WO2020213065A1 - Charged particle device, method for emitting charged particle, vacuum forming device, and method for forming vacuum region - Google Patents

Charged particle device, method for emitting charged particle, vacuum forming device, and method for forming vacuum region Download PDF

Info

Publication number
WO2020213065A1
WO2020213065A1 PCT/JP2019/016363 JP2019016363W WO2020213065A1 WO 2020213065 A1 WO2020213065 A1 WO 2020213065A1 JP 2019016363 W JP2019016363 W JP 2019016363W WO 2020213065 A1 WO2020213065 A1 WO 2020213065A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
charged particle
space
vacuum forming
pipeline
Prior art date
Application number
PCT/JP2019/016363
Other languages
French (fr)
Japanese (ja)
Inventor
貴行 舩津
龍 菅原
藤本 憲司
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2019/016363 priority Critical patent/WO2020213065A1/en
Publication of WO2020213065A1 publication Critical patent/WO2020213065A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/18Vacuum locks ; Means for obtaining or maintaining the desired pressure within the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams

Definitions

  • the present invention relates to, for example, a technical field of a charged particle device for irradiating charged particles, a method for irradiating charged particles, a vacuum forming device for forming a vacuum region, and a method for forming a vacuum region.
  • Patent Document 1 describes a scanning electron microscope that forms a local vacuum region by blocking the periphery of an inspection target portion of a test object irradiated with an electron beam, which is an example of charged particles, from the outside air. ing. In such a device (furthermore, any device that forms a vacuum region), it is a problem to appropriately form the vacuum region.
  • the first aspect has a first conduit that can be connected to an exhaust device, and gas in a space in contact with the surface of an object is discharged through the first conduit to form a vacuum region.
  • a vacuum forming member, an irradiation device that irradiates a sample with charged particles through the vacuum region, and a second conduit that connects to a passage space of the charged particles irradiated from the irradiation device are provided.
  • the pressure is higher than the vacuum region, and at least a part of the gas in the space around the vacuum region is discharged through the first conduit of the vacuum forming member, and the passing space is at least a part of the vacuum region.
  • a charged particle device that supplies a gas to at least a part of the passage space through the second conduit is provided.
  • the first conduit having a first end connected to the exhaust device and a second end connected to the first space in contact with the surface of the object is provided, and the first space is provided.
  • the vacuum forming member and the irradiation device which discharges gas through the first conduit to form a vacuum region having a lower pressure than the second space connected to the first space in the first space. It includes an irradiation device that irradiates a sample with charged particles through a vacuum region of the charged particles to be irradiated, and a second conduit that connects to the passage space, and the passage space is at least one of the vacuum regions.
  • a charged particle device is provided that includes a portion and supplies a gas to at least a part of the passage space through the second conduit.
  • a vacuum forming member capable of forming a vacuum region having a pressure lower than the pressure of the second space in contact with a second portion different from the first portion of the surface in the first space in contact with the first portion of the surface of the object.
  • the passage space includes an irradiation device that irradiates the sample with charged particles through the vacuum region, and a second conduit that connects to the passage space of the charged particles irradiated from the irradiation device.
  • a charged particle device that includes at least a portion of the vacuum region and supplies gas to at least a portion of the passage space via the second conduit is provided.
  • the vacuum region is formed by having a first pipeline that can be connected to the exhaust device and discharging the gas in the space in contact with the surface of the object through the first pipeline.
  • a vacuum forming member and an irradiation device for irradiating a sample with charged particles through the vacuum region are provided, and at least a part of the gas in a space around the vacuum region having a pressure higher than that of the vacuum region is a gas.
  • the passage space of the charged particles discharged from the vacuum forming member through the first conduit and irradiated from the irradiation device includes at least a part of the vacuum region, and the vacuum region is used in the first pressure range.
  • a charged particle apparatus is provided that can be set to a first mode in which the vacuum region is used and a second mode in which the vacuum region is used in a second pressure range different from the first pressure range.
  • the gas in the space in contact with the surface of the object is discharged through the first conduit.
  • Forming a vacuum region discharging at least a part of the gas in the space surrounding the vacuum region at a pressure higher than that of the vacuum region through the first conduit, and at least the vacuum region.
  • a method of irradiating charged particles is provided.
  • the gas in the space having the first conduit and the first surface connectable to the exhaust device and in contact with the second surface of the object facing the first surface is the first.
  • a vacuum forming member that discharges through the conduit of No. 1 to form a vacuum region
  • an irradiation device that irradiates a sample with charged particles from an injection port formed on the first surface
  • a space having a position changing device for changing the positional relationship between the first surface and the second surface based on either one of the posture and the shape of the vacuum region and having a higher pressure than the vacuum region around the vacuum region.
  • At least a part of the gas is discharged through the first conduit of the vacuum forming member, and the passage of the charged particles irradiated from the charged particle irradiator is a charged particle including at least a part of the vacuum region.
  • Equipment is provided.
  • FIG. 1 is a cross-sectional view showing the structure of the scanning electron microscope of the first embodiment.
  • FIG. 2 is a cross-sectional view showing the structure of a beam irradiation device included in the scanning electron microscope of the first embodiment.
  • FIG. 3 is a cross-sectional view showing the structure of the differential exhaust system included in the scanning electron microscope of the first embodiment.
  • FIG. 4 is a perspective view showing the structure of the differential exhaust system of the first embodiment in a state where a plurality of vacuum forming members are separated along the Z-axis direction.
  • FIG. 5 is a plan view showing the shape of the injection surface of the differential exhaust system.
  • FIG. 6 is a cross-sectional view showing how the gas supply device supplies air to at least a part of the beam passing space.
  • FIG. 7 is a cross-sectional view showing how the gas supply device supplies air to at least a part of the beam passing space.
  • FIG. 8 is a cross-sectional view showing how the exhaust device exhausts at least a part of the beam passing space.
  • FIG. 9 is a cross-sectional view showing how the exhaust device exhausts at least a part of the beam passing space.
  • FIG. 10 is a cross-sectional view showing another example of the scanning electron microscope of the first embodiment.
  • FIG. 11 is a cross-sectional view showing the structure of the beam irradiation device included in the scanning electron microscope of the second embodiment.
  • FIG. 12 is a cross-sectional view showing the structure of the beam irradiation device included in the scanning electron microscope of the third embodiment.
  • FIG. 13 is a cross-sectional view showing the structure of the beam irradiation device included in the scanning electron microscope of the fourth embodiment.
  • FIG. 14 is a cross-sectional view showing the structure of the beam irradiation device included in the scanning electron microscope of the fourth embodiment.
  • FIG. 15 is a cross-sectional view showing another example of the structure of a part of the beam irradiation device included in the scanning electron microscope of the fourth embodiment.
  • 16 (a) and 16 (b) are cross-sectional views showing another example of the structure of a part of the beam irradiation device included in the scanning electron microscope of the fourth embodiment.
  • FIG. 17 is a cross-sectional view showing the structure of the beam irradiation device included in the scanning electron microscope of the fifth embodiment.
  • FIG. 18 is a cross-sectional view showing the structure of the scanning electron microscope of the sixth embodiment.
  • FIG. 19 is a cross-sectional view showing the structure of the beam irradiation device included in the scanning electron microscope of the sixth embodiment.
  • FIG. 20 is a cross-sectional view showing the structure of the scanning electron microscope of the seventh embodiment.
  • 21 (a) is a cross-sectional view showing a stage in which the sample is held in a state where the surface of the sample is parallel to both the exit surface and the holding surface
  • FIG. 21 (b) is the exit surface and the holding surface. It is sectional drawing which shows the stage which held the sample in a state that the surface of a sample is not parallel to both of.
  • FIG. 21 (a) is a cross-sectional view showing a stage in which the sample is held in a state where the surface of the sample is parallel to both the exit surface and the holding surface
  • FIG. 21 (b) is the exit surface and the holding surface. It is sectional drawing which shows the stage which held
  • FIG. 22 is a flowchart showing the flow of the first control operation corresponding to the position control operation performed before the stage holds the sample.
  • FIG. 23 is a cross-sectional view showing how one step of the first control operation is being performed.
  • FIG. 24 is a cross-sectional view showing how one step of the first control operation is being performed.
  • FIG. 25 is a cross-sectional view showing how one step of the first control operation is being performed.
  • FIG. 26 is a cross-sectional view showing how one step of the first control operation is being performed.
  • FIG. 27 is a schematic view showing the surface position of the virtual sample estimated from the position of the holding surface of the stage.
  • FIG. 28A is a schematic view showing the positional relationship between the emission surface of the beam irradiation device and the beam irradiation device before moving at least one of the stages, the holding surface of the stage, and the surface of the virtual sample.
  • (B) is a schematic view showing the positional relationship between the emission surface of the beam irradiation device and the stage, the holding surface of the stage, and the surface of the virtual sample after moving at least one of the beam irradiation device and the stage.
  • FIG. 29 is a flowchart showing the flow of the second control operation corresponding to the position control operation performed after the stage holds the sample.
  • FIG. 30 is a cross-sectional view showing how one step of the second control operation is being performed.
  • FIG. 31 (a) is a schematic view showing the positional relationship between the emission surface of the beam irradiator and the beam irradiator before moving at least one of the stages, the holding surface of the stage, and the surface of the sample
  • FIG. 31 (b) Is a schematic diagram showing the positional relationship between the exit surface of the beam irradiation device and the holding surface of the stage and the surface of the sample after moving at least one of the beam irradiation device and the stage.
  • FIG. 32 is a cross-sectional view showing the structure of the scanning electron microscope according to the eighth embodiment.
  • FIG. 33 is a cross-sectional view showing the structure of the scanning electron microscope according to the ninth embodiment.
  • FIG. 34 is a cross-sectional view showing the structure of the scanning electron microscope according to the tenth embodiment.
  • FIGS. 35 (a) to 35 (c) is a cross-sectional view showing a positional relationship between a reference member and a measuring device used for associating the first and second measurement coordinate spaces.
  • FIG. 36 is a flowchart showing the flow of the second control operation in the eleventh embodiment.
  • FIG. 37 is a cross-sectional view showing the structure of the scanning electron microscope according to the eleventh embodiment.
  • FIGS. 38 (a) to 38 (c) shows a beam when the second control operation according to the eleventh embodiment is performed in the process of measuring the state of the sample having a surface including three planes intersecting each other.
  • FIG. 43 is a cross-sectional view showing a stage in which the beam irradiator has moved so that the sample is positioned at a position where the electron beam can be irradiated.
  • FIG. 44 is a cross-sectional view showing the structure of the scanning electron microscope according to the thirteenth embodiment.
  • FIG. 45 is a schematic view showing the structure of the pump system of the 14th embodiment.
  • FIG. 46 is a cross-sectional view showing the structure of the scanning electron microscope according to the fifteenth embodiment.
  • FIG. 47 is a cross-sectional view showing how the stage holds the sample in the first modification.
  • FIG. 48 is a cross-sectional view showing how the stage holds the sample in the second modification.
  • FIG. 49 is a cross-sectional view showing a stage in which the optical microscope has moved so that the sample is positioned at a position where the state of the sample can be measured in the second modification.
  • FIG. 50 is a cross-sectional view showing a stage in which the beam irradiator has moved so that the sample is positioned at a position where it can irradiate an electron beam in the second modification.
  • FIG. 51 is a cross-sectional view showing how the stage holds the sample in the third modification.
  • FIG. 52 is a cross-sectional view showing a connection mode between the vacuum pump and the beam irradiator in which transmission of vibration from the vacuum pump to the beam irradiator is suppressed.
  • FIG. 53 is a cross-sectional view showing a connection mode between the vacuum pump and the beam irradiation device in which the transmission of vibration from the vacuum pump to the beam irradiation device is suppressed.
  • a scanning electron microscope for irradiating a sample W with an electron beam EB via a local vacuum region VSP to acquire information about the sample W (for example, measuring the state of the sample W).
  • An embodiment of a charged particle apparatus and an information acquisition method will be described using an SEM.
  • Sample W is, for example, a semiconductor substrate. However, the sample W may be an object different from the semiconductor substrate.
  • the + Z side corresponds to the upper side (that is, the upper side) and the ⁇ Z side corresponds to the lower side (that is, the lower side).
  • the ⁇ Z direction may be referred to as a gravity direction.
  • the Z-axis direction is also a direction parallel to the optical axis AX of the beam optical system 11 described later included in the scanning electron microscope SEM.
  • the rotation directions (in other words, the inclination direction) around the X-axis, the Y-axis, and the Z-axis are referred to as the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction, respectively.
  • the scanning electron microscope SEMa includes a beam irradiation device 1, a stage device 2, a support frame 3, a control device 4, a pump system 5, a gas supply device 6, and an exhaust device 7.
  • the pump system 5 includes a vacuum pump 51 and a vacuum pump 52.
  • the scanning electron microscope SEMa may include at least a chamber for accommodating the beam irradiation device 1, the stage device 2, and the support frame 3. Further, the scanning electron microscope SEMa may be provided with an air conditioner connected to this chamber to control at least one of the temperature and humidity of the space in the chamber (particularly, the space around the sample W). At least part of the space in the chamber may be atmospheric pressure space.
  • the beam irradiating device 1 can emit an electron beam EB downward from the beam irradiating device 1.
  • the beam irradiating device 1 can irradiate the sample W supported by the stage device 2 arranged below the beam irradiating device 1 with the electron beam EB.
  • the beam irradiation device 1 forms a vacuum region VSP between the beam irradiation device 1 and the surface WSu of the sample W, and then irradiates the sample W with the electron beam EB via the vacuum region VSP. Since the detailed structure of the beam irradiation device 1 will be described later with reference to FIGS. 2 and 3, the description thereof will be omitted here.
  • the stage 22 can hold the sample W.
  • the stage 22 may hold the sample W by vacuum-adsorbing or electrostatically adsorbing the sample W.
  • the stage 22 can hold the sample W on the holding surface (the surface facing the + Z side in the example shown in FIG. 1) HS facing the beam irradiation device 1.
  • the stage 22 can release the held sample W.
  • the stage 22 even when the force caused by the formation of the vacuum region VSP acts on the sample W, the sample W is not deformed or the deformation amount of the sample W is equal to or less than the allowable lower limit amount.
  • the sample W is held with an appropriate holding force so as to hold the sample W properly.
  • the stage 22 is also pulled toward the vacuum region VSP by the negative pressure caused by the vacuum region VSP acting through the sample W. Therefore, the stage 22 is relative to the extent that the stage 22 is not deformed or the amount of deformation of the stage 22 is equal to or less than the allowable lower limit even when the force caused by the formation of the vacuum region VSP is acting on the stage 22. It may have high rigidity.
  • the relative position of the sample W and the beam irradiator 1 in the direction along the XY plane changes. Therefore, when the stage 22 moves along the XY plane, the sample W in the direction along the XY plane and the irradiation region of the electron beam EB on the surface of the sample W (specifically, the surface facing the + Z side) WSu.
  • the relative position of is changed. That is, when the stage 22 moves along the XY plane, the irradiation region of the electron beam EB moves with respect to the surface WSu of the sample W in the direction along the XY plane (that is, the direction along the surface WSu of the sample W). To do.
  • the control device 4 controls the stage drive system 23 so that the electron beam EB is irradiated to the desired position of the surface WSu of the sample W and the vacuum region VSP is formed, and the stage 22 is moved along the XY plane. You may move it.
  • the vacuum region VSP moves relative to the surface WSu of the sample W as the stage 22 moves along the XY plane, the position of the portion of the sample W on which the negative pressure caused by the vacuum region VSP acts changes. ..
  • a biased force acts on the sample W, especially when the negative pressure caused by the vacuum region VSP acts near the outer edge of the sample W.
  • a biased force may also act on the stage 22 that holds the sample W. Therefore, the negative pressure caused by the vacuum region VSP acts near the outer edge of the sample W (that is, the stage) as compared with the case where the negative pressure caused by the vacuum region VSP acts near the center of the sample W.
  • the stage 22 may be easily deformed. Therefore, in the stage 22, even if the position of the portion of the sample W on which the negative pressure due to the vacuum region VSP acts changes, the stage 22 does not deform or the amount of deformation of the stage 22 becomes equal to or less than the allowable lower limit amount. It may have a relatively high rigidity to some extent.
  • the control device 4 controls the stage drive system 23 so that the focus position FP of the electron beam EB is set on the surface WSu of the sample W (or in the vicinity of the surface WSu) so that the stage 22 is moved along the Z axis. You may move it.
  • the focus position FP of the electron beam EB has the least blurring of the focus position or the electron beam EB corresponding to the imaging position of the beam optical system 11 (see FIG. 2) described later included in the electron beam irradiation device 1. It may be a position in the Z-axis direction.
  • the position measuring devices 15 and 24 can also function as a detecting device for detecting the interval D.
  • the control device 4 replaces or adds to the actual interval D with the beam irradiation device 1 and the reference surface (for example, the surface of the reference plate).
  • the distance D between the beam irradiation device 1 and the sample W is set to the desired distance D_target. At least one of the stage drive system 23 and the interval adjustment system 14 may be controlled.
  • the control device 4 controls the stage drive system 23 so that the surface WSu of the sample W is parallel to the injection surface 12LS (see FIG. 2) of the beam irradiation device 1 described later, and moves the stage 22 in the ⁇ X direction.
  • the ⁇ Y direction and the ⁇ Z direction may be moved along at least one of the directions.
  • the state in which "the surface B is parallel to the surface A" is designated as "one of the surface A and the surface B is designated as a datum plane (a plane that serves as a reference for obtaining a geometrical tolerance)".
  • the desired distance may be smaller than the desired interval D_target described above.
  • the desired distance may be a value of 1/10 or less of the desired interval D_target described above.
  • the lower surface of the flange member 13 extending outward from the outer surface of the beam irradiation device 1 is connected to the upper surface of the support member 32 via an interval adjusting system 14.
  • the beam irradiation device 1 is arranged so as to penetrate the opening 321.
  • the support frame 3 can support the beam irradiation device 1 so as to be lifted by the upper surface of the support member 32.
  • the support frame 3 may function as a stopper for preventing the beam irradiation device 1 from moving toward the sample W so as to prevent the beam irradiation device 1 from colliding with the sample W.
  • the support frame 3 may support the beam irradiation device 1 by a support method different from the support method shown in FIG.
  • the support frame 3 may be supported by a suspension support mechanism.
  • the anti-vibration pad is fixed to the top plate (ceiling wall) of the chamber accommodating the support frame 3, one end is connected to the lower end of the anti-vibration pad, and the other end of the wire made of steel is connected to the support frame 3.
  • the anti-vibration pad may include, for example, an air damper and / or a coil spring.
  • a vibration isolator (not shown) may be installed between the support legs 31 and the support member 32 to prevent or reduce the transmission of the vibration of the support surface SF to the support member 32.
  • the negative pressure caused by the vacuum region VSP acts on the beam irradiation device 1 toward the vacuum region VSP.
  • a force that pulls the beam irradiation device 1 acts.
  • This force also acts on the support frame 3 that supports the beam irradiation device 1. Therefore, in the support frame 3, the support frame 3 is not deformed or the deformation amount of the support frame 3 is less than the allowable lower limit amount even when the force caused by the formation of the vacuum region VSP acts on the support frame 3. It may have a relatively high rigidity to some extent.
  • At least one of the drive systems for moving the beam irradiation device 1 may be used. However, if the distance D between the beam irradiation device 1 and the surface WSu of the sample W may remain fixed (or the space adjustment system 14 does not have to adjust the space D), the space adjustment system Instead of 14, an interval adjusting member such as a shim may be arranged between the support member 32 and the flange member 13. In this case, if the size and / or number of shims is changed, the interval D will be adjusted. Further, the interval adjusting system 14 may move the beam irradiation device 1 along at least one of the X-axis direction, the Y-axis direction, the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction. In this case, the interval adjusting system 14 may be referred to as a position changing device.
  • the scanning electron microscope SEMa includes a position measuring device 15.
  • the position measuring device 15 includes, for example, at least one of an encoder and a laser interferometer.
  • the position measuring device 15 may measure the position of the beam irradiation device 1 in the XY direction, the posture in the ⁇ X direction, and the posture in the ⁇ Y direction.
  • a measuring device for measuring the position of the beam irradiation device 1 in the XY direction, the posture in the ⁇ X direction, and the posture in the ⁇ Y direction may be provided separately from the position measuring device 15.
  • the control device 4 controls the operation of the scanning electron microscope SEMa.
  • the control device 4 may include, for example, an arithmetic unit and a memory.
  • the arithmetic unit may include at least one of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a DSP (Digital Signal Processor), and an MCU (Micro Control Unit).
  • the control device 4 functions as a device that controls the operation of the scanning electron microscope SEMa by executing a computer program by the arithmetic unit.
  • This computer program is a computer program for causing the control device 4 (for example, an arithmetic unit) to perform (that is, execute) an operation described later to be performed by the control device 4.
  • this computer program is a computer program for making the control device 4 function so that the scanning electron microscope SEMa performs the operation described later.
  • the computer program executed by the arithmetic unit may be recorded in a memory (that is, a recording medium) included in the control device 4, or may be an arbitrary storage medium built in the control device 4 or externally attached to the control device 4. It may be recorded in (for example, a hard disk or a semiconductor memory). Alternatively, the arithmetic unit may download the computer program to be executed from an external device of the control device 4 via the network interface.
  • the control device 4 may not be provided inside the scanning electron microscope SEMa, and may be provided as a server or the like outside the scanning electron microscope SEMa, for example.
  • the control device 4 and the scanning electron microscope SEMA may be connected by a wired and / or wireless network (or a data bus and / or a communication line).
  • a wired network for example, a network using a serial bus type interface represented by at least one of IEEE1394, RS-232x, RS-422, RS-423, RS-485 and USB may be used.
  • a network using a parallel bus interface may be used.
  • a network using an Ethernet (registered trademark) compliant interface represented by at least one of 10BASE-T, 100BASE-TX and 1000BASE-T may be used.
  • a network using radio waves may be used.
  • An example of a network using radio waves is a network conforming to IEEE802.1x (for example, at least one of wireless LAN and Bluetooth®).
  • a network using infrared rays may be used.
  • a network using optical communication may be used.
  • the control device 4 and the scanning electron microscope SEMa may be configured so that various types of information can be transmitted and received via the network. Further, the control device 4 may be able to transmit information such as commands and control parameters to the scanning electron microscope SEMa via the network.
  • the scanning electron microscope SEMa may include a receiving device that receives information such as commands and control parameters from the control device 4 via the network.
  • the recording medium for recording the computer program executed by the arithmetic unit includes CD-ROM, CD-R, CD-RW, flexible disk, MO, DVD-ROM, DVD-RAM, DVD-R, DVD + R, and DVD-. At least one of optical disks such as RW, DVD + RW and Blu-ray (registered trademark), magnetic media such as magnetic tape, magneto-optical disks, semiconductor memories such as USB memory, and any other medium capable of storing a program is used. You may.
  • the recording medium may include a device capable of recording a computer program (for example, a general-purpose device or a dedicated device in which the computer program is implemented in at least one form such as software and firmware).
  • each process or function included in the computer program may be realized by a logical processing block realized in the control device 4 by the control device 4 (that is, a computer) executing the computer program. It may be realized by hardware such as a predetermined gate array (FPGA, ASIC) included in the control device 4, or a logical processing block and a partial hardware module that realizes a part of the hardware are mixed. It may be realized in the form of.
  • a logical processing block realized in the control device 4 by the control device 4 (that is, a computer) executing the computer program. It may be realized by hardware such as a predetermined gate array (FPGA, ASIC) included in the control device 4, or a logical processing block and a partial hardware module that realizes a part of the hardware are mixed. It may be realized in the form of.
  • FPGA predetermined gate array
  • FIG. 2 is a cross-sectional view showing the structure of the beam irradiation device 1 of the first embodiment.
  • the beam irradiation device 1 includes a beam optical system 11 and a differential exhaust system 12.
  • the beam optical system 11 includes a housing 111.
  • the housing 111 is a cylindrical member in which a beam passing space SPb1 extending along the optical axis AX of the beam optical system 11 (that is, extending along the Z axis) is secured inside.
  • the beam passing space SPb1 is used as a space through which the electron beam EB passes.
  • the housing 111 may be made of a high magnetic permeability material in order to prevent the magnetic field) from affecting the electron beam EB passing through the beam passing space SPb1. Examples of high magnetic permeability materials include at least one of permalloy and silicon steel. The relative magnetic permeability of these high magnetic permeability materials is 1000 or more.
  • the beam passing space SPb1 becomes a vacuum space during the period when the electron beam EB is irradiated.
  • the beam passage space SPb1 is connected to the beam passage space SPb1 via an exhaust passage (that is, a pipeline, the same applies hereinafter) 112 formed in the housing 111 so as to be connected to (that is, connected to) the beam passage space SPb1.
  • the vacuum pump 51 is connected.
  • the vacuum pump 51 exhausts the beam passing space SPb1 (that is, discharges gas) so that the beam passing space SPb1 becomes a vacuum space, and depressurizes the pressure below the atmospheric pressure. Therefore, the vacuum space in the first embodiment may mean a space whose pressure is lower than the atmospheric pressure.
  • the vacuum space is a space in which gas molecules exist only to the extent that the electron beam EB does not interfere with the appropriate irradiation of the sample W (in other words, the degree of vacuum does not interfere with the appropriate irradiation of the electron beam EB with the sample W).
  • Space may be meant.
  • the beam passing space SPb1 is a space outside the housing 111 (more specifically, a differential exhaust system 12 described later) via a beam ejection port (that is, an opening) 119 formed on the lower surface of the housing 111. It is connected to the beam passage space SPb2).
  • the beam passing space SPb1 may be a vacuum space during the period when the electron beam EB is not irradiated.
  • the beam optical system 11 further includes an electron gun 113, an electromagnetic lens 114, an objective lens 115, a deflector 116, and an electron detector 117.
  • the electron gun 113 emits an electron beam EB toward the ⁇ Z side. Instead of the electron gun 113, a photoelectric conversion surface that emits electrons when irradiated with light may be used.
  • the electron gun 113 emits an electron beam EB toward the ⁇ Z side. Instead of the electron gun 113, a photoelectric conversion surface that emits electrons when irradiated with light may be used.
  • the electromagnetic lens 114 controls the electron beam EB emitted by the electron gun 113.
  • the electromagnetic lens 114 has an image rotation amount (that is, a position in the ⁇ Z direction) formed by the electron beam EB on a predetermined optical surface (for example, a virtual surface intersecting the optical path of the electron beam EB), and a magnification of the image. , And any one of the focal positions corresponding to the imaging position may be controlled.
  • the objective lens 115 forms an electron beam EB on the surface WSu of the sample W at a predetermined reduction magnification.
  • the deflector 116 deflects the electron beam EB so that the irradiation position of the electron beam EB on the surface WSu of the sample W (particularly, the direction along the surface WSu (for example, the direction along at least one of the X-axis and the Y-axis)). ) Is controlled.
  • the electron detector 117 is, for example, a semiconductor type electron detection device (that is, a semiconductor detection device) using a pn junction or pin junction semiconductor.
  • As the electron detector 117 for example, at least one of an ET (Everhard-Tornley) detector in which a scintillator (fluorescent substance) and a photomultiplier tube are combined and a micro-channel plate (MCP) may be used. ..
  • the control device 4 acquires (in other words, obtains, calculates, or generates) information about the sample W based on the detection result of the electron detector 117.
  • the control device 4 irradiates the sample W with the electron beam EB so as to scan the surface WSu of the sample W with the electron beam EB, for example.
  • the scanning electron microscope SEMa controls the stage drive system 23 to move the stage 22 along the XY plane so that the vacuum region VSP is formed on the first surface portion of the surface WSu of the sample W. Let me. After the stage 22 moves so that the vacuum region VSP is formed on the first surface portion of the surface WSu of the sample W, the beam irradiation device 1 irradiates the first surface portion of the surface WSu of the sample W with the electron beam EB. ..
  • the beam irradiation device 1 scans the first surface portion with the electron beam EB by deflecting the electron beam EB using the deflector 116 (see FIG. 2) described later included in the beam irradiation device 1.
  • the stage drive system 23 does not have to move the stage 22 along the XY plane.
  • the scanning electron microscope SEMa controls the stage drive system 23 so that the vacuum region VSP is formed on the second surface portion of the surface WSu of the sample W. Then, the stage 22 is moved along the XY plane.
  • the beam irradiation device 1 irradiates the second surface portion of the surface WSu of the sample W with the electron beam EB. ..
  • the beam irradiation device 1 scans the second surface portion with the electron beam EB by deflecting the electron beam EB using the deflector 116.
  • the stage drive system 23 does not have to move the stage 22 along the XY plane also during the period when the beam irradiation device 1 irradiates the second surface portion of the surface WSu of the sample W with the electron beam EB. After that, the same process is repeated until the irradiation (that is, scanning) of the electron beam EB to the target region of the surface WSu of the sample W to be irradiated with the electron beam EB is completed.
  • the electrons generated by the irradiation of the sample W with the electron beam EB are emitted from the sample W.
  • the electrons generated by the irradiation of the sample W with the electron beam EB include at least one of the reflected electrons from the sample W and the scattered electrons from the sample W.
  • the scattered electrons may include secondary electrons.
  • the electrons generated by the irradiation of the sample W with the electron beam EB are detected by the electron detector 117. Therefore, the detection result of the electron detector 117 may include information on the detection amount of electrons generated when the sample W is irradiated with the electron beam EB.
  • the electronic detector 117 may be provided in the differential exhaust system 12 described later.
  • the detection result of the electron detector 117 may be, in addition to or in place of the information regarding the amount of detected electrons, information regarding the electrons generated when the sample W is irradiated with the electron beam EB (for example, the velocity and incident angle of the electrons). Information on at least one of the above) may be included.
  • the control device 4 generates (that is, acquires) information about the sample W based on the detection result of the electron detector 117.
  • the control device 4 may generate information (hereinafter, referred to as “image information”) regarding the image of the sample W based on the detection result of the electron detector 117.
  • the image information may include information about the image of the surface WSu of the sample W.
  • the electron detector 117 detects the electrons generated when the electron beam EB is irradiated while the beam irradiation device 1 is scanning the surface WSu of the sample W with the electron beam EB.
  • a beam passage space SPb2 is formed inside the differential exhaust system 12.
  • the beam passage space SPb2 is connected to the beam passage space SPb1 of the beam optical system 11 via an opening 120 formed on the upper surface of the differential exhaust system 12 (the surface on the + Z side in the example shown in FIG. 2). ..
  • the beam passing space SPb2 is exhausted (that is, depressurized) by the vacuum pump 51 together with the beam passing space SPb1. Therefore, the beam passing space SPb2 becomes a vacuum space during the period in which the electron beam EB is irradiated.
  • the beam passing space SPb2 is used as a space through which the electron beam EB from the beam passing space SPb1 passes.
  • the differential exhaust system 12 further includes an injection surface 12LS capable of facing a part of the surface VSu of the sample W.
  • the distance D between the injection surface 12LS and the surface VSu of the sample W is a desired distance D_stage (for example, 10 ⁇ m). It is aligned with respect to the surface VSu by at least one of the stage drive system 23 and the interval adjustment system 14 so as to be less than or equal to 1 ⁇ m or more).
  • the distance D may be referred to as the distance between the injection surface 12LS and the surface WSu in the Z-axis direction.
  • interval adjusting system 14 may be referred to as an interval control device.
  • a beam ejection port (that is, an opening) 1250 is formed on the ejection surface 12LS.
  • the differential exhaust system 12 does not have to have an injection surface 12LS capable of facing the surface WSu of the sample W.
  • the beam passage space SPb3 is a space in contact with (that is, faces) the surface WSu of the sample W.
  • the beam passage space SPb3 is a space through which the electron beam EB passes between the beam irradiation device 1 and the sample W (specifically, between the injection surface 12LS and the surface WSu).
  • the beam passing space SPb3 is exhausted (that is, depressurized) by the vacuum pump 51 together with the beam passing spaces SPb1 and SPb2. That is, the vacuum pump 51 exhausts the beam passing space SPb3 in a state where the differential exhaust system 12 (particularly, the injection surface 12LS) faces a part of the surface WSu of the sample W.
  • the vacuum pump 51 exhausts the beam passing space SPb3 in a state where the beam passing space SPb2 (particularly, the end portion thereof, substantially the beam ejection port 1250) faces a part of the surface WSu of the sample W.
  • each of the beam passing spaces SP1 and SPb2 can also function as an exhaust passage (that is, a pipeline) connecting the beam passing space SPb3 and the vacuum pump 51 in order to exhaust the beam passing space SPb3.
  • the beam passing space SPb3 becomes a vacuum space during the period in which the electron beam EB is irradiated.
  • the electron beam EB emitted from the electron gun 113 irradiates the sample W through at least a part of the beam passing spaces SPb1 to SPb3, which are vacuum spaces.
  • the beam passing space SPb3 may be a vacuum space during the period when the electron beam EB is not irradiated.
  • the beam passing space SPb3 is located farther from the vacuum pump 51 than the beam passing spaces SPb1 and SPb2.
  • the beam passing space SPb2 is located at a position farther from the vacuum pump 51 than the beam passing space SPb1. Therefore, the degree of vacuum of the beam passing space SPb3 may be lower than the degree of vacuum of the beam passing spaces SPb1 and SPb2, and the degree of vacuum of the beam passing space SPb2 is higher than the degree of vacuum of the beam passing space SPb1. It can be low.
  • the state of "the degree of vacuum in space B is lower than the degree of vacuum in space A" in the present embodiment means "the pressure in space B is higher than the pressure in space A".
  • the vacuum pump 51 can set the vacuum degree of the beam passing space SPb3, which may have the lowest vacuum degree, to a vacuum degree that does not interfere with the appropriate irradiation of the electron beam EB on the sample W. Has exhaust capacity.
  • the vacuum pump 51 maintains the pressure (ie, air pressure) of the beam passage space SPb3 below 1 ⁇ 10 -3 pascals (eg, approximately on the order of 1 ⁇ 10 -3 pascals to 1 ⁇ 10 -4 pascals). It may have an exhaust capacity that can be maintained).
  • Such a vacuum pump 51 is used, for example, as a turbo molecular pump used as a main pump (or another type of high vacuum pump including at least one of a diffusion pump, a cryo pump and a sputter ion pump) and an auxiliary pump.
  • a vacuum pump combined with a dry pump (or another type of low vacuum pump) may be used.
  • the exhaust speed of the vacuum pump 51 may be an exhaust speed [m 3 / s] that can maintain the pressure (that is, atmospheric pressure) of the beam passing space SPb3 at 1 ⁇ 10 -3 pascal or less. ..
  • the beam passing space SPb3 is not a closed space surrounded by some member (specifically, the housing 111 and the differential exhaust system 12) like the beam passing spaces SPb1 and SPb2. That is, the beam passing space SPb3 is an open space that is not surrounded by any member. Therefore, even if the beam passing space SPb3 is decompressed by the vacuum pump 51, gas flows into the beam passing space SPb3 from the periphery of the beam passing space SPb3. As a result, the degree of vacuum of the beam passing space SPb3 may decrease. Therefore, the differential exhaust system 12 maintains the degree of vacuum in the beam passing space SPb3 by performing differential exhaust between the beam irradiation device 1 and the surface WSu of the sample W.
  • the differential exhaust system 12 performs differential exhaust between the beam irradiation device 1 and the surface WSu of the sample W, so that the beam irradiation device 1 and the sample W are relative to each other as compared with the surroundings.
  • a vacuum region VSP (for example, a local vacuum region VSP) in which a high degree of vacuum is maintained is formed.
  • two annular exhaust ports 1251 and 1252 (or at least one exhaust port of any shape) surrounding the beam injection port 1250 are formed on the injection surface 12LS of the differential exhaust system 12.
  • the exhaust ports 1251 and 1252 can also be said to be exhaust grooves (in other words, recesses, the same applies hereinafter).
  • a vacuum pump 52 is connected to the exhaust port 1251 via an exhaust passage (that is, a pipeline, the same applies hereinafter) EP1 formed in the differential exhaust system 12. That is, the first end (that is, one end) of the exhaust passage EP1 is connected to the vacuum pump 52 and is the second end (that is, the other end) of the exhaust passage EP1, which is substantially the exhaust port.
  • the portion forming 1251) is in contact with the space between the injection surface 12LS and the surface WSu of the sample W.
  • a vacuum pump 52 is connected to the exhaust port 1252 via an exhaust passage (that is, a pipeline, the same applies hereinafter) EP2 formed in the differential exhaust system 12. That is, the first end (that is, one end) of the exhaust passage EP2 is connected to the vacuum pump 52 and is the second end (that is, the other end) of the exhaust passage EP2, which is substantially the exhaust port.
  • the portion forming 1252) is in contact with the space between the injection surface 12LS and the surface WSu of the sample W.
  • the vacuum pump 52 mainly exhausts at least a part of the space around the beam passing space SPb3 (particularly, the space located around the space where the vacuum region VSP is formed and having a higher pressure than the vacuum region VSP). It is used to relatively increase the degree of vacuum of the beam passage space SPb3. Therefore, the vacuum pump 52 may have an exhaust capacity capable of maintaining a vacuum degree lower than the vacuum degree maintained by the vacuum pump 51. That is, the exhaust capacity of the vacuum pump 52 may be lower than the exhaust capacity of the vacuum pump 51.
  • the vacuum pump 52 may be a vacuum pump that includes a dry pump (or another type of low vacuum pump) but not a turbo molecular pump (or another type of high vacuum pump). Good.
  • the region that exhausts through a certain exhaust path among the multiple stages of exhaust paths is close to the beam passage space SPb3 (in other words,).
  • the closer to the beam injection port 1250 the greater the contribution of the degree of vacuum of the exhaust path to increase the degree of vacuum of the beam passage space SPb3. Therefore, in the differential exhaust system 12, the degree of vacuum of the first-stage exhaust path (that is, the exhaust path from the exhaust port 1251 to the vacuum pump 52) composed of the exhaust passage EP1 and the exhaust port 1251 is exhausted. Even if differential exhaust is performed so that the degree of vacuum is higher than the degree of vacuum of the second stage exhaust path (that is, the exhaust path from the exhaust port 1252 to the vacuum pump 52) composed of the passage EP2 and the exhaust port 1252. Good.
  • the length of the exhaust path affects the degree of vacuum of the exhaust path. Therefore, the length of the first-stage exhaust path may be different from the length of the second-stage exhaust path.
  • the shorter the exhaust path the more likely it is that the degree of vacuum in the exhaust path will increase. This is because the shorter the exhaust path, the smaller the space in which the gas molecules exist (that is, the space to be exhausted). Therefore, the exhaust path of the first stage may be shorter than the exhaust path of the second stage.
  • the volume of the exhaust path affects the degree of vacuum of the exhaust path. Therefore, the volume of the first-stage exhaust path may be different from the volume of the second-stage exhaust path.
  • the smaller the volume of the exhaust path the higher the possibility that the degree of vacuum of the exhaust path increases. This is because the smaller the volume of the exhaust path, the smaller the space in which the gas molecules exist (that is, the space to be exhausted). Therefore, the volume of the first-stage exhaust path may be smaller than the volume of the second-stage exhaust path.
  • the area of the inner surface of the exhaust path affects the degree of vacuum of the exhaust path. Therefore, the area of the inner surface of the first-stage exhaust path may be different from the area of the inner surface of the second-stage exhaust path.
  • the smaller the area of the inner surface of the exhaust path the higher the possibility that the degree of vacuum of the exhaust path increases. This is because the shorter the area of the inner surface of the exhaust path, the smaller the inner surface where the gas molecules are present in the exhaust path (that is, the region where the gas molecules should be recovered by the exhaust gas). Therefore, the area of the inner surface of the first-stage exhaust path may be smaller than the area of the inner surface of the second-stage exhaust path.
  • the vacuum region VSP including the beam passage space SPb3 is formed in this way, at least the portion of the surface WSu of the sample W that does not face the beam passage space SPb3 (particularly, the portion away from the beam passage space SPb3) is formed. A part may be covered with a non-vacuum region having a lower degree of vacuum than the vacuum region VSP.
  • the differential exhaust system 12 forms a vacuum region VSP in the space SP1 (see the enlarged view at the bottom of FIG. 2) including the beam passing space SPb3.
  • the space SP1 includes, for example, a space in contact with at least one of the beam injection port 1250 and the exhaust ports 1251 and 1252.
  • the space SP2 includes a space that cannot be connected to the beam injection port 1250, the exhaust ports 1251 and 1252 (furthermore, the beam passage space SPb2, the exhaust passage EP1 and the exhaust passage EP2) without passing through the space SP1.
  • the space SP2 includes a space that can be connected to the beam injection port 1250, the exhaust ports 1251 and 1252 (furthermore, the beam passage space SPb2, the exhaust passage EP1 and the exhaust passage EP2) via the space SP1. Since the pressure in the space SP2 is higher than the pressure in the space SP1, there is a possibility that gas may flow from the space SP2 into the space SP1, but the gas flowing from the space SP2 into the space SP1 is the outermost exhaust.
  • the state in which the vacuum region VSP is locally formed is the state in which the vacuum region VSP is locally formed on the surface WSu of the sample W (that is, the vacuum region in the direction along the surface WSu of the sample W). It may mean a state in which VSP is locally formed).
  • the vacuum region VSP is a region in which gas molecules are present only to such an extent that the electron beam EB irradiates the sample W appropriately.
  • the vacuum region VSP is, for example, a region where the pressure is 1 ⁇ 10 -3 Pascal or less (for example, generally on the order of 1 ⁇ 10 -3 Pascal to 1 ⁇ 10 -4 Pascal). That is, the pressure of the space SP1 in which the vacuum region VSP is formed is 1 ⁇ 10 -3 Pascal or less (for example, approximately on the order of 1 ⁇ 10 -3 Pascal to 1 ⁇ 10 -4 Pascal).
  • the differential exhaust system 12 includes the vacuum forming member 121, the vacuum forming member 122, the vacuum forming member 123, and the vacuum forming. It includes a member 124. Further, the vacuum forming member 124 includes a vacuum forming member 1241, a vacuum forming member 1242, and a vacuum forming member 1243.
  • the differential exhaust system 12 may have any structure as long as the vacuum region VSP can be formed.
  • FIG. 3 is a cross-sectional view showing the structure of the differential exhaust system 12 of the first embodiment.
  • FIG. 4 is a perspective view showing the structure of the differential exhaust system 12 of the first embodiment in a state where the vacuum forming member 121 and the vacuum forming member 124 are separated along the Z-axis direction.
  • FIG. 5 is a plan view showing the shape of the injection surface 12LS of the differential exhaust system 12.
  • the vacuum forming member 121 is a tubular member extending downward from the beam optical system 11.
  • the vacuum forming member 121 is arranged below the beam optical system 11 (that is, on the ⁇ Z side).
  • the vacuum forming member 121 is connected to the beam optical system 11 below the beam optical system 11.
  • the vacuum forming member 121 may be connected to the beam optical system 11 so that the upper surface 121Su of the vacuum forming member 121 is connected to the lower surface of the beam optical system 11.
  • the vacuum forming member 121 may be integrated with the beam optical system 11 or may be separable from the beam optical system 11.
  • the beam passing space SP2-1 further passes through the other end of the beam passing space SPb2-1 (in FIG. 3, the end on the ⁇ Z side and the opening formed in the lower surface 121Sl), and the vacuum forming member 121 It is connected to the external space (more specifically, the beam passing space SPb2-2 of the vacuum forming member 122 described later).
  • the vacuum forming member 121 is further formed with an exhaust passage EP1-1 forming a part of the exhaust passage EP1 and an exhaust passage EP2-1 forming a part of the exhaust passage EP2.
  • the exhaust passages EP1-1 to EP2-1 are passages (that is, spaces) separated from each other.
  • the exhaust passages EP1-1 to EP2-1 are passages separated from the beam passage space SPb2-1.
  • Each of the exhaust passages EP1-1 to EP2-1 penetrates the vacuum forming member 121 from the lower surface 121Sl of the vacuum forming member 121 toward the other surface (side surface in the example shown in FIG. 3) of the vacuum forming member 121. There is.
  • a beam passing space SPb2-2 forming a part of the beam passing space SPb2 is formed inside the vacuum forming member 122.
  • the beam passage space SPb2-2 penetrates the vacuum forming member 122.
  • the beam passage space SPb2-2 penetrates the vacuum forming member 122 from the lower surface 122Sl of the vacuum forming member 122 toward the upper surface 122Su of the vacuum forming member 122.
  • the beam passing space SPb2-2 is a vacuum forming member via one end of the beam passing space SPb2-2 (in the example shown in FIG. 3, the end on the + Z side and the opening formed in the upper surface 122Su). It is connected to the beam passage space SPb2-1 of 121.
  • the beam passage space SP2-2 is further evacuated through the other end of the beam passage space SPb2-2 (in the example shown in FIG. 3, the end on the ⁇ Z side, which is an opening formed in the lower surface 122Sl). It is connected to the space outside the forming member 122 (more specifically, the beam passing space SPb2-3 of the vacuum forming member 123 described later).
  • the vacuum forming member 122 is further formed with an exhaust passage EP1-2 forming a part of the exhaust passage EP1.
  • the exhaust passage EP1-2 is connected to the exhaust passage EP1-1 of the vacuum forming member 121 via one end of the exhaust passage EP1-2 (in the example shown in FIG. 3, an opening formed in the upper surface 122Su). ing.
  • the exhaust passage EP1-2 is a space (more specifically) outside the vacuum forming member 122 via the other end of the exhaust passage EP1-2 (in the example shown in FIG. 3, an opening formed in the lower surface 122Sl). Is connected to the exhaust passage EP1-3) formed in the vacuum forming member 123 described later.
  • the vacuum forming member 123 is a member extending downward from the vacuum forming member 122.
  • the vacuum forming member 123 is arranged below the vacuum forming member 122 (that is, on the ⁇ Z side).
  • the vacuum forming member 123 is connected to the vacuum forming member 122 below the vacuum forming member 122.
  • the vacuum forming member 123 may be connected to the vacuum forming member 122 so that the upper surface 123Su of the vacuum forming member 123 is connected to the lower surface 122Sl of the vacuum forming member 122.
  • the vacuum forming member 123 may be integrated with the vacuum forming member 122 or may be separable from the vacuum forming member 122.
  • a beam passing space SPb2-3 forming a part of the beam passing space SPb2 is formed inside the vacuum forming member 123.
  • the beam passage space SPb2-3 penetrates the vacuum forming member 123.
  • the beam passage space SPb2-3 penetrates the vacuum forming member 123 from the lower surface 123Sl of the vacuum forming member 123 toward the upper surface 123Su of the vacuum forming member 123.
  • the beam passing space SPb2-3 is a vacuum forming member via one end of the beam passing space SPb2-3 (in the example shown in FIG. 3, the end on the + Z side and the opening formed in the upper surface 123Su). It is connected to the beam passage space SPb2-2 of 122.
  • the beam passage space SP2-3 is further evacuated through the other end of the beam passage space SPb2-3 (in the example shown in FIG. 3, the end on the ⁇ Z side, which is an opening formed in the lower surface 123Sl). It is connected to the space outside the forming member 123 (more specifically, the beam passing space SPb2-4 of the vacuum forming member 124 described later).
  • the vacuum forming member 123 is further formed with an exhaust passage EP1-3 forming a part of the exhaust passage EP1.
  • the exhaust passage EP1-3 is connected to the exhaust passage EP1-2 of the vacuum forming member 122 via one end of the exhaust passage EP1-3 (in the example shown in FIG. 3, an opening formed in the upper surface 123Su). ing.
  • the exhaust passage EP1-3 is a space (more specifically) outside the vacuum forming member 123 via the other end of the exhaust passage EP1-3 (in the example shown in FIG. 3, an opening formed in the lower surface 123Sl). Is connected to the exhaust passage EP1-4) formed in the vacuum forming member 124 described later.
  • the vacuum forming member 123 is further formed with an exhaust passage EP2-3 forming a part of the exhaust passage EP2.
  • the exhaust passage EP2-3 is connected to the exhaust passage EP2-2 of the vacuum forming member 122 via one end of the exhaust passage EP2-3 (in the example shown in FIG. 3, an opening formed in the upper surface 123Su). ing.
  • the exhaust passage EP2-3 is a space (more specifically) outside the vacuum forming member 123 via the other end of the exhaust passage EP2-3 (in the example shown in FIG. 3, an opening formed in the lower surface 123Sl). Is connected to the exhaust passage EP2-4) formed in the vacuum forming member 124 described later.
  • the vacuum forming member 124 is a member extending downward from the vacuum forming member 123.
  • the vacuum forming member 124 is arranged below the vacuum forming member 123 (that is, on the ⁇ Z side).
  • the vacuum forming member 124 is connected to the vacuum forming member 123 below the vacuum forming member 123.
  • the vacuum forming member 124 may be connected to the vacuum forming member 123 so that the upper surface 124Su of the vacuum forming member 124 is connected to the lower surface 123Sl of the vacuum forming member 123.
  • the vacuum forming member 124 may be integrated with the vacuum forming member 123 or may be separable from the vacuum forming member 123.
  • the vacuum forming member 124 includes the vacuum forming members 1241 to 1243.
  • Each of the vacuum forming members 1241 to 1243 is arranged below the vacuum forming member 123 (that is, on the ⁇ Z side).
  • Each of the vacuum forming members 1241 to 1243 is connected to the vacuum forming member 123 below the vacuum forming member 123.
  • each of the vacuum forming members 1241 to 1243 may be connected to the vacuum forming member 123 so that the upper surface of each of the vacuum forming members 1241 to 1243 is connected to the lower surface 123Sl of the vacuum forming member 123.
  • Each of the vacuum forming members 1241 to 1243 may be integrated with the vacuum forming member 123 or may be separable from the vacuum forming member 123.
  • the vacuum forming member 124 has a structure in which the vacuum forming members 1241 to 1243 are laminated with a gap secured between them.
  • the vacuum forming member 124 may have a structure in which the vacuum forming members 1241 to 1243 are laminated in a nested manner.
  • the vacuum forming members 1241 to 1243 having the same shape as each other are laminated. It also includes a structure in which at least two vacuum forming members 1241 to 1243 having different shapes are laminated.
  • a beam passing space SPb2-4 forming a part of the beam passing space SPb2 is formed inside the vacuum forming member 1241.
  • the beam passage space SPb2-4 penetrates the vacuum forming member 1241.
  • the beam passage space SPb2-4 faces from the lower surface of the vacuum forming member 1241 (that is, at least a part of the injection surface 12LS) to the upper surface of the vacuum forming member 1241 (that is, a part of the upper surface 124Su). It penetrates the vacuum forming member 1241.
  • the beam passing space SPb2-4 is via one end of the beam passing space SPb2-4 (in the example shown in FIG. 3, the end on the + Z side, which is an opening formed on the upper surface of the vacuum forming member 1241).
  • the beam passing space SP2-4 is further the other end of the beam passing space SPb2-4 (in the example shown in FIG. 3, the end on the ⁇ Z side, and the beam ejection port formed on the lower surface of the vacuum forming member 1241. It is connected to the space outside the vacuum forming member 1241 (more specifically, the beam passing space SPb3) via 1250).
  • the vacuum forming member 1241 is located between the sample W and the electron detector 117 from the sample W in the Z-axis direction (or any direction in which at least a part of the beam passing space SPb2 intersects the surface WSu of the sample W). It has a shape that can realize a state in which the charged particles of the sample WSu spread away from the irradiated position in at least one of the X-axis direction and the Y-axis direction (or the direction along the surface WSu of the sample W) as the distance increases. You may be doing it.
  • the inner wall surface of the vacuum forming member 1241 that defines the beam passage space SPb2 is a sample in the Z-axis direction (or any direction that intersects the surface WSu of the sample W). It may have a shape that expands away from the optical axis AX of the beam optical system 11 with respect to at least one of the X-axis direction and the Y-axis direction (or the direction along the surface WSu of the sample W) as the distance from W increases. ..
  • the vacuum forming member 1242 and the vacuum forming member 1241 form an exhaust passage EP1-4 forming a part of the exhaust passage EP1.
  • the inner surface of the vacuum forming member 1242 is the vacuum forming member 1241 in a state where a gap is secured between the inner surface of the vacuum forming member 1242 and the outer surface of the vacuum forming member 1241. It is aligned with respect to the vacuum forming member 1241 so as to face the outer side surface.
  • the gap between the inner surface of the vacuum forming member 1242 that is, the surface facing the optical axis AX side
  • the outer surface of the vacuum forming member 1241 that is, the surface facing the opposite side of the optical axis AX.
  • the vacuum forming member 1243 and the vacuum forming member 1242 form an exhaust passage EP2-4 forming a part of the exhaust passage EP2.
  • the inner surface of the vacuum forming member 1243 is the vacuum forming member 1242 in a state where a gap is secured between the inner surface of the vacuum forming member 1243 and the outer surface of the vacuum forming member 1242. It is aligned with respect to the vacuum forming member 1242 so as to face the outer side surface. As a result, the gap between the inner surface of the vacuum forming member 1243 and the outer surface of the vacuum forming member 1242 can be used as the exhaust passage EP2-4.
  • the exhaust passage EP2-4 is connected to the exhaust passage EP2-3 of the vacuum forming member 123 via one end of the exhaust passage EP2-4 (in the example shown in FIG. 3, an annular opening formed in the upper surface 124Su). You are connected.
  • the exhaust passage EP2-4 passes through the other end of the exhaust passage EP2-4 (in the example shown in FIG. 3, the exhaust port 1252 formed on the injection surface 12LS), and the space outside the vacuum forming member 124 (more than that). Specifically, it is connected to the space between the differential exhaust system 12 and the surface WSu of the sample W).
  • the injection surface 12LS includes an injection surface 121LS having a circular shape in the plane along the XY plane. Further, as shown in FIG. 5, the injection surface 12LS protrudes outward from the injection surface 121LS along one direction along the XY plane (in the example shown in FIG. 5, the direction toward the + Y side).
  • the surface 122LS may be included.
  • the shape of the injection surface 12LS is not limited to the shape shown in FIG. 5, and may be any other shape (for example, rectangular or elliptical shape).
  • Each of the vacuum forming members 1241 to 1243 may have any shape as long as the beam passage space SPb2-4 and the exhaust passages EP1-4 to EP2-4 can be formed.
  • the vacuum forming member 124 may have any shape as long as the beam passage space SPb2-4 and the exhaust passages EP1-4 to EP3-4 can be formed.
  • the vacuum forming member 124 does not have to be separated into a plurality of vacuum forming members 1241 to 1243 as long as the beam passage space SPb2-4 and the exhaust passages EP1-4 to EP2-4 can be formed.
  • the differential exhaust system 12 is further formed with an opening 126.
  • 2 to 4 show an example in which the opening 126 is formed in the vacuum forming member 121, but the opening 126 is at least one of the vacuum forming members 122 to 124 in addition to or in place of the vacuum forming member 121. It may be formed in.
  • the opening 126 is formed so as to face the beam passage space SPb2.
  • the opening 126 is formed so as to connect to the beam passage space SPb2.
  • the opening 126 is formed above the beam ejection port 1250 (that is, opposite to the sample W) that defines the lower boundary (ie, the end) of the beam passage space SPb2.
  • the opening 126 is formed below the opening 120 (that is, on the same side as the sample W) that defines the upper boundary (that is, the end) of the beam passage space SPb2.
  • the opening 126 is formed in a portion of the vacuum forming member 121 facing the beam passing space SPb2.
  • the opening 126 is formed in the inner wall of the vacuum forming member 121 that defines the beam passage space SPb2.
  • a pipe 127 penetrating the vacuum forming member 121 is connected to the opening 126. Therefore, the pipe 127 is connected to the beam passage space SPb2 via the opening 126.
  • a gas supply device 6 is connected to the pipe 127 via a valve 1281 and a pipe 1291. Further, as shown in FIG. 1, the exhaust device 7 is connected to the pipe 127 via the valve 1282 and the pipe 1292.
  • Each of the valves 1281 and 1282 is a needle valve, but other types of valves may be used.
  • the gas supply device 6 can supply gas to at least a part of the beam passage space SPb2 via the pipe 1291, the valve 1281, the pipe 127, and the opening 126 under the control of the control device 4. That is, the gas supply device 6 can supply air to at least a part of the beam passage space SPb2 through the pipe 1291, the valve 1281, the pipe 127, and the opening 126 under the control of the control device 4. Specifically, when the valve 1281 is in the closed state, the gas supply device 6 cannot supply gas to at least a part of the beam passage space SPb2. On the other hand, when the valve 1281 is in the open state, the gas supply device 6 can supply gas to at least a part of the beam passage space SPb2.
  • the state of the gas supply device 6 is a state in which gas is supplied to at least a part of the beam passage space SPb2 by switching the state of the valve 1281 under the control of the control device 4, and at least one of the beam passage space SPb2. It can be switched between the state where gas is not supplied to the part. As a result, the gas supply device 6 can supply gas to at least a part of the beam passage space SPb2 at a desired timing.
  • the gas supply device 6 controls the flow rate of the gas supplied from the gas supply device 6 to at least a part of the beam passage space SPb2 by controlling the flow rate of the gas supplied by the gas supply device 6 to the pipe 1291. You may. Alternatively, the flow rate of the gas supplied from the gas supply device 6 to at least a part of the beam passage space SPb2 also depends on the opening degree of the valve 1281. This is because the larger the opening degree of the valve 1281, the larger the flow rate of the gas supplied from the pipe 1291 to the pipe 127 (furthermore, the beam passing space SPb2) via the valve 1281.
  • control device 4 may control the flow rate of the gas supplied from the gas supply device 6 to at least a part of the beam passage space SPb2 by controlling the opening degree of the valve 1281.
  • each of the gas supply device 7 and the valve 1281 can substantially function as a device capable of controlling the degree of vacuum of at least a part of the beam passage space SPb2.
  • the gas supply device 6 may be able to supply gas to at least a part of the beam passing space SPb1 via the beam passing space SPb2. In this case, the gas supply device 6 may supply gas to at least a part of the beam passing space SPb1 to control the degree of vacuum of at least a part of the beam passing space SPb1. Further, since the beam passing space SPb2 is connected to the beam passing space SPb3, the gas supply device 6 may be able to supply gas to at least a part of the beam passing space SPb3 via the beam passing space SPb2. .. In this case, the gas supply device 6 may supply gas to at least a part of the beam passing space SPb3 to control the degree of vacuum of at least a part of the beam passing space SPb3.
  • the gas supply device 6 supplies gas to at least a part of the beam passage space SPb including the beam passage space SPb1 to SPb3 through the opening 126, and the beam passage space SPb. At least a part of the degree of vacuum can be controlled.
  • the gas supply device 6 may supply gas to the beam passage space SPb via the filter 61.
  • the filter 61 may be arranged in the pipe 1291, for example. That is, the pipe 1291 may include the filter 61.
  • the filter 61 may be configured to be able to filter the gas passing through the filter 61.
  • the filter 61 may be configured to be able to adsorb impurities contained in the gas passing through the filter 61.
  • the filter 61 at least one of a HEPA (High Effectivey Particulate Air) filter, a ULPA (Ultra Low Particulate Air) filter, and a chemical filter can be mentioned.
  • impurities include at least one of fine particles (fine particles, particles), an organic gas (organic gas), an alkaline gas (alkaline gas), and an acidic gas (acidic gas).
  • the gas supply device 6 can supply the gas filtered by the filter 61 from which impurities have been removed to the beam passing space SPb.
  • the scanning electron microscope SEMa does not have to include the filter 61.
  • the filter 61 may be a selection filter that selectively passes a specific gas molecule.
  • a fine particle counter (particle counter) for detecting fine particles (particles) contained in the gas passing through the pipe 1291 may be arranged in the pipe 1291.
  • At least one of a hygrometer and a dew point meter for determining the humidity of the gas passing through the pipe 1291 may be arranged in the pipe 1291.
  • the dew point meter determines the humidity by measuring the dew point temperature.
  • a hygroscopic agent may be arranged in the pipe 1291.
  • the exhaust device 7 can exhaust at least a part of the beam passage space SPb2 via the pipe 1292, the valve 1282, the pipe 127, and the opening 126. Specifically, when the valve 1282 is in the closed state, the exhaust device 7 cannot exhaust at least a part of the beam passage space SPb2. On the other hand, when the valve 1282 is in the open state, the exhaust device 6 can exhaust at least a part of the beam passage space SPb2. Therefore, the state of the exhaust device 7 is a state in which at least a part of the beam passing space SPb2 is exhausted and at least a part of the beam passing space SPb2 is exhausted by switching the state of the valve 1282 under the control of the control device 4. It can be switched between the non-state and the non-state. As a result, the exhaust device 7 can exhaust at least a part of the beam passing space SPb2 at a desired timing.
  • the pipe 1292 passes through a filter for filtering the gas passing through the pipe 1292, a hygrometer for absorbing the moisture of the gas passing through the pipe 1292, a fine particle meter for detecting fine particles contained in the gas passing through the pipe 1292, and the pipe 1292. At least one of a hygrometer and a dew point meter for determining the humidity of the gas may be arranged.
  • At least one of a gas analyzer and a mass spectrometer for analyzing substances passing through the pipe 1292 may be arranged in the pipe 1292.
  • the mass spectrometer include a quadrupole mass spectrometer (Q-mass: Quadrupole mass spectrometer).
  • the pressure (that is, atmospheric pressure) of at least a part of the beam passing space SPb2 changes. That is, when at least a part of the beam passing space SPb2 is exhausted, the degree of vacuum of at least a part of the beam passing space SPb2 changes. Therefore, under the control of the control device 4, the exhaust device 7 exhausts at least a part of the beam passing space SPb2 through the opening 126 at a desired exhaust rate (that is, at least a part of the beam passing space SPb2).
  • the degree of vacuum of at least a part of the beam passage space SPb2 can be controlled by recovering the gas at a desired flow rate).
  • the exhaust device 7 controls the flow rate of the gas recovered from at least a part of the beam passage space SPb2 by controlling the exhaust speed of the exhaust device 7 itself (that is, the flow rate of the gas recovered by the exhaust device 7). You may. Alternatively, the flow rate of the gas recovered from at least a part of the beam passage space SPb2 also depends on the opening degree of the valve 1282. This is because the larger the opening degree of the valve 1282, the larger the flow rate of the gas recovered by the exhaust device 7 via the valve 1282. Therefore, the control device 4 may control the flow rate of the gas recovered from at least a part of the beam passing space SPb2 by controlling the opening degree of the valve 1282. In this case, each of the exhaust device 7 and the valve 1282 can substantially function as a device capable of controlling the degree of vacuum of at least a part of the beam passing space SPb2.
  • the exhaust device 7 may be able to exhaust at least a part of the beam passing space SPb1 via the beam passing space SPb2. In this case, the exhaust device 7 may be able to exhaust at least a part of the beam passing space SPb1 and control the degree of vacuum of at least a part of the beam passing space SPb1. Further, since the beam passing space SPb2 is connected to the beam passing space SPb3, the exhaust device 7 may be able to exhaust at least a part of the beam passing space SPb3 via the beam passing space SPb2. In this case, the exhaust device 7 may be able to exhaust at least a part of the beam passing space SPb3 and control the degree of vacuum of at least a part of the beam passing space SPb3.
  • the exhaust device 7 exhausts at least a part of the beam passing space SPb through the opening 126 to control the degree of vacuum of at least a part of the beam passing space SPb. Can be done.
  • the exhaust device 7 may include a vacuum pump.
  • the exhaust capacity of the vacuum pump included in the exhaust device 7 may be the same as the exhaust capacity of the above-mentioned vacuum pump 51 used for exhausting SPb3 from the beam passing space SPb1.
  • the exhaust capacity of the vacuum pump included in the exhaust device 7 may be lower or higher than the exhaust capacity of the vacuum pump 51.
  • FIGS. 6 and 7 are cross-sectional views showing how the gas supply device 6 supplies air to at least a part of the beam passage space SPb (particularly, the beam passage space SPb2).
  • 8 and 9 are cross-sectional views showing how the exhaust device 7 exhausts at least a part of the beam passing space SPb (particularly, the beam passing space SPb2).
  • the gas supply device 6 can function as a device capable of controlling the vacuum degree of at least a part of the beam passing space SPb so that the vacuum degree of at least a part of the beam passing space SPb is reduced. In this case, the gas supply device 6 supplies gas to at least a part of the beam passing space SPb at a timing when it is desired to reduce the degree of vacuum of at least a part of the beam passing space SPb.
  • the gas supply device 6 may supply a desired flow rate of gas to at least a part of the beam passing space SPb so that the vacuum degree of at least a part of the beam passing space SPb becomes a desired vacuum degree.
  • the degree of vacuum of at least a part of the beam passing space SPb decreases due to the supply of gas from the gas supply device 6 to at least a part of the beam passing space SPb, the beam irradiation device 1 and the sample W
  • the degree of vacuum of at least a part of the beam passing space SPb3 formed in the intervening space may also be reduced.
  • the degree of vacuum of at least a part of the beam passing space SPb3 is reduced, the negative pressure acting on the beam irradiation device 1 (particularly the injection surface 12LS) and the sample W (particularly the surface WSu) from the beam passing space SPb3 may be reduced. There is.
  • the force acting on the beam irradiation device 1 from the beam passing space SPb3 so as to bring the beam irradiation device 1 closer to the sample W and the force acting on the sample W from the beam passing space SPb3 so as to bring the sample W closer to the beam irradiation device 1. May decrease.
  • the beam irradiation device 1 and the sample W may be separated from each other.
  • the distance D between the beam irradiation device 1 and the sample W may deviate from the desired distance D_target.
  • the distance D between the beam irradiator 1 and the sample W may be larger than the desired distance D_taget.
  • the control device 4 may control the interval D during at least a part of the period in which the gas supply device 6 supplies the gas to at least a part of the beam passing space SPb. That is, the control device 4 may control the degree of vacuum of at least a part of the beam passing space SPb by using the gas supply device 6 and also control the interval D. In this case, the control device 4 may control the interval D in parallel with controlling the degree of vacuum of at least a part of the beam passing space SPb by using the gas supply device 6.
  • the control device 4 includes the interval adjusting system 14 and the stage so that the interval D is maintained as the desired interval D_target during at least a part of the period in which the gas supply device 6 supplies gas to at least a part of the beam passage space SPb. At least one of the drive system 23 may be controlled. The control device 4 has both a period before the gas supply device 6 supplies gas to at least a part of the beam passage space SPb and a period after the gas supply device 6 supplies gas to at least a part of the beam passage space SPb. In, at least one of the interval adjusting system 14 and the stage drive system 23 may be controlled so that the interval D is maintained as the desired interval D_taget.
  • a force acting to bring the beam irradiation device 1 and the sample W closer to each other in the Z-axis direction (for example, a force capable of moving the flange member 13 to the ⁇ Z side) is applied.
  • the control device 4 compares with the gas supply device 6 before supplying gas to at least a part of the beam passage space SPb.
  • the spacing adjusting system 14 may be controlled so that the force applied to the flange member 13 from the spacing adjusting system 14 is increased. For example, as shown in FIG.
  • a force acting to bring the beam irradiation device 1 and the sample W closer to each other in the Z-axis direction (for example, a force capable of moving the stage 22 to the + Z side) is applied to the stage 22.
  • the control device 4 compares with the stage drive system before the gas supply device 6 supplies gas to at least a part of the beam passage space SPb.
  • the stage drive system 23 may be controlled so that the force applied to the stage 22 from the 23 increases.
  • the beam irradiation device 1 and the sample W may be separated from each other due to the gas supply device 6 supplying gas to at least a part of the beam passage space SPb.
  • the exhaust device 7 may recover the gas from at least a part of the beam passing space SPb at a desired flow rate so that the degree of vacuum of at least a part of the beam passing space SPb becomes a desired degree of vacuum.
  • the degree of vacuum of at least a part of the beam passing space SPb increases due to the exhaust device 7 exhausting at least a part of the beam passing space SPb, the space between the beam irradiating device 1 and the sample W becomes The degree of vacuum of at least a part of the beam passage space SPb3 formed may also increase.
  • the degree of vacuum of at least a part of the beam passing space SPb3 increases, the negative pressure acting on the beam irradiation device 1 (particularly the injection surface 12LS) and the sample W (particularly the surface WSu) from the beam passing space SPb3 may increase. There is.
  • the space adjusting system 14 adjusts the space D by applying a force acting to separate the beam irradiation device 1 and the sample W in the Z-axis direction to the flange member 13.
  • the interval adjustment system is provided so that the force applied to the flange member 13 from the interval adjustment system 14 increases as compared with before the exhaust device 7 exhausts at least a part of the beam passage space SPb. 14 may be controlled.
  • the stage drive system 23 adjusts the interval D by applying a force acting to separate the beam irradiation device 1 and the sample W in the Z-axis direction to the stage 22.
  • the control device 4 sets the stage drive system 23 so that the force applied to the stage 22 from the stage drive system 23 increases as compared with before the exhaust device 7 exhausts at least a part of the beam passage space SPb. You may control it. In this case, the beam irradiation device 1 and the sample W are combined in a situation where the beam irradiation device 1 and the sample W may come close to each other due to the exhaust device 7 exhausting at least a part of the beam passage space SPb. The force applied to the interval adjusting system 14 and / or the stage drive system 23 increases so as to separate them.
  • the control device 4 may increase the force applied to the interval adjusting system 14 and / or the stage drive system 23 by a desired amount so that the interval D is maintained as the desired interval D_taget.
  • the interval adjusting system 14 adjusts the interval D by applying a force acting to bring the beam irradiation device 1 and the sample W closer to each other in the Z-axis direction to the flange member 13. If so, the control device 4 is spaced so that the force applied to the flange member 13 by the spacing adjusting system 14 is reduced as compared to before the exhausting device 7 exhausts at least a part of the beam passage space SPb.
  • the adjustment system 14 may be controlled. For example, as shown in FIG. 9, when the stage drive system 23 adjusts the interval D by applying a force acting to bring the beam irradiation device 1 and the sample W closer to each other in the Z-axis direction to the stage 22.
  • the control device 4 sets the stage drive system 23 so that the force applied to the stage 22 from the stage drive system 23 is reduced as compared with before the exhaust device 7 exhausts at least a part of the beam passage space SPb. You may control it.
  • the beam irradiation device 1 and the sample W are combined in a situation where the beam irradiation device 1 and the sample W may come close to each other due to the exhaust device 7 exhausting at least a part of the beam passage space SPb.
  • the force applied to the interval adjusting system 14 and / or the stage drive system 23 is reduced so as to bring them closer to each other.
  • the beam irradiating device 1 and the sample W are compared with the case where the force applied by the interval adjusting system 14 and / or the stage driving system 23 is not reduced so that the beam irradiating device 1 and the sample W are brought closer to each other. It becomes difficult to approach (that is, the amount of decrease in the interval D becomes small).
  • the control device 4 may reduce the force applied to the interval adjusting system 14 and / or the stage drive system 23 by a desired amount so that the interval D is maintained as the desired interval D_taget.
  • control device 4 may allow a temporary decrease in the interval D due to the exhaust device 7 exhausting at least a part of the beam passing space SPb. That is, the control device 4 may allow the beam irradiation device 1 and the sample W to temporarily approach each other due to the exhaust device 7 exhausting at least a part of the beam passing space SPb.
