第1の方向に延びる第1アンテナ12Aと、第1の方向と異なる第2の方向に延びる第2アンテナ13Aを有する。第1アンテナ12Aの端部が第2ポート、第2アンテナ13Aの端部が第3ポートになる。
 図1Bの(b)に示すように、第1アンテナ12Aは、第1検出器15まで延びる主導波路120と、回折格子126を有する。主導波路120と回折格子126は、たとえばポリマーフィルム上の導電パターンとして形成されてもよい。図示は省略するが、第2アンテナ13Aも、第1アンテナ12Aと同様に、第2検出器16に至る主導波路と、回折格子を有する。
 回折格子126は、一例として、x方向に延びる主導波路120の両側に互い違いに設けられるy方向の枝パターンで形成される。枝パターンのピッチPは、アンテナを伝搬する光波を回折させることのできる間隔に設定されている。枝線路の長さlは、後述するように、主導波路120を導波する導波光と、空中に放射される放射光のパワー比が適切な比率になるように設計されている。
 回折格子126は、金属ストリップ以外に、突起、スリットなどで形成されてもよい。また、枝パターンだけではなく、ラダーパターン、コルゲートパターン、ミアンダパターンなど、光波を回折することのできる任意のパターンを採用してもよい。
 回折格子126は、光波を主導波路120に沿って一定の位相遅延分布で空中に放射する。回折格子126によって、図1Bの(a)に示すように、第1アンテナ12Aから放射される放射光DR1は、伝搬方向と反対方向に放射角θで放射される。放射方向は、伝搬方向と鈍角を成す。同様に、第2アンテナ13Aから放射される放射光DR2は、第2アンテナ13Aに設けられた回折格子によって、伝搬方向と反対方向に放射角θで放射される。放射方向は、伝搬方向と鈍角を成す。
 アンテナデバイス20Bを用いたビームステアリングシステム10Bの動作は以下のとおりである。周波数可変発振器14から出力される光波は、導波路11を伝搬して分岐され、第1アンテナ12Aと第2アンテナ13Aに入射する。
 第1アンテナ12Aを伝搬する光波の一部は、第1アンテナ12Aから漏れ出て、伝搬方向の後方に放射光DR1として放射される。光の他の部分は第1アンテナ12Aから放射されずに第1アンテナ12A内に留まり(ローカル光LO1)、第1検出器15に入射して第1参照光として用いられる。
 第1アンテナ12Aから伝搬方向と逆方向に放射された放射光DR1は、環境内に存在する物体で反射され、反射信号RS1として、第2検出器16の側から第2アンテナ13Aに入射する。反射信号RS1は、第2アンテナ13Aの回折格子126によって、第2検出器16に向かって伝搬する。
 同様に、第2アンテナ13Aを伝搬する光波の一部は、第2アンテナ13Aから漏れ出て、伝搬方向の後方に放射光DR2として放射される。光の他の部分は第2アンテナ13Aから放射されずに第2アンテナ13A内に留まり(ローカル光LO2)、第2検出器16に入射して第2参照光として用いられる。
 第2アンテナ13Aから伝搬方向と逆方向に放射された放射光DR2は、環境内に存在する物体で反射され、反射信号RS2として、第1検出器15の側から第1アンテナ12Aに入射する。反射信号RS2は、第1アンテナ12Aの回折格子126によって、第1検出器15に向かって伝搬する。
 第1検出器15で、同じ周波数の反射信号RS2と第1参照光(ローカルLO1)が混合され、ホモダイン検波される。第2検出器16で、同じ周波数の反射信号RS1と第2参照光(ローカルLO2)が混合され、ホモダイン検波される。
 周波数可変発振器14で周波数が掃引されると、放射光DR1,DR2の放射角θが変化して別の走査方向に放射される。次の放射角θでも、第1検出器15で反射信号RS2はローカル光LO1と混合されてホモダイン検波され、第2検出器16で反射信号RS1はローカル光LO2と混合されてホモダイン検波される。この構成により、ビーム走査とホモダイン検波を実現することができる。
 速波線路型のアンテナデバイス20Aは、周波数可変発振器14から出力された光波のほぼ全部を放射光とローカル光に配分することができ、損失が小さい。ただし、導波路11、第1アンテナ12、及び第2アンテナ13を導波管で構成するため、アンテナデバイス20Bと比較して嵩張る。
 遅波線路型のアンテナデバイス20Bは、ポリマーフィルム上の導電パターン等として形成することができ、アンテナデバイス20Aと比較して薄型かつ小型のデバイスになるが、遅波線路により多少の損失が発生する。
 アンテナデバイス20の用途、許容される作製条件等に応じて、アンテナデバイス20Aと20Bのいずれの構成を採用してもよい。アンテナデバイス20Aと20Bのいずれもビームステアリングに適している。
 図2は、アンテナデバイス20の外観を示す。以下の説明では、図1Aのアンテナデバイス20Aを例にとって説明するが、ホモダイン検波とビームステアリングの原理は、図1Bのアンテナデバイス20Bにも同様に当てはまる。
 アンテナデバイス20は、本体21の内部に、導波路A、導波路B、及び導波路Cが形成されており、カバー25で覆われている。導波路Aは、図1Aの導波路11に対応し、たとえばEIA規格の導波管(WR2.2)である。導波路Bは、図1Aの第1アンテナ12に対応する。導波路Cは、図1Aの第2アンテナ13に対応する。
 導波路Aの入力端は、図1Aの第1ポートP1に相当し、周波数可変発振器14に接続される。導波路Bの端部は導波路Dで出射端に接続され、第1検出器15と接続される。導波路Cの端部は導波路Eで出射端に接続され、第2検出器16と接続される。
 本体21の上面とカバー25にはスリットが形成されており、スリットから漏れ波が放射される。
 図3は、速波線路型のアンテナデバイス20Aの放射原理を示す。ここでは、一対のアンテナのうち第1アンテナ12を例にとるが、第2アンテナ13も、伝搬方向が逆になるだけで、構成と放射原理は同じである。
 第1アンテナ12は位相速度が光速度を上回る導波路(たとえば金属導波管)123で形成されている。電場Eの振動方向と平行な面122にスリット121を設けると、周波数によって決まる方向に指向性の放射が生じる(図中、放射光「DR1」で表示)。残りの成分はローカル光LO1として第1アンテナ内に留まり、上述したように第1参照光として用いられる。なお、ローカル光LO1はTE10モードであるため、導波路123内においてxz面内で多重反射を繰り返しながら伝搬する。
 放射角θは、
   θ=sin-1(Kg/K
で決まる。ここで、Kは空中での波数、Kgは導波路123中での波数である。
 図1Bの遅波線路型のアンテナデバイス20Bの場合は、放射角θは、
   θ=sin-1[(Kg-Kp)/K
で決まる。ここで、Kpは回折格子126の波数である。
 上記の2つの式は、アンテナから放射されずにアンテナ内に留まるローカル光LOと放射光DRの間で位相整合条件が満たされていることを前提としている。
 実施形態の一つの特徴として、アンテナから放射される放射光と、放射されずにアンテナ内に留まって参照光として用いられる光の割合を調整可能にする放射率調整機構を各アンテナに設ける。検出器で反射信号RSをホモダイン検波するには、検波に適したパワーのローカル光LOを参照光として検出器に入射する必要がある。検出器に到達する前に光波が過度に放射されてしまうと、検出器に入射するローカル光LOのパワーが不十分になって、反射信号RSの検波が困難になるからである。
 放射率機構は導波路に沿って一定比率の開口部を設けることで構成される。図4は、放射率調整機構の一例としてのフィルム22の模式図である。フィルム22は、たとえば導波路123のスリット121の上に配置される。フィルム22は、キャリアフィルム221と、キャリアフィルム221の一方の面に形成される金属パターン222を有する。フィルム22は、金属パターン222が形成された面を、本体21の面122に対向させて配置される。
 キャリアフィルム221は、使用波長、たとえばテラヘルツ波に対して透明なフィルムであり、たとえば、ポリマーフィルムを用いることができる。ノンドープのシリコン、テフロン(登録商標)、石英等の薄いプレートを用いてもよい。
 金属パターン222は、使用波長、たとえばテラヘルツ波に対して不透明な材料で形成されており、たとえば、銅、銀、金、アルミニウム、インジウム、スズ、亜鉛等が用いられる。金属パターン222は、周期的な開口またはグリッド223を有する。このパターンは、金属薄膜をフォトリソグラフィ等でパターニングすることで形成される。
 グリッド223は、電場の振動方向と平行な方向に延びるグリッドである。図4の構成例ではグリッド223は周期的に形成されているが、回折格子と異なり、波長よりも十分に小さい周期で形成されている。そのためグリッド223の開口部は、TE10モードとして伝搬するローカル光LO1に対してカットオフ状態となり、ローカル光LO1を導波路123内により閉じ込めて放射率を下げることに寄与する。グリッド223の周期と幅は、一例として、放射光と導波光の成分を半々(1対1)に分けるように設定されるが、この比率に限定されない。