  • the control device 4 may control at least one of the interval adjusting system 14 and the stage drive system 23 so as to increase the temporarily decreased interval D and return it to the desired interval D_target. That is, the control device 4 may control at least one of the interval adjusting system 14 and the stage drive system 23 so that the beam irradiation device 1 and the sample W that are temporarily approached are separated again. Even in this case, there is no problem as long as the temporary decrease in the interval D does not affect the measurement by the scanning electron microscope SEMa.
  • control device 4 sets the operation mode of the scanning electron microscope SEMa to a pressure including the pressure in the first pressure range, and sets the pressure in the vacuum region VSP to the first mode. You may switch between the second mode and setting the pressure included in the pressure range of 2. That is, the control device 4 may switch the operation mode of the scanning electron microscope SEMa from either the first or second mode to the other of the first and second modes. In other words, the control device 4 may set the operation mode of the scanning electron microscope SEMa to the first mode or the second mode.
  • the control device 4 may switch the operation mode of the scanning electron microscope SEMa between the first mode and the second mode by using the opening 126 and the pipe 127. Specifically, the control device 4 uses the air supply and / or exhaust of the beam passage space SPb via the opening 126 and the pipe 127 to set the operation modes of the scanning electron microscope SEMa to the first mode and the second mode. You may switch between modes.
  • the control device 4 controls (for example, changes) the flow rate of the gas supplied to the beam passage space SPb through the opening 126 and the pipe 127, thereby setting the operation mode of the scanning electron microscope SEMa to the first operation mode. You may switch between the mode and the second mode.
  • the control device 4 is a scanning type by changing the flow rate of the gas supplied to the beam passing space SPb through the opening 126 and the pipe 127 from the first flow rate to the second flow rate.
  • the operation mode of the electron microscope SEMa may be switched between the first mode and the second mode.
  • the control device 4 changes the flow rate of the gas supplied to the beam passage space SPb through the opening 126 and the pipe 127 from zero to more than zero or from more than zero to zero.
  • the control device 4 controls (for example, changes) the flow rate of the gas recovered from the beam passing space SPb through the opening 126 and the pipe 127, thereby setting the operation mode of the scanning electron microscope SEMa to the first operation mode. You may switch between the mode and the second mode.
  • the control device 4 is a scanning type by changing the flow rate of the gas recovered from the beam passing space SPb through the opening 126 and the pipe 127 from the third flow rate to the fourth flow rate.
  • the operation mode of the electron microscope SEMa may be switched between the first mode and the second mode.
  • the control device 4 changes the flow rate of the gas recovered from the beam passage space SPb through the opening 126 and the pipe 127 from zero to more than zero or from more than zero to zero.
  • the operation mode of the scanning electron microscope SEMa may be switched between the first mode and the second mode.
  • the flow rate of the gas recovered from the beam passage space SPb via the opening 126 and the pipe 127 in the first mode is from the beam passage space SPb via the opening 126 and the pipe 127 in the second mode.
  • the flow rate is different from the flow rate of the recovered gas.
  • the control device 4 controls the flow rate of the gas recovered from the beam passage space SPb by the vacuum pump 52 via at least one of the exhaust passages EP1 and EP2 in addition to or in place of the opening 126 and the pipe 127 (eg, modification). By doing so, the operation mode of the scanning electron microscope SEMa may be switched between the first mode and the second mode. That is, the control device 4 controls (eg, changes) the flow rate of the gas recovered from the beam passage space SPb via at least one of the exhaust ports 1251 and 1252 in addition to or in place of the opening 126 and the pipe 127. As a result, the operation mode of the scanning electron microscope SEMa may be switched between the first mode and the second mode.
  • the control device 4 changes the flow rate of the gas recovered from the beam passage space SPb via at least one of the exhaust passages EP1 and EP2 from the fifth flow rate to the sixth flow rate.
  • the operation mode of the scanning electron microscope SEMa may be switched between the first mode and the second mode.
  • the control device 4 changes the flow rate of the gas recovered from the beam passage space SPb through at least one of the exhaust passages EP1 and EP2 from zero to more than zero or from more than zero to zero.
  • the operation mode of the scanning electron microscope SEMa may be switched between the first mode and the second mode.
  • the control device 4 controls (for example, changes) the flow rate of the gas recovered from the beam passage space SPb2 by the vacuum pump 52 via the pipe 112 and the beam passage space SPb1 to control (for example, change) the operation mode of the scanning electron microscope SEMa. May be switched between the first mode and the second mode.
  • the control device 4 controls (for example, changes) the flow rate of the gas recovered from the beam passage space SPb3 by the vacuum pump 52 via the pipe 112 and the beam passage space SPb1 to SPb2, thereby causing the scanning electron microscope SEMa.
  • the operation mode may be switched between the first mode and the second mode.
  • the control device 4 operates the scanning electron microscope SEMa by changing the flow rate of the gas recovered from the beam passing space SPb via the pipe 112 from the seventh flow rate to the eighth flow rate.
  • the mode may be switched between the first mode and the second mode.
  • the control device 4 changes the flow rate of the gas recovered from the beam passage space SPb via the pipe 112 from zero to more than zero or from more than zero to zero, thereby scanning electrons.
  • the operation mode of the microscope SEMa may be switched between the first mode and the second mode.
  • the flow rate of the gas recovered from the beam passing space SPb via the pipe 112 in the first mode is the flow rate of the gas recovered from the beam passing space SPb via the pipe 112 in the second mode. The flow rate will be different from.
  • the control device 4 desires the distance D between the beam irradiation device 1 and the sample W. At least one of the interval adjusting system 14 and the stage drive system 23 may be controlled so that the interval D_target is maintained. That is, in the control device 4, the interval D when the operation mode of the scanning electron microscope SEMa is set to the first mode is the interval when the operation mode of the scanning electron microscope SEMa is set to the second mode. At least one of the interval adjustment system 14 and the stage drive system 23 may be controlled so as to be substantially the same as D.
  • the interval D in the first mode and the interval D in the second mode are literally exactly the same.
  • the control device 4 sets the interval D when the operation mode of the scanning electron microscope SEMa is set to the first mode.
  • At least one of the interval adjusting system 14 and the stage drive system 23 may be controlled so that the operation mode of the scanning electron microscope SEMa is different from the interval D when the operation mode is set to the second mode.
  • the scanning electron microscope SEMa of the first embodiment an opening formed so as to face the beam passage space SPb.
  • the degree of vacuum of at least a part of the beam passing space SPb can be controlled via 126. Therefore, the scanning electron microscope SEMa can control the degree of vacuum of at least a part of the beam passing space SPb without controlling the vacuum pump 51 mainly used for exhausting the entire beam passing space SPb. it can. In essence, the scanning electron microscope SEMa can locally control the degree of vacuum of a part of the beam passage space SPb without collectively controlling the degree of vacuum of the entire beam passage space SPb.
  • the scanning electron microscope SEMa is a space in the beam passing space SPb2 near the opening 126 while maintaining a relatively high degree of vacuum at the beam ejection port 1250 corresponding to the ends of the beam passing spaces SPb1 to SPb2.
  • the degree of vacuum of the part can be changed relatively quickly.
  • the degree of vacuum of the beam ejection port 1250 corresponding to the end of the beam passing space SPb1 to SPb2 is higher than the degree of vacuum of the space portion of the beam passing space SPb2 near the opening 126.
  • the electron beam EB can be applied to the sample W.
  • the scanning electron microscope SEMa may control at least a part of the vacuum degree of the beam passing space SPb (particularly, the vacuum degree of the beam passing space SPb3 facing the sample W) according to the characteristics of the sample W. Good.
  • the scanning electron microscope SEMa when the sample W is an insulator, the sample W is charged up due to the irradiation of the electron beam EB as compared with the case where the sample W is a non-insulator. Is relatively likely to occur.
  • insulating material electric conductivity (conductivity) is low object, electrical conductivity consists of the following non-conductor 10 6 S / m.
  • this phenomenon of charge-up is preferable for the acquisition of an appropriate SEM image (or the acquisition of information on the sample W). Therefore, in the scanning electron microscope SEMa, when the sample W is an insulator, at least a part of the vacuum degree (particularly, the sample W) of the beam passing space SPb is compared with the case where the sample W is a non-insulator.
  • the degree of vacuum of at least a part of the beam passing space SPb may be controlled so that the degree of vacuum of the beam passing space SPb3 facing the beam is low. As a result, the phenomenon of charge-up is less likely to occur as compared with the case where at least a part of the beam passing space SPb has the same degree of vacuum regardless of whether the sample W is an insulator or not.
  • the scanning electron microscope SEMa does not have to collectively control the overall vacuum degree of the beam passing space SPb, compared with the case where the entire vacuum degree of the beam passing space SPb is controlled collectively.
  • the vacuum degree of at least a part of the lowered beam passage space SPb can be returned to the original vacuum degree (that is, a relatively high vacuum degree) relatively quickly.
  • the scanning electron microscope SEMa is a non-insulating material.
  • the vacuum degree of at least a part of the beam passing space SPb is controlled so that the vacuum degree of at least a part of the beam passing space SPb is lower than that of the beam passing space SPb.
  • the lower the degree of vacuum of at least a part of the beam passing space SPb the higher the possibility that the electron beam EB passing through the beam passing space SPb is scattered by gas molecules.
  • the scanning electron microscope SEMa has a first operation of controlling the vacuum degree of at least a part of the beam passing space SPb so that the vacuum degree of at least a part of the beam passing space SPb is relatively low, and a beam passing.
  • the second operation of controlling the vacuum degree of at least a part of the beam passing space SPb so that the vacuum degree of at least a part of the space SPb becomes relatively high may be repeated in a relatively short period of time. That is, the scanning electron microscope SEMa has the first operation of relatively lowering the degree of vacuum of at least a part of the beam passing space SPb to prioritize the prevention of charge-up rather than the prevention of scattering of the electron beam EB by gas molecules.
  • the second operation of prioritizing the prevention of scattering of the electron beam EB by gas molecules rather than the prevention of charge-up by relatively increasing the degree of vacuum of at least a part of the beam passage space SPb is repeated in a relatively short period of time.
  • the scanning electron microscope SEMa repeats the first and second operations during a relatively short period in which the scanning electron microscope SEMa scans a part of the surface WSu of the sample W with the electron beam EB.
  • the scanning electron microscope SEMa may repeat the first and second operations during a relatively short period in which the relative positions of the sample W and the beam irradiation device 1 do not change.
  • the scanning electron microscope SEMa may include a plurality of beam irradiation devices 1 having different degrees of vacuum in the beam passing space SPb. In this case, the scanning electron microscope SEMa determines one beam irradiation device 1 that irradiates the sample W with the electron beam EB among the plurality of beam irradiation devices 1 according to the characteristics (for example, electrical conductivity) of the sample W. Then, the sample W may be irradiated with the electron beam EB by using the one beam irradiation device 1.
  • the scanning electron microscope SEMa when the electric conductivity of the sample W is high enough to behave as a non-insulating material, the scanning electron microscope SEMa has a relatively high degree of vacuum (or a degree of vacuum in the beam passing space SPb among the plurality of beam irradiation devices 1).
  • the sample W may be irradiated with the electron beam EB by using one beam irradiation device 1 (higher or highest than a predetermined value).
  • the scanning electron microscope SEMa when the electric conductivity of the sample W is low enough to behave as an insulator, the scanning electron microscope SEMa has a relatively low degree of vacuum (or a degree of vacuum in the beam passing space SPb among the plurality of beam irradiation devices 1).
  • the electron beam EB may be irradiated to the sample W by using one beam irradiation device 1 (lower or lowest than a predetermined value).
  • the control device 4 may control the interval D based on the degree of vacuum of the beam passing space SPb in addition to or in place of the measurement results of the position measuring devices 15 and 23.
  • the scanning electron microscope SEMa may include a pressure gauge 16 as shown in FIG.
  • the pressure gauge 16 may be capable of measuring at least one pressure in the beam passage spaces SPb1, SPb2 and SPb3.
  • the pressure gauge 16 may be capable of measuring at least one pressure in the exhaust passages EP1 and EP2.
  • the pressure gauge 16 may be capable of measuring the pressure in the pipe 127 connected to the beam passage space SPb.
  • the opening 126 is connected to the gas supply device 6 via the pipe 127, the valve 1281, and the pipe 1291.
  • the opening 126 may be connected to a low vacuum space having a vacuum degree lower than that of the beam passing space SPb via the pipe 127, the valve 1281, and the pipe 1291.
  • the low vacuum space may be an atmospheric pressure space.
  • the low vacuum space may be at least a part of the space in which the scanning electron microscope SEMa is installed.
  • the valve 1281 is opened, gas flows from the low vacuum space having a relatively low degree of vacuum toward at least a part of the beam passing space SPb having a relatively high degree of vacuum. Therefore, the same effect as the above-mentioned effect can be enjoyed.
  • the scanning electron microscope SEMa does not have to be provided with the gas supply device 6.
  • the opening 126 is connected to the exhaust device 7 via the pipe 127, the valve 1282, and the pipe 1292.
  • the opening 126 may be connected to a high vacuum space having a higher degree of vacuum than the beam passing space SPb via the pipe 127, the valve 1282, and the pipe 1292.
  • the scanning electron microscope SEMa does not have to include the exhaust device 7.
  • the scanning electron microscope SEMa provides both air supply of at least a part of the beam passing space SPb through the opening 126 and exhaust of at least a part of the beam passing space SPb through the opening 126. ..
  • the scanning electron microscope SEMa supplies at least a part of the beam passing space SPb through the opening 126, it does not have to exhaust at least a part of the beam passing space SPb through the opening 126.
  • the scanning electron microscope SEMa includes components (specifically, an exhaust device 7, a valve 1282 and a pipe 1292) used for exhausting at least a part of the beam passage space SPb through the opening 126. It does not have to be.
  • the gas supply device 6 supplies gas to at least a part of the beam passing space SPb through the opening 126, and in addition, by a peripheral region (for example, a vacuum region VSP) located at least a part around the vacuum region VSP.
  • a peripheral region for example, a vacuum region VSP located at least a part around the vacuum region VSP.
  • a space above the other part of the surface WSu of the uncovered sample W, for example, the space SP2) shown in FIG. 2 may be supplied with gas.
  • the scanning electron microscope SEMa is provided in a peripheral region located at least a part around the vacuum region VSP in addition to the gas supply device 6 that supplies gas to at least a part of the beam passing space SPb through the opening 126.
  • It may be provided with another gas supply device that supplies gas.
  • the gas supplied by another gas supply device may be the same as or different from the gas supplied by the gas supply device 6.
  • the scanning electron microscope SEMb of the second embodiment is different from the scanning electron microscope SEMa of the first embodiment described above in that it includes a beam irradiating device 1b instead of the beam irradiating device 1. ..
  • Other features of the scanning electron microscope SEMb may be the same as those of the scanning electron microscope SEMa described above. Therefore, in the following, the structure of the beam irradiation device 1b will be described with reference to FIG. FIG.
  • FIG. 11 is a cross-sectional view showing the structure of the beam irradiation device 1b included in the scanning electron microscope SEMb of the second embodiment.
  • the same reference reference numerals will be given to the constituent requirements already described, and detailed description thereof will be omitted.
  • the beam irradiation device 1b is different from the beam irradiation device 1 in that it includes a differential exhaust system 12b instead of the differential exhaust system 12. Further, the beam irradiation device 1b is different from the beam irradiation device 1 in that the beam optical system 11b is provided instead of the beam optical system 11. Other features of the beam irradiating device 1b may be the same as those of the beam irradiating device 1 described above.
  • the differential exhaust system 12b is different from the above-mentioned differential exhaust system 12 in that the opening 126 facing the beam passage space SPb2 does not have to be formed. Further, the differential exhaust system 12b is different from the above-mentioned differential exhaust system 12 in that it does not have to be provided with the pipe 127 connected to the opening 126 because the opening 126 is not formed. There is. Other features of the differential exhaust system 12b may be the same as those of the differential exhaust system 12 described above. However, also in the differential exhaust system 12b of the second embodiment, the opening 126 may be formed and the pipe 127 may be connected to the opening 126.
  • the beam optical system 11b is different from the beam optical system 11 described above in that an opening 126b is formed in the housing 111. Other features of the beam optical system 11b may be the same as those of the beam optical system 11 described above.
  • the opening 126b is formed so as to face the beam passing space SPb1.
  • the opening 126b is formed so as to connect to the beam passage space SPb1.
  • the opening 126b is formed above the beam ejection port 119 (that is, opposite to the sample W) that defines the lower boundary (that is, the end) of the beam passage space SPb1.
  • the opening 126b is formed in a portion of the housing 111 facing the beam passing space SPb1.
  • the opening 126b is formed in the inner wall of the housing 111 that defines the beam passage space SPb1.
  • FIG. 11 shows an example in which the aperture 126b is formed below the objective lens 115, but the formation position of the aperture 126b is not limited to this example.
  • a pipe 127b penetrating the housing 111 is connected to the opening 126b. Therefore, the pipe 127b is connected to the beam passage space SPb1 via the opening 126b.
  • a gas supply device 6 is connected to the pipe 127b via a valve 1281 and a pipe 1291. Further, an exhaust device 7 is connected to the pipe 127b via a valve 1282 and a pipe 1292. Therefore, the gas supply device 6 includes a beam including a beam passing space SPb1 (further, beam passing spaces SPb2 and SPb3 connected to the beam passing space SPb1) via the pipe 1291, the valve 1281, the pipe 127b and the opening 126b. Gas can be supplied to at least a part of the passage space SPb.
  • the exhaust device 7 can exhaust at least a part of the beam passage space SPb through the pipe 1292, the valve 1282, the pipe 127b and the opening 126b. That is, the scanning electron microscope SEMb can control the degree of vacuum of at least a part of the beam passing SPb, similarly to the scanning electron microscope SEMa. Further, the scanning electron microscope SEMb can control the degree of vacuum of at least a part of the beam passing SPb and adjust the interval D in the same manner as the scanning electron microscope SEMb.
  • the vacuum degree control and the interval D control itself performed in the second embodiment may be the same as the vacuum degree control and the interval D control performed in the first embodiment, and thus the detailed description thereof will be described. Is omitted.
  • an opening facing the beam passing space SPb3 may be formed.
  • the opening facing the beam passage space SPb3 may be formed in, for example, the differential exhaust system 12b.
  • the opening facing the beam passage space SPb3 may be formed on the injection surface 12LS of the differential exhaust system 12b.
  • Such an opening facing the beam passage space SPb3 may face the surface WSu of the sample W.
  • the gas supply device 6 includes the beam passing space SPb3 (further, the beam passing spaces SPb1 and SPb2 connected to the beam passing space SPb3) through the opening facing the beam passing space SPb3. Gas can be supplied to at least a part of the beam passing space SPb. Further, the exhaust device 7 can exhaust at least a part of the beam passing space SPb through the opening facing the beam passing space SPb3.
  • a modified example of the scanning electron microscope SEMa of the first embodiment can also be applied to the scanning electron microscope SEMb of the second embodiment. That is, in the description of the modification of the scanning electron microscope SEMa of the first embodiment, the words “opening 126", “pipe 127” and “scanning electron microscope SEMa” are referred to as “opening 126b (or beam passing space SPb3), respectively.
  • the scanning type of the second embodiment is replaced with the words "opening facing the opening)", “pipe 127b (or the pipe connected to the opening facing the beam passage space SPb3)" and "scanning electron microscope SEMb". This will explain a modified example in which the electron microscope SEMb can be adopted.
  • FIG. 12 is a cross-sectional view showing the structure of the beam irradiation device 1c included in the scanning electron microscope SEMc of the third embodiment.
  • the beam irradiation device 1c is the same as the beam irradiation device 1b in that it includes a beam optical system 11b and a differential exhaust system 12b.
  • the beam irradiator 1c is different from the beam irradiator 1b in that it further includes a pipe 127c.
  • Other features of the beam irradiating device 1c may be the same as those of the beam irradiating device 1b described above.
  • the pipe 127c extends from the opening 126b toward the beam passage space SPb2 via the beam passage space SPb1.
  • One end of the pipe 127c is connected to the opening 126b.
  • the other end of the pipe 127c is arranged in the beam passage space SPb2.
  • the other end of pipe 127c may face downward.
  • the other end of the pipe 127c may face the surface WSu of the sample W via the beam passage spaces SPb2 and SPb3.
  • the pipe 127c may be integrated with the pipe 127b.
  • the gas supply device 6 is connected to the beam passage space SPb2 (further, the beam passage spaces SPb1 and SPb3 connected to the beam passage space SPb2) via the pipe 1291, the valve 1281, the pipe 127b, the opening 126b, and the pipe 127c.
  • a gas can be supplied to at least a part of the beam passage space SPb including the above.
  • the exhaust device 7 can exhaust at least a part of the beam passage space SPb through the pipe 1292, the valve 1282, the pipe 127b, the opening 126b, and the pipe 127c. That is, the scanning electron microscope SEMc can control the degree of vacuum of at least a part of the beam passing SPb and adjust the interval D in the same manner as the scanning electron microscope SEMa. Since the control of the degree of vacuum and the control of the interval D performed in the third embodiment may be the same as the control of the degree of vacuum and the control of the interval D performed in the first embodiment, a detailed description thereof will be given. Is omitted.
  • the scanning electron microscope SEMc of the third embodiment supplies air to at least a part of the beam passing space SPb via the pipe 127c extending from the opening 126b facing the beam passing space SPb1 to the beam passing space SPb2. At least a part of the beam passing space SPb is exhausted. Even with such a scanning electron microscope SEMc, it is possible to enjoy the same effects as those that can be enjoyed by the scanning electron microscope SEMb described above.
  • the pipe 127c may extend from the opening 126b toward the beam passage space SPb1. That is, the other end of the pipe 127c may be arranged in the beam passage space SPb1. The other end of the pipe 127c may face upward.
  • the pipe 127c may extend from the opening 126b toward the beam passing space SPb3 via the beam passing spaces SPb1 and SPb2. That is, the other end of the pipe 127c may be arranged in the beam passage space SPb3.
  • the scanning electron microscope SEMd of the fourth embodiment is different from the scanning electron microscope SEMa of the first embodiment described above in that it includes a beam irradiating device 1d instead of the beam irradiating device 1. ..
  • Other features of the scanning electron microscope SEMd may be the same as those of the scanning electron microscope SEMa described above. Therefore, in the following, the structure of the beam irradiation device 1d will be described with reference to FIGS. 13 and 14. 13 and 14 are cross-sectional views showing the structure of the beam irradiation device 1d included in the scanning electron microscope SEMd of the fourth embodiment.
  • the beam irradiation device 1d is different from the beam irradiation device 1 in that the aperture member 16d is provided.
  • Other features of the beam irradiating device 1d may be the same as those of the beam irradiating device 1 described above.
  • the aperture member 16d is arranged between the beam passing space SPb1 and the beam passing space SPb2. That is, the aperture member 16d is arranged (at or near the boundary between the beam passing space SPb1 and the beam passing space SPb2). For example, a beam ejection port 119 of the beam optical system 11 and an opening 120 of the differential exhaust system 12 are formed at the boundary between the beam passing space SPb1 and the beam passing space SPb2. Therefore, the aperture member 16d may be arranged at the beam ejection port 119 or the opening 120. The aperture member 16d may be arranged in the vicinity of the beam ejection port 1231 or the opening 120.
  • the aperture member 16d is a plate-shaped member having a circular (or other arbitrary shape) opening 161d.
  • the opening 161d is an opening through which the electron beam EB can pass. Therefore, the electron beam EB ejected by the electron gun 113 propagates from the beam passing space SPb1 to the beam passing space SPb2 through the opening 161d. Therefore, the irradiation of the electron beam EB on the sample W is not blocked by the aperture member 16d. Since the electron beam EB passes through the opening 161d, the opening 161d may be formed on the optical axis AX of the beam optical system 11 or in the vicinity of the optical axis AX. The aperture member 16d may be arranged so that the aperture 161d is located on the optical axis AX of the beam optical system 11 or in the vicinity of the optical axis AX.
  • the aperture member 16d is arranged inside the electromagnetic lens 114 and / or the objective lens 115. That is, the aperture member 16d is arranged closer to the optical axis AX of the beam optical system 11 (that is, the optical axis AX of the electromagnetic lens 114 and / or the objective lens 115) than the electromagnetic lens 114 and / or the objective lens 115. Therefore, the aperture 161d formed in the aperture member 16d is also formed inside the electromagnetic lens 114 and / or the objective lens 115. However, the aperture member 16d may be arranged at a position different from the inside of the electromagnetic lens 114 and / or the objective lens 115. The opening 161d may be formed at a position different from the inside of the electromagnetic lens 114 and / or the objective lens 115.
  • the aperture member 16d is arranged above the electron detector 117. That is, the aperture member 16d is arranged so that the electron detector 117 is arranged between the aperture member 16d and the sample W. Therefore, the opening 161d formed in the aperture member 16d is also formed above the electron detector 117. The opening 161d is also formed so that the electron detector 117 is arranged between the opening 161d and the sample W. However, the aperture member 16d may be arranged at another position. The opening 161d may be arranged at other positions.
  • the outer edge of the aperture member 16d is at least the housing 111 (for example, the inner wall of the housing 111 that defines the beam passage space SPb1) and the vacuum forming member 121 (for example, the inner wall of the vacuum forming member 121 that defines the beam passage space SPb2). It may be in contact with one side. In this case, the inflow of gas from the beam passing space SPb1 into the beam passing space SPb2 and the inflow of gas from the beam passing space SPb2 into the beam passing space SPb1 are performed through the opening 161d. However, at least a part of the outer edge of the aperture member 16d may not be in contact with at least one of the housing 111 and the vacuum forming member 121 (that is, there may be a gap).
  • the inflow of gas from the beam passing space SPb1 into the beam passing space SPb2 and the inflow of gas from the beam passing space SPb2 into the beam passing space SPb1 are the aperture member 16d, the housing 111, and the vacuum in addition to the opening 161d. This is done through a gap between the forming member 121 and at least one of them.
  • the aperture member 16d when the aperture member 16d is arranged, the inflow of gas from the beam passing space SPb1 into the beam passing space SPb2 and the inflow of gas from the beam passing space SPb2 into the beam passing space SPb1 It is partially blocked by the aperture member 16d.
  • the gas supply device 6 supplies gas to at least a part of the beam passing space SPb2 to reduce the degree of vacuum of at least a part of the beam passing space SPb2, at least a part of the beam passing space SPb1.
  • the degree of vacuum does not decrease as much as the degree of vacuum in the beam passing space SPb2.
  • the exhaust device 7 exhausts at least a part of the beam passing space SPb2 to increase the vacuum degree of at least a part of the beam passing space SPb2 to increase the vacuum degree of at least a part of the beam passing space SPb2, the vacuum degree of at least a part of the beam passing space SPb1 becomes a beam. It does not increase as much as the degree of vacuum of the passage space SPb2.
  • the air supply and exhaust device to at least a part of the beam passing space SPb2 using the gas supply device 6 is compared with the case where the aperture member 16d is not arranged.
  • the influence of at least a part of the exhaust gas of the beam passing space SPb2 using 7 on the degree of vacuum of the beam passing space SPb1 becomes even smaller. That is, the scanning electron microscope SEMd locally (in other words, selectively) the vacuum degree of at least a part of the beam passing space SPb2 while further reducing the influence on the vacuum degree of the beam passing space SPb1. ) It becomes easier to control.
  • the scanning electron microscope SEMd can locally (in other words, selectively) control the vacuum degree of at least a part of the beam passing space SPb2 without significantly changing the vacuum degree of the beam passing space SPb1.
  • the opening 161d of the aperture member 16d may be an opening having a variable size (for example, diameter). That is, the area of the opening 161d may be variable.
  • 13 is a cross-sectional view showing an opening 161d having a relatively large area
  • FIG. 14 is a cross-sectional view showing an opening 161d having a relatively small area.
  • the scanning electron microscope SEMd controls the degree of vacuum of at least a part of the beam passing space SPb by using at least one of the gas supply device 6 and the exhaust device 7 under the control of the control device 4, and the opening 161d. The area of may be adjusted.
  • the scanning electron microscope SEMd has an opening 161d when the degree of vacuum of at least a part of the beam passing space SPb is changed by using at least one of the gas supply device 6 and the exhaust device 7 under the control of the control device 4. You may change it according to the area of.
  • the gas supply device 6 supplies gas to at least a part of the beam vacuum space SPb2, the degree of vacuum of at least a part of the beam vacuum space SPb2 decreases.
  • the area of the opening 161d is adjusted so that the area of the opening 161d decreases (that is, the opening 161d becomes smaller)
  • the amount of decrease in the degree of vacuum of SPb1 is smaller than the amount of decrease in the degree of vacuum of at least a part of the beam vacuum space SPb2.
  • the exhaust device 7 exhausts at least a part of the beam vacuum space SPb2, the degree of vacuum of at least a part of the beam vacuum space SPb2 increases.
  • the beam passing space connected to the beam vacuum space SPb2 with the aperture member 16d sandwiched between them.
  • the amount of increase in the degree of vacuum of SPb1 is likely to be smaller than the amount of increase in the degree of vacuum of at least a part of the beam vacuum space SPb2.
  • the difference in the degree of vacuum between the beam passing space SPb1 and the beam passing space SPb2 (furthermore, the beam passing space SPb3) thus generated is maintained by the exhaust resistance of the opening 161d.
  • the degree of vacuum of the beam passing space SPb1 is maintained relatively high and the beam passing space SPb2 is maintained.
  • you want to reduce the degree of vacuum That is, as an example of a situation in which the difference between the degree of vacuum of the beam passing space SPb1 and the degree of vacuum of the beam passing space SPb2 is desired to be increased, the degree of vacuum of the beam passing space SPb1 is maintained relatively high and the beam passing space SPb2 is maintained.
  • the degree of vacuum of is smaller than the degree of vacuum of the beam passing space SPb1.
  • the degree of vacuum of the beam passing space SPb1 is maintained relatively high, the degree of vacuum of the beam passing space SPb1 is increased when the reduced degree of vacuum of the beam passing space SPb2 is returned (that is, increased). It does not have to be increased so much. Therefore, the degree of vacuum of the beam passing space SPb including the beam passing space SPb2 can be restored relatively quickly. Further, since the degree of vacuum of the beam passing space SPb1 is maintained relatively high, the devices (for example, electron gun 113, electromagnetic lens 114, objective lens 115, deflection) included in the beam optical system 12 facing the beam passing space SPb1 are provided. The device 116 and the electron detector 117) are properly protected from gas molecules.
  • the devices for example, electron gun 113, electromagnetic lens 114, objective lens 115, deflection
  • the scanning electron microscope SEMd can reduce the difference between the degree of vacuum of the beam passing space SPb1 and the degree of vacuum of the beam passing space SPb2 by increasing the area of the opening 161d.
  • the scanning electron microscope SEMd wants to reduce the difference between the degree of vacuum of the beam passing space SPb1 and the degree of vacuum of the beam passing space SPb2, the degree of vacuum of the beam passing space SPb1 and the degree of vacuum of the beam passing space SPb2
  • the area of the opening 161d may be increased as compared with the case where the difference from the degree of vacuum of is not desired to be reduced.
  • the scanning electron microscope SEMd of the fourth embodiment enjoys the same effect as the effect that can be enjoyed by the scanning electron microscope SEMa described above, but is independent of the degree of vacuum of the beam passing space SPb1. It becomes easy to locally (in other words, selectively) control the degree of vacuum of at least a part of the beam passing space SPb2.
  • the scanning electron microscope SEMb of the second embodiment may include the aperture member 16d, and in this case, the first space may include a space facing the opening 126b.
  • the scanning electron microscope SEMc of the third embodiment may include the aperture member 16d, in which case the first space does not include a space facing the other end of the pipe 127c. May be good.
  • the second space may include a space located on the side farther from the sample W than the first space.
  • the aperture member 16d may be arranged so that the opening 161d is located at the deflection fulcrum (for example, the upper deflection fulcrum) P of the deflector 116. That is, as shown in FIG. 15, the opening 161d may be formed so as to be located at the deflection fulcrum P of the deflector 116. In this case, the possibility that the electron beam EB deflected by the deflector 116 cannot pass through the opening 161d is reduced. That is, the possibility that the electron beam EB is eclipsed by the aperture member 16d is reduced. Alternatively, the aperture member 16d may be located above the deflector 116. The opening 161d may be formed above the deflector 116.
  • the aperture member 16d may be arranged so that the deflector 116 is located between the aperture member 16d and the sample W.
  • the opening 161d may be formed so that the deflector 116 is located between the opening 161d and the sample W. Even in this case, the possibility that the electron beam EB is eclipsed by the aperture member 16d is reduced.
  • the aperture member 16d may be arranged between the upper end and the lower end of the electromagnetic lens 114 with respect to the direction along the optical axis AX of the electromagnetic lens 114.
  • the aperture member 16d may be arranged inside the electromagnetic lens 114.
  • the opening 161d is located at a position near the optical axis AX of the electromagnetic lens 114 or the optical axis AX, and is in a direction along the optical axis AX of the electromagnetic lens 114. It may be arranged between the upper end and the lower end of the electromagnetic lens 114.
  • FIG. 16A the opening 161d is located at a position near the optical axis AX of the electromagnetic lens 114 or the optical axis AX, and is in a direction along the optical axis AX of the electromagnetic lens 114. It may be arranged between the upper end and the lower end of the electromagnetic lens 114.
  • the scanning electron microscope SEMe of the fifth embodiment is different from the scanning electron microscope SEMa of the first embodiment described above in that it includes a beam irradiation device 1e instead of the beam irradiation device 1. ..
  • Other features of the scanning electron microscope SEMe may be the same as those of the scanning electron microscope SEMa described above. Therefore, in the following, the structure of the beam irradiation device 1e will be described with reference to FIG.
  • FIG. 17 is a cross-sectional view showing the structure of the beam irradiation device 1e included in the scanning electron microscope SEMe of the fifth embodiment.
  • a pipe 127e-2 penetrating the vacuum forming member 121 is connected to the opening 126e-2.
  • An exhaust device 7 is connected to the pipe 127e-2 via a valve 1282 and a pipe 1292. Therefore, the exhaust device 7 can exhaust at least a part of the beam passage space SPb through the pipe 1292, the valve 1282, the pipe 127e-2, and the opening 126e-2.
  • a modified example of the scanning electron microscope SEMa of the first embodiment can also be applied to the scanning electron microscope SEMe of the fifth embodiment. That is, in the description of the modification of the scanning electron microscope SEMa of the first embodiment, the words “opening 126", “pipe 127” and “scanning electron microscope SEMa” are referred to as “opening 126e-1 (or opening 126e", respectively. -2) ”,“ Pipe 127e-1 (or Pipe 127e-2) ”and“ Scanning electron microscope SEMe ”, a modification in which the scanning electron microscope SEMe of the fifth embodiment can be adopted. It becomes an explanation of.
  • FIG. 18 is a cross-sectional view showing the structure of the scanning electron microscope SEMf of the sixth embodiment.
  • FIG. 19 is a cross-sectional view showing the structure of the beam irradiation device 1f included in the scanning electron microscope SEMf of the sixth embodiment.
  • the scanning electron microscope SEMf of the sixth embodiment has a gas supply device 6, an exhaust device 7, valves 1281 and 1282, as compared with the scanning electron microscope SEMa of the first embodiment described above. It also differs in that it does not have to be provided with pipes 1291 and 1292. Further, the scanning electron microscope SEMf is different from the scanning electron microscope SEMa in that the beam irradiation device 1f is provided instead of the beam irradiation device 1. Other features of the scanning electron microscope SEMf may be the same as those of the scanning electron microscope SEMa described above.
  • the beam irradiation device 1f is different from the beam irradiation device 1 in that it includes a differential exhaust system 12f instead of the differential exhaust system 12.
  • Other features of the beam irradiating device 1f may be the same as those of the beam irradiating device 1 described above.
  • the differential exhaust system 12f is different from the above-mentioned differential exhaust system 12 in that the opening 126 facing the beam passage space SPb2 does not have to be formed.
  • the differential exhaust system 12b is different from the above-mentioned differential exhaust system 12 in that it does not have to be provided with the pipe 127 connected to the opening 126 because the opening 126 is not formed. There is.
  • Other features of the differential exhaust system 12f may be the same as those of the differential exhaust system 12 described above.
  • the gas supply device 6 and the exhaust device 7 are used to control the degree of vacuum of the beam passing space SPb. Can not do it.
  • the scanning electron microscope SEMf uses at least the beam passage space SPb by controlling the distance D between the beam irradiation device 1 and the sample W in addition to or in place of using the gas supply device 6 and the exhaust device 7. Control some degree of vacuum. That is, the scanning electron microscope SEMf controls the degree of vacuum of at least a part of the beam passing space SPb without using the gas supply device 6 and the exhaust device 7, and the distance D between the beam irradiation device 1 and the sample W. To control.
  • the scanning electron microscope SEMf can increase the degree of vacuum of at least a part of the beam passing space SPb3 by controlling the interval D so that the interval D decreases under the control of the control device 4. .. That is, the scanning electron microscope SEMf increases the degree of vacuum of at least a part of the beam passing space SPb3 by bringing the beam irradiation device 1 (particularly, the vacuum forming member 121) closer to the sample W under the control of the control device 4. Can be made to.
  • the scanning electron microscope SEMf samples the beam irradiating device 1 (particularly, the vacuum forming member 121) under the control of the control device 4.
  • the degree of vacuum of at least a part of the beam passing space SPb including the beam passing spaces SPb1 to SPb3 can be increased.
  • the control device 4 increases the degree of vacuum of at least a part of the beam passing space SPb by controlling the interval adjusting system 14 so that the force applied to the flange member 13 from the interval adjusting system 14 is reduced. be able to.
  • the control device 4 controls the stage drive system 23 so that the force applied to the stage 22 from the stage drive system 23 is reduced, thereby increasing the degree of vacuum of at least a part of the beam passing space SPb. Can be done.
  • the distance adjusting system 14 adjusts the distance D by applying a force acting to bring the beam irradiation device 1 and the sample W closer to each other in the Z-axis direction to the flange member 13 (see FIG. 7). If the force applied to the flange member 13 from the interval adjusting system 14 increases, the beam irradiation device 1 approaches the sample W. Therefore, the control device 4 increases the degree of vacuum of at least a part of the beam passing space SPb by controlling the interval adjusting system 14 so that the force applied to the flange member 13 from the interval adjusting system 14 increases. be able to.
  • the control device 4 increases the degree of vacuum of at least a part of the beam passing space SPb by controlling the stage drive system 23 so that the force applied to the stage 22 from the stage drive system 23 increases. Can be done.
  • the larger the interval D the larger the volume of the space between the beam irradiation device 1 and the sample W.
  • the vacuum region VSP formed between the beam irradiation device 1 and the sample W faces the peripheral region located around the vacuum region VSP. The area becomes large.
  • the larger the area of the vacuum region VSP facing the peripheral region the larger the amount of gas flowing from the peripheral region into the vacuum region VSP.
  • the degree of vacuum in the vacuum region VSP decreases.
  • the scanning electron microscope SEMf can reduce the degree of vacuum of at least a part of the beam passing space SPb3 by controlling the interval D so that the interval D increases under the control of the control device 4. .. That is, in the scanning electron microscope SEMf, the beam irradiation device 1 (particularly, the vacuum forming member 121) is separated from the sample W under the control of the control device 4, so that at least one of the beam passage spaces SPb including the beam passage space SPb3 The degree of vacuum of the part can be reduced.
  • the control device 4 reduces the degree of vacuum of at least a part of the beam passing space SPb by controlling the interval adjusting system 14 so that the force applied to the flange member 13 from the interval adjusting system 14 increases. be able to.
  • the control device 4 reduces the degree of vacuum of at least a part of the beam passing space SPb by controlling the stage drive system 23 so that the force applied to the stage 22 from the stage drive system 23 increases. Can be done.
  • the spacing adjusting system 14 adjusts the spacing D by applying a force acting to bring the beam irradiation device 1 and the sample W closer to each other in the Z-axis direction to the flange member 13 (see FIG. 7).
  • the control device 4 reduces the degree of vacuum of at least a part of the beam passing space SPb by controlling the interval adjusting system 14 so that the force applied to the flange member 13 from the interval adjusting system 14 is reduced. be able to.
  • the control device 4 reduces the degree of vacuum of at least a part of the beam passing space SPb by controlling the stage drive system 23 so that the force applied to the stage 22 from the stage drive system 23 is reduced. Can be done.
  • the scanning electron microscope SEMf of the sixth embodiment can control the degree of vacuum of at least a part of the beam passing space SPb without using the gas supply device 6 and the exhaust device 7.
  • the scanning electron microscope SEMf controls (for example, changes) the distance D between the beam irradiation device 1 and the sample W, so that the operation mode of the scanning electron microscope SEMa can be changed to the vacuum region VSS described above.
  • the interval D is larger than when the sample W is a non-insulating material (as a result, at least the beam passing space SPb is large.
  • the interval D may be controlled so that a part of the degree of vacuum becomes low). As a result, even when the gas supply device 6 and the exhaust device 7 are not used, the phenomenon of charge-up is less likely to occur.
  • At least one of the above-mentioned SEMa of the first embodiment to the scanning electron microscope SEMe of the fifth embodiment including the gas supply device 6 and the exhaust device 7, the valves 1281 and 1282, and the pipes 1291 and 1292 is also a beam.
  • the degree of vacuum of at least a part of the beam passing space SPb may be controlled.
  • the scanning electron microscope SEMd of the fourth embodiment may be combined with the scanning electron microscope SEMf of the sixth embodiment.
  • the scanning electron microscope SEMf may include an aperture member 16d.
  • FIG. 20 is a cross-sectional view showing the structure of the scanning electron microscope SEMg of the seventh embodiment.
  • the scanning electron microscope SEMg of the seventh embodiment has a gas supply device 6, an exhaust device 7, valves 1281 and 1282, as compared with the scanning electron microscope SEMa of the first embodiment described above. It also differs in that it does not have to be provided with pipes 1291 and 1292. Further, in the scanning electron microscope SEMg, as compared with the scanning electron microscope SEMa, instead of the beam irradiating device 1, the beam irradiating device 1f (that is, even if the opening 126 described in the sixth embodiment is not formed). It differs in that it includes a beam irradiator 1f) with a good differential exhaust system 12f.
  • the scanning electron microscope SEMg is different from the scanning electron microscope SEMa in that it includes a position adjusting system 14 g instead of the interval adjusting system 14. Further, the scanning electron microscope SEMg is different from the scanning electron microscope SEMa in that it further includes 8 g of a measuring device. Other features of the scanning electron microscope SEMg may be the same as those of the scanning electron microscope SEMa described above.
  • the position adjustment system 14g moves the beam irradiation device 1f along at least one of the ⁇ X direction and the ⁇ Y direction as compared with the above-mentioned interval adjustment system 14 (furthermore, the beam along the ⁇ Z direction if necessary). By moving the irradiation device 1f), the posture of the beam irradiation device 1f with respect to the sample W (specifically, the amount of inclination, which is substantially the tilt angle) can be adjusted.
  • the position adjusting system 14g aligns the beam irradiating device 1f along at least one of the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction so that the injection surface 12LS of the beam irradiating device 1f is parallel to the surface WSu of the sample W. You may move it.
  • a position adjusting member such as a shim is used as a support member 32 and a flange member. It may be arranged between 13 and 13.
  • the relative posture of the beam irradiator 1f with respect to the sample W is adjusted.
  • Other features of the position adjusting system 14g may be the same as those of the spacing adjusting system 14.
  • the measuring device 8g measures (in other words, detects) the position of the object to be measured.
  • the measuring device 8g measures the position of the object to be measured in the three-dimensional coordinate space (specifically, the measurement coordinate space which is the three-dimensional coordinate space based on the measuring device 8g).
  • the object to be measured includes, for example, at least one of the beam irradiation device 1f, the sample W, and the stage 22. Therefore, the measuring device 8g measures, for example, the position of at least one of the beam irradiation device 1f, the sample W, and the stage 22.
  • the measuring device 8g measures the positions of the surfaces of the two measurement objects facing each other (that is, the positions of the surfaces in the measurement coordinate space which is the three-dimensional coordinate space) (in other words, the positions of the surfaces). To detect). For example, when the stage 22 does not hold the sample W, the injection surface 12LS of the beam irradiation device 1f and the holding surface HS of the stage 22 (that is, the surface of the stage 22 that actually holds the sample W) face each other. .. Therefore, when the stage 22 does not hold the sample W, the measuring device 8g measures the positions of the injection surface 12LS and the holding surface HS, respectively.
  • the measuring device 8g measures the positions of the injection surface 12LS and the surface WSu when the stage 22 holds the sample W.
  • the posture of the measurement surface in the measurement coordinate space (for example, the normal of the measurement surface extends with respect to a certain reference plane). Information about the direction) is revealed. Therefore, measuring the position of the measuring surface can be regarded as equivalent to measuring the posture of the measuring surface. Further, when the position of the measurement surface in the measurement coordinate space is known, the shape of the measurement surface in the measurement coordinate space is known. Therefore, measuring the position of the measuring surface can be regarded as equivalent to measuring the shape of the measuring surface.
  • the measuring device 8g measures the positional relationship between the surfaces of the two measurement objects facing each other.
  • the measuring device 8g measures the positional relationship between the injection surface 12LS and the holding surface HS.
  • the measuring device 8g measures the positional relationship between the injection surface 12LS and the surface WSu.
  • the positional relationship between the beam irradiation device 1f and the stage 22 and the positional relationship between the beam irradiation device 1f and the sample W change when at least one of the beam irradiation device 1f and the stage 22 moves. Therefore, the control device 4 moves at least one of the beam irradiation device 1f and the stage 22 to control the positional relationship between the beam irradiation device 1f and the stage 22 and the positional relationship between the beam irradiation device 1 and the sample W. In this case, the control device 4 controls the stage drive system 23 so that the electron beam EB is irradiated to the desired position of the surface WSu and the beam passing space SPb3 is set based on the measurement result of the measuring device 8g.
  • the stage 22 may be moved along the XY plane.
  • the control device 4 controls the stage drive system 23 so that the distance D between the surface WSu of the sample W and the injection surface 12LS of the beam irradiation device 1f becomes a desired distance D_target based on the measurement result of the measuring device 8g. Then, the stage 22 may be moved along the Z axis. Based on the measurement result of the measuring device 8g, the control device 4 may control the position adjusting system 14g so that the interval D becomes the desired interval D_target, and move the beam irradiation device 1 along the Z axis.
  • the control device 4 controls the stage drive system 23 so that the surface WSu of the sample W is parallel to the injection surface 12LS of the beam irradiation device 1f based on the measurement result of the measuring device 8g, and controls the stage drive system 23 in the ⁇ X direction and ⁇ Y.
  • the stage 22 may be moved along at least one of the directions and the ⁇ Z direction.
  • the control device 4 controls the position adjusting system 14g so that the surface WSu is parallel to the injection surface 12LS, and the beam is along at least one of the ⁇ X direction and the ⁇ Y direction.
  • the irradiation device 1 may be moved.
  • the state in which the surface WSu is parallel to the injection surface 12LS is parallel to the datum plane and only a desired distance when either the injection surface 12LS or the surface WSu is designated as the datum plane.
  • the desired distance is a value smaller than the desired interval D_taget (for example, a value of _target 1/10 or less of the desired interval D).
  • the measuring device 8g sets the position of the measurement object at a desired distance (that is, from a desired interval D_target).
  • control device 4 has at least the beam irradiation device 1f and the stage 22 so that the interval D becomes the desired interval D_target and the surface WSu is parallel to the injection surface 12LS based on the measurement result of the measuring device 8g. One can be moved.
  • the measuring device 8g may include, for example, 81g of a plurality of distance sensors (in other words, a length measuring sensor) capable of measuring the distance to the object to be measured.
  • the distance sensor 81g irradiates the measurement object with the measurement light ML and detects the reflected light of the measurement light ML from the measurement object to measure the distance from the distance sensor 81g to the measurement object.
  • This is a type of distance sensor.
  • the distance sensor 81g another type of distance sensor may be used.
  • the measuring device 8g measures the position of the measurement object in the three-dimensional measurement coordinate space, the measuring device 8g measures at least three distances to the measurement target at least three places.
  • the measuring device 8 g (in the example shown in FIG. 20, the distance sensor 81 g, the same applies hereinafter) was fixed at a fixed position with respect to the beam irradiation device 1f (particularly, with respect to the differential exhaust system 12f provided with the injection surface 12LS). Position, the same below). That is, the measuring device 8g is arranged at a position where the positional relationship with respect to the beam irradiating device 1f is fixed (that is, does not change). In the example shown in FIG. 20, the measuring device 8g is arranged on the flange member 13 of the beam irradiation device 1f, but may be arranged at other positions.
  • the positions of the beam irradiating device 1f and the measuring device 8g even if the beam irradiating device 1f is moved by the position adjusting system 14g.
  • the relationship does not change. That is, the position of the beam irradiation device 1f in the measurement coordinate space based on the measurement device 8g does not change. Therefore, if the position of the beam irradiating device 1f is once measured by the measuring device 8g, even if the beam irradiating device 1f is moved by the position adjusting system 14g, the control device 4 will move the beam irradiating device to the measuring device 8g.
  • the position of the beam irradiation device 1f in the measurement coordinate space can be specified without having to measure the position of 1f again.
  • the origin of the measuring coordinate space is the position related to the beam irradiating device 1f (particularly, the differential exhaust provided with the injection surface 12LS).
  • the position related to the system 12f) may be set.
  • the origin of the measurement coordinate space may be set to the beam ejection port 1232 formed on the ejection surface 12LS.
  • the origin of the measurement coordinate space may be set at a position different from the position related to the beam irradiation device 1f.
  • the origin of the measurement coordinate space may be set at a position related to the stage device 2 (for example, a position related to the surface plate 21).
  • the origin of the measurement coordinate space may be set at a position related to the support frame 3.
  • the operation of controlling the positional relationship between the beam irradiation device 1f and the stage 22 so that the interval D becomes the desired interval D_taget and the surface WSu is parallel to the injection surface 12LS will be described below.
  • the "control of the positional relationship between the beam irradiation device 1f and the stage 22" in the present embodiment is the position of the beam irradiation device 1f and the stage 22 in the direction along at least one of the X-axis, the Y-axis, and the Z-axis.
  • One purpose of controlling the positional relationship between the beam irradiation device 1f and the stage 22 so that the interval D becomes a desired interval D_target is to determine the degree of vacuum of the vacuum region VSS formed between the beam irradiation device 1f and the sample W. It is to maintain it properly. Specifically, when the interval D becomes larger than the desired interval D_target, the degree of vacuum of the vacuum region VSP formed between the beam irradiation device 1f and the sample W may decrease. Therefore, the scanning electron microscope SEMg may not be able to form a vacuum region VSP having an appropriate degree of vacuum between the beam irradiation device 1f and the sample W.
  • One purpose of controlling the positional relationship between the beam irradiation device 1f and the stage 22 so that the interval D becomes a desired interval D_target is to prevent contact (in other words, collision) between the beam irradiation device 1f and the sample W. is there.
  • both the holding surface HS of the stage 22 and the injection surface 12LS of the beam irradiation device 1f are usually parallel to the XY plane, and the injection surface 12LS and the injection surface 12LS
  • the sample W is held in a state where the surface WSu of the sample W is parallel to both of the holding surfaces HS, and then moves along the XY plane.
  • the stage 22 may hold the sample W in the state shown in FIG. 21 (b).
  • the stage 22 may hold the sample W in a state where the surface WSu is not parallel to the injection surface 12LS. is there.
  • the interval D is not adjusted according to the movement of the stage 22 in the XY plane, the interval D changes significantly (in other words, unintentionally) due to the movement of the stage 22 in the XY plane. There is a possibility that it will end up.
  • the beam irradiation device 1f and the sample W may come into contact with each other.
  • the interval D is adjusted according to the movement of the stage 22 in the XY plane (that is, the interval D is adjusted to be the desired interval D_taget)
  • the stage 22 moves in the XY plane.
  • the interval D does not change significantly (in other words, unintentionally).
  • contact between the beam irradiation device 1f and the sample W can be prevented.
  • One purpose of controlling the positional relationship between the beam irradiation device 1f and the stage 22 so that the surface WSu is parallel to the injection surface 12LS is to prevent contact between the beam irradiation device 1f and the sample W. This is because, as already described with reference to FIG. 21B, when the stage 22 holds the sample W in a state where the surface WSu is not parallel to the injection surface 12LS, the stage 22 moves in the XY plane. This is because there is a possibility that the beam irradiation device 1f and the sample W come into contact with each other.
  • the position control operation is performed after the first control operation (so-called initial operation) performed before the stage 22 holds the sample W and after the first control operation is performed, and the stage 22. Includes a second control operation performed after holding the sample W.
  • the first and second control operations are performed, for example, before the scanning electron microscope SEMg irradiates the sample W with the electron beam EB to measure the state of the sample W, but as will be described later (for example, the eleventh). (Refer to the embodiment), at least one of the first and second control operations is performed during at least a part of the period during which the scanning electron microscope SEMg irradiates the sample W with the electron beam EB and measures the state of the sample W. You may.
  • the first control operation and the second control operation will be described in order.
  • FIG. 22 is a flowchart showing the flow of the first control operation corresponding to the position control operation performed before the stage 22 holds the sample W.
  • FIGS. 23 to 26 is a cross-sectional view showing how one step of the first control operation is being performed.
  • FIG. 27 is a schematic view showing the position of the surface WSuv of the virtual sample Wv estimated from the position of the holding surface HS of the stage 22.
  • the reference member BM is arranged on the injection surface 12LS of the beam irradiation device 1f (step S11).
  • the reference member BM includes a reference surface BS.
  • the reference plane BS is a plane whose flatness is equal to or less than a predetermined value.
  • the "flatness of the surface C" means the distance between the two virtual planes when the surface C is sandwiched between two virtual planes parallel to each other. ..
  • the predetermined value may be a value smaller than the desired interval D_target described above.
  • the predetermined value may be a value of 1/10 or less of the desired interval D_taget described above.
  • the reference surface BS is larger than the injection surface 12LS.
  • the reference surface BS can include at least a part of the injection surface 12LS.
  • An example of such a reference member BM is a glass substrate or a silicon substrate provided with a relatively high-precision polished surface as a reference surface BS that can be used as a reference surface BS.
  • the reference member BM is arranged on the injection surface 12LS so that a part of the reference surface BS and at least a part of the injection surface 12LS are in contact (in other words, in close contact with each other). That is, the reference member BM is arranged on the injection surface 12LS so that a part of the reference surface BS which is a plane facing upward and at least a part of the injection surface 12LS which is a plane facing downward coincide with each other.
  • FIG. 23 shows an example in which the reference member BS is arranged on the injection surface 12LS so that a part of the reference surface BS and the entire injection surface 12LS coincide with each other. Since the reference surface BS having a flatness of a predetermined value or less comes into contact with the injection surface 12LS, the injection surface 12LS may also be a flat surface having a flatness of a predetermined value or less.
  • the reference member BM Since the reference surface BS faces upward and is larger than the injection surface 12LS, the reference member BM has the measurement light ML from the distance sensor 81g fixed to the beam irradiation device 1f located above the reference member BM as the reference surface. It is arranged on the injection surface 12LS so that the BS can be irradiated. Conversely, the reference member BM has a size such that the measurement light ML from the distance sensor 81 g can irradiate the reference surface BS with the reference member BM arranged on the injection surface 12LS.
  • the measuring device 8g measures the position of the reference surface BS of the reference member BM (step S12). Specifically, as shown in FIG. 24, the distance sensor 81g irradiates the reference surface BS with the measurement light ML and detects the reflected light of the measurement light ML from the reference surface BS. Therefore, the distance sensor 81g is arranged at a position where the measurement light ML can be irradiated to the reference surface BS of the reference member BM arranged on the injection surface 12LS. The measurement result of the distance sensor 81 g is output to the control device 4.
  • the control device 4 specifies the distance between each distance sensor 81g and the surface portion of the reference surface BS irradiated with the measurement light ML from each distance sensor 81g based on the measurement result of each distance sensor 81g. Since the measuring device 8g includes at least three distance sensors 81g, the control device 4 has at least a first distance, a second distance, between the first distance sensor 81g and the first surface portion of the reference plane BS. The second distance between the distance sensor 81g and the second surface portion of the reference surface BS and the third distance between the third distance sensor 81g and the third surface portion of the reference surface BS are specified. ..
  • control device 4 can specify the position of the reference plane BS (that is, the position of each part of the reference plane BS in the measurement coordinate space). In other words, the control device 4 can specify an equation indicating the reference plane BS in the measurement coordinate space.
  • the control device 4 estimates the position of the injection surface 12LS of the beam irradiation device 1 (step S13). Specifically, as described above, the reference member BM is arranged on the injection surface 12LS so that a part of the reference surface BS and at least a part of the injection surface 12LS are in contact with each other. Therefore, the operation of measuring the position of the reference surface BS can be regarded as substantially equivalent to the operation of measuring the position of the injection surface 12LS. Therefore, the control device 4 uses the position of the reference surface BS specified in step S12 as the position of the injection surface 12LS.
  • step S12 considering that the purpose of the position control operation is to make the distance D between the injection surface 12LS and the surface WSu a desired distance D_taget and to make the injection surface 12LS and the surface WSu parallel, in step S12. It is sufficient to specify the position of the virtual plane including the reference plane BS, and in step S13, it is sufficient to specify the position of the virtual plane containing the injection surface 12LS. This is because if the position of the virtual plane including the injection surface 12LS is specified, the control device 4 can specify the interval D and the parallelism of the injection surface 12LS with respect to the surface WSu (that is, the surface WSu). This is because it is possible to specify the amount of deviation of either the surface WSu and the injection surface 12LS with respect to the datum plane which is one of the injection surfaces 12LS).
  • the scanning electron microscope SEMg is a reference.
  • the position of the injection surface 12LS can be specified by using the member BM.
  • the scanning electron microscope SEMg shown in FIG. 20 since it is difficult for the distance sensor 81 g to directly irradiate the ejection surface 12LS with the measurement light ML, the measuring device 8 g directly measures the position of the ejection surface 12LS. Is difficult. Therefore, in the scanning electron microscope SEMg, the position of the injection surface 12LS is specified by using the reference member BM.
  • the reference member BM arranged on the injection surface 12LS is removed from the injection surface 12LS (step S14).
  • the measuring device 8g measures the position of the holding surface HS of the stage 22 (step S15). Specifically, as shown in FIG. 25, the distance sensor 81g irradiates the holding surface HS with the measurement light ML and detects the reflected light of the measurement light ML from the holding surface HS. Therefore, the distance sensor 81g is arranged at a position where the measurement light ML can be irradiated to the holding surface HS. The measurement result of the distance sensor 81 g is output to the control device 4.
  • the control device 4 specifies the distance between each distance sensor 81g and the surface portion of the holding surface HS irradiated with the measurement light ML from each distance sensor 81g, based on the measurement result of each distance sensor 81g. As a result, the control device 4 performs the position of the holding surface HS (that is, each part of the holding surface HS in the measurement coordinate space) in the same manner as the method of specifying the position of the reference surface BS in step S12 described above. The position) can be specified. In other words, the control device 4 can specify an equation indicating the holding surface HS in the measurement coordinate space.
  • the positional relationship between the beam irradiating device 1f and the measuring device 8g when the measuring device 8g measures the position of the holding surface HS Is the same as the positional relationship between the beam irradiation device 1f and the measuring device 8g when the measuring device 8g measures the position of the injection surface 12LS.
  • the control device 4 estimates the position of the surface WSuv of the virtual sample Wv on the assumption that the stage 22 holds the virtual sample Wv (as shown in FIGS. 22 and 26).
  • the virtual sample Wv is, for example, a sample having the same shape and size as the ideal sample W (in other words, the sample W conforming to the standard).
  • the surface WSu is flat
  • the surface WSuv of the virtual sample Wv is also flat.
  • the surface WSuv of the virtual sample Wv is, for example, parallel to the holding surface HS. Therefore, as shown in FIG.
  • the surface WSuv corresponds to a plane obtained by shifting the holding surface HS along the Z-axis direction (that is, the thickness direction of the virtual sample Wv). Therefore, as shown in FIG. 27, the control device 4 sets the position of the holding surface HS specified in step S15 by a distance corresponding to the thickness of the virtual sample Wv (that is, the size in the Z-axis direction) Whv.
  • the position of the virtual plane obtained by shifting in the Z-axis direction is specified, and the specified position is treated as the position of the surface WSuv.
  • the position of the holding surface HS specified in step S15 is substantially the position of the virtual plane including the holding surface HS ( That is, it corresponds to an equation) indicating a virtual plane including the holding surface HS in the measurement coordinate space. That is, the position of the surface WSuv of the virtual sample Wv specified in step S16 is substantially the position of the virtual plane containing the surface WSuv (that is, the virtual plane containing the surface WSuv). Corresponds to the equation shown in the measurement coordinate space).
  • step S15 considering that the purpose of the position control operation is to make the distance D between the injection surface 12LS and the surface WSu a desired distance D_taget and to make the injection surface 12LS and the surface WSu parallel, in step S15. It is sufficient to specify the position of the virtual plane including the holding surface HS, and in step S16, it is sufficient to specify the position of the virtual plane containing the surface WSuv. This is because if the position of the virtual plane containing the surface WSuv is specified, the control device 4 can specify the distance D'between the surface WSuv and the injection surface 12LS, and the surface WSuv and the surface WSuv. This is because the parallelism with the injection surface 12LS (that is, the amount of deviation of either the surface WSuv or the injection surface 12LS with respect to the datum plane which is one of the surface WSuv and the injection surface 12LS) can be specified.
  • the control device 4 sets the interval D'to be the desired interval D_stage as shown in FIG. 28 (b). (That is, at least one of the stage drive system 23 and the position adjustment system 14 g is controlled so as to approach the desired interval D_taget) to control the positional relationship between the stage 22 and the beam irradiation device 1f. Further, when the injection surface 12LS and the surface WSuv are not parallel as shown in FIG. 28 (a), in the control device 4, the injection surface 12LS and the surface WSuv are parallel as shown in FIG. 28 (b).
  • At least one of the stage drive system 23 and the position adjustment system 14g is controlled to control the positional relationship between the stage 22 and the beam irradiation device 1f.
  • the control device 4 controls the positional relationship between the stage 22 and the beam irradiation device 1f so that the injection surface 12LS and the surface WSuv (furthermore, the holding surface HS) are parallel to the XY plane. May be good.
  • the measuring device 8g may measure the position of the holding surface HS during at least a part of the period in which the control device 4 controls the positional relationship between the stage 22 and the beam irradiation device 1f.
  • the control device 4 specifies the position of the surface WSuv based on the measurement result of the measuring device 8g, and whether or not the interval D'is the desired interval D_target based on the specified position of the surface WSuv, and , It may be determined whether or not the surface WSuv is parallel to the injection surface 12LS. In order to make this determination, the control device 4 also needs to specify the position of the injection surface 12LS.
  • the measuring device 8g is arranged at a fixed position with respect to the beam irradiating device 1f as described above, even if the control device 4 controls the positional relationship between the stage 22 and the beam irradiating device 1f, the measurement is performed.
  • the position of the beam irradiation device 1f in the measurement coordinate space based on the device 8g does not change. Therefore, the control device 4 can specify the position of the injection surface 12LS in the measurement coordinate space without having the measuring device 8g measure the position of the injection surface 12LS of the beam irradiation device 1f again.
  • the stage 22 has an interval D. Is the desired interval D_stage, and the sample W can be held in a state where the surface WSu is parallel to the injection surface 12LS.
  • FIG. 21 (b) shows.
  • the beam irradiator 1f and the stage 22 may come into contact with each other. Therefore, the control device 4 does not move the stage 22 along the XY plane during the period during which the first control operation is performed. However, if necessary, the control device 4 may move the stage 22 along the XY plane during at least a part of the period during which the first control operation is performed.
  • FIG. 29 is a flowchart showing the flow of the second control operation corresponding to the position control operation performed after the stage 22 holds the sample W.
  • FIG. 30 is a cross-sectional view showing how one step of the second control operation is being performed.
  • FIG. 31A is a schematic view showing the positional relationship between the injection surface 12LS of the beam irradiation device 1f and the holding surface HS of the stage 22 and the surface WSu of the sample W before moving at least one of the beam irradiation device 1f and the stage 22.
  • 31 (b) shows the positional relationship between the injection surface 12LS of the beam irradiation device 1 after moving at least one of the beam irradiation device 1f and the stage 22, the holding surface HS of the stage 22, and the surface WSu of the sample W. It is a schematic diagram which shows.
  • the stage 22 holds the sample W (step S21). Then, as shown in FIGS. 29 and 30, the measuring device 8g was held by the stage 22 before the scanning electron microscope SEMg irradiated the sample W with the electron beam EB and started measuring the state of the sample W. The position of the surface WSu of the sample W is measured (step S22). Specifically, as shown in FIG. 30, the distance sensor 81g irradiates the surface WSu with the measurement light ML and detects the reflected light of the measurement light ML from the surface WSu. Therefore, the distance sensor 81g is arranged at a position where the measurement light ML can be irradiated to the surface WSu.
  • the measurement result of the distance sensor 81 g is output to the control device 4.
  • the control device 4 specifies the distance between each distance sensor 81g and the surface portion of the surface WSu irradiated with the measurement light ML from each distance sensor 81g, based on the measurement result of each distance sensor 81g.
  • the control device 4 performs the position of the surface WSu (that is, each part of the surface WSu in the measurement coordinate space) in the same manner as the method of specifying the position of the reference surface BS in step S12 of FIG. 22 described above. Position) can be specified.
  • the control device 4 can specify an equation indicating the surface WSu in the measurement coordinate space.
  • the control device 4 makes a beam so that the distance D between the surface WSu and the injection surface 12LS becomes a desired distance D_stage and the surface WSu is parallel to the injection surface 12LS.
  • the positional relationship between the irradiation device 1f and the stage 22 is controlled (step S23). Specifically, since the measuring device 8g is arranged at a fixed position with respect to the beam irradiating device 1f as described above, the control device 4 is located on the measuring device 8g at the position of the injection surface 12LS of the beam irradiating device 1f. The position of the injection surface 12LS in the measurement coordinate space can be specified without having to measure again.
  • the control device 4 can use the position of the injection surface 12LS specified in the first control operation as it is in the second control operation. Therefore, the control device 4 specifies the positional relationship between the injection surface 12LS and the surface WSu in the measurement coordinate space from the position of the injection surface 12LS specified in the first control operation and the position of the surface WSu specified in step S22. can do. That is, the control device 4 can specify the distance D between the surface WSu and the injection surface 12LS and the parallelism between the injection surface 12LS and the surface WSu. As a result, when the interval D is not the desired interval D_stage as shown in FIG. 31 (a), the control device 4 sets the interval D to the desired interval D_stage (that is, as shown in FIG. 31 (b)).
  • At least one of the stage drive system 23 and the position adjustment system 14 g is controlled so as to approach the desired interval D_taget) to control the positional relationship between the stage 22 and the beam irradiation device 1f.
  • the injection surface 12LS and the surface WSu are not parallel as shown in FIG. 31A
  • the control device 4 the injection surface 12LS and the surface WSu are parallel as shown in FIG. 31B. (That is, so as to approach the parallel state), at least one of the stage drive system 23 and the position adjustment system 14g is controlled to control the positional relationship between the stage 22 and the beam irradiation device 1f.
  • the control device 4 may control the positional relationship between the stage 22 and the beam irradiation device 1f so that the injection surface 12LS and the surface WSu are parallel to the XY plane.
  • the interval D becomes the desired interval D_taget, and the surface WSu becomes parallel to the injection surface 12LS.
  • the sample W can be held in a state where the surface WSu is parallel to the injection surface 12LS.
  • the scanning electron microscope SEMg moves the stage 22 along the XY plane (that is, the sample W) in a state where the interval D becomes the desired interval D_target and the surface WSu is parallel to the injection surface 12LS.
  • the state of the sample W can be measured by irradiating the sample W with the electron beam EB (while moving the sample W).
  • the scanning electron microscope SEMg appropriately maintains the degree of vacuum of the vacuum region VSP formed between the beam irradiation device 1f and the sample W, and prevents contact between the beam irradiation device 1f and the sample W.
  • the state of the sample W can be measured.
  • the interval D is not the desired interval D_taget and / or the surface WSu is not parallel to the injection surface 12LS until the second control operation is completed. Therefore, when the stage 22 moves along the XY plane (that is, along at least one of the X-axis and the Y-axis) during at least a part of the period during which the second control operation is performed, FIG. 21B shows. As shown, there is a possibility that the beam irradiation device 1f and the sample W come into contact with each other. Therefore, the control device 4 does not move the stage 22 along the XY plane during the period during which the second control operation is performed. However, if necessary, the control device 4 may move the stage 22 along the XY plane during at least a part of the period during which the second control operation is performed.
  • the scanning electron microscope SEMg uses the reference member BM to measure the position of the injection surface 12LS. Is specified. However, when the measuring device 8g can directly measure the position of the injection surface 12LS (for example, the distance sensor 81g can irradiate the injection surface 12LS with the measurement light ML), a scanning electron microscope. The SEMg may specify the position of the injection surface 12LS without using the reference member BM.
  • the measuring device 8g can directly measure the positions of the holding surface HS and the surface WSu (for example, the distance sensor 81g directly measures the measurement light ML on the holding surface HS and the surface WSu).
  • the scanning electron microscope SEMg identifies the positions of the holding surface HS and the surface WSu without using the reference member BM because it can be irradiated).
  • the scanning electron microscope SEMg uses the reference member BM to measure the holding surface HS and the surface WSu. At least one position of the surface WSu may be specified.
  • the reference member BM is arranged on the holding surface HS so that at least a part of the holding surface HS and at least a part of the reference surface BS of the reference member BM are in contact with each other.
  • the position of the reference surface BS may be measured, and the measured position of the reference surface BS may be treated as the position of the holding surface HS.
  • the reference surface BS may be a surface that can include at least a part of the holding surface HS.
  • the reference member BM is arranged on the surface WSu so that at least a part of the surface WSu and at least a part of the reference surface BS of the reference member BM are in contact with each other, and the position of the reference surface BS is measured. Then, the measured position of the reference surface BS may be treated as the position of the surface WSu.
  • the reference surface BS may be a surface that can include at least a part of the surface WSu.
  • the reference member BM used for measuring the positions of the holding surface HS and the surface WSu may be the same as or different from the reference member BM used for measuring the position of the injection surface 12LS. Good.
  • the position of the injection surface 12LS of the beam irradiation device 1f is measured by the measuring device 8g during the period during which the position control operation is performed.
  • the measuring device 8g is arranged at a fixed position with respect to the beam irradiating device 1, the positional relationship between the beam irradiating device 1 and the measuring device 8g changes during the period during which the position control operation is performed. There is no. Therefore, before the position control operation is performed, the position of the injection surface 12LS is measured by the measuring device 8g, and the measurement result of the measuring device 8g (that is, information indicating the position of the injection surface 12LS) is provided in the control device 4. It may be stored in a storage device or the like.
  • the control device 4 does not cause the measuring device 8g to measure the position of the injection surface 12LS, and the information indicating the position of the injection surface 12LS stored in the storage device.