 金属パターン222は必ずしもキャリアフィルム221の裏面の全面に形成されていなくてもよい。xz面以外へのテラヘルツ波の漏れを抑制するためには、スリット121に対応する位置にだけグリッド223が形成されていればよい。この詳細については、後述する。
 金属パターン222は必ずしも周期的でなくてもよい。例えば、グリッド223の開口部の大きさ、形、個数等が波長よりも十分小さい範囲で不均一に変化していてもよい。また、導波路123のスリット121の幅を調整することによっても放射率を調整することができる。この場合、スリット121自体が放射率調整機構の役割を果たすので、フィルム22の金属パターン222は不要であるが、導波路123を保護する目的でフィルム22が用いられてもよい。
 放射率調整機構としては、3Dプリントや射出成形で導波路上に開口部を一体成型したものを用いてもよい。
 図1Bの遅波線路型のアンテナデバイス20Bの場合、放射量の調整は、回折格子126の枝線路の長さlによって調整可能であり、必ずしも放射率調整機構としてフィルム22を設けなくてもよい。
 図5は、実施形態のアンテナデバイス20の本体内部の波動伝搬を説明する図である。本体21の高さ方向(z方向)に延びる導波路Aの下端は、周波数可変発振器14に接続される第1ポートP1であり、所望の帯域の光波が入力される。導波路Aの断面での幅Wは、たとえば570μm、長さは285μmである。
 導波路Aは、その上端で、第1アンテナ12となる導波路Bと、第2アンテナ13となる導波路Cに分岐する。導波路Bと導波路Cは本体21の上端に形成される溝であり、導波路の高さh(すなわち溝の深さ)は、たとえば400~450μmである。この溝がスリット251付きのカバー25で覆われることで、導波管が形成される。
 分岐点で、カバー25の底面側に設けられた突起215によってTジャンクション214が形成され、導波路Bと導波路Cに分かれる。突起215の高さは数十μm~100μm程度、伝搬方向(x方向)の幅dは300μm程度である。
 導波路Bを導波した光波は、第1検出器15との接続ポートである第2ポートP2から第1検出器15に入射する。導波路Cを導波した光波は、第2検出器16との接続ポートである第3ポートP3から第2検出器16に入射する。
 図5の例では、本体21の上面近傍の導波路Bと導波路Cは、本体21の内部でL字型に曲がる導波路Dと導波路Eによって第2ポートP2及び第3ポートP3に接続されているが、この例に限定されない。第2ポートP2と第3ポートP3は、導波路Bと導波路Cが直線で接続される位置に配置されてもよい。
 図6Aは、図5のアンテナデバイス20の分解斜視図である。本体21とカバー25の間に、放射率調整機構を構成するフィルム22が挿入される。
 本体21内でTジャンクション214の両側に延びる第1アンテナ12と第2アンテナ13の上部に、フィルム22のグリッド223のパターン(図4参照)と、カバー25のスリット251が位置する。
 図6Bの(a)は、本体21の上面21tに放射率調整機構を構成するフィルム22が配置された状態の斜視図、図6Bの(b)は、フィルム22の概略斜視図である。上述のように、キャリアフィルム221の裏面(本体21の上面21tと対向する面)に、周期的なグリッド223を有する金属パターン222が形成されている。グリッド223の幅と、グリッド223とグリッド223の間の開口のサイズを調整することで、空中に放射される放射光DRのパワーと、第1アンテナ12及び第2アンテナ13をそのまま導波するローカル光LOのパワーの比率を調整できる。
 図6Cは、本体21にカバー25をかぶせた状態を示す斜視図である。本体21とカバー25の間には、放射率調整機構を構成するフィルム22が配置されている。フィルム22の金属パターン222の開口から放射される漏れ波は、カバー25のスリット251から空中に放射される。
 図7は、図5の構成のアンテナデバイス20の電磁界シミュレーションの図である。導波路Bと導波路Cから、それぞれ周波数で決まる方向にビームが放射されている様子がわかる。
 図8は、放射率調整機構を構成するフィルム22の金属パターン222の例を示す。図8(A)の金属パターン222Aは、伝搬方向であるx方向に繰り返されるストライプ223Aのパターンを有する。各ストライプ223Aは、キャリアフィルム221の幅方向(y方向)の全体にわたって形成されている。金属パターン222Aにより、放射光をストライプの間から、導波光に対する所望のパワー比で取り出せるが、各ストライプ223Aが金属線路として働いて、y方向へ漏れが生じるおそれがある。
 図8(B)では、y方向への漏れを防止するために、金属パターン222Bは、ラダーパターン224を形成するグリッド223Bを有する。グリッド223Bのy方向(電場の振動方向)の長さを一定範囲に制限することで、本体21の面122とキャリアフィルム221の間、あるいはキャリアフィルム221とカバー25の間にエアギャップがあっても、y方向に光波が漏れ出るのを防止できる。
 図9は、放射率調整機構を構成するフィルム22の周期構造を示す。図9(A)は設計されたグリッド223のパターン、図9(B)は実際に作製されたグリッドの顕微画像である。
 x方向に反復される周期構造は、以下を同時に満たすように決定される。
(1)一次回折波が生じない程度にストライプの周期Tを小さくすること、すなわち、グリッド223のパターンが回折格子として機能しないようにすること;
(2)放射光のパワーと、検出器に到達する導波光(ローカル光)のパワーの比率を1:1またはそれに近い比率になるように、開口幅pと、ストライプ幅qの割合が調整されていること;及び
(3)ストライプのグリッド223によって生じる金属損失を抑制すべく、ストライプ幅qを小さくしすぎないこと。
 上記の条件を満たすように、一例として、開口幅pを140μm、ストライプ幅qを90μm、周期Tを230μmに設計する。レーザ描画による金属パターンを顕微鏡観察すると、±2μm程度の誤差で、ほぼ設計通りに加工されていることがわかる。
 図10は、本体21のスリットに放射率調整機構(たとえば上述したフィルム22)を設けたときのアンテナ動作を説明する図である。導波路11から導波路Bに導波した光波のうち、ほぼ半分が放射光DR1として空中に放射され、ほぼ半分がローカル光LO1としてアンテナ内に留まって第2ポートP2に至る。
 同様に、導波路11から導波路Cに導波した光波のうち、ほぼ半分が放射光DR2として空中に放射され、ほぼ半分がローカル光LO2としてアンテナ内に留まって第3ポートP3に至る。
 放射光DR1が環境内の物体で反射されて、放射方向と同じ方向から戻ってきた反射信号RS1は、導波路Cを通って第3ポートP3へ導波する。放射光DR2が環境内の物体で反射されて、放射方向と同じ方向から戻ってきた反射信号RS2は、導波路Bを通って第2ポートP2へ導波する。
 これにより、第2ポートP2では、ローカル光LO1と反射信号RS2が得られ、第3ポートP3では、ローカル光LO2と反射信号RS1が得られる。第2ポートP2と第3ポートP3に検出器または受信器を接続することで、反射信号RS2と反射信号RS1はローカル光LO1とLO2をそれぞれ第1参照光及び第2参照光として用いてホモダイン検波される。
 <レーダ装置への適用>
 図11は、アンテナデバイス20を用いたレーダ装置100の模式図である。レーダ装置は、アンテナデバイス20と、アンテナデバイス20の第1ポートに接続される周波数可変発振器14と、アンテナデバイス20の第2ポート及び第3ポートにそれぞれ接続される第1検出器15及び第2検出器16と、第1検出器15と第2検出器16の出力に接続されるプロセッサ30を有する。周波数可変発振器14もプロセッサ30に接続されて掃引周波数と掃引のタイミングが制御される。
 アンテナデバイス20は、この例では、互いに異なる方向に組み合わせられた第1アンテナ12と第2アンテナ13を有する。第1アンテナ12と第2アンテナ13は、漏れ波アンテナ(LWA:Leaky-Wave Antenna)であり、速波線路型、遅波線路型のいずれであってもよい。
 周波数可変発振器14は、電子回路であってもよいし可変波長レーザであってもよい。周波数可変発振器14とアンテナデバイス20の間に、周波数逓倍器31が挿入されてもよい。発振器として広帯域発振器を用い、第1検出器15、及び第2検出器16として周波数分解が可能な検出器を用いてもよい。
 第1検出器15と第2検出器16は、たとえばショットキーバリアダイオードであり、図1A及び図1Bを参照して説明したように、ローカル光LOを参照光として用いて環境内の物体からの反射信号RSをホモダイン検波する。
 プロセッサ30は、第1検出器15と第2検出器16による検波結果を用いて、物体の位置(距離と方向)を算出する。
 図12は、レーダ動作の原理を説明する図である。第1ポートP1から入力された光波は分岐して、第1アンテナ12と第2アンテナ13に伝搬する。第1アンテナ12から放射される放射光の方向に物体OB1が存在すると、物体OB1で反射された光は、放射光と平行な方向に反射されて、第2アンテナ13で受信される。第2アンテナ13から放射される放射光の方向に物体OB2が存在すると、物体OB2で反射された光は、放射光と平行な方向に反射されて、第1アンテナ12で受信される。
 第1アンテナ12の端部に接続される第2ポートP2で、放射されずに第1アンテナ12内に留まるローカル光と、物体OB2で反射された反射信号が得られる。第2アンテナ13の端部に接続される第3ポートP3で、放射されずに第2アンテナ13内に留まるローカル光と、物体OB1で反射された反射信号が得られる。
 図11に戻って、プロセッサ30による信号処理の一例を説明する。環境内に物体が無いときの背景信号をあらかじめ取得して、プロセッサ30の内部または外部のメモリに保存しておく。周波数可変発振器14で周波数を掃引しながら、第1検出器15と第2検出器16の出力電圧を取得する。第1検出器15と第2検出器16の出力電圧の各々と、背景信号との差分をとって、各検出器の出力の周波数スペクトルを得る。
 図13の左図は、検出器で取得される周波数スペクトルの一例である。一対の検出器で空間の半分ずつをカバーし、それぞれで得られた周波数スペクトルが統合される。横軸が掃引される周波数、縦軸が検出器の出力電圧である。アンテナデバイス20から放射されるビーム角は図17のように周波数とともに変化するので、周波数スペクトルのピーク位置から、物体の方向を算出できる。第1検出器は放射光DR1のある側の空間中の物体を、第2検出器は放射光DR2のある側の空間中の物体を、それぞれ検出する。
 この周波数スペクトルを逆フーリエ変換(IFT:Inverse Fourier Transform)して絶対値をとることで、図13の右図のように時間軸上の反射信号が得られる。図13の横軸は時間、縦軸は検出器の出力電圧である。反射信号のピークを与える時刻から、たとえばタイム・オブ・フライト(ToF)法に基づいて物体までの往復の伝搬時間を計算し、光の速度を乗算して2で割ることで、距離が算出される。
 一度の周波数掃引によって、方向と距離が決まり、物体の2次元的な位置(たとえばxz面内での位置)が決まる。
 物体が複数の異なる方向・距離に存在する場合には、複数のピークを読み分けることでそれぞれを定位可能である。また、様々な波形のスペクトル・反射信号のデータを蓄積して機械学習を行うことで、より複雑な物体の形状を機械によって識別することができる。
 互いに異なる方向を向く第1アンテナ12と第2アンテナ13に、第1検出器15と第2検出器をそれぞれ接続することで、±50°~±60°、すなわち100°~120°の角度範囲をカバーすることができる。
 周波数掃引とIFTを高速に繰り返すことで、リアルタイムに物体の位置を特定することができる。掃引される周波数範囲と周波数間隔は、それぞれ距離分解能と最大測距可能距離を決めるため、用途に応じて達成したい計測範囲、空間分解能、及び計測時間の兼ね合いから、最適な値を決めることができる。特に、物体を継続的にトラッキングする場合は、掃引周波数の範囲と間隔を動的に変更してもよい。これにより、掃引に要する時間を短縮し、より高速の計測が可能になる。なお、図19以降を参照して後述するように、物体の変位が小さいときは、受信信号の位相差に基づいて正確に変位を測定することができる。
 図1Aまたは図1Bのアンテナデバイス20Aまたは20Bを、y方向にアレイ化してy方向の各位置で得られる検出結果を合成することで、3次元定位も可能である。
 図14は、第1検出器15と第2検出器16のそれぞれで行われるホモダイン検波の原理を説明する図である。第1検出器15に着目して説明する。第2ポートP2で得られる光波のうち、導波路Bを導波した参照波(ローカル光)の電界振幅をψ1、外部で反射されて戻ってきた信号波(反射信号)の電界振幅をψ2とする。
 検出器に到達する電界強度は式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
ここで、ωは角周波数、cは光速度、Rはアンテナと物体間の距離である。
 第1検出器15と第2検出器16は、2乗検波特性を持つ非線形素子であり、角周波数ωのときの検出器の出力電圧Vは式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
式(2)の右辺の第2項の係数E1E2cos(2ωR/c)は参照波(ローカル光LO)と信号波(反射信号RS)のミキシングを表す。出力電圧Vが角周波数ωに応じて周期変動するため、未知数である距離Rは出力電圧Vの測定値に対して図13のように角周波数ωについてIFTして求められる。
 図15は、周波数掃引による放射パターンの数値シミュレーション結果である。このシミュレーション結果は、電場の瞬時値の絶対値の大きさを表わしている。
 周波数を330GHz、360GHz、500GHzと掃引することで、ビームの走査角を放射面に対してほぼ直角(放射角θはほぼゼロ)から、放射角θ=60°近くにまで変化させることができる。
 図16は、実測されたアンテナの放射パターンを示す。図16(A)は、図14のxz面での放射パターン、図16(B)は図16(A)の放射パターンの各ビームの断面を示す。図15のシミュレーション通りに放射されていることが確認される。
 図17は、実施形態のアンテナデバイスの放射方向とビーム幅の理論値と実験値を示す図である。図17(A)の横軸は周波数、縦軸は放射角度である。周波数を掃引して高周波にするほど、ビームの放射角(法線からの角度)は大きくなる。実線の理論値と、データ点(ここではエラーバーは誤差ではなく図16(a)のビーム広がり角度の半値幅を表す)で示す実験値はよくフィットしている。
 図17(B)は、図17の理論値の計算で用いたモデルである。導波管の高さaを440μm、フィルム22の厚さdを50μm、フィルム22の屈折率をn、導波管内部を多重反射しながら伝搬する際の軌跡に沿った方向の波数を空中と同じK0とする(このように定義することで導波管の伝搬軸に沿った方向の波数KgはKg=K0・sinθとなる)。
 このモデルで、ビーム放射方向θは、
   θ=sin-1[1-((π+φ)/2K0・a)21/2
で表される。この式を用いて、図13のような周波数スペクトル強度が最大となる周波数を、物体の方向に読み替えることができる。φは、導波路内の波動がグリッド反射されるときの位相変化を表わし、導波管の高さa、フィルムの厚さd、屈折率n等によって決まるパラメータである。このモデルでは、
   φ=π-0.202(ラジアン)
に設定される。ビーム幅θwは、
   θw=2π/K0・L・cosθ
で求められる。Lはアンテナと物体との間の距離である。
 図17(A)と図17(B)で、放射角θが広範囲にわたって角度変化するように(走査範囲が±50°以上)設計されており、比較的狭いビーム幅θwが実現される。
 図18は、図1Bの遅波線路型のアンテナデバイスの変形例である。アンテナデバイス20Cは、光源44に接続される導波路11と、導波路11から第1の方向に分岐する第1アンテナ12Bと、第2の方向に分岐する第2アンテナ13Bを有する。第1アンテナ12Bと第2アンテナ13Bは、グレーティングカプラで形成される。
 グレーティングカプラは、たとえば、光ファイバやシリコン導波路の表面に波長程度の周期構造を形成することで得られる。グレーティングカプラを互いに逆向き、または異なる方向に向けて配置することで、アンテナデバイス20Cが実現される。
 ビームステアリングシステム10Cは、アンテナデバイス20Cと、アンテナデバイス20Cの第1ポートP1に接続される光源44を含む。光源44で周波数を掃引することで、アンテナ12B及び13Bから放射される放射光DR1及びDR2をxz面内で走査することができる。
 第1アンテナ12Bのアンテナ端は、第1受光器45に接続されている。第2アンテナ13Bのアンテナ端は、第2受光器46に接続されている。
 光源44、第1受光器45、及び第2受光器46として、SSOCT(Swept Source Optical Coherent Tomography:単一波長を掃引する方式)や、SDOCT(Spectral Domain Optical Coherent Tomography:広帯域波長を分光する方式)で用いられる素子をそのまま用いることができる。