  • the position control operation may be performed based on.
  • the scanning electron microscope SEMg includes a beam irradiation device 1f in which the opening 126 is not formed.
  • the beam irradiation device 1f instead of the beam irradiation device 1f, the beam irradiation device 1a in which the opening 126 is formed, the beam irradiation device 1b or 1c in which the opening 126b is formed, and the aperture member 16d are arranged.
  • the device 1d or the beam irradiation device 1e in which a plurality of openings 126e are formed may be provided.
  • the scanning electron microscope SEMg of the seventh embodiment at least a part of the constituent requirements (particularly, the beam passing space) of the scanning electron microscope SEMa of the first embodiment to the scanning electron microscope SEMg of the fifth embodiment (particularly, the beam passing space). At least a part of the constituent requirements for controlling the degree of vacuum of at least a part of SPb) may be combined.
  • the scanning electron microscope SEMg may control the degree of vacuum of at least a part of the beam passing space SPb and also control the interval D.
  • the scanning electron microscope SEMg may control the degree of vacuum of at least a part of the beam passing space SPb by controlling the interval D, similarly to the scanning electron microscope SEMf of the sixth embodiment.
  • the scanning electron microscope SEMh of the eighth embodiment described later to the scanning electron microscope SEMk of the eleventh embodiment which correspond to a modification of the scanning electron microscope SEMg of the seventh embodiment.
  • FIG. 32 is a cross-sectional view showing the structure of the scanning electron microscope SEMh of the eighth embodiment.
  • Other features of the scanning electron microscope SEMh may be the same as those of the scanning electron microscope SEMg.
  • the measuring device 8g is arranged at a position where the positional relationship with respect to the stage 22 is fixed (that is, does not change).
  • the measuring device 8g is arranged on the side surface of the stage 22, but may be arranged at other positions.
  • the positional relationship between the stage 22 and the measuring device 8g does not change. .. That is, the position of the stage 22 in the measurement coordinate space based on the measuring device 8g does not change.
  • the control device 4 measures the position of the stage 22 again on the measuring device 8g even if the stage 22 is moved by the stage drive system 23.
  • the position of the stage 22 in the measurement coordinate space can be specified without causing the stage 22 to be specified.
  • the measuring device 8g is arranged at a position where the positional relationship with respect to the sample W is fixed (that is, does not change).
  • the measuring device 8g is arranged at a fixed position with respect to the sample W, even if the stage 22 holding the sample W is moved by the stage drive system 23, the sample W and the measuring device 8g The positional relationship does not change. That is, the position of the sample W in the measurement coordinate space with respect to the measuring device 8g does not change. Therefore, once the position of the sample W has been measured by the measuring device 8g, the control device 4 measures the position of the sample W again by the measuring device 8g even if the stage 22 is moved by the stage drive system 23.
  • the position of the sample W in the measurement coordinate space can be specified without causing the sample W to be specified.
  • the scanning electron microscope SEMh can perform the first control operation shown in FIG. 22 in the same manner as the scanning electron microscope SEMg described above.
  • the scanning electron microscope SEMg is the reference member BM in steps S11 to S14 of FIG.
  • the position of the injection surface 12LS may be specified without using.
  • the scanning electron microscope SEMa placed the reference member BM on the holding surface HS in step S15 of FIG.
  • the position of the holding surface HS may be specified above.
  • the scanning electron microscope SEMh can perform the second control operation shown in FIG. 29 in the same manner as the scanning electron microscope SEMg described above.
  • the scanning electron microscope SEMh places the reference member BM on the surface in step S22 of FIG.
  • the position of the surface WSu may be specified after being arranged on the WSu.
  • the scanning electron microscope SEMh causes the measuring device 8g to measure the position of the injection surface 12LS before performing step S23 in FIG. 29, and then measures the injection in step S23 in FIG.
  • At least one position of the beam irradiation device 1f and the stage 22 so that the interval D becomes the desired interval D_taget and the surface WSu is parallel to the injection surface 12LS based on the position of the surface 12LS and the position of the surface WSu. To control.
  • the scanning electron microscope SEMh of the eighth embodiment can increase the degree of freedom in arranging the measuring device 8g while enjoying the same effect as the effect that can be enjoyed by the scanning electron microscope SEMg described above. it can.
  • the measuring device 8g since the measuring device 8g is arranged at a fixed position with respect to the stage 22, the positional relationship between the stage 22 and the measuring device 8g is changed during the period when the position control operation is performed. It doesn't change. Therefore, before the position control operation is performed, the position of the holding surface HS of the stage 22 is measured by the measuring device 8g, and the measurement result of the measuring device 8g (that is, information indicating the position of the holding surface HS) is the control device. It may be stored in a storage device or the like provided in 4.
  • the control device 4 does not cause the measuring device 8g to measure the position of the holding surface HS, and the information indicating the position of the holding surface HS stored in the storage device.
  • the position control operation may be performed based on.
  • FIG. 33 is a cross-sectional view showing the structure of the scanning electron microscope SEMi of the ninth embodiment.
  • the measuring device 8g has both the beam irradiation device 1f and the stage 22. It differs in that it is placed in a non-fixed position with respect to.
  • Other features of the scanning electron microscope SEMi may be the same as those of the scanning electron microscope SEMg.
  • the measuring device 8g is arranged at a position where the positional relationship with respect to the beam irradiation device 1f and the stage 22 is non-fixed (that is, may change). In the example shown in FIG. 33, the measuring device 8g is arranged on the support frame 3, but may be arranged at other positions.
  • the measuring device 8g is arranged at a non-fixed position with respect to the beam irradiating device 1f, when the beam irradiating device 1f is moved by the position adjusting system 14, the positional relationship between the beam irradiating device 1f and the measuring device 8g May change. That is, the position of the beam irradiation device 1f in the measurement coordinate space based on the measurement device 8g may change.
  • the control device 4 causes the measuring device 8g to measure the position of the beam irradiation device 1f again, and the measuring device
  • the position of the beam irradiation device 1f in the measurement coordinate space is specified based on the remeasurement result of 8 g.
  • the measuring device 8g is arranged at a non-fixed position with respect to the stage 22, the positional relationship between the stage 22 and the measuring device 8g may change when the stage 22 is moved by the stage drive system 23. There is sex. That is, the position of the stage 22 in the measurement coordinate space based on the measuring device 8g may change.
  • the control device 4 causes the measuring device 8g to measure the position of the stage 22 again, and the measuring device 8g is re-measured. Based on the measurement result, the position of the stage 22 in the measurement coordinate space is specified.
  • the measuring device 8g is arranged at a position where the positional relationship with respect to the sample W is non-fixed (that is, may change).
  • the positional relationship between the sample W and the measuring device 8g may change. That is, the position of the sample W in the measurement coordinate space with respect to the measuring device 8g may change. Therefore, each time the stage 22 moves during the period in which the position control operation is performed, the control device 4 causes the measuring device 8g to measure the position of the sample W again, and based on the measurement result of the measuring device 8g again. , The position of the sample W in the measurement coordinate space is specified.
  • the scanning electron microscope SEMi can perform the first control operation shown in FIG. 22 in the same manner as the scanning electron microscope SEMg described above.
  • the scanning electron microscope SEMi when the measuring device 8g can directly measure the position of the injection surface 12LS, the scanning electron microscope SEMi has the reference member BM in steps S11 to S14 of FIG.
  • the position of the injection surface 12LS may be specified without using.
  • the scanning electron microscope SEMi placed the reference member BM on the holding surface HS in step S15 of FIG.
  • the position of the holding surface HS may be specified above.
  • the scanning electron microscope SEMi can perform the second control operation shown in FIG. 29 in the same manner as the scanning electron microscope SEMg described above.
  • the scanning electron microscope SEMi puts the reference member BM on the surface in step S22 of FIG.
  • the position of the surface WSu may be specified after being arranged on the WSu.
  • the scanning electron microscope SEMi causes the measuring device 8g to measure the position of the injection surface 12LS before performing step S23 in FIG. 29, and then measures the injection in step S23 in FIG.
  • At least one position of the beam irradiation device 1f and the stage 22 so that the interval D becomes the desired interval D_taget and the surface WSu is parallel to the injection surface 12LS based on the position of the surface 12LS and the position of the surface WSu. To control.
  • the scanning electron microscope SEMi of the ninth embodiment can increase the degree of freedom in arranging the measuring device 8g while enjoying the same effect as the effect that the scanning electron microscope SEMg described above can enjoy. it can.
  • FIG. 34 is a cross-sectional view showing the structure of the scanning electron microscope SEMj of the tenth embodiment.
  • the scanning electron microscope SEMj of the tenth embodiment is compared with the scanning electron microscope SEMg of the seventh embodiment described above, and the position of the beam irradiation device 1f (that is, the position of the injection surface 12LS). ), And the measuring device 8g for measuring the positions of the stage 22 and the sample W (that is, the positions of the holding surface HS and the surface WSu) are separately provided.
  • the measuring device 8g for measuring the position of the beam irradiation device 1f is referred to as a measuring device 8ga
  • the measuring device 8g for measuring the positions of the stage 22 and the sample W is referred to as a measuring device 8gb. Distinguish.
  • Other features of the scanning electron microscope SEMj may be the same as those of the scanning electron microscope SEMg.
  • the measuring device 8gb is the same as the measuring device 8g provided in the scanning electron microscope SEMh (see FIG. 32) of the eighth embodiment described above. That is, the measuring device 8 gb is arranged at a fixed position with respect to the stage 22. However, the measuring device 8gb may be arranged at a position fixed with respect to the beam irradiation device 1f, or may be arranged at a position non-fixed with respect to the beam irradiation device 1f and the stage 22.
  • the measuring device 8gb measures the positions of the holding surface HS and the surface WSu using the reference member BM, but the positions of the holding surface HS and the surface WSu may be measured without using the reference member BM.
  • the measuring device 8gb specifies the positions of the holding surface HS and the surface WSu in the second measurement coordinate space with respect to the measuring device 8gb.
  • the scanning electron microscope SEMj can perform the first control operation shown in FIG. 22 in the same manner as the scanning electron microscope SEMg described above.
  • the measuring device 8ga specifies the position of the injection surface 12LS in the first measurement coordinate space with respect to the measuring device 8ga, while the measuring device 8gb uses the measuring device 8gb as a reference.
  • the position of the holding surface HS in the second measurement coordinate space (that is, the second measurement coordinate space different from the first measurement coordinate space) is specified.
  • the scanning electron microscope SEMj associates the first measurement coordinate space based on the measuring device 8ga with the second measurement coordinate space based on the measuring device 8gb before performing step S17 in FIG. 22.
  • the first measurement coordinate space and the first measurement coordinate space are used by using the reference member BMC whose positional relationship between the two reference surfaces BSc1 and BSc2 is known to the control device 4. 2 It may be associated with the measurement coordinate space.
  • the measuring device 8ga measures the position of the reference plane BSc1 in the first measurement coordinate space.
  • the measuring device 8gb measures the position of the reference plane BSc2 in the second measurement coordinate space.
  • the control device 4 associates the first and second measurement coordinate spaces with each other based on the known positional relationship between the reference planes BSc1 and BSc2 and the measurement result of the positions of the reference planes BSc1 and BSc2.
  • the control device 4 can associate the position of the injection surface 12LS in the first measurement coordinate space with the position of the holding surface HS in the second measurement coordinate space. That is, the control device 4 can specify the positional relationship between the injection surface 12LS and the holding surface HS (that is, the positional relationship between the injection surface 12LS and the surface WSuv) within the common measurement coordinate space.
  • control device 4 can specify the distance D'between the injection surface 12LS and the surface WSuv and the parallelism between the injection surface 12LS and the surface WSuv. Therefore, after associating the first and second measurement coordinate spaces, the control device 4 sets the interval D'to the desired interval D_stage in step S17 of FIG. 22 and the surface WSuv is parallel to the injection surface 12LS. As such, at least one position of the beam irradiation device 1f and the stage 22 can be controlled.
  • the scanning electron microscope SEMj uses two reference members BMc3 and BMc4 having two reference planes BSc3 and BSc4 whose positional relationship is known to the control device 4, respectively.
  • the first and second measurement coordinate spaces may be associated.
  • the measuring device 8ga measures the position of the reference surface BSc3 in the first measurement coordinate space
  • the measuring device 8gb measures the position of the reference surface BSc4 in the second measurement coordinate space.
  • the control device 4 associates the first and second measurement coordinate spaces with each other based on the known positional relationship between the reference planes BSc3 and BSc4 and the measurement result of the positions of the reference planes BSc3 and BSc4.
  • the measuring devices 8ga and 8gb can measure the position of the same reference surface BMc5 of the same reference member BMc5 (for example, The same reference plane BMc5 can be irradiated with the measurement light ML).
  • the control device 4 determines the first and second measurement coordinate spaces based on the measurement result of the position of the reference surface BSc5 by the measuring device 8ga and the measurement result of the position of the reference surface BSc5 by the measuring device 8gb. It may be associated.
  • the scanning electron microscope SEMj can perform the second control operation shown in FIG. 29 in the same manner as the scanning electron microscope SEMg described above.
  • the scanning electron microscope SEMj causes the measuring device 8gb to measure the position of the surface WSu in step S22 of FIG. 29.
  • the scanning electron microscope SEMj has an injection surface 12LS on the measuring device 8ga before performing step S23 in FIG. To measure the position of.
  • the scanning electron microscope SEMj associates the first and second measurement coordinate spaces before performing step S23 in FIG. 29. After that, in step S23 of FIG.
  • the scanning electron microscope SEMj has an interval D of the desired interval D_taget based on the measured position of the injection surface 12LS and the position of the surface WSu, and the surface WSu with respect to the injection surface 12LS.
  • the positions of at least one of the beam irradiation device 1 and the stage 22 are controlled so that they are parallel to each other.
  • the method of associating the first and second measurement coordinate spaces in the second control operation may be the same as the method of associating the first and second measurement coordinate spaces in the first control operation. Omit.
  • the scanning electron microscope SEMj of the tenth embodiment enjoys the same effect as the above-mentioned scanning electron microscope SEMg, although the number of measuring devices 8g included in the scanning electron microscope SEMj increases. can do.
  • the scanning electron microscope SEM of the eleventh embodiment (hereinafter, the scanning electron microscope SEM of the eleventh embodiment will be referred to as “scanning electron microscope SEMk”) will be described.
  • the scanning electron microscope SEMg irradiates the sample W with the electron beam EB while moving the stage 22 along the XY plane before starting the measurement of the state of the sample W.
  • the second control operation is performed.
  • the scanning electron microscope SEMk of the eleventh embodiment irradiates the sample W with the electron beam EB while moving the stage 22 along the XY plane, and measures the state of the sample W at least a part of the period.
  • FIG. 36 is a flowchart showing the flow of the second control operation in the eleventh embodiment.
  • the stage 22 holds the sample W (step S21).
  • the scanning electron microscope SEMk starts irradiating the sample W with the electron beam EB. That is, the scanning electron microscope SEMk starts acquiring information about the sample W. Therefore, the scanning electron microscope SEMk irradiates the sample W with the electron beam EB while moving the stage 22 along the XY plane (that is, moving the sample W along the XY plane).
  • the measuring device 8 g is a part of the surface WSu of the sample W held by the stage 22.
  • the position (that is, the posture or shape) of a certain measurement target surface DS is measured (step S32).
  • the measurement target surface DS corresponds to a local region on the surface WSu including an irradiation region to which the electron beam EB is irradiated. Since the electron beam EB irradiates the sample W via the vacuum region VSP, the measurement target surface DS corresponds to a local region on the surface WSu including a region facing or covering the vacuum region VSP.
  • the distance sensor 81g In order to measure the position of the measurement target surface DS, the distance sensor 81g irradiates the measurement target surface DS with the measurement light ML and detects the reflected light of the measurement light ML from the measurement target surface DS. Therefore, the distance sensor 81g is arranged at a position where the measurement light ML can be irradiated to the measurement target surface DS.
  • the measurement target surface DS is a local region on the surface WSu
  • a plurality of distance sensors 81g There is a possibility that the measurement light ML is applied only to a local region of the surface WSu.
  • the control device 4 may not be able to specify the position of the holding surface HS of the stage 22 as a whole, which is large enough to include the measurement target surface DS from the measurement results of each distance sensor 81g. That is, the scanning electron microscope SEMj may not be able to properly perform the first control operation. Therefore, as shown in FIG.
  • the scanning electron microscope SEMj has a plurality of discrete regions of the holding surface HS (further, if necessary, a plurality of discrete regions of the surface WSu) as the measuring device 8 g.
  • a measuring device 8g-2 including a plurality of distance sensors 81g-2 arranged so as to irradiate the measuring light ML may be separately provided.
  • the scanning electron microscope SEMk is a measuring device 8g-1 for measuring the position of a relatively wide surface (for example, the entire holding surface HS wider than the measurement target surface DS or the entire surface WSu) as the measuring device 8g.
  • a measuring device 8g-2 for measuring the position of a relatively narrow surface may be separately provided.
  • the measurement target region DS is located on the optical axis AX of the beam optical system 11, the measurement device 8g-2 is configured as compared with the plurality of distance sensors 81g-1 constituting the measurement device 8g-1.
  • the plurality of distance sensors 81g-2 are arranged closer to the optical axis AX (that is, inside the optical axis AX in the radial direction). However, if both the position of the holding surface HS as a whole and the position of the measurement target surface DS can be appropriately measured using the same measuring device 8g, the scanning electron microscope SEMk can be used with the measuring devices 8g-1 and 8g. -2 does not have to be provided separately.
  • the measurement result of the distance sensor 81g-2 is output to the control device 4.
  • the control device 4 specifies the distance from each distance sensor 81g-2 to the measurement target surface DS based on the measurement result of each distance sensor 81g-2.
  • the control device 4 can specify the position of the measurement target surface DS (that is, the position of each part of the measurement target surface DS in the measurement coordinate space).
  • the control device 4 can specify an equation indicating the measurement target surface DS in the measurement coordinate space.
  • the distance D_DS between the measurement target surface DS and the injection surface 12LS becomes the desired distance D_stage, and the measurement target surface DS becomes parallel to the injection surface 12LS.
  • the positional relationship between the beam irradiation device 1f and the stage 22 is controlled (step S33). Specifically, the control device 4 is in the measurement coordinate space from the position of the injection surface 12LS specified in the first control operation and the position of the measurement target surface DS specified in step S32, as in step S23 of FIG. The positional relationship between the injection surface 12LS and the measurement target surface DS can be specified.
  • step S34 The operations from step S32 to step S33 described above are repeated as necessary.
  • the operations from step S32 to step S33 are repeated until the scanning electron microscope SEMk finishes acquiring information about the sample W (step S34).
  • the scanning electron microscope SEMk acquires information about the sample W
  • the stage 22 moves along the XY plane.
  • the irradiation region of the electron beam EB moves relative to the surface WSu in the direction along the XY plane (that is, the direction along the surface WSu of the sample W). Is as described above.
  • the measurement target surface DS which is a local region including the irradiation region of the electron beam EB in the direction along the XY plane, is also substantially. It moves relative to the surface WSu. Therefore, the scanning electron microscope SEMk measures the position (that is, the posture) of the measurement target surface DS moving on the surface WSu in the measurement coordinate space in accordance with the movement of the stage 22 along the XY plane, and The operation of controlling the positional relationship between the beam irradiation device 1f and the stage 22 is repeated based on the measurement result of the position of the measurement target surface DS.
  • the control device 4 is between the plane WSu2 where the measurement target surface DS exists and the injection surface 12LS, as shown in FIG. 38 (b).
  • the positional relationship between the beam irradiation device 1f and the stage 22 is controlled so that the interval D_DS is the desired interval D_taget and the plane WSu2 is parallel to the injection surface 12LS.
  • the control device 4 is between the plane WSu3 where the measurement target surface DS exists and the injection surface 12LS, as shown in FIG. 38 (c).
  • the positional relationship between the beam irradiation device 1f and the stage 22 is controlled so that the interval D_DS is the desired interval D_taget and the plane WSu1 is parallel to the injection surface 12LS.
  • the beam irradiation device 1f in parallel with the acquisition of information on the sample W by the scanning electron microscope SEMk, the beam irradiation device 1f so that the interval D becomes the desired interval D_taget and the surface WSu is parallel to the injection surface 12LS.
  • the positional relationship between the and the stage 22 is controlled.
  • the scanning electron microscope SEMk uses the measuring device 8g to position the measurement target surface DS moving on the surface WSu in the measurement coordinate space in parallel with the acquisition of information on the sample W. (That is, the posture or shape) is measured in real time.
  • the position of each portion of the surface WSu may be measured in advance using the measuring device 8g before starting the acquisition of the information regarding the sample W.
  • the scanning electron microscope SEMk divides the surface WSu into a plurality of divided regions using a measuring device 8 g before starting the acquisition of information on the sample W, and then positions each divided region (that is, that is). , Posture or shape) may be measured in advance.
  • the scanning electron microscope SEMk is a measurement target of the surface WSu from the measurement result of the position of each part of the surface WSu (that is, information on the position of each part previously measured by the measuring device 8g).
  • Information on the position of the portion where the surface DS is set may be acquired, and the positional relationship between the beam irradiation device 1 and the stage 22 may be controlled based on the information on the position of the acquired portion.
  • the measurement target surface DS is a local region on the surface WSu including an irradiation region to which the electron beam EB is irradiated (that is, on the surface WSu including a region facing or covering the vacuum region VSP. It is set in the local area of. However, the measurement target surface DS may be set to a local region on the surface WSu that does not include the irradiation region to which the electron beam EB is irradiated. The measurement target surface DS may be set to a local region on the surface WSu that does not include a region facing or covering the vacuum region VSP.
  • the scanning electron microscope SEMk irradiates the first surface portion of the surface WSu of the sample W with the electron beam EB, and the second surface portion different from the first surface portion of the surface WSu of the sample W.
  • the position of may be measured.
  • the scanning electron microscope SEMk is based on the measurement result of the position of the second surface portion measured in advance when irradiating the second surface portion of the surface WSu of the sample W with the electron beam EB.
  • FIG. 39 is a cross-sectional view showing the structure of the scanning electron microscope SEMl of the twelfth embodiment.
  • the scanning electron microscope SEMl of the twelfth embodiment is different from the scanning electron microscope SEMa of the first embodiment described above in that it includes an optical microscope 17l.
  • the other structure of the scanning electron microscope SEMl may be the same as the other structure of the scanning electron microscope SEMa described above.
  • the optical microscope 17l is a device capable of optically measuring the state of the sample W (for example, the state of at least a part of the surface WSu of the sample W). That is, the optical microscope 17l is an apparatus capable of optically measuring the state of the sample W and acquiring information on the sample W. In particular, the optical microscope 17l is different from the beam irradiation device 1 (particularly, the electron detector 117) that measures the state of the sample W in a vacuum environment in that the state of the sample W can be measured in an atmospheric pressure environment. different.
  • the optical microscope 17l measures the state of the sample W before the beam irradiation device 1 irradiates the sample W with the electron beam EB to measure the state of the sample W. That is, the scanning electron microscope SEMl measures the state of the sample W using the optical microscope 17l and then measures the state of the sample W using the beam irradiation device 1.
  • the beam irradiating device 1 sets the vacuum region VSP during the period when the optical microscope 17l is measuring the state of the sample W. It does not have to be formed.
  • the beam irradiation device 1 forms a vacuum region VSP and irradiates the sample W with the electron beam EB after the optical microscope 17l completes the measurement of the state of the sample W.
  • FIG. 40 is a cross-sectional view showing a stage 22 in which the beam irradiation device 1 has moved so that the sample W is positioned at a position where the electron beam EB can be irradiated.
  • FIG. 41 is a cross-sectional view showing a stage 22 in which the optical microscope 17l is moved so that the position sample W where the state of the sample W can be measured is located.
  • the beam irradiation device 1 is used for at least a part of the period during which the sample W is located at a position where the optical microscope 17l can measure the state of the sample W (hereinafter, for convenience of explanation, this period is referred to as an “optical measurement period”). May form a vacuum region VSP with the surface of the stage 22. That is, even during at least a part of the optical measurement period, the beam irradiation device 1 may continue to form the vacuum region VSP as during the period during which the beam irradiation device 1 irradiates the sample W with the electron beam EB. For example, as shown in FIG.
  • the beam irradiator 1 is located on the surface of the stage 22 different from the holding surface HS (typically outside the holding surface HS) during at least a portion of the optical measurement period. )
  • a vacuum region VSP may be formed between the outer peripheral surface OS and the peripheral surface OS.
  • the outer peripheral surface OS of the stage 22 can face the beam irradiation device 1 (particularly, the injection surface 12LS). Properties (eg, at least one of shape and size) may be set.
  • the vacuum region VSP is destroyed at a position where the irradiation device 1 can form a vacuum region VSP with the sample W (that is, a position where the beam irradiation device 1 can irradiate the sample W with the electron beam EB). You can move while reducing the possibility.
  • the stage 22 is XY from the state where the optical microscope 17l can measure the sample W and the beam irradiation device 1 can form a vacuum region VSP with the outer peripheral surface OS.
  • the beam irradiator 1 irradiates the sample W with the electron beam EB via the vacuum region VSP. Can be done. As a result, the throughput of the scanning electron microscope SEMl is improved as compared with the case where a vacuum region VSP needs to be newly formed as the stage 22 moves.
  • the scanning electron microscope SEMl may measure the state of the sample W using the beam irradiation device 1 based on the measurement result of the state of the sample W using the optical microscope 17l. For example, the scanning electron microscope SEMl may first measure the state of a desired region of the sample W using an optical microscope 17l. After that, the scanning electron microscope SEMl uses the beam irradiation device 1 to obtain the same desired region state (or desired region) of the sample W based on the measurement result of the desired region state of the sample W using the optical microscope 17l. May measure the state of different regions).
  • a predetermined index object that can be used for measuring the state of the sample W using the beam irradiation device 1 may be formed in the desired region of the sample W.
  • a predetermined index object for example, a mark used for aligning the sample W and the beam irradiation device 1 (for example, at least one of a fiducial mark and an alignment mark) can be mentioned.
  • a fine uneven pattern is formed on the surface WSu of the sample W.
  • the sample W is a semiconductor substrate
  • an example of a fine uneven pattern is a resist pattern that remains on the semiconductor substrate after the semiconductor substrate coated with the resist is exposed by the exposure apparatus and developed by the developing apparatus. Be done.
  • the scanning electron microscope SEMl may first measure the state of the uneven pattern formed in the desired region of the sample W by using the optical microscope 17l.
  • the scanning electron microscope SEMl uses the optical microscope 17l to measure the state of the desired region of the sample W (that is, the measurement result of the state of the uneven pattern formed in the desired region), and then the beam irradiation device 1 May be used to measure the state of the uneven pattern formed in the same desired region of the sample W.
  • the scanning electron microscope SEMl controls the characteristics of the electron beam EB so that the optimum electron beam EB for measuring the unevenness pattern is irradiated based on the measurement result of the optical microscope 17l, and then the beam irradiation device 1 May be used to measure the state of the uneven pattern formed in the same desired region of the sample W.
  • the scanning electron microscope SEMl of the twelfth embodiment can enjoy the same effect as the effect that the scanning electron microscope SEMa can enjoy.
  • the scanning electron microscope SEMl of the twelfth embodiment more appropriately measures the state of the sample W using the electron beam EB as compared with the scanning electron microscope of the comparative example not provided with the optical microscope 17l. be able to.
  • the scanning electron microscope SEMl measures the state of the sample W using the optical microscope 17l and then measures the state of the sample W using the beam irradiation device 1.
  • the measurement of the state of the sample W using the optical microscope 17l and the measurement of the state of the sample W using the beam irradiation device 1 may be performed in parallel.
  • the scanning electron microscope SEMl may simultaneously measure the state of the desired region of the sample W using the optical microscope 17l and the beam irradiation device 1.
  • the scanning electron microscope SEMl measures the state of the first region of the sample W using the optical microscope 17l and the second region of the sample W using the beam irradiation device 1 (however, the second region is the first region).
  • the measurement of the state (different from) may be performed in parallel.
  • the scanning electron microscope SEMl may be provided with an arbitrary measuring device capable of measuring the state of the sample W in an atmospheric pressure environment in addition to or in place of the optical microscope 17l.
  • An example of an arbitrary measuring device is a diffraction interferometer.
  • the diffraction interferometer branches the light source light to generate measurement light and reference light, and irradiates the sample W with the measurement light to generate reflected light (or transmitted light or scattered light) and reference light.
  • This is a measuring device that detects an interference pattern generated by interference with light and measures the state of sample W (for example, the surface shape of sample W).
  • a scatometer can be mentioned.
  • the scatometer is a measuring device that irradiates the sample W with measurement light and receives scattered light (diffracted light or the like) from the sample W to measure the state of the sample W.
  • the scanning electron microscope SEMa of the first embodiment is provided with an optical microscope 17l.
  • each of the scanning electron microscope SEMa of the second embodiment to the scanning electron microscope SEMk of the eleventh embodiment includes an optical microscope 17l. Good.
  • FIG. 44 is a cross-sectional view showing the structure of the scanning electron microscope SEMm of the thirteenth embodiment.
  • the scanning electron microscope SEMm of the thirteenth embodiment includes a chamber 181 m and an air conditioner 182 m as compared with the scanning electron microscope SEMa of the first embodiment described above. Is different.
  • the other structure of the scanning electron microscope SEMm may be the same as the other structure of the scanning electron microscope SEMa described above.
  • the chamber 181 m accommodates at least the beam irradiation device 1, the stage device 2, and the support frame 3. However, the chamber 181m does not have to accommodate at least a part of the beam irradiation device 1, the stage device 2, and the support frame 3.
  • the chamber 181 m may accommodate other components of the scanning electron microscope SEMm (eg, at least a portion of the position measuring device 15, the control device 4, the pump system 5, the gas supply device 6 and the exhaust device 7). Good.
  • the space outside the chamber 181 m is, for example, an atmospheric pressure space.
  • the space inside the chamber 181 m (that is, the space that accommodates at least the beam irradiation device 1, the stage device 2, and the support frame 3) is also, for example, an atmospheric pressure space.
  • at least the beam irradiation device 1, the stage device 2, and the support frame 3 are arranged in the atmospheric pressure space.
  • the beam irradiator 1 forms a local vacuum region VSP in the atmospheric pressure space inside the chamber 181 m.
  • the air conditioner 182 m can supply a gas (for example, at least one of the above-mentioned inert gas and clean dry air) to the space inside the chamber 181 m.
  • the air conditioner 182 m can recover gas from the space inside the chamber 181 m.
  • the air conditioner 182 m recovers the gas from the space inside the chamber 181 m, so that the cleanliness of the space inside the chamber 181 m is kept good.
  • the air conditioner 182m can control at least one of the temperature and humidity of the space inside the chamber 181m by controlling at least one of the temperature and humidity of the gas supplied to the space inside the chamber 181m.
  • the scanning electron microscope SEMm of the thirteenth embodiment can enjoy the same effect as the effect that the scanning electron microscope SEMa can enjoy.
  • the scanning electron microscope SEMa of the first embodiment is provided with a chamber 181 m and an air conditioner 182 m.
  • each of the scanning electron microscope SEMa of the second embodiment to the scanning electron microscope SEMl of the twelfth embodiment may include a chamber 181 m and an air conditioner 182 m.
  • FIG. 45 is a schematic view showing the structure of the pump system 5n of the 14th embodiment.
  • the pump system 5n is different from the pump system 5 in that it includes vacuum pumps 51n and 52n instead of the vacuum pumps 51 and 52.
  • the vacuum pump 51n is different from the vacuum pump 51 in that a part of the vacuum pump 51n is shared as a part of the vacuum pump 52n, and a part of the vacuum pump 51 does not have to be shared as the vacuum pump 52.
  • the vacuum pump 52n is different from the vacuum pump 52 in that a part of the vacuum pump 52n is shared as a part of the vacuum pump 51n, and a part of the vacuum pump 52 does not have to be shared as the vacuum pump 51.
  • the other structure of the pump system 5n may be the same as the other structure of the pump system 5 described above.
  • the vacuum pump 51n includes a high vacuum pump 511n used as a main pump and an auxiliary pump (specifically, a high vacuum pump 511n), similarly to the vacuum pump 51 described above. It is equipped with a low vacuum pump 512n used as a back pump).
  • a high vacuum pump 511n for example, at least one of a turbo molecular pump, a diffusion pump, a cryopump and a sputter ion pump can be mentioned.
  • An example of the low vacuum pump 512n is a dry pump.
  • the vacuum pump 51n exhausts the beam passing space SPb1 in the beam optical system 11 and the beam passing space SPb2 in the differential exhaust system 12 via the pipe 117.
  • a pressure gauge 591n may be arranged in the pipe 117, or a pressure gauge 592n between the beam passage space SPb1 and the beam passage space SPb2 (that is, between the beam optical system 11 and the differential exhaust system 12). May be arranged. Further, a valve 592n may be arranged between the beam passing space SPb1 and the pressure gauge 592n and the beam passing space SPb2.
  • the gas supply device 6 is connected to the beam passage space SPb2 via the opening 126 and the pipe 127 (however, not shown in FIG. 45), the pipe 1291, and the valve 1281, and the opening 126 and the pipe 127. (However, it is not shown in FIG.
  • the vacuum pump 52n includes a low vacuum pump 512n and a low vacuum pump 522n (for example, a dry pump). That is, the vacuum pump 51n and the vacuum pump 52 share a low vacuum pump 512n.
  • the low vacuum pump 512n exhausts the air through the exhaust passage EP1 (specifically, the first-stage differential exhaust).
  • the low vacuum pump 522n exhausts air through the exhaust passage EP2 (specifically, second-stage differential exhaust gas).
  • EP1 specifically, the first-stage differential exhaust
  • the low vacuum pump 522n exhausts air through the exhaust passage EP2 (specifically, second-stage differential exhaust gas).
  • the pump system 5n can function as a low vacuum pump 512n instead of the low vacuum pumps 512n and 522n, and can also function as a low vacuum pump 522n.
  • a vacuum pump may be provided. That is, in the pump system 5n, the low vacuum pumps 512n and 522n may be combined with one low vacuum pump.
  • the scanning electron microscope SEMn shown in FIG. 45 may operate as follows, for example.
  • the control device 4 may set the valves 593n in the open state and the valves 1281 and 1282 in the closed state.
  • the low vacuum pumps 512n and 522n may start exhausting.
  • the high vacuum pump 511n starts exhausting. May be good.
  • the scanning electron microscope SEMn is the electron beam EB. Irradiation may be started.
  • the control device 4 sets the valves 593n in the closed state and the valves 1281 and 1282 in the open state. You may. In the situation where the valve 593n is set to the open state, the control device 4 should, in principle (that is, except for some exceptional situations), set the valves 1281 and 1282 to the open state. You may limit it. That is, in principle, the control device 4 may limit the setting of all the valves 593n, 1281 and 1282 to the open state at the same time.
  • control device 4 may control the valves 1281 and 1291 so that the measured value of the pressure gauge 592n is equal to or less than the third predetermined value (for example, 100 pascals).
  • the collector of the secondary electron detector that is, the secondary electrons, which is a specific example of the electron detector 117. Since the voltage application portion for collecting the secondary electrons is discharged, it may be difficult for the secondary electron detector to detect the secondary electrons.
  • the backscattered electron detector which is a specific example of the electron detector 117, may detect the backscattered electrons.
  • the control device 4 sets the valves 593n in the open state and the valves 1281 and 1282 in the closed state. May be good. As a result, the measured value of the pressure gauge 592n returns to the second predetermined value or less.
  • the valves 1281 and 1282 are set to the closed state, then the valves 593n are set to the open state, and then the high vacuum pump 511n is stopped, and then the high vacuum pump 511n is stopped.
  • the low vacuum pump 522n is stopped, and then the low vacuum pump 512n is stopped. It should be noted that the stoppage of the operation of the low vacuum pump 512n may be restricted until the operation of the high vacuum pump 511n is stopped (for example, the turbine blades are stopped).
  • the measured value of the pressure gauge 591n becomes an abnormal value (for example, the above-mentioned first predetermined value (for example, 200 pascals) or more), the scanning electron microscope SEMn ends its operation.
  • a similar operation (that is, an operation of stopping each pump) may be performed.
  • the operation is the same as when the scanning electron microscope SEMn ends the operation (that is, each pump is operated.
  • the operation to stop may be performed.
  • each of the scanning electron microscope SEMa of the second embodiment to the scanning electron microscope SEMm of the thirteenth embodiment may include a pump system 5n.
  • FIG. 46 is a cross-sectional view showing the structure of the beam irradiation device 1o included in the scanning electron microscope SEM of the fifteenth embodiment.
  • the beam irradiation device 1o is different from the beam irradiation device 1 in that the electron detector 117 may be arranged in the pipe 127 connected to the opening 126.
  • Other features of the beam irradiating device 1o may be the same as those of the beam irradiating device 1 described above.
  • the electron detector 117 arranged in the pipe 127 may be a reflected electron detector that detects reflected electrons from the sample W.
  • the electron detector 117 arranged in the pipe 127 may be a secondary electron detector that detects electrons generated by irradiation of the sample W with the electron beam EB.
  • the electron detector 117 arranged in the pipe 127 may be a semiconductor type electron detector or an ET (Everhard-Tornley) detector.
  • the same type of electron detector 117 may be arranged in each of the plurality of pipes 127 connected to the plurality of openings 126, or different types of electron detectors 117 may be arranged.
  • An energy dispersive X-ray analysis (EDX, EDS: Energy dispersive X-ray spectrum) analyzer may be arranged in the pipe 127 connected to the opening 126.
  • energy dispersive X-ray analysis characteristic X-rays (fluorescent X-rays) generated by irradiation of sample W with electron beam EB are introduced into, for example, a semiconductor detector, and the energy and number of electron-hole pairs generated are used. The elements constituting the sample W are analyzed.
  • Particle-induced X-ray Emission (PIXE) may be performed to analyze X-rays generated by irradiating the sample W with a charged particle beam instead of the electron beam EB.
  • a detector for EDX may be arranged in each of the plurality of pipes 127 connected to the plurality of openings 126.
  • An electron detector and a detector for EDX may be arranged in each of the plurality of pipes 127 connected to the plurality of openings 126.
  • the scanning electron microscope SEMo of the fifteenth embodiment can enjoy the same effect as the effect that the scanning electron microscope SEMa can enjoy.
  • each of the scanning electron microscope SEMa of the second embodiment to the scanning electron microscope SEMn of the fourteenth embodiment may include an electron detector 117 arranged in the pipe 127.
  • the sample W has a size large enough that the vacuum region VSP can cover only a part of the surface WSu of the sample W.
  • the vacuum region VSP is the surface WSu of the sample W. It may have a size small enough to cover the whole.
  • the sample W may have a size small enough that the beam passing space SPb3 included in the vacuum region VSP can cover the entire surface WSu of the sample W.
  • the vacuum region VSP formed by the differential exhaust system 12 may cover the surface WSu of the sample W and / or face (ie, touch) the surface WSu of the sample W. In addition, it covers at least a portion of the surface of the stage 22 (eg, the outer peripheral OS of the surface of the stage 22 that is different from the holding surface HS) and / or at least the surface of the stage 22 (eg, the outer peripheral OS). It may face a part.
  • the outer peripheral surface OS typically includes a surface located around the holding surface HS.
  • FIG. 47 shows an example in which the scanning electron microscope SEMa of the first embodiment irradiates the small-sized sample W described in the first modification with the electron beam EB.
  • Each of the scanning electron microscope SEMb of the second embodiment to the scanning electron microscope SEMo of the fifteenth embodiment may also irradiate the small-sized sample W described in the first modification with the electron beam EB. Needless to say.
  • At least one of the scanning electron microscope SEMg of the seventh embodiment to the scanning electron microscope SEMk of the eleventh embodiment that performs the position control operation is formed by the injection surface 12LS of the beam emitting device 1f and the surface WSu of the sample W.
  • the injection surface 12LS and the holding surface HS or the outer peripheral surface OS may be performed so that the interval Do1 between the intervals is the desired interval D_taget and / or the injection surface 12LS and the holding surface HS or the outer peripheral surface OS are parallel to each other.
  • At least one of the scanning electron microscopes SEMg to SEMk estimates the position of the injection surface 12LS in the first control operation (steps S11 to S13 in FIG. 22), and the holding surface HS or the outer peripheral surface OS of the stage 22.
  • the position is measured (process corresponding to step S15 in FIG. 22), and the beam irradiation device 1 and the stage are set so that the injection surface 12LS and the holding surface HS or the outer peripheral surface OS are parallel and the interval Do1 is the desired interval D_taget.
  • the positional relationship with the 22 may be controlled (process corresponding to step S17 in FIG. 22).
  • the injection surface 12LS and the holding surface HS or the outer peripheral surface OS are parallel to each other and the interval Do1 is the desired interval D_taget even if the second control operation is not necessarily performed.
  • the sample W can be irradiated with the electron beam EB.
  • at least one of the scanning electron microscopes SEMg to SEMk may perform the second control operation. That is, at least one of the scanning electron microscopes SEMg to SEMk measures the position of the holding surface HS or the outer peripheral surface OS of the stage 22 after the stage 22 holds the sample W (step S21 in FIG. 29) (FIG. 29).
  • FIG. 48 which is a cross-sectional view showing how the stage 22 holds the sample W in the second modification
  • the holding surface HS and the outer peripheral surface OS have different heights (that is, the outer peripheral surface OS).
  • FIG. 48 shows an example in which the holding surface HS is located at a position lower than the outer peripheral surface OS, but the holding surface HS may be located at a position higher than the outer peripheral surface OS.
  • the stage 22 is substantially a storage space in which the sample W is housed (that is, a space recessed so as to house the sample W). Can be said to have been formed.
  • FIG. 48 shows an example in which the outer peripheral surface OS is located at a position higher than the surface WSu of the sample W, but the outer peripheral surface OS may be located at a position lower than the surface WSu, or the outer peripheral surface. The OS may be located at the same height as the surface WSu. In FIG.
  • the scanning electron microscope SEMa of the first embodiment has an electron beam on a sample W held on a holding surface HS having a height different from that of the outer peripheral surface OS described in the second modification.
  • each of the scanning electron microscope SEMb of the second embodiment to the scanning electron microscope SEM of the fifteenth embodiment is higher than the outer peripheral surface OS described in the second modification.
  • the electron beam EB may be applied to the sample W held on the holding surface HS having a different shape.
  • the sample W may have a size small enough that the vacuum region VSP can cover the entire surface WSu of the sample W.
  • the vacuum region VSP formed by the differential exhaust system 12 covers the surface WSu of the sample W and / or faces the surface WSu of the sample W, and in addition, the stage 22 It may cover at least a portion of the surface (eg, the outer peripheral OS) and / or may face at least a portion of the surface of the stage 22 (eg, the outer peripheral OS).
  • the sample W may have a size large enough that the vacuum region VSP can cover only a part of the surface WSu of the sample W.
  • the vacuum region VSP formed by the differential exhaust system 12 covers a part of the surface WSu of the sample W and / or faces a part of the surface WSu of the sample W while facing the surface of the stage 22 (eg, the surface WSu). It does not have to cover at least a part of the outer peripheral surface OS) and / or may not face at least a part of the surface of the stage 22 (for example, the outer peripheral surface OS).
  • At least one of the scanning electron microscope SEMa of the first embodiment to the scanning electron microscope SEMo of the fifteenth embodiment has an injection surface 12LS and a surface WSu.
  • At least one of the stage drive systems 23 may be controlled.
  • the distance D between the injection surface 12LS and the surface WSu is a desired distance D_target.
  • the interval Do1 between the injection surface 12LS and the outer peripheral surface OS is a desired interval.
  • the position control operation may be performed so as to be D_target and / or so that the injection surface 12LS and the outer peripheral surface OS are parallel to each other.
  • the scanning electron microscope SEMl of the twelfth embodiment provided with the above-mentioned optical microscope 17l is provided with an electron beam EB on a sample W held on a holding surface HS having a height different from that of the outer peripheral surface OS described in the second modification. Even in the case of irradiation, as described in the twelfth embodiment, at least a part of the period (that is, the optical measurement period) in which the sample W is located at a position where the state of the sample W can be measured by the optical microscope 17l.
  • the beam irradiation device 1 may form a vacuum region VSP with the surface of the stage 22 (for example, the outer peripheral surface OS).
  • the stage 22 is XY from a state in which the optical microscope 17l can measure the sample W and the beam irradiation device 1 can form a vacuum region VSP with the outer peripheral surface OS. It may move along a plane. As a result, the beam irradiation device 1 can irradiate the sample W with the electron beam EB via the vacuum region VSP.
  • the scanning electron microscope SEMl of the twelfth embodiment including the above-mentioned optical microscope 17l is a period in which the sample W is located at a position where the optical microscope 17l can measure the state of the sample W (that is, optical).
  • a vacuum region VSP may be formed between the surface of the stage 22 (for example, the outer peripheral surface OS) at least a part of the measurement period).
  • FIG. 49 shows an example in which the beam irradiation device 1 forms a vacuum region VSP with the outer peripheral surface OS of the stage 22 during at least a part of the optical measurement period. Further, as shown in FIG.
  • the stage 22 is along the XY plane from the state where the optical microscope 17l can measure the sample W and the beam irradiation device 1 can form the vacuum region VSP with the outer peripheral surface OS.
  • the beam irradiator 1 When moving (for example, along the Y-axis direction in the examples shown in FIGS. 49 and 50), the beam irradiator 1 has a vacuum region VSP formed between the holder HW and the holder HW as shown in FIG.
  • the electron beam EB can be applied to the sample W via the above.
  • the height of the outer peripheral surface OS (that is, the position in the Z-axis direction) may be the same as the height of the surface HWSu of the holder HW.
  • each of the scanning electron microscope SEMb of the second embodiment to the scanning electron microscope SEMo of the fifteenth embodiment also irradiates the sample W covered with the cover member 25 described in the third modification with the electron beam EB. Needless to say, it may be done.
  • the sample W may have a size small enough that the vacuum region VSP can cover the entire surface WSu of the sample W, or the vacuum region VSP is of the surface WSu of the sample W. It may have a size large enough to cover only a part of.
  • At least one of the scanning electron microscope SEMa of the first embodiment to the scanning electron microscope SEMo of the fifteenth embodiment has a desired distance D between the injection surface 12LS and the surface WSu.
  • One may be controlled.
  • at least one of the scanning electron microscopes SEMg to SEMk is in a state where the injection surface 12LS and the surface 25s are parallel and the interval Do2 is the desired interval D_target even if the second control operation is not necessarily performed.
  • the sample W can be irradiated with an electron beam EB.
  • the cover member 25 for covering the sample W may also not be arranged on the stage 22.
  • the distance D'between the surface WSuv of the virtual sample Wv and the injection surface 12LS becomes the desired distance D_taget and is injected.
  • the surface WSuv is parallel to the surface 12LS, or the distance Do1 between the outer peripheral surface OS and the injection surface 12LS is a desired distance D_taget and the outer peripheral surface OS is parallel to the injection surface 12LS.
  • the positional relationship between the beam irradiation device 1 and the stage 22 may be controlled.
  • At least one of the scanning electron microscopes SEMg to SEMk is used after the stage 22 holds the sample W and the cover member 25 is arranged on the stage 22 in the first control operation (in step S21 of FIG. 29).
  • the position of the surface 25s of the cover member 25 is measured (process corresponding to step S22 in FIG. 29), the distance Do2 between the surface 25s and the injection surface 12LS becomes the desired distance D_target, and the injection surface.
  • the positional relationship between the beam irradiation device 1 and the stage 22 may be controlled so that the surface 25s is parallel to the 12LS (process corresponding to step S23 in FIG. 29).
  • the scanning electron microscope SEMg to SEMk can irradiate the sample W with the electron beam EB in a state where the injection surface 12LS and the surface 25s are parallel to each other and the interval Do2 is the desired interval D_taget.
  • the twelfth embodiment is carried out.
  • the beam irradiator 1 sets the stage 22.
  • a vacuum region VSP may be formed between the surface of the surface (for example, the outer peripheral surface OS).
  • the stage 22 is XY from a state in which the optical microscope 17l can measure the sample W and the beam irradiation device 1 can form a vacuum region VSP with the outer peripheral surface OS. It may move along a plane. As a result, the beam irradiation device 1 can irradiate the sample W with the electron beam EB via the vacuum region VSP.
  • the height of the outer peripheral surface OS (that is, the position in the Z-axis direction) may be the same as the height of the surface 25s of the cover member 25. In this case, it is possible to reduce the possibility that the vacuum region VSP is destroyed when the vacuum region VSP crosses the boundary between the outer peripheral surface OS and the surface 25s of the cover member 25 as the stage 22 moves. Therefore, the throughput of the scanning electron microscope SEMl is improved.
  • FIG. 52 is a cross-sectional view showing a connection mode between the vacuum pump 51 and the beam irradiation device 1 in which the transmission of vibration from the vacuum pump 51 to the beam irradiation device 1 is suppressed.
  • the pipe 117 includes a pipe 1171 extending from the vacuum pump 51 toward the beam irradiation device 1 and a pipe 1172 extending from the beam irradiation device 1 toward the vacuum pump 51.
  • the pipe 1171 is provided with a flange portion 11711 at its tip.
  • the pipe 1172 is provided with a flange portion 11721 at its tip.
  • the flange portion 11711 faces the flange portion 11721 via the facing surface 11712.
  • the flange portion 11712 faces the flange portion 11711 via the facing surface 11722.
  • the flange portions 11711 and 11721 are fixed by the clamp members 1181 and 1182 in a state of being sandwiched by the clamp members 1183 and 1184.
  • the clamp members 1183 and 1184 are fixed by nuts 1185 and bolts 1186.
  • an O-ring 1187 (or any other elastic member) is arranged between the clamp member 1183 and the pipe 1171 (particularly, the flange portion 11711). That is, the clamp member 1183 applies a force for fixing the pipe 1171 and the pipe 1172 to the pipe 1171 via the O-ring 1187.
  • an O-ring 1188 (or any other elastic member) is arranged between the clamp member 1184 and the pipe 1172 (particularly, the flange portion 11721). That is, the clamp member 1184 applies a force for fixing the pipe 1171 and the pipe 1172 to the pipe 1172 via the O-ring 1188.
  • the O-ring 1181 and the center ring 1182 are arranged between the pipe 1171 and the pipe 1172. Therefore, the vibration transmitted from the vacuum pump 51 to the pipe 1171 is absorbed by the O-ring 1181 and the center ring 1182 before being transmitted to the pipe 1172. As a result, the transmission of vibration from the vacuum pump 51 to the beam irradiation device 1 via the pipes 1171 and 1172 is suppressed by the O-ring 1181 and the center ring 1182.
  • an O-ring 1187 is arranged between the pipe 1171 and the clamp member 1183. Therefore, the vibration transmitted from the vacuum pump 51 to the pipe 1171 is absorbed by the O-ring 1187 before being transmitted to the clamp member 1183. Further, an O-ring 1188 is arranged between the pipe 1172 and the clamp member 1184. Therefore, even if the vibration is transmitted from the vacuum pump 51 to the clamp members 1183 and 1184 via the pipe 1171, the vibration transmitted to the clamp member 1184 is absorbed by the O-ring 1188 before being transmitted to the pipe 1172. To. As a result, the transmission of vibration from the vacuum pump 51 to the beam irradiation device 1 via the pipes 1171 and 1172 and the clamp members 1183 and 1184 is suppressed by the O-rings 1187 and 1188.
  • the O-ring 1187 makes point contact with the pipe 1171 and the clamp member 1183 or makes contact with a relatively narrow surface
  • the O-ring 1188 makes point contact with the pipe 1172 and the clamp member 1184 or makes contact with a relatively narrow surface.
  • the O-ring 1187 rotates between the pipe 1171 and the clamp member 1183 and / or the O-ring 1188 rotates between the pipe 1172 and the clamp member 1184, whereby the clamp members 1183 and 1184 and the pipe 1171 and There is a possibility that the relative position with 1172 will change. Therefore, positioning of the clamp members 1183 and 1184 and the pipes 1171 and 1172 may become difficult.
  • FIG. 53 is a cross-sectional view showing an example in which a rubber sheet 1189, which is a specific example of an elastic member, is arranged between the pipe 1172 and the clamp member 1184 in addition to or in place of the O-ring 1188.
  • the differential exhaust system 12 is a one-stage differential exhaust system including a single exhaust mechanism (specifically, an exhaust groove 124 and a pipe 125). is there.
  • the differential exhaust system 12 may be a multi-stage differential exhaust system including a plurality of exhaust mechanisms.
  • a plurality of exhaust grooves 124 are formed on the injection surface 12LS of the vacuum forming member 121, and a plurality of pipes 125 connected to the plurality of exhaust grooves 124 are formed on the vacuum forming member 121.
  • Each of the plurality of pipes 125 is connected to a plurality of vacuum pumps 52 included in the pump system 5.
  • the exhaust capacities of the plurality of vacuum pumps 52 may be the same or different.
  • any electron beam device that irradiates the sample W (or any other object) with the electron beam EB is the fifteenth embodiment from the scanning electron microscope SEMa of the first embodiment described above. It may have a structure similar to at least one of the scanning electron microscope SEMO of the form. That is, any electron beam device controls the distance between the beam irradiation device that irradiates the electron beam EB and the object that is irradiated with the electron beam EB through the opening facing the beam passage space SPb (or ) The degree of vacuum of at least a part of the beam passing space SPb may be controlled.
  • An arbitrary electron beam device performs the above-mentioned position control operation (that is, a position control operation for controlling the positional relationship between the beam irradiation device that irradiates the electron beam EB and the stage based on the measurement result of the measurement device 8g). You may.
  • the electron beam exposure device that forms a pattern on the wafer by exposing the wafer coated with the electron beam resist using the electron beam EB, and the electron beam EB are irradiated to the base material. At least one of the electron beam welding devices that welds the base metal with the heat generated by the metal beam welder can be mentioned.
  • the arbitrary electron beam apparatus there are a transmission electron microscope (TEM: Transmission Electron Microscope) and a scanning transmission electron microscope (STEM: Scanning Transmission Electron Microscope).
  • a focused ion beam (FIB: Focused Ion Beam) device that irradiates a sample with a focused ion beam for processing and observation, and a soft X-ray region (for example, a wavelength range of 5 to 15 nm).
  • FIB Focused Ion Beam
  • EUV Extreme Ultraviolet
  • the first embodiment described above is not limited to the beam device, and any irradiation device that irradiates an arbitrary sample W (or any other object) with an arbitrary charged particle containing an electron in an irradiation form different from the beam. It may have a structure similar to at least one of the scanning electron microscope SEMa of the embodiment to the scanning electron microscope SEMo of the fifteenth embodiment. That is, any irradiator equipped with an irradiation system capable of irradiating (eg, emitting, generating, ejecting or) charged particles can (or radiate) the charged particles through an opening facing the charged particle passage space through which the charged particles pass.
  • the degree of vacuum of at least a part of the charged particle passage space may be controlled (by controlling the distance between the beam irradiator to be irradiated and the object to which the charged particles are irradiated).
  • a position control operation for controlling the positional relationship between the device and the stage may be performed.
  • an etching device that etches an object using plasma
  • a film forming device for example, a PVD (Physical Vapor Deposition) device such as a sputtering device
  • CVD Chemical Vapor Deposition
  • the scanning type of the first embodiment described above is an arbitrary vacuum device that causes an arbitrary sample W (or any other object) to act under a vacuum in a form different from irradiation, not limited to charged particles. It may have the same structure as at least one of the scanning electron microscope SEMo of the fifteenth embodiment from the electron microscope SEMa.
  • An example of an arbitrary vacuum device is a vacuum vapor deposition device that forms a film by allowing vapor of a material evaporated or sublimated in a vacuum to reach a sample and accumulate it.
  • the present invention is not limited to the above-described embodiment, and can be appropriately modified within the scope of claims and within the scope not contrary to the gist or idea of the invention that can be read from the entire specification, and the charged particle device accompanied by such modification.
  • a method of irradiating charged particles, a vacuum forming apparatus, and a method of forming a vacuum region are also included in the technical scope of the present invention.

Abstract

The charged particle device is provided with: a vacuum-forming member having a first pipeline connectable to an exhaust device and forming a vacuum region by discharging through the first pipeline a gas in a space in contact with a surface of an object; an emission device for emitting charged particles toward a sample via the vacuum region; and a second pipeline connected to a passing space through which the charged particles pass. At least a portion of a gas in a space around the vacuum region which has a higher atmospheric pressure than the vacuum region is discharged through the first pipeline. The passing space includes at least a part of the vacuum region. The gas is supplied to at least a part of the passing space through the second pipeline.

Description

荷電粒子装置、荷電粒子の照射方法、真空形成装置、及び、真空領域の形成方法Charged particle device, irradiation method of charged particles, vacuum forming device, and vacuum region forming method
 本発明は、例えば、荷電粒子を照射する荷電粒子装置、荷電粒子の照射方法、真空領域を形成する真空形成装置、及び、真空領域の形成方法の技術分野に関する。 The present invention relates to, for example, a technical field of a charged particle device for irradiating charged particles, a method for irradiating charged particles, a vacuum forming device for forming a vacuum region, and a method for forming a vacuum region.
 荷電粒子を照射する装置は、荷電粒子が気体分子との衝突によって散乱してしまうことを防止するために、真空領域を介して荷電粒子を照射する。例えば、特許文献1には、荷電粒子の一例である電子ビームが照射される被検物の検査対象部分の周囲を外気から遮断して局所的な真空領域を形成する走査型電子顕微鏡が記載されている。このような装置(更には、真空領域を形成する任意の装置)では、真空領域を適切に形成することが課題となる。 The device that irradiates the charged particles irradiates the charged particles through the vacuum region in order to prevent the charged particles from being scattered due to collision with gas molecules. For example, Patent Document 1 describes a scanning electron microscope that forms a local vacuum region by blocking the periphery of an inspection target portion of a test object irradiated with an electron beam, which is an example of charged particles, from the outside air. ing. In such a device (furthermore, any device that forms a vacuum region), it is a problem to appropriately form the vacuum region.
米国特許出願公開第2004/0144928号明細書U.S. Patent Application Publication No. 2004/01/44928
 第1の態様によれば、排気装置と接続可能な第1の管路を有し、物体の面に接する空間の気体を前記第1の管路を介して排出して、真空領域を形成する真空形成部材と、前記真空領域を介して荷電粒子を試料に向けて照射する照射装置と、前記照射装置から照射される荷電粒子の通過空間と接続する第2の管路と、を備え、前記真空領域よりも気圧が高く前記真空領域の周囲の空間の少なくとも一部の気体は、前記真空形成部材の前記第1の管路を介して排出され、前記通過空間は前記真空領域の少なくとも一部を含み、前記第2の管路を介して、前記通過空間の少なくとも一部へ気体を供給する荷電粒子装置荷電粒子装置が提供される。 According to the first aspect, it has a first conduit that can be connected to an exhaust device, and gas in a space in contact with the surface of an object is discharged through the first conduit to form a vacuum region. A vacuum forming member, an irradiation device that irradiates a sample with charged particles through the vacuum region, and a second conduit that connects to a passage space of the charged particles irradiated from the irradiation device are provided. The pressure is higher than the vacuum region, and at least a part of the gas in the space around the vacuum region is discharged through the first conduit of the vacuum forming member, and the passing space is at least a part of the vacuum region. A charged particle device that supplies a gas to at least a part of the passage space through the second conduit is provided.
 第2の態様によれば、排気装置と接続される第1端と、物体の面と接する第1空間と接続される第2端とを有する第1の管路を備え、前記第1空間の気体を前記第1の管路を介して排出して、前記第1空間と接続される第2空間よりも圧力が低い真空領域を前記第1空間に形成する真空形成部材と、前記照射装置から照射される荷電粒子の真空領域を介して荷電粒子を試料に向けて照射する照射装置と、前記通過空間と接続する第2の管路と、を備え、前記通過空間は前記真空領域の少なくとも一部を含み、前記第2の管路を介して、前記通過空間の少なくとも一部へ気体を供給する荷電粒子装置が提供される。 According to the second aspect, the first conduit having a first end connected to the exhaust device and a second end connected to the first space in contact with the surface of the object is provided, and the first space is provided. From the vacuum forming member and the irradiation device, which discharges gas through the first conduit to form a vacuum region having a lower pressure than the second space connected to the first space in the first space. It includes an irradiation device that irradiates a sample with charged particles through a vacuum region of the charged particles to be irradiated, and a second conduit that connects to the passage space, and the passage space is at least one of the vacuum regions. A charged particle device is provided that includes a portion and supplies a gas to at least a part of the passage space through the second conduit.
 第3の態様によれば、排気装置と接続可能な第1の管路を有し、物体の面の一部と対向した状態で前記第1の管路を介して気体を排出することにより、前記物体の前記面の第1部分に接する第1空間に、前記面の前記第1部分とは異なる第2部分に接する第2空間の圧力より圧力が低い真空領域を形成可能な真空形成部材と、前記真空領域を介して荷電粒子を試料に向けて照射する照射装置と、前記照射装置から照射される荷電粒子の通過空間と接続する第2の管路と、を備え、前記通過空間は前記真空領域の少なくとも一部を含み、前記第2の管路を介して、前記通過空間の少なくとも一部へ気体を供給する荷電粒子装置が提供される。 According to the third aspect, by having a first pipeline that can be connected to the exhaust device and discharging gas through the first pipeline in a state of facing a part of the surface of the object. A vacuum forming member capable of forming a vacuum region having a pressure lower than the pressure of the second space in contact with a second portion different from the first portion of the surface in the first space in contact with the first portion of the surface of the object. The passage space includes an irradiation device that irradiates the sample with charged particles through the vacuum region, and a second conduit that connects to the passage space of the charged particles irradiated from the irradiation device. A charged particle device that includes at least a portion of the vacuum region and supplies gas to at least a portion of the passage space via the second conduit is provided.
 第4の態様によれば、排気装置と接続可能な第1の管路を有し、物体の面と前記第1の管路の端部とが対向した状態で、前記物体の前記面に接する空間の気体を前記第1の管路を介して排出して、真空領域を形成する真空形成部材と、前記真空領域を介して荷電粒子を試料に向けて照射する照射装置と、前記照射装置から照射される荷電粒子の通過空間と接続する第2の管路と、を備え、前記通過空間は前記真空領域の少なくとも一部を含み、前記第2の管路を介して、前記通過空間の少なくとも一部へ気体を供給する荷電粒子装置が提供される。 According to the fourth aspect, it has a first pipeline that can be connected to an exhaust device, and is in contact with the surface of the object with the surface of the object and the end of the first pipeline facing each other. From the vacuum forming member that discharges the gas in the space through the first conduit to form a vacuum region, the irradiation device that irradiates the sample with charged particles through the vacuum region, and the irradiation device. It comprises a second conduit that connects to the passage space of the charged particles to be irradiated, said passage space comprising at least a portion of the vacuum region, and at least the passage space through the second conduit. A charged particle device that supplies a gas to a part is provided.
 第5の態様によれば、排気装置と接続可能な第1の管路を有し、物体の面に接する空間の気体を前記第1の管路を介して排出して、真空領域を形成する真空形成部材と、前記真空領域を介して荷電粒子を試料に向けて照射する照射装置と、前記照射装置から照射される荷電粒子の通過空間と接続する第2の管路と、を備え、前記真空領域よりも気圧が高く前記真空領域の周囲の空間の少なくとも一部の気体は、前記真空形成部材の前記第1の管路を介して排出され、前記通過空間は前記真空領域の少なくとも一部を含み、前記第2の管路を介して、前記通過空間の少なくとも一部から気体を排出する荷電粒子装置が提供される。 According to a fifth aspect, it has a first pipeline that can be connected to an exhaust device, and gas in a space in contact with the surface of an object is discharged through the first conduit to form a vacuum region. A vacuum forming member, an irradiation device that irradiates a sample with charged particles through the vacuum region, and a second conduit that connects to a passage space of the charged particles irradiated from the irradiation device are provided. The pressure is higher than the vacuum region, and at least a part of the gas in the space around the vacuum region is discharged through the first conduit of the vacuum forming member, and the passing space is at least a part of the vacuum region. Provided is a charged particle device comprising, and expelling gas from at least a part of the passage space through the second conduit.
 第6の態様によれば、荷電粒子を試料に照射する照射装置と、排気装置と接続可能な第1の管路を有し、物体の面に接する空間の気体を前記第1の管路を介して排出して、真空領域を形成する真空形成部材とを備え、前記照射装置から照射される荷電粒子の通過空間は前記真空領域の少なくとも一部を含み、前記通過空間の少なくとも一部の真空度を制御することと並行して、前記物体と前記真空形成部材との間隔を制御する荷電粒子装置が提供される。 According to the sixth aspect, the first conduit is provided with an irradiation device for irradiating the sample with charged particles and a first conduit that can be connected to the exhaust device, and the gas in the space in contact with the surface of the object is passed through the first conduit. A vacuum forming member for forming a vacuum region by discharging through the vacuum region is provided, and the passage space of the charged particles irradiated from the irradiation device includes at least a part of the vacuum region, and a vacuum of at least a part of the passage space is included. A charged particle device for controlling the distance between the object and the vacuum forming member is provided in parallel with controlling the degree.
 第7の態様によれば、排気装置と接続可能な第1の管路を有し、物体の面に接する空間の気体を前記第1の管路を介して排出して、真空領域を形成する真空形成部材と、前記真空領域を介して荷電粒子を試料に向けて照射する照射装置と、を備え、前記真空領域の周囲の前記真空領域よりも気圧が高い空間の少なくとも一部の気体は、前記真空形成部材の前記第1の管路を介して排出され、前記照射装置から照射される荷電粒子の通過空間は前記真空領域の少なくとも一部を含み、前記真空領域を第1圧力範囲で使用する第1モードと、前記真空領域を前記第1圧力範囲と異なる第2圧力範囲で用いる第2モードに設定可能である荷電粒子装置が提供される。 According to the seventh aspect, the vacuum region is formed by having a first pipeline that can be connected to the exhaust device and discharging the gas in the space in contact with the surface of the object through the first pipeline. A vacuum forming member and an irradiation device for irradiating a sample with charged particles through the vacuum region are provided, and at least a part of the gas in a space around the vacuum region having a pressure higher than that of the vacuum region is a gas. The passage space of the charged particles discharged from the vacuum forming member through the first conduit and irradiated from the irradiation device includes at least a part of the vacuum region, and the vacuum region is used in the first pressure range. A charged particle apparatus is provided that can be set to a first mode in which the vacuum region is used and a second mode in which the vacuum region is used in a second pressure range different from the first pressure range.
 第8の態様によれば、排気装置と接続可能な第1の管路を有する真空形成部材を用いて、物体の面に接する空間の気体を前記第1の管路を介して排出して、真空領域を形成することと、前記真空領域よりも気圧が高く前記真空領域の周囲の空間の少なくとも一部の気体を、前記第1の管路を介して排出することと、前記真空領域の少なくとも一部を含む通過空間を通過した荷電粒子を試料に照射することと、前記通過空間の少なくとも一部の真空度を制御することと並行して、前記物体と前記真空形成部材との間隔を制御する荷電粒子の照射方法が提供される。 According to the eighth aspect, using a vacuum forming member having a first conduit that can be connected to the exhaust device, the gas in the space in contact with the surface of the object is discharged through the first conduit. Forming a vacuum region, discharging at least a part of the gas in the space surrounding the vacuum region at a pressure higher than that of the vacuum region through the first conduit, and at least the vacuum region. Controlling the distance between the object and the vacuum forming member in parallel with irradiating the sample with charged particles that have passed through a passage space including a part and controlling the degree of vacuum of at least a part of the passage space. A method of irradiating charged particles is provided.
 第9の態様によれば、排気装置と接続可能な第1の管路と第1面とを有し、物体のうち前記第1面に対向可能な第2面に接する空間の気体を前記第1の管路を介して排出して、真空領域を形成する真空形成部材と、前記第1面に形成された射出口から、試料に向けて荷電粒子を照射する照射装置と、前記第1面の姿勢及び形状のいずれか一方に基づいて、前記第1面と前記第2面との位置関係を変更する位置変更装置とを備え、前記真空領域の周囲の前記真空領域よりも気圧が高い空間の少なくとも一部の気体は、前記真空形成部材の前記第1の管路を介して排出され、前記荷電粒子照射装置から照射される荷電粒子の通路は前記真空領域の少なくとも一部を含む荷電粒子装置が提供される。 According to the ninth aspect, the gas in the space having the first conduit and the first surface connectable to the exhaust device and in contact with the second surface of the object facing the first surface is the first. A vacuum forming member that discharges through the conduit of No. 1 to form a vacuum region, an irradiation device that irradiates a sample with charged particles from an injection port formed on the first surface, and the first surface. A space having a position changing device for changing the positional relationship between the first surface and the second surface based on either one of the posture and the shape of the vacuum region and having a higher pressure than the vacuum region around the vacuum region. At least a part of the gas is discharged through the first conduit of the vacuum forming member, and the passage of the charged particles irradiated from the charged particle irradiator is a charged particle including at least a part of the vacuum region. Equipment is provided.
 第10の態様によれば、排気装置と接続可能な第1の管路と第1面とを有する真空形成部材を用いて、物体のうち前記第1面に対向可能な第2面に接する空間の気体を第1の管路を介して排出して、真空領域を形成することと、前記真空領域よりも気圧が高く前記真空領域の周囲の空間の少なくとも一部の気体を、前記第1の管路を介して排出することと、前記第1面に形成された射出口から、試料に向けて荷電粒子を照射することと、前記荷電粒子に前記真空領域の少なくとも一部を通過させて前記試料に照射することと、前記第1面の姿勢及び形状のいずれか一方に基づいて、前記第1面と前記第2面との位置関係を変更することとを含む荷電粒子の照射方法が提供される。 According to a tenth aspect, a space in contact with a second surface of an object that can face the first surface by using a vacuum forming member having a first conduit and a first surface that can be connected to an exhaust device. The gas is discharged through the first conduit to form a vacuum region, and at least a part of the gas in the space surrounding the vacuum region having a pressure higher than that of the vacuum region is discharged from the first pipe. Discharging through a conduit, irradiating a sample with charged particles from an injection port formed on the first surface, and allowing the charged particles to pass at least a part of the vacuum region. Provided is a method for irradiating a charged particle, which comprises irradiating a sample and changing the positional relationship between the first surface and the second surface based on either the posture and the shape of the first surface. Will be done.
 第11の態様によれば、排気装置と接続可能な第1の管路と第1面を有し、物体のうち前記第1面に対向可能な第2面に接する空間の気体を前記第1の管路を介して排出して、真空領域を形成する真空形成部材と、前記第1面の姿勢及び形状のいずれか一方に基づいて、前記第1面と前記第2面との位置関係を変更する位置変更装置とを備え、前記真空領域の周囲の前記真空領域よりも気圧が高い空間の少なくとも一部の気体は、前記真空形成部材の前記第1の管路を介して排出される真空形成装置が提供される。 According to the eleventh aspect, the gas in the space having the first conduit and the first surface connectable to the exhaust device and in contact with the second surface of the object facing the first surface is the first. The positional relationship between the first surface and the second surface is determined based on one of the posture and shape of the first surface and the vacuum forming member that discharges through the conduit of the above to form a vacuum region. A vacuum having a changing position changing device, at least a portion of the gas in a space around the vacuum region having a higher pressure than the vacuum region, is discharged through the first conduit of the vacuum forming member. A forming device is provided.
 第12の態様によれば、排気装置と接続可能な第1の管路と第1面とを有する真空形成部材を用いて、物体のうち前記第1面に対向可能な第2面に接する空間の気体を第1の管路を介して排出して、真空領域を形成することと、前記真空領域よりも気圧が高く前記真空領域の周囲の空間の少なくとも一部の気体を、前記第1の管路を介して排出することと、前記第1面の姿勢及び形状のいずれか一方に基づいて、前記第1面と前記第2面との位置関係を変更することとを含む真空領域の形成方法が提供される。 According to a twelfth aspect, a space in contact with a second surface of an object that can face the first surface by using a vacuum forming member having a first conduit and a first surface that can be connected to an exhaust device. The gas is discharged through the first conduit to form a vacuum region, and at least a part of the gas in the space surrounding the vacuum region having a pressure higher than that of the vacuum region is discharged from the first pipe. Formation of a vacuum region including discharging through a pipeline and changing the positional relationship between the first surface and the second surface based on either the posture and the shape of the first surface. A method is provided.
 本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。 The actions and other gains of the present invention will be clarified from the embodiments described below.
図1は、第1実施形態の走査型電子顕微鏡の構造を示す断面図である。FIG. 1 is a cross-sectional view showing the structure of the scanning electron microscope of the first embodiment. 図2は、第1実施形態の走査型電子顕微鏡が備えるビーム照射装置の構造を示す断面図である。FIG. 2 is a cross-sectional view showing the structure of a beam irradiation device included in the scanning electron microscope of the first embodiment. 図3は、第1実施形態の走査型電子顕微鏡が備える差動排気系の構造を示す断面図である。FIG. 3 is a cross-sectional view showing the structure of the differential exhaust system included in the scanning electron microscope of the first embodiment. 図4は、第1実施形態の差動排気系の構造を、複数の真空形成部材をZ軸方向に沿って分離した状態で示す斜視図である。FIG. 4 is a perspective view showing the structure of the differential exhaust system of the first embodiment in a state where a plurality of vacuum forming members are separated along the Z-axis direction. 図5は、差動排気系の射出面の形状を示す平面図である。FIG. 5 is a plan view showing the shape of the injection surface of the differential exhaust system. 図6は、気体供給装置がビーム通過空間の少なくとも一部に給気する様子を示す断面図である。FIG. 6 is a cross-sectional view showing how the gas supply device supplies air to at least a part of the beam passing space. 図7は、気体供給装置がビーム通過空間の少なくとも一部に給気する様子を示す断面図である。FIG. 7 is a cross-sectional view showing how the gas supply device supplies air to at least a part of the beam passing space. 図8は、排気装置がビーム通過空間の少なくとも一部を排気する様子を示す断面図である。FIG. 8 is a cross-sectional view showing how the exhaust device exhausts at least a part of the beam passing space. 図9は、排気装置がビーム通過空間の少なくとも一部を排気する様子を示す断面図である。FIG. 9 is a cross-sectional view showing how the exhaust device exhausts at least a part of the beam passing space. 図10は、第1実施形態の走査型電子顕微鏡の他の例を示す断面図である。FIG. 10 is a cross-sectional view showing another example of the scanning electron microscope of the first embodiment. 図11は、第2実施形態の走査型電子顕微鏡が備えるビーム照射装置の構造を示す断面図である。FIG. 11 is a cross-sectional view showing the structure of the beam irradiation device included in the scanning electron microscope of the second embodiment. 図12は、第3実施形態の走査型電子顕微鏡が備えるビーム照射装置の構造を示す断面図である。FIG. 12 is a cross-sectional view showing the structure of the beam irradiation device included in the scanning electron microscope of the third embodiment. 図13は、第4実施形態の走査型電子顕微鏡が備えるビーム照射装置の構造を示す断面図である。FIG. 13 is a cross-sectional view showing the structure of the beam irradiation device included in the scanning electron microscope of the fourth embodiment. 図14は、第4実施形態の走査型電子顕微鏡が備えるビーム照射装置の構造を示す断面図である。FIG. 14 is a cross-sectional view showing the structure of the beam irradiation device included in the scanning electron microscope of the fourth embodiment. 図15は、第4実施形態の走査型電子顕微鏡が備えるビーム照射装置の一部の構造の他の例を示す断面図である。FIG. 15 is a cross-sectional view showing another example of the structure of a part of the beam irradiation device included in the scanning electron microscope of the fourth embodiment. 図16(a)及び図16(b)のそれぞれは、第4実施形態の走査型電子顕微鏡が備えるビーム照射装置の一部の構造の他の例を示す断面図である。16 (a) and 16 (b) are cross-sectional views showing another example of the structure of a part of the beam irradiation device included in the scanning electron microscope of the fourth embodiment. 図17は、第5実施形態の走査型電子顕微鏡が備えるビーム照射装置の構造を示す断面図である。FIG. 17 is a cross-sectional view showing the structure of the beam irradiation device included in the scanning electron microscope of the fifth embodiment. 図18は、第6実施形態の走査型電子顕微鏡の構造を示す断面図である。FIG. 18 is a cross-sectional view showing the structure of the scanning electron microscope of the sixth embodiment. 図19は、第6実施形態の走査型電子顕微鏡が備えるビーム照射装置の構造を示す断面図である。FIG. 19 is a cross-sectional view showing the structure of the beam irradiation device included in the scanning electron microscope of the sixth embodiment. 図20は、第7実施形態の走査型電子顕微鏡の構造を示す断面図である。FIG. 20 is a cross-sectional view showing the structure of the scanning electron microscope of the seventh embodiment. 図21(a)は、出射面及び保持面の双方に対して試料の表面が平行になる状態で試料を保持したステージを示す断面図であり、図21(b)は、出射面及び保持面の双方に対して試料の表面が平行にならない状態で試料を保持したステージを示す断面図である。21 (a) is a cross-sectional view showing a stage in which the sample is held in a state where the surface of the sample is parallel to both the exit surface and the holding surface, and FIG. 21 (b) is the exit surface and the holding surface. It is sectional drawing which shows the stage which held the sample in a state that the surface of a sample is not parallel to both of. 図22は、ステージが試料を保持する前に行われる位置制御動作に相当する第1制御動作の流れを示すフローチャートである。FIG. 22 is a flowchart showing the flow of the first control operation corresponding to the position control operation performed before the stage holds the sample. 図23は、第1制御動作の一工程が行われている様子を示す断面図である。FIG. 23 is a cross-sectional view showing how one step of the first control operation is being performed. 図24は、第1制御動作の一工程が行われている様子を示す断面図である。FIG. 24 is a cross-sectional view showing how one step of the first control operation is being performed. 図25は、第1制御動作の一工程が行われている様子を示す断面図である。FIG. 25 is a cross-sectional view showing how one step of the first control operation is being performed. 図26は、第1制御動作の一工程が行われている様子を示す断面図である。FIG. 26 is a cross-sectional view showing how one step of the first control operation is being performed. 図27は、ステージの保持面の位置から推定される仮想的な試料の表面位置を示す模式図である。FIG. 27 is a schematic view showing the surface position of the virtual sample estimated from the position of the holding surface of the stage. 図28(a)は、ビーム照射装置及びステージの少なくとも一方を移動させる前のビーム照射装置の出射面、ステージの保持面及び仮想的な試料の表面の位置関係を示す模式図であり、図28(b)は、ビーム照射装置及びステージの少なくとも一方を移動させた後のビーム照射装置の出射面、ステージの保持面及び仮想的な試料の表面の位置関係を示す模式図である。FIG. 28A is a schematic view showing the positional relationship between the emission surface of the beam irradiation device and the beam irradiation device before moving at least one of the stages, the holding surface of the stage, and the surface of the virtual sample. (B) is a schematic view showing the positional relationship between the emission surface of the beam irradiation device and the stage, the holding surface of the stage, and the surface of the virtual sample after moving at least one of the beam irradiation device and the stage. 図29は、ステージが試料を保持した後に行われる位置制御動作に相当する第2制御動作の流れを示すフローチャートである。FIG. 29 is a flowchart showing the flow of the second control operation corresponding to the position control operation performed after the stage holds the sample. 図30は、第2制御動作の一工程が行われている様子を示す断面図である。FIG. 30 is a cross-sectional view showing how one step of the second control operation is being performed. 図31(a)は、ビーム照射装置及びステージの少なくとも一方を移動させる前のビーム照射装置の出射面、ステージの保持面及び試料の表面の位置関係を示す模式図であり、図31(b)は、ビーム照射装置及びステージの少なくとも一方を移動させた後のビーム照射装置の出射面、ステージの保持面及び試料の表面の位置関係を示す模式図である。FIG. 31 (a) is a schematic view showing the positional relationship between the emission surface of the beam irradiator and the beam irradiator before moving at least one of the stages, the holding surface of the stage, and the surface of the sample, and FIG. 31 (b). Is a schematic diagram showing the positional relationship between the exit surface of the beam irradiation device and the holding surface of the stage and the surface of the sample after moving at least one of the beam irradiation device and the stage. 図32は、第8実施形態における走査型電子顕微鏡の構造を示す断面図である。FIG. 32 is a cross-sectional view showing the structure of the scanning electron microscope according to the eighth embodiment. 図33は、第9実施形態における走査型電子顕微鏡の構造を示す断面図である。FIG. 33 is a cross-sectional view showing the structure of the scanning electron microscope according to the ninth embodiment. 図34は、第10実施形態における走査型電子顕微鏡の構造を示す断面図である。FIG. 34 is a cross-sectional view showing the structure of the scanning electron microscope according to the tenth embodiment. 図35(a)から図35(c)のそれぞれは、第1及び第2計測座標空間を関連付けるために用いられる基準部材と計測装置との位置関係を示す断面図である。Each of FIGS. 35 (a) to 35 (c) is a cross-sectional view showing a positional relationship between a reference member and a measuring device used for associating the first and second measurement coordinate spaces. 図36は、第11実施形態における第2制御動作の流れを示すフローチャートである。FIG. 36 is a flowchart showing the flow of the second control operation in the eleventh embodiment. 図37は、第11実施形態における走査型電子顕微鏡の構造を示す断面図である。FIG. 37 is a cross-sectional view showing the structure of the scanning electron microscope according to the eleventh embodiment. 図38(a)から図38(c)のそれぞれは、互いに交差する3つの平面を含む表面を備える試料の状態を計測する過程で第11実施形態における第2制御動作が行われた場合のビーム照射装置と試料との位置関係を示す断面図である。Each of FIGS. 38 (a) to 38 (c) shows a beam when the second control operation according to the eleventh embodiment is performed in the process of measuring the state of the sample having a surface including three planes intersecting each other. It is sectional drawing which shows the positional relationship between an irradiation apparatus and a sample. 図39は、第12実施形態における走査型電子顕微鏡の構造を示す断面図である。FIG. 39 is a cross-sectional view showing the structure of the scanning electron microscope according to the twelfth embodiment. 図40は、ビーム照射装置が電子ビームを照射可能な位置に試料が位置するように移動したステージを示す断面図である。FIG. 40 is a cross-sectional view showing a stage in which the beam irradiation device is moved so that the sample is positioned at a position where the electron beam can be irradiated. 図41は、光学顕微鏡が試料の状態を計測可能な位置に試料が位置するように移動したステージを示す断面図である。FIG. 41 is a cross-sectional view showing a stage in which the optical microscope has moved so that the sample is positioned at a position where the state of the sample can be measured. 図42は、光学顕微鏡が試料の状態を計測可能な位置に試料が位置するように移動したステージを示す断面図である。FIG. 42 is a cross-sectional view showing a stage in which the optical microscope has moved so that the sample is positioned at a position where the state of the sample can be measured. 図43は、ビーム照射装置が電子ビームを照射可能な位置に試料が位置するように移動したステージを示す断面図である。FIG. 43 is a cross-sectional view showing a stage in which the beam irradiator has moved so that the sample is positioned at a position where the electron beam can be irradiated. 図44は、第13実施形態における走査型電子顕微鏡の構造を示す断面図である。FIG. 44 is a cross-sectional view showing the structure of the scanning electron microscope according to the thirteenth embodiment. 図45は、第14実施形態のポンプ系の構造を示す模式図である。FIG. 45 is a schematic view showing the structure of the pump system of the 14th embodiment. 図46は、第15実施形態における走査型電子顕微鏡の構造を示す断面図である。FIG. 46 is a cross-sectional view showing the structure of the scanning electron microscope according to the fifteenth embodiment. 図47は、第1変形例においてステージが試料を保持する様子を示す断面図である。FIG. 47 is a cross-sectional view showing how the stage holds the sample in the first modification. 図48は、第2変形例においてステージが試料を保持する様子を示す断面図である。FIG. 48 is a cross-sectional view showing how the stage holds the sample in the second modification. 図49は、第2変形例において光学顕微鏡が試料の状態を計測可能な位置に試料が位置するように移動したステージを示す断面図である。FIG. 49 is a cross-sectional view showing a stage in which the optical microscope has moved so that the sample is positioned at a position where the state of the sample can be measured in the second modification. 図50は、第2変形例においてビーム照射装置が電子ビームを照射可能な位置に試料が位置するように移動したステージを示す断面図である。FIG. 50 is a cross-sectional view showing a stage in which the beam irradiator has moved so that the sample is positioned at a position where it can irradiate an electron beam in the second modification. 図51は、第3変形例においてステージが試料を保持する様子を示す断面図である。FIG. 51 is a cross-sectional view showing how the stage holds the sample in the third modification. 図52は、真空ポンプからビーム照射装置に対する振動の伝達が抑制される真空ポンプとビーム照射装置との接続態様を示す断面図である。FIG. 52 is a cross-sectional view showing a connection mode between the vacuum pump and the beam irradiator in which transmission of vibration from the vacuum pump to the beam irradiator is suppressed. 図53は、真空ポンプからビーム照射装置に対する振動の伝達が抑制される真空ポンプとビーム照射装置との接続態様を示す断面図である。FIG. 53 is a cross-sectional view showing a connection mode between the vacuum pump and the beam irradiation device in which the transmission of vibration from the vacuum pump to the beam irradiation device is suppressed.
 以下、図面を参照しながら、荷電粒子装置、荷電粒子の照射方法、真空形成装置、及び、真空領域の形成方法の実施形態について説明する。以下では、局所的な真空領域VSPを介して電子ビームEBを試料Wに照射して当該試料Wに関する情報を取得する(例えば、試料Wの状態を計測する)走査型電子顕微鏡(Scanning Electron Microscope)SEMを用いて、荷電粒子装置及び情報取得方法の実施形態を説明する。試料Wは、例えば、半導体基板である。但し、試料Wは、半導体基板とは異なる物体であってもよい。試料Wは、例えば、直径が約300ミリメートルであり、厚さが約750マイクロメートルから800マイクロメートルとなる円板状の基板であってもよい。但し、試料Wは、任意のサイズを有する任意の形状の基板(或いは、物体)であってもよい。例えば、試料Wは、液晶表示素子等のディスプレイのための角形基板やフォトマスクのための角形基板であってもよい。 Hereinafter, embodiments of a charged particle device, an irradiation method of charged particles, a vacuum forming device, and a method of forming a vacuum region will be described with reference to the drawings. In the following, a scanning electron microscope (Scanning Electron Microscope) for irradiating a sample W with an electron beam EB via a local vacuum region VSP to acquire information about the sample W (for example, measuring the state of the sample W). An embodiment of a charged particle apparatus and an information acquisition method will be described using an SEM. Sample W is, for example, a semiconductor substrate. However, the sample W may be an object different from the semiconductor substrate. The sample W may be, for example, a disk-shaped substrate having a diameter of about 300 mm and a thickness of about 750 micrometers to 800 micrometers. However, the sample W may be a substrate (or an object) having an arbitrary size and an arbitrary shape. For example, the sample W may be a square substrate for a display such as a liquid crystal display element or a square substrate for a photomask.
 また、以下の説明では、互いに直交するX軸、Y軸及びZ軸から定義されるXYZ直交座標系を用いて、走査型電子顕微鏡SEMを構成する各種構成要素の位置関係について説明する。尚、以下の説明では、説明の便宜上、X軸方向及びY軸方向のそれぞれが水平方向(つまり、水平面内の所定方向)であり、Z軸方向が鉛直方向(つまり、水平面に直交する方向であり、実質的には上下方向)であるものとする。更に、+Z側が上方(つまり、上側)に相当し、-Z側が下方(つまり、下側)に相当するものとする。また、-Z方向を重力方向と称してもよい。尚、Z軸方向は、走査型電子顕微鏡SEMが備える後述のビーム光学系11の光軸AXに平行な方向でもある。また、X軸、Y軸及びZ軸周りの回転方向(言い換えれば、傾斜方向)を、それぞれ、θX方向、θY方向及びθZ方向と称する。 Further, in the following description, the positional relationship of various components constituting the scanning electron microscope SEM will be described using the XYZ Cartesian coordinate system defined from the X-axis, the Y-axis, and the Z-axis which are orthogonal to each other. In the following description, for convenience of explanation, each of the X-axis direction and the Y-axis direction is a horizontal direction (that is, a predetermined direction in the horizontal plane), and the Z-axis direction is a vertical direction (that is, a direction orthogonal to the horizontal plane). Yes, in effect, in the vertical direction). Further, it is assumed that the + Z side corresponds to the upper side (that is, the upper side) and the −Z side corresponds to the lower side (that is, the lower side). Further, the −Z direction may be referred to as a gravity direction. The Z-axis direction is also a direction parallel to the optical axis AX of the beam optical system 11 described later included in the scanning electron microscope SEM. Further, the rotation directions (in other words, the inclination direction) around the X-axis, the Y-axis, and the Z-axis are referred to as the θX direction, the θY direction, and the θZ direction, respectively.
 (1)第1実施形態の走査型電子顕微鏡SEMa
 はじめに、第1実施形態の走査型電子顕微鏡SEM(以降、第1実施形態の走査型電子顕微鏡SEMを、“走査型電子顕微鏡SEMa”と称する)について説明する。
(1) Scanning electron microscope SEMa of the first embodiment
First, the scanning electron microscope SEM of the first embodiment (hereinafter, the scanning electron microscope SEM of the first embodiment will be referred to as “scanning electron microscope SEMa”) will be described.
 (1-1)走査型電子顕微鏡SEMaの全体構造
 まずは、図1を参照しながら、第1実施形態の走査型電子顕微鏡SEMaの全体構造について説明する。図1は、第1実施形態の走査型電子顕微鏡SEMaの全体構造を示す断面図である。尚、図面の簡略化のために、図1は、走査型電子顕微鏡SEMaの一部の構成要素については、その断面を示していない。
(1-1) Overall Structure of Scanning Electron Microscope SEMa First, the overall structure of the scanning electron microscope SEMa of the first embodiment will be described with reference to FIG. 1. FIG. 1 is a cross-sectional view showing the overall structure of the scanning electron microscope SEMa of the first embodiment. For the sake of simplification of the drawings, FIG. 1 does not show a cross section of some components of the scanning electron microscope SEMa.
 図1に示すように、走査型電子顕微鏡SEMaは、ビーム照射装置1と、ステージ装置2と、支持フレーム3と、制御装置4と、ポンプ系5と、気体供給装置6と、排気装置7とを備える。更に、ポンプ系5は、真空ポンプ51と、真空ポンプ52とを備える。尚、走査型電子顕微鏡SEMaは、少なくともビーム照射装置1と、ステージ装置2と、支持フレーム3とを収容するチャンバを備えていてもよい。また、走査型電子顕微鏡SEMaは、このチャンバに接続されて、チャンバ内の空間(特に、試料Wの周囲の空間)の温度及び湿度の少なくとも一方を制御する空調機を備えていてもよい。チャンバ内の空間の少なくとも一部は大気圧空間であってもよい。 As shown in FIG. 1, the scanning electron microscope SEMa includes a beam irradiation device 1, a stage device 2, a support frame 3, a control device 4, a pump system 5, a gas supply device 6, and an exhaust device 7. To be equipped. Further, the pump system 5 includes a vacuum pump 51 and a vacuum pump 52. The scanning electron microscope SEMa may include at least a chamber for accommodating the beam irradiation device 1, the stage device 2, and the support frame 3. Further, the scanning electron microscope SEMa may be provided with an air conditioner connected to this chamber to control at least one of the temperature and humidity of the space in the chamber (particularly, the space around the sample W). At least part of the space in the chamber may be atmospheric pressure space.
 ビーム照射装置1は、ビーム照射装置1から下方に向けて電子ビームEBを射出可能である。ビーム照射装置1は、ビーム照射装置1の下方に配置されるステージ装置2が支持する試料Wに対して電子ビームEBを照射可能である。この際、ビーム照射装置1は、ビーム照射装置1と試料Wの表面WSuとの間に真空領域VSPを形成した上で、当該真空領域VSPを介して試料Wに電子ビームEBを照射する。尚、ビーム照射装置1の詳細な構造については、後に図2及び図3を参照しながら説明するため、ここでの説明を省略する。 The beam irradiating device 1 can emit an electron beam EB downward from the beam irradiating device 1. The beam irradiating device 1 can irradiate the sample W supported by the stage device 2 arranged below the beam irradiating device 1 with the electron beam EB. At this time, the beam irradiation device 1 forms a vacuum region VSP between the beam irradiation device 1 and the surface WSu of the sample W, and then irradiates the sample W with the electron beam EB via the vacuum region VSP. Since the detailed structure of the beam irradiation device 1 will be described later with reference to FIGS. 2 and 3, the description thereof will be omitted here.
 ステージ装置2は、ビーム照射装置1の下方(つまり、-Z側)に配置される。ステージ装置2は、定盤21と、ステージ22とを備える。定盤21は、床等の支持面SF上に配置される。ステージ22は、定盤21上に配置される。ステージ22と定盤21との間には、定盤21の振動のステージ22への伝達を防止するための不図示の防振装置が設置されている。 The stage device 2 is arranged below the beam irradiation device 1 (that is, on the −Z side). The stage device 2 includes a surface plate 21 and a stage 22. The surface plate 21 is arranged on a support surface SF such as a floor. The stage 22 is arranged on the surface plate 21. A vibration isolator (not shown) is installed between the stage 22 and the surface plate 21 to prevent the vibration of the surface plate 21 from being transmitted to the stage 22.
 ステージ22は、試料Wを保持可能である。例えば、ステージ22は、試料Wを真空吸着又は静電吸着することで試料Wを保持してもよい。ステージ22は、ビーム照射装置1に対向する保持面(図1に示す例では、+Z側を向いている面)HSで試料Wを保持可能である。ステージ22は、保持した試料Wをリリース可能である。上述したようにビーム照射装置1と試料Wとの間に真空領域VSPが形成されると、試料Wには、真空領域VSPに起因した負圧が作用して真空領域VSPに向かって(つまり、ビーム照射装置1に向かって)試料Wを引っ張る力が作用する。このため、ステージ22は、真空領域VSPの形成に起因した力が試料Wに作用している場合であっても、試料Wが変形しない又は試料Wの変形量が許容下限量以下になる状態で試料Wを適切に保持するように、適切な保持力で試料Wを保持する。更に、ステージ22が試料Wを適切に保持している場合には、ステージ22もまた、試料Wを介して、真空領域VSPに起因した負圧が作用して真空領域VSPに向かって引っ張られる。このため、ステージ22は、真空領域VSPの形成に起因した力がステージ22に作用している場合であってもステージ22が変形しない又はステージ22の変形量が許容下限量以下になる程度に相対的に高い剛性を有していてもよい。 The stage 22 can hold the sample W. For example, the stage 22 may hold the sample W by vacuum-adsorbing or electrostatically adsorbing the sample W. The stage 22 can hold the sample W on the holding surface (the surface facing the + Z side in the example shown in FIG. 1) HS facing the beam irradiation device 1. The stage 22 can release the held sample W. When the vacuum region VSP is formed between the beam irradiation device 1 and the sample W as described above, the negative pressure caused by the vacuum region VSP acts on the sample W toward the vacuum region VSP (that is, that is). A force that pulls the sample W (toward the beam irradiation device 1) acts. Therefore, in the stage 22, even when the force caused by the formation of the vacuum region VSP acts on the sample W, the sample W is not deformed or the deformation amount of the sample W is equal to or less than the allowable lower limit amount. The sample W is held with an appropriate holding force so as to hold the sample W properly. Further, when the stage 22 properly holds the sample W, the stage 22 is also pulled toward the vacuum region VSP by the negative pressure caused by the vacuum region VSP acting through the sample W. Therefore, the stage 22 is relative to the extent that the stage 22 is not deformed or the amount of deformation of the stage 22 is equal to or less than the allowable lower limit even when the force caused by the formation of the vacuum region VSP is acting on the stage 22. It may have high rigidity.
 ステージ22は、制御装置4の制御下で、試料Wを保持したまま、X軸方向、Y軸方向、Z軸方向、θX方向、θY方向及びθZ方向の少なくとも一つに沿って移動可能である。ステージ22を移動させるために、ステージ装置2は、ステージ駆動系23を備えている。ステージ駆動系23は、例えば、任意のモータ(例えば、リニアモータ等)を用いて、ステージ22を移動させる。つまり、ステージ駆動系23は、例えば、任意のモータからの力をステージ22に付与して、ステージ22を移動させる。ステージ22が移動すると、ステージ22が保持している試料Wもまた移動する。従って、ステージ駆動系23は、実質的には、ステージ22を介して任意のモータからの力を試料Wに間接的に付与して、試料Wを移動させているとも言える。更に、ステージ装置2は、ステージ22の位置を計測する位置計測装置24を備えている。位置計測装置24は、例えば、エンコーダ及びレーザ干渉計のうちの少なくとも一方を含む。尚、ステージ22が試料Wを保持している場合には、制御装置4は、ステージ22の位置から試料Wの位置を特定可能である。尚、ステージ22は、ビーム照射装置1による電子ビームEBの位置と、ステージ22の位置(XYZ方向における位置)とを紐付けるための基準マークを備える基準板を有していてもよい。 The stage 22 can move along at least one of the X-axis direction, the Y-axis direction, the Z-axis direction, the θX direction, the θY direction, and the θZ direction while holding the sample W under the control of the control device 4. .. In order to move the stage 22, the stage device 2 includes a stage drive system 23. The stage drive system 23 moves the stage 22 by using, for example, an arbitrary motor (for example, a linear motor or the like). That is, the stage drive system 23 applies a force from an arbitrary motor to the stage 22, for example, to move the stage 22. When the stage 22 moves, the sample W held by the stage 22 also moves. Therefore, it can be said that the stage drive system 23 substantially applies a force from an arbitrary motor to the sample W via the stage 22 to move the sample W. Further, the stage device 2 includes a position measuring device 24 for measuring the position of the stage 22. The position measuring device 24 includes, for example, at least one of an encoder and a laser interferometer. When the stage 22 holds the sample W, the control device 4 can specify the position of the sample W from the position of the stage 22. The stage 22 may have a reference plate provided with a reference mark for associating the position of the electron beam EB by the beam irradiation device 1 with the position of the stage 22 (position in the XYZ direction).
 ステージ22が移動すると、ステージ22とビーム照射装置1との相対位置が変わる。更に、ステージ22が移動すると、ステージ22が支持する試料Wとビーム照射装置1との相対位置が変わる。このため、ステージ駆動系23は、ステージ22及び/又は試料Wとビーム照射装置1との相対位置を変更可能な位置変更装置として機能してもよい。 When the stage 22 moves, the relative position between the stage 22 and the beam irradiation device 1 changes. Further, when the stage 22 moves, the relative positions of the sample W supported by the stage 22 and the beam irradiation device 1 change. Therefore, the stage drive system 23 may function as a position change device capable of changing the relative position between the stage 22 and / or the sample W and the beam irradiation device 1.
 ステージ22がXY平面に沿って移動すると、XY平面に沿った方向における試料Wとビーム照射装置1との相対位置が変わる。このため、ステージ22がXY平面に沿って移動すると、XY平面に沿った方向における試料Wと試料Wの表面(具体的には、+Z側を向いた面)WSuにおける電子ビームEBの照射領域との相対位置が変わる。つまり、ステージ22がXY平面に沿って移動すると、XY平面に沿った方向(つまり、試料Wの表面WSuに沿った方向)において、電子ビームEBの照射領域が試料Wの表面WSuに対して移動する。更に、ステージ22がXY平面に沿って移動すると、XY平面に沿った方向における試料Wと真空領域VSPとの相対位置が変わる。このため、ステージ22がXY平面に沿って移動すると、XY平面に沿った方向において、試料Wの表面WSuに対して真空領域VSPが移動する。この場合、制御装置4は、試料Wの表面WSuの所望位置に電子ビームEBが照射され且つ真空領域VSPが形成されるように、ステージ駆動系23を制御してステージ22をXY平面に沿って移動させてもよい。その結果、ステージ22が移動したとしても、電子ビーム照射装置1と試料Wとの間における電子ビームEBの通路(つまり、電子ビームEBが伝搬する経路又は空間)は、真空領域VSPの少なくとも一部に含まれる。つまり、走査型電子顕微鏡SEMaは、ステージ22が移動したとしても、真空領域VSPを介して試料Wに電子ビームEBを照射することができる。 When the stage 22 moves along the XY plane, the relative position of the sample W and the beam irradiator 1 in the direction along the XY plane changes. Therefore, when the stage 22 moves along the XY plane, the sample W in the direction along the XY plane and the irradiation region of the electron beam EB on the surface of the sample W (specifically, the surface facing the + Z side) WSu. The relative position of is changed. That is, when the stage 22 moves along the XY plane, the irradiation region of the electron beam EB moves with respect to the surface WSu of the sample W in the direction along the XY plane (that is, the direction along the surface WSu of the sample W). To do. Further, when the stage 22 moves along the XY plane, the relative position of the sample W and the vacuum region VSP in the direction along the XY plane changes. Therefore, when the stage 22 moves along the XY plane, the vacuum region VSP moves with respect to the surface WSu of the sample W in the direction along the XY plane. In this case, the control device 4 controls the stage drive system 23 so that the electron beam EB is irradiated to the desired position of the surface WSu of the sample W and the vacuum region VSP is formed, and the stage 22 is moved along the XY plane. You may move it. As a result, even if the stage 22 moves, the passage of the electron beam EB (that is, the path or space in which the electron beam EB propagates) between the electron beam irradiation device 1 and the sample W is at least a part of the vacuum region VSP. include. That is, the scanning electron microscope SEMa can irradiate the sample W with the electron beam EB via the vacuum region VSP even if the stage 22 moves.
 XY平面に沿ったステージ22の移動に伴って真空領域VSPが試料Wの表面WSuに対して相対的に移動すると、試料Wのうち真空領域VSPに起因した負圧が作用する部分の位置が変わる。その結果、特に、真空領域VSPに起因した負圧が試料Wの外縁付近に作用している場合において、試料Wに偏った力が作用する可能性がある。その結果、試料Wを保持するステージ22にもまた偏った力が作用する可能性がある。従って、真空領域VSPに起因した負圧が試料Wの中心付近に作用している場合と比較して、真空領域VSPに起因した負圧が試料Wの外縁付近に作用している(つまり、ステージ22に偏った力が作用している)場合には、ステージ22が変形しやすくなる可能性がある。このため、ステージ22は、試料Wのうち真空領域VSPに起因した負圧が作用する部分の位置が変わる場合であってもステージ22が変形しない又はステージ22の変形量が許容下限量以下になる程度に相対的に高い剛性を有していてもよい。 When the vacuum region VSP moves relative to the surface WSu of the sample W as the stage 22 moves along the XY plane, the position of the portion of the sample W on which the negative pressure caused by the vacuum region VSP acts changes. .. As a result, there is a possibility that a biased force acts on the sample W, especially when the negative pressure caused by the vacuum region VSP acts near the outer edge of the sample W. As a result, a biased force may also act on the stage 22 that holds the sample W. Therefore, the negative pressure caused by the vacuum region VSP acts near the outer edge of the sample W (that is, the stage) as compared with the case where the negative pressure caused by the vacuum region VSP acts near the center of the sample W. If a biased force acts on 22), the stage 22 may be easily deformed. Therefore, in the stage 22, even if the position of the portion of the sample W on which the negative pressure due to the vacuum region VSP acts changes, the stage 22 does not deform or the amount of deformation of the stage 22 becomes equal to or less than the allowable lower limit amount. It may have a relatively high rigidity to some extent.
 ステージ22がZ軸に沿って移動すると、Z軸に沿った方向における試料Wとビーム照射装置1との相対位置が変わる。このため、ステージ22がZ軸に沿って移動すると、Z軸に沿った方向における試料Wと電子ビームEBのフォーカス位置FPとの相対位置が変わる。制御装置4は、試料Wの表面WSuに(或いは、表面WSuの近傍に)電子ビームEBのフォーカス位置FPが設定されるように、ステージ駆動系23を制御してステージ22をZ軸に沿って移動させてもよい。ここで、電子ビームEBのフォーカス位置FPは、電子ビーム照射装置1が備える後述のビーム光学系11(図2参照)の結像位置に対応する焦点位置又は電子ビームEBのぼけが最も少なくなるようなZ軸方向の位置であってもよい。 When the stage 22 moves along the Z axis, the relative position of the sample W and the beam irradiator 1 in the direction along the Z axis changes. Therefore, when the stage 22 moves along the Z axis, the relative position between the sample W and the focus position FP of the electron beam EB in the direction along the Z axis changes. The control device 4 controls the stage drive system 23 so that the focus position FP of the electron beam EB is set on the surface WSu of the sample W (or in the vicinity of the surface WSu) so that the stage 22 is moved along the Z axis. You may move it. Here, the focus position FP of the electron beam EB has the least blurring of the focus position or the electron beam EB corresponding to the imaging position of the beam optical system 11 (see FIG. 2) described later included in the electron beam irradiation device 1. It may be a position in the Z-axis direction.
 更に、ステージ22がZ軸に沿って移動すると、試料Wとビーム照射装置1との間の間隔Dが変わる。このため、ステージ駆動系23は、制御装置4の制御下で、後述する間隔調整系14と協調しながら、間隔Dが所望間隔D_targetとなるようにステージ22を移動させてもよい。このとき、制御装置4は、位置計測装置24の計測結果(更には、後述するビーム照射装置1の位置(特に、真空形成部材121の位置)を計測する位置計測装置15の計測結果)に基づいて、実際の間隔Dを特定すると共に、特定した間隔Dが所望間隔D_targetとなるようにステージ駆動系23及び間隔調整系14の少なくとも一方を制御する。このため、位置計測装置15及び24は、間隔Dを検出する検出装置としても機能し得る。尚、試料WのZ軸方向の厚み(寸法)が既知である場合、制御装置4は、実際の間隔Dに代えて又は加えて、ビーム照射装置1と基準面(例えば基準板の表面)とのZ軸方向における距離に関する情報と、試料WのZ軸方向の厚み(寸法)に関する情報とを用いて、ビーム照射装置1と試料Wとの間の間隔Dが所望間隔D_targetとなるように、ステージ駆動系23及び間隔調整系14のうち少なくとも一方を制御してもよい。 Further, when the stage 22 moves along the Z axis, the distance D between the sample W and the beam irradiation device 1 changes. Therefore, the stage drive system 23 may move the stage 22 under the control of the control device 4 so that the interval D becomes the desired interval D_taget in cooperation with the interval adjusting system 14 described later. At this time, the control device 4 is based on the measurement result of the position measurement device 24 (furthermore, the measurement result of the position measurement device 15 that measures the position of the beam irradiation device 1 (particularly, the position of the vacuum forming member 121) described later). Therefore, the actual interval D is specified, and at least one of the stage drive system 23 and the interval adjusting system 14 is controlled so that the specified interval D becomes the desired interval D_taget. Therefore, the position measuring devices 15 and 24 can also function as a detecting device for detecting the interval D. When the thickness (dimension) of the sample W in the Z-axis direction is known, the control device 4 replaces or adds to the actual interval D with the beam irradiation device 1 and the reference surface (for example, the surface of the reference plate). Using the information about the distance in the Z-axis direction of the sample W and the information about the thickness (dimensions) of the sample W in the Z-axis direction, the distance D between the beam irradiation device 1 and the sample W is set to the desired distance D_target. At least one of the stage drive system 23 and the interval adjustment system 14 may be controlled.
 ステージ22がθX方向及びθY方向の少なくとも一方に沿って移動する(更には、必要に応じてステージ22がθZ方向に沿って移動する)と、ビーム照射装置1に対する試料Wの相対的な姿勢(具体的には、傾斜量であり、実質的にはチルト角)が変わる。制御装置4は、ビーム照射装置1に対して試料Wが適切な姿勢となるように、ステージ駆動系23を制御してステージ22をθX方向、θY方向及びθZ方向の少なくとも一方に沿って移動させてもよい。例えば、制御装置4は、後述するビーム照射装置1の射出面12LS(図2参照)に対して試料Wの表面WSuが平行になるように、ステージ駆動系23を制御してステージ22をθX方向、θY方向及びθZ方向の少なくとも一方に沿って移動させてもよい。尚、本実施形態では、「面Aに対して面Bが平行になる」状態は、「面A及び面Bのいずれか一方をデータム平面(幾何公差を求めるための基準となる平面)に指定した場合において、データム平面と平行であって且つ所望距離だけ離れた2つの仮想的な面の間に面A及び面Bのいずれか他方が収まる」状態を意味するものとする。例えば、所望距離は、上述した所望間隔D_targetより小さい値であってもよい。例えば、所望距離は、上述した所望間隔D_targetの1/10以下の値であってもよい。 When the stage 22 moves along at least one of the θX direction and the θY direction (furthermore, the stage 22 moves along the θZ direction as necessary), the relative posture of the sample W with respect to the beam irradiation device 1 (moreover, the relative posture of the sample W with respect to the beam irradiation device 1 Specifically, it is the amount of inclination, and the tilt angle) changes substantially. The control device 4 controls the stage drive system 23 to move the stage 22 along at least one of the θX direction, the θY direction, and the θZ direction so that the sample W is in an appropriate posture with respect to the beam irradiation device 1. You may. For example, the control device 4 controls the stage drive system 23 so that the surface WSu of the sample W is parallel to the injection surface 12LS (see FIG. 2) of the beam irradiation device 1 described later, and moves the stage 22 in the θX direction. , The θY direction and the θZ direction may be moved along at least one of the directions. In the present embodiment, the state in which "the surface B is parallel to the surface A" is designated as "one of the surface A and the surface B is designated as a datum plane (a plane that serves as a reference for obtaining a geometrical tolerance)". In this case, it means that either one of the surface A and the surface B fits between two virtual surfaces parallel to the datum plane and separated by a desired distance. For example, the desired distance may be smaller than the desired interval D_target described above. For example, the desired distance may be a value of 1/10 or less of the desired interval D_target described above.
 支持フレーム3は、ビーム照射装置1を支持する。具体的には、支持フレーム3は、支持脚31と、支持部材32とを備える。支持脚31は、支持面SF上に配置される。支持脚31と支持面SFとの間には、支持面SFの振動の支持脚31への伝達を防止する又は低減するための不図示の防振装置が設置されていてもよい。支持脚31は、例えば、支持面SFから上方に延びる部材である。支持脚31は、支持部材32を支持する。支持部材32は、平面視において、中心に開口321が形成された環状のプレート部材である。支持部材32の上面には、間隔調整系14を介して、ビーム照射装置1の外面から外側に延びるフランジ部材13の下面が連結されている。このとき、ビーム照射装置1は、開口321を貫通するように配置される。その結果、支持フレーム3は、ビーム照射装置1を支持部材32の上面で吊り上げるように支持することができる。この場合、支持フレーム3は、ビーム照射装置1が試料Wと衝突することを防ぐようにビーム照射装置1が試料Wに向かって移動することを防ぐストッパとして機能してもよい。但し、支持フレーム3は、ビーム照射装置1を支持することができる限りは、図1に示す支持方法とは異なる他の支持方法でビーム照射装置1を支持してもよい。例えば、支持フレーム3を支持脚31により支える代わりに、吊り下げ支持機構により支えてもよい。この場合、支持フレーム3を収容するチャンバの天板(天井壁)に防振パッドを固定し、防振パッドの下端に一端が接続され、鋼材より成るワイヤの他端を支持フレーム3に接続してもよい。防振パッドは、例えば、エアダンパ及び/又はコイルばねを含んでいてもよい。尚、支持脚31と支持部材32との間に、支持面SFの振動の支持部材32への伝達を防止する又は低減するための不図示の防振装置が設置されていてもよい。 The support frame 3 supports the beam irradiation device 1. Specifically, the support frame 3 includes a support leg 31 and a support member 32. The support legs 31 are arranged on the support surface SF. An anti-vibration device (not shown) may be installed between the support leg 31 and the support surface SF to prevent or reduce the transmission of the vibration of the support surface SF to the support leg 31. The support leg 31 is, for example, a member extending upward from the support surface SF. The support legs 31 support the support member 32. The support member 32 is an annular plate member having an opening 321 formed in the center in a plan view. The lower surface of the flange member 13 extending outward from the outer surface of the beam irradiation device 1 is connected to the upper surface of the support member 32 via an interval adjusting system 14. At this time, the beam irradiation device 1 is arranged so as to penetrate the opening 321. As a result, the support frame 3 can support the beam irradiation device 1 so as to be lifted by the upper surface of the support member 32. In this case, the support frame 3 may function as a stopper for preventing the beam irradiation device 1 from moving toward the sample W so as to prevent the beam irradiation device 1 from colliding with the sample W. However, the support frame 3 may support the beam irradiation device 1 by a support method different from the support method shown in FIG. 1 as long as the beam irradiation device 1 can be supported. For example, instead of supporting the support frame 3 by the support legs 31, the support frame 3 may be supported by a suspension support mechanism. In this case, the anti-vibration pad is fixed to the top plate (ceiling wall) of the chamber accommodating the support frame 3, one end is connected to the lower end of the anti-vibration pad, and the other end of the wire made of steel is connected to the support frame 3. You may. The anti-vibration pad may include, for example, an air damper and / or a coil spring. A vibration isolator (not shown) may be installed between the support legs 31 and the support member 32 to prevent or reduce the transmission of the vibration of the support surface SF to the support member 32.
 上述したように、ビーム照射装置1と試料Wとの間に真空領域VSPが形成されると、ビーム照射装置1には、真空領域VSPに起因した負圧が作用して真空領域VSPに向かって(つまり、試料Wに向かって)ビーム照射装置1を引っ張る力が作用する。この力は、ビーム照射装置1を支持する支持フレーム3にも作用する。このため、支持フレーム3は、真空領域VSPの形成に起因した力が支持フレーム3に作用している場合であっても支持フレーム3が変形しない又は支持フレーム3の変形量が許容下限量以下になる程度に相対的に高い剛性を有していてもよい。 As described above, when the vacuum region VSP is formed between the beam irradiation device 1 and the sample W, the negative pressure caused by the vacuum region VSP acts on the beam irradiation device 1 toward the vacuum region VSP. A force that pulls the beam irradiation device 1 (that is, toward the sample W) acts. This force also acts on the support frame 3 that supports the beam irradiation device 1. Therefore, in the support frame 3, the support frame 3 is not deformed or the deformation amount of the support frame 3 is less than the allowable lower limit amount even when the force caused by the formation of the vacuum region VSP acts on the support frame 3. It may have a relatively high rigidity to some extent.
 間隔調整系14は、少なくともZ軸に沿ってビーム照射装置1を移動させることで、ビーム照射装置1と試料Wとの間の間隔D(或いは、ビーム照射装置1から試料WまでのZ軸方向の距離)を調整する。例えば、間隔調整系14は、間隔Dが所望間隔D_targetとなるように、ビーム照射装置1をZ軸方向に沿って移動させてもよい。例えば、間隔調整系14は、所望の力をフランジ部材13(つまり、ビーム照射装置1)に付与して、ビーム照射装置1を移動させる。後述するようにビーム照射装置1がビーム光学系11及び差動排気系12を備えている場合には(図2参照)、間隔調整系14は、所望の力をビーム光学系11及び差動排気系12に間接的に付与して、ビーム光学系11及び差動排気系12を移動させているとも言える。この場合、間隔調整系14として、例えば、モータの駆動力を用いてビーム照射装置1を移動させる駆動系、ピエゾ素子の圧電効果によって発生する力を用いてビーム照射装置1を移動させる駆動系、クーロン力(例えば、少なくとも2つの電極間に発生する静電力)を用いてビーム照射装置1を移動させる駆動系、及び、ローレンツ力(例えば、コイルと磁極との間に発生する電磁力)を用いてビーム照射装置1を移動させる駆動系の少なくとも一つが用いられてもよい。但し、ビーム照射装置1と試料Wの表面WSuとの間の間隔Dを固定したままでよい場合(或いは、間隔調整系14が間隔Dを調整しなくてもよい)場合には、間隔調整系14に代えて、シム等の間隔調整部材が、支持部材32とフランジ部材13との間に配置されていてもよい。この場合、シムのサイズ及び/又は数が変更されれば、間隔Dが調整される。また、間隔調整系14は、ビーム照射装置1をX軸方向、Y軸方向、θX方向、θY方向及びθZ方向の少なくとも一つに沿って移動させてもよい。この場合、間隔調整系14は、位置変更装置と称してもよい。 The interval adjusting system 14 moves the beam irradiation device 1 along at least the Z axis so that the distance D between the beam irradiation device 1 and the sample W (or the Z-axis direction from the beam irradiation device 1 to the sample W) Distance) is adjusted. For example, the interval adjusting system 14 may move the beam irradiation device 1 along the Z-axis direction so that the interval D becomes a desired interval D_taget. For example, the interval adjusting system 14 applies a desired force to the flange member 13 (that is, the beam irradiating device 1) to move the beam irradiating device 1. When the beam irradiation device 1 includes the beam optical system 11 and the differential exhaust system 12 as described later (see FIG. 2), the interval adjusting system 14 applies a desired force to the beam optical system 11 and the differential exhaust system. It can be said that the beam optical system 11 and the differential exhaust system 12 are moved by indirectly applying to the system 12. In this case, as the interval adjusting system 14, for example, a drive system that moves the beam irradiation device 1 by using the driving force of the motor, and a drive system that moves the beam irradiation device 1 by using the force generated by the piezoelectric effect of the piezo element. A drive system that moves the beam irradiation device 1 using a Coulomb force (for example, an electrostatic force generated between at least two electrodes) and a Lorentz force (for example, an electromagnetic force generated between a coil and a magnetic pole) are used. At least one of the drive systems for moving the beam irradiation device 1 may be used. However, if the distance D between the beam irradiation device 1 and the surface WSu of the sample W may remain fixed (or the space adjustment system 14 does not have to adjust the space D), the space adjustment system Instead of 14, an interval adjusting member such as a shim may be arranged between the support member 32 and the flange member 13. In this case, if the size and / or number of shims is changed, the interval D will be adjusted. Further, the interval adjusting system 14 may move the beam irradiation device 1 along at least one of the X-axis direction, the Y-axis direction, the θX direction, the θY direction, and the θZ direction. In this case, the interval adjusting system 14 may be referred to as a position changing device.
 間隔調整系14によって移動可能なビーム照射装置1のZ方向における位置(特に、真空形成部材121のZ方向における位置)を計測するために、走査型電子顕微鏡SEMaは、位置計測装置15を備えている。位置計測装置15は、例えば、エンコーダ及びレーザ干渉計のうちの少なくとも一方を含む。尚、位置計測装置15は、ビーム照射装置1のXY方向における位置やθX方向、θY方向における姿勢を計測してもよい。また、ビーム照射装置1のXY方向における位置やθX方向、θY方向における姿勢を計測する計測装置が位置計測装置15と別に設けられていてもよい。 In order to measure the position of the beam irradiation device 1 movable by the interval adjusting system 14 in the Z direction (particularly, the position of the vacuum forming member 121 in the Z direction), the scanning electron microscope SEMa includes a position measuring device 15. There is. The position measuring device 15 includes, for example, at least one of an encoder and a laser interferometer. The position measuring device 15 may measure the position of the beam irradiation device 1 in the XY direction, the posture in the θX direction, and the posture in the θY direction. Further, a measuring device for measuring the position of the beam irradiation device 1 in the XY direction, the posture in the θX direction, and the posture in the θY direction may be provided separately from the position measuring device 15.
 制御装置4は、走査型電子顕微鏡SEMaの動作を制御する。制御装置4は、例えば、演算装置とメモリとを含んでいてもよい。演算装置は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、DSP(Digital Signal Processor)及びMCU(Micro Control Unit)の少なくとも一つを含んでいてもよい。制御装置4は、演算装置がコンピュータプログラムを実行することで、走査型電子顕微鏡SEMaの動作を制御する装置として機能する。このコンピュータプログラムは、制御装置4が行うべき後述する動作を制御装置4(例えば、演算装置)に行わせる(つまり、実行させる)ためのコンピュータプログラムである。つまり、このコンピュータプログラムは、走査型電子顕微鏡SEMaに後述する動作を行わせるように制御装置4を機能させるためのコンピュータプログラムである。演算装置が実行するコンピュータプログラムは、制御装置4が備えるメモリ(つまり、記録媒体)に記録されていてもよいし、制御装置4に内蔵された又は制御装置4に外付け可能な任意の記憶媒体(例えば、ハードディスクや半導体メモリ)に記録されていてもよい。或いは、演算装置は、実行するべきコンピュータプログラムを、ネットワークインタフェースを介して、制御装置4の外部の装置からダウンロードしてもよい。 The control device 4 controls the operation of the scanning electron microscope SEMa. The control device 4 may include, for example, an arithmetic unit and a memory. The arithmetic unit may include at least one of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a DSP (Digital Signal Processor), and an MCU (Micro Control Unit). The control device 4 functions as a device that controls the operation of the scanning electron microscope SEMa by executing a computer program by the arithmetic unit. This computer program is a computer program for causing the control device 4 (for example, an arithmetic unit) to perform (that is, execute) an operation described later to be performed by the control device 4. That is, this computer program is a computer program for making the control device 4 function so that the scanning electron microscope SEMa performs the operation described later. The computer program executed by the arithmetic unit may be recorded in a memory (that is, a recording medium) included in the control device 4, or may be an arbitrary storage medium built in the control device 4 or externally attached to the control device 4. It may be recorded in (for example, a hard disk or a semiconductor memory). Alternatively, the arithmetic unit may download the computer program to be executed from an external device of the control device 4 via the network interface.
 例えば、制御装置4は、電子ビームEBを試料Wに照射するように、ビーム照射装置1を制御する。例えば、制御装置4は、試料Wの表面WSuのXY面内の所望位置に電子ビームEBが照射されるように、ビーム照射装置1及びステージ駆動系23の少なくとも一方を制御する。例えば、制御装置4は、ビーム照射装置1と試料Wとの間の間隔Dが所望間隔D_targetとなるように、ステージ駆動系23及び間隔調整系14の少なくとも一方を制御する。例えば、制御装置4は、試料Wの表面WSuに対してビーム照射装置1の射出面12LSが平行になるように、間隔調整系14及びステージ駆動系23の少なくとも一方を制御する。 For example, the control device 4 controls the beam irradiation device 1 so as to irradiate the sample W with the electron beam EB. For example, the control device 4 controls at least one of the beam irradiation device 1 and the stage drive system 23 so that the electron beam EB is irradiated to a desired position in the XY plane of the surface WSu of the sample W. For example, the control device 4 controls at least one of the stage drive system 23 and the interval adjustment system 14 so that the interval D between the beam irradiation device 1 and the sample W becomes the desired interval D_target. For example, the control device 4 controls at least one of the interval adjusting system 14 and the stage drive system 23 so that the injection surface 12LS of the beam irradiation device 1 is parallel to the surface WSu of the sample W.
 制御装置4は、走査型電子顕微鏡SEMaの内部に設けられていなくてもよく、例えば、走査型電子顕微鏡SEMa外にサーバ等として設けられていてもよい。この場合、制御装置4と走査型電子顕微鏡SEMaとは、有線及び/又は無線のネットワーク(或いは、データバス及び/又は通信回線)で接続されていてもよい。有線のネットワークとして、例えばIEEE1394、RS-232x、RS-422、RS-423、RS-485及びUSBの少なくとも一つに代表されるシリアルバス方式のインタフェースを用いるネットワークが用いられてもよい。有線のネットワークとして、パラレルバス方式のインタフェースを用いるネットワークが用いられてもよい。有線のネットワークとして、10BASE-T、100BASE-TX及び1000BASE-Tの少なくとも一つに代表されるイーサネット(登録商標)に準拠したインタフェースを用いるネットワークが用いられてもよい。無線のネットワークとして、電波を用いたネットワークが用いられてもよい。電波を用いたネットワークの一例として、IEEE802.1xに準拠したネットワーク(例えば、無線LAN及びBluetooth(登録商標)の少なくとも一方)があげられる。無線のネットワークとして、赤外線を用いたネットワークが用いられてもよい。無線のネットワークとして、光通信を用いたネットワークが用いられてもよい。この場合、制御装置4と走査型電子顕微鏡SEMaとはネットワークを介して各種の情報の送受信が可能となるように構成されていてもよい。また、制御装置4は、ネットワークを介して走査型電子顕微鏡SEMaにコマンドや制御パラメータ等の情報を送信可能であってもよい。走査型電子顕微鏡SEMaは、制御装置4からのコマンドや制御パラメータ等の情報を、上記ネットワークを介して受信する受信装置を備えていてもよい。 The control device 4 may not be provided inside the scanning electron microscope SEMa, and may be provided as a server or the like outside the scanning electron microscope SEMa, for example. In this case, the control device 4 and the scanning electron microscope SEMA may be connected by a wired and / or wireless network (or a data bus and / or a communication line). As the wired network, for example, a network using a serial bus type interface represented by at least one of IEEE1394, RS-232x, RS-422, RS-423, RS-485 and USB may be used. As the wired network, a network using a parallel bus interface may be used. As a wired network, a network using an Ethernet (registered trademark) compliant interface represented by at least one of 10BASE-T, 100BASE-TX and 1000BASE-T may be used. As the wireless network, a network using radio waves may be used. An example of a network using radio waves is a network conforming to IEEE802.1x (for example, at least one of wireless LAN and Bluetooth®). As the wireless network, a network using infrared rays may be used. As the wireless network, a network using optical communication may be used. In this case, the control device 4 and the scanning electron microscope SEMa may be configured so that various types of information can be transmitted and received via the network. Further, the control device 4 may be able to transmit information such as commands and control parameters to the scanning electron microscope SEMa via the network. The scanning electron microscope SEMa may include a receiving device that receives information such as commands and control parameters from the control device 4 via the network.
 尚、演算装置が実行するコンピュータプログラムを記録する記録媒体としては、CD-ROM、CD-R、CD-RWやフレキシブルディスク、MO、DVD-ROM、DVD-RAM、DVD-R、DVD+R、DVD-RW、DVD+RW及びBlu-ray(登録商標)等の光ディスク、磁気テープ等の磁気媒体、光磁気ディスク、USBメモリ等の半導体メモリ、及び、その他プログラムを格納可能な任意の媒体の少なくとも一つが用いられてもよい。記録媒体には、コンピュータプログラムを記録可能な機器(例えば、コンピュータプログラムがソフトウェア及びファームウェア等の少なくとも一方の形態で実行可能な状態に実装された汎用機器又は専用機器)が含まれていてもよい。更に、コンピュータプログラムに含まれる各処理や機能は、制御装置4(つまり、コンピュータ)がコンピュータプログラムを実行することで制御装置4内に実現される論理的な処理ブロックによって実現されてもよいし、制御装置4が備える所定のゲートアレイ(FPGA、ASIC)等のハードウェアによって実現されてもよいし、論理的な処理ブロックとハードウェアの一部の要素を実現する部分的ハードウェアモジュールとが混在する形式で実現してもよい。 The recording medium for recording the computer program executed by the arithmetic unit includes CD-ROM, CD-R, CD-RW, flexible disk, MO, DVD-ROM, DVD-RAM, DVD-R, DVD + R, and DVD-. At least one of optical disks such as RW, DVD + RW and Blu-ray (registered trademark), magnetic media such as magnetic tape, magneto-optical disks, semiconductor memories such as USB memory, and any other medium capable of storing a program is used. You may. The recording medium may include a device capable of recording a computer program (for example, a general-purpose device or a dedicated device in which the computer program is implemented in at least one form such as software and firmware). Further, each process or function included in the computer program may be realized by a logical processing block realized in the control device 4 by the control device 4 (that is, a computer) executing the computer program. It may be realized by hardware such as a predetermined gate array (FPGA, ASIC) included in the control device 4, or a logical processing block and a partial hardware module that realizes a part of the hardware are mixed. It may be realized in the form of.
 (1-2)ビーム照射装置1の構造
 続いて、図2を参照しながら、第1実施形態のビーム照射装置1の構造について説明する。図2は、第1実施形態のビーム照射装置1の構造を示す断面図である。
(1-2) Structure of Beam Irradiation Device 1 Subsequently, the structure of the beam irradiation device 1 of the first embodiment will be described with reference to FIG. FIG. 2 is a cross-sectional view showing the structure of the beam irradiation device 1 of the first embodiment.
 図2に示すように、ビーム照射装置1は、ビーム光学系11と、差動排気系12とを備えている。 As shown in FIG. 2, the beam irradiation device 1 includes a beam optical system 11 and a differential exhaust system 12.
 ビーム光学系11は、筐体111を備えている。筐体111は、ビーム光学系11の光軸AXに沿って延びる(つまり、Z軸に沿って延びる)ビーム通過空間SPb1が内部に確保されている円筒状の部材である。ビーム通過空間SPb1は、電子ビームEBが通過する空間として用いられる。ビーム通過空間SPb1を通過する電子ビームEBが筐体111を通過する(つまり、筐体111の外部へ漏れ出す)ことを防止するために及び/又はビーム照射装置1の外部の磁場(いわゆる、外乱磁場)がビーム通過空間SPb1を通過する電子ビームEBに影響を与えることを防止するために、筐体111は、高透磁率材料から構成されていてもよい。高透磁率材料の一例として、パーマロイ及びケイ素鋼の少なくとも一方があげられる。これらの高透磁率材料の比透磁率は1000以上である。 The beam optical system 11 includes a housing 111. The housing 111 is a cylindrical member in which a beam passing space SPb1 extending along the optical axis AX of the beam optical system 11 (that is, extending along the Z axis) is secured inside. The beam passing space SPb1 is used as a space through which the electron beam EB passes. To prevent the electron beam EB passing through the beam passing space SPb1 from passing through the housing 111 (that is, leaking to the outside of the housing 111) and / or the magnetic field outside the beam irradiation device 1 (so-called disturbance). The housing 111 may be made of a high magnetic permeability material in order to prevent the magnetic field) from affecting the electron beam EB passing through the beam passing space SPb1. Examples of high magnetic permeability materials include at least one of permalloy and silicon steel. The relative magnetic permeability of these high magnetic permeability materials is 1000 or more.
 ビーム通過空間SPb1は、電子ビームEBが照射される期間中は、真空空間となる。具体的には、ビーム通過空間SPb1には、ビーム通過空間SPb1に接続するように(つまり、つながるように)筐体111に形成される排気通路(つまり、管路、以下同じ)112を介して真空ポンプ51が連結されている。真空ポンプ51は、ビーム通過空間SPb1が真空空間となるように、ビーム通過空間SPb1を排気(つまり、気体を排出)して大気圧よりも減圧する。このため、第1実施形態における真空空間は、大気圧よりも圧力が低い空間を意味していてもよい。特に、真空空間は、電子ビームEBの試料Wへの適切な照射を妨げないほどにしか気体分子が存在しない空間(言い換えれば、電子ビームEBの試料Wへの適切な照射を妨げない真空度となる空間)を意味していてもよい。ビーム通過空間SPb1は、筐体111の下面に形成されたビーム射出口(つまり、開口)119を介して、筐体111の外部の空間(より具体的には、後述する差動排気系12のビーム通過空間SPb2)に接続している。尚、ビーム通過空間SPb1は、電子ビームEBが照射されない期間中に真空空間となってもよい。 The beam passing space SPb1 becomes a vacuum space during the period when the electron beam EB is irradiated. Specifically, the beam passage space SPb1 is connected to the beam passage space SPb1 via an exhaust passage (that is, a pipeline, the same applies hereinafter) 112 formed in the housing 111 so as to be connected to (that is, connected to) the beam passage space SPb1. The vacuum pump 51 is connected. The vacuum pump 51 exhausts the beam passing space SPb1 (that is, discharges gas) so that the beam passing space SPb1 becomes a vacuum space, and depressurizes the pressure below the atmospheric pressure. Therefore, the vacuum space in the first embodiment may mean a space whose pressure is lower than the atmospheric pressure. In particular, the vacuum space is a space in which gas molecules exist only to the extent that the electron beam EB does not interfere with the appropriate irradiation of the sample W (in other words, the degree of vacuum does not interfere with the appropriate irradiation of the electron beam EB with the sample W). Space) may be meant. The beam passing space SPb1 is a space outside the housing 111 (more specifically, a differential exhaust system 12 described later) via a beam ejection port (that is, an opening) 119 formed on the lower surface of the housing 111. It is connected to the beam passage space SPb2). The beam passing space SPb1 may be a vacuum space during the period when the electron beam EB is not irradiated.
 ビーム光学系11は更に、電子銃113と、電磁レンズ114と、対物レンズ115と、偏向器116と、電子検出器117とを備える。電子銃113は、-Z側に向けて電子ビームEBを放出する。尚、電子銃113の代わりに、光が照射されたとき電子を放出する光電変換面を用いてもよい。電子銃113は、-Z側に向けて電子ビームEBを放出する。尚、電子銃113の代わりに、光が照射されたとき電子を放出する光電変換面を用いてもよい。電磁レンズ114は、電子銃113が放出した電子ビームEBを制御する。例えば、電磁レンズ114は、電子ビームEBが所定の光学面(例えば、電子ビームEBの光路に交差する仮想面)上に形成する像の回転量(つまり、θZ方向の位置)、当該像の倍率、及び、結像位置に対応する焦点位置のいずれか一つを制御してもよい。対物レンズ115は、電子ビームEBを所定の縮小倍率で試料Wの表面WSuに結像させる。偏向器116は、電子ビームEBを偏向して、試料Wの表面WSuでの電子ビームEBの照射位置(特に、表面WSuに沿った方向(例えば、X軸及びY軸の少なくとも一方に沿った方向)における照射位置)を制御する。電子検出器117は、例えば、pn接合又はpin接合の半導体を使用した半導体型電子検出装置(つまり、半導体検出装置)である。電子検出器117として、例えば、シンチレーター(蛍光物質)と光電子増倍管を組み合わせたET(Everhart-Thornley)検出器及びマイクロチャンネルプレート (MCP;Micro-Channel Plate)の少なくとも一つが用いられてもよい。制御装置4は、電子検出器117の検出結果に基づいて、試料Wに関する情報を取得する(言い換えれば、求める、算出する又は生成する)。 The beam optical system 11 further includes an electron gun 113, an electromagnetic lens 114, an objective lens 115, a deflector 116, and an electron detector 117. The electron gun 113 emits an electron beam EB toward the −Z side. Instead of the electron gun 113, a photoelectric conversion surface that emits electrons when irradiated with light may be used. The electron gun 113 emits an electron beam EB toward the −Z side. Instead of the electron gun 113, a photoelectric conversion surface that emits electrons when irradiated with light may be used. The electromagnetic lens 114 controls the electron beam EB emitted by the electron gun 113. For example, the electromagnetic lens 114 has an image rotation amount (that is, a position in the θZ direction) formed by the electron beam EB on a predetermined optical surface (for example, a virtual surface intersecting the optical path of the electron beam EB), and a magnification of the image. , And any one of the focal positions corresponding to the imaging position may be controlled. The objective lens 115 forms an electron beam EB on the surface WSu of the sample W at a predetermined reduction magnification. The deflector 116 deflects the electron beam EB so that the irradiation position of the electron beam EB on the surface WSu of the sample W (particularly, the direction along the surface WSu (for example, the direction along at least one of the X-axis and the Y-axis)). ) Is controlled. The electron detector 117 is, for example, a semiconductor type electron detection device (that is, a semiconductor detection device) using a pn junction or pin junction semiconductor. As the electron detector 117, for example, at least one of an ET (Everhard-Tornley) detector in which a scintillator (fluorescent substance) and a photomultiplier tube are combined and a micro-channel plate (MCP) may be used. .. The control device 4 acquires (in other words, obtains, calculates, or generates) information about the sample W based on the detection result of the electron detector 117.
 具体的には、試料Wに関する情報を取得するために、制御装置4は、例えば、試料Wの表面WSuを電子ビームEBで走査するように、試料Wに対して電子ビームEBを照射する。具体的には、走査型電子顕微鏡SEMaは、試料Wの表面WSuの第1面部分に真空領域VSPが形成されるように、ステージ駆動系23を制御してステージ22をXY平面に沿って移動させる。試料Wの表面WSuの第1面部分に真空領域VSPが形成されるようにステージ22が移動した後、ビーム照射装置1は、試料Wの表面WSuの第1面部分に電子ビームEBを照射する。この際、ビーム照射装置1は、ビーム照射装置1が備える後述の偏向器116(図2参照)を用いて電子ビームEBを偏向することで、第1面部分を電子ビームEBで走査する。ビーム照射装置1が試料Wの表面WSuの第1面部分に電子ビームEBを照射している期間中は、ステージ駆動系23は、ステージ22をXY平面に沿って移動させなくてもよい。第1面部分の電子ビームEBでの走査が完了した後、走査型電子顕微鏡SEMaは、試料Wの表面WSuの第2面部分に真空領域VSPが形成されるように、ステージ駆動系23を制御してステージ22をXY平面に沿って移動させる。試料Wの表面WSuの第2面部分に真空領域VSPが形成されるようにステージ22が移動した後、ビーム照射装置1は、試料Wの表面WSuの第2面部分に電子ビームEBを照射する。この際、ビーム照射装置1は、偏向器116を用いて電子ビームEBを偏向することで、第2面部分を電子ビームEBで走査する。ビーム照射装置1が試料Wの表面WSuの第2面部分に電子ビームEBを照射している期間中もまた、ステージ駆動系23は、ステージ22をXY平面に沿って移動させなくてもよい。以降、試料Wの表面WSuのうち電子ビームEBを照射するべき対象領域に対する電子ビームEBの照射(つまり、走査)が完了するまで同様の処理が繰り返される。 Specifically, in order to acquire information about the sample W, the control device 4 irradiates the sample W with the electron beam EB so as to scan the surface WSu of the sample W with the electron beam EB, for example. Specifically, the scanning electron microscope SEMa controls the stage drive system 23 to move the stage 22 along the XY plane so that the vacuum region VSP is formed on the first surface portion of the surface WSu of the sample W. Let me. After the stage 22 moves so that the vacuum region VSP is formed on the first surface portion of the surface WSu of the sample W, the beam irradiation device 1 irradiates the first surface portion of the surface WSu of the sample W with the electron beam EB. .. At this time, the beam irradiation device 1 scans the first surface portion with the electron beam EB by deflecting the electron beam EB using the deflector 116 (see FIG. 2) described later included in the beam irradiation device 1. During the period in which the beam irradiation device 1 irradiates the first surface portion of the surface WSu of the sample W with the electron beam EB, the stage drive system 23 does not have to move the stage 22 along the XY plane. After the scanning of the first surface portion with the electron beam EB is completed, the scanning electron microscope SEMa controls the stage drive system 23 so that the vacuum region VSP is formed on the second surface portion of the surface WSu of the sample W. Then, the stage 22 is moved along the XY plane. After the stage 22 moves so that the vacuum region VSP is formed on the second surface portion of the surface WSu of the sample W, the beam irradiation device 1 irradiates the second surface portion of the surface WSu of the sample W with the electron beam EB. .. At this time, the beam irradiation device 1 scans the second surface portion with the electron beam EB by deflecting the electron beam EB using the deflector 116. The stage drive system 23 does not have to move the stage 22 along the XY plane also during the period when the beam irradiation device 1 irradiates the second surface portion of the surface WSu of the sample W with the electron beam EB. After that, the same process is repeated until the irradiation (that is, scanning) of the electron beam EB to the target region of the surface WSu of the sample W to be irradiated with the electron beam EB is completed.
 試料Wに対して電子ビームEBが照射されると、試料Wからは、試料Wに対する電子ビームEBの照射によって生じた電子が放出される。試料Wに対する電子ビームEBの照射によって生じた電子は、試料Wからの反射電子及び試料Wからの散乱電子の少なくとも一方を含む。散乱電子は、2次電子を含んでいてもよい。試料Wに対する電子ビームEBの照射によって生じた電子は、電子検出器117によって検出される。このため、電子検出器117の検出結果は、試料Wに電子ビームEBが照射された場合に生じた電子の検出量に関する情報を含んでいてもよい。尚、電子検出器117は、後述する差動排気系12に設けられてもよい。或いは、電子検出器117の検出結果は、電子の検出量に関する情報に加えて又は代えて、試料Wに電子ビームEBが照射された場合に生じた電子に関する情報(例えば、電子の速度及び入射角度の少なくとも一方に関する情報)を含んでいてもよい。 When the sample W is irradiated with the electron beam EB, the electrons generated by the irradiation of the sample W with the electron beam EB are emitted from the sample W. The electrons generated by the irradiation of the sample W with the electron beam EB include at least one of the reflected electrons from the sample W and the scattered electrons from the sample W. The scattered electrons may include secondary electrons. The electrons generated by the irradiation of the sample W with the electron beam EB are detected by the electron detector 117. Therefore, the detection result of the electron detector 117 may include information on the detection amount of electrons generated when the sample W is irradiated with the electron beam EB. The electronic detector 117 may be provided in the differential exhaust system 12 described later. Alternatively, the detection result of the electron detector 117 may be, in addition to or in place of the information regarding the amount of detected electrons, information regarding the electrons generated when the sample W is irradiated with the electron beam EB (for example, the velocity and incident angle of the electrons). Information on at least one of the above) may be included.