 SSOCTで用いられる素子として、波長可変レーザを光源44に用い、フォトダイオードを受光器45及び46に用いることができる。SDOCTで用いられる素子として、スーパールミネセントダイオードを光源44に用い、CCD分光器を受光器45及び46に用いることができる。この場合、走査されるビームは必ずしもテラヘルツ波でなくてよく、赤外光、可視光等であってもよい。SDOCTは、広帯域な信号を一度に送ることでアンテナデバイス20から各方向に同時にビームを飛ばし、計測を高速化できる。
 第1受光器45及び第2受光器46でのホモダイン検波の原理は、上述したとおりである。第1受光器45及び第2受光器46の出力をプロセッサに接続することで、広いビーム走査角度を持つ小型のレーダ装置が実現される。
 図1~図18を参照して説明した実施形態では、アンテナで受光される信号光RSと、アンテナに留まる参照光(ローカル光LO)の周波数が等しいという前提で、ホモダイン検波を行っていた。これは、周波数掃引速度がそれほど早くない場合に妥当する。
 周波数掃引速度が上がると、遠方で反射されて戻ってくる信号光と、発信器から出力された直後の参照光の間で、周波数差が生じる。その場合は、ヘテロダイン検波となる。検出器または受光器から出力される交流信号(干渉信号)の周波数を検出することで、対象物までの距離を同定することができる。このときの測距の手法は、周波数変調連続波(Frequency Modulation Continuous Wave:FMCW)レーダと同じ手法である。実施形態のアンテナデバイスとレーダ装置は、ヘテロダイン検波にも適用可能である。
 <微小な変位の検出>
 図19~図22は、物体の変位が微小な場合の検出法を説明する図である。図19で、物体OBが位置Aから位置Bへ、ΔRだけ変位する場合、物体OBからの反射信号は、cos[ωt-(2ωR/c)]から、cos[ωt-(2ω(R+ΔR)/c)]に変化する。
 変位ΔRが微小な場合、図20のように、位置Aと位置Bから得られた受信信号をIFTして時間領域のスペクトル(絶対値)を取得しても、ピーク位置の区別がつきにくく、ToFで距離を算出することが困難である。
 そこで、図21のように、IFTの位相に着目する。なお、図20と図21で、IFT前の受信信号は、背景信号を差し引いた検出器(ダイオード)出力である。図20及び図21で、位置Aのスペクトルは図13のスペクトルと同じデータである。
 理論的にToF法で区別できるのは、およそΔR=c/2FWまでである。ここで、cは光速度、FWは受信したレーダ信号の帯域幅である。図20の例で、受信信号の帯域幅FWはおよそ80GHzなので、ΔRが1.8mm以下では読み取ることができない。
 図21及び図22では、IFTの絶対値に替えて、IFTの位相を取得し、2つの受信信号の位相差Δφから変位を求める。図21の縦軸は、2つの受信信号のIFTの位相を表わしている。
 図22は、図21のIFT信号の位相差Δφを示す。図20と異なり、位相差のピークが明確に現れている。このピーク位置から、変位前の基準となる距離を算出することができる。この手法を、「位相敏感検出」と呼ぶ。
 図22の横軸の「時間」を変位前の基準距離Rに読み替え、縦軸の「位相差」を変位に読み替える。変位ΔRは、位相差Δφを用いて、
   ΔR=(-c/2ω0)Δφ
で計算される。ここで、ω0は受信したレーダ信号の中心角周波数である。図22で、ω0は450GHzなので、ΔRは約-0.12mmである。マイナス符号は、物体がレーダに近づいていることを示す。
 図20と比較して、測定の分解能が向上している。このように、受信信号の位相差を利用することで、微小な変位を検知することができる。微小な変位は、物体の外部から与えられてもよい。
 <非接触型のセンサへの適用>
 図23は、実施形態のレーダ装置100と加振器51を組み合わせたセンサ50の模式図である。物体OBを外部から加振して、振動や弾性波を計測することで、物体OBの硬さの測定や、内部の探傷が可能になる。
 従来の振動センサでは、対象物の表面が露出している場合に限られていた。実施形態のセンサ50は、テラヘルツ帯のレーダ装置100を用いることで、物体OBの表面が露出していなくても、能動的に振動を計測することができる。テラヘルツ波は、プラスチックや布を透過するからである。
 振動は、外部から物体OBに与えてもよい。加振器51として、電磁波(または光)を照射する光源、超音波を照射する超音波源などを用いることができる。光音響的な加振、またはフォトメカニカルな加振は、遠隔から非接触で物体OBに印加することができる。あるいは、物体OBに振動体を接触させて加振してもよい。
 センサ50を用いることで、物体の内部の振動状況や、物性状況の検査が可能になる。医療分野で生体内の状況を把握するのに利用可能である。また、着衣の状態で、肩こりの具合や四肢の筋肉の硬さの測定が可能になる。
 加振器51とビームステアリングシステム10は、レーダ装置100のプロセッサ30に接続されている。プロセッサ30による制御の下で、加振器51とビームステアリングシステム10は、同期して動作するのが望ましい。プロセッサ30はメモリ301を有する。メモリ301は、加振器51が物体OBに加えた振動に関する情報と、振動を加えた後のレーダ装置100の第1検出器15、及び第2検出器16(図11参照)の出力を対応付けて記録してもよい。
 図24、図25A、及び図25Bは、図21及び図22に示した微小変位の検出を生体センサに適用した例を示す。ここでは、図11の構成に基づく周波数掃引型の発振器と検出器を用いている。レーダ装置100は、生体センサの外、ジェスチュアセンサ等の非接触センサとして使用可能である。
 図24は、図21及び図22の位相敏感検出に基づく心拍測定を示す。被験者は、着衣のまま、胸部がレーダ装置100から約45°の角度で約20cmの距離に位置するように座っている。レーダ装置100で反射波を取得し、IFT位相差を求めることで、直接、心拍に伴う胸部の微小変化を測定する。比較として、あらかじめ心電図測定器で心電図(ECG:electrocardiogram)を取得しておく。
 図25Aは、被験者Aのレーダ測定結果(丸印)と心電波形(実線)を示す。図25Bは、別の被験者Bのレーダ測定結果(丸印)と心電波形(実線)を示す。グラフの左側の縦軸がECGの電圧、右側の縦軸が実施形態のIFT位相差である。いずれの被験者においても、心電図波形と同期した胸部変位が観測されている。
 図22と同様に、測定された位相差は、
   ΔR=(-c/2ω0)Δφ
により、変位に読み替えることができる。この例では、ΔRは胸部の変位(レーダ装置100に近づくときがマイナス符号)、cは光速度、ω0は掃引帯域幅の中心角周波数、Δφは周波数掃引信号のIFTの胸部距離における位相の1時刻前との差分地である。この例で、ω0=2π×440GHzであり、Δφを30ms毎に取得し、ECG発生直後に約40μmの胸部変位を実測している。
 実施形態のレーダ装置は、生体センサに好適に適用できることがわかる。また、心拍/脈拍だけではなく、まばたき、頭部の揺れなど、その他のバイタルサインや、ヘルスケアモニタリング、あるいは手指のジェスチュア認識にも適用可能である。
 <位置決定のあいまいさの解消>
 図26と図27は、レーダ測距における配置決定のあいまいさを説明する図である。図26において、2つの物体OB1とOB2が配置Aの位置関係にある場合と、配置Bの位置関係にある場合を考える。周波数の掃引結果を一括処理するだけでは、図27に示すように、配置Aと配置Bで得られる信号が同じになり、両者を区別することが困難になる。この場合は、図13を参照して述べたように、なんらかの方法で複数のピークを読み分けることが必要である。
 この問題を解決するために、実施形態では、一括処理法と分割スキャン法を組み合わせて、角度θと距離rの正しい組み合わせを特定する。
 図28は、分割スキャン法の模式図である。周波数の掃引範囲を所定の方向にN区間に分割する。分割された区間ごとに個別にIFTを行って、物体の有無と距離rを検出する。
 図29は、実施形態のレーダ装置で行われる信号処理のフローチャートである。この処理フローは、プロセッサ30によって実行される。まず、周波数掃引の範囲と分割数Nを決定する(S101)。決定された周波数掃引の全範囲をビーム走査する(S102)。受信された反射信号の全周波数範囲を一括してIFTして、物体の方向θと距離rを算出する(S103)。一括処理で得られる結果を「結果A」とする。
 一方、得られた周波数スペクトルに対し、N個に分割された周波数区間ごとにIFTを行って、物体の方向θと距離rを算出する(S104)。分割処理で得られる結果を「結果B」とする。ステップS103とS104の処理は順序不同であり、並列処理が可能な場合は同時に行ってもよい。結果Aと結果Bの積をとることで、物体の最終的な位置(方向と距離)が特定される(S105)。
 図30は、図29のステップS103~105で得られる信号の図である。図30の(a)は、ステップS103で得られた結果Aである。周波数スペクトルを一括IFTして、角度情報θ1、θ2と、距離情報r1、r2が得られる。このままの状態では、角度と距離の正しい組み合わせが不明である。
 図30の(b)は、ステップS104で得られた結果Bである。周波数スペクトルを分割区間ごとにIFTして求めた位置情報の一部を示す。角度θ1を含む周波数区間の計算結果では、距離r2を含む一定の範囲で信号が得られている。他方、角度θ2を含む周波数区間では距離情報は得られていない。
 図30の(c)は、ステップS105で得られる信号である。結果Aと結果Bを乗算することで、正しい位置情報を示す(θ1,r2)の組み合わせが特定される。
 ステップS104の分割スキャンでは、分割された周波数区間ごとに物体の有無と距離を検出するため、位置関係のあいまいさは回避できる。しかし、周波数帯が狭くなるため、各周波数区間で奥行き方向の分解能が、最悪で1/Nまで低下する。そこで、分割スキャンから得られた計算結果と、一括処理した位置計算結果(位置関係のあいまいさは残るが、奥行き方向の分解能は高い)との積をとる。これにより、奥行き方向の分解能の低下を防ぎつつ、位置関係のあいまいさを解消することができる。
 <至近距離の計測用のアンテナ配置例>
 図31~図34は、至近距離の計測に適したアンテナ配置例を示す。図1A、図1B、及び図18のアンテナ配置は、対象物までの距離を概ね数十cmと想定している。この程度の距離であれば、第1アンテナ12と第2アンテナ13の各々と、対象物との間の角度は、ほぼ等しくなる。したがって、第1アンテナ12から出射された波の再帰性後方散乱を第2アンテナ13で受信することが容易である(図1A,図1B参照)。
 対象物が極近傍(たとえば、数cm以下、より好ましくは1cm以下の距離)にある場合、再帰性後方散乱は十分に生じず、鏡面反射状の成分が増す。そこで、至近距離の計測に適したアンテナ配置を提案する。
 (アンテナ配置例1)
 図31は、至近距離で用いられるレーダ装置100Aのアンテナ配置を示す。レーダ装置100Aは、第1アンテナ12、または第2アンテナ13のいずれか1本のアンテナを用いる。図31の例では、第1アンテナ12のみが使用される。第1アンテナ12から放射された光波は、物体OB3で反射されて、反射信号RSとして第1アンテナ12で受信される。物体OB3は、第1アンテナ12の至近距離にあるため、物体OB3での反射は鏡面反射に近い成分が支配的になる。
 第1アンテナ12は、物体OB3で反射された反射信号RSを、光源すなわち周波数可変発振器14への戻り光が生じない方向に受信し、第1アンテナ12内に留まるローカル光LOと合波する。合波された信号は、受光器47で受信され、プロセッサ30で処理される。
 この構成は、単一のアンテナを用いるので、使用アンテナに割り当てられる光強度が高くなる。周波数可変発振器14の消費電力を低減することができる。
 (アンテナ配置例2)
 図32は、至近距離で用いられるレーダ装置100Bのアンテナ配置を示す。この構成では、第1アンテナ12と第2アンテナ13が同じ方向に向けられて使用される。第1アンテナ12は、第2アンテナ13から放射されて戻る反射信号RS2だけではなく、自アンテナから放射されて戻った反射信号RS1も積極的に利用する。第2アンテナ13は、第1アンテナ12から放射されて戻る反射信号RS1だけではなく、自アンテナから放射されて戻った反射信号RS2も積極的に利用する。
 第1アンテナ12で受信された反射信号RS1とRS2は第1アンテナ12内に留まるローカル光LO1と合波され、受光器45で受信される。第2アンテナ13で受信された反射信号RS1とRS2は第2アンテナ13内に留まるローカル光LO2と合波され、受光器46で受信される。受光器45と46による検出結果は、プロセッサ30で処理される。
 この構成は、反射信号を有効に利用するので受信強度が高くなり、計測精度が向上する。この構成では、受光器45と46で検出された信号をデジタル変換することで、デジタル差動計測に適用し得る。
 (アンテナ配置例3)
 図33は、至近距離で用いられるレーダ装置100Cのアンテナ配置を示す。この構成では、第1アンテナ12と第2アンテナ13が同じ方向に向けられて使用され、単一の受光器47で受信される。図32と同様に、第1アンテナ12は、第2アンテナ13から放射されて戻る反射信号RS2だけではなく、自アンテナから放射されて戻った反射信号RS1も積極的に利用する。第2アンテナ13は、第1アンテナ12から放射されて戻る反射信号RS1だけではなく、自アンテナから放射されて戻った反射信号RS2も積極的に利用する。図32と異なるのは、第1アンテナ12で得られる信号と第2アンテナ13で得られる信号は重ね合わされて、1つの受光器47で検波される点である。
 受光器47で検波される信号には、第1アンテナ12で受信された信号と第2アンテナ13で受信された信号の、和と差を含むビート成分が含まれる。ビート信号から差のみを取り出したいときは、アナログローパスフィルタを通す等してもよい。
 (アンテナ配置例4)
 図34は、至近距離で用いられるレーダ装置100Dのアンテナ配置を示す。この構成は、第1アンテナ12で得られる信号と第2アンテナ13で得られる信号を、ハイブリッドカプラ、マジックティ、ラットレースカプラ等の合成器55でアナログ合成して、2つの信号に分離する。2つの信号、たとえば、第1アンテナ12で得られる信号Aと、第2アンテナ13で得られる信号Bの和(A+B)と差(A-B)を、受光器45と受光器46で検出する。
 図32の構成では、受信された2つの信号がデジタル変換されてから差または和が計算されるが、図34のように、アナログ合成結果をデジタル変換するほうが、直流オフセットの影響がなく高精度に計測できる。2つの信号の差をとる構成は、3次元計測や差動計測に適用可能である。
 図31~図34の構成により、至近距離の計測が可能になる。たとえば、レーダ装置100を組み込んだピンバッジ型のセンサを衣服の胸部に取り付けて、心拍等を計測することができる。テラヘルツ波であれば衣服を透過するので、着衣での非接触の計測が可能になる。図32~図34において、後述するように、第1アンテナ12と第2アンテナ13から異なる周波数と位相の光波を放射してもよい。この場合は、ノイズを低減することができる。
 <その他の構成例>
 図35~図37は、反射板を用いた構成例を示す。これらの構成例は、至近距離以外の計測に適用される。
 (アンテナ配置例5)
 図35は、レーダ装置100Eのアンテナ配置を示す。レーダ装置100Eは、1本のアンテナ(たとえば、第1アンテナ12)と、反射板56を用いる。第1アンテナ12は速波線路を有する。光源、たとえば周波数可変発振器14から出力され、第1アンテナ12を伝搬する光波は、第1アンテナ12の速波線路から漏れ出て、反射板56で反射され、放射される(放射光DR)。遠方の対象物で反射されて戻る反射光RSは、第1アンテナ12に入射する。第1アンテナ12に入射した反射光RSは、周波数可変発振器14への戻らない方向に伝搬し、第1アンテナ12内に留まるローカル光LOと合波される。反射光RSとローカル光LOが重ね合わされた信号は、受光器47で検波される。
 この構成により、1つの受光器47で、片側空間を計測することができる。
 図36は、反射板56を設けたアンテナデバイス20Eの模式図である。図36の(a)は斜視図、(b)は側面図である。アンテナデバイス20の第1アンテナ12は、スリット121と導波路123を有する。TE10モードの光波は、導波路123を伝搬し、伝搬光の一部はスリット121から角度θで漏れ出る。漏れ波は反射板56で反射され、放射光DRとして放射される。
 放射光DRは、遠方で反射されて反射光RSが第1アンテナ12に戻る。反射光RSはスリット121から導波路123に入射し、ローカル光LOと重ね合わされ、受光器47で検波される(図35参照)。検出された信号の処理は、図13を参照して説明したとおりである。この構成により、単一の受光器47で片側空間を計測することができる。
 第1アンテナ12に、図4に示す放射率調整機構が設けられている場合も、漏れ波を反射板56で反射して、放射光DRとすることができる。
 (アンテナ配置例6)
 図37は、レーダ装置100Fのアンテナ配置を示す。レーダ装置100Fは、反射板56を使用する構成と、図34のアナログ合成受信を組み合わせたものである。同じ方向を向く第1アンテナ12と第2アンテナ13に、反射板57と反射板58がそれぞれ設けられている。
 第1アンテナ12の漏れ波は反射板57で反射され、放射光DR1となる。第2アンテナ13の漏れ波は反射板58で反射され、放射光DR2となる。放射光DR1は遠方の物体で反射され反射光RS1がレーダ装置100Fに戻ってくる。反射光DR2は同じ物体で反射されて反射光RS2がレーダ装置100Fに戻ってくる。