 制御装置4は、電子検出器117の検出結果に基づいて、試料Wに関する情報を生成する(つまり、取得する)。例えば、制御装置4は、電子検出器117の検出結果に基づいて、試料Wの像に関する情報(以降、“像情報”と称する)を生成してもよい。特に、像情報は、試料Wの表面WSuの像に関する情報を含んでいてもよい。具体的には、電子検出器117は、ビーム照射装置1が試料Wの表面WSuを電子ビームEBで走査している期間中に、電子ビームEBが照射された場合に生じた電子を検出する。その結果、表面WSuの電子ビームEBでの走査に合わせて、電子検出器117は、例えば、試料Wの表面WSuの第1位置に電子ビームEBが照射された場合に生じた電子、試料Wの表面WSuの第2位置に電子ビームEBが照射された場合に生じた電子、・・・、及び、試料Wの表面WSuの第K(但し、Kは2以上の整数)位置に電子ビームEBが照射された場合に生じた電子を検出する。この場合、制御装置4は、電子検出器117の検出結果に基づいて、電子の検出量の分布に関する情報を生成することができる。つまり、制御装置4は、電子検出器117の検出結果(つまり、電子の検出結果に関する情報)と、電子ビームEBの照射位置に関する情報とに基づいて、電子の検出量に応じた特性を有する像(いわゆるSEM像であり、第1実施形態では、試料Wの表面WSuの像)に関する像情報を生成することができる。 The control device 4 generates (that is, acquires) information about the sample W based on the detection result of the electron detector 117. For example, the control device 4 may generate information (hereinafter, referred to as “image information”) regarding the image of the sample W based on the detection result of the electron detector 117. In particular, the image information may include information about the image of the surface WSu of the sample W. Specifically, the electron detector 117 detects the electrons generated when the electron beam EB is irradiated while the beam irradiation device 1 is scanning the surface WSu of the sample W with the electron beam EB. As a result, in accordance with the scanning of the surface WSu by the electron beam EB, the electron detector 117 is, for example, the electrons generated when the electron beam EB is irradiated to the first position of the surface WSu of the sample W, the sample W. The electrons generated when the electron beam EB is irradiated to the second position of the surface WSu, ..., And the electron beam EB is located at the Kth position (where K is an integer of 2 or more) of the surface WSu of the sample W. Detects the electrons generated when irradiated. In this case, the control device 4 can generate information regarding the distribution of the detected amount of electrons based on the detection result of the electron detector 117. That is, the control device 4 has an image having characteristics according to the amount of detected electrons based on the detection result of the electron detector 117 (that is, information on the detection result of electrons) and the information on the irradiation position of the electron beam EB. Image information regarding (a so-called SEM image, and in the first embodiment, an image of the surface WSu of the sample W) can be generated.
 差動排気系12は、ビーム光学系11から下方に延びる部材である。差動排気系12は、ビーム光学系11の下方(つまり、-Z側)に配置される。差動排気系12は、ビーム光学系11の下方において、ビーム光学系11に接続(つまり、連結)される。例えば、差動排気系12は、差動排気系12の上面がビーム光学系11の下面に接続されるように、ビーム光学系11に接続されてもよい。例えば、差動排気系12は、気密部材を介して、ビーム光学系11に接続されてもよい。気密部材として、例えば、Oリング及びベローズの少なくとも一方があげられる。差動排気系12は、ビーム光学系11と一体化されていてもよいし、ビーム光学系11から分離可能であってもよい。 The differential exhaust system 12 is a member extending downward from the beam optical system 11. The differential exhaust system 12 is arranged below the beam optical system 11 (that is, on the −Z side). The differential exhaust system 12 is connected (that is, connected) to the beam optical system 11 below the beam optical system 11. For example, the differential exhaust system 12 may be connected to the beam optical system 11 so that the upper surface of the differential exhaust system 12 is connected to the lower surface of the beam optical system 11. For example, the differential exhaust system 12 may be connected to the beam optical system 11 via an airtight member. Examples of the airtight member include at least one of an O-ring and a bellows. The differential exhaust system 12 may be integrated with the beam optical system 11 or may be separable from the beam optical system 11.
 差動排気系12の内部には、ビーム通過空間SPb2が形成されている。ビーム通過空間SPb2は、差動排気系12の上面(図2に示す例では、+Z側の面)に形成された開口120を介して、ビーム光学系11のビーム通過空間SPb1に接続している。ビーム通過空間SPb2は、ビーム通過空間SPb1と共に、真空ポンプ51によって排気される(つまり、減圧される)。従って、ビーム通過空間SPb2は、電子ビームEBが照射される期間中は、真空空間となる。ビーム通過空間SPb2は、ビーム通過空間SPb1からの電子ビームEBが通過する空間として用いられる。ビーム通過空間SPb2を通過する電子ビームEBが差動排気系12を通過する(つまり、差動排気系12の外部へ漏れ出す)ことを防止するために及び/又はビーム照射装置1の外部の磁場(いわゆる、外乱磁場)がビーム通過空間SPb2を通過する電子ビームEBに影響を与えることを防止するために、差動排気系12の少なくとも一部は、高透磁率材料から構成されていてもよい。尚、ビーム通過空間SPb2は、電子ビームEBが照射されない期間中に真空空間となってもよい。 A beam passage space SPb2 is formed inside the differential exhaust system 12. The beam passage space SPb2 is connected to the beam passage space SPb1 of the beam optical system 11 via an opening 120 formed on the upper surface of the differential exhaust system 12 (the surface on the + Z side in the example shown in FIG. 2). .. The beam passing space SPb2 is exhausted (that is, depressurized) by the vacuum pump 51 together with the beam passing space SPb1. Therefore, the beam passing space SPb2 becomes a vacuum space during the period in which the electron beam EB is irradiated. The beam passing space SPb2 is used as a space through which the electron beam EB from the beam passing space SPb1 passes. To prevent the electron beam EB passing through the beam passage space SPb2 from passing through the differential exhaust system 12 (that is, leaking to the outside of the differential exhaust system 12) and / or a magnetic field outside the beam irradiation device 1. At least a part of the differential exhaust system 12 may be made of a high magnetic permeability material in order to prevent (so-called disturbance magnetic field) from affecting the electron beam EB passing through the beam passing space SPb2. .. The beam passing space SPb2 may be a vacuum space during the period when the electron beam EB is not irradiated.
 差動排気系12は更に、試料Wの表面VSuの一部に対向可能な射出面12LSを備える。ビーム照射装置1は、射出面12LSと試料Wの表面VSuとの間の間隔D(つまり、Z軸方向におけるビーム照射装置1と表面VSuとの間の間隔D)が所望間隔D_target(例えば、10μm以下且つ1μm以上)となるように、ステージ駆動系23及び間隔調整系14の少なくとも一方によって、表面VSuに対して位置合わせされる。尚、間隔Dは、射出面12LSと表面WSuとのZ軸方向における距離と称してもよい。また、間隔調整系14を間隔制御装置と称してもよい。射出面12LSには、ビーム射出口(つまり、開口)1250が形成されている。尚、差動排気系12は、試料Wの表面WSuに対向可能な射出面12LSを備えていなくてもよい。 The differential exhaust system 12 further includes an injection surface 12LS capable of facing a part of the surface VSu of the sample W. In the beam irradiation device 1, the distance D between the injection surface 12LS and the surface VSu of the sample W (that is, the distance D between the beam irradiation device 1 and the surface VSu in the Z-axis direction) is a desired distance D_stage (for example, 10 μm). It is aligned with respect to the surface VSu by at least one of the stage drive system 23 and the interval adjustment system 14 so as to be less than or equal to 1 μm or more). The distance D may be referred to as the distance between the injection surface 12LS and the surface WSu in the Z-axis direction. Further, the interval adjusting system 14 may be referred to as an interval control device. A beam ejection port (that is, an opening) 1250 is formed on the ejection surface 12LS. The differential exhaust system 12 does not have to have an injection surface 12LS capable of facing the surface WSu of the sample W.
 ビーム通過空間SPb2は、ビーム射出口1250を介して、差動排気系12の外部のビーム通過空間SPb3に接続している。つまり、ビーム通過空間SPb1は、ビーム通過空間SPb2を介してビーム通過空間SPb3に接続している。このため、ビーム射出口1250は、ビーム通過空間SPb2(或いは、ビーム通過空間SPb1及びBPb2を含む空間)の試料W側の端部となる。但し、ビーム通過空間SPb2が確保されていなくてもよい。つまり、ビーム通過空間SPb1は、ビーム通過空間SPb2を介することなくビーム通過空間SPb3に直接接続していてもよい。ビーム通過空間SPb3は、試料Wの表面WSu上の空間(例えば、局所的な空間)である。ビーム通過空間SPb3は、試料Wの表面WSuに接する(つまり、面する)空間である。ビーム通過空間SPb3は、ビーム照射装置1と試料Wとの間(具体的には、射出面12LSと表面WSuとの間)において電子ビームEBが通過する空間である。ビーム通過空間SPb3は、ビーム通過空間SPb1及びSPb2と共に、真空ポンプ51によって排気される(つまり、減圧される)。つまり、真空ポンプ51は、差動排気系12(特に、射出面12LS)が試料Wの表面WSuの一部と対向した状態で、ビーム通過空間SPb3を排気する。真空ポンプ51は、ビーム通過空間SPb2(特に、その端部であり、実質的にはビーム射出口1250)が試料Wの表面WSuの一部と対向した状態で、ビーム通過空間SPb3を排気する。この場合、ビーム通過空間SP1及びSPb2のそれぞれは、ビーム通過空間SPb3を排気するためにビーム通過空間SPb3と真空ポンプ51とを接続する排気通路(つまり、管路)としても機能可能である。その結果、ビーム通過空間SPb3は、電子ビームEBが照射される期間中は、真空空間となる。このため、電子銃113から放出された電子ビームEBは、いずれも真空空間であるビーム通過空間SPb1からSPb3の少なくとも一部を介して試料Wに照射される。尚、ビーム通過空間SPb3は、電子ビームEBが照射されない期間中に真空空間となってもよい。 The beam passing space SPb2 is connected to the beam passing space SPb3 outside the differential exhaust system 12 via the beam injection port 1250. That is, the beam passing space SPb1 is connected to the beam passing space SPb3 via the beam passing space SPb2. Therefore, the beam ejection port 1250 is the end portion of the beam passing space SPb2 (or the space including the beam passing spaces SPb1 and BPb2) on the sample W side. However, the beam passage space SPb2 may not be secured. That is, the beam passing space SPb1 may be directly connected to the beam passing space SPb3 without passing through the beam passing space SPb2. The beam passage space SPb3 is a space (for example, a local space) on the surface WSu of the sample W. The beam passage space SPb3 is a space in contact with (that is, faces) the surface WSu of the sample W. The beam passage space SPb3 is a space through which the electron beam EB passes between the beam irradiation device 1 and the sample W (specifically, between the injection surface 12LS and the surface WSu). The beam passing space SPb3 is exhausted (that is, depressurized) by the vacuum pump 51 together with the beam passing spaces SPb1 and SPb2. That is, the vacuum pump 51 exhausts the beam passing space SPb3 in a state where the differential exhaust system 12 (particularly, the injection surface 12LS) faces a part of the surface WSu of the sample W. The vacuum pump 51 exhausts the beam passing space SPb3 in a state where the beam passing space SPb2 (particularly, the end portion thereof, substantially the beam ejection port 1250) faces a part of the surface WSu of the sample W. In this case, each of the beam passing spaces SP1 and SPb2 can also function as an exhaust passage (that is, a pipeline) connecting the beam passing space SPb3 and the vacuum pump 51 in order to exhaust the beam passing space SPb3. As a result, the beam passing space SPb3 becomes a vacuum space during the period in which the electron beam EB is irradiated. Therefore, the electron beam EB emitted from the electron gun 113 irradiates the sample W through at least a part of the beam passing spaces SPb1 to SPb3, which are vacuum spaces. The beam passing space SPb3 may be a vacuum space during the period when the electron beam EB is not irradiated.
 ビーム通過空間SPb3は、ビーム通過空間SPb1及びSPb2よりも真空ポンプ51から離れた位置にある。ビーム通過空間SPb2は、ビーム通過空間SPb1よりも真空ポンプ51から離れた位置にある。このため、ビーム通過空間SPb3の真空度は、ビーム通過空間SPb1及びSPb2の真空度よりも低くなる可能性があり、且つ、ビーム通過空間SPb2の真空度は、ビーム通過空間SPb1の真空度よりも低くなる可能性がある。尚、本実施形態における「空間Aの真空度よりも空間Bの真空度が低い」状態は、「空間Aの圧力よりも空間Bの圧力が高い」ことを意味する。この場合、真空ポンプ51は、真空度が最も低くなる可能性があるビーム通過空間SPb3の真空度を、電子ビームEBの試料Wへの適切な照射を妨げない真空度にすることができる程度の排気能力を有する。一例として、真空ポンプ51は、ビーム通過空間SPb3の圧力(つまり、気圧)を1×10-3パスカル以下に維持する(例えば、概ね1×10-3パスカルから1×10-4パスカルのオーダーで維持する)ことができる程度の排気能力を有していてもよい。このような真空ポンプ51として、例えば、主ポンプとして用いられるターボ分子ポンプ(或いは、拡散ポンプ、クライオポンプ及びスパッタイオンポンプの少なくとも一つを含む他の種類の高真空用ポンプ)と補助ポンプとして用いられるドライポンプ(或いは、他の種類の低真空用ポンプ)とが組み合わせられた真空ポンプが用いられてもよい。尚、真空ポンプ51の排気速度は、ビーム通過空間SPb3の圧力(つまり、気圧)を1×10-3パスカル以下に維持することができる程度の排気速度[m/s]であってもよい。 The beam passing space SPb3 is located farther from the vacuum pump 51 than the beam passing spaces SPb1 and SPb2. The beam passing space SPb2 is located at a position farther from the vacuum pump 51 than the beam passing space SPb1. Therefore, the degree of vacuum of the beam passing space SPb3 may be lower than the degree of vacuum of the beam passing spaces SPb1 and SPb2, and the degree of vacuum of the beam passing space SPb2 is higher than the degree of vacuum of the beam passing space SPb1. It can be low. The state of "the degree of vacuum in space B is lower than the degree of vacuum in space A" in the present embodiment means "the pressure in space B is higher than the pressure in space A". In this case, the vacuum pump 51 can set the vacuum degree of the beam passing space SPb3, which may have the lowest vacuum degree, to a vacuum degree that does not interfere with the appropriate irradiation of the electron beam EB on the sample W. Has exhaust capacity. As an example, the vacuum pump 51 maintains the pressure (ie, air pressure) of the beam passage space SPb3 below 1 × 10 -3 pascals (eg, approximately on the order of 1 × 10 -3 pascals to 1 × 10 -4 pascals). It may have an exhaust capacity that can be maintained). Such a vacuum pump 51 is used, for example, as a turbo molecular pump used as a main pump (or another type of high vacuum pump including at least one of a diffusion pump, a cryo pump and a sputter ion pump) and an auxiliary pump. A vacuum pump combined with a dry pump (or another type of low vacuum pump) may be used. The exhaust speed of the vacuum pump 51 may be an exhaust speed [m 3 / s] that can maintain the pressure (that is, atmospheric pressure) of the beam passing space SPb3 at 1 × 10 -3 pascal or less. ..
 但し、ビーム通過空間SPb3は、ビーム通過空間SPb1及びSPb2のように何らかの部材(具体的には、筐体111及び差動排気系12)によって周囲を取り囲まれた閉鎖空間ではない。つまり、ビーム通過空間SPb3は、何らかの部材によって周囲を取り囲まれていない開放空間である。このため、ビーム通過空間SPb3が真空ポンプ51によって減圧されたとしても、ビーム通過空間SPb3には、ビーム通過空間SPb3の周囲から気体が流入する。その結果、ビーム通過空間SPb3の真空度が低下する可能性がある。そこで、差動排気系12は、ビーム照射装置1と試料Wの表面WSuとの間において差動排気を行うことで、ビーム通過空間SPb3の真空度を維持する。つまり、差動排気系12は、ビーム照射装置1と試料Wの表面WSuとの間において差動排気を行うことで、ビーム照射装置1と試料Wとの間に、周囲と比較して相対的に高い真空度が維持された真空領域VSP(例えば、局所的な真空領域VSP)を形成する。 However, the beam passing space SPb3 is not a closed space surrounded by some member (specifically, the housing 111 and the differential exhaust system 12) like the beam passing spaces SPb1 and SPb2. That is, the beam passing space SPb3 is an open space that is not surrounded by any member. Therefore, even if the beam passing space SPb3 is decompressed by the vacuum pump 51, gas flows into the beam passing space SPb3 from the periphery of the beam passing space SPb3. As a result, the degree of vacuum of the beam passing space SPb3 may decrease. Therefore, the differential exhaust system 12 maintains the degree of vacuum in the beam passing space SPb3 by performing differential exhaust between the beam irradiation device 1 and the surface WSu of the sample W. That is, the differential exhaust system 12 performs differential exhaust between the beam irradiation device 1 and the surface WSu of the sample W, so that the beam irradiation device 1 and the sample W are relative to each other as compared with the surroundings. A vacuum region VSP (for example, a local vacuum region VSP) in which a high degree of vacuum is maintained is formed.
 差動排気を行うために、差動排気系12の射出面12LSには、ビーム射出口1250を取り囲む2つの環状の排気口1251及び1252(或いは、少なくとも一つの任意の形状の排気口)が形成されている。排気口1251及び1252は排気溝(言い換えれば、凹部、以下同じ)とも言える。排気口1251には、差動排気系12に形成された排気通路(つまり、管路、以下同じ)EP1を介して真空ポンプ52が連結されている。つまり、排気通路EP1の第1端(つまり、一方の端部)は、真空ポンプ52に接続され、排気通路EP1の第2端(つまり、他方の端部であり、実質的には、排気口1251を形成する部分)は、射出面12LSと試料Wの表面WSuとの間の空間に接する。排気口1252には、差動排気系12に形成された排気通路(つまり、管路、以下同じ)EP2を介して真空ポンプ52が連結されている。つまり、排気通路EP2の第1端(つまり、一方の端部)は、真空ポンプ52に接続され、排気通路EP2の第2端(つまり、他方の端部であり、実質的には、排気口1252を形成する部分)は、射出面12LSと試料Wの表面WSuとの間の空間に接する。このため、差動排気系12は、排気通路EP1及び排気口1251から構成される1段目の排気経路と、排気通路EP2及び排気口1252から構成される2段目の排気経路とを介して、ビーム照射装置1と試料Wの表面WSuとの間において差動排気を行うことができる。つまり、図2に示す例では、差動排気系12は、排気段数が2段に設定された差動排気系である。但し、差動排気系12の排気段数が2段に限定されることはなく、排気段数が2段ではない場合には、射出面12LSに形成される排気口の数及び当該排気口に接続する排気通路の数は、排気段数の数に応じて適宜設定される。 In order to perform differential exhaust, two annular exhaust ports 1251 and 1252 (or at least one exhaust port of any shape) surrounding the beam injection port 1250 are formed on the injection surface 12LS of the differential exhaust system 12. Has been done. The exhaust ports 1251 and 1252 can also be said to be exhaust grooves (in other words, recesses, the same applies hereinafter). A vacuum pump 52 is connected to the exhaust port 1251 via an exhaust passage (that is, a pipeline, the same applies hereinafter) EP1 formed in the differential exhaust system 12. That is, the first end (that is, one end) of the exhaust passage EP1 is connected to the vacuum pump 52 and is the second end (that is, the other end) of the exhaust passage EP1, which is substantially the exhaust port. The portion forming 1251) is in contact with the space between the injection surface 12LS and the surface WSu of the sample W. A vacuum pump 52 is connected to the exhaust port 1252 via an exhaust passage (that is, a pipeline, the same applies hereinafter) EP2 formed in the differential exhaust system 12. That is, the first end (that is, one end) of the exhaust passage EP2 is connected to the vacuum pump 52 and is the second end (that is, the other end) of the exhaust passage EP2, which is substantially the exhaust port. The portion forming 1252) is in contact with the space between the injection surface 12LS and the surface WSu of the sample W. Therefore, the differential exhaust system 12 is provided via a first-stage exhaust path composed of the exhaust passage EP1 and the exhaust port 1251 and a second-stage exhaust path composed of the exhaust passage EP2 and the exhaust port 1252. , Differential exhaust can be performed between the beam irradiation device 1 and the surface WSu of the sample W. That is, in the example shown in FIG. 2, the differential exhaust system 12 is a differential exhaust system in which the number of exhaust stages is set to two. However, the number of exhaust stages of the differential exhaust system 12 is not limited to two, and when the number of exhaust stages is not two, the number of exhaust ports formed on the injection surface 12LS and the exhaust ports are connected to the exhaust ports. The number of exhaust passages is appropriately set according to the number of exhaust stages.
 この場合、真空ポンプ52は、差動排気系12(特に、射出面12LS)が試料Wの表面WSuの一部と対向した状態で、排気通路EP1及びEP2のそれぞれを介してビーム通過空間SPb3を排気する。真空ポンプ52は、排気通路EP1及びEP2のそれぞれ(特に、その端部であり、実質的には排気口1251及び1252)が試料Wの表面WSuの一部と対向した状態で、ビーム通過空間SPb3を排気する。その結果、差動排気系12は、ビーム照射装置1と試料Wの表面WSuとの間に、ビーム通過空間SPb3を含む真空領域VSPを形成することができる。尚、本実施形態での差動排気は、試料Wの表面WSuとビーム照射装置1との間において、一の空間(例えば、ビーム通過空間SPb3)と一の空間とは異なる他の空間との間の気圧差が試料Wの表面WSuとビーム照射装置1との間の間隙の排気抵抗によって維持されるという性質を利用しながらビーム通過空間SPb3を排気することに相当する。ビーム通過空間SPb3が試料Wの表面WSuのうちの少なくとも一部を覆うことから、真空領域VSPもまた、試料Wの表面WSuのうちの少なくとも一部を局所的に覆う。つまり、真空領域VSPは、試料Wの表面WSuのうちの少なくとも一部に接する(つまり、面する)。 In this case, the vacuum pump 52 passes the beam passage space SPb3 through the exhaust passages EP1 and EP2 in a state where the differential exhaust system 12 (particularly, the injection surface 12LS) faces a part of the surface WSu of the sample W. Exhaust. The vacuum pump 52 has a beam passage space SPb3 in a state where the exhaust passages EP1 and EP2 (particularly, the ends thereof, substantially the exhaust ports 1251 and 1252) face a part of the surface WSu of the sample W. Exhaust. As a result, the differential exhaust system 12 can form a vacuum region VSP including the beam passing space SPb3 between the beam irradiation device 1 and the surface WSu of the sample W. In the differential exhaust in the present embodiment, one space (for example, the beam passing space SPb3) and another space different from one space are provided between the surface WSu of the sample W and the beam irradiating device 1. It corresponds to exhausting the beam passage space SPb3 while utilizing the property that the pressure difference between the samples W is maintained by the exhaust resistance of the gap between the surface WSu of the sample W and the beam irradiation device 1. Since the beam passage space SPb3 covers at least a part of the surface WSu of the sample W, the vacuum region VSP also locally covers at least a part of the surface WSu of the sample W. That is, the vacuum region VSP is in contact with (ie, faces) at least a portion of the surface WSu of the sample W.
 真空ポンプ52は、主として、ビーム通過空間SPb3の周囲の空間(特に、真空領域VSPが形成される空間の周囲に位置する、真空領域VSPよりも圧力が高い空間)の少なくとも一部を排気してビーム通過空間SPb3の真空度を相対的に高くするために用いられる。このため、真空ポンプ52は、真空ポンプ51が維持する真空度よりも低い真空度を維持することができる程度の排気能力を有していてもよい。つまり、真空ポンプ52の排気能力は、真空ポンプ51の排気能力よりも低くてもよい。例えば、真空ポンプ52は、ドライポンプ(或いは、他の種類の低真空用ポンプ)を含む一方でターボ分子ポンプ(或いは、他の種類の高真空用ポンプ)を含んでいない真空ポンプであってもよい。この場合、真空ポンプ52によって減圧される排気口1251から1252及び排気通路EP1からEP2内の空間の真空度は、真空ポンプ51によって減圧されるビーム通過空間SPb1からSPb3の真空度よりも低くてもよい。尚、真空ポンプ52の排気速度は、真空ポンプ51が維持する真空度よりも低い真空度を維持することができる程度の排気速度[m/s]であってもよい。 The vacuum pump 52 mainly exhausts at least a part of the space around the beam passing space SPb3 (particularly, the space located around the space where the vacuum region VSP is formed and having a higher pressure than the vacuum region VSP). It is used to relatively increase the degree of vacuum of the beam passage space SPb3. Therefore, the vacuum pump 52 may have an exhaust capacity capable of maintaining a vacuum degree lower than the vacuum degree maintained by the vacuum pump 51. That is, the exhaust capacity of the vacuum pump 52 may be lower than the exhaust capacity of the vacuum pump 51. For example, the vacuum pump 52 may be a vacuum pump that includes a dry pump (or another type of low vacuum pump) but not a turbo molecular pump (or another type of high vacuum pump). Good. In this case, even if the degree of vacuum in the spaces in the exhaust ports 1251 to 1252 and the exhaust passages EP1 to EP2 decompressed by the vacuum pump 52 is lower than the degree of vacuum in the beam passage spaces SPb1 to SPb3 decompressed by the vacuum pump 51. Good. The exhaust speed of the vacuum pump 52 may be an exhaust speed [m 3 / s] that can maintain a vacuum degree lower than the vacuum degree maintained by the vacuum pump 51.
 但し、排気抵抗を利用して真空領域VSPを形成する差動排気の原理を考慮すると、複数段の排気経路のうちのある排気経路を介して排気する領域がビーム通過空間SPb3に近い(言い換えれば、ビーム射出口1250に近い)ほど、ビーム通過空間SPb3の真空度を高める際の当該ある排気経路の真空度の寄与度が高くなる。このため、差動排気系12は、排気通路EP1及び排気口1251から構成される1段目の排気経路(つまり、排気口1251から真空ポンプ52に至るまでの排気経路)の真空度が、排気通路EP2及び排気口1252から構成される2段目の排気経路(つまり、排気口1252から真空ポンプ52に至るまでの排気経路)の真空度よりも高くなるように、差動排気を行ってもよい。 However, considering the principle of differential exhaust that forms a vacuum region VSP using exhaust resistance, the region that exhausts through a certain exhaust path among the multiple stages of exhaust paths is close to the beam passage space SPb3 (in other words,). , The closer to the beam injection port 1250), the greater the contribution of the degree of vacuum of the exhaust path to increase the degree of vacuum of the beam passage space SPb3. Therefore, in the differential exhaust system 12, the degree of vacuum of the first-stage exhaust path (that is, the exhaust path from the exhaust port 1251 to the vacuum pump 52) composed of the exhaust passage EP1 and the exhaust port 1251 is exhausted. Even if differential exhaust is performed so that the degree of vacuum is higher than the degree of vacuum of the second stage exhaust path (that is, the exhaust path from the exhaust port 1252 to the vacuum pump 52) composed of the passage EP2 and the exhaust port 1252. Good.
 例えば、排気経路の長さは、当該排気経路の真空度に影響を与える。このため、1段目の排気経路の長さが、2段目の排気経路の長さと異なっていてもよい。典型的には、同じ排気速度で排気経路を排気するという条件下では、排気経路が短くなるほど、当該排気経路の真空度が高くなる可能性が高くなる。なぜならば、排気経路が短くなるほど、排気経路内で気体分子が存在する空間(つまり、排気すべき空間)が小さくなるからである。このため、1段目の排気経路が、2段目の排気経路よりも短くてもよい。 For example, the length of the exhaust path affects the degree of vacuum of the exhaust path. Therefore, the length of the first-stage exhaust path may be different from the length of the second-stage exhaust path. Typically, under the condition that the exhaust path is exhausted at the same exhaust rate, the shorter the exhaust path, the more likely it is that the degree of vacuum in the exhaust path will increase. This is because the shorter the exhaust path, the smaller the space in which the gas molecules exist (that is, the space to be exhausted). Therefore, the exhaust path of the first stage may be shorter than the exhaust path of the second stage.
 例えば、排気経路の容積は、当該排気経路の真空度に影響を与える。このため、1段目の排気経路の容積が、2段目の排気経路の容積と異なっていてもよい。典型的には、同じ排気速度で排気経路を排気するという条件下では、排気経路の容積が少なくなるほど、当該排気経路の真空度が高くなる可能性が高くなる。なぜならば、排気経路の容積が少なくなるほど、排気経路内で気体分子が存在する空間(つまり、排気すべき空間)が小さくなるからである。このため、1段目の排気経路の容積が、2段目の排気経路の容積よりも少なくてもよい。 For example, the volume of the exhaust path affects the degree of vacuum of the exhaust path. Therefore, the volume of the first-stage exhaust path may be different from the volume of the second-stage exhaust path. Typically, under the condition that the exhaust path is exhausted at the same exhaust rate, the smaller the volume of the exhaust path, the higher the possibility that the degree of vacuum of the exhaust path increases. This is because the smaller the volume of the exhaust path, the smaller the space in which the gas molecules exist (that is, the space to be exhausted). Therefore, the volume of the first-stage exhaust path may be smaller than the volume of the second-stage exhaust path.
 例えば、排気経路の内側面の面積は、当該排気経路の真空度に影響を与える。このため、1段目の排気経路の内側面の面積が、2段目の排気経路の内側面の面積と異なっていてもよい。典型的には、同じ排気速度で排気経路を排気するという条件下では、排気経路の内側面の面積が小さくなるほど、当該排気経路の真空度が高くなる可能性が高くなる。なぜならば、排気経路の内側面の面積が短くなるほど、排気経路内で気体分子が存在する内側面(つまり、排気によって気体分子を回収すべき領域)が小さくなるからである。このため、1段目の排気経路の内側面の面積が、2段目の排気経路の内側面の面積よりも小さくてもよい。 For example, the area of the inner surface of the exhaust path affects the degree of vacuum of the exhaust path. Therefore, the area of the inner surface of the first-stage exhaust path may be different from the area of the inner surface of the second-stage exhaust path. Typically, under the condition that the exhaust path is exhausted at the same exhaust rate, the smaller the area of the inner surface of the exhaust path, the higher the possibility that the degree of vacuum of the exhaust path increases. This is because the shorter the area of the inner surface of the exhaust path, the smaller the inner surface where the gas molecules are present in the exhaust path (that is, the region where the gas molecules should be recovered by the exhaust gas). Therefore, the area of the inner surface of the first-stage exhaust path may be smaller than the area of the inner surface of the second-stage exhaust path.
 このようにビーム通過空間SPb3を含む真空領域VSPが形成される一方で、試料Wの表面WSuのうちビーム通過空間SPb3に面していない部分(特に、ビーム通過空間SPb3から離れた部分)の少なくとも一部は、真空領域VSPよりも真空度が低い非真空領域に覆われていてもよい。具体的には、差動排気系12は、ビーム通過空間SPb3を含む空間SP1(図2の下部の拡大図参照)に真空領域VSPを形成する。この空間SP1は、例えば、ビーム射出口1250、排気口1251及び1252の少なくとも一つに接する空間を含む。空間SP1は、試料Wの表面WSuのうちビーム射出口1250、排気口1251及び1252の少なくとも一つの直下に位置する部分に面する空間を含む。一方で、空間SP1の周囲の空間SP2(つまり、空間SP1の周囲において空間SP2に接続する空間SP2であり、図2の下部の拡大図参照))には、真空領域VSPが形成されない。つまり、空間SP2は、空間SP1よりも圧力が高い空間となる。この空間SP2は、例えば、ビーム射出口1250、排気口1251及び1252から離れた空間を含む。空間SP2は、空間SP1を経由することなくビーム射出口1250、排気口1251及び1252(更には、ビーム通過空間SPb2、排気通路EP1及び排気通路EP2)に接続することができない空間を含む。空間SP2は、空間SP1を経由すればビーム射出口1250、排気口1251及び1252(更には、ビーム通過空間SPb2、排気通路EP1及び排気通路EP2)に接続することができる空間を含む。空間SP2の圧力が空間SP1の圧力よりも高いがゆえに、空間SP2から空間SP1に対して気体が流入する可能性があるが、空間SP2から空間SP1に対して流入する気体は、最も外周の排気口1252(更には、排気口1251及びビーム射出口1250)を介して、空間SP1から排出される。つまり、空間SP2から空間SP1に対して流入する気体は、排気通路EP2(更には、排気通路EP1及びビーム通過空間SPb2)を介して、空間SP1から排出される。このため、空間SP1に形成される真空領域の真空度が維持される。このように、真空領域VSPが局所的に形成される状態は、試料Wの表面WSu上において真空領域VSPが局所的に形成される状態(つまり、試料Wの表面WSuに沿った方向において真空領域VSPが局所的に形成される状態)を意味していてもよい。 While the vacuum region VSP including the beam passage space SPb3 is formed in this way, at least the portion of the surface WSu of the sample W that does not face the beam passage space SPb3 (particularly, the portion away from the beam passage space SPb3) is formed. A part may be covered with a non-vacuum region having a lower degree of vacuum than the vacuum region VSP. Specifically, the differential exhaust system 12 forms a vacuum region VSP in the space SP1 (see the enlarged view at the bottom of FIG. 2) including the beam passing space SPb3. The space SP1 includes, for example, a space in contact with at least one of the beam injection port 1250 and the exhaust ports 1251 and 1252. The space SP1 includes a space facing a portion of the surface WSu of the sample W located directly below at least one of the beam injection port 1250 and the exhaust ports 1251 and 1252. On the other hand, the vacuum region VSP is not formed in the space SP2 around the space SP1 (that is, the space SP2 connected to the space SP2 around the space SP1 and see the enlarged view at the bottom of FIG. 2). That is, the space SP2 is a space having a higher pressure than the space SP1. The space SP2 includes, for example, a space away from the beam outlet 1250 and the exhaust ports 1251 and 1252. The space SP2 includes a space that cannot be connected to the beam injection port 1250, the exhaust ports 1251 and 1252 (furthermore, the beam passage space SPb2, the exhaust passage EP1 and the exhaust passage EP2) without passing through the space SP1. The space SP2 includes a space that can be connected to the beam injection port 1250, the exhaust ports 1251 and 1252 (furthermore, the beam passage space SPb2, the exhaust passage EP1 and the exhaust passage EP2) via the space SP1. Since the pressure in the space SP2 is higher than the pressure in the space SP1, there is a possibility that gas may flow from the space SP2 into the space SP1, but the gas flowing from the space SP2 into the space SP1 is the outermost exhaust. It is discharged from the space SP1 through the port 1252 (further, the exhaust port 1251 and the beam injection port 1250). That is, the gas flowing from the space SP2 into the space SP1 is discharged from the space SP1 via the exhaust passage EP2 (furthermore, the exhaust passage EP1 and the beam passage space SPb2). Therefore, the degree of vacuum in the vacuum region formed in the space SP1 is maintained. As described above, the state in which the vacuum region VSP is locally formed is the state in which the vacuum region VSP is locally formed on the surface WSu of the sample W (that is, the vacuum region in the direction along the surface WSu of the sample W). It may mean a state in which VSP is locally formed).
 尚、真空領域VSPは、上述したように、電子ビームEBの試料Wへの適切な照射を妨げないほどにしか気体分子が存在しない領域である。具体的には、真空領域VSPは、例えば、圧力が1×10-3パスカル以下(例えば、概ね1×10-3パスカルから1×10-4パスカルのオーダーとなる)領域である。つまり、真空領域VSPが形成される空間SP1の圧力は、1×10-3パスカル以下(例えば、概ね1×10-3パスカルから1×10-4パスカルのオーダー)の圧力となる。一方で、真空領域VSPが形成されない空間SP2は、例えば、電子ビームEBの試料Wへの適切な照射を妨げかねないほどに相対的に多くの気体分子が存在する空間となっていてもよい。例えば、空間SP2の圧力は、例えば、1×10-2パスカル以上の圧力となっていてもよい。典型的には、空間SP2は、大気圧空間であってもよい。このように、空間SP1及びSP2は、その圧力(つまり、気圧)から区別されてもよい。 As described above, the vacuum region VSP is a region in which gas molecules are present only to such an extent that the electron beam EB irradiates the sample W appropriately. Specifically, the vacuum region VSP is, for example, a region where the pressure is 1 × 10 -3 Pascal or less (for example, generally on the order of 1 × 10 -3 Pascal to 1 × 10 -4 Pascal). That is, the pressure of the space SP1 in which the vacuum region VSP is formed is 1 × 10 -3 Pascal or less (for example, approximately on the order of 1 × 10 -3 Pascal to 1 × 10 -4 Pascal). On the other hand, the space SP2 in which the vacuum region VSP is not formed may be, for example, a space in which a relatively large number of gas molecules are present so as to hinder the appropriate irradiation of the sample W of the electron beam EB. For example, the pressure in the space SP2 may be, for example, a pressure of 1 × 10 −2 pascal or more. Typically, the space SP2 may be an atmospheric pressure space. In this way, the spaces SP1 and SP2 may be distinguished from their pressure (that is, atmospheric pressure).
 このような真空領域VSPを差動排気によって形成するために、図2に示す例では、差動排気系12は、真空形成部材121と、真空形成部材122と、真空形成部材123と、真空形成部材124とを備えている。更に、真空形成部材124は、真空形成部材1241と、真空形成部材1242と、真空形成部材1243とを含む。但し、差動排気系12は、真空領域VSPを形成可能である限りは、どのような構造を有していてもよい。 In order to form such a vacuum region VSP by the differential exhaust, in the example shown in FIG. 2, the differential exhaust system 12 includes the vacuum forming member 121, the vacuum forming member 122, the vacuum forming member 123, and the vacuum forming. It includes a member 124. Further, the vacuum forming member 124 includes a vacuum forming member 1241, a vacuum forming member 1242, and a vacuum forming member 1243. However, the differential exhaust system 12 may have any structure as long as the vacuum region VSP can be formed.
 尚、図2に示すように、差動排気系12には、ビーム通過空間SPb2に面する開口126が形成されている。当該開口126には、配管127が接続されている。この開口126及び配管127については、差動排気系12の構造を説明する際に詳細に説明するため(図3及び図4参照)、ここでの詳細な説明を省略する。 As shown in FIG. 2, the differential exhaust system 12 is formed with an opening 126 facing the beam passing space SPb2. A pipe 127 is connected to the opening 126. The opening 126 and the pipe 127 will be described in detail when the structure of the differential exhaust system 12 is described (see FIGS. 3 and 4), and thus detailed description thereof will be omitted here.
 (1-3)差動排気系12の構造
 続いて、図3から図5を参照しながら、差動排気系12の構造について更に詳細に説明する。図3は、第1実施形態の差動排気系12の構造を示す断面図である。図4は、第1実施形態の差動排気系12の構造を、真空形成部材121から真空形成部材124をZ軸方向に沿って分離した状態で示す斜視図である。図5は、差動排気系12の射出面12LSの形状を示す平面図である。
(1-3) Structure of Differential Exhaust System 12 Subsequently, the structure of the differential exhaust system 12 will be described in more detail with reference to FIGS. 3 to 5. FIG. 3 is a cross-sectional view showing the structure of the differential exhaust system 12 of the first embodiment. FIG. 4 is a perspective view showing the structure of the differential exhaust system 12 of the first embodiment in a state where the vacuum forming member 121 and the vacuum forming member 124 are separated along the Z-axis direction. FIG. 5 is a plan view showing the shape of the injection surface 12LS of the differential exhaust system 12.
 図3及び図4に示すように、真空形成部材121は、ビーム光学系11から下方に延びる筒状の部材である。真空形成部材121は、ビーム光学系11の下方(つまり、-Z側)に配置される。真空形成部材121は、ビーム光学系11の下方において、ビーム光学系11に接続される。例えば、真空形成部材121は、真空形成部材121の上面121Suがビーム光学系11の下面に接続されるように、ビーム光学系11に接続されてもよい。真空形成部材121は、ビーム光学系11と一体化されていてもよいし、ビーム光学系11から分離可能であってもよい。 As shown in FIGS. 3 and 4, the vacuum forming member 121 is a tubular member extending downward from the beam optical system 11. The vacuum forming member 121 is arranged below the beam optical system 11 (that is, on the −Z side). The vacuum forming member 121 is connected to the beam optical system 11 below the beam optical system 11. For example, the vacuum forming member 121 may be connected to the beam optical system 11 so that the upper surface 121Su of the vacuum forming member 121 is connected to the lower surface of the beam optical system 11. The vacuum forming member 121 may be integrated with the beam optical system 11 or may be separable from the beam optical system 11.
 真空形成部材121の内部には、ビーム通過空間SPb2の一部を構成するビーム通過空間SPb2-1が形成されている。ビーム通過空間SPb2-1は、真空形成部材121を貫通する。図3及び図4に示す例では、ビーム通過空間SPb2-1は、真空形成部材121の下面121Slから真空形成部材121の上面121Suに向かって真空形成部材121を貫通している。ビーム通過空間SPb2-1は、ビーム通過空間SPb2-1の一方の端部(図4では、+Z側の端部であり、上面121Suに形成された開口)を介して、ビーム光学系11のビーム通過空間SPb1に接続している(図2参照)。ビーム通過空間SP2-1は更に、ビーム通過空間SPb2-1の他方の端部(図3では、-Z側の端部であり、下面121Slに形成された開口)を介して、真空形成部材121の外部の空間(より具体的には、後述する真空形成部材122のビーム通過空間SPb2-2)に接続している。 Inside the vacuum forming member 121, a beam passing space SPb2-1 forming a part of the beam passing space SPb2 is formed. The beam passage space SPb2-1 penetrates the vacuum forming member 121. In the example shown in FIGS. 3 and 4, the beam passage space SPb2-1 penetrates the vacuum forming member 121 from the lower surface 121Sl of the vacuum forming member 121 toward the upper surface 121Su of the vacuum forming member 121. The beam passing space SPb2-1 is a beam of the beam optical system 11 via one end of the beam passing space SPb2-1 (in FIG. 4, the end on the + Z side and the opening formed in the upper surface 121Su). It is connected to the passage space SPb1 (see FIG. 2). The beam passing space SP2-1 further passes through the other end of the beam passing space SPb2-1 (in FIG. 3, the end on the −Z side and the opening formed in the lower surface 121Sl), and the vacuum forming member 121 It is connected to the external space (more specifically, the beam passing space SPb2-2 of the vacuum forming member 122 described later).
 真空形成部材121には、更に、排気通路EP1の一部を構成する排気通路EP1-1と、排気通路EP2の一部を構成する排気通路EP2-1とが形成されている。排気通路EP1-1からEP2-1は、互いに分離した通路(つまり、空間)である。排気通路EP1-1からEP2-1は、ビーム通過空間SPb2-1から分離した通路である。排気通路EP1-1からEP2-1のそれぞれは、真空形成部材121の下面121Slから真空形成部材121の他の面(図3に示す例では、側面)に向かって真空形成部材121を貫通している。このため、排気通路EP1-1からEP2-1のそれぞれは、Z軸に沿って延びる通路部分と、Z軸に交差する方向に沿って延びる通路部分とを含んでいてもよい。排気通路EP1-1からEP2-1のそれぞれは、排気通路EP1-1からEP2-1のそれぞれの一方の端部(図3に示す例では、真空形成部材121の側面に形成された開口)を介して、真空ポンプ52に接続している。排気通路EP1-1からEP2-1のそれぞれは更に、排気通路EP1-1からEP2-1のそれぞれの他方の端部(図5に示す例では、下面121Slに形成された開口)を介して、真空形成部材121の外部の空間(より具体的には、後述する真空形成部材122に形成された排気通路EP1-2からEP2-2)に接続している。 The vacuum forming member 121 is further formed with an exhaust passage EP1-1 forming a part of the exhaust passage EP1 and an exhaust passage EP2-1 forming a part of the exhaust passage EP2. The exhaust passages EP1-1 to EP2-1 are passages (that is, spaces) separated from each other. The exhaust passages EP1-1 to EP2-1 are passages separated from the beam passage space SPb2-1. Each of the exhaust passages EP1-1 to EP2-1 penetrates the vacuum forming member 121 from the lower surface 121Sl of the vacuum forming member 121 toward the other surface (side surface in the example shown in FIG. 3) of the vacuum forming member 121. There is. Therefore, each of the exhaust passages EP1-1 to EP2-1 may include a passage portion extending along the Z axis and a passage portion extending along the direction intersecting the Z axis. Each of the exhaust passages EP1-1 to EP2-1 has one end of each of the exhaust passages EP1-1 to EP2-1 (in the example shown in FIG. 3, an opening formed on the side surface of the vacuum forming member 121). It is connected to the vacuum pump 52 via. Each of the exhaust passages EP1-1 to EP2-1 further passes through the other end of each of the exhaust passages EP1-1 to EP2-1 (in the example shown in FIG. 5, an opening formed in the lower surface 121Sl). It is connected to the space outside the vacuum forming member 121 (more specifically, the exhaust passages EP1-2 to EP2-2 formed in the vacuum forming member 122 described later).
 真空形成部材122は、真空形成部材121から下方に延びる部材である。真空形成部材122は、真空形成部材121の下方(つまり、-Z側)に配置される。真空形成部材122は、真空形成部材121の下方において、真空形成部材121に接続される。例えば、真空形成部材122は、真空形成部材122の上面122Suが真空形成部材121の下面121Slに接続されるように、真空形成部材121に接続されてもよい。真空形成部材122は、真空形成部材121と一体化されていてもよいし、真空形成部材121から分離可能であってもよい。 The vacuum forming member 122 is a member extending downward from the vacuum forming member 121. The vacuum forming member 122 is arranged below the vacuum forming member 121 (that is, on the −Z side). The vacuum forming member 122 is connected to the vacuum forming member 121 below the vacuum forming member 121. For example, the vacuum forming member 122 may be connected to the vacuum forming member 121 so that the upper surface 122Su of the vacuum forming member 122 is connected to the lower surface 121Sl of the vacuum forming member 121. The vacuum forming member 122 may be integrated with the vacuum forming member 121 or may be separable from the vacuum forming member 121.
 真空形成部材122の内部には、ビーム通過空間SPb2の一部を構成するビーム通過空間SPb2-2が形成されている。ビーム通過空間SPb2-2は、真空形成部材122を貫通する。図3に示す例では、ビーム通過空間SPb2-2は、真空形成部材122の下面122Slから真空形成部材122の上面122Suに向かって真空形成部材122を貫通している。ビーム通過空間SPb2-2は、ビーム通過空間SPb2-2の一方の端部(図3に示す例では、+Z側の端部であり、上面122Suに形成された開口)を介して、真空形成部材121のビーム通過空間SPb2-1に接続している。ビーム通過空間SP2-2は更に、ビーム通過空間SPb2-2の他方の端部(図3に示す例では、-Z側の端部であり、下面122Slに形成された開口)を介して、真空形成部材122の外部の空間(より具体的には、後述する真空形成部材123のビーム通過空間SPb2-3)に接続している。 Inside the vacuum forming member 122, a beam passing space SPb2-2 forming a part of the beam passing space SPb2 is formed. The beam passage space SPb2-2 penetrates the vacuum forming member 122. In the example shown in FIG. 3, the beam passage space SPb2-2 penetrates the vacuum forming member 122 from the lower surface 122Sl of the vacuum forming member 122 toward the upper surface 122Su of the vacuum forming member 122. The beam passing space SPb2-2 is a vacuum forming member via one end of the beam passing space SPb2-2 (in the example shown in FIG. 3, the end on the + Z side and the opening formed in the upper surface 122Su). It is connected to the beam passage space SPb2-1 of 121. The beam passage space SP2-2 is further evacuated through the other end of the beam passage space SPb2-2 (in the example shown in FIG. 3, the end on the −Z side, which is an opening formed in the lower surface 122Sl). It is connected to the space outside the forming member 122 (more specifically, the beam passing space SPb2-3 of the vacuum forming member 123 described later).
 真空形成部材122には更に、排気通路EP1の一部を構成する排気通路EP1-2が形成されている。排気通路EP1-2は、排気通路EP1-2の一方の端部(図3に示す例では、上面122Suに形成された開口)を介して、真空形成部材121の排気通路EP1-1に接続している。排気通路EP1-2は、排気通路EP1-2の他方の端部(図3に示す例では、下面122Slに形成された開口)を介して、真空形成部材122の外部の空間(より具体的には、後述する真空形成部材123に形成された排気通路EP1-3)に接続している。 The vacuum forming member 122 is further formed with an exhaust passage EP1-2 forming a part of the exhaust passage EP1. The exhaust passage EP1-2 is connected to the exhaust passage EP1-1 of the vacuum forming member 121 via one end of the exhaust passage EP1-2 (in the example shown in FIG. 3, an opening formed in the upper surface 122Su). ing. The exhaust passage EP1-2 is a space (more specifically) outside the vacuum forming member 122 via the other end of the exhaust passage EP1-2 (in the example shown in FIG. 3, an opening formed in the lower surface 122Sl). Is connected to the exhaust passage EP1-3) formed in the vacuum forming member 123 described later.
 真空形成部材122には更に、排気通路EP2の一部を構成する排気通路EP2-2が形成されている。排気通路EP2-2は、排気通路EP2-2の一方の端部(図3に示す例では、上面122Suに形成された開口)を介して、真空形成部材121の排気通路EP2-1に接続している。排気通路EP2-2は、排気通路EP2-2の他方の端部(図3に示す例では、下面122Slに形成された開口)を介して、真空形成部材122の外部の空間(より具体的には、後述する真空形成部材123に形成された排気通路EP2-3)に接続している。 The vacuum forming member 122 is further formed with an exhaust passage EP2-2 forming a part of the exhaust passage EP2. The exhaust passage EP2-2 is connected to the exhaust passage EP2-1 of the vacuum forming member 121 via one end of the exhaust passage EP2-2 (in the example shown in FIG. 3, an opening formed in the upper surface 122Su). ing. The exhaust passage EP2-2 is a space (more specifically) outside the vacuum forming member 122 via the other end of the exhaust passage EP2-2 (in the example shown in FIG. 3, an opening formed in the lower surface 122Sl). Is connected to the exhaust passage EP2-3) formed in the vacuum forming member 123 described later.
 真空形成部材123は、真空形成部材122から下方に延びる部材である。真空形成部材123は、真空形成部材122の下方(つまり、-Z側)に配置される。真空形成部材123は、真空形成部材122の下方において、真空形成部材122に接続される。例えば、真空形成部材123は、真空形成部材123の上面123Suが真空形成部材122の下面122Slに接続されるように、真空形成部材122に接続されてもよい。真空形成部材123は、真空形成部材122と一体化されていてもよいし、真空形成部材122から分離可能であってもよい。 The vacuum forming member 123 is a member extending downward from the vacuum forming member 122. The vacuum forming member 123 is arranged below the vacuum forming member 122 (that is, on the −Z side). The vacuum forming member 123 is connected to the vacuum forming member 122 below the vacuum forming member 122. For example, the vacuum forming member 123 may be connected to the vacuum forming member 122 so that the upper surface 123Su of the vacuum forming member 123 is connected to the lower surface 122Sl of the vacuum forming member 122. The vacuum forming member 123 may be integrated with the vacuum forming member 122 or may be separable from the vacuum forming member 122.
 真空形成部材123の内部には、ビーム通過空間SPb2の一部を構成するビーム通過空間SPb2-3が形成されている。ビーム通過空間SPb2-3は、真空形成部材123を貫通する。図3に示す例では、ビーム通過空間SPb2-3は、真空形成部材123の下面123Slから真空形成部材123の上面123Suに向かって真空形成部材123を貫通している。ビーム通過空間SPb2-3は、ビーム通過空間SPb2-3の一方の端部(図3に示す例では、+Z側の端部であり、上面123Suに形成された開口)を介して、真空形成部材122のビーム通過空間SPb2-2に接続している。ビーム通過空間SP2-3は更に、ビーム通過空間SPb2-3の他方の端部(図3に示す例では、-Z側の端部であり、下面123Slに形成された開口)を介して、真空形成部材123の外部の空間(より具体的には、後述する真空形成部材124のビーム通過空間SPb2-4)に接続している。 Inside the vacuum forming member 123, a beam passing space SPb2-3 forming a part of the beam passing space SPb2 is formed. The beam passage space SPb2-3 penetrates the vacuum forming member 123. In the example shown in FIG. 3, the beam passage space SPb2-3 penetrates the vacuum forming member 123 from the lower surface 123Sl of the vacuum forming member 123 toward the upper surface 123Su of the vacuum forming member 123. The beam passing space SPb2-3 is a vacuum forming member via one end of the beam passing space SPb2-3 (in the example shown in FIG. 3, the end on the + Z side and the opening formed in the upper surface 123Su). It is connected to the beam passage space SPb2-2 of 122. The beam passage space SP2-3 is further evacuated through the other end of the beam passage space SPb2-3 (in the example shown in FIG. 3, the end on the −Z side, which is an opening formed in the lower surface 123Sl). It is connected to the space outside the forming member 123 (more specifically, the beam passing space SPb2-4 of the vacuum forming member 124 described later).
 真空形成部材123には更に、排気通路EP1の一部を構成する排気通路EP1-3が形成されている。排気通路EP1-3は、排気通路EP1-3の一方の端部(図3に示す例では、上面123Suに形成された開口)を介して、真空形成部材122の排気通路EP1-2に接続している。排気通路EP1-3は、排気通路EP1-3の他方の端部(図3に示す例では、下面123Slに形成された開口)を介して、真空形成部材123の外部の空間(より具体的には、後述する真空形成部材124に形成された排気通路EP1-4)に接続している。 The vacuum forming member 123 is further formed with an exhaust passage EP1-3 forming a part of the exhaust passage EP1. The exhaust passage EP1-3 is connected to the exhaust passage EP1-2 of the vacuum forming member 122 via one end of the exhaust passage EP1-3 (in the example shown in FIG. 3, an opening formed in the upper surface 123Su). ing. The exhaust passage EP1-3 is a space (more specifically) outside the vacuum forming member 123 via the other end of the exhaust passage EP1-3 (in the example shown in FIG. 3, an opening formed in the lower surface 123Sl). Is connected to the exhaust passage EP1-4) formed in the vacuum forming member 124 described later.
 真空形成部材123には更に、排気通路EP2の一部を構成する排気通路EP2-3が形成されている。排気通路EP2-3は、排気通路EP2-3の一方の端部(図3に示す例では、上面123Suに形成された開口)を介して、真空形成部材122の排気通路EP2-2に接続している。排気通路EP2-3は、排気通路EP2-3の他方の端部(図3に示す例では、下面123Slに形成された開口)を介して、真空形成部材123の外部の空間(より具体的には、後述する真空形成部材124に形成された排気通路EP2-4)に接続している。 The vacuum forming member 123 is further formed with an exhaust passage EP2-3 forming a part of the exhaust passage EP2. The exhaust passage EP2-3 is connected to the exhaust passage EP2-2 of the vacuum forming member 122 via one end of the exhaust passage EP2-3 (in the example shown in FIG. 3, an opening formed in the upper surface 123Su). ing. The exhaust passage EP2-3 is a space (more specifically) outside the vacuum forming member 123 via the other end of the exhaust passage EP2-3 (in the example shown in FIG. 3, an opening formed in the lower surface 123Sl). Is connected to the exhaust passage EP2-4) formed in the vacuum forming member 124 described later.
 真空形成部材124は、真空形成部材123から下方に延びる部材である。真空形成部材124は、真空形成部材123の下方(つまり、-Z側)に配置される。真空形成部材124は、真空形成部材123の下方において、真空形成部材123に接続される。例えば、真空形成部材124は、真空形成部材124の上面124Suが真空形成部材123の下面123Slに接続されるように、真空形成部材123に接続されてもよい。真空形成部材124は、真空形成部材123と一体化されていてもよいし、真空形成部材123から分離可能であってもよい。 The vacuum forming member 124 is a member extending downward from the vacuum forming member 123. The vacuum forming member 124 is arranged below the vacuum forming member 123 (that is, on the −Z side). The vacuum forming member 124 is connected to the vacuum forming member 123 below the vacuum forming member 123. For example, the vacuum forming member 124 may be connected to the vacuum forming member 123 so that the upper surface 124Su of the vacuum forming member 124 is connected to the lower surface 123Sl of the vacuum forming member 123. The vacuum forming member 124 may be integrated with the vacuum forming member 123 or may be separable from the vacuum forming member 123.
 真空形成部材124は、上述したように、真空形成部材1241から1243を含む。真空形成部材1241から1243のそれぞれは、真空形成部材123の下方(つまり、-Z側)に配置される。真空形成部材1241から1243のそれぞれは、真空形成部材123の下方において、真空形成部材123に接続される。例えば、真空形成部材1241から1243のそれぞれは、真空形成部材1241から1243のそれぞれの上面が真空形成部材123の下面123Slに接続されるように、真空形成部材123に接続されてもよい。真空形成部材1241から1243のそれぞれは、真空形成部材123と一体化されていてもよいし、真空形成部材123から分離可能であってもよい。 As described above, the vacuum forming member 124 includes the vacuum forming members 1241 to 1243. Each of the vacuum forming members 1241 to 1243 is arranged below the vacuum forming member 123 (that is, on the −Z side). Each of the vacuum forming members 1241 to 1243 is connected to the vacuum forming member 123 below the vacuum forming member 123. For example, each of the vacuum forming members 1241 to 1243 may be connected to the vacuum forming member 123 so that the upper surface of each of the vacuum forming members 1241 to 1243 is connected to the lower surface 123Sl of the vacuum forming member 123. Each of the vacuum forming members 1241 to 1243 may be integrated with the vacuum forming member 123 or may be separable from the vacuum forming member 123.
 真空形成部材124は、真空形成部材1241から1243が間に間隙を確保した上で積層された構造を有している。真空形成部材124は、真空形成部材1241から1243が入れ子状に積層された構造を有していてもよい。尚、第1実施形態における「真空形成部材1241から1243が入れ子状に積層された(言い換えれば、組み入れられた)構造」は、互いに同一の形状を有している真空形成部材1241から1243が積層された構造のみならず、少なくとも2つが異なる形状を有している真空形成部材1241から1243が積層された構造をも含む。 The vacuum forming member 124 has a structure in which the vacuum forming members 1241 to 1243 are laminated with a gap secured between them. The vacuum forming member 124 may have a structure in which the vacuum forming members 1241 to 1243 are laminated in a nested manner. In the "structure in which the vacuum forming members 1241 to 1243 are laminated in a nested manner (in other words, incorporated)" in the first embodiment, the vacuum forming members 1241 to 1243 having the same shape as each other are laminated. It also includes a structure in which at least two vacuum forming members 1241 to 1243 having different shapes are laminated.
 真空形成部材1241の内部には、ビーム通過空間SPb2の一部を構成するビーム通過空間SPb2-4が形成されている。ビーム通過空間SPb2-4は、真空形成部材1241を貫通する。図3に示す例では、ビーム通過空間SPb2-4は、真空形成部材1241の下面(つまり、射出面12LSの少なくとも一部)から真空形成部材1241の上面(つまり、上面124Suの一部)に向かって真空形成部材1241を貫通している。ビーム通過空間SPb2-4は、ビーム通過空間SPb2-4の一方の端部(図3に示す例では、+Z側の端部であり、真空形成部材1241の上面に形成された開口)を介して、真空形成部材123のビーム通過空間SPb2-3に接続している。ビーム通過空間SP2-4は更に、ビーム通過空間SPb2-4の他方の端部(図3に示す例では、-Z側の端部であり、真空形成部材1241の下面に形成されたビーム射出口1250)を介して、真空形成部材1241の外部の空間(より具体的には、ビーム通過空間SPb3)に接続している。 Inside the vacuum forming member 1241, a beam passing space SPb2-4 forming a part of the beam passing space SPb2 is formed. The beam passage space SPb2-4 penetrates the vacuum forming member 1241. In the example shown in FIG. 3, the beam passage space SPb2-4 faces from the lower surface of the vacuum forming member 1241 (that is, at least a part of the injection surface 12LS) to the upper surface of the vacuum forming member 1241 (that is, a part of the upper surface 124Su). It penetrates the vacuum forming member 1241. The beam passing space SPb2-4 is via one end of the beam passing space SPb2-4 (in the example shown in FIG. 3, the end on the + Z side, which is an opening formed on the upper surface of the vacuum forming member 1241). , It is connected to the beam passage space SPb2-3 of the vacuum forming member 123. The beam passing space SP2-4 is further the other end of the beam passing space SPb2-4 (in the example shown in FIG. 3, the end on the −Z side, and the beam ejection port formed on the lower surface of the vacuum forming member 1241. It is connected to the space outside the vacuum forming member 1241 (more specifically, the beam passing space SPb3) via 1250).
 真空形成部材1241は、試料Wと電子検出器117との間において、ビーム通過空間SPb2の少なくとも一部が、Z軸方向(或いは、試料Wの表面WSuと交差する任意の方向)に関して試料Wから離れるにつれて、X軸方向及びY軸方向の少なくとも一方(或いは、試料Wの表面WSuに沿う方向)に関して、試料WSuの荷電粒子が照射された位置から離れるように広がる状態を実現可能な形状を有していてもよい。つまり、試料Wと電子検出器117との間において、ビーム通過空間SPb2を規定する真空形成部材1241の内壁面は、Z軸方向(或いは、試料Wの表面WSuと交差する任意の方向)に関して試料Wから離れるにつれて、X軸方向及びY軸方向の少なくとも一方(或いは、試料Wの表面WSuに沿う方向)に関して、ビーム光学系11の光軸AXから離れるように広がる形状を有していてもよい。 The vacuum forming member 1241 is located between the sample W and the electron detector 117 from the sample W in the Z-axis direction (or any direction in which at least a part of the beam passing space SPb2 intersects the surface WSu of the sample W). It has a shape that can realize a state in which the charged particles of the sample WSu spread away from the irradiated position in at least one of the X-axis direction and the Y-axis direction (or the direction along the surface WSu of the sample W) as the distance increases. You may be doing it. That is, between the sample W and the electron detector 117, the inner wall surface of the vacuum forming member 1241 that defines the beam passage space SPb2 is a sample in the Z-axis direction (or any direction that intersects the surface WSu of the sample W). It may have a shape that expands away from the optical axis AX of the beam optical system 11 with respect to at least one of the X-axis direction and the Y-axis direction (or the direction along the surface WSu of the sample W) as the distance from W increases. ..
 真空形成部材1242は、真空形成部材1241と共に、排気通路EP1の一部を構成する排気通路EP1-4を形成する。具体的には、真空形成部材1242は、真空形成部材1242の内側面と真空形成部材1241の外側面との間に間隙が確保された状態で真空形成部材1242の内側面が真空形成部材1241の外側面に対向するように、真空形成部材1241に対して位置合わせされる。その結果、真空形成部材1242の内側面(つまり、光軸AX側を向いた面)と真空形成部材1241の外側面(つまり、光軸AXとは逆側を向いた面)との間の間隙が、排気通路EP1-4として利用可能となる。排気通路EP1-4は、排気通路EP1-4の一方の端部(図3に示す例では、上面124Suに形成された環状の開口)を介して、真空形成部材123の排気通路EP1-3に接続している。排気通路EP1-4は、排気通路EP1-4の他方の端部(図3に示す例では、射出面12LSに形成された環状の排気口1251)を介して、真空形成部材124の外部の空間(より具体的には、差動排気系12と試料Wの表面WSuとの間の空間)に接続している。 The vacuum forming member 1242 and the vacuum forming member 1241 form an exhaust passage EP1-4 forming a part of the exhaust passage EP1. Specifically, in the vacuum forming member 1242, the inner surface of the vacuum forming member 1242 is the vacuum forming member 1241 in a state where a gap is secured between the inner surface of the vacuum forming member 1242 and the outer surface of the vacuum forming member 1241. It is aligned with respect to the vacuum forming member 1241 so as to face the outer side surface. As a result, the gap between the inner surface of the vacuum forming member 1242 (that is, the surface facing the optical axis AX side) and the outer surface of the vacuum forming member 1241 (that is, the surface facing the opposite side of the optical axis AX). However, it can be used as an exhaust passage EP1-4. The exhaust passage EP1-4 is connected to the exhaust passage EP1-3 of the vacuum forming member 123 via one end of the exhaust passage EP1-4 (in the example shown in FIG. 3, an annular opening formed in the upper surface 124Su). You are connected. The exhaust passage EP1-4 is a space outside the vacuum forming member 124 via the other end of the exhaust passage EP1-4 (in the example shown in FIG. 3, the annular exhaust port 1251 formed on the injection surface 12LS). (More specifically, it is connected to the space between the differential exhaust system 12 and the surface WSu of the sample W).
 真空形成部材1243は、真空形成部材1242と共に、排気通路EP2の一部を構成する排気通路EP2-4を形成する。具体的には、真空形成部材1243は、真空形成部材1243の内側面と真空形成部材1242の外側面との間に間隙が確保された状態で真空形成部材1243の内側面が真空形成部材1242の外側面に対向するように、真空形成部材1242に対して位置合わせされる。その結果、真空形成部材1243の内側面と真空形成部材1242の外側面との間の間隙が、排気通路EP2-4として利用可能となる。排気通路EP2-4は、排気通路EP2-4の一方の端部(図3に示す例では、上面124Suに形成された環状の開口)を介して、真空形成部材123の排気通路EP2-3に接続している。排気通路EP2-4は、排気通路EP2-4の他方の端部(図3に示す例では、射出面12LSに形成された排気口1252)を介して、真空形成部材124の外部の空間(より具体的には、差動排気系12と試料Wの表面WSuとの間の空間)に接続している。 The vacuum forming member 1243 and the vacuum forming member 1242 form an exhaust passage EP2-4 forming a part of the exhaust passage EP2. Specifically, in the vacuum forming member 1243, the inner surface of the vacuum forming member 1243 is the vacuum forming member 1242 in a state where a gap is secured between the inner surface of the vacuum forming member 1243 and the outer surface of the vacuum forming member 1242. It is aligned with respect to the vacuum forming member 1242 so as to face the outer side surface. As a result, the gap between the inner surface of the vacuum forming member 1243 and the outer surface of the vacuum forming member 1242 can be used as the exhaust passage EP2-4. The exhaust passage EP2-4 is connected to the exhaust passage EP2-3 of the vacuum forming member 123 via one end of the exhaust passage EP2-4 (in the example shown in FIG. 3, an annular opening formed in the upper surface 124Su). You are connected. The exhaust passage EP2-4 passes through the other end of the exhaust passage EP2-4 (in the example shown in FIG. 3, the exhaust port 1252 formed on the injection surface 12LS), and the space outside the vacuum forming member 124 (more than that). Specifically, it is connected to the space between the differential exhaust system 12 and the surface WSu of the sample W).
 射出面12LSは、図5に示すように、XY平面に沿った面内における形状が円形となる射出面121LSを含む。更に、射出面12LSは、図5に示すように、射出面121LSからXY平面に沿った一の方向(図5に示す例では、+Y側に向かう方向)に沿って外側に向かって突き出た射出面122LSを含んでいてもよい。但し、射出面12LSの形状が図5に示す形状に限定されることはなく、その他の任意の形状(例えば、矩形又は楕円形状)であってもよい。 As shown in FIG. 5, the injection surface 12LS includes an injection surface 121LS having a circular shape in the plane along the XY plane. Further, as shown in FIG. 5, the injection surface 12LS protrudes outward from the injection surface 121LS along one direction along the XY plane (in the example shown in FIG. 5, the direction toward the + Y side). The surface 122LS may be included. However, the shape of the injection surface 12LS is not limited to the shape shown in FIG. 5, and may be any other shape (for example, rectangular or elliptical shape).
 尚、真空形成部材1241から1243のそれぞれは、ビーム通過空間SPb2-4及び排気通路EP1-4からEP2-4を形成可能である限りは、どのような形状を有していてもよい。真空形成部材124は、ビーム通過空間SPb2-4及び排気通路EP1-4からEP3-4を形成可能である限りは、どのような形状を有していてもよい。真空形成部材124は、ビーム通過空間SPb2-4及び排気通路EP1-4からEP2-4を形成可能である限りは、複数の真空形成部材1241から1243に分離されていなくてもよい。 Each of the vacuum forming members 1241 to 1243 may have any shape as long as the beam passage space SPb2-4 and the exhaust passages EP1-4 to EP2-4 can be formed. The vacuum forming member 124 may have any shape as long as the beam passage space SPb2-4 and the exhaust passages EP1-4 to EP3-4 can be formed. The vacuum forming member 124 does not have to be separated into a plurality of vacuum forming members 1241 to 1243 as long as the beam passage space SPb2-4 and the exhaust passages EP1-4 to EP2-4 can be formed.
 第1実施形態では更に、図3及び図4(更には、図2)に示すように、差動排気系12には、開口126が形成されている。図2から図4は、開口126が真空形成部材121に形成される例を示しているが、開口126は、真空形成部材121に加えて又は代えて、真空形成部材122から124の少なくとも一つに形成されていてもよい。開口126は、ビーム通過空間SPb2に面するように形成される。開口126は、ビーム通過空間SPb2に接続するように形成される。開口126は、ビーム通過空間SPb2の下方の境界(つまり、端部)を規定するビーム射出口1250よりも上方(つまり、試料Wとは反対側)に形成される。開口126は、ビーム通過空間SPb2の上方の境界(つまり、端部)を規定する開口120よりも下方(つまり、試料Wと同じ側)に形成される。開口126は、真空形成部材121のうちビーム通過空間SPb2に面する部分に形成される。例えば、開口126は、真空形成部材121のうちビーム通過空間SPb2を規定する内壁に形成される。 In the first embodiment, as shown in FIGS. 3 and 4 (further, FIG. 2), the differential exhaust system 12 is further formed with an opening 126. 2 to 4 show an example in which the opening 126 is formed in the vacuum forming member 121, but the opening 126 is at least one of the vacuum forming members 122 to 124 in addition to or in place of the vacuum forming member 121. It may be formed in. The opening 126 is formed so as to face the beam passage space SPb2. The opening 126 is formed so as to connect to the beam passage space SPb2. The opening 126 is formed above the beam ejection port 1250 (that is, opposite to the sample W) that defines the lower boundary (ie, the end) of the beam passage space SPb2. The opening 126 is formed below the opening 120 (that is, on the same side as the sample W) that defines the upper boundary (that is, the end) of the beam passage space SPb2. The opening 126 is formed in a portion of the vacuum forming member 121 facing the beam passing space SPb2. For example, the opening 126 is formed in the inner wall of the vacuum forming member 121 that defines the beam passage space SPb2.
 開口126には、真空形成部材121を貫通する配管127が接続されている。このため、配管127は、開口126を介してビーム通過空間SPb2に接続されている。配管127には、図1に示すように、バルブ1281及び配管1291を介して気体供給装置6が連結されている。更に、配管127には、図1に示すように、バルブ1282及び配管1292を介して排気装置7が連結されている。尚、バルブ1281及び1282のそれぞれは、ニードルバルブであるが、その他の種類のバルブであってもよい。 A pipe 127 penetrating the vacuum forming member 121 is connected to the opening 126. Therefore, the pipe 127 is connected to the beam passage space SPb2 via the opening 126. As shown in FIG. 1, a gas supply device 6 is connected to the pipe 127 via a valve 1281 and a pipe 1291. Further, as shown in FIG. 1, the exhaust device 7 is connected to the pipe 127 via the valve 1282 and the pipe 1292. Each of the valves 1281 and 1282 is a needle valve, but other types of valves may be used.
 気体供給装置6は、制御装置4の制御下で、配管1291、バルブ1281、配管127及び開口126を介して、ビーム通過空間SPb2の少なくとも一部に気体を供給可能である。つまり、気体供給装置6は、制御装置4の制御下で、配管1291、バルブ1281、配管127及び開口126を介して、ビーム通過空間SPb2の少なくとも一部に給気可能である。具体的には、バルブ1281が閉状態にある場合には、気体供給装置6は、ビーム通過空間SPb2の少なくとも一部に気体を供給することができない。一方で、バルブ1281が開状態にある場合には、気体供給装置6は、ビーム通過空間SPb2の少なくとも一部に気体を供給することができる。従って、気体供給装置6の状態は、制御装置4の制御下でバルブ1281の状態が切り替えられることで、ビーム通過空間SPb2の少なくとも一部に気体を供給する状態と、ビーム通過空間SPb2の少なくとも一部に気体を供給しない状態との間で切り替えられる。その結果、気体供給装置6は、所望のタイミングでビーム通過空間SPb2の少なくとも一部に気体を供給することができる。 The gas supply device 6 can supply gas to at least a part of the beam passage space SPb2 via the pipe 1291, the valve 1281, the pipe 127, and the opening 126 under the control of the control device 4. That is, the gas supply device 6 can supply air to at least a part of the beam passage space SPb2 through the pipe 1291, the valve 1281, the pipe 127, and the opening 126 under the control of the control device 4. Specifically, when the valve 1281 is in the closed state, the gas supply device 6 cannot supply gas to at least a part of the beam passage space SPb2. On the other hand, when the valve 1281 is in the open state, the gas supply device 6 can supply gas to at least a part of the beam passage space SPb2. Therefore, the state of the gas supply device 6 is a state in which gas is supplied to at least a part of the beam passage space SPb2 by switching the state of the valve 1281 under the control of the control device 4, and at least one of the beam passage space SPb2. It can be switched between the state where gas is not supplied to the part. As a result, the gas supply device 6 can supply gas to at least a part of the beam passage space SPb2 at a desired timing.
 ビーム通過空間SPb2の少なくとも一部に気体が供給されると、ビーム通過空間SPb2の少なくとも一部の圧力(つまり、気圧)が変わる。つまり、ビーム通過空間SPb2の少なくとも一部に気体が供給されると、ビーム通過空間SPb2の少なくとも一部の真空度が変わる。このため、気体供給装置6は、制御装置4の制御下で、開口126を介してビーム通過空間SPb2の少なくとも一部に所望流量の気体を供給して、ビーム通過空間SPb2の少なくとも一部の真空度を制御可能である。尚、気体供給装置6は、気体供給装置6が配管1291に供給する気体の流量を制御することで、気体供給装置6からビーム通過空間SPb2の少なくとも一部に供給される気体の流量を制御してもよい。或いは、気体供給装置6からビーム通過空間SPb2の少なくとも一部に供給される気体の流量は、バルブ1281の開度にも依存する。なぜならば、バルブ1281の開度が大きくなるほど、配管1291からバルブ1281を介して配管127(更には、ビーム通過空間SPb2)に供給される気体の流量が多くなるからである。このため、制御装置4は、バルブ1281の開度を制御することで、気体供給装置6からビーム通過空間SPb2の少なくとも一部に供給される気体の流量を制御してもよい。この場合、気体供給装置7及びバルブ1281のそれぞれは、実質的には、ビーム通過空間SPb2の少なくとも一部の真空度を制御可能な装置として機能し得る。 When gas is supplied to at least a part of the beam passing space SPb2, the pressure (that is, atmospheric pressure) of at least a part of the beam passing space SPb2 changes. That is, when gas is supplied to at least a part of the beam passing space SPb2, the degree of vacuum of at least a part of the beam passing space SPb2 changes. Therefore, the gas supply device 6 supplies a desired flow rate of gas to at least a part of the beam passage space SPb2 through the opening 126 under the control of the control device 4, and vacuums at least a part of the beam passage space SPb2. The degree can be controlled. The gas supply device 6 controls the flow rate of the gas supplied from the gas supply device 6 to at least a part of the beam passage space SPb2 by controlling the flow rate of the gas supplied by the gas supply device 6 to the pipe 1291. You may. Alternatively, the flow rate of the gas supplied from the gas supply device 6 to at least a part of the beam passage space SPb2 also depends on the opening degree of the valve 1281. This is because the larger the opening degree of the valve 1281, the larger the flow rate of the gas supplied from the pipe 1291 to the pipe 127 (furthermore, the beam passing space SPb2) via the valve 1281. Therefore, the control device 4 may control the flow rate of the gas supplied from the gas supply device 6 to at least a part of the beam passage space SPb2 by controlling the opening degree of the valve 1281. In this case, each of the gas supply device 7 and the valve 1281 can substantially function as a device capable of controlling the degree of vacuum of at least a part of the beam passage space SPb2.
 ビーム通過空間SPb2がビーム通過空間SPb1に接続されているため、気体供給装置6は、ビーム通過空間SPb2を介して、ビーム通過空間SPb1の少なくとも一部に気体を供給可能であってもよい。この場合、気体供給装置6は、ビーム通過空間SPb1の少なくとも一部に気体を供給して、ビーム通過空間SPb1の少なくとも一部の真空度を制御可能であってもよい。更に、ビーム通過空間SPb2がビーム通過空間SPb3に接続されているため、気体供給装置6は、ビーム通過空間SPb2を介して、ビーム通過空間SPb3の少なくとも一部に気体を供給可能であってもよい。この場合、気体供給装置6は、ビーム通過空間SPb3の少なくとも一部に気体を供給して、ビーム通過空間SPb3の少なくとも一部の真空度を制御可能であってもよい。 Since the beam passing space SPb2 is connected to the beam passing space SPb1, the gas supply device 6 may be able to supply gas to at least a part of the beam passing space SPb1 via the beam passing space SPb2. In this case, the gas supply device 6 may supply gas to at least a part of the beam passing space SPb1 to control the degree of vacuum of at least a part of the beam passing space SPb1. Further, since the beam passing space SPb2 is connected to the beam passing space SPb3, the gas supply device 6 may be able to supply gas to at least a part of the beam passing space SPb3 via the beam passing space SPb2. .. In this case, the gas supply device 6 may supply gas to at least a part of the beam passing space SPb3 to control the degree of vacuum of at least a part of the beam passing space SPb3.
 このように、気体供給装置6は、制御装置4の制御下で、開口126を介してビーム通過空間SPb1からSPb3を含むビーム通過空間SPbの少なくとも一部に気体を供給して、ビーム通過空間SPbの少なくとも一部の真空度を制御することができる。 In this way, under the control of the control device 4, the gas supply device 6 supplies gas to at least a part of the beam passage space SPb including the beam passage space SPb1 to SPb3 through the opening 126, and the beam passage space SPb. At least a part of the degree of vacuum can be controlled.
 気体供給装置6が供給する気体は、限定されないが、例えば、不活性ガスを含んでいてもよい。不活性ガスの一例として、希ガス(例えば、ヘリウムガス、ネオンガス及びアルゴンガスの少なくとも一つ)があげられる。不活性ガスの他の一例として、窒素ガスがあげられる。気体供給装置6が供給する気体は、例えば、除湿された気体を含んでいてもよい。例えば、気体供給装置6が供給する気体は、除湿された不活性ガスを含んでいてもよい。或いは、例えば、気体供給装置6が供給する気体は、クリーンドライエアー(CDA:Clean Dry Air)を含んでいてもよい。 The gas supplied by the gas supply device 6 is not limited, but may include, for example, an inert gas. As an example of the inert gas, a rare gas (for example, at least one of helium gas, neon gas and argon gas) can be mentioned. Another example of the inert gas is nitrogen gas. The gas supplied by the gas supply device 6 may include, for example, a dehumidified gas. For example, the gas supplied by the gas supply device 6 may include a dehumidified inert gas. Alternatively, for example, the gas supplied by the gas supply device 6 may contain clean dry air (CDA: Clean Dry Air).
 気体供給装置6は、図1に示すように、フィルタ61を介して、ビーム通過空間SPbに気体を供給してもよい。フィルタ61は、例えば、配管1291に配置されていてもよい。つまり、配管1291は、フィルタ61を備えていてもよい。フィルタ61は、フィルタ61を通過する気体を濾過可能に構成されていてもよい。フィルタ61は、フィルタ61を通過する気体に含まれる不純物を吸着可能に構成されていてもよい。フィルタ61の一例として、HEPA(High Efficiency Particulate Air)フィルタ及びULPA(Ultra Low Penetration Air)フィルタ、ケミカルフィルタの少なくとも一方があげられる。不純物の一例として、微小な粒子(微粒子、パーティクル)及び有機系ガス(有機物のガス)、アルカリ系ガス(アルカリ性物質のガス)、酸性ガス(酸性物質のガス)の少なくとも一つがあげられる。その結果、気体供給装置6は、フィルタ61によって濾過され不純物の除去された気体をビーム通過空間SPbに供給することができる。但し、走査型電子顕微鏡SEMaは、フィルタ61を備えていなくてもよい。フィルタ61は、特定のガス分子を選択的に通す選択フィルタであってもよい。 As shown in FIG. 1, the gas supply device 6 may supply gas to the beam passage space SPb via the filter 61. The filter 61 may be arranged in the pipe 1291, for example. That is, the pipe 1291 may include the filter 61. The filter 61 may be configured to be able to filter the gas passing through the filter 61. The filter 61 may be configured to be able to adsorb impurities contained in the gas passing through the filter 61. As an example of the filter 61, at least one of a HEPA (High Effectivey Particulate Air) filter, a ULPA (Ultra Low Particulate Air) filter, and a chemical filter can be mentioned. Examples of impurities include at least one of fine particles (fine particles, particles), an organic gas (organic gas), an alkaline gas (alkaline gas), and an acidic gas (acidic gas). As a result, the gas supply device 6 can supply the gas filtered by the filter 61 from which impurities have been removed to the beam passing space SPb. However, the scanning electron microscope SEMa does not have to include the filter 61. The filter 61 may be a selection filter that selectively passes a specific gas molecule.
 配管1291に、配管1291を通過する気体に含まれる微粒子(パーティクル)を検出する微粒子計(パーティクルカウンタ)が配置されていてもよい。 A fine particle counter (particle counter) for detecting fine particles (particles) contained in the gas passing through the pipe 1291 may be arranged in the pipe 1291.
 配管1291に、配管1291を通過する気体の湿度を求める湿度計及び露点計の少なくとも一方が配置されていてもよい。露点計は露点温度を測定することにより湿度を求める。配管1291に、吸湿剤が配置されていてもよい。 At least one of a hygrometer and a dew point meter for determining the humidity of the gas passing through the pipe 1291 may be arranged in the pipe 1291. The dew point meter determines the humidity by measuring the dew point temperature. A hygroscopic agent may be arranged in the pipe 1291.
 排気装置7は、制御装置4の制御下で、配管1292、バルブ1282、配管127及び開口126を介して、ビーム通過空間SPb2の少なくとも一部を排気可能である。具体的には、バルブ1282が閉状態にある場合には、排気装置7は、ビーム通過空間SPb2の少なくとも一部を排気することができない。一方で、バルブ1282が開状態にある場合には、排気装置6は、ビーム通過空間SPb2の少なくとも一部を排気することができる。従って、排気装置7の状態は、制御装置4の制御下でバルブ1282の状態が切り替えられることで、ビーム通過空間SPb2の少なくとも一部を排気する状態と、ビーム通過空間SPb2の少なくとも一部を排気しない状態との間で切り替えられる。その結果、排気装置7は、所望のタイミングでビーム通過空間SPb2の少なくとも一部を排気することができる。 Under the control of the control device 4, the exhaust device 7 can exhaust at least a part of the beam passage space SPb2 via the pipe 1292, the valve 1282, the pipe 127, and the opening 126. Specifically, when the valve 1282 is in the closed state, the exhaust device 7 cannot exhaust at least a part of the beam passage space SPb2. On the other hand, when the valve 1282 is in the open state, the exhaust device 6 can exhaust at least a part of the beam passage space SPb2. Therefore, the state of the exhaust device 7 is a state in which at least a part of the beam passing space SPb2 is exhausted and at least a part of the beam passing space SPb2 is exhausted by switching the state of the valve 1282 under the control of the control device 4. It can be switched between the non-state and the non-state. As a result, the exhaust device 7 can exhaust at least a part of the beam passing space SPb2 at a desired timing.
 配管1292に、配管1292を通過する気体を濾過するフィルタ及び配管1292を通過する気体の水分を吸収する吸湿剤、配管1292を通過する気体に含まれる微粒子を検出する微粒子計、配管1292を通過する気体の湿度を求める湿度計、露点計の少なくとも一つが配置されていてもよい。 The pipe 1292 passes through a filter for filtering the gas passing through the pipe 1292, a hygrometer for absorbing the moisture of the gas passing through the pipe 1292, a fine particle meter for detecting fine particles contained in the gas passing through the pipe 1292, and the pipe 1292. At least one of a hygrometer and a dew point meter for determining the humidity of the gas may be arranged.
 配管1292に、配管1292を通過する物質を分析するガス分析計及び質量分析計の少なくとも一方が配置されていてもよい。質量分析計として、例えば、四重極質量分析計(Q-mass:Quadrupole mass spectrometer)があげられる。 At least one of a gas analyzer and a mass spectrometer for analyzing substances passing through the pipe 1292 may be arranged in the pipe 1292. Examples of the mass spectrometer include a quadrupole mass spectrometer (Q-mass: Quadrupole mass spectrometer).
 ビーム通過空間SPb2の少なくとも一部が排気されると、ビーム通過空間SPb2の少なくとも一部の圧力(つまり、気圧)が変わる。つまり、ビーム通過空間SPb2の少なくとも一部が排気されると、ビーム通過空間SPb2の少なくとも一部の真空度が変わる。このため、排気装置7は、制御装置4の制御下で、開口126を介してビーム通過空間SPb2の少なくとも一部を所望の排気速度で排気して(つまり、ビーム通過空間SPb2の少なくとも一部の気体を所望流量で回収して)、ビーム通過空間SPb2の少なくとも一部の真空度を制御可能である。尚、排気装置7は、排気装置7自体の排気速度(つまり、排気装置7が回収する気体の流量)を制御することで、ビーム通過空間SPb2の少なくとも一部から回収される気体の流量を制御してもよい。或いは、ビーム通過空間SPb2の少なくとも一部から回収される気体の流量は、バルブ1282の開度にも依存する。なぜならば、バルブ1282の開度が大きくなるほど、バルブ1282を介して排気装置7によって回収される気体の流量が多くなるからである。このため、制御装置4は、バルブ1282の開度を制御することで、ビーム通過空間SPb2の少なくとも一部から回収される気体の流量を制御してもよい。この場合、排気装置7及びバルブ1282のそれぞれは、実質的には、ビーム通過空間SPb2の少なくとも一部の真空度を制御可能な装置として機能し得る。 When at least a part of the beam passing space SPb2 is exhausted, the pressure (that is, atmospheric pressure) of at least a part of the beam passing space SPb2 changes. That is, when at least a part of the beam passing space SPb2 is exhausted, the degree of vacuum of at least a part of the beam passing space SPb2 changes. Therefore, under the control of the control device 4, the exhaust device 7 exhausts at least a part of the beam passing space SPb2 through the opening 126 at a desired exhaust rate (that is, at least a part of the beam passing space SPb2). The degree of vacuum of at least a part of the beam passage space SPb2 can be controlled by recovering the gas at a desired flow rate). The exhaust device 7 controls the flow rate of the gas recovered from at least a part of the beam passage space SPb2 by controlling the exhaust speed of the exhaust device 7 itself (that is, the flow rate of the gas recovered by the exhaust device 7). You may. Alternatively, the flow rate of the gas recovered from at least a part of the beam passage space SPb2 also depends on the opening degree of the valve 1282. This is because the larger the opening degree of the valve 1282, the larger the flow rate of the gas recovered by the exhaust device 7 via the valve 1282. Therefore, the control device 4 may control the flow rate of the gas recovered from at least a part of the beam passing space SPb2 by controlling the opening degree of the valve 1282. In this case, each of the exhaust device 7 and the valve 1282 can substantially function as a device capable of controlling the degree of vacuum of at least a part of the beam passing space SPb2.
 ビーム通過空間SPb2がビーム通過空間SPb1に接続されているため、排気装置7は、ビーム通過空間SPb2を介して、ビーム通過空間SPb1の少なくとも一部を排気可能であってもよい。この場合、排気装置7は、ビーム通過空間SPb1の少なくとも一部を排気して、ビーム通過空間SPb1の少なくとも一部の真空度を制御可能であってもよい。更に、ビーム通過空間SPb2がビーム通過空間SPb3に接続されているため、排気装置7は、ビーム通過空間SPb2を介して、ビーム通過空間SPb3の少なくとも一部を排気可能であってもよい。この場合、排気装置7は、ビーム通過空間SPb3の少なくとも一部を排気して、ビーム通過空間SPb3の少なくとも一部の真空度を制御可能であってもよい。 Since the beam passing space SPb2 is connected to the beam passing space SPb1, the exhaust device 7 may be able to exhaust at least a part of the beam passing space SPb1 via the beam passing space SPb2. In this case, the exhaust device 7 may be able to exhaust at least a part of the beam passing space SPb1 and control the degree of vacuum of at least a part of the beam passing space SPb1. Further, since the beam passing space SPb2 is connected to the beam passing space SPb3, the exhaust device 7 may be able to exhaust at least a part of the beam passing space SPb3 via the beam passing space SPb2. In this case, the exhaust device 7 may be able to exhaust at least a part of the beam passing space SPb3 and control the degree of vacuum of at least a part of the beam passing space SPb3.
 このように、排気装置7は、制御装置4の制御下で、開口126を介してビーム通過空間SPbの少なくとも一部を排気して、ビーム通過空間SPbの少なくとも一部の真空度を制御することができる。 In this way, under the control of the control device 4, the exhaust device 7 exhausts at least a part of the beam passing space SPb through the opening 126 to control the degree of vacuum of at least a part of the beam passing space SPb. Can be done.
 排気装置7は、真空ポンプを含んでいてもよい。この場合、排気装置7が含む真空ポンプの排気能力は、ビーム通過空間SPb1からSPb3を排気するために用いられる上述した真空ポンプ51の排気能力と同じであってもよい。或いは、排気装置7が含む真空ポンプの排気能力は、真空ポンプ51の排気能力よりも低くてもよいし、高くてもよい。 The exhaust device 7 may include a vacuum pump. In this case, the exhaust capacity of the vacuum pump included in the exhaust device 7 may be the same as the exhaust capacity of the above-mentioned vacuum pump 51 used for exhausting SPb3 from the beam passing space SPb1. Alternatively, the exhaust capacity of the vacuum pump included in the exhaust device 7 may be lower or higher than the exhaust capacity of the vacuum pump 51.
 (1-2)ビーム通過空間SPbの少なくとも一部の真空度の制御動作
 続いて、図6から図9を参照しながら、開口126を介してビーム通過空間SPbの少なくとも一部に給気することで及び/又は開口126を介してビーム通過空間SPbの少なくとも一部を排気することで、ビーム通過空間SPbの少なくとも一部の真空度を制御する動作について更に説明する。図6及び図7のそれぞれは、気体供給装置6がビーム通過空間SPb(特に、ビーム通過空間SPb2)の少なくとも一部に給気する様子を示す断面図である。図8及び図9のそれぞれは、排気装置7がビーム通過空間SPb(特に、ビーム通過空間SPb2)の少なくとも一部を排気する様子を示す断面図である。
(1-2) Control operation of the degree of vacuum of at least a part of the beam passing space SPb Subsequently, referring to FIGS. 6 to 9, air is supplied to at least a part of the beam passing space SPb through the opening 126. The operation of controlling the degree of vacuum of at least a part of the beam passing space SPb by exhausting at least a part of the beam passing space SPb at and / or through the opening 126 will be further described. Each of FIGS. 6 and 7 is a cross-sectional view showing how the gas supply device 6 supplies air to at least a part of the beam passage space SPb (particularly, the beam passage space SPb2). 8 and 9 are cross-sectional views showing how the exhaust device 7 exhausts at least a part of the beam passing space SPb (particularly, the beam passing space SPb2).
 上述したように、気体供給装置6によってビーム通過空間SPbの少なくとも一部に気体が供給されると、ビーム通過空間SPbの少なくとも一部の圧力が変わる。より具体的には、ビーム通過空間SPbの少なくとも一部の圧力が増加する。従って、ビーム通過空間SPbの少なくとも一部に気体が供給されると、ビーム通過空間SPbの少なくとも一部の真空度が減少する。このため、気体供給装置6は、ビーム通過空間SPbの少なくとも一部の真空度が減少するようにビーム通過空間SPbの少なくとも一部の真空度を制御可能な装置として機能し得る。この場合、気体供給装置6は、ビーム通過空間SPbの少なくとも一部の真空度を減少させたいタイミングで、ビーム通過空間SPbの少なくとも一部に気体を供給する。 As described above, when gas is supplied to at least a part of the beam passing space SPb by the gas supply device 6, the pressure of at least a part of the beam passing space SPb changes. More specifically, the pressure of at least a part of the beam passing space SPb increases. Therefore, when gas is supplied to at least a part of the beam passing space SPb, the degree of vacuum of at least a part of the beam passing space SPb decreases. Therefore, the gas supply device 6 can function as a device capable of controlling the vacuum degree of at least a part of the beam passing space SPb so that the vacuum degree of at least a part of the beam passing space SPb is reduced. In this case, the gas supply device 6 supplies gas to at least a part of the beam passing space SPb at a timing when it is desired to reduce the degree of vacuum of at least a part of the beam passing space SPb.
 気体供給装置6によってビーム通過空間SPbの少なくとも一部に供給される気体が多くなるほど、ビーム通過空間SPbの少なくとも一部の圧力の増加量が大きくなる。つまり、気体供給装置6によってビーム通過空間SPbの少なくとも一部に供給される気体が多くなるほど、ビーム通過空間SPbの少なくとも一部の真空度の減少量が大きくなる。逆に、気体供給装置6によってビーム通過空間SPbの少なくとも一部に供給される気体が少なくなるなるほど、ビーム通過空間SPbの少なくとも一部の圧力の増加量が小さくなる。つまり、気体供給装置6によってビーム通過空間SPbの少なくとも一部に供給される気体が少なくなるほど、ビーム通過空間SPbの少なくとも一部の真空度の減少量が小さくなる。このため、気体供給装置6は、ビーム通過空間SPbの少なくとも一部の真空度が所望の真空度になるように、ビーム通過空間SPbの少なくとも一部に所望流量の気体を供給してもよい。 As the amount of gas supplied by the gas supply device 6 to at least a part of the beam passing space SPb increases, the amount of increase in the pressure of at least a part of the beam passing space SPb increases. That is, as the amount of gas supplied by the gas supply device 6 to at least a part of the beam passing space SPb increases, the amount of decrease in the degree of vacuum of at least a part of the beam passing space SPb increases. On the contrary, as the amount of gas supplied by the gas supply device 6 to at least a part of the beam passing space SPb decreases, the amount of increase in the pressure of at least a part of the beam passing space SPb becomes smaller. That is, as the amount of gas supplied by the gas supply device 6 to at least a part of the beam passing space SPb decreases, the amount of decrease in the degree of vacuum of at least a part of the beam passing space SPb becomes smaller. Therefore, the gas supply device 6 may supply a desired flow rate of gas to at least a part of the beam passing space SPb so that the vacuum degree of at least a part of the beam passing space SPb becomes a desired vacuum degree.
 但し、気体供給装置6からビーム通過空間SPbの少なくとも一部に気体が供給されることに起因してビーム通過空間SPbの少なくとも一部の真空度が減少すると、ビーム照射装置1と試料Wとの間の空間に形成されるビーム通過空間SPb3の少なくとも一部の真空度もまた減少する可能性がある。ビーム通過空間SPb3の少なくとも一部の真空度が減少すると、ビーム通過空間SPb3からビーム照射装置1(特に、射出面12LS)及び試料W(特に、表面WSu)に作用する負圧が減少する可能性がある。つまり、ビーム照射装置1を試料Wに近づけるようにビーム通過空間SPb3からビーム照射装置1に作用する力及び試料Wをビーム照射装置1に近づけるようにビーム通過空間SPb3から試料Wに作用する力が減少する可能性がある。この場合、ビーム照射装置1と試料Wとが離れてしまう可能性がある。その結果、ビーム照射装置1と試料Wとの間の間隔Dが、所望間隔D_targetからずれてしまう可能性がある。典型的には、ビーム照射装置1と試料Wとの間の間隔Dが、所望間隔D_targetよりも大きくなってしまう可能性がある。 However, when the degree of vacuum of at least a part of the beam passing space SPb decreases due to the supply of gas from the gas supply device 6 to at least a part of the beam passing space SPb, the beam irradiation device 1 and the sample W The degree of vacuum of at least a part of the beam passing space SPb3 formed in the intervening space may also be reduced. When the degree of vacuum of at least a part of the beam passing space SPb3 is reduced, the negative pressure acting on the beam irradiation device 1 (particularly the injection surface 12LS) and the sample W (particularly the surface WSu) from the beam passing space SPb3 may be reduced. There is. That is, the force acting on the beam irradiation device 1 from the beam passing space SPb3 so as to bring the beam irradiation device 1 closer to the sample W and the force acting on the sample W from the beam passing space SPb3 so as to bring the sample W closer to the beam irradiation device 1. May decrease. In this case, the beam irradiation device 1 and the sample W may be separated from each other. As a result, the distance D between the beam irradiation device 1 and the sample W may deviate from the desired distance D_target. Typically, the distance D between the beam irradiator 1 and the sample W may be larger than the desired distance D_taget.
 そこで、第1実施形態では、制御装置4は、気体供給装置6がビーム通過空間SPbの少なくとも一部に気体を供給する期間の少なくとも一部において、間隔Dを制御してもよい。つまり、制御装置4は、気体供給装置6を用いてビーム通過空間SPbの少なくとも一部の真空度を制御すると共に、間隔Dを制御してもよい。この場合、制御装置4は、気体供給装置6を用いてビーム通過空間SPbの少なくとも一部の真空度を制御することと並行して、間隔Dを制御してもよい。 Therefore, in the first embodiment, the control device 4 may control the interval D during at least a part of the period in which the gas supply device 6 supplies the gas to at least a part of the beam passing space SPb. That is, the control device 4 may control the degree of vacuum of at least a part of the beam passing space SPb by using the gas supply device 6 and also control the interval D. In this case, the control device 4 may control the interval D in parallel with controlling the degree of vacuum of at least a part of the beam passing space SPb by using the gas supply device 6.
 制御装置4は、気体供給装置6がビーム通過空間SPbの少なくとも一部に気体を供給する期間の少なくとも一部において、間隔Dが所望間隔D_targetのまま維持されるように、間隔調整系14及びステージ駆動系23の少なくとも一方を制御してもよい。制御装置4は、気体供給装置6がビーム通過空間SPbの少なくとも一部に気体を供給する前の期間及び気体供給装置6がビーム通過空間SPbの少なくとも一部に気体を供給した後の期間の双方において、間隔Dが所望間隔D_targetのまま維持されるように、間隔調整系14及びステージ駆動系23の少なくとも一方を制御してもよい。 The control device 4 includes the interval adjusting system 14 and the stage so that the interval D is maintained as the desired interval D_target during at least a part of the period in which the gas supply device 6 supplies gas to at least a part of the beam passage space SPb. At least one of the drive system 23 may be controlled. The control device 4 has both a period before the gas supply device 6 supplies gas to at least a part of the beam passage space SPb and a period after the gas supply device 6 supplies gas to at least a part of the beam passage space SPb. In, at least one of the interval adjusting system 14 and the stage drive system 23 may be controlled so that the interval D is maintained as the desired interval D_taget.
 例えば、図6に示すように、ビーム照射装置1と試料WとをZ軸方向において離すように作用する力(例えば、フランジ部材13を+Z側に移動させることが可能な力)をフランジ部材13に付与することで間隔調整系14が間隔Dを調整している場合には、制御装置4は、気体供給装置6がビーム通過空間SPbの少なくとも一部に気体を供給する前と比較して間隔調整系14からフランジ部材13に付与される力が減少するように、間隔調整系14を制御してもよい。例えば、図6に示すように、ビーム照射装置1と試料WとをZ軸方向において離すように作用する力(例えば、ステージ22を-Z側に移動させることが可能な力)をステージ22に付与することでステージ駆動系23が間隔Dを調整している場合には、制御装置4は、気体供給装置6がビーム通過空間SPbの少なくとも一部に気体を供給する前と比較してステージ駆動系23からステージ22に付与される力が減少するように、ステージ駆動系23を制御してもよい。この場合、気体供給装置6がビーム通過空間SPbの少なくとも一部に気体を供給することに起因してビーム照射装置1と試料Wとが離れてしまいかねない状況下で、ビーム照射装置1と試料Wとを離すように間隔調整系14及び/又はステージ駆動系23が付与していた力が減少する。このため、ビーム照射装置1と試料Wとを離すように間隔調整系14及び/又はステージ駆動系23が付与していた力が減少しない場合と比較して、ビーム照射装置1と試料Wとが離れにくくなる(つまり、間隔Dの増加量が小さくなる)。特に、間隔調整系14及び/又はステージ駆動系23が付与していた力の減少量が、間隔Dを所望間隔D_targetのまま維持することが可能な適切な量に設定されれば、ビーム照射装置1と試料Wとが離れてしまうことはない(つまり、間隔Dが増加することはない)。このため、制御装置4は、間隔Dが所望間隔D_targetのまま維持されるように、間隔調整系14及び/又はステージ駆動系23が付与していた力を所望量だけ減少させてもよい。 For example, as shown in FIG. 6, the flange member 13 applies a force (for example, a force capable of moving the flange member 13 to the + Z side) that acts to separate the beam irradiation device 1 and the sample W in the Z-axis direction. When the interval adjusting system 14 adjusts the interval D by applying the gas to, the control device 4 adjusts the interval as compared with before the gas supply device 6 supplies gas to at least a part of the beam passage space SPb. The interval adjusting system 14 may be controlled so that the force applied to the flange member 13 from the adjusting system 14 is reduced. For example, as shown in FIG. 6, a force acting to separate the beam irradiation device 1 and the sample W in the Z-axis direction (for example, a force capable of moving the stage 22 to the −Z side) is applied to the stage 22. When the stage drive system 23 adjusts the interval D by applying the gas, the control device 4 drives the stage as compared with before the gas supply device 6 supplies gas to at least a part of the beam passage space SPb. The stage drive system 23 may be controlled so that the force applied to the stage 22 from the system 23 is reduced. In this case, the beam irradiation device 1 and the sample W are separated from each other due to the gas supply device 6 supplying gas to at least a part of the beam passage space SPb. The force applied to the interval adjusting system 14 and / or the stage drive system 23 so as to separate from W is reduced. Therefore, as compared with the case where the force applied to the interval adjusting system 14 and / or the stage drive system 23 does not decrease so as to separate the beam irradiation device 1 and the sample W, the beam irradiation device 1 and the sample W are separated from each other. It becomes difficult to separate (that is, the amount of increase in the interval D becomes small). In particular, if the amount of reduction in the force applied by the interval adjusting system 14 and / or the stage drive system 23 is set to an appropriate amount capable of maintaining the interval D as the desired interval D_target, the beam irradiation device. 1 and the sample W are not separated from each other (that is, the interval D is not increased). Therefore, the control device 4 may reduce the force applied to the interval adjusting system 14 and / or the stage drive system 23 by a desired amount so that the interval D is maintained as the desired interval D_taget.
 或いは、例えば、図7に示すように、ビーム照射装置1と試料WとをZ軸方向において近づけるように作用する力(例えば、フランジ部材13を-Z側に移動させることが可能な力)をフランジ部材13に付与することで間隔調整系14が間隔Dを調整している場合には、制御装置4は、気体供給装置6がビーム通過空間SPbの少なくとも一部に気体を供給する前と比較して間隔調整系14からフランジ部材13に付与される力が増加するように、間隔調整系14を制御してもよい。例えば、図7に示すように、ビーム照射装置1と試料WとをZ軸方向において近づけるように作用する力(例えば、ステージ22を+Z側に移動させることが可能な力)をステージ22に付与することでステージ駆動系23が間隔Dを調整している場合には、制御装置4は、気体供給装置6がビーム通過空間SPbの少なくとも一部に気体を供給する前と比較してステージ駆動系23からステージ22に付与される力が増加するように、ステージ駆動系23を制御してもよい。この場合、気体供給装置6がビーム通過空間SPbの少なくとも一部に気体を供給することに起因してビーム照射装置1と試料Wとが離れてしまいかねない状況下で、ビーム照射装置1と試料Wとを近づけるように間隔調整系14及び/又はステージ駆動系23が付与していた力が増加する。このため、ビーム照射装置1と試料Wとを近づけるように間隔調整系14及び/又はステージ駆動系23が付与していた力が増加しない場合と比較して、ビーム照射装置1と試料Wとが離れにくくなる(つまり、間隔Dの増加量が小さくなる)。特に、間隔調整系14及び/又はステージ駆動系23が付与していた力の増加量が、間隔Dを所望間隔D_targetのまま維持することが可能な適切な量に設定されれば、ビーム照射装置1と試料Wとが離れてしまうことはない(つまり、間隔Dが増加することはない)。このため、制御装置4は、間隔Dが所望間隔D_targetのまま維持されるように、間隔調整系14及び/又はステージ駆動系23が付与していた力を所望量だけ増加させてもよい。 Alternatively, for example, as shown in FIG. 7, a force acting to bring the beam irradiation device 1 and the sample W closer to each other in the Z-axis direction (for example, a force capable of moving the flange member 13 to the −Z side) is applied. When the interval adjusting system 14 adjusts the interval D by applying it to the flange member 13, the control device 4 compares with the gas supply device 6 before supplying gas to at least a part of the beam passage space SPb. The spacing adjusting system 14 may be controlled so that the force applied to the flange member 13 from the spacing adjusting system 14 is increased. For example, as shown in FIG. 7, a force acting to bring the beam irradiation device 1 and the sample W closer to each other in the Z-axis direction (for example, a force capable of moving the stage 22 to the + Z side) is applied to the stage 22. When the stage drive system 23 adjusts the interval D by doing so, the control device 4 compares with the stage drive system before the gas supply device 6 supplies gas to at least a part of the beam passage space SPb. The stage drive system 23 may be controlled so that the force applied to the stage 22 from the 23 increases. In this case, the beam irradiation device 1 and the sample W may be separated from each other due to the gas supply device 6 supplying gas to at least a part of the beam passage space SPb. The force applied to the interval adjusting system 14 and / or the stage drive system 23 increases so as to bring it closer to W. Therefore, the beam irradiating device 1 and the sample W are compared with the case where the force applied to the interval adjusting system 14 and / or the stage driving system 23 is not increased so that the beam irradiating device 1 and the sample W are brought closer to each other. It becomes difficult to separate (that is, the amount of increase in the interval D becomes small). In particular, if the amount of increase in the force applied by the interval adjusting system 14 and / or the stage drive system 23 is set to an appropriate amount capable of maintaining the interval D as the desired interval D_target, the beam irradiation device. 1 and sample W do not separate (that is, the interval D does not increase). Therefore, the control device 4 may increase the force applied to the interval adjusting system 14 and / or the stage drive system 23 by a desired amount so that the interval D is maintained as the desired interval D_taget.
 但し、制御装置4は、気体供給装置6がビーム通過空間SPbの少なくとも一部に気体を供給することに起因した間隔Dの一時的な増加を許容してもよい。つまり、制御装置4は、気体供給装置6がビーム通過空間SPbの少なくとも一部に気体を供給することに起因してビーム照射装置1と試料Wとが一時的に離れることを許容してもよい。この場合には、制御装置4は、一時的に増加した間隔Dを減少させて所望間隔D_targetに戻すように間隔調整系14及びステージ駆動系23の少なくとも一方を制御してもよい。つまり、制御装置4は、一時的に離れたビーム照射装置1と試料Wとが再び近づくように間隔調整系14及びステージ駆動系23の少なくとも一方を制御してもよい。この場合であっても、間隔Dの一時的な増加が走査型電子顕微鏡SEMaによる計測に影響を与えない限りは問題がない。 However, the control device 4 may allow a temporary increase in the interval D due to the gas supply device 6 supplying gas to at least a part of the beam passage space SPb. That is, the control device 4 may allow the beam irradiation device 1 and the sample W to be temporarily separated from each other due to the gas supply device 6 supplying gas to at least a part of the beam passage space SPb. .. In this case, the control device 4 may control at least one of the interval adjusting system 14 and the stage drive system 23 so as to decrease the temporarily increased interval D and return it to the desired interval D_target. That is, the control device 4 may control at least one of the interval adjusting system 14 and the stage drive system 23 so that the beam irradiation device 1 temporarily separated and the sample W come close to each other again. Even in this case, there is no problem as long as the temporary increase in the interval D does not affect the measurement by the scanning electron microscope SEMa.
 一方で、上述したように、排気装置7によってビーム通過空間SPbの少なくとも一部が排気されると、ビーム通過空間SPbの少なくとも一部の圧力が変わる。より具体的には、ビーム通過空間SPbの少なくとも一部の圧力が減少する。従って、ビーム通過空間SPbの少なくとも一部が排気されると、ビーム通過空間SPbの少なくとも一部の真空度が増加する。このため、排気装置7は、ビーム通過空間SPbの少なくとも一部の真空度が増加するようにビーム通過空間SPbの少なくとも一部の真空度を制御可能な装置として機能し得る。この場合、排気装置7は、ビーム通過空間SPbの少なくとも一部の真空度を増加させたいタイミングで、ビーム通過空間SPbの少なくとも一部を排気する。 On the other hand, as described above, when at least a part of the beam passing space SPb is exhausted by the exhaust device 7, the pressure of at least a part of the beam passing space SPb changes. More specifically, the pressure of at least a part of the beam passage space SPb is reduced. Therefore, when at least a part of the beam passing space SPb is exhausted, the degree of vacuum of at least a part of the beam passing space SPb increases. Therefore, the exhaust device 7 can function as a device capable of controlling at least a part of the vacuum degree of the beam passing space SPb so that the degree of vacuum of at least a part of the beam passing space SPb increases. In this case, the exhaust device 7 exhausts at least a part of the beam passing space SPb at a timing when it is desired to increase the degree of vacuum of at least a part of the beam passing space SPb.
 排気装置7によってビーム通過空間SPbの少なくとも一部から回収される気体が多くなるほど、ビーム通過空間SPbの少なくとも一部の圧力の減少量が大きくなる。つまり、排気装置7によってビーム通過空間SPbの少なくとも一部から回収される気体が多くなるほど、ビーム通過空間SPbの少なくとも一部の真空度の増加量が大きくなる。逆に、排気装置7によってビーム通過空間SPbの少なくとも一部から回収される気体が少なくなるなるほど、ビーム通過空間SPbの少なくとも一部の圧力の減少量が小さくなる。つまり、排気装置7によってビーム通過空間SPbの少なくとも一部から回収される気体が少なくなるほど、ビーム通過空間SPbの少なくとも一部の真空度の増加量が小さくなる。このため、排気装置7は、ビーム通過空間SPbの少なくとも一部の真空度が所望の真空度になるように、ビーム通過空間SPbの少なくとも一部から所望流量で気体を回収してもよい。 The more gas recovered from at least a part of the beam passing space SPb by the exhaust device 7, the greater the amount of pressure decrease in at least a part of the beam passing space SPb. That is, as the amount of gas recovered from at least a part of the beam passing space SPb by the exhaust device 7 increases, the amount of increase in the degree of vacuum of at least a part of the beam passing space SPb increases. On the contrary, as the amount of gas recovered from at least a part of the beam passing space SPb by the exhaust device 7 decreases, the amount of pressure decrease in at least a part of the beam passing space SPb becomes smaller. That is, as the amount of gas recovered from at least a part of the beam passing space SPb by the exhaust device 7 decreases, the amount of increase in the degree of vacuum of at least a part of the beam passing space SPb becomes smaller. Therefore, the exhaust device 7 may recover the gas from at least a part of the beam passing space SPb at a desired flow rate so that the degree of vacuum of at least a part of the beam passing space SPb becomes a desired degree of vacuum.
 但し、排気装置7がビーム通過空間SPbの少なくとも一部を排気することに起因してビーム通過空間SPbの少なくとも一部の真空度が増加すると、ビーム照射装置1と試料Wとの間の空間に形成されるビーム通過空間SPb3の少なくとも一部の真空度もまた増加する可能性がある。ビーム通過空間SPb3の少なくとも一部の真空度が増加すると、ビーム通過空間SPb3からビーム照射装置1(特に、射出面12LS)及び試料W(特に、表面WSu)に作用する負圧が増加する可能性がある。つまり、ビーム照射装置1を試料Wに近づけるようにビーム通過空間SPb3からビーム照射装置1に作用する力及び試料Wをビーム照射装置1に近づけるようにビーム通過空間SPb3から試料Wに作用する力が増加する可能性がある。この場合、ビーム照射装置1と試料Wとが近づいてしまう可能性がある。その結果、ビーム照射装置1と試料Wとの間の間隔Dが、所望間隔D_targetからずれてしまう可能性がある。典型的には、ビーム照射装置1と試料Wとの間の間隔Dが、所望間隔D_targetよりも小さくなってしまう可能性がある。 However, when the degree of vacuum of at least a part of the beam passing space SPb increases due to the exhaust device 7 exhausting at least a part of the beam passing space SPb, the space between the beam irradiating device 1 and the sample W becomes The degree of vacuum of at least a part of the beam passage space SPb3 formed may also increase. When the degree of vacuum of at least a part of the beam passing space SPb3 increases, the negative pressure acting on the beam irradiation device 1 (particularly the injection surface 12LS) and the sample W (particularly the surface WSu) from the beam passing space SPb3 may increase. There is. That is, the force acting on the beam irradiation device 1 from the beam passing space SPb3 so as to bring the beam irradiation device 1 closer to the sample W and the force acting on the sample W from the beam passing space SPb3 so as to bring the sample W closer to the beam irradiation device 1. May increase. In this case, the beam irradiation device 1 and the sample W may come close to each other. As a result, the distance D between the beam irradiation device 1 and the sample W may deviate from the desired distance D_target. Typically, the distance D between the beam irradiator 1 and the sample W may be smaller than the desired distance D_taget.
 そこで、第1実施形態では、制御装置4は、排気装置7がビーム通過空間SPbの少なくとも一部を排気する期間の少なくとも一部において、間隔Dを制御してもよい。つまり、制御装置4は、排気装置7を用いてビーム通過空間SPbの少なくとも一部の真空度を制御すると共に、間隔Dを制御してもよい。この場合、制御装置4は、排気装置7を用いてビーム通過空間SPbの少なくとも一部の真空度を制御することと並行して、間隔Dを制御してもよい。 Therefore, in the first embodiment, the control device 4 may control the interval D during at least a part of the period in which the exhaust device 7 exhausts at least a part of the beam passing space SPb. That is, the control device 4 may use the exhaust device 7 to control the degree of vacuum of at least a part of the beam passing space SPb and also control the interval D. In this case, the control device 4 may control the interval D in parallel with controlling the degree of vacuum of at least a part of the beam passing space SPb by using the exhaust device 7.
 制御装置4は、排気装置7がビーム通過空間SPbの少なくとも一部を排気する期間の少なくとも一部において、間隔Dが所望間隔D_targetのまま維持されるように、間隔調整系14及びステージ駆動系23の少なくとも一方を制御してもよい。制御装置4は、排気装置7がビーム通過空間SPbの少なくとも一部を排気する前の期間及び排気装置7がビーム通過空間SPbの少なくとも一部を排気した後の期間の双方において、間隔Dが所望間隔D_targetのまま維持されるように、間隔調整系14及びステージ駆動系23の少なくとも一方を制御してもよい。 The control device 4 has the interval adjusting system 14 and the stage drive system 23 so that the interval D is maintained as the desired interval D_target during at least a part of the period in which the exhaust device 7 exhausts at least a part of the beam passage space SPb. At least one of them may be controlled. The control device 4 desires an interval D both in the period before the exhaust device 7 exhausts at least a part of the beam passage space SPb and in the period after the exhaust device 7 exhausts at least a part of the beam passage space SPb. At least one of the interval adjustment system 14 and the stage drive system 23 may be controlled so that the interval D_target is maintained.
 例えば、図8に示すように、ビーム照射装置1と試料WとをZ軸方向において離すように作用する力をフランジ部材13に付与することで間隔調整系14が間隔Dを調整している場合には、制御装置4は、排気装置7がビーム通過空間SPbの少なくとも一部を排気する前と比較して間隔調整系14からフランジ部材13に付与される力が増加するように、間隔調整系14を制御してもよい。例えば、図8に示すように、ビーム照射装置1と試料WとをZ軸方向において離すように作用する力をステージ22に付与することでステージ駆動系23が間隔Dを調整している場合には、制御装置4は、排気装置7がビーム通過空間SPbの少なくとも一部を排気する前と比較してステージ駆動系23からステージ22に付与される力が増加するように、ステージ駆動系23を制御してもよい。この場合、排気装置7がビーム通過空間SPbの少なくとも一部を排気することに起因してビーム照射装置1と試料Wとが近づいてしまいかねない状況下で、ビーム照射装置1と試料Wとを離すように間隔調整系14及び/又はステージ駆動系23が付与していた力が増加する。このため、ビーム照射装置1と試料Wとを離すように間隔調整系14及び/又はステージ駆動系23が付与していた力が増加しない場合と比較して、ビーム照射装置1と試料Wとが近づきにくくなる(つまり、間隔Dの減少量が小さくなる)。特に、間隔調整系14及び/又はステージ駆動系23が付与していた力の増加量が、間隔Dを所望間隔D_targetのまま維持することが可能な適切な量に設定されれば、ビーム照射装置1と試料Wとが近づいてしまうことはない(つまり、間隔Dが減少することはない)。このため、制御装置4は、間隔Dが所望間隔D_targetのまま維持されるように、間隔調整系14及び/又はステージ駆動系23が付与していた力を所望量だけ増加させてもよい。 For example, as shown in FIG. 8, when the space adjusting system 14 adjusts the space D by applying a force acting to separate the beam irradiation device 1 and the sample W in the Z-axis direction to the flange member 13. In the control device 4, the interval adjustment system is provided so that the force applied to the flange member 13 from the interval adjustment system 14 increases as compared with before the exhaust device 7 exhausts at least a part of the beam passage space SPb. 14 may be controlled. For example, as shown in FIG. 8, when the stage drive system 23 adjusts the interval D by applying a force acting to separate the beam irradiation device 1 and the sample W in the Z-axis direction to the stage 22. The control device 4 sets the stage drive system 23 so that the force applied to the stage 22 from the stage drive system 23 increases as compared with before the exhaust device 7 exhausts at least a part of the beam passage space SPb. You may control it. In this case, the beam irradiation device 1 and the sample W are combined in a situation where the beam irradiation device 1 and the sample W may come close to each other due to the exhaust device 7 exhausting at least a part of the beam passage space SPb. The force applied to the interval adjusting system 14 and / or the stage drive system 23 increases so as to separate them. Therefore, as compared with the case where the force applied to the interval adjusting system 14 and / or the stage drive system 23 does not increase so as to separate the beam irradiation device 1 and the sample W, the beam irradiation device 1 and the sample W are separated from each other. It becomes difficult to approach (that is, the amount of decrease in the interval D becomes small). In particular, if the amount of increase in the force applied by the interval adjusting system 14 and / or the stage drive system 23 is set to an appropriate amount capable of maintaining the interval D as the desired interval D_target, the beam irradiation device. 1 and the sample W do not come close to each other (that is, the interval D does not decrease). Therefore, the control device 4 may increase the force applied to the interval adjusting system 14 and / or the stage drive system 23 by a desired amount so that the interval D is maintained as the desired interval D_taget.
 或いは、例えば、図9に示すように、ビーム照射装置1と試料WとをZ軸方向において近づけるように作用する力をフランジ部材13に付与することで間隔調整系14が間隔Dを調整している場合には、制御装置4は、排気装置7がビーム通過空間SPbの少なくとも一部を排気する前と比較して間隔調整系14からフランジ部材13に付与される力が減少するように、間隔調整系14を制御してもよい。例えば、図9に示すように、ビーム照射装置1と試料WとをZ軸方向において近づけるように作用する力をステージ22に付与することでステージ駆動系23が間隔Dを調整している場合には、制御装置4は、排気装置7がビーム通過空間SPbの少なくとも一部を排気する前と比較してステージ駆動系23からステージ22に付与される力が減少するように、ステージ駆動系23を制御してもよい。この場合、排気装置7がビーム通過空間SPbの少なくとも一部を排気することに起因してビーム照射装置1と試料Wとが近づいてしまいかねない状況下で、ビーム照射装置1と試料Wとを近づけるように間隔調整系14及び/又はステージ駆動系23が付与していた力が減少する。このため、ビーム照射装置1と試料Wとを近づけるように間隔調整系14及び/又はステージ駆動系23が付与していた力が減少しない場合と比較して、ビーム照射装置1と試料Wとが近づきにくくなる(つまり、間隔Dの減少量が小さくなる)。特に、間隔調整系14及び/又はステージ駆動系23が付与していた力の減少量が、間隔Dを所望間隔D_targetのまま維持することが可能な適切な量に設定されれば、ビーム照射装置1と試料Wとが近づいてしまうことはない(つまり、間隔Dが減少することはない)。このため、制御装置4は、間隔Dが所望間隔D_targetのまま維持されるように、間隔調整系14及び/又はステージ駆動系23が付与していた力を所望量だけ減少させてもよい。 Alternatively, for example, as shown in FIG. 9, the interval adjusting system 14 adjusts the interval D by applying a force acting to bring the beam irradiation device 1 and the sample W closer to each other in the Z-axis direction to the flange member 13. If so, the control device 4 is spaced so that the force applied to the flange member 13 by the spacing adjusting system 14 is reduced as compared to before the exhausting device 7 exhausts at least a part of the beam passage space SPb. The adjustment system 14 may be controlled. For example, as shown in FIG. 9, when the stage drive system 23 adjusts the interval D by applying a force acting to bring the beam irradiation device 1 and the sample W closer to each other in the Z-axis direction to the stage 22. The control device 4 sets the stage drive system 23 so that the force applied to the stage 22 from the stage drive system 23 is reduced as compared with before the exhaust device 7 exhausts at least a part of the beam passage space SPb. You may control it. In this case, the beam irradiation device 1 and the sample W are combined in a situation where the beam irradiation device 1 and the sample W may come close to each other due to the exhaust device 7 exhausting at least a part of the beam passage space SPb. The force applied to the interval adjusting system 14 and / or the stage drive system 23 is reduced so as to bring them closer to each other. Therefore, the beam irradiating device 1 and the sample W are compared with the case where the force applied by the interval adjusting system 14 and / or the stage driving system 23 is not reduced so that the beam irradiating device 1 and the sample W are brought closer to each other. It becomes difficult to approach (that is, the amount of decrease in the interval D becomes small). In particular, if the amount of reduction in the force applied by the interval adjusting system 14 and / or the stage drive system 23 is set to an appropriate amount capable of maintaining the interval D as the desired interval D_target, the beam irradiation device. 1 and the sample W do not come close to each other (that is, the interval D does not decrease). Therefore, the control device 4 may reduce the force applied to the interval adjusting system 14 and / or the stage drive system 23 by a desired amount so that the interval D is maintained as the desired interval D_taget.
 但し、制御装置4は、排気装置7がビーム通過空間SPbの少なくとも一部を排気することに起因した間隔Dの一時的な減少を許容してもよい。つまり、制御装置4は、排気装置7がビーム通過空間SPbの少なくとも一部を排気することに起因してビーム照射装置1と試料Wとが一時的に近づくことを許容してもよい。この場合には、制御装置4は、一時的に減少した間隔Dを増加させて所望間隔D_targetに戻すように間隔調整系14及びステージ駆動系23の少なくとも一方を制御してもよい。つまり、制御装置4は、一時的に近づいたビーム照射装置1と試料Wとが再び離れるように間隔調整系14及びステージ駆動系23の少なくとも一方を制御してもよい。この場合であっても、間隔Dの一時的な減少が走査型電子顕微鏡SEMaによる計測に影響を与えない限りは問題がない。 However, the control device 4 may allow a temporary decrease in the interval D due to the exhaust device 7 exhausting at least a part of the beam passing space SPb. That is, the control device 4 may allow the beam irradiation device 1 and the sample W to temporarily approach each other due to the exhaust device 7 exhausting at least a part of the beam passing space SPb. In this case, the control device 4 may control at least one of the interval adjusting system 14 and the stage drive system 23 so as to increase the temporarily decreased interval D and return it to the desired interval D_target. That is, the control device 4 may control at least one of the interval adjusting system 14 and the stage drive system 23 so that the beam irradiation device 1 and the sample W that are temporarily approached are separated again. Even in this case, there is no problem as long as the temporary decrease in the interval D does not affect the measurement by the scanning electron microscope SEMa.
 このように、走査型電子顕微鏡SEMaは、気体供給装置6及び/又は排気装置7を用いて、ビーム通過空間SPbの真空度を制御可能である。より具体的には、走査型電子顕微鏡SEMaは、気体供給装置6及び/又は排気装置7を用いて、ビーム通過空間SPbの少なくとも一部を含む真空領域VSPの真空度を制御可能である。この場合、制御装置4は、走査型電子顕微鏡SEMaの動作モードを、真空領域VSP(或いは、ビーム通過空間SPbの少なくとも一部、以下同じ)を第1の圧力範囲で用いる第1モードと、真空領域VSPを第1の圧力範囲とは異なる第2の圧力範囲で用いる第2モードとの間で切り替えてもよい。より具体的には、制御装置4は、走査型電子顕微鏡SEMaの動作モードを、真空領域VSPの圧力を第1の圧力範囲含まれる圧力に設定する第1モードと、真空領域VSPの圧力を第2の圧力範囲に含まれる圧力に設定する第2モードとの間で切り替えてもよい。つまり、制御装置4は、走査型電子顕微鏡SEMaの動作モードを、第1及び第2モードのいずれか一方から、第1及び第2モードのいずれか他方に切り替えてもよい。言い換えれば、制御装置4は、走査型電子顕微鏡SEMaの動作モードを、第1モードに設定してもよいし、第2モードに設定してもよい。 As described above, the scanning electron microscope SEMa can control the degree of vacuum of the beam passing space SPb by using the gas supply device 6 and / or the exhaust device 7. More specifically, the scanning electron microscope SEMa can control the degree of vacuum of the vacuum region VSP including at least a part of the beam passing space SPb by using the gas supply device 6 and / or the exhaust device 7. In this case, the control device 4 sets the operation mode of the scanning electron microscope SEMa to the first mode in which the vacuum region VSP (or at least a part of the beam passage space SPb, the same applies hereinafter) is used in the first pressure range and the vacuum. The region VSP may be switched between a second mode used in a second pressure range different from the first pressure range. More specifically, the control device 4 sets the operation mode of the scanning electron microscope SEMa to a pressure including the pressure in the first pressure range, and sets the pressure in the vacuum region VSP to the first mode. You may switch between the second mode and setting the pressure included in the pressure range of 2. That is, the control device 4 may switch the operation mode of the scanning electron microscope SEMa from either the first or second mode to the other of the first and second modes. In other words, the control device 4 may set the operation mode of the scanning electron microscope SEMa to the first mode or the second mode.
 制御装置4は、開口126及び配管127を用いて、走査型電子顕微鏡SEMaの動作モードを、第1モードと第2モードとの間で切り替えてもよい。具体的には、制御装置4は、開口126及び配管127を介したビーム通過空間SPbの給気及び/又は排気を利用して、走査型電子顕微鏡SEMaの動作モードを、第1モードと第2モードとの間で切り替えてもよい。 The control device 4 may switch the operation mode of the scanning electron microscope SEMa between the first mode and the second mode by using the opening 126 and the pipe 127. Specifically, the control device 4 uses the air supply and / or exhaust of the beam passage space SPb via the opening 126 and the pipe 127 to set the operation modes of the scanning electron microscope SEMa to the first mode and the second mode. You may switch between modes.
 例えば、制御装置4は、開口126及び配管127を介してビーム通過空間SPbに供給される気体の流量の制御する(例えば、変更する)ことで、走査型電子顕微鏡SEMaの動作モードを、第1モードと第2モードとの間で切り替えてもよい。具体的には、例えば、制御装置4は、開口126及び配管127を介してビーム通過空間SPbに供給される気体の流量を、第1の流量から第2の流量に変更することで、走査型電子顕微鏡SEMaの動作モードを、第1モードと第2モードとの間で切り替えてもよい。例えば、制御装置4は、開口126及び配管127を介してビーム通過空間SPbに供給される気体の流量を、ゼロからゼロよりも多い流量に又はゼロよりも多い流量からゼロに変更することで、走査型電子顕微鏡SEMaの動作モードを、第1モードと第2モードとの間で切り替えてもよい。この場合、典型的には、第1モードにおいて開口126及び配管127を介してビーム通過空間SPbに供給される気体の流量は、第2モードにおいて開口126及び配管127を介してビーム通過空間SPbに供給される気体の流量とは異なる流量となる。 For example, the control device 4 controls (for example, changes) the flow rate of the gas supplied to the beam passage space SPb through the opening 126 and the pipe 127, thereby setting the operation mode of the scanning electron microscope SEMa to the first operation mode. You may switch between the mode and the second mode. Specifically, for example, the control device 4 is a scanning type by changing the flow rate of the gas supplied to the beam passing space SPb through the opening 126 and the pipe 127 from the first flow rate to the second flow rate. The operation mode of the electron microscope SEMa may be switched between the first mode and the second mode. For example, the control device 4 changes the flow rate of the gas supplied to the beam passage space SPb through the opening 126 and the pipe 127 from zero to more than zero or from more than zero to zero. The operation mode of the scanning electron microscope SEMa may be switched between the first mode and the second mode. In this case, typically, the flow rate of the gas supplied to the beam passage space SPb via the opening 126 and the pipe 127 in the first mode is sent to the beam passage space SPb via the opening 126 and the pipe 127 in the second mode. The flow rate is different from the flow rate of the supplied gas.
 例えば、制御装置4は、開口126及び配管127を介してビーム通過空間SPbから回収される気体の流量を制御する(例えば、変更する)ことで、走査型電子顕微鏡SEMaの動作モードを、第1モードと第2モードとの間で切り替えてもよい。具体的には、例えば、制御装置4は、開口126及び配管127を介してビーム通過空間SPbから回収される気体の流量を、第3の流量から第4の流量に変更することで、走査型電子顕微鏡SEMaの動作モードを、第1モードと第2モードとの間で切り替えてもよい。例えば、制御装置4は、開口126及び配管127を介してビーム通過空間SPbから回収される気体の流量を、ゼロからゼロよりも多い流量に又はゼロよりも多い流量からゼロに変更することで、走査型電子顕微鏡SEMaの動作モードを、第1モードと第2モードとの間で切り替えてもよい。この場合、典型的には、第1モードにおいて開口126及び配管127を介してビーム通過空間SPbから回収される気体の流量は、第2モードにおいて開口126及び配管127を介してビーム通過空間SPbから回収される気体の流量とは異なる流量となる。 For example, the control device 4 controls (for example, changes) the flow rate of the gas recovered from the beam passing space SPb through the opening 126 and the pipe 127, thereby setting the operation mode of the scanning electron microscope SEMa to the first operation mode. You may switch between the mode and the second mode. Specifically, for example, the control device 4 is a scanning type by changing the flow rate of the gas recovered from the beam passing space SPb through the opening 126 and the pipe 127 from the third flow rate to the fourth flow rate. The operation mode of the electron microscope SEMa may be switched between the first mode and the second mode. For example, the control device 4 changes the flow rate of the gas recovered from the beam passage space SPb through the opening 126 and the pipe 127 from zero to more than zero or from more than zero to zero. The operation mode of the scanning electron microscope SEMa may be switched between the first mode and the second mode. In this case, typically, the flow rate of the gas recovered from the beam passage space SPb via the opening 126 and the pipe 127 in the first mode is from the beam passage space SPb via the opening 126 and the pipe 127 in the second mode. The flow rate is different from the flow rate of the recovered gas.
 制御装置4は、開口126及び配管127に加えて又は代えて、排気通路EP1及びEP2の少なくとも一方を介して真空ポンプ52によってビーム通過空間SPbから回収される気体の流量を制御する(例えば、変更する)ことで、走査型電子顕微鏡SEMaの動作モードを、第1モードと第2モードとの間で切り替えてもよい。つまり、制御装置4は、開口126及び配管127に加えて又は代えて、排気口1251及び1252の少なくとも一方を介してビーム通過空間SPbから回収される気体の流量を制御する(例えば、変更する)ことで、走査型電子顕微鏡SEMaの動作モードを、第1モードと第2モードとの間で切り替えてもよい。具体的には、例えば、制御装置4は、排気通路EP1及びEP2の少なくとも一方を介してビーム通過空間SPbから回収される気体の流量を、第5の流量から第6の流量に変更することで、走査型電子顕微鏡SEMaの動作モードを、第1モードと第2モードとの間で切り替えてもよい。例えば、制御装置4は、排気通路EP1及びEP2の少なくとも一方を介してビーム通過空間SPbから回収される気体の流量を、ゼロからゼロよりも多い流量に又はゼロよりも多い流量からゼロに変更することで、走査型電子顕微鏡SEMaの動作モードを、第1モードと第2モードとの間で切り替えてもよい。この場合、典型的には、第1モードにおいて排気通路EP1及びEP2の少なくとも一方を介してビーム通過空間SPbから回収される気体の流量は、第2モードにおいて排気通路EP1及びEP2の少なくとも一方を介してビーム通過空間SPbから回収される気体の流量とは異なる流量となる。 The control device 4 controls the flow rate of the gas recovered from the beam passage space SPb by the vacuum pump 52 via at least one of the exhaust passages EP1 and EP2 in addition to or in place of the opening 126 and the pipe 127 (eg, modification). By doing so, the operation mode of the scanning electron microscope SEMa may be switched between the first mode and the second mode. That is, the control device 4 controls (eg, changes) the flow rate of the gas recovered from the beam passage space SPb via at least one of the exhaust ports 1251 and 1252 in addition to or in place of the opening 126 and the pipe 127. As a result, the operation mode of the scanning electron microscope SEMa may be switched between the first mode and the second mode. Specifically, for example, the control device 4 changes the flow rate of the gas recovered from the beam passage space SPb via at least one of the exhaust passages EP1 and EP2 from the fifth flow rate to the sixth flow rate. , The operation mode of the scanning electron microscope SEMa may be switched between the first mode and the second mode. For example, the control device 4 changes the flow rate of the gas recovered from the beam passage space SPb through at least one of the exhaust passages EP1 and EP2 from zero to more than zero or from more than zero to zero. As a result, the operation mode of the scanning electron microscope SEMa may be switched between the first mode and the second mode. In this case, typically, the flow rate of the gas recovered from the beam passage space SPb via at least one of the exhaust passages EP1 and EP2 in the first mode is via at least one of the exhaust passages EP1 and EP2 in the second mode. The flow rate is different from the flow rate of the gas recovered from the beam passage space SPb.
 制御装置4は、開口126及び配管127に加えて又は代えて、配管112を介して真空ポンプ52によってビーム通過空間SPbから回収される気体の流量を制御する(例えば、変更する)ことで、走査型電子顕微鏡SEMaの動作モードを、第1モードと第2モードとの間で切り替えてもよい。具体的には、制御装置4は、配管112を介して真空ポンプ52によってビーム通過空間SPb1から回収される気体の流量を制御する(例えば、変更する)ことで、走査型電子顕微鏡SEMaの動作モードを、第1モードと第2モードとの間で切り替えてもよい。制御装置4は、配管112及びビーム通過空間SPb1を介して真空ポンプ52によってビーム通過空間SPb2から回収される気体の流量を制御する(例えば、変更する)ことで、走査型電子顕微鏡SEMaの動作モードを、第1モードと第2モードとの間で切り替えてもよい。制御装置4は、配管112及びビーム通過空間SPb1からSPb2を介して真空ポンプ52によってビーム通過空間SPb3から回収される気体の流量を制御する(例えば、変更する)ことで、走査型電子顕微鏡SEMaの動作モードを、第1モードと第2モードとの間で切り替えてもよい。この場合、例えば、制御装置4は、配管112を介してビーム通過空間SPbから回収される気体の流量を、第7の流量から第8の流量に変更することで、走査型電子顕微鏡SEMaの動作モードを、第1モードと第2モードとの間で切り替えてもよい。例えば、制御装置4は、配管112を介してビーム通過空間SPbから回収される気体の流量を、ゼロからゼロよりも多い流量に又はゼロよりも多い流量からゼロに変更することで、走査型電子顕微鏡SEMaの動作モードを、第1モードと第2モードとの間で切り替えてもよい。この場合、典型的には、第1モードにおいて配管112を介してビーム通過空間SPbから回収される気体の流量は、第2モードにおいて配管112を介してビーム通過空間SPbから回収される気体の流量とは異なる流量となる。 The control device 4 scans by controlling (for example, changing) the flow rate of the gas recovered from the beam passage space SPb by the vacuum pump 52 via the pipe 112 in addition to or in place of the opening 126 and the pipe 127. The operation mode of the type electron microscope SEMa may be switched between the first mode and the second mode. Specifically, the control device 4 controls (for example, changes) the flow rate of the gas recovered from the beam passage space SPb1 by the vacuum pump 52 via the pipe 112, so that the operation mode of the scanning electron microscope SEMa is changed. May be switched between the first mode and the second mode. The control device 4 controls (for example, changes) the flow rate of the gas recovered from the beam passage space SPb2 by the vacuum pump 52 via the pipe 112 and the beam passage space SPb1 to control (for example, change) the operation mode of the scanning electron microscope SEMa. May be switched between the first mode and the second mode. The control device 4 controls (for example, changes) the flow rate of the gas recovered from the beam passage space SPb3 by the vacuum pump 52 via the pipe 112 and the beam passage space SPb1 to SPb2, thereby causing the scanning electron microscope SEMa. The operation mode may be switched between the first mode and the second mode. In this case, for example, the control device 4 operates the scanning electron microscope SEMa by changing the flow rate of the gas recovered from the beam passing space SPb via the pipe 112 from the seventh flow rate to the eighth flow rate. The mode may be switched between the first mode and the second mode. For example, the control device 4 changes the flow rate of the gas recovered from the beam passage space SPb via the pipe 112 from zero to more than zero or from more than zero to zero, thereby scanning electrons. The operation mode of the microscope SEMa may be switched between the first mode and the second mode. In this case, typically, the flow rate of the gas recovered from the beam passing space SPb via the pipe 112 in the first mode is the flow rate of the gas recovered from the beam passing space SPb via the pipe 112 in the second mode. The flow rate will be different from.
 このように走査型電子顕微鏡SEMaの動作モードが第1モードと第2モードとの間で切り替えられる場合においても、制御装置4は、ビーム照射装置1と試料Wとの間の間隔Dは、所望間隔D_targetのまま維持されるように、間隔調整系14及びステージ駆動系23の少なくとも一方を制御してもよい。つまり、制御装置4は、走査型電子顕微鏡SEMaの動作モードが第1モードに設定されている場合における間隔Dが、走査型電子顕微鏡SEMaの動作モードが第2モードに設定されている場合における間隔Dとほぼ同じになるように、間隔調整系14及びステージ駆動系23の少なくとも一方を制御してもよい。尚、ここで言う「第1モードでの間隔Dと第2モードでの間隔Dとがほぼ同じ」状態は、第1モードでの間隔Dと第2モードでの間隔Dとが文字通り完全同じになる状態のみならず、第1モードでの間隔Dと第2モードでの間隔Dとが異なるものの真空領域おVSPの適切な形成に支障ない程度にほぼ同じ程度にしか両者が異なっていない状態をも含む。但し、上述したように間隔Dの一時的な増加又は減少が許容される場合には、制御装置4は、走査型電子顕微鏡SEMaの動作モードが第1モードに設定されている場合における間隔Dが、走査型電子顕微鏡SEMaの動作モードが第2モードに設定されている場合における間隔Dと異なるものとなるように、間隔調整系14及びステージ駆動系23の少なくとも一方を制御してもよい。 Even when the operation mode of the scanning electron microscope SEMa is switched between the first mode and the second mode in this way, the control device 4 desires the distance D between the beam irradiation device 1 and the sample W. At least one of the interval adjusting system 14 and the stage drive system 23 may be controlled so that the interval D_target is maintained. That is, in the control device 4, the interval D when the operation mode of the scanning electron microscope SEMa is set to the first mode is the interval when the operation mode of the scanning electron microscope SEMa is set to the second mode. At least one of the interval adjustment system 14 and the stage drive system 23 may be controlled so as to be substantially the same as D. In the state of "the interval D in the first mode and the interval D in the second mode are almost the same" referred to here, the interval D in the first mode and the interval D in the second mode are literally exactly the same. The state in which the interval D in the first mode and the interval D in the second mode are different, but the two are different only to the extent that they do not interfere with the proper formation of the vacuum region VSP. Also includes. However, when the temporary increase or decrease of the interval D is allowed as described above, the control device 4 sets the interval D when the operation mode of the scanning electron microscope SEMa is set to the first mode. , At least one of the interval adjusting system 14 and the stage drive system 23 may be controlled so that the operation mode of the scanning electron microscope SEMa is different from the interval D when the operation mode is set to the second mode.
 (1-3)第1実施形態の走査型電子顕微鏡SEMaの技術的効果
 以上説明したように、第1実施形態の走査型電子顕微鏡SEMaでは、ビーム通過空間SPbに面するように形成された開口126を介して、ビーム通過空間SPbの少なくとも一部の真空度を制御することができる。このため、走査型電子顕微鏡SEMaは、主としてビーム通過空間SPbの全体を排気するために用いられる真空ポンプ51を制御しなくても、ビーム通過空間SPbの少なくとも一部の真空度を制御することができる。実質的には、走査型電子顕微鏡SEMaは、ビーム通過空間SPbの全体の真空度をまとめて制御することなく、ビーム通過空間SPbの一部の真空度を局所的に制御することができる。このため、走査型電子顕微鏡SEMaは、ビーム通過空間SPbの全体の真空度をまとめて制御する場合と比較して、ビーム通過空間SPbの一部の真空度(例えば、ビーム通過空間SPbのうち開口126に相対的に近い位置に位置する局所的な空間部分の真空度)を相対的に迅速に制御する(例えば、変える)ことができる。例えば、走査型電子顕微鏡SEMaは、ビーム通過空間SPb1の大部分の真空度を変えることなく、ビーム通過空間SPb2及びSPb3の少なくとも一部の真空度を相対的に迅速に変えることができる。例えば、走査型電子顕微鏡SEMaは、ビーム通過空間SPb1からSPb2の端部に相当するビーム射出口1250の真空度が相対的に高い状態を維持したまま、ビーム通過空間SPb2のうち開口126付近の空間部分の真空度を相対的に迅速に変えることができる。例えば、走査型電子顕微鏡SEMaは、ビーム通過空間SPb1からSPb2の端部に相当するビーム射出口1250の真空度が、ビーム通過空間SPb2のうち開口126付近の空間部分の真空度よりも高い状態で、電子ビームEBを試料Wに照射することができる。
(1-3) Technical Effects of Scanning Electron Microscope SEMa of the First Embodiment As described above, in the scanning electron microscope SEMa of the first embodiment, an opening formed so as to face the beam passage space SPb. The degree of vacuum of at least a part of the beam passing space SPb can be controlled via 126. Therefore, the scanning electron microscope SEMa can control the degree of vacuum of at least a part of the beam passing space SPb without controlling the vacuum pump 51 mainly used for exhausting the entire beam passing space SPb. it can. In essence, the scanning electron microscope SEMa can locally control the degree of vacuum of a part of the beam passage space SPb without collectively controlling the degree of vacuum of the entire beam passage space SPb. Therefore, the scanning electron microscope SEMa has a partial vacuum degree of the beam passing space SPb (for example, an opening in the beam passing space SPb) as compared with the case where the entire vacuum degree of the beam passing space SPb is controlled collectively. The degree of vacuum of a local spatial portion located relatively close to 126) can be controlled (eg, changed) relatively quickly. For example, the scanning electron microscope SEMa can change the vacuum degree of at least a part of the beam passing space SPb2 and SPb3 relatively quickly without changing the vacuum degree of most of the beam passing space SPb1. For example, the scanning electron microscope SEMa is a space in the beam passing space SPb2 near the opening 126 while maintaining a relatively high degree of vacuum at the beam ejection port 1250 corresponding to the ends of the beam passing spaces SPb1 to SPb2. The degree of vacuum of the part can be changed relatively quickly. For example, in the scanning electron microscope SEMa, the degree of vacuum of the beam ejection port 1250 corresponding to the end of the beam passing space SPb1 to SPb2 is higher than the degree of vacuum of the space portion of the beam passing space SPb2 near the opening 126. , The electron beam EB can be applied to the sample W.