 反射光RS1とRS2は、第1アンテナ12に入射し、第1アンテナ12内に留まるローカル光LO1と重ね合わされる。第1アンテナ12で受信された第1信号はローカル光LO1とともに、ハイブリッドカプラ等の合成器55に入力される。反射光RS1とRS2は、第2アンテナ13に入射し、第2アンテナ13内に留まるローカル光LO2と重ね合わされる。第2アンテナ13で受信された第2信号は、ローカル光LO2とともに合成器55に入射する。
 合成器55は第1アンテナ12から得られる信号と第2アンテナ13から得られる信号をアナログ合成し、2つの信号(第1信号と第2信号の和、および差)を出力する。合成器55の2つの出力は、受光器45と46でそれぞれ検波される。
 この構成では、同一方向への放射光の強度を高め、他方のアンテナから放射された光波の反射信号も利用することで、検出感度を高めることができる。
 <迂回路を設ける構成>
 図38と図39は、アンテナデバイスに迂回路を設けて、2本のアンテナから放射される放射光の周波数と位相を異ならせる構成を示す。図38のレーダ装置100Gにおいて、第1アンテナ12と第2アンテナ13は異なる方向に向けられている。反射光RSとローカル光LOの干渉の態様は、図1Aと同様である。レーダ装置100Gでは、周波数可変発振器14と第2アンテナ13の間に、長さlの迂回路111aが設けられている。
 図39のレーダ装置100Hにおいて、第1アンテナ12と第2アンテナ13は、同じ方向に向けられている。反射光RSとローカル光の干渉の態様は、図32と同様である。周波数可変発振器14と第2アンテナ13の間に、長さlの迂回路111bが設けられている。
 発信器の掃引周波数fを時間tの関数としてf(t)と表す。長さlの迂回路111を伝搬する光波の位相速度をvとすると、迂回路111でl/vの時間遅れが生じる。このとき、放射光DR1(及びローカル光LO1)の周波数はf(t)と表され、
   放射光DR2(及びローカル光LO2)の周波数はf(t-l/v)と表される。
 両者を混合すると、差周波数Δf=f(t)-f(t-l/v)の交流信号が得られる。周波数が既知の狭帯域交流信号なので、ノイズを減らして測定することができる。
 <その他のアンテナ構成例>
 上述したアンテナ配置例は、相互に組み合わせ可能である。2本のアンテナを用いるすべての構成において、迂回路111の構成を適用して、2つのアンテナから異なる周波数と位相の光波を放射してもよい。これによりノイズを低減することができる。2本のアンテナを用いるすべての構成において、アナログ合成受信を適用してもよい。これによりアナログ差動計測が可能になる。図32の至近距離計測の構成に反射板56を設けて、至近距離以外の計測構成とし、アナログ合成せずに受信してもよい。この場合は、デジタル差動計測が可能になる。放射率調整機構は、いずれのアンテナ配置にも適用可能である。
 図32~図34の至近距離計測で、第1アンテナ12と第2アンテナ13を異なる方向に向けてもよい。この場合、計測範囲が2倍に広がる。至近距離であっても測定範囲が広いときは、2本のアンテナを異なる方向に向けるほうが、測定効率が改善される。その場合に、2本のアンテナから放射する光波の周波数と位相は同じであってもよいし、異なっていてもよい。
 図40は、実施形態のアンテナ構成をまとめた表である。実施形態のアンテナデバイス20を用いたレーダ装置100は、至近距離での計測と、至近距離以外の計測の両方に適用可能である。至近距離での計測とは、鏡面的な反射成分が支配的に受信される場合をいう。至近距離以外の計測とは、再帰性の後方散乱が支配的に受信される場合をいう。
 至近距離での計測と、至近距離以外の計測の両方で、使用するアンテナ数は、1本であってもよいし、2本以上を用いてもよい。至近距離計測で1本のアンテナを用いる構成(図31参照)では、最小限の構成で至近距離の変位を計測することができる。
 至近距離計測で、同じ方向に向けた2本以上のアンテナを用いる場合は、他のアンテナから放射され戻ってきた反射光RSを積極的に計測に活用することができる。各アンテナで受信されローカル光と重ね合わされた光波をアナログ合成する構成では、アナログ差動計測が実現される。アンテナ間で周波数と位相が異なる光波を用いることで、ノイズを低減することができる。至近距離計測で異なる方向を向くアンテナを用いるときは、計測範囲を拡大することができる。
 至近距離以外の計測で、反射板と組み合わせた1本のアンテナを用いる構成(図35)では、単一の受信器で片側空間を計測することができる。同じ方向に向けた2本以上のアンテナを反射板と組み合わせることで、3次元計測が可能になる。各アンテナで得られる信号は受光器で検出される前にアナログ合成されてもよいし、各受光器で検波されてデジタル変換された後に合成処理されてもよい。異なる方向に向けられた2本以上のアンテナを用いる構成では、反射板や機械駆動なしにコンパクトなレーダ装置が実現される。
 以上、特定の実施形態に基づいて本発明を説明したが、本発明は上述した例に限定されない。たとえば、第1アンテナ12と第2アンテナ13をITO,IZO、ZnO、IGZO等の透明導電薄膜で形成してもよい。透明導電薄膜に形成される回折パターンを調整することで、遅波線路型のアンテナデバイスにすることができる。また、第1アンテナと第2アンテナは光ファイバ等の誘電体導波路上に形成されたグレーティングカプラであってもよい。このグレーティングカプラの少なくとも一部を放射率調整機構として機能させてもよい。
 放射率調整機構として、複数の開口がアンテナの伝搬方向に配置された構成を用いる場合、開口パターンは必ずしも周期的である必要はなく、複数の開口が不規則またはランダムに配置されていてもよい。各開口は必ずしも長方形の開口である必要はなく、円、多角形、楕円形、三日月型、半円型、円弧などの開口の配列であってもよい。ただし、開口の間隔、及び開口の幅と長さ(または径)は使用波長よりも小さく設定される。
 放射率調整機構として、漏れ波アンテナの伝搬方向に沿った一本の開口またはスリットを利用する場合、開口またはスリットの幅を、使用波長よりも小さく設定する。開口またはスリットの幅は一定であってもよいし、可変であってもよい。たとえば、使用波長よりも小さい範囲内で、伝搬方向に進むにつれて幅が広がる逆テーパ形状のスリットを用いてもよい。
 いずれの場合も、上述した実施形態と同様の効果が得られる。すなわち、
(1)漏れ波アンテナでビーム走査することで、位相シフタが不要になり、機械駆動を用いずにビームステアリング及びレーダ装置を実現できる。
(2)異なる方向を向いた少なくとも2つの漏れ波アンテナを組み合わせる構成では、入力点と出力点を空間的に分離できるので、サーキュレータが不要になり、コンパクトなレーダ装置が構成される。
(3)発振器、受信器、アンテナ、干渉系(検波)の全体を導波路ベースで構成する構成例では、必要最小限の素子でフラットな集積化が可能になり、システム内での伝送損失を最小にすることができる。
 第1アンテナ、第2アンテナ、第1検出器、第2検出器の組を複数配置して、立体画像を生成するレーダ装置を構成してもよい。この場合、すべての検出器の出力はプロセッサ30に入力されて、物体の位置及び速度が生成される。複数のアンテナデバイスを並べることで、あるアンテナデバイスからの光をその他のアンテナデバイスで受信して解析し、物体の3次元的な位置と速度を知ることができる。
 光源は、アンテナデバイスごとに設けられてもよいし、すべてのアンテナデバイスに共通の一つの光源を用いてもよい。異なる方向に延びる第1アンテナと第2アンテナを有するアンテナデバイス20としては、上述した実施例のどのアンテナデバイスを用いてもよい。
 実施形態のアンテナデバイスとレーダ装置は、小型で高い分解能を有し、自動車よりも小さな移動体であるドローンやウェアラブル端末に搭載することが可能である。3ポートアンテナ構成により広範囲にビームを走査して、空間認識に基づく着陸支援、ジェスチュア認識、非接触心拍測定等の非接触センサ等に応用できる。
 本出願は、2019年4月17日に出願された日本国特許出願第2019-078858号に基づいて、その優先権を主張するものであり、これらの日本国特許出願の全内容を含む。
10、10A、10B、10C ビームステアリングシステム
11 導波路
12、12A、12B 第1アンテナ
13、13A、13B 第2アンテナ
14 周波数可変発振器(光源)
15、16 検出器
20、20A、20B、20C、20E アンテナデバイス
21 本体
22 フィルム(放射率調整機構)
221 キャリアフィルム
222 金属パターン
223 グリッド
25 カバー
251 スリット
30 プロセッサ
301 メモリ
44 光源
45 第1受光器
46 第2受光器
50 センサ
51 加振器
100、100A~100H レーダ装置
121 スリット
126 回折格子
P1 第1ポート(入射端)
P2 第2ポート
P3 第3ポート