 この場合、走査型電子顕微鏡SEMaは、試料Wの特性に応じて、ビーム通過空間SPbの少なくとも一部の真空度(特に、試料Wに面するビーム通過空間SPb3の真空度)を制御してもよい。例えば、走査型電子顕微鏡SEMaでは、試料Wが絶縁物である場合には、試料Wが非絶縁物である場合と比較して、電子ビームEBの照射に起因して試料Wが帯電するチャージアップという現象が相対的に発生しやすくなる。ここで、絶縁物は、電気伝導率(導電率)が低い物体であり、電気伝導率が10S/m以下の不導体からなる。このチャージアップという現象は、適切なSEM像の取得(或いは、試料Wに関する情報の取得)にとって好ましいとは言いがたい。そこで、走査型電子顕微鏡SEMaは、試料Wが絶縁物である場合には、試料Wが非絶縁物である場合と比較して、ビーム通過空間SPbの少なくとも一部の真空度(特に、試料Wに面するビーム通過空間SPb3の真空度)が低くなるように、ビーム通過空間SPbの少なくとも一部の真空度を制御してもよい。その結果、試料Wが絶縁物であるか否かに関わらずビーム通過空間SPbの少なくとも一部の真空度が同じである場合と比較して、チャージアップという現象が発生しにくくなる。更に、走査型電子顕微鏡SEMaは、ビーム通過空間SPbの全体の真空度をまとめて制御しなくてもよいため、ビーム通過空間SPbの全体の真空度をまとめて制御される場合と比較して、低くしたビーム通過空間SPbの少なくとも一部の真空度を、相対的に迅速に元の真空度(つまり、相対的に高い真空度)に戻すことができる。 In this case, the scanning electron microscope SEMa may control at least a part of the vacuum degree of the beam passing space SPb (particularly, the vacuum degree of the beam passing space SPb3 facing the sample W) according to the characteristics of the sample W. Good. For example, in the scanning electron microscope SEMa, when the sample W is an insulator, the sample W is charged up due to the irradiation of the electron beam EB as compared with the case where the sample W is a non-insulator. Is relatively likely to occur. Here, insulating material, electric conductivity (conductivity) is low object, electrical conductivity consists of the following non-conductor 10 6 S / m. It cannot be said that this phenomenon of charge-up is preferable for the acquisition of an appropriate SEM image (or the acquisition of information on the sample W). Therefore, in the scanning electron microscope SEMa, when the sample W is an insulator, at least a part of the vacuum degree (particularly, the sample W) of the beam passing space SPb is compared with the case where the sample W is a non-insulator. The degree of vacuum of at least a part of the beam passing space SPb may be controlled so that the degree of vacuum of the beam passing space SPb3 facing the beam is low. As a result, the phenomenon of charge-up is less likely to occur as compared with the case where at least a part of the beam passing space SPb has the same degree of vacuum regardless of whether the sample W is an insulator or not. Further, since the scanning electron microscope SEMa does not have to collectively control the overall vacuum degree of the beam passing space SPb, compared with the case where the entire vacuum degree of the beam passing space SPb is controlled collectively. The vacuum degree of at least a part of the lowered beam passage space SPb can be returned to the original vacuum degree (that is, a relatively high vacuum degree) relatively quickly.
 (1-4)第1実施形態の走査型電子顕微鏡SEMaの変形例
 上述した説明では、走査型電子顕微鏡SEMaは、試料Wが絶縁物である場合には、試料Wが非絶縁物である場合と比較して、ビーム通過空間SPbの少なくとも一部の真空度が低くなるように、ビーム通過空間SPbの少なくとも一部の真空度を制御する。しかしながら、ビーム通過空間SPbの少なくとも一部の真空度が低くなるほど、ビーム通過空間SPbを通過する電子ビームEBが気体分子によって散乱される可能性が高くなる。このため、走査型電子顕微鏡SEMaは、ビーム通過空間SPbの少なくとも一部の真空度が相対的に低くなるようにビーム通過空間SPbの少なくとも一部の真空度を制御する第1動作と、ビーム通過空間SPbの少なくとも一部の真空度が相対的に高くなるようにビーム通過空間SPbの少なくとも一部の真空度を制御する第2動作とを、相対的に短い期間中に繰り返してもよい。つまり、走査型電子顕微鏡SEMaは、ビーム通過空間SPbの少なくとも一部の真空度を相対的に低くして気体分子による電子ビームEBの散乱防止よりもチャージアップの防止を優先する第1動作と、ビーム通過空間SPbの少なくとも一部の真空度を相対的に高くしてチャージアップの防止よりも気体分子による電子ビームEBの散乱防止を優先する第2動作とを、相対的に短い期間中に繰り返してもよい。具体的には、例えば、走査型電子顕微鏡SEMaは、走査型電子顕微鏡SEMaが電子ビームEBで試料Wの表面WSuのある部分を走査する相対的に短い期間中に第1及び第2動作を繰り返してもよい。例えば、走査型電子顕微鏡SEMaは、試料Wとビーム照射装置1との相対位置が変わらない相対的に短い期間中に第1及び第2動作を繰り返してもよい。
(1-4) Modification Example of Scanning Electron Microscope SEMa of the First Embodiment In the above description, when the sample W is an insulating material, the scanning electron microscope SEMa is a non-insulating material. The vacuum degree of at least a part of the beam passing space SPb is controlled so that the vacuum degree of at least a part of the beam passing space SPb is lower than that of the beam passing space SPb. However, the lower the degree of vacuum of at least a part of the beam passing space SPb, the higher the possibility that the electron beam EB passing through the beam passing space SPb is scattered by gas molecules. Therefore, the scanning electron microscope SEMa has a first operation of controlling the vacuum degree of at least a part of the beam passing space SPb so that the vacuum degree of at least a part of the beam passing space SPb is relatively low, and a beam passing. The second operation of controlling the vacuum degree of at least a part of the beam passing space SPb so that the vacuum degree of at least a part of the space SPb becomes relatively high may be repeated in a relatively short period of time. That is, the scanning electron microscope SEMa has the first operation of relatively lowering the degree of vacuum of at least a part of the beam passing space SPb to prioritize the prevention of charge-up rather than the prevention of scattering of the electron beam EB by gas molecules. The second operation of prioritizing the prevention of scattering of the electron beam EB by gas molecules rather than the prevention of charge-up by relatively increasing the degree of vacuum of at least a part of the beam passage space SPb is repeated in a relatively short period of time. You may. Specifically, for example, the scanning electron microscope SEMa repeats the first and second operations during a relatively short period in which the scanning electron microscope SEMa scans a part of the surface WSu of the sample W with the electron beam EB. You may. For example, the scanning electron microscope SEMa may repeat the first and second operations during a relatively short period in which the relative positions of the sample W and the beam irradiation device 1 do not change.
 走査型電子顕微鏡SEMaは、ビーム通過空間SPbの真空度が異なる複数のビーム照射装置1を備えていてもよい。この場合、走査型電子顕微鏡SEMaは、試料Wの特性(例えば、電気伝導度)に応じて、複数のビーム照射装置1のうち試料Wに電子ビームEBを照射する一のビーム照射装置1を決定し、当該一のビーム照射装置1を用いて、試料Wに電子ビームEBを照射してもよい。例えば、非絶縁物として振舞うほどに試料Wの電気伝導度が高い場合には、走査型電子顕微鏡SEMaは、複数のビーム照射装置1のうちビーム通過空間SPbの真空度が相対的に高い(或いは、所定値よりも高い又は最も高い)一のビーム照射装置1を用いて、試料Wに電子ビームEBを照射してもよい。例えば、絶縁物として振舞うほどに試料Wの電気伝導度が低い場合には、走査型電子顕微鏡SEMaは、複数のビーム照射装置1のうちビーム通過空間SPbの真空度が相対的に低い(或いは、所定値よりも低い又は最も低い)一のビーム照射装置1を用いて、試料Wに電子ビームEBを照射してもよい。 The scanning electron microscope SEMa may include a plurality of beam irradiation devices 1 having different degrees of vacuum in the beam passing space SPb. In this case, the scanning electron microscope SEMa determines one beam irradiation device 1 that irradiates the sample W with the electron beam EB among the plurality of beam irradiation devices 1 according to the characteristics (for example, electrical conductivity) of the sample W. Then, the sample W may be irradiated with the electron beam EB by using the one beam irradiation device 1. For example, when the electric conductivity of the sample W is high enough to behave as a non-insulating material, the scanning electron microscope SEMa has a relatively high degree of vacuum (or a degree of vacuum in the beam passing space SPb among the plurality of beam irradiation devices 1). The sample W may be irradiated with the electron beam EB by using one beam irradiation device 1 (higher or highest than a predetermined value). For example, when the electric conductivity of the sample W is low enough to behave as an insulator, the scanning electron microscope SEMa has a relatively low degree of vacuum (or a degree of vacuum in the beam passing space SPb among the plurality of beam irradiation devices 1). The electron beam EB may be irradiated to the sample W by using one beam irradiation device 1 (lower or lowest than a predetermined value).
 上述したように、ビーム通過空間SPbの真空度が変わると、ビーム照射装置1と試料Wとの間の間隔Dが変わることを考慮すれば、尚、ビーム通過空間SPbの真空度と間隔Dとが相関を有していると推定される。このため、制御装置4は、位置計測装置15及び23の計測結果に加えて又は代えて、ビーム通過空間SPbの真空度に基づいて間隔Dを制御してもよい。この場合、走査型電子顕微鏡SEMaは、図10に示すように、圧力計16を備えていてもよい。圧力計16は、ビーム通過空間SPb1、SPb2及びSPb3の少なくとも一つの圧力を計測可能であってもよい。圧力計16は、排気通路EP1及びEP2の少なくとも一つの圧力を計測可能であってもよい。圧力計16は、ビーム通過空間SPbにつながる配管127内の圧力を計測可能であってもよい。 As described above, considering that the distance D between the beam irradiation device 1 and the sample W changes when the degree of vacuum of the beam passing space SPb changes, the degree of vacuum and the distance D of the beam passing space SPb are still included. Is presumed to have a correlation. Therefore, the control device 4 may control the interval D based on the degree of vacuum of the beam passing space SPb in addition to or in place of the measurement results of the position measuring devices 15 and 23. In this case, the scanning electron microscope SEMa may include a pressure gauge 16 as shown in FIG. The pressure gauge 16 may be capable of measuring at least one pressure in the beam passage spaces SPb1, SPb2 and SPb3. The pressure gauge 16 may be capable of measuring at least one pressure in the exhaust passages EP1 and EP2. The pressure gauge 16 may be capable of measuring the pressure in the pipe 127 connected to the beam passage space SPb.
 上述した説明では、開口126は、配管127、バルブ1281及び配管1291を介して、気体供給装置6に接続されている。しかしながら、開口126は、配管127、バルブ1281及び配管1291を介して、ビーム通過空間SPbよりも真空度が低い低真空空間に接続されていてもよい。低真空空間は、大気圧空間であってもよい。走査型電子顕微鏡SEMaが大気圧環境下に設置される場合には、低真空空間は、走査型電子顕微鏡SEMaが設置されている空間の少なくとも一部であってもよい。この場合であっても、バルブ1281が開状態になると、真空度が相対的に低い低真空空間から真空度が相対的に高いビーム通過空間SPbの少なくとも一部に向かって気体が流れ込む。このため、上述した効果と同様の効果が享受可能である。尚、この場合には、走査型電子顕微鏡SEMaは、気体供給装置6を備えていなくてもよい。 In the above description, the opening 126 is connected to the gas supply device 6 via the pipe 127, the valve 1281, and the pipe 1291. However, the opening 126 may be connected to a low vacuum space having a vacuum degree lower than that of the beam passing space SPb via the pipe 127, the valve 1281, and the pipe 1291. The low vacuum space may be an atmospheric pressure space. When the scanning electron microscope SEMa is installed in an atmospheric pressure environment, the low vacuum space may be at least a part of the space in which the scanning electron microscope SEMa is installed. Even in this case, when the valve 1281 is opened, gas flows from the low vacuum space having a relatively low degree of vacuum toward at least a part of the beam passing space SPb having a relatively high degree of vacuum. Therefore, the same effect as the above-mentioned effect can be enjoyed. In this case, the scanning electron microscope SEMa does not have to be provided with the gas supply device 6.
 上述した説明では、開口126は、配管127、バルブ1282及び配管1292を介して、排気装置7に接続されている。しかしながら、開口126は、配管127、バルブ1282及び配管1292を介して、ビーム通過空間SPbよりも真空度が高い高真空空間に接続されていてもよい。この場合であっても、バルブ1282が開状態になると、真空度が相対的に低いビーム通過空間SPbの少なくとも一部から真空度が相対的に高い高真空空間に向かって気体が流れ込む。つまり、ビーム通過空間SPbの少なくとも一部が排気される。このため、上述した効果と同様の効果が享受可能である。尚、この場合には、走査型電子顕微鏡SEMaは、排気装置7を備えていなくてもよい。 In the above description, the opening 126 is connected to the exhaust device 7 via the pipe 127, the valve 1282, and the pipe 1292. However, the opening 126 may be connected to a high vacuum space having a higher degree of vacuum than the beam passing space SPb via the pipe 127, the valve 1282, and the pipe 1292. Even in this case, when the valve 1282 is opened, gas flows from at least a part of the beam passing space SPb having a relatively low degree of vacuum toward a high vacuum space having a relatively high degree of vacuum. That is, at least a part of the beam passing space SPb is exhausted. Therefore, the same effect as the above-mentioned effect can be enjoyed. In this case, the scanning electron microscope SEMa does not have to include the exhaust device 7.
 上述した説明では、走査型電子顕微鏡SEMaは、開口126を介したビーム通過空間SPbの少なくとも一部の給気及び開口126を介したビーム通過空間SPbの少なくとも一部の排気の双方を行っている。しかしながら、走査型電子顕微鏡SEMaは、開口126を介したビーム通過空間SPbの少なくとも一部の給気を行う一方で、開口126を介したビーム通過空間SPbの少なくとも一部の排気を行わなくてもよい。この場合、走査型電子顕微鏡SEMaは、開口126を介したビーム通過空間SPbの少なくとも一部の排気のために用いられる構成要素(具体的には、排気装置7、バルブ1282及び配管1292)を備えてなくてもよい。或いは、走査型電子顕微鏡SEMaは、開口126を介したビーム通過空間SPbの少なくとも一部の排気を行う一方で、開口126を介したビーム通過空間SPbの少なくとも一部の給気を行わなくてもよい。この場合、走査型電子顕微鏡SEMaは、開口126を介したビーム通過空間SPbの少なくとも一部の給気のために用いられる構成要素(具体的には、気体供給装置6、バルブ1281及び配管1291)を備えてなくてもよい。 In the above description, the scanning electron microscope SEMa provides both air supply of at least a part of the beam passing space SPb through the opening 126 and exhaust of at least a part of the beam passing space SPb through the opening 126. .. However, while the scanning electron microscope SEMa supplies at least a part of the beam passing space SPb through the opening 126, it does not have to exhaust at least a part of the beam passing space SPb through the opening 126. Good. In this case, the scanning electron microscope SEMa includes components (specifically, an exhaust device 7, a valve 1282 and a pipe 1292) used for exhausting at least a part of the beam passage space SPb through the opening 126. It does not have to be. Alternatively, the scanning electron microscope SEMa does not need to supply at least a part of the beam passing space SPb through the opening 126 while exhausting at least a part of the beam passing space SPb through the opening 126. Good. In this case, the scanning electron microscope SEMa is a component used for supplying air to at least a part of the beam passing space SPb through the opening 126 (specifically, the gas supply device 6, the valve 1281 and the pipe 1291). It is not necessary to have.
 気体供給装置6は、開口126を介してビーム通過空間SPbの少なくとも一部に気体を供給することに加えて、真空領域VSPの周囲の少なくとも一部に位置する周辺領域(例えば、真空領域VSPによって覆われていない試料Wの表面WSuの他の一部の上方の空間であり、例えば、図2に示す空間SP2)に気体を供給してもよい。或いは、走査型電子顕微鏡SEMaは、開口126を介してビーム通過空間SPbの少なくとも一部に気体を供給する気体供給装置6に加えて、真空領域VSPの周囲の少なくとも一部に位置する周辺領域に気体を供給する別の気体供給装置を備えていてもよい。この場合、別の気体供給装置が供給する気体は、気体供給装置6が供給する気体と同じであってもよいし、異なっていてもよい。 The gas supply device 6 supplies gas to at least a part of the beam passing space SPb through the opening 126, and in addition, by a peripheral region (for example, a vacuum region VSP) located at least a part around the vacuum region VSP. A space above the other part of the surface WSu of the uncovered sample W, for example, the space SP2) shown in FIG. 2 may be supplied with gas. Alternatively, the scanning electron microscope SEMa is provided in a peripheral region located at least a part around the vacuum region VSP in addition to the gas supply device 6 that supplies gas to at least a part of the beam passing space SPb through the opening 126. It may be provided with another gas supply device that supplies gas. In this case, the gas supplied by another gas supply device may be the same as or different from the gas supplied by the gas supply device 6.
 真空形成部材121(或いは、差動排気系12を構成する任意の部材)に、それぞれが気体供給装置6及び排気装置7に接続する複数の開口126が形成されていてもよい。この場合、気体供給装置6は、複数の開口126のそれぞれを介してビーム通過空間SPbの少なくとも一部に気体を供給してもよい。気体供給装置6は、複数の開口126のうちの少なくとも一つを介してビーム通過空間SPbの少なくとも一部に気体を供給してもよい。排気装置7は、複数の開口126のそれぞれを介してビーム通過空間SPbの少なくとも一部を排気してもよい。排気装置7は、複数の開口126の少なくとも一つを介してビーム通過空間SPbの少なくとも一部を排気してもよい。 The vacuum forming member 121 (or any member constituting the differential exhaust system 12) may be formed with a plurality of openings 126, each of which is connected to the gas supply device 6 and the exhaust device 7. In this case, the gas supply device 6 may supply gas to at least a part of the beam passage space SPb through each of the plurality of openings 126. The gas supply device 6 may supply gas to at least a part of the beam passage space SPb through at least one of the plurality of openings 126. The exhaust device 7 may exhaust at least a part of the beam passage space SPb through each of the plurality of openings 126. The exhaust device 7 may exhaust at least a part of the beam passage space SPb through at least one of the plurality of openings 126.
 (2)第2実施形態の走査型電子顕微鏡SEMb
 続いて、第2実施形態の走査型電子顕微鏡SEM(以降、第2実施形態の走査型電子顕微鏡SEMを、“走査型電子顕微鏡SEMb”と称する)について説明する。第2実施形態の走査型電子顕微鏡SEMbは、上述した第1実施形態の走査型電子顕微鏡SEMaと比較して、ビーム照射装置1に代えてビーム照射装置1bを備えているという点で異なっている。走査型電子顕微鏡SEMbのその他の特徴は、上述した走査型電子顕微鏡SEMaと同一であってもよい。このため、以下では、図11を参照しながら、ビーム照射装置1bの構造について説明する。図11は、第2実施形態の走査型電子顕微鏡SEMbが備えるビーム照射装置1bの構造を示す断面図である。尚、以下の説明(第3実施形態以降の説明を含む)では、既に説明済みの構成要件については、同一の参照符号を付してその詳細な説明を省略する。
(2) Scanning electron microscope SEMb of the second embodiment
Subsequently, the scanning electron microscope SEM of the second embodiment (hereinafter, the scanning electron microscope SEM of the second embodiment will be referred to as “scanning electron microscope SEMb”) will be described. The scanning electron microscope SEMb of the second embodiment is different from the scanning electron microscope SEMa of the first embodiment described above in that it includes a beam irradiating device 1b instead of the beam irradiating device 1. .. Other features of the scanning electron microscope SEMb may be the same as those of the scanning electron microscope SEMa described above. Therefore, in the following, the structure of the beam irradiation device 1b will be described with reference to FIG. FIG. 11 is a cross-sectional view showing the structure of the beam irradiation device 1b included in the scanning electron microscope SEMb of the second embodiment. In the following description (including the description after the third embodiment), the same reference reference numerals will be given to the constituent requirements already described, and detailed description thereof will be omitted.
 図11に示すように、ビーム照射装置1bは、ビーム照射装置1と比較して、差動排気系12に代えて差動排気系12bを備えているという点で異なっている。更に、ビーム照射装置1bは、ビーム照射装置1と比較して、ビーム光学系11に代えてビーム光学系11bを備えているという点で異なっている。ビーム照射装置1bのその他の特徴は、上述したビーム照射装置1と同一であってもよい。 As shown in FIG. 11, the beam irradiation device 1b is different from the beam irradiation device 1 in that it includes a differential exhaust system 12b instead of the differential exhaust system 12. Further, the beam irradiation device 1b is different from the beam irradiation device 1 in that the beam optical system 11b is provided instead of the beam optical system 11. Other features of the beam irradiating device 1b may be the same as those of the beam irradiating device 1 described above.
 差動排気系12bは、上述した差動排気系12と比較して、ビーム通過空間SPb2に面する開口126が形成されていなくてもよいという点で異なっている。更に、差動排気系12bは、上述した差動排気系12と比較して、開口126が形成されていないがゆえに開口126に接続される配管127を備えていなくてもよいという点で異なっている。差動排気系12bのその他の特徴は、上述した差動排気系12と同一であってもよい。但し、第2実施形態の差動排気系12bにおいても、開口126が形成され且つその開口126に配管127が接続されていてもよい。 The differential exhaust system 12b is different from the above-mentioned differential exhaust system 12 in that the opening 126 facing the beam passage space SPb2 does not have to be formed. Further, the differential exhaust system 12b is different from the above-mentioned differential exhaust system 12 in that it does not have to be provided with the pipe 127 connected to the opening 126 because the opening 126 is not formed. There is. Other features of the differential exhaust system 12b may be the same as those of the differential exhaust system 12 described above. However, also in the differential exhaust system 12b of the second embodiment, the opening 126 may be formed and the pipe 127 may be connected to the opening 126.
 ビーム光学系11bは、上述したビーム光学系11と比較して、筐体111に開口126bが形成されているという点で異なっている。ビーム光学系11bのその他の特徴は、上述したビーム光学系11と同一であってもよい。 The beam optical system 11b is different from the beam optical system 11 described above in that an opening 126b is formed in the housing 111. Other features of the beam optical system 11b may be the same as those of the beam optical system 11 described above.
 開口126bは、ビーム通過空間SPb1に面するように形成される。開口126bは、ビーム通過空間SPb1に接続するように形成される。開口126bは、ビーム通過空間SPb1の下方の境界(つまり、端部)を規定するビーム射出口119よりも上方(つまり、試料Wとは反対側)に形成される。開口126bは、筐体111のうちビーム通過空間SPb1に面する部分に形成される。例えば、開口126bは、筐体111のうちビーム通過空間SPb1を規定する内壁に形成される。図11は、開口126bが対物レンズ115の下方に形成される例を示しているが、開口126bの形成位置がこの例に限定されることはない。 The opening 126b is formed so as to face the beam passing space SPb1. The opening 126b is formed so as to connect to the beam passage space SPb1. The opening 126b is formed above the beam ejection port 119 (that is, opposite to the sample W) that defines the lower boundary (that is, the end) of the beam passage space SPb1. The opening 126b is formed in a portion of the housing 111 facing the beam passing space SPb1. For example, the opening 126b is formed in the inner wall of the housing 111 that defines the beam passage space SPb1. FIG. 11 shows an example in which the aperture 126b is formed below the objective lens 115, but the formation position of the aperture 126b is not limited to this example.
 開口126bには、筐体111を貫通する配管127bが接続されている。このため、配管127bは、開口126bを介してビーム通過空間SPb1に接続されている。配管127bには、バルブ1281及び配管1291を介して気体供給装置6が連結されている。更に、配管127bには、バルブ1282及び配管1292を介して排気装置7が連結されている。このため、気体供給装置6は、配管1291、バルブ1281、配管127b及び開口126bを介して、ビーム通過空間SPb1(更には、ビーム通過空間SPb1に接続されるビーム通過空間SPb2及びSPb3)を含むビーム通過空間SPbの少なくとも一部に気体を供給することができる。更に、排気装置7は、配管1292、バルブ1282、配管127b及び開口126bを介して、ビーム通過空間SPbの少なくとも一部を排気することができる。つまり、走査型電子顕微鏡SEMbは、走査型電子顕微鏡SEMaと同様に、ビーム通過SPbの少なくとも一部の真空度を制御することができる。更には、走査型電子顕微鏡SEMbは、走査型電子顕微鏡SEMbと同様に、ビーム通過SPbの少なくとも一部の真空度を制御すると共に、間隔Dを調整することができる。尚、第2実施形態で行われる真空度の制御及び間隔Dの制御自体は、第1実施形態で行われる真空度の制御及び間隔Dの制御と同一であってもよいため、その詳細な説明は省略する。 A pipe 127b penetrating the housing 111 is connected to the opening 126b. Therefore, the pipe 127b is connected to the beam passage space SPb1 via the opening 126b. A gas supply device 6 is connected to the pipe 127b via a valve 1281 and a pipe 1291. Further, an exhaust device 7 is connected to the pipe 127b via a valve 1282 and a pipe 1292. Therefore, the gas supply device 6 includes a beam including a beam passing space SPb1 (further, beam passing spaces SPb2 and SPb3 connected to the beam passing space SPb1) via the pipe 1291, the valve 1281, the pipe 127b and the opening 126b. Gas can be supplied to at least a part of the passage space SPb. Further, the exhaust device 7 can exhaust at least a part of the beam passage space SPb through the pipe 1292, the valve 1282, the pipe 127b and the opening 126b. That is, the scanning electron microscope SEMb can control the degree of vacuum of at least a part of the beam passing SPb, similarly to the scanning electron microscope SEMa. Further, the scanning electron microscope SEMb can control the degree of vacuum of at least a part of the beam passing SPb and adjust the interval D in the same manner as the scanning electron microscope SEMb. The vacuum degree control and the interval D control itself performed in the second embodiment may be the same as the vacuum degree control and the interval D control performed in the first embodiment, and thus the detailed description thereof will be described. Is omitted.
 このように、第2実施形態の走査型電子顕微鏡SEMbは、ビーム通過空間SPb1に面した開口126bを介して、ビーム通過空間SPbの少なくとも一部の給気及びビーム通過空間SPbの少なくとも一部の排気を行っている。このような走査型電子顕微鏡SEMbであっても、上述した走査型電子顕微鏡SEMaが享受可能な効果と同様の効果を享受することができる。 As described above, the scanning electron microscope SEMb of the second embodiment has at least a part of the air supply of the beam passing space SPb and at least a part of the beam passing space SPb through the opening 126b facing the beam passing space SPb1. Exhausting. Even with such a scanning electron microscope SEMb, it is possible to enjoy the same effects as those that can be enjoyed by the scanning electron microscope SEMa described above.
 尚、ビーム通過空間SPb1に面する開口126b及びビーム通過空間SPb2に面する開口126の少なくとも一方に加えて、ビーム通過空間SPb3に面する開口が形成されていてもよい。ビーム通過空間SPb3に面する開口は、例えば、差動排気系12bに形成されていてもよい。一例として、ビーム通過空間SPb3に面する開口は、差動排気系12bの射出面12LSに形成されていてもよい。このようなビーム通過空間SPb3に面する開口は、試料Wの表面WSuに対向していてもよい。この場合であっても、気体供給装置6は、ビーム通過空間SPb3に面する開口を介して、ビーム通過空間SPb3(更には、ビーム通過空間SPb3に接続されるビーム通過空間SPb1及びSPb2)を含むビーム通過空間SPbの少なくとも一部に気体を供給することができる。更に、排気装置7は、ビーム通過空間SPb3に面する開口を介して、ビーム通過空間SPbの少なくとも一部を排気することができる。 In addition to at least one of the opening 126b facing the beam passing space SPb1 and the opening 126 facing the beam passing space SPb2, an opening facing the beam passing space SPb3 may be formed. The opening facing the beam passage space SPb3 may be formed in, for example, the differential exhaust system 12b. As an example, the opening facing the beam passage space SPb3 may be formed on the injection surface 12LS of the differential exhaust system 12b. Such an opening facing the beam passage space SPb3 may face the surface WSu of the sample W. Even in this case, the gas supply device 6 includes the beam passing space SPb3 (further, the beam passing spaces SPb1 and SPb2 connected to the beam passing space SPb3) through the opening facing the beam passing space SPb3. Gas can be supplied to at least a part of the beam passing space SPb. Further, the exhaust device 7 can exhaust at least a part of the beam passing space SPb through the opening facing the beam passing space SPb3.
 第2実施形態の走査型電子顕微鏡SEMbにおいても、第1実施形態の走査型電子顕微鏡SEMaの変形例が適用可能である。つまり、第1実施形態の走査型電子顕微鏡SEMaの変形例に関する説明は、「開口126」、「配管127」及び「走査型電子顕微鏡SEMa」という文言をそれぞれ「開口126b(或いは、ビーム通過空間SPb3に面する開口)」、「配管127b(或いは、ビーム通過空間SPb3に面する開口に接続される配管)」及び「走査型電子顕微鏡SEMb」という文言に置き換えることで、第2実施形態の走査型電子顕微鏡SEMbが採用可能な変形例の説明になる。 A modified example of the scanning electron microscope SEMa of the first embodiment can also be applied to the scanning electron microscope SEMb of the second embodiment. That is, in the description of the modification of the scanning electron microscope SEMa of the first embodiment, the words "opening 126", "pipe 127" and "scanning electron microscope SEMa" are referred to as "opening 126b (or beam passing space SPb3), respectively. The scanning type of the second embodiment is replaced with the words "opening facing the opening)", "pipe 127b (or the pipe connected to the opening facing the beam passage space SPb3)" and "scanning electron microscope SEMb". This will explain a modified example in which the electron microscope SEMb can be adopted.
 (3)第3実施形態の走査型電子顕微鏡SEMc
 続いて、第3実施形態の走査型電子顕微鏡SEM(以降、第3実施形態の走査型電子顕微鏡SEMを、“走査型電子顕微鏡SEMc”と称する)について説明する。第3実施形態の走査型電子顕微鏡SEMcは、上述した第2実施形態の走査型電子顕微鏡SEMbと比較して、ビーム照射装置1bに代えてビーム照射装置1cを備えているという点で異なっている。走査型電子顕微鏡SEMcのその他の特徴は、上述した走査型電子顕微鏡SEMbのその他の特徴と同一であってもよい。このため、以下では、図12を参照しながら、ビーム照射装置1cの構造について説明する。図12は、第3実施形態の走査型電子顕微鏡SEMcが備えるビーム照射装置1cの構造を示す断面図である。
(3) Scanning electron microscope SEMc of the third embodiment
Subsequently, the scanning electron microscope SEM of the third embodiment (hereinafter, the scanning electron microscope SEM of the third embodiment will be referred to as “scanning electron microscope SEMc”) will be described. The scanning electron microscope SEMc of the third embodiment is different from the scanning electron microscope SEMb of the second embodiment described above in that it includes a beam irradiating device 1c instead of the beam irradiating device 1b. .. Other features of the scanning electron microscope SEMc may be the same as those of the scanning electron microscope SEMb described above. Therefore, in the following, the structure of the beam irradiation device 1c will be described with reference to FIG. FIG. 12 is a cross-sectional view showing the structure of the beam irradiation device 1c included in the scanning electron microscope SEMc of the third embodiment.
 図12に示すように、ビーム照射装置1cは、ビーム照射装置1bと同様に、ビーム光学系11b及び差動排気系12bを備えているという点で同じである。ビーム照射装置1cは、ビーム照射装置1bと比較して、配管127cを更に備えているという点で異なる。ビーム照射装置1cのその他の特徴は、上述したビーム照射装置1bと同一であってもよい。 As shown in FIG. 12, the beam irradiation device 1c is the same as the beam irradiation device 1b in that it includes a beam optical system 11b and a differential exhaust system 12b. The beam irradiator 1c is different from the beam irradiator 1b in that it further includes a pipe 127c. Other features of the beam irradiating device 1c may be the same as those of the beam irradiating device 1b described above.
 配管127cは、開口126bからビーム通過空間SPb1を介してビーム通過空間SPb2に向かって延伸する。配管127cの一方の端部は、開口126bに接続されている。配管127cの他方の端部は、ビーム通過空間SPb2内に配置されている。配管127cの他方の端部は、下方を向いていてもよい。配管127cの他方の端部は、ビーム通過空間SPb2及びSPb3を介して試料Wの表面WSuに対向していてもよい。尚、配管127cが配管127bと一体化されていてもよい。この場合、気体供給装置6は、配管1291、バルブ1281、配管127b、開口126b及び配管127cを介して、ビーム通過空間SPb2(更には、ビーム通過空間SPb2に接続されるビーム通過空間SPb1及びSPb3)を含むビーム通過空間SPbの少なくとも一部に気体を供給することができる。更に、排気装置7は、配管1292、バルブ1282、配管127b、開口126b及び配管127cを介して、ビーム通過空間SPbの少なくとも一部を排気することができる。つまり、走査型電子顕微鏡SEMcは、走査型電子顕微鏡SEMaと同様に、ビーム通過SPbの少なくとも一部の真空度を制御すると共に、間隔Dを調整することができる。尚、第3実施形態で行われる真空度の制御及び間隔Dの制御自体は、第1実施形態で行われる真空度の制御及び間隔Dの制御と同一であってもよいため、その詳細な説明は省略する。 The pipe 127c extends from the opening 126b toward the beam passage space SPb2 via the beam passage space SPb1. One end of the pipe 127c is connected to the opening 126b. The other end of the pipe 127c is arranged in the beam passage space SPb2. The other end of pipe 127c may face downward. The other end of the pipe 127c may face the surface WSu of the sample W via the beam passage spaces SPb2 and SPb3. The pipe 127c may be integrated with the pipe 127b. In this case, the gas supply device 6 is connected to the beam passage space SPb2 (further, the beam passage spaces SPb1 and SPb3 connected to the beam passage space SPb2) via the pipe 1291, the valve 1281, the pipe 127b, the opening 126b, and the pipe 127c. A gas can be supplied to at least a part of the beam passage space SPb including the above. Further, the exhaust device 7 can exhaust at least a part of the beam passage space SPb through the pipe 1292, the valve 1282, the pipe 127b, the opening 126b, and the pipe 127c. That is, the scanning electron microscope SEMc can control the degree of vacuum of at least a part of the beam passing SPb and adjust the interval D in the same manner as the scanning electron microscope SEMa. Since the control of the degree of vacuum and the control of the interval D performed in the third embodiment may be the same as the control of the degree of vacuum and the control of the interval D performed in the first embodiment, a detailed description thereof will be given. Is omitted.
 このように、第3実施形態の走査型電子顕微鏡SEMcは、ビーム通過空間SPb1に面した開口126bからビーム通過空間SPb2に延びる配管127cを介して、ビーム通過空間SPbの少なくとも一部の給気及びビーム通過空間SPbの少なくとも一部の排気を行っている。このような走査型電子顕微鏡SEMcであっても、上述した走査型電子顕微鏡SEMbが享受可能な効果と同様の効果を享受することができる。 As described above, the scanning electron microscope SEMc of the third embodiment supplies air to at least a part of the beam passing space SPb via the pipe 127c extending from the opening 126b facing the beam passing space SPb1 to the beam passing space SPb2. At least a part of the beam passing space SPb is exhausted. Even with such a scanning electron microscope SEMc, it is possible to enjoy the same effects as those that can be enjoyed by the scanning electron microscope SEMb described above.
 尚、配管127cは、開口126bからビーム通過空間SPb1に向かって延伸していてもよい。つまり、配管127cの他方の端部は、ビーム通過空間SPb1内に配置されていてもよい。配管127cの他方の端部は、上方を向いていてもよい。配管127cは、開口126bからビーム通過空間SPb1及びSPb2を介してビーム通過空間SPb3に向かって延伸していてもよい。つまり、配管127cの他方の端部は、ビーム通過空間SPb3内に配置されていてもよい。第1実施形態の走査型電子顕微鏡SEMaについても、ビーム通過空間SPb2に面する開口126からビーム通過空間SPb2を介してビーム通過空間SPb1に向かって延伸する配管及び開口126からビーム通過空間SPb2を介してビーム通過空間SPb3に向かって延伸する配管の少なくとも一方を備えていてもよい。 Note that the pipe 127c may extend from the opening 126b toward the beam passage space SPb1. That is, the other end of the pipe 127c may be arranged in the beam passage space SPb1. The other end of the pipe 127c may face upward. The pipe 127c may extend from the opening 126b toward the beam passing space SPb3 via the beam passing spaces SPb1 and SPb2. That is, the other end of the pipe 127c may be arranged in the beam passage space SPb3. Also in the scanning electron microscope SEMa of the first embodiment, the pipe extending from the opening 126 facing the beam passing space SPb2 to the beam passing space SPb1 via the beam passing space SPb2 and the opening 126 via the beam passing space SPb2. It may be provided with at least one of the pipes extending toward the beam passage space SPb3.
 (4)第4実施形態の走査型電子顕微鏡SEMd
 続いて、第4実施形態の走査型電子顕微鏡SEM(以降、第4実施形態の走査型電子顕微鏡SEMを、“走査型電子顕微鏡SEMd”と称する)について説明する。第4実施形態の走査型電子顕微鏡SEMdは、上述した第1実施形態の走査型電子顕微鏡SEMaと比較して、ビーム照射装置1に代えてビーム照射装置1dを備えているという点で異なっている。走査型電子顕微鏡SEMdのその他の特徴は、上述した走査型電子顕微鏡SEMaと同一であってもよい。このため、以下では、図13及び図14を参照しながら、ビーム照射装置1dの構造について説明する。図13及び図14のそれぞれは、第4実施形態の走査型電子顕微鏡SEMdが備えるビーム照射装置1dの構造を示す断面図である。
(4) Scanning electron microscope SEMd of the fourth embodiment
Subsequently, the scanning electron microscope SEM of the fourth embodiment (hereinafter, the scanning electron microscope SEM of the fourth embodiment will be referred to as “scanning electron microscope SEMd”) will be described. The scanning electron microscope SEMd of the fourth embodiment is different from the scanning electron microscope SEMa of the first embodiment described above in that it includes a beam irradiating device 1d instead of the beam irradiating device 1. .. Other features of the scanning electron microscope SEMd may be the same as those of the scanning electron microscope SEMa described above. Therefore, in the following, the structure of the beam irradiation device 1d will be described with reference to FIGS. 13 and 14. 13 and 14 are cross-sectional views showing the structure of the beam irradiation device 1d included in the scanning electron microscope SEMd of the fourth embodiment.
 図13及び図14に示すように、ビーム照射装置1dは、ビーム照射装置1と比較して、アパーチャ部材16dを備えているという点で異なる。ビーム照射装置1dのその他の特徴は、上述したビーム照射装置1と同一であってもよい。 As shown in FIGS. 13 and 14, the beam irradiation device 1d is different from the beam irradiation device 1 in that the aperture member 16d is provided. Other features of the beam irradiating device 1d may be the same as those of the beam irradiating device 1 described above.
 アパーチャ部材16dは、ビーム通過空間SPb1とビーム通過空間SPb2との間に配置される。つまり、アパーチャ部材16dは、ビーム通過空間SPb1とビーム通過空間SPb2との境界又はその近傍に)配置される。例えば、ビーム通過空間SPb1とビーム通過空間SPb2との境界には、ビーム光学系11のビーム射出口119及び差動排気系12の開口120が形成されている。このため、アパーチャ部材16dは、ビーム射出口119又は開口120に配置されていてもよい。アパーチャ部材16dは、ビーム射出口1231又は開口120の近傍に配置されていてもよい。 The aperture member 16d is arranged between the beam passing space SPb1 and the beam passing space SPb2. That is, the aperture member 16d is arranged (at or near the boundary between the beam passing space SPb1 and the beam passing space SPb2). For example, a beam ejection port 119 of the beam optical system 11 and an opening 120 of the differential exhaust system 12 are formed at the boundary between the beam passing space SPb1 and the beam passing space SPb2. Therefore, the aperture member 16d may be arranged at the beam ejection port 119 or the opening 120. The aperture member 16d may be arranged in the vicinity of the beam ejection port 1231 or the opening 120.
 アパーチャ部材16dは、円形の(或いは、その他の任意の形状の)開口161dが形成された板状の部材である。開口161dは、電子ビームEBが通過可能な開口である。このため、電子銃113が射出した電子ビームEBは、開口161dを介してビーム通過空間SPb1からビーム通過空間SPb2へと伝搬する。従って、試料Wに対する電子ビームEBの照射がアパーチャ部材16dによって遮られることはない。尚、電子ビームEBが開口161dを通過するために、開口161dは、ビーム光学系11の光軸AXに又は光軸AXの近傍に形成されていてもよい。アパーチャ部材16dは、開口161dがビーム光学系11の光軸AXに又は光軸AXの近傍に位置するように配置されていてもよい。 The aperture member 16d is a plate-shaped member having a circular (or other arbitrary shape) opening 161d. The opening 161d is an opening through which the electron beam EB can pass. Therefore, the electron beam EB ejected by the electron gun 113 propagates from the beam passing space SPb1 to the beam passing space SPb2 through the opening 161d. Therefore, the irradiation of the electron beam EB on the sample W is not blocked by the aperture member 16d. Since the electron beam EB passes through the opening 161d, the opening 161d may be formed on the optical axis AX of the beam optical system 11 or in the vicinity of the optical axis AX. The aperture member 16d may be arranged so that the aperture 161d is located on the optical axis AX of the beam optical system 11 or in the vicinity of the optical axis AX.
 アパーチャ部材16dは、電磁レンズ114及び/又は対物レンズ115よりも内側に配置される。つまり、アパーチャ部材16dは、電磁レンズ114及び/又は対物レンズ115よりもビーム光学系11の光軸AX(つまり、電磁レンズ114及び/又は対物レンズ115の光軸AX)側に配置される。このため、アパーチャ部材16dに形成されている開口161dもまた、電磁レンズ114及び/又は対物レンズ115よりも内側に形成される。但し、アパーチャ部材16dは、電磁レンズ114及び/又は対物レンズ115の内側とは異なる位置に配置されていてもよい。開口161dは、電磁レンズ114及び/又は対物レンズ115の内側とは異なる位置に形成されていてもよい。 The aperture member 16d is arranged inside the electromagnetic lens 114 and / or the objective lens 115. That is, the aperture member 16d is arranged closer to the optical axis AX of the beam optical system 11 (that is, the optical axis AX of the electromagnetic lens 114 and / or the objective lens 115) than the electromagnetic lens 114 and / or the objective lens 115. Therefore, the aperture 161d formed in the aperture member 16d is also formed inside the electromagnetic lens 114 and / or the objective lens 115. However, the aperture member 16d may be arranged at a position different from the inside of the electromagnetic lens 114 and / or the objective lens 115. The opening 161d may be formed at a position different from the inside of the electromagnetic lens 114 and / or the objective lens 115.
 アパーチャ部材16dは、電子検出器117よりも上方に配置される。つまり、アパーチャ部材16dは、アパーチャ部材16dと試料Wとの間に電子検出器117が配置されるように、配置される。このため、アパーチャ部材16dに形成されている開口161dもまた、電子検出器117よりも上方に形成される。開口161dもまた、開口161dと試料Wとの間に電子検出器117が配置されるように、形成される。但し、アパーチャ部材16dは、その他の位置に配置されていてもよい。開口161dは、その他の位置に配置されていてもよい。 The aperture member 16d is arranged above the electron detector 117. That is, the aperture member 16d is arranged so that the electron detector 117 is arranged between the aperture member 16d and the sample W. Therefore, the opening 161d formed in the aperture member 16d is also formed above the electron detector 117. The opening 161d is also formed so that the electron detector 117 is arranged between the opening 161d and the sample W. However, the aperture member 16d may be arranged at another position. The opening 161d may be arranged at other positions.
 アパーチャ部材16dの外縁は、筐体111(例えば、ビーム通過空間SPb1を規定する筐体111の内壁)及び真空形成部材121(例えば、ビーム通過空間SPb2を規定する真空形成部材121の内壁)の少なくとも一方に接触していてもよい。この場合には、ビーム通過空間SPb1からビーム通過空間SPb2への気体の流入及びビーム通過空間SPb2からビーム通過空間SPb1への気体の流入は、開口161dを介して行われる。但し、アパーチャ部材16dの外縁の少なくとも一部と筐体111及び真空形成部材121の少なくとも一方とが接触していなくてもよい(つまり、隙間が空いていてもよい)。この場合には、ビーム通過空間SPb1からビーム通過空間SPb2への気体の流入及びビーム通過空間SPb2からビーム通過空間SPb1への気体の流入は、開口161dに加えてアパーチャ部材16dと筐体111及び真空形成部材121の少なくとも一方と間の隙間を介して行われる。いずれの場合であっても、アパーチャ部材16dが配置されている場合には、ビーム通過空間SPb1からビーム通過空間SPb2への気体の流入及びビーム通過空間SPb2からビーム通過空間SPb1への気体の流入がアパーチャ部材16dによって部分的に遮られる。 The outer edge of the aperture member 16d is at least the housing 111 (for example, the inner wall of the housing 111 that defines the beam passage space SPb1) and the vacuum forming member 121 (for example, the inner wall of the vacuum forming member 121 that defines the beam passage space SPb2). It may be in contact with one side. In this case, the inflow of gas from the beam passing space SPb1 into the beam passing space SPb2 and the inflow of gas from the beam passing space SPb2 into the beam passing space SPb1 are performed through the opening 161d. However, at least a part of the outer edge of the aperture member 16d may not be in contact with at least one of the housing 111 and the vacuum forming member 121 (that is, there may be a gap). In this case, the inflow of gas from the beam passing space SPb1 into the beam passing space SPb2 and the inflow of gas from the beam passing space SPb2 into the beam passing space SPb1 are the aperture member 16d, the housing 111, and the vacuum in addition to the opening 161d. This is done through a gap between the forming member 121 and at least one of them. In any case, when the aperture member 16d is arranged, the inflow of gas from the beam passing space SPb1 into the beam passing space SPb2 and the inflow of gas from the beam passing space SPb2 into the beam passing space SPb1 It is partially blocked by the aperture member 16d.
 このため、気体供給装置6がビーム通過空間SPb2の少なくとも一部に気体を供給することでビーム通過空間SPb2の少なくとも一部の真空度が減少する状況下において、ビーム通過空間SPb1の少なくとも一部の真空度がビーム通過空間SPb2の真空度ほどには減少しなくなる。更に、排気装置7がビーム通過空間SPb2の少なくとも一部を排気することでビーム通過空間SPb2の少なくとも一部の真空度が増加する状況下において、ビーム通過空間SPb1の少なくとも一部の真空度がビーム通過空間SPb2の真空度ほどには増加しなくなる。従って、アパーチャ部材16dが配置されている場合には、アパーチャ部材16dが配置されていない場合と比較して、気体供給装置6を用いたビーム通過空間SPb2の少なくとも一部への給気及び排気装置7を用いたビーム通過空間SPb2の少なくとも一部の排気がビーム通過空間SPb1の真空度に対して与える影響が、より一層小さくなる。つまり、走査型電子顕微鏡SEMdは、ビーム通過空間SPb1の真空度に対して与える影響をより一層小さくしながら、ビーム通過空間SPb2の少なくとも一部の真空度を局所的に(言い換えれば、選択的に)制御しやすくなる。走査型電子顕微鏡SEMdは、ビーム通過空間SPb1の真空度を大きく変えることなく、ビーム通過空間SPb2の少なくとも一部の真空度を局所的に(言い換えれば、選択的に)制御することができる。 Therefore, in a situation where the gas supply device 6 supplies gas to at least a part of the beam passing space SPb2 to reduce the degree of vacuum of at least a part of the beam passing space SPb2, at least a part of the beam passing space SPb1. The degree of vacuum does not decrease as much as the degree of vacuum in the beam passing space SPb2. Further, in a situation where the exhaust device 7 exhausts at least a part of the beam passing space SPb2 to increase the vacuum degree of at least a part of the beam passing space SPb2, the vacuum degree of at least a part of the beam passing space SPb1 becomes a beam. It does not increase as much as the degree of vacuum of the passage space SPb2. Therefore, when the aperture member 16d is arranged, the air supply and exhaust device to at least a part of the beam passing space SPb2 using the gas supply device 6 is compared with the case where the aperture member 16d is not arranged. The influence of at least a part of the exhaust gas of the beam passing space SPb2 using 7 on the degree of vacuum of the beam passing space SPb1 becomes even smaller. That is, the scanning electron microscope SEMd locally (in other words, selectively) the vacuum degree of at least a part of the beam passing space SPb2 while further reducing the influence on the vacuum degree of the beam passing space SPb1. ) It becomes easier to control. The scanning electron microscope SEMd can locally (in other words, selectively) control the vacuum degree of at least a part of the beam passing space SPb2 without significantly changing the vacuum degree of the beam passing space SPb1.
 アパーチャ部材16dの開口161dは、サイズ(例えば、径)が可変な開口であってもよい。つまり、開口161dの面積が可変であってもよい。尚、図13は、面積が相対的に大きい開口161dを示す断面図であり、図14は、面積が相対的に小さい開口161dを示す断面図である。この場合、走査型電子顕微鏡SEMdは、制御装置4の制御下で、気体供給装置6及び排気装置7の少なくとも一方を用いてビーム通過空間SPbの少なくとも一部の真空度を制御すると共に、開口161dの面積を調整してもよい。特に、走査型電子顕微鏡SEMdは、制御装置4の制御下で、気体供給装置6及び排気装置7の少なくとも一方を用いてビーム通過空間SPbの少なくとも一部の真空度を変更する場合に、開口161dの面積を合わせて変更してもよい。 The opening 161d of the aperture member 16d may be an opening having a variable size (for example, diameter). That is, the area of the opening 161d may be variable. 13 is a cross-sectional view showing an opening 161d having a relatively large area, and FIG. 14 is a cross-sectional view showing an opening 161d having a relatively small area. In this case, the scanning electron microscope SEMd controls the degree of vacuum of at least a part of the beam passing space SPb by using at least one of the gas supply device 6 and the exhaust device 7 under the control of the control device 4, and the opening 161d. The area of may be adjusted. In particular, the scanning electron microscope SEMd has an opening 161d when the degree of vacuum of at least a part of the beam passing space SPb is changed by using at least one of the gas supply device 6 and the exhaust device 7 under the control of the control device 4. You may change it according to the area of.
 例えば、気体供給装置6がビーム真空空間SPb2の少なくとも一部に気体を供給すると、ビーム真空空間SPb2の少なくとも一部の真空度は減少する。この際、開口161dの面積が減少する(つまり、開口161dが小さくなる)ように開口161dの面積が調整されると、アパーチャ部材16dを間に挟んでビーム真空空間SPb2に接続されるビーム通過空間SPb1の真空度の減少量は、ビーム真空空間SPb2の少なくとも一部の真空度の減少量より小さくなる。更に、排気装置7がビーム真空空間SPb2の少なくとも一部を排気すると、ビーム真空空間SPb2の少なくとも一部の真空度は増加する。この際、開口161dの面積が減少する(つまり、開口161dが小さくなる)ように開口161dの面積が調整されると、アパーチャ部材16dを間に挟んでビーム真空空間SPb2に接続されるビーム通過空間SPb1の真空度の増加量は、ビーム真空空間SPb2の少なくとも一部の真空度の増加量よりも小さくなる可能性が高くなる。このように生ずるビーム通過空間SPb1とビーム通過空間SPb2(更には、ビーム通過空間SPb3)との真空度の差は、開口161dの排気抵抗によって維持される。 For example, when the gas supply device 6 supplies gas to at least a part of the beam vacuum space SPb2, the degree of vacuum of at least a part of the beam vacuum space SPb2 decreases. At this time, when the area of the opening 161d is adjusted so that the area of the opening 161d decreases (that is, the opening 161d becomes smaller), the beam passing space connected to the beam vacuum space SPb2 with the aperture member 16d sandwiched between them. The amount of decrease in the degree of vacuum of SPb1 is smaller than the amount of decrease in the degree of vacuum of at least a part of the beam vacuum space SPb2. Further, when the exhaust device 7 exhausts at least a part of the beam vacuum space SPb2, the degree of vacuum of at least a part of the beam vacuum space SPb2 increases. At this time, when the area of the opening 161d is adjusted so that the area of the opening 161d decreases (that is, the opening 161d becomes smaller), the beam passing space connected to the beam vacuum space SPb2 with the aperture member 16d sandwiched between them. The amount of increase in the degree of vacuum of SPb1 is likely to be smaller than the amount of increase in the degree of vacuum of at least a part of the beam vacuum space SPb2. The difference in the degree of vacuum between the beam passing space SPb1 and the beam passing space SPb2 (furthermore, the beam passing space SPb3) thus generated is maintained by the exhaust resistance of the opening 161d.
 このため、走査型電子顕微鏡SEMdは、ビーム通過空間SPbの少なくとも一部の真空度を制御する際に開口161dの面積を減少させることで、ビーム通過空間SPb1の真空度とビーム通過空間SPb2の真空度との差を増加させることができる。逆に言えば、走査型電子顕微鏡SEMdは、ビーム通過空間SPbの少なくとも一部の真空度を制御する際に、ビーム通過空間SPb1の真空度とビーム通過空間SPb2の真空度との差を増加させたい場合には、ビーム通過空間SPb1の真空度とビーム通過空間SPb2の真空度との差を増加させたくない場合と比較して、開口161dの面積を減少させてもよい。 Therefore, the scanning electron microscope SEMd reduces the area of the opening 161d when controlling the vacuum degree of at least a part of the beam passing space SPb, thereby reducing the vacuum degree of the beam passing space SPb1 and the vacuum of the beam passing space SPb2. The difference from the degree can be increased. Conversely, the scanning electron microscope SEMd increases the difference between the vacuum degree of the beam passage space SPb1 and the vacuum degree of the beam passage space SPb2 when controlling the vacuum degree of at least a part of the beam passage space SPb. If desired, the area of the opening 161d may be reduced as compared with the case where the difference between the degree of vacuum of the beam passing space SPb1 and the degree of vacuum of the beam passing space SPb2 is not desired to be increased.
 尚、ビーム通過空間SPb1の真空度とビーム通過空間SPb2の真空度との差を増加させたい状況の一例として、ビーム通過空間SPb1の真空度を相対的に高く維持したままで、ビーム通過空間SPb2の真空度を減少させたい状況があげられる。つまり、ビーム通過空間SPb1の真空度とビーム通過空間SPb2の真空度との差を増加させたい状況の一例として、ビーム通過空間SPb1の真空度を相対的に高く維持したままで、ビーム通過空間SPb2の真空度をビーム通過空間SPb1の真空度より小さくしたい状況があげられる。この場合、ビーム通過空間SPb1の真空度が相対的に高く維持されているがゆえに、減少させたビーム通過空間SPb2の真空度を戻す(つまり、増加させる)際にビーム通過空間SPb1の真空度をそれほど増加させなくてもよくなる。このため、ビーム通過空間SPb2を含むビーム通過空間SPbの真空度を相対的に迅速に元に戻すことができる。更には、ビーム通過空間SPb1の真空度が相対的に高く維持されるため、ビーム通過空間SPb1に面するビーム光学系12が備える装置(例えば、電子銃113、電磁レンズ114、対物レンズ115、偏向器116及び電子検出器117)が、気体分子から適切に保護される。 As an example of a situation in which the difference between the degree of vacuum of the beam passing space SPb1 and the degree of vacuum of the beam passing space SPb2 is desired to be increased, the degree of vacuum of the beam passing space SPb1 is maintained relatively high and the beam passing space SPb2 is maintained. There is a situation where you want to reduce the degree of vacuum. That is, as an example of a situation in which the difference between the degree of vacuum of the beam passing space SPb1 and the degree of vacuum of the beam passing space SPb2 is desired to be increased, the degree of vacuum of the beam passing space SPb1 is maintained relatively high and the beam passing space SPb2 is maintained. There is a situation where the degree of vacuum of is smaller than the degree of vacuum of the beam passing space SPb1. In this case, since the degree of vacuum of the beam passing space SPb1 is maintained relatively high, the degree of vacuum of the beam passing space SPb1 is increased when the reduced degree of vacuum of the beam passing space SPb2 is returned (that is, increased). It does not have to be increased so much. Therefore, the degree of vacuum of the beam passing space SPb including the beam passing space SPb2 can be restored relatively quickly. Further, since the degree of vacuum of the beam passing space SPb1 is maintained relatively high, the devices (for example, electron gun 113, electromagnetic lens 114, objective lens 115, deflection) included in the beam optical system 12 facing the beam passing space SPb1 are provided. The device 116 and the electron detector 117) are properly protected from gas molecules.
 或いは、開口161dの面積が増加する(つまり、開口161dが大きくなる)ように開口161dの面積が調整されると、ビーム通過空間SPb1からビーム通過空間SPb2へと又はビーム通過空間SPb2からビーム通過空間SPb1へと気体が流入しやすくなる。このため、走査型電子顕微鏡SEMdは、開口161dの面積を増加させることで、ビーム通過空間SPb1の真空度とビーム通過空間SPb2の真空度との差を減少させることができる。逆に言えば、走査型電子顕微鏡SEMdは、ビーム通過空間SPb1の真空度とビーム通過空間SPb2の真空度との差を減少させたい場合には、ビーム通過空間SPb1の真空度とビーム通過空間SPb2の真空度との差を減少させたくない場合と比較して、開口161dの面積を増加させてもよい。 Alternatively, when the area of the opening 161d is adjusted so that the area of the opening 161d increases (that is, the opening 161d becomes larger), the beam passing space SPb1 becomes the beam passing space SPb2 or the beam passing space SPb2 becomes the beam passing space. Gas easily flows into SPb1. Therefore, the scanning electron microscope SEMd can reduce the difference between the degree of vacuum of the beam passing space SPb1 and the degree of vacuum of the beam passing space SPb2 by increasing the area of the opening 161d. Conversely, when the scanning electron microscope SEMd wants to reduce the difference between the degree of vacuum of the beam passing space SPb1 and the degree of vacuum of the beam passing space SPb2, the degree of vacuum of the beam passing space SPb1 and the degree of vacuum of the beam passing space SPb2 The area of the opening 161d may be increased as compared with the case where the difference from the degree of vacuum of is not desired to be reduced.
 尚、ビーム通過空間SPb1の真空度とビーム通過空間SPb2の真空度との差を減少させたい状況の一例として、ビーム通過空間SPb1の真空度を相対的に高く維持したままビーム通過空間SPb2の真空度を減少させた後に、ビーム通過空間SPb2の真空度を元に戻したい(つまり、増加させたい)状況があげられる。この場合、上述したように、減少させたビーム通過空間SPb2の真空度を戻す(つまり、増加させる)際にビーム通過空間SPb1の真空度をそれほど増加させなくてもよくなるため、ビーム通過空間SPb2を含むビーム通過空間SPbの真空度を相対的に迅速に元に戻すことができる。 As an example of a situation in which the difference between the vacuum degree of the beam passing space SPb1 and the vacuum degree of the beam passing space SPb2 is desired to be reduced, the vacuum of the beam passing space SPb2 is maintained while the vacuum degree of the beam passing space SPb1 is relatively high. After reducing the degree, there is a situation in which the degree of vacuum of the beam passing space SPb2 is desired to be restored (that is, increased). In this case, as described above, when the reduced vacuum degree of the beam passing space SPb2 is returned (that is, increased), the vacuum degree of the beam passing space SPb1 does not have to be increased so much, so that the beam passing space SPb2 is changed. The degree of vacuum of the included beam passage space SPb can be restored relatively quickly.
 このように、第4実施形態の走査型電子顕微鏡SEMdは、上述した走査型電子顕微鏡SEMaが享受可能な効果と同様の効果を享受しつつも、ビーム通過空間SPb1の真空度とは独立してビーム通過空間SPb2の少なくとも一部の真空度を局所的に(言い換えれば、選択的に)制御しやすくなる。 As described above, the scanning electron microscope SEMd of the fourth embodiment enjoys the same effect as the effect that can be enjoyed by the scanning electron microscope SEMa described above, but is independent of the degree of vacuum of the beam passing space SPb1. It becomes easy to locally (in other words, selectively) control the degree of vacuum of at least a part of the beam passing space SPb2.
 尚、アパーチャ部材16dは、ビーム通過空間SPbのうち気体供給装置6及び/又は排気装置7を用いて真空度を積極的に制御したい第1空間と、ビーム通過空間SPbのうち気体供給装置6及び/又は排気装置7を用いて真空度を積極的には制御したくない(或いは、第1空間の真空度を制御する動作の影響を与えたくない)第2空間との間に配置されていてもよい。この場合、走査型電子顕微鏡SEMdは、第2空間の真空度とは独立して第2空間の真空度を局所的に(言い換えれば、選択的に)制御しやすくなる。尚、第1空間は、開口126に面する空間を含んでいてもよい。或いは、第2実施形態の走査型電子顕微鏡SEMbがアパーチャ部材16dを備えていてもよく、この場合には、第1空間は、開口126bに面する空間を含んでいてもよい。或いは、第3実施形態の走査型電子顕微鏡SEMcがアパーチャ部材16dを備えていてもよく、この場合には、第1空間は、配管127cの他方の端部に面する空間を含んでいなくてもよい。他方で、第2空間は、第1空間よりも試料Wから遠い側に位置する空間を含んでいてもよい。 The aperture member 16d includes a first space in the beam passing space SPb where the gas supply device 6 and / or an exhaust device 7 is desired to positively control the degree of vacuum, and the gas supply device 6 and / or the gas supply device 6 in the beam passing space SPb. / Or it is arranged between the second space and the exhaust device 7 which does not want to positively control the degree of vacuum (or does not want to influence the operation of controlling the degree of vacuum in the first space). May be good. In this case, the scanning electron microscope SEMd can easily control the vacuum degree of the second space locally (in other words, selectively) independently of the vacuum degree of the second space. The first space may include a space facing the opening 126. Alternatively, the scanning electron microscope SEMb of the second embodiment may include the aperture member 16d, and in this case, the first space may include a space facing the opening 126b. Alternatively, the scanning electron microscope SEMc of the third embodiment may include the aperture member 16d, in which case the first space does not include a space facing the other end of the pipe 127c. May be good. On the other hand, the second space may include a space located on the side farther from the sample W than the first space.
 アパーチャ部材16dは、図15に示すように、偏向器116の偏向支点(例えば、上側偏向支点)Pに開口161dが位置するように配置されていてもよい。つまり、開口161dは、図15に示すように、偏向器116の偏向支点Pに位置するように形成されていてもよい。この場合、偏向器116によって偏向された電子ビームEBが開口161dを通過することができなくなる可能性が小さくなる。つまり、アパーチャ部材16dによる電子ビームEBのケラレが発生する可能性が小さくなる。或いは、アパーチャ部材16dは、偏向器116よりも上方に配置されていてもよい。開口161dは、偏向器116よりも上方に形成されていてもよい。つまり、アパーチャ部材16dは、アパーチャ部材16dと試料Wとの間に偏向器116が位置するように配置されていてもよい。開口161dは、開口161dと試料Wとの間に偏向器116が位置するように形成されていてもよい。この場合においても、アパーチャ部材16dによる電子ビームEBのケラレが発生する可能性が小さくなる。 As shown in FIG. 15, the aperture member 16d may be arranged so that the opening 161d is located at the deflection fulcrum (for example, the upper deflection fulcrum) P of the deflector 116. That is, as shown in FIG. 15, the opening 161d may be formed so as to be located at the deflection fulcrum P of the deflector 116. In this case, the possibility that the electron beam EB deflected by the deflector 116 cannot pass through the opening 161d is reduced. That is, the possibility that the electron beam EB is eclipsed by the aperture member 16d is reduced. Alternatively, the aperture member 16d may be located above the deflector 116. The opening 161d may be formed above the deflector 116. That is, the aperture member 16d may be arranged so that the deflector 116 is located between the aperture member 16d and the sample W. The opening 161d may be formed so that the deflector 116 is located between the opening 161d and the sample W. Even in this case, the possibility that the electron beam EB is eclipsed by the aperture member 16d is reduced.
 アパーチャ部材16dは、図16(a)に示すように、電磁レンズ114の光軸AXに沿った方向に関して電磁レンズ114の上端と下端との間に配置されていてもよい。アパーチャ部材16dは、電磁レンズ114の内側に配置されていてもよい。この際、特に、開口161dは、図16(a)に示すように、電磁レンズ114の光軸AX又は光軸AXの近傍の位置であって且つ、電磁レンズ114の光軸AXに沿った方向に関して電磁レンズ114の上端と下端との間に配置されていてもよい。或いは、アパーチャ部材16dは、図16(a)に示すように、対物レンズ115の光軸AXに沿った方向に関して対物レンズ115の上端と下端との間に配置されていてもよい。アパーチャ部材16dは、対物レンズ115の内側に配置されていてもよい。この際、特に、開口161dは、図16(a)に示すように、対物レンズ115の光軸AX又は光軸AXの近傍の位置であって且つ、対物レンズ115の光軸AXに沿った方向に関して対物レンズ115の上端と下端との間に配置されていてもよい。この場合、電磁レンズ114及び/又は対物レンズ115によって制御された電子ビームEBが開口161dを通過することができなくなる可能性が小さくなる。つまり、アパーチャ部材16dによる電子ビームEBのケラレが発生する可能性が小さくなる。 As shown in FIG. 16A, the aperture member 16d may be arranged between the upper end and the lower end of the electromagnetic lens 114 with respect to the direction along the optical axis AX of the electromagnetic lens 114. The aperture member 16d may be arranged inside the electromagnetic lens 114. At this time, in particular, as shown in FIG. 16A, the opening 161d is located at a position near the optical axis AX of the electromagnetic lens 114 or the optical axis AX, and is in a direction along the optical axis AX of the electromagnetic lens 114. It may be arranged between the upper end and the lower end of the electromagnetic lens 114. Alternatively, as shown in FIG. 16A, the aperture member 16d may be arranged between the upper end and the lower end of the objective lens 115 with respect to the direction along the optical axis AX of the objective lens 115. The aperture member 16d may be arranged inside the objective lens 115. At this time, in particular, as shown in FIG. 16A, the opening 161d is located at a position near the optical axis AX of the objective lens 115 or the optical axis AX, and is in a direction along the optical axis AX of the objective lens 115. It may be arranged between the upper end and the lower end of the objective lens 115. In this case, the possibility that the electron beam EB controlled by the electromagnetic lens 114 and / or the objective lens 115 cannot pass through the aperture 161d is reduced. That is, the possibility that the electron beam EB is eclipsed by the aperture member 16d is reduced.
 なお、対物レンズ115の光軸AX又は光軸AXの近傍の位置であって且つ、対物レンズ115の光軸AXに沿った方向に関して対物レンズ115の上端と下端との間の位置にアパーチャ部材16dの開口161dが形成されている場合に、図16(b)に示すように、偏向器116は、偏向器116の偏向支点(例えば、下側偏向支点)Pが開口161dに位置するように配置/調整されていてもよい。 The aperture member 16d is located near the optical axis AX of the objective lens 115 or the optical axis AX, and is located between the upper end and the lower end of the objective lens 115 with respect to the direction along the optical axis AX of the objective lens 115. When the opening 161d of the above is formed, as shown in FIG. 16B, the deflector 116 is arranged so that the deflection fulcrum (for example, the lower deflection fulcrum) P of the deflector 116 is located at the opening 161d. / May be adjusted.
 (5)第5実施形態の走査型電子顕微鏡SEMe
 続いて、第5実施形態の走査型電子顕微鏡SEM(以降、第5実施形態の走査型電子顕微鏡SEMを、“走査型電子顕微鏡SEMe”と称する)について説明する。第5実施形態の走査型電子顕微鏡SEMeは、上述した第1実施形態の走査型電子顕微鏡SEMaと比較して、ビーム照射装置1に代えてビーム照射装置1eを備えているという点で異なっている。走査型電子顕微鏡SEMeのその他の特徴は、上述した走査型電子顕微鏡SEMaと同一であってもよい。このため、以下では、図17を参照しながら、ビーム照射装置1eの構造について説明する。図17は、第5実施形態の走査型電子顕微鏡SEMeが備えるビーム照射装置1eの構造を示す断面図である。
(5) Scanning electron microscope SEMe of the fifth embodiment
Subsequently, the scanning electron microscope SEM of the fifth embodiment (hereinafter, the scanning electron microscope SEM of the fifth embodiment will be referred to as “scanning electron microscope SEMe”) will be described. The scanning electron microscope SEMe of the fifth embodiment is different from the scanning electron microscope SEMa of the first embodiment described above in that it includes a beam irradiation device 1e instead of the beam irradiation device 1. .. Other features of the scanning electron microscope SEMe may be the same as those of the scanning electron microscope SEMa described above. Therefore, in the following, the structure of the beam irradiation device 1e will be described with reference to FIG. FIG. 17 is a cross-sectional view showing the structure of the beam irradiation device 1e included in the scanning electron microscope SEMe of the fifth embodiment.
 図17に示すように、ビーム照射装置1eは、ビーム照射装置1と比較して、差動排気系12に代えて差動排気系12eを備えているという点で異なっている。ビーム照射装置1eのその他の特徴は、上述したビーム照射装置1と同一であってもよい。差動排気系12eは、上述した差動排気系12と比較して、真空形成部材121に複数の開口126e(図17に示す例では、2つの開口126e-1及び126e-2)が形成されているという点で異なっている。尚、開口126eの特徴は、開口126の特徴と同一であってもよい。差動排気系12eのその他の特徴は、上述した差動排気系12と同一であってもよい。 As shown in FIG. 17, the beam irradiation device 1e is different from the beam irradiation device 1 in that it includes a differential exhaust system 12e instead of the differential exhaust system 12. Other features of the beam irradiating device 1e may be the same as those of the beam irradiating device 1 described above. In the differential exhaust system 12e, a plurality of openings 126e (in the example shown in FIG. 17, two openings 126e-1 and 126e-2) are formed in the vacuum forming member 121 as compared with the above-mentioned differential exhaust system 12. It is different in that it is. The characteristics of the opening 126e may be the same as the characteristics of the opening 126. Other features of the differential exhaust system 12e may be the same as those of the differential exhaust system 12 described above.
 開口126e-1には、真空形成部材121を貫通する配管127e-1が接続されている。配管127e-1には、バルブ1281及び配管1291を介して気体供給装置6が連結されている。このため、気体供給装置6は、配管1291、バルブ1281、配管127e-1及び開口126e-1を介して、ビーム通過空間SPbの少なくとも一部に気体を供給することができる。 A pipe 127e-1 penetrating the vacuum forming member 121 is connected to the opening 126e-1. A gas supply device 6 is connected to the pipe 127e-1 via a valve 1281 and a pipe 1291. Therefore, the gas supply device 6 can supply gas to at least a part of the beam passage space SPb via the pipe 1291, the valve 1281, the pipe 127e-1, and the opening 126e-1.
 一方で、開口126e-2には、真空形成部材121を貫通する配管127e-2が接続されている。配管127e-2には、バルブ1282及び配管1292を介して排気装置7が連結されている。このため、排気装置7は、配管1292、バルブ1282、配管127e-2及び開口126e-2を介して、ビーム通過空間SPbの少なくとも一部を排気することができる。 On the other hand, a pipe 127e-2 penetrating the vacuum forming member 121 is connected to the opening 126e-2. An exhaust device 7 is connected to the pipe 127e-2 via a valve 1282 and a pipe 1292. Therefore, the exhaust device 7 can exhaust at least a part of the beam passage space SPb through the pipe 1292, the valve 1282, the pipe 127e-2, and the opening 126e-2.
 このように、第5実施形態の走査型電子顕微鏡SEMeは、ビーム通過空間SPbの少なくとも一部の給気及びビーム通過空間SPbの少なくとも一部の排気を、異なる開口126eをそれぞれ介して行っている。このような走査型電子顕微鏡SEMeであっても、上述した走査型電子顕微鏡SEMaが享受可能な効果と同様の効果を享受することができる。 As described above, the scanning electron microscope SEMe of the fifth embodiment supplies air at least a part of the beam passing space SPb and exhausts at least a part of the beam passing space SPb through different openings 126e, respectively. .. Even with such a scanning electron microscope SEMe, the same effects as those that can be enjoyed by the scanning electron microscope SEMa described above can be enjoyed.
 尚、第5実施形態の走査型電子顕微鏡SEMeにおいても、第1実施形態の走査型電子顕微鏡SEMaの変形例が適用可能である。つまり、第1実施形態の走査型電子顕微鏡SEMaの変形例に関する説明は、「開口126」、「配管127」及び「走査型電子顕微鏡SEMa」という文言をそれぞれ「開口126e-1(或いは、開口126e-2)」、「配管127e-1(或いは、配管127e-2)」及び「走査型電子顕微鏡SEMe」という文言に置き換えることで、第5実施形態の走査型電子顕微鏡SEMeが採用可能な変形例の説明になる。 A modified example of the scanning electron microscope SEMa of the first embodiment can also be applied to the scanning electron microscope SEMe of the fifth embodiment. That is, in the description of the modification of the scanning electron microscope SEMa of the first embodiment, the words "opening 126", "pipe 127" and "scanning electron microscope SEMa" are referred to as "opening 126e-1 (or opening 126e", respectively. -2) ”,“ Pipe 127e-1 (or Pipe 127e-2) ”and“ Scanning electron microscope SEMe ”, a modification in which the scanning electron microscope SEMe of the fifth embodiment can be adopted. It becomes an explanation of.
 また、第5実施形態の走査型電子顕微鏡SEMeに対して、第2実施形態の走査型電子顕微鏡SEMbの構成要件の少なくとも一部が組み合わせられてもよい。例えば、走査型電子顕微鏡SEMeにおいて、複数の開口126bのうちの少なくとも一つが、ビーム通過空間SPb1(或いは、ビーム通過空間SPb3)に面していてもよい。また、第5実施形態の走査型電子顕微鏡SEMeに対して、第3実施形態の走査型電子顕微鏡SEMcの構成要件の少なくとも一部が組み合わせられてもよい。例えば、走査型電子顕微鏡SEMeにおいて、複数の開口126eのうちの少なくとも一つに、ビーム通過空間SPb1(或いは、ビーム通過空間SPb2又はSPb3)に向かって延伸する配管が接続されていてもよい。また、第5実施形態の走査型電子顕微鏡SEMeに対して、第4実施形態の走査型電子顕微鏡SEMdの構成要件の少なくとも一部が組み合わせられてもよい。例えば、走査型電子顕微鏡SEMeがアパーチャ部材16dを備えていてもよい。 Further, at least a part of the constituent requirements of the scanning electron microscope SEMb of the second embodiment may be combined with the scanning electron microscope SEMe of the fifth embodiment. For example, in the scanning electron microscope SEMe, at least one of the plurality of openings 126b may face the beam passing space SPb1 (or the beam passing space SPb3). Further, at least a part of the constituent requirements of the scanning electron microscope SEMc of the third embodiment may be combined with the scanning electron microscope SEMe of the fifth embodiment. For example, in the scanning electron microscope SEMe, a pipe extending toward the beam passing space SPb1 (or the beam passing space SPb2 or SPb3) may be connected to at least one of the plurality of openings 126e. Further, at least a part of the constituent requirements of the scanning electron microscope SEMd of the fourth embodiment may be combined with the scanning electron microscope SEMe of the fifth embodiment. For example, the scanning electron microscope SEMe may include an aperture member 16d.
 (6)第6実施形態の走査型電子顕微鏡SEMf
 続いて、図18及び図19を参照しながら、第6実施形態の走査型電子顕微鏡SEM(以降、第6実施形態の走査型電子顕微鏡SEMを、“走査型電子顕微鏡SEMf”と称する)について説明する。図18は、第6実施形態の走査型電子顕微鏡SEMfの構造を示す断面図である。図19は、第6実施形態の走査型電子顕微鏡SEMfが備えるビーム照射装置1fの構造を示す断面図である。
(6) Scanning electron microscope SEMf of the sixth embodiment
Subsequently, with reference to FIGS. 18 and 19, the scanning electron microscope SEM of the sixth embodiment (hereinafter, the scanning electron microscope SEM of the sixth embodiment will be referred to as “scanning electron microscope SEMf”) will be described. To do. FIG. 18 is a cross-sectional view showing the structure of the scanning electron microscope SEMf of the sixth embodiment. FIG. 19 is a cross-sectional view showing the structure of the beam irradiation device 1f included in the scanning electron microscope SEMf of the sixth embodiment.
 図18に示すように、第6実施形態の走査型電子顕微鏡SEMfは、上述した第1実施形態の走査型電子顕微鏡SEMaと比較して、気体供給装置6及び排気装置7、バルブ1281及び1282、並びに、配管1291及び1292を備えていなくてもよいという点で異なっている。更に、走査型電子顕微鏡SEMfは、走査型電子顕微鏡SEMaと比較して、ビーム照射装置1に代えてビーム照射装置1fを備えているという点で異なっている。走査型電子顕微鏡SEMfのその他の特徴は、上述した走査型電子顕微鏡SEMaと同一であってもよい。 As shown in FIG. 18, the scanning electron microscope SEMf of the sixth embodiment has a gas supply device 6, an exhaust device 7, valves 1281 and 1282, as compared with the scanning electron microscope SEMa of the first embodiment described above. It also differs in that it does not have to be provided with pipes 1291 and 1292. Further, the scanning electron microscope SEMf is different from the scanning electron microscope SEMa in that the beam irradiation device 1f is provided instead of the beam irradiation device 1. Other features of the scanning electron microscope SEMf may be the same as those of the scanning electron microscope SEMa described above.
 図19に示すように、ビーム照射装置1fは、ビーム照射装置1と比較して、差動排気系12に代えて差動排気系12fを備えているという点で異なっている。ビーム照射装置1fのその他の特徴は、上述したビーム照射装置1と同一であってもよい。差動排気系12fは、上述した差動排気系12と比較して、ビーム通過空間SPb2に面する開口126が形成されていなくてもよいという点で異なっている。更に、差動排気系12bは、上述した差動排気系12と比較して、開口126が形成されていないがゆえに開口126に接続される配管127を備えていなくてもよいという点で異なっている。差動排気系12fのその他の特徴は、上述した差動排気系12と同一であってもよい。 As shown in FIG. 19, the beam irradiation device 1f is different from the beam irradiation device 1 in that it includes a differential exhaust system 12f instead of the differential exhaust system 12. Other features of the beam irradiating device 1f may be the same as those of the beam irradiating device 1 described above. The differential exhaust system 12f is different from the above-mentioned differential exhaust system 12 in that the opening 126 facing the beam passage space SPb2 does not have to be formed. Further, the differential exhaust system 12b is different from the above-mentioned differential exhaust system 12 in that it does not have to be provided with the pipe 127 connected to the opening 126 because the opening 126 is not formed. There is. Other features of the differential exhaust system 12f may be the same as those of the differential exhaust system 12 described above.
 このような第6実施形態の走査型電子顕微鏡SEMfは、気体供給装置6及び排気装置7を備えていないがゆえに、気体供給装置6及び排気装置7を用いてビーム通過空間SPbの真空度を制御することができない。走査型電子顕微鏡SEMfは、気体供給装置6及び排気装置7を用いることに加えて又は代えて、ビーム照射装置1と試料Wとの間の間隔Dを制御することで、ビーム通過空間SPbの少なくとも一部の真空度を制御する。つまり、走査型電子顕微鏡SEMfは、気体供給装置6及び排気装置7を用いることなくビーム通過空間SPbの少なくとも一部の真空度を制御すると共に、ビーム照射装置1と試料Wとの間の間隔Dを制御する。 Since the scanning electron microscope SEMf of the sixth embodiment does not include the gas supply device 6 and the exhaust device 7, the gas supply device 6 and the exhaust device 7 are used to control the degree of vacuum of the beam passing space SPb. Can not do it. The scanning electron microscope SEMf uses at least the beam passage space SPb by controlling the distance D between the beam irradiation device 1 and the sample W in addition to or in place of using the gas supply device 6 and the exhaust device 7. Control some degree of vacuum. That is, the scanning electron microscope SEMf controls the degree of vacuum of at least a part of the beam passing space SPb without using the gas supply device 6 and the exhaust device 7, and the distance D between the beam irradiation device 1 and the sample W. To control.
 具体的には、間隔Dが小さくなるほど、ビーム照射装置1と試料Wとの間の空間の体積が小さくなる。ビーム照射装置1と試料Wとの間の空間の体積が小さくなるほど、ビーム照射装置1と試料Wとの間に形成される真空領域VSPが真空領域VSPの周辺に位置する周辺領域に面する面積が小さくなる。真空領域VSPが周辺領域に面する面積が小さくなるほど、周辺領域から真空領域VSPに流れ込む気体の量が少なくなる。周辺領域から真空領域VSPに流れ込む気体の量が少なくなるほど、真空領域VSPの真空度が高くなる。真空領域VSPの真空度が高くなるほど、真空領域VSPに含まれるビーム通過空間SPb3の少なくとも一部の真空度が高くなる。このため、走査型電子顕微鏡SEMfは、制御装置4の制御下で、間隔Dが減少するように間隔Dを制御することで、ビーム通過空間SPb3の少なくとも一部の真空度を増加させることができる。つまり、走査型電子顕微鏡SEMfは、制御装置4の制御下で、ビーム照射装置1(特に、真空形成部材121)を試料Wに近づけることで、ビーム通過空間SPb3の少なくとも一部の真空度を増加させることができる。更には、ビーム通過空間SPb3がビーム通過空間SPb1及びSPb2に接続されているため、走査型電子顕微鏡SEMfは、制御装置4の制御下で、ビーム照射装置1(特に、真空形成部材121)を試料Wに近づけることで、ビーム通過空間SPb1からSPb3を含むビーム通過空間SPbの少なくとも一部の真空度を増加させることができる。 Specifically, the smaller the interval D, the smaller the volume of the space between the beam irradiation device 1 and the sample W. The smaller the volume of the space between the beam irradiation device 1 and the sample W, the area where the vacuum region VSP formed between the beam irradiation device 1 and the sample W faces the peripheral region located around the vacuum region VSP. Becomes smaller. The smaller the area of the vacuum region VSP facing the peripheral region, the smaller the amount of gas flowing from the peripheral region into the vacuum region VSP. The smaller the amount of gas flowing from the peripheral region into the vacuum region VSP, the higher the degree of vacuum in the vacuum region VSP. The higher the degree of vacuum of the vacuum region VSP, the higher the degree of vacuum of at least a part of the beam passing space SPb3 included in the vacuum region VSP. Therefore, the scanning electron microscope SEMf can increase the degree of vacuum of at least a part of the beam passing space SPb3 by controlling the interval D so that the interval D decreases under the control of the control device 4. .. That is, the scanning electron microscope SEMf increases the degree of vacuum of at least a part of the beam passing space SPb3 by bringing the beam irradiation device 1 (particularly, the vacuum forming member 121) closer to the sample W under the control of the control device 4. Can be made to. Further, since the beam passing space SPb3 is connected to the beam passing spaces SPb1 and SPb2, the scanning electron microscope SEMf samples the beam irradiating device 1 (particularly, the vacuum forming member 121) under the control of the control device 4. By approaching W, the degree of vacuum of at least a part of the beam passing space SPb including the beam passing spaces SPb1 to SPb3 can be increased.
 例えば、ビーム照射装置1と試料WとをZ軸方向において離すように作用する力をフランジ部材13に付与することで間隔調整系14が間隔Dを調整している場合には(図6参照)、間隔調整系14からフランジ部材13に付与される力が減少すれば、ビーム照射装置1が試料Wに近づく。このため、制御装置4は、間隔調整系14からフランジ部材13に付与される力が減少するように間隔調整系14を制御することで、ビーム通過空間SPbの少なくとも一部の真空度を増加させることができる。例えば、ビーム照射装置1と試料WとをZ軸方向において離すように作用する力をステージ22に付与することでステージ駆動系23が間隔Dを調整している場合には(図6参照)、ステージ駆動系23からステージ22に付与される力が減少すれば、ビーム照射装置1が試料Wに近づく。このため、制御装置4は、ステージ駆動系23からステージ22に付与される力が減少するようにステージ駆動系23を制御することで、ビーム通過空間SPbの少なくとも一部の真空度を増加させることができる。例えば、ビーム照射装置1と試料WとをZ軸方向において近づけるように作用する力をフランジ部材13に付与することで間隔調整系14が間隔Dを調整している場合には(図7参照)、間隔調整系14からフランジ部材13に付与される力が増加すれば、ビーム照射装置1が試料Wに近づく。このため、制御装置4は、間隔調整系14からフランジ部材13に付与される力が増加するように間隔調整系14を制御することで、ビーム通過空間SPbの少なくとも一部の真空度を増加させることができる。例えば、ビーム照射装置1と試料WとをZ軸方向において近づけるように作用する力をステージ22に付与することでステージ駆動系23が間隔Dを調整している場合には(図7参照)、ステージ駆動系23からステージ22に付与される力が増加すれば、ビーム照射装置1が試料Wに近づく。このため、制御装置4は、ステージ駆動系23からステージ22に付与される力が増加するようにステージ駆動系23を制御することで、ビーム通過空間SPbの少なくとも一部の真空度を増加させることができる。 For example, when the distance adjusting system 14 adjusts the distance D by applying a force acting to separate the beam irradiation device 1 and the sample W in the Z-axis direction to the flange member 13 (see FIG. 6). When the force applied to the flange member 13 from the interval adjusting system 14 is reduced, the beam irradiation device 1 approaches the sample W. Therefore, the control device 4 increases the degree of vacuum of at least a part of the beam passing space SPb by controlling the interval adjusting system 14 so that the force applied to the flange member 13 from the interval adjusting system 14 is reduced. be able to. For example, when the stage drive system 23 adjusts the interval D by applying a force acting to separate the beam irradiation device 1 and the sample W in the Z-axis direction to the stage 22 (see FIG. 6). When the force applied to the stage 22 from the stage drive system 23 decreases, the beam irradiation device 1 approaches the sample W. Therefore, the control device 4 controls the stage drive system 23 so that the force applied to the stage 22 from the stage drive system 23 is reduced, thereby increasing the degree of vacuum of at least a part of the beam passing space SPb. Can be done. For example, when the distance adjusting system 14 adjusts the distance D by applying a force acting to bring the beam irradiation device 1 and the sample W closer to each other in the Z-axis direction to the flange member 13 (see FIG. 7). If the force applied to the flange member 13 from the interval adjusting system 14 increases, the beam irradiation device 1 approaches the sample W. Therefore, the control device 4 increases the degree of vacuum of at least a part of the beam passing space SPb by controlling the interval adjusting system 14 so that the force applied to the flange member 13 from the interval adjusting system 14 increases. be able to. For example, when the stage drive system 23 adjusts the interval D by applying a force acting to bring the beam irradiation device 1 and the sample W closer to each other in the Z-axis direction to the stage 22 (see FIG. 7). When the force applied to the stage 22 from the stage drive system 23 increases, the beam irradiation device 1 approaches the sample W. Therefore, the control device 4 increases the degree of vacuum of at least a part of the beam passing space SPb by controlling the stage drive system 23 so that the force applied to the stage 22 from the stage drive system 23 increases. Can be done.
 一方で、間隔Dが大きくなるほど、ビーム照射装置1と試料Wとの間の空間の体積が大きくなる。ビーム照射装置1と試料Wとの間の空間の体積が大きくなるほど、ビーム照射装置1と試料Wとの間に形成される真空領域VSPが、真空領域VSPの周辺に位置する周辺領域と面する面積が大きくなる。真空領域VSPが周辺領域と面する面積が大きくなるほど、周辺領域から真空領域VSPに流れ込む気体の量が多くなる。周辺領域から真空領域VSPに流れ込む気体の量が多くなるほど、真空領域VSPの真空度が低くなる。真空領域VSPの真空度が低くなるほど、真空領域VSPに含まれるビーム通過空間SPb3の少なくとも一部の真空度が低くなる。このため、走査型電子顕微鏡SEMfは、制御装置4の制御下で、間隔Dが増加するように間隔Dを制御することで、ビーム通過空間SPb3の少なくとも一部の真空度を減少させることができる。つまり、走査型電子顕微鏡SEMfは、制御装置4の制御下で、ビーム照射装置1(特に、真空形成部材121)を試料Wから離すことで、ビーム通過空間SPb3を含むビーム通過空間SPbの少なくとも一部の真空度を減少させることができる。 On the other hand, the larger the interval D, the larger the volume of the space between the beam irradiation device 1 and the sample W. As the volume of the space between the beam irradiation device 1 and the sample W increases, the vacuum region VSP formed between the beam irradiation device 1 and the sample W faces the peripheral region located around the vacuum region VSP. The area becomes large. The larger the area of the vacuum region VSP facing the peripheral region, the larger the amount of gas flowing from the peripheral region into the vacuum region VSP. As the amount of gas flowing from the peripheral region into the vacuum region VSP increases, the degree of vacuum in the vacuum region VSP decreases. The lower the degree of vacuum of the vacuum region VSP, the lower the degree of vacuum of at least a part of the beam passing space SPb3 included in the vacuum region VSP. Therefore, the scanning electron microscope SEMf can reduce the degree of vacuum of at least a part of the beam passing space SPb3 by controlling the interval D so that the interval D increases under the control of the control device 4. .. That is, in the scanning electron microscope SEMf, the beam irradiation device 1 (particularly, the vacuum forming member 121) is separated from the sample W under the control of the control device 4, so that at least one of the beam passage spaces SPb including the beam passage space SPb3 The degree of vacuum of the part can be reduced.
 例えば、ビーム照射装置1と試料WとをZ軸方向において離すように作用する力をフランジ部材13に付与することで間隔調整系14が間隔Dを調整している場合には(図6参照)、間隔調整系14からフランジ部材13に付与される力が増加すれば、ビーム照射装置1が試料Wから離れる。このため、制御装置4は、間隔調整系14からフランジ部材13に付与される力が増加するように間隔調整系14を制御することで、ビーム通過空間SPbの少なくとも一部の真空度を減少させることができる。例えば、ビーム照射装置1と試料WとをZ軸方向において離すように作用する力をステージ22に付与することでステージ駆動系23が間隔Dを調整している場合には(図6参照)、ステージ駆動系23からステージ22に付与される力が増加すれば、ビーム照射装置1が試料Wから離れる。このため、制御装置4は、ステージ駆動系23からステージ22に付与される力が増加するようにステージ駆動系23を制御することで、ビーム通過空間SPbの少なくとも一部の真空度を減少させることができる。例えば、ビーム照射装置1と試料WとをZ軸方向において近づけるように作用する力をフランジ部材13に付与することで間隔調整系14が間隔Dを調整している場合には(図7参照)、間隔調整系14からフランジ部材13に付与される力が減少すれば、ビーム照射装置1が試料Wから離れる。このため、制御装置4は、間隔調整系14からフランジ部材13に付与される力が減少するように間隔調整系14を制御することで、ビーム通過空間SPbの少なくとも一部の真空度を減少させることができる。例えば、ビーム照射装置1と試料WとをZ軸方向において近づけるように作用する力をステージ22に付与することでステージ駆動系23が間隔Dを調整している場合には(図7参照)、ステージ駆動系23からステージ22に付与される力が減少すれば、ビーム照射装置1が試料Wから離れる。このため、制御装置4は、ステージ駆動系23からステージ22に付与される力が減少するようにステージ駆動系23を制御することで、ビーム通過空間SPbの少なくとも一部の真空度を減少させることができる。 For example, when the distance adjusting system 14 adjusts the distance D by applying a force acting to separate the beam irradiation device 1 and the sample W in the Z-axis direction to the flange member 13 (see FIG. 6). When the force applied to the flange member 13 from the interval adjusting system 14 increases, the beam irradiation device 1 moves away from the sample W. Therefore, the control device 4 reduces the degree of vacuum of at least a part of the beam passing space SPb by controlling the interval adjusting system 14 so that the force applied to the flange member 13 from the interval adjusting system 14 increases. be able to. For example, when the stage drive system 23 adjusts the interval D by applying a force acting to separate the beam irradiation device 1 and the sample W in the Z-axis direction to the stage 22 (see FIG. 6). When the force applied to the stage 22 from the stage drive system 23 increases, the beam irradiation device 1 moves away from the sample W. Therefore, the control device 4 reduces the degree of vacuum of at least a part of the beam passing space SPb by controlling the stage drive system 23 so that the force applied to the stage 22 from the stage drive system 23 increases. Can be done. For example, when the spacing adjusting system 14 adjusts the spacing D by applying a force acting to bring the beam irradiation device 1 and the sample W closer to each other in the Z-axis direction to the flange member 13 (see FIG. 7). When the force applied to the flange member 13 from the interval adjusting system 14 is reduced, the beam irradiation device 1 is separated from the sample W. Therefore, the control device 4 reduces the degree of vacuum of at least a part of the beam passing space SPb by controlling the interval adjusting system 14 so that the force applied to the flange member 13 from the interval adjusting system 14 is reduced. be able to. For example, when the stage drive system 23 adjusts the interval D by applying a force acting to bring the beam irradiation device 1 and the sample W closer to each other in the Z-axis direction to the stage 22 (see FIG. 7). When the force applied to the stage 22 from the stage drive system 23 decreases, the beam irradiation device 1 moves away from the sample W. Therefore, the control device 4 reduces the degree of vacuum of at least a part of the beam passing space SPb by controlling the stage drive system 23 so that the force applied to the stage 22 from the stage drive system 23 is reduced. Can be done.
 このように、第6実施形態の走査型電子顕微鏡SEMfは、気体供給装置6及び排気装置7を用いることなく、ビーム通過空間SPbの少なくとも一部の真空度を制御することができる。その結果、走査型電子顕微鏡SEMfは、ビーム照射装置1と試料Wとの間の間隔Dを制御する(例えば、変更する)ことで、走査型電子顕微鏡SEMaの動作モードを、上述した真空領域VSPを第1の圧力範囲で用いる第1モードと真空領域VSPを第2の圧力範囲で用いる第2モードとの間で切り替えることができる。 As described above, the scanning electron microscope SEMf of the sixth embodiment can control the degree of vacuum of at least a part of the beam passing space SPb without using the gas supply device 6 and the exhaust device 7. As a result, the scanning electron microscope SEMf controls (for example, changes) the distance D between the beam irradiation device 1 and the sample W, so that the operation mode of the scanning electron microscope SEMa can be changed to the vacuum region VSS described above. Can be switched between a first mode in which is used in the first pressure range and a second mode in which the vacuum region VSP is used in the second pressure range.
 一例として、走査型電子顕微鏡SEMaは、試料Wが絶縁物である場合には、試料Wが非絶縁物である場合と比較して、間隔Dが大きくなる(その結果、ビーム通過空間SPbの少なくとも一部の真空度が低くなる)ように、間隔Dを制御してもよい。その結果、気体供給装置6及び排気装置7を用いない場合であっても、チャージアップという現象が発生しにくくなる。 As an example, in the scanning electron microscope SEMa, when the sample W is an insulating material, the interval D is larger than when the sample W is a non-insulating material (as a result, at least the beam passing space SPb is large. The interval D may be controlled so that a part of the degree of vacuum becomes low). As a result, even when the gas supply device 6 and the exhaust device 7 are not used, the phenomenon of charge-up is less likely to occur.
 尚、気体供給装置6及び排気装置7、バルブ1281及び1282、並びに、配管1291及び1292を備える上述した第1実施形態のSEMaから第5実施形態の走査型電子顕微鏡SEMeの少なくとも一つもまた、ビーム照射装置1と試料Wとの間の間隔Dを制御する(例えば、変更する)ことで、ビーム通過空間SPbの少なくとも一部の真空度を制御してもよい。 At least one of the above-mentioned SEMa of the first embodiment to the scanning electron microscope SEMe of the fifth embodiment including the gas supply device 6 and the exhaust device 7, the valves 1281 and 1282, and the pipes 1291 and 1292 is also a beam. By controlling (for example, changing) the distance D between the irradiation device 1 and the sample W, the degree of vacuum of at least a part of the beam passing space SPb may be controlled.
 尚、第6実施形態の走査型電子顕微鏡SEMfに対して、第4実施形態の走査型電子顕微鏡SEMdの構成要件の少なくとも一部が組み合わせられてもよい。例えば、走査型電子顕微鏡SEMfがアパーチャ部材16dを備えていてもよい。 It should be noted that at least a part of the constituent requirements of the scanning electron microscope SEMd of the fourth embodiment may be combined with the scanning electron microscope SEMf of the sixth embodiment. For example, the scanning electron microscope SEMf may include an aperture member 16d.
 (7)第7実施形態の走査型電子顕微鏡SEMg
 続いて、図20を参照しながら、第7実施形態の走査型電子顕微鏡SEM(以降、第7実施形態の走査型電子顕微鏡SEMを、“走査型電子顕微鏡SEMg”と称する)について説明する。図20は、第7実施形態の走査型電子顕微鏡SEMgの構造を示す断面図である。
(7) Scanning electron microscope SEMg of the seventh embodiment
Subsequently, with reference to FIG. 20, the scanning electron microscope SEM of the seventh embodiment (hereinafter, the scanning electron microscope SEM of the seventh embodiment will be referred to as “scanning electron microscope SEMg”) will be described. FIG. 20 is a cross-sectional view showing the structure of the scanning electron microscope SEMg of the seventh embodiment.
 図20に示すように、第7実施形態の走査型電子顕微鏡SEMgは、上述した第1実施形態の走査型電子顕微鏡SEMaと比較して、気体供給装置6及び排気装置7、バルブ1281及び1282、並びに、配管1291及び1292を備えていなくてもよいという点で異なっている。更に、走査型電子顕微鏡SEMgは、走査型電子顕微鏡SEMaと比較して、ビーム照射装置1に代えてビーム照射装置1f(つまり、第6実施形態で説明した、開口126が形成されていなくてもよい差動排気系12fを備えるビーム照射装置1f)を備えているという点で異なっている。更に、走査型電子顕微鏡SEMgは、走査型電子顕微鏡SEMaと比較して、間隔調整系14に代えて位置調整系14gを備えているという点で異なっている。更に、走査型電子顕微鏡SEMgは、走査型電子顕微鏡SEMaと比較して、計測装置8gを更に備えているという点で異なっている。走査型電子顕微鏡SEMgのその他の特徴は、上述した走査型電子顕微鏡SEMaと同一であってもよい。 As shown in FIG. 20, the scanning electron microscope SEMg of the seventh embodiment has a gas supply device 6, an exhaust device 7, valves 1281 and 1282, as compared with the scanning electron microscope SEMa of the first embodiment described above. It also differs in that it does not have to be provided with pipes 1291 and 1292. Further, in the scanning electron microscope SEMg, as compared with the scanning electron microscope SEMa, instead of the beam irradiating device 1, the beam irradiating device 1f (that is, even if the opening 126 described in the sixth embodiment is not formed). It differs in that it includes a beam irradiator 1f) with a good differential exhaust system 12f. Further, the scanning electron microscope SEMg is different from the scanning electron microscope SEMa in that it includes a position adjusting system 14 g instead of the interval adjusting system 14. Further, the scanning electron microscope SEMg is different from the scanning electron microscope SEMa in that it further includes 8 g of a measuring device. Other features of the scanning electron microscope SEMg may be the same as those of the scanning electron microscope SEMa described above.
 位置調整系14gは、上述した間隔調整系14と比較して、少なくともθX方向及びθY方向の少なくとも一方に沿ってビーム照射装置1fを移動させる(更には、必要に応じてθZ方向に沿ってビーム照射装置1fを移動させる)ことで、試料Wに対するビーム照射装置1fの姿勢(具体的には、傾斜量であり、実質的にはチルト角)を調整することができるという点で異なっている。例えば、位置調整系14gは、試料Wの表面WSuに対してビーム照射装置1fの射出面12LSが平行になるように、ビーム照射装置1fをθX方向、θY方向及びθZ方向の少なくとも一つに沿って移動させてもよい。但し、試料Wに対するビーム照射装置1fの相対的な姿勢を電気的に調整しなくてもよい場合には、位置調整系14gに代えて、シム等の位置調整部材が、支持部材32とフランジ部材13との間に配置されていてもよい。この場合、シムのサイズ及び/又は数が変更されれば、試料Wに対するビーム照射装置1fの相対的な姿勢が調整される。位置調整系14gのその他の特徴は、間隔調整系14と同一であってもよい。 The position adjustment system 14g moves the beam irradiation device 1f along at least one of the θX direction and the θY direction as compared with the above-mentioned interval adjustment system 14 (furthermore, the beam along the θZ direction if necessary). By moving the irradiation device 1f), the posture of the beam irradiation device 1f with respect to the sample W (specifically, the amount of inclination, which is substantially the tilt angle) can be adjusted. For example, the position adjusting system 14g aligns the beam irradiating device 1f along at least one of the θX direction, the θY direction, and the θZ direction so that the injection surface 12LS of the beam irradiating device 1f is parallel to the surface WSu of the sample W. You may move it. However, when it is not necessary to electrically adjust the relative posture of the beam irradiation device 1f with respect to the sample W, instead of the position adjusting system 14g, a position adjusting member such as a shim is used as a support member 32 and a flange member. It may be arranged between 13 and 13. In this case, if the size and / or number of shims is changed, the relative posture of the beam irradiator 1f with respect to the sample W is adjusted. Other features of the position adjusting system 14g may be the same as those of the spacing adjusting system 14.
 計測装置8gは、計測対象物の位置を計測する(言い換えれば、検出する)。計測装置8gは、3次元座標空間(具体的には、計測装置8gを基準とする3次元座標空間である計測座標空間)内における計測対象物の位置を計測する。計測対象物は、例えば、ビーム照射装置1f、試料W及びステージ22の少なくとも一つを含む。このため、計測装置8gは、例えば、ビーム照射装置1f、試料W及びステージ22の少なくとも一つの位置を計測する。 The measuring device 8g measures (in other words, detects) the position of the object to be measured. The measuring device 8g measures the position of the object to be measured in the three-dimensional coordinate space (specifically, the measurement coordinate space which is the three-dimensional coordinate space based on the measuring device 8g). The object to be measured includes, for example, at least one of the beam irradiation device 1f, the sample W, and the stage 22. Therefore, the measuring device 8g measures, for example, the position of at least one of the beam irradiation device 1f, the sample W, and the stage 22.
 第7実施形態では特に、計測装置8gは、2つの計測対象物の互いに対向する面の位置(つまり、3次元座標空間である計測座標空間内での面の位置)を計測する(言い換えれば、検出する)。例えば、ステージ22が試料Wを保持していない場合には、ビーム照射装置1fの射出面12LSとステージ22の保持面HS(つまり、試料Wを実際に保持するステージ22の面)とが対向する。このため、計測装置8gは、ステージ22が試料Wを保持していない場合には、射出面12LS及び保持面HSのそれぞれの位置を計測する。一方で、例えば、ステージ22が試料Wを保持している場合には、ビーム照射装置1の射出面12LSと試料Wの表面WSuとが対向する。このため、計測装置8gは、ステージ22が試料Wを保持している場合には、射出面12LS及び表面WSuのそれぞれの位置を計測する。 In particular, in the seventh embodiment, the measuring device 8g measures the positions of the surfaces of the two measurement objects facing each other (that is, the positions of the surfaces in the measurement coordinate space which is the three-dimensional coordinate space) (in other words, the positions of the surfaces). To detect). For example, when the stage 22 does not hold the sample W, the injection surface 12LS of the beam irradiation device 1f and the holding surface HS of the stage 22 (that is, the surface of the stage 22 that actually holds the sample W) face each other. .. Therefore, when the stage 22 does not hold the sample W, the measuring device 8g measures the positions of the injection surface 12LS and the holding surface HS, respectively. On the other hand, for example, when the stage 22 holds the sample W, the injection surface 12LS of the beam irradiation device 1 and the surface WSu of the sample W face each other. Therefore, the measuring device 8g measures the positions of the injection surface 12LS and the surface WSu when the stage 22 holds the sample W.
 計測座標空間内での面(以降、“計測面”と称する)の位置が判明すると、計測座標空間内での計測面の姿勢(例えば、ある基準平面に対して、計測面の法線が延びる方向に関する情報)が判明する。従って、計測面の位置を計測することは、計測面の姿勢を計測することと等価とみなせる。更に、計測座標空間内での計測面の位置が判明すると、計測座標空間内での計測面の形状が判明する。従って、計測面の位置を計測することは、計測面の形状を計測することと等価とみなせる。 When the position of the surface (hereinafter referred to as "measurement surface") in the measurement coordinate space is known, the posture of the measurement surface in the measurement coordinate space (for example, the normal of the measurement surface extends with respect to a certain reference plane). Information about the direction) is revealed. Therefore, measuring the position of the measuring surface can be regarded as equivalent to measuring the posture of the measuring surface. Further, when the position of the measurement surface in the measurement coordinate space is known, the shape of the measurement surface in the measurement coordinate space is known. Therefore, measuring the position of the measuring surface can be regarded as equivalent to measuring the shape of the measuring surface.
 2つの計測対象物の互いに対向する面の位置が計測されると、2つの計測対象物の互いに対向する面の位置関係が判明する。このため、計測装置8gは、2つの計測対象物の互いに対向する面の位置関係を計測しているとも言える。例えば、ステージ22が試料Wを保持していない場合には、計測装置8gは、射出面12LSと保持面HSとの位置関係を計測しているとも言える。一方で、例えば、ステージ22が試料Wを保持している場合には、計測装置8gは、射出面12LSと表面WSuとの位置関係を計測しているとも言える。 When the positions of the surfaces of the two measurement objects facing each other are measured, the positional relationship between the surfaces of the two measurement objects facing each other becomes clear. Therefore, it can be said that the measuring device 8g measures the positional relationship between the surfaces of the two measurement objects facing each other. For example, when the stage 22 does not hold the sample W, it can be said that the measuring device 8g measures the positional relationship between the injection surface 12LS and the holding surface HS. On the other hand, for example, when the stage 22 holds the sample W, it can be said that the measuring device 8g measures the positional relationship between the injection surface 12LS and the surface WSu.
 計測装置8gの計測結果は、制御装置4に出力される。制御装置4は、計測装置8gの計測結果に基づいて、2つの計測対象物の位置関係(つまり、2つの計測対象物の互いに対向する面の位置関係)を制御するための位置制御動作を行う。つまり、制御装置4は、計測装置8gの計測結果に基づいて、2つの計測対象物の少なくとも一方を移動させて2つの計測対象物の位置関係を制御するための位置制御動作を行う。 The measurement result of the measuring device 8g is output to the control device 4. The control device 4 performs a position control operation for controlling the positional relationship between the two measurement objects (that is, the positional relationship between the surfaces of the two measurement objects facing each other) based on the measurement result of the measurement device 8g. .. That is, the control device 4 performs a position control operation for controlling the positional relationship between the two measurement objects by moving at least one of the two measurement objects based on the measurement result of the measurement device 8g.
 上述したように、2つの計測対象物は、ビーム照射装置1fとステージ22とを含む。このため、制御装置4は、ビーム照射装置1fとステージ22との位置関係を制御する(つまり、変更する)ための位置制御動作を行う。ビーム照射装置1fとステージ22との位置関係が変わると、ビーム照射装置1fの射出面12LSとステージ22の保持面HSとの位置関係も変わる。このため、ビーム照射装置1fとステージ22との位置関係を制御する動作は、射出面12LSと保持面HSとの位置関係を制御する動作と等価とみなせる。更に、ステージ22が試料Wを保持している場合には、ビーム照射装置1fとステージ22との位置関係を制御する動作は、ビーム照射装置1と試料Wとの位置関係(特に、射出面12LSと試料Wの表面WSuとの位置関係)を制御する動作と等価とみなせる。このため、ステージ22が試料Wを保持している場合には、制御装置4は、位置制御動作を行なうことで、ビーム照射装置1fと試料Wとの位置関係を制御することができる。 As described above, the two measurement objects include the beam irradiation device 1f and the stage 22. Therefore, the control device 4 performs a position control operation for controlling (that is, changing) the positional relationship between the beam irradiation device 1f and the stage 22. When the positional relationship between the beam irradiation device 1f and the stage 22 changes, the positional relationship between the injection surface 12LS of the beam irradiation device 1f and the holding surface HS of the stage 22 also changes. Therefore, the operation of controlling the positional relationship between the beam irradiation device 1f and the stage 22 can be regarded as equivalent to the operation of controlling the positional relationship between the injection surface 12LS and the holding surface HS. Further, when the stage 22 holds the sample W, the operation of controlling the positional relationship between the beam irradiation device 1f and the stage 22 is the positional relationship between the beam irradiation device 1 and the sample W (particularly, the injection surface 12LS). It can be regarded as equivalent to the operation of controlling (the positional relationship between the sample W and the surface WSu of the sample W). Therefore, when the stage 22 holds the sample W, the control device 4 can control the positional relationship between the beam irradiation device 1f and the sample W by performing a position control operation.
 ビーム照射装置1fとステージ22との位置関係及びビーム照射装置1fと試料Wとの位置関係は、ビーム照射装置1fとステージ22の少なくとも一方が移動することで変わる。このため、制御装置4は、ビーム照射装置1fとステージ22の少なくとも一方を移動させて、ビーム照射装置1fとステージ22との位置関係及びビーム照射装置1と試料Wとの位置関係を制御する。この場合、制御装置4は、計測装置8gの計測結果に基づいて、表面WSuの所望位置に電子ビームEBが照射され且つビーム通過空間SPb3が設定されるように、ステージ駆動系23を制御してXY平面に沿ってステージ22を移動させてもよい。制御装置4は、計測装置8gの計測結果に基づいて、試料Wの表面WSuとビーム照射装置1fの射出面12LSとの間の間隔Dが所望間隔D_targetとなるように、ステージ駆動系23を制御してZ軸に沿ってステージ22を移動させてもよい。制御装置4は、計測装置8gの計測結果に基づいて、間隔Dが所望間隔D_targetとなるように、位置調整系14gを制御してZ軸に沿ってビーム照射装置1を移動させてもよい。制御装置4は、計測装置8gの計測結果に基づいて、ビーム照射装置1fの射出面12LSに対して試料Wの表面WSuが平行になるように、ステージ駆動系23を制御してθX方向、θY方向及びθZ方向の少なくとも一つに沿ってステージ22を移動させてもよい。制御装置4は、計測装置8gの計測結果に基づいて、射出面12LSに対して表面WSuが平行になるように、位置調整系14gを制御してθX方向及びθY方向の少なくとも一方に沿ってビーム照射装置1を移動させてもよい。 The positional relationship between the beam irradiation device 1f and the stage 22 and the positional relationship between the beam irradiation device 1f and the sample W change when at least one of the beam irradiation device 1f and the stage 22 moves. Therefore, the control device 4 moves at least one of the beam irradiation device 1f and the stage 22 to control the positional relationship between the beam irradiation device 1f and the stage 22 and the positional relationship between the beam irradiation device 1 and the sample W. In this case, the control device 4 controls the stage drive system 23 so that the electron beam EB is irradiated to the desired position of the surface WSu and the beam passing space SPb3 is set based on the measurement result of the measuring device 8g. The stage 22 may be moved along the XY plane. The control device 4 controls the stage drive system 23 so that the distance D between the surface WSu of the sample W and the injection surface 12LS of the beam irradiation device 1f becomes a desired distance D_target based on the measurement result of the measuring device 8g. Then, the stage 22 may be moved along the Z axis. Based on the measurement result of the measuring device 8g, the control device 4 may control the position adjusting system 14g so that the interval D becomes the desired interval D_target, and move the beam irradiation device 1 along the Z axis. The control device 4 controls the stage drive system 23 so that the surface WSu of the sample W is parallel to the injection surface 12LS of the beam irradiation device 1f based on the measurement result of the measuring device 8g, and controls the stage drive system 23 in the θX direction and θY. The stage 22 may be moved along at least one of the directions and the θZ direction. Based on the measurement result of the measuring device 8g, the control device 4 controls the position adjusting system 14g so that the surface WSu is parallel to the injection surface 12LS, and the beam is along at least one of the θX direction and the θY direction. The irradiation device 1 may be moved.
 上述したように、射出面12LSに対して表面WSuが平行になる状態は、射出面12LS及び表面WSuのいずれか一方をデータム平面に指定した場合において、データム平面と平行であって且つ所望距離だけ離れた2つの仮想的な面の間に射出面12LS及び表面WSuのいずれか他方が収まる状態に相当する。更に、所望距離は、所望間隔D_targetより小さい値(例えば、所望間隔Dの_target1/10以下の値)である。射出面12LSに対して表面WSuを平行にするために計測装置8gの計測結果が用いられることを考慮すれば、計測装置8gは、計測対象物の位置を、所望距離(つまり、所望間隔D_targetより小さい距離であって、例えば、所望間隔Dの_targetの1/10以下の距離)と同等の精度で計測してもよい。その結果、制御装置4は、計測装置8gの計測結果に基づいて、間隔Dが所望間隔D_targetとなり且つ射出面12LSに対して表面WSuが平行になるように、ビーム照射装置1f及びステージ22の少なくとも一方を移動させることができる。 As described above, the state in which the surface WSu is parallel to the injection surface 12LS is parallel to the datum plane and only a desired distance when either the injection surface 12LS or the surface WSu is designated as the datum plane. This corresponds to a state in which either the injection surface 12LS or the surface WSu is accommodated between two distant virtual surfaces. Further, the desired distance is a value smaller than the desired interval D_taget (for example, a value of _target 1/10 or less of the desired interval D). Considering that the measurement result of the measuring device 8g is used to make the surface WSu parallel to the injection surface 12LS, the measuring device 8g sets the position of the measurement object at a desired distance (that is, from a desired interval D_target). It may be measured with a small distance and with an accuracy equivalent to, for example, 1/10 or less of _target of the desired interval D). As a result, the control device 4 has at least the beam irradiation device 1f and the stage 22 so that the interval D becomes the desired interval D_target and the surface WSu is parallel to the injection surface 12LS based on the measurement result of the measuring device 8g. One can be moved.
 計測対象物の位置を計測するために、計測装置8gは、例えば、計測対象物までの距離を測定可能な複数の距離センサ(言い換えれば、測長センサ)81gを含んでいてもよい。距離センサ81gは、計測対象物に対して計測光MLを照射し、計測対象物からの計測光MLの反射光を検出することで距離センサ81gから計測対象物までの距離を計測可能な、光方式の距離センサである。但し、距離センサ81gとして、その他の方式の距離センサが用いられてもよい。上述したように、計測装置8gが3次元の計測座標空間内での計測対象物の位置を計測することから、計測装置8gは、計測対象物の少なくとも3ヶ所までの距離を計測する少なくとも3つの距離センサ81gを含む。但し、計測装置8gは、どのような計測方法で計測対象物の位置を計測してもよい。例えば、計測装置8gは、計測対象物の表面上における計測光MLのビームスポットの形状に基づいて、計測対象物の位置を計測してもよい。この場合、計測光MLのフォーカス位置から計測対象物が離れれば離れるほどビームスポットが大きくなり、且つ、計測装置8gの光軸に対して計測対象物が傾斜すればするほどビームスポットの形状が理想的な形状(例えば、真円形状)からずれるため、計測装置8gは、計測光MLのビームスポットの形状に基づいて計測対象物の位置を計測することができる。 In order to measure the position of the object to be measured, the measuring device 8g may include, for example, 81g of a plurality of distance sensors (in other words, a length measuring sensor) capable of measuring the distance to the object to be measured. The distance sensor 81g irradiates the measurement object with the measurement light ML and detects the reflected light of the measurement light ML from the measurement object to measure the distance from the distance sensor 81g to the measurement object. This is a type of distance sensor. However, as the distance sensor 81g, another type of distance sensor may be used. As described above, since the measuring device 8g measures the position of the measurement object in the three-dimensional measurement coordinate space, the measuring device 8g measures at least three distances to the measurement target at least three places. Includes 81 g of distance sensor. However, the measuring device 8g may measure the position of the object to be measured by any measuring method. For example, the measuring device 8g may measure the position of the measurement target based on the shape of the beam spot of the measurement light ML on the surface of the measurement target. In this case, the beam spot becomes larger as the object to be measured moves away from the focus position of the measurement light ML, and the shape of the beam spot becomes ideal as the object to be measured tilts with respect to the optical axis of the measuring device 8 g. The measuring device 8g can measure the position of the object to be measured based on the shape of the beam spot of the measurement light ML because it deviates from the typical shape (for example, a perfect circular shape).
 計測装置8g(図20に示す例では、距離センサ81g、以下同じ)は、ビーム照射装置1fに対して固定された位置(特に、射出面12LSを備える差動排気系12fに対して固定された位置、以下同じ)に配置されている。つまり、計測装置8gは、ビーム照射装置1fに対する位置関係が固定された(つまり、変わらない)位置に配置されている。図20に示す例では、計測装置8gは、ビーム照射装置1fのフランジ部材13に配置されているが、その他の位置に配置されていてもよい。計測装置8gがビーム照射装置1fに対して固定された位置に配置されている場合には、位置調整系14gによってビーム照射装置1fが移動したとしても、ビーム照射装置1fと計測装置8gとの位置関係が変わることはない。つまり、計測装置8gを基準とする計測座標空間内でのビーム照射装置1fの位置が変わることはない。このため、ビーム照射装置1fの位置が計測装置8gによって一度計測された後であれば、位置調整系14gによってビーム照射装置1fが移動したとしても、制御装置4は、計測装置8gにビーム照射装置1fの位置を再度計測させることなく、計測座標空間内でのビーム照射装置1fの位置を特定することができる。 The measuring device 8 g (in the example shown in FIG. 20, the distance sensor 81 g, the same applies hereinafter) was fixed at a fixed position with respect to the beam irradiation device 1f (particularly, with respect to the differential exhaust system 12f provided with the injection surface 12LS). Position, the same below). That is, the measuring device 8g is arranged at a position where the positional relationship with respect to the beam irradiating device 1f is fixed (that is, does not change). In the example shown in FIG. 20, the measuring device 8g is arranged on the flange member 13 of the beam irradiation device 1f, but may be arranged at other positions. When the measuring device 8g is arranged at a fixed position with respect to the beam irradiating device 1f, the positions of the beam irradiating device 1f and the measuring device 8g even if the beam irradiating device 1f is moved by the position adjusting system 14g. The relationship does not change. That is, the position of the beam irradiation device 1f in the measurement coordinate space based on the measurement device 8g does not change. Therefore, if the position of the beam irradiating device 1f is once measured by the measuring device 8g, even if the beam irradiating device 1f is moved by the position adjusting system 14g, the control device 4 will move the beam irradiating device to the measuring device 8g. The position of the beam irradiation device 1f in the measurement coordinate space can be specified without having to measure the position of 1f again.
 計測装置8gがビーム照射装置1fに対して固定された位置に配置されている場合には、計測座標空間の原点は、ビーム照射装置1fに関連する位置(特に、射出面12LSを備える差動排気系12fに関連する位置)に設定されてもよい。例えば、計測座標空間の原点は、射出面12LSに形成されるビーム射出口1232に設定されてもよい。但し、計測座標空間の原点は、ビーム照射装置1fに関連する位置とは異なる位置に設定されてもよい。例えば、計測座標空間の原点は、ステージ装置2に関連する位置(例えば、定盤21に関連する位置)に設定されていてもよい。例えば、計測座標空間の原点は、支持フレーム3に関連する位置に設定されていてもよい。 When the measuring device 8g is arranged at a fixed position with respect to the beam irradiating device 1f, the origin of the measuring coordinate space is the position related to the beam irradiating device 1f (particularly, the differential exhaust provided with the injection surface 12LS). The position related to the system 12f) may be set. For example, the origin of the measurement coordinate space may be set to the beam ejection port 1232 formed on the ejection surface 12LS. However, the origin of the measurement coordinate space may be set at a position different from the position related to the beam irradiation device 1f. For example, the origin of the measurement coordinate space may be set at a position related to the stage device 2 (for example, a position related to the surface plate 21). For example, the origin of the measurement coordinate space may be set at a position related to the support frame 3.
 (7-2)位置制御動作
 続いて、計測装置8gの計測結果に基づいて、ビーム照射装置1fとステージ22との位置関係(更には、ビーム照射装置1fと試料Wとの位置関係、以下同じ)を制御するための位置制御動作について更に説明する。上述したように、位置制御動作は、(i)試料Wの表面WSuの所望位置に電子ビームEBが照射され且つビーム通過空間SPb3が設定され(つまり、真空領域VSPが形成され)、(ii)間隔Dが所望間隔D_targetとなり、且つ、(iii)射出面12LSに対して表面WSuが平行になるように、ビーム照射装置1fとステージ22との位置関係を制御する動作である。以下では特に、間隔Dが所望間隔D_targetとなり、且つ、射出面12LSに対して表面WSuが平行になるようにビーム照射装置1fとステージ22との位置関係を制御する動作について説明する。尚、本実施形態における「ビーム照射装置1fとステージ22との位置関係の制御」は、X軸、Y軸及びZ軸の少なくとも一つに沿った方向におけるビーム照射装置1fとステージ22との位置関係の制御のみならず、θX方向、θY方向及びθZ方向の少なくとも一つにおけるビーム照射装置1fとステージ22との位置関係の制御(つまり、ビーム照射装置1f及びステージ22の少なくとも一方の姿勢の制御)をも含む。
(7-2) Position control operation Subsequently, based on the measurement result of the measuring device 8g, the positional relationship between the beam irradiation device 1f and the stage 22 (furthermore, the positional relationship between the beam irradiation device 1f and the sample W, the same applies hereinafter. ) Will be further described. As described above, in the position control operation, (i) the electron beam EB is irradiated to the desired position of the surface WSu of the sample W, the beam passage space SPb3 is set (that is, the vacuum region VSP is formed), and (ii). This is an operation of controlling the positional relationship between the beam irradiation device 1f and the stage 22 so that the interval D becomes the desired interval D_taget and the surface WSu is parallel to the (iii) injection surface 12LS. In particular, the operation of controlling the positional relationship between the beam irradiation device 1f and the stage 22 so that the interval D becomes the desired interval D_taget and the surface WSu is parallel to the injection surface 12LS will be described below. The "control of the positional relationship between the beam irradiation device 1f and the stage 22" in the present embodiment is the position of the beam irradiation device 1f and the stage 22 in the direction along at least one of the X-axis, the Y-axis, and the Z-axis. Not only the relationship control but also the control of the positional relationship between the beam irradiation device 1f and the stage 22 in at least one of the θX direction, the θY direction and the θZ direction (that is, the control of the posture of at least one of the beam irradiation device 1f and the stage 22). ) Is also included.
 間隔Dが所望間隔D_targetとなるようにビーム照射装置1fとステージ22との位置関係を制御する一つの目的は、ビーム照射装置1fと試料Wとの間に形成される真空領域VSPの真空度を適切に維持することにある。具体的には、間隔Dが所望間隔D_targetよりも大きくなると、ビーム照射装置1fと試料Wとの間に形成される真空領域VSPの真空度が低下する可能性がある。このため、走査型電子顕微鏡SEMgは、ビーム照射装置1fと試料Wとの間に適切な真空度の真空領域VSPを形成することができなくなる可能性がある。その結果、走査型電子顕微鏡SEMgは、真空領域VSPを介して電子ビームEBを試料Wに適切に照射することができなくなる可能性がある。このため、制御装置4は、間隔Dが、ビーム照射装置1fと試料Wとの間に適切な真空度の真空領域VSPを形成することが可能な所望間隔D_targetとなるように、ビーム照射装置1fとステージ22との位置関係を制御する。 One purpose of controlling the positional relationship between the beam irradiation device 1f and the stage 22 so that the interval D becomes a desired interval D_target is to determine the degree of vacuum of the vacuum region VSS formed between the beam irradiation device 1f and the sample W. It is to maintain it properly. Specifically, when the interval D becomes larger than the desired interval D_target, the degree of vacuum of the vacuum region VSP formed between the beam irradiation device 1f and the sample W may decrease. Therefore, the scanning electron microscope SEMg may not be able to form a vacuum region VSP having an appropriate degree of vacuum between the beam irradiation device 1f and the sample W. As a result, the scanning electron microscope SEMg may not be able to properly irradiate the sample W with the electron beam EB via the vacuum region VSP. Therefore, the control device 4 sets the beam irradiation device 1f so that the interval D is a desired interval D_stage capable of forming a vacuum region VSP with an appropriate degree of vacuum between the beam irradiation device 1f and the sample W. The positional relationship between the device and the stage 22 is controlled.
 間隔Dが所望間隔D_targetとなるようにビーム照射装置1fとステージ22との位置関係を制御する一つの目的は、ビーム照射装置1fと試料Wとの接触(言い換えれば、衝突)を防止することにある。具体的には、ステージ22は、通常、図21(a)に示すように、ステージ22の保持面HS及びビーム照射装置1fの射出面12LSの双方がXY平面に平行になり且つ射出面12LS及び保持面HSの双方に対して試料Wの表面WSuが平行になる状態で試料Wを保持した上で、XY平面に沿って移動する。例えば、試料Wの表面WSuと裏面(つまり、表面WSuの逆側の面であって、保持面HSに面する面)とが平行である場合には、ステージ22fは、図21(a)に示す状態で試料Wを容易に保持可能である。この場合には、XY平面内でのステージ22の移動に合わせて間隔Dが調整されなくても、ステージ22の移動に起因して間隔Dが大きく(言い換えれば、意図せず)変わってしまうことはない。一方で、図21(b)に示すように、ステージ22は、射出面12LSに対して表面WSuが平行にならない状態で試料Wを保持した上で、XY平面に沿って移動する可能性がある。例えば、試料Wの表面WSuと裏面とが平行でない場合には、ステージ22は、図21(b)に示す状態で試料Wを保持する可能性がある。或いは、例えば、射出面12LS及び保持面HSの少なくとも一方がXY平面に平行でない場合には、ステージ22は、射出面12LSに対して表面WSuが平行にならない状態で試料Wを保持する可能性がある。この場合には、XY平面内でのステージ22の移動に合わせて間隔Dが調整されないと、XY平面内でのステージ22の移動に起因して間隔Dが大きく(言い換えれば、意図せず)変わってしまう可能性がある。その結果、ビーム照射装置1fと試料Wとが接触してしまう可能性がある。一方で、XY平面内でのステージ22の移動に合わせて間隔Dが調整される(つまり、間隔Dが所望間隔D_targetとなるように調整される)と、XY平面内でステージ22が移動しても間隔Dが大きく(言い換えれば、意図せず)変わってしまうことはなくなる。その結果、ビーム照射装置1fと試料Wとの接触が防止可能となる。 One purpose of controlling the positional relationship between the beam irradiation device 1f and the stage 22 so that the interval D becomes a desired interval D_target is to prevent contact (in other words, collision) between the beam irradiation device 1f and the sample W. is there. Specifically, in the stage 22, as shown in FIG. 21A, both the holding surface HS of the stage 22 and the injection surface 12LS of the beam irradiation device 1f are usually parallel to the XY plane, and the injection surface 12LS and the injection surface 12LS The sample W is held in a state where the surface WSu of the sample W is parallel to both of the holding surfaces HS, and then moves along the XY plane. For example, when the front surface WSu of the sample W and the back surface (that is, the surface opposite to the front surface WSu and facing the holding surface HS) are parallel, the stage 22f is shown in FIG. 21 (a). The sample W can be easily held in the state shown. In this case, even if the interval D is not adjusted according to the movement of the stage 22 in the XY plane, the interval D changes significantly (in other words, unintentionally) due to the movement of the stage 22. There is no. On the other hand, as shown in FIG. 21B, the stage 22 may move along the XY plane while holding the sample W in a state where the surface WSu is not parallel to the injection surface 12LS. .. For example, if the front surface WSu and the back surface of the sample W are not parallel, the stage 22 may hold the sample W in the state shown in FIG. 21 (b). Alternatively, for example, if at least one of the injection surface 12LS and the holding surface HS is not parallel to the XY plane, the stage 22 may hold the sample W in a state where the surface WSu is not parallel to the injection surface 12LS. is there. In this case, if the interval D is not adjusted according to the movement of the stage 22 in the XY plane, the interval D changes significantly (in other words, unintentionally) due to the movement of the stage 22 in the XY plane. There is a possibility that it will end up. As a result, the beam irradiation device 1f and the sample W may come into contact with each other. On the other hand, when the interval D is adjusted according to the movement of the stage 22 in the XY plane (that is, the interval D is adjusted to be the desired interval D_taget), the stage 22 moves in the XY plane. However, the interval D does not change significantly (in other words, unintentionally). As a result, contact between the beam irradiation device 1f and the sample W can be prevented.
 射出面12LSに対して表面WSuが平行になるようにビーム照射装置1fとステージ22との位置関係を制御する一つの目的は、ビーム照射装置1fと試料Wとの接触を防止することにある。なぜならば、図21(b)を参照して既に説明したように、射出面12LSに対して表面WSuが平行にならない状態でステージ22が試料Wを保持すると、XY平面内でのステージ22の移動によって、ビーム照射装置1fと試料Wとが接触してしまう可能性があるからである。一方で、射出面12LSに対して表面WSuが平行になる状態でステージ22が試料Wを保持すると、XY平面内でステージ22が移動しても、ビーム照射装置1fと試料Wとが接触してしまう可能性が相対的に小さくなる。 One purpose of controlling the positional relationship between the beam irradiation device 1f and the stage 22 so that the surface WSu is parallel to the injection surface 12LS is to prevent contact between the beam irradiation device 1f and the sample W. This is because, as already described with reference to FIG. 21B, when the stage 22 holds the sample W in a state where the surface WSu is not parallel to the injection surface 12LS, the stage 22 moves in the XY plane. This is because there is a possibility that the beam irradiation device 1f and the sample W come into contact with each other. On the other hand, if the stage 22 holds the sample W in a state where the surface WSu is parallel to the injection surface 12LS, even if the stage 22 moves in the XY plane, the beam irradiation device 1f and the sample W come into contact with each other. The possibility of closing is relatively small.
 第7実施形態では、位置制御動作は、ステージ22が試料Wを保持する前に行われる第1制御動作(いわゆる、初期動作)と、第1制御動作が行われた後であって且つステージ22が試料Wを保持した後に行われる第2制御動作とを含む。この第1及び第2制御動作は、例えば、走査型電子顕微鏡SEMgが試料Wに電子ビームEBを照射して試料Wの状態を計測する前に行われるが、後述するように(例えば、第11実施形態参照)、第1及び第2制御動作の少なくとも一方が、走査型電子顕微鏡SEMgが試料Wに電子ビームEBを照射して試料Wの状態を計測している期間の少なくとも一部において行われてもよい。以下、第1制御動作及び第2制御動作を順に説明していく。 In the seventh embodiment, the position control operation is performed after the first control operation (so-called initial operation) performed before the stage 22 holds the sample W and after the first control operation is performed, and the stage 22. Includes a second control operation performed after holding the sample W. The first and second control operations are performed, for example, before the scanning electron microscope SEMg irradiates the sample W with the electron beam EB to measure the state of the sample W, but as will be described later (for example, the eleventh). (Refer to the embodiment), at least one of the first and second control operations is performed during at least a part of the period during which the scanning electron microscope SEMg irradiates the sample W with the electron beam EB and measures the state of the sample W. You may. Hereinafter, the first control operation and the second control operation will be described in order.
 (7-2-1)第1制御動作
 はじめに、図22から図28を参照しながら、ステージ22が試料Wを保持する前に行われる位置制御動作に相当する第1制御動作について説明する。図22は、ステージ22が試料Wを保持する前に行われる位置制御動作に相当する第1制御動作の流れを示すフローチャートである。図23から図26のそれぞれは、第1制御動作の一工程が行われている様子を示す断面図である。図27は、ステージ22の保持面HSの位置から推定される仮想的な試料Wvの表面WSuvの位置を示す模式図である。図28(a)は、ビーム照射装置1f及びステージ22の少なくとも一方を移動させる前のビーム照射装置1fの射出面12LS、ステージ22の保持面HS及び仮想的な試料Wvの表面WSuvの位置関係を示す模式図であり、図28(b)は、ビーム照射装置1f及びステージ22の少なくとも一方を移動させた後のビーム照射装置1fの射出面12LS、ステージ22の保持面HS及び仮想的な試料Wvの表面WSuvの位置関係を示す模式図である。
(7-2-1) First Control Operation First, the first control operation corresponding to the position control operation performed before the stage 22 holds the sample W will be described with reference to FIGS. 22 to 28. FIG. 22 is a flowchart showing the flow of the first control operation corresponding to the position control operation performed before the stage 22 holds the sample W. Each of FIGS. 23 to 26 is a cross-sectional view showing how one step of the first control operation is being performed. FIG. 27 is a schematic view showing the position of the surface WSuv of the virtual sample Wv estimated from the position of the holding surface HS of the stage 22. FIG. 28A shows the positional relationship between the injection surface 12LS of the beam irradiation device 1f and the holding surface HS of the stage 22 and the surface WSuv of the virtual sample Wv before moving at least one of the beam irradiation device 1f and the stage 22. FIG. 28 (b) is a schematic view showing the injection surface 12LS of the beam irradiation device 1f after moving at least one of the beam irradiation device 1f and the stage 22, the holding surface HS of the stage 22, and the virtual sample Wv. It is a schematic diagram which shows the positional relationship of the surface WSuv of.
 図22及び図23に示すように、まず、ビーム照射装置1fの射出面12LSに、基準部材BMが配置される(ステップS11)。基準部材BMは、基準面BSを備えている。基準面BSは、平面度が所定値以下となる平面である。第7実施形態では、「面Cの平面度」は、互いに平行になる2つの仮想的な平面で面Cを挟み込んだ場合において当該2つの仮想的な平面の間の距離を意味するものとする。所定値は、上述した所望間隔D_targetより小さい値であってもよい。例えば、所定値は、上述した所望間隔D_targetの1/10以下の値であってもよい。基準面BSは、射出面12LSよりも大きい。つまり、基準面BSは、射出面12LSの少なくとも一部を内包可能である。このような基準部材BMの一例として、基準面BSとして利用可能な相対的に高精度に研磨された面を基準面BSとして備えるガラス基板又はシリコン基板があげられる。 As shown in FIGS. 22 and 23, first, the reference member BM is arranged on the injection surface 12LS of the beam irradiation device 1f (step S11). The reference member BM includes a reference surface BS. The reference plane BS is a plane whose flatness is equal to or less than a predetermined value. In the seventh embodiment, the "flatness of the surface C" means the distance between the two virtual planes when the surface C is sandwiched between two virtual planes parallel to each other. .. The predetermined value may be a value smaller than the desired interval D_target described above. For example, the predetermined value may be a value of 1/10 or less of the desired interval D_taget described above. The reference surface BS is larger than the injection surface 12LS. That is, the reference surface BS can include at least a part of the injection surface 12LS. An example of such a reference member BM is a glass substrate or a silicon substrate provided with a relatively high-precision polished surface as a reference surface BS that can be used as a reference surface BS.
 基準部材BMは、基準面BSの一部と射出面12LSの少なくとも一部とが接触する(言い換えれば、密着する)ように、射出面12LSに配置される。つまり、基準部材BMは、上方を向いた平面である基準面BSの一部と下方を向いた平面である射出面12LSの少なくとも一部とが一致するように、射出面12LSに配置される。尚、図23は、基準面BSの一部と射出面12LSの全体とが一致するように基準部材BSが射出面12LSに配置される例を示している。平面度が所定値以下となる基準面BSが射出面12LSに接触するため、射出面12LSもまた、平面度が所定値以下となる平面であってもよい。 The reference member BM is arranged on the injection surface 12LS so that a part of the reference surface BS and at least a part of the injection surface 12LS are in contact (in other words, in close contact with each other). That is, the reference member BM is arranged on the injection surface 12LS so that a part of the reference surface BS which is a plane facing upward and at least a part of the injection surface 12LS which is a plane facing downward coincide with each other. Note that FIG. 23 shows an example in which the reference member BS is arranged on the injection surface 12LS so that a part of the reference surface BS and the entire injection surface 12LS coincide with each other. Since the reference surface BS having a flatness of a predetermined value or less comes into contact with the injection surface 12LS, the injection surface 12LS may also be a flat surface having a flatness of a predetermined value or less.
 基準面BSが上方を向いており且つ射出面12LSよりも大きいため、基準部材BMは、基準部材BMの上方に位置するビーム照射装置1fに固定された距離センサ81gからの計測光MLが基準面BSに照射可能となるように、射出面12LSに配置される。逆に言えば、基準部材BMは、基準部材BMが射出面12LSに配置された状態で距離センサ81gからの計測光MLが基準面BSに照射可能となるようなサイズを有している。 Since the reference surface BS faces upward and is larger than the injection surface 12LS, the reference member BM has the measurement light ML from the distance sensor 81g fixed to the beam irradiation device 1f located above the reference member BM as the reference surface. It is arranged on the injection surface 12LS so that the BS can be irradiated. Conversely, the reference member BM has a size such that the measurement light ML from the distance sensor 81 g can irradiate the reference surface BS with the reference member BM arranged on the injection surface 12LS.
 その後、図22及び図24に示すように、計測装置8gは、基準部材BMの基準面BSの位置を計測する(ステップS12)。具体的には、図24に示すように、距離センサ81gは、基準面BSに対して計測光MLを照射し、基準面BSからの計測光MLの反射光を検出する。このため、距離センサ81gは、射出面12LSに配置された基準部材BMの基準面BSに対して計測光MLを照射可能な位置に配置される。距離センサ81gの計測結果は、制御装置4に出力される。制御装置4は、各距離センサ81gの計測結果に基づいて、各距離センサ81gと基準面BSのうち各距離センサ81gからの計測光MLが照射された面部分との間の距離を特定する。計測装置8gが少なくとも3つの距離センサ81gを備えているため、制御装置4は、少なくとも、第1の距離センサ81gと基準面BSの第1の面部分までの間の第1の距離、第2の距離センサ81gと基準面BSの第2の面部分との間の第2の距離及び第3の距離センサ81gと基準面BSの第3の面部分との間の第3の距離を特定する。その結果、制御装置4は、基準面BSの位置(つまり、計測座標空間内での、基準面BSの各部分の位置)を特定することができる。言い換えれば、制御装置4は、計測座標空間内での基準面BSを示す方程式を特定することができる。 After that, as shown in FIGS. 22 and 24, the measuring device 8g measures the position of the reference surface BS of the reference member BM (step S12). Specifically, as shown in FIG. 24, the distance sensor 81g irradiates the reference surface BS with the measurement light ML and detects the reflected light of the measurement light ML from the reference surface BS. Therefore, the distance sensor 81g is arranged at a position where the measurement light ML can be irradiated to the reference surface BS of the reference member BM arranged on the injection surface 12LS. The measurement result of the distance sensor 81 g is output to the control device 4. The control device 4 specifies the distance between each distance sensor 81g and the surface portion of the reference surface BS irradiated with the measurement light ML from each distance sensor 81g based on the measurement result of each distance sensor 81g. Since the measuring device 8g includes at least three distance sensors 81g, the control device 4 has at least a first distance, a second distance, between the first distance sensor 81g and the first surface portion of the reference plane BS. The second distance between the distance sensor 81g and the second surface portion of the reference surface BS and the third distance between the third distance sensor 81g and the third surface portion of the reference surface BS are specified. .. As a result, the control device 4 can specify the position of the reference plane BS (that is, the position of each part of the reference plane BS in the measurement coordinate space). In other words, the control device 4 can specify an equation indicating the reference plane BS in the measurement coordinate space.
 その後、図22に示すように、制御装置4は、ビーム照射装置1の射出面12LSの位置を推定する(ステップS13)。具体的には、上述したように、基準部材BMは、基準面BSの一部と射出面12LSの少なくとも一部とが接触するように、射出面12LSに配置される。このため、基準面BSの位置を計測する動作は、射出面12LSの位置を計測する動作と実質的に等価とみなせる。従って、制御装置4は、ステップS12で特定した基準面BSの位置を、射出面12LSの位置として利用する。 After that, as shown in FIG. 22, the control device 4 estimates the position of the injection surface 12LS of the beam irradiation device 1 (step S13). Specifically, as described above, the reference member BM is arranged on the injection surface 12LS so that a part of the reference surface BS and at least a part of the injection surface 12LS are in contact with each other. Therefore, the operation of measuring the position of the reference surface BS can be regarded as substantially equivalent to the operation of measuring the position of the injection surface 12LS. Therefore, the control device 4 uses the position of the reference surface BS specified in step S12 as the position of the injection surface 12LS.
 但し、計測装置8gが少なくとも3つの距離センサ81gを含む場合には、ステップS12において特定される基準面BSの位置は、実質的には、基準面BSを内包する仮想的な平面の位置(つまり、基準面BSを内包する仮想的な平面を、計測座標空間内で示す方程式)に相当する。つまり、ステップS13において特定される射出面12LSの位置は、実質的には、射出面12LSを内包する仮想的な平面の位置(つまり、射出面12LSを内包する仮想的な平面を、計測座標空間内で示す方程式)に相当する。しかしながら、位置制御動作の目的が、射出面12LSと表面WSuとの間の間隔Dを所望間隔D_targetにし且つ射出面12LSと表面WSuとを平行にすることであることを考慮すれば、ステップS12では、基準面BSを内包する仮想的な平面の位置が特定されるだけでも十分であり、ステップS13では、射出面12LSを内包する仮想的な平面の位置が特定されるだけでも