Claims (20)

  1.  入射端を有する導波路と、
     前記導波路に接続される第1アンテナ、及び第2アンテナと、
    を有し、
     前記第1アンテナは、前記第1アンテナから放射され外部で反射されて戻ってきた第1信号と、前記第2アンテナから放射され外部で反射されて戻ってきた第2信号の少なくとも一方を前記第1アンテナ内で前記入射端への戻り光が生じない方向に受信し、受信した信号と、前記第1アンテナから放射されずに前記第1アンテナ内に留まる第1参照光とを合波する、
    アンテナデバイス。
  2.  前記第1アンテナと前記第2アンテナは異なる方向に向けられており、
     前記第1アンテナは、前記第2アンテナから放射され外部で反射されて戻ってきた前記第2信号と、前記第1アンテナから放射されずに前記第1アンテナ内に留まる第1参照光とを合波し、
     前記第2アンテナは、前記第1アンテナから放射され外部で反射されて戻ってきた前記第1信号と、前記第2アンテナから放射されずに前記第2アンテナ内に留まる第2参照光とを合波する、
    請求項1に記載のアンテナデバイス。
  3.  前記第1アンテナと前記第2アンテナは同じ方向に向けられており、
     前記第1アンテナは、前記第1信号と前記第2信号を受信し、前記第1信号と前記第2信号を、前記第1アンテナから放射されずに前記第1アンテナ内に留まる第1参照光と合波し、
     前記第2アンテナは、前記第1信号と前記第2信号を受信し、前記第1信号と前記第2信号を、前記第2アンテナから放射されずに前記第2アンテナ内に留まる第2参照光と合波する、
    請求項1に記載のアンテナデバイス。
  4.  前記第1アンテナに反射板が設けられており、前記第1アンテナを伝搬する光波の一部は前記反射板によって第1の方向へ放射され、
     前記第1アンテナは、前記第1の方向から戻ってくる前記第1信号を前記入射端への戻り光が生じない方向に受信して、前記第1参照光と合波する、
    請求項1に記載のアンテナデバイス。
  5.  少なくとも前記第1アンテナは、放射されずに前記第1アンテナ内に留まる前記第1参照光と、前記第1アンテナから放射される放射光との割合を調整する放射率調整機構を有する請求項1~4のいずれか1項に記載のアンテナデバイス。
  6.  前記第1アンテナと前記第2アンテナは、速波線路型または遅波線路型の導波路上に構成されるアンテナである、請求項1~5のいずれか1項に記載のアンテナデバイス。
  7.  少なくとも前記第1アンテナは、速波線路型の導波路の一部が前記放射率調整機構で置き換えられた当該導波路であり、前記放射率調整機構は、2以上の開口が前記導波路の伝搬方向に配置されており、前記開口の間隔、及び前記開口の径またはサイズが使用波長よりも短い、請求項5に記載のアンテナデバイス。
  8.  少なくとも前記第1アンテナは、遅波線路型の導波路の一部が前記放射率調整機構で置き換えられた当該導波路であり、前記放射率調整機構は回折格子である、請求項5に記載のアンテナデバイス。
  9.  少なくとも前記第1アンテナは、漏れ波アンテナの一部が前記放射率調整機構で置き換えられた当該漏れ波アンテナであり、前記放射率調整機構は、前記漏れ波アンテナの伝搬方向に沿って延設された一つの開口であり、前記開口の幅は使用波長よりも短い、請求項5に記載のアンテナデバイス。
  10.  少なくとも前記第1アンテナは、誘電体で構成される誘電体導波路の一部が前記放射率調整機構で置き換えられた当該導波路であり、前記放射率調整機構は、当該誘電体導波路に形成されるグレーティングカプラである、請求項5に記載のアンテナデバイス。
  11.  請求項1~10のいずれか1項に記載のアンテナデバイスと、
     前記入射端に接続される周波数掃引または広帯域発光が可能な光源と、
    を有する、
    ビームステアリングシステム。
  12.  周波数掃引または広帯域発光が可能な光源と、
     前記光源からの光波を入力する導波路と、
     前記導波路に接続される第1アンテナと、
     前記導波路に接続される第2アンテナと、
     前記第1アンテナの出力端と、前記第2アンテナの出力端の少なくとも一方に接続される検出器と、
     前記検出器の出力に接続されるプロセッサと、
    を有し、
     前記第1アンテナは、前記第1アンテナから放射され外部で反射された第1信号光と前記第2アンテナから放射され外部で反射された第2信号光の少なくとも一方を、前記光源への戻り光が生じない方向に受信し、
     前記検出器に、前記受信した光波と、前記第1アンテナから放射されずに前記第1アンテナ内に留まる第1参照光が入力され
     前記プロセッサは、前記検出器の出力に基づいて物体の位置および速度を推定する、
    レーダ装置。
  13.  前記検出器は、前記第1アンテナの出力端に接続され、前記第1信号光と前記第1参照光の重ね合わせを入力として受けとる、
    請求項12に記載のレーダ装置。
  14.  前記検出器は、前記第1アンテナの出力端に接続される第1検出器と、前記第2アンテナの出力端に接続される第2検出器とを含み、
     前記プロセッサは、前記第1検出器の出力と前記第2検出器の出力に接続され、
     前記第1検出器に、前記第1参照光と、前記第2アンテナから放射され外部で反射された第2信号光が入力されて前記第2信号光が検波され、
     前記第2検出器に、前記第2アンテナから放射されずに前記第2アンテナ内に留まる第2参照光と、前記第1信号光が入力されて前記第1信号光が検波され、
     前記プロセッサは、前記第1検出器の出力と前記第2検出器の出力に基づいて前記物体の位置および速度を推定する、
    請求項12に記載のレーダ装置。
  15.  前記第1アンテナの出力端と前記第2アンテナの出力端に接続される合成器、
    を有し、
     前記検出器は、前記合成器の出力に接続される第1検出器と第2検出器を含み、
     前記プロセッサは、前記第1検出器の出力と前記第2検出器の出力に接続され、
     前記第1アンテナから前記合成器に、前記第1信号光と、前記第1参照光と、前記第2アンテナから放射され外部で反射された第2信号光とを含む第1受信信号が入力され、
     前記第2アンテナから前記合成器に、前記第1信号光と前記第2信号光と前記第2アンテナから放射されずに前記第2アンテナ内に留まる第2参照光とを含む第2受信信号が入力され、
     前記合成器は前記第1受信信号と前記第2受信信号をアナログ合成し、前記第1検出器と前記第2検出器に、前記第1受信信号と前記第2受信信号の和成分と差成分を供給する、
    請求項12に記載のレーダ装置。
  16.  前記プロセッサは、所定範囲の周波数を掃引し、
     前記所定範囲の全帯域の掃引結果を一度に用いて前記物体の方向と距離を計算して第1推定値を決定し、
     前記所定範囲を複数の区間に分割した各帯域で前記物体の前記方向と前記距離を計算して第2推定値を決定し、
     前記第1推定値と前記第2推定値に基づいて前記物体の前記位置と前記速度を決定する、
    請求項12~15のいずれか1項に記載のレーダ装置。
  17.  前記光源は広帯域発光が可能な光源であり、
     前記検出器は、周波数分解可能な検出器である、
    請求項12~16のいずれか1項に記載のレーダ装置。
  18.  前記第1アンテナ、前記第2アンテナ、前記検出器の組が複数配置され、
     前記プロセッサは、すべての検出器からの出力に基づいて前記物体の位置及び速度を推定する、請求項12~17のいずれか1項に記載のレーダ装置。
  19.  請求項12~18のいずれか1項に記載のレーダ装置を用いて非接触に対象物の形状、変位、及び状態の少なくともひとつを推定するセンサ。
  20.  前記対象物に振動を印加する加振器、
    をさらに有し、前記レーダ装置は前記振動の印加の下で、前記対象物で反射された反射信号を受信し、
     前記プロセッサは、前記反射信号に基づいて前記対象物の内部状態を計測する、
    請求項19に記載のセンサ。
PCT/JP2020/016117 2019-04-17 2020-04-10 アンテナデバイス、ビームステアリングシステム、レーダ装置、及びレーダ装置を用いたセンサ WO2020213525A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021514922A JP7555597B2 (ja) 2019-04-17 2020-04-10 アンテナデバイス、ビームステアリングシステム、レーダ装置、及びレーダ装置を用いたセンサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-078858 2019-04-17
JP2019078858 2019-04-17

Publications (1)

Publication Number Publication Date
WO2020213525A1 true WO2020213525A1 (ja) 2020-10-22

Family

ID=72837802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016117 WO2020213525A1 (ja) 2019-04-17 2020-04-10 アンテナデバイス、ビームステアリングシステム、レーダ装置、及びレーダ装置を用いたセンサ

Country Status (2)

Country Link
JP (1) JP7555597B2 (ja)
WO (1) WO2020213525A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026792A1 (ja) * 2005-09-01 2007-03-08 Murata Manufacturing Co., Ltd. レーダ装置
JP2012202830A (ja) * 2011-03-25 2012-10-22 Toyota Central R&D Labs Inc 方位測定装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026792A1 (ja) * 2005-09-01 2007-03-08 Murata Manufacturing Co., Ltd. レーダ装置
JP2012202830A (ja) * 2011-03-25 2012-10-22 Toyota Central R&D Labs Inc 方位測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MURANO, KOSUKE ET AL.: "Low-Profile Terahertz Radar Based on Broadband Leaky-Wave Beam Steering", IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, vol. 7, no. 1, 1 December 2016 (2016-12-01), pages 60 - 69, XP011638811, DOI: 10.1109/TTHZ.2016.2624514 *

Also Published As

Publication number Publication date
JP7555597B2 (ja) 2024-09-25
JPWO2020213525A1 (ja) 2020-10-22

Similar Documents

Publication Publication Date Title
Batra et al. Short-range SAR imaging from GHz to THz waves
US11243296B2 (en) Integrated optical structures for LiDAR and other applications employing multiple detectors
US8068049B2 (en) Passive detection apparatus
US6828558B1 (en) Three dimensional imaging
US7626400B2 (en) Electromagnetic scanning imager
Geibig et al. Compact 3D imaging radar based on FMCW driven frequency-scanning antennas
US7848896B2 (en) Non-contact measurement system for accurate measurement of frequency and amplitude of mechanical vibration
US20030163042A1 (en) Object detection apparatus and method
US10429322B2 (en) Sensor for non-destructive characterization of objects
US10948580B2 (en) Object sensing device and object sensing method
US8064737B2 (en) Spatial bandwidth imaging of structural interiors
Bertl et al. Interferometric focusing for the imaging of humans
Liu et al. High ranging accuracy and wide detection range interferometry based on frequency-sweeping technique with vital sign sensing function
WO2020213525A1 (ja) アンテナデバイス、ビームステアリングシステム、レーダ装置、及びレーダ装置を用いたセンサ
Wang UWB pulse radar for human imaging and doppler detection applications
US20240295506A1 (en) Imaging device and imaging method
Kahl et al. Stand-off real-time synthetic imaging at mm-wave frequencies
RU2530542C1 (ru) Способ и устройство измерения угловой высоты объекта поиска в обзорных нелинейных радиолокаторах
Benchikh et al. A novel millimeter wave radar sensor for medical signal detection
CN214174613U (zh) 基于微波频域干涉的绝对距离测量装置
Nanzer Interferometric detection of the angular velocity of moving objects
Baghdasaryan et al. Enhancement of air-ground matching by means of a chirped multilayer structure: Electromagnetic modeling with the method of single expression
Kaminski et al. Fully integrated, multipurpose low-cost K-band FMCW radar module with sub-milimeter measurement precision
Berdasco et al. Performance Evaluation of Millimeter-Wave Wearable Antennas for Electronic Travel Aid
Sheen et al. Advanced millimeter-wave imaging enhances security screening

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791938

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514922

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791938

Country of ref document: EP

Kind code of ref document: A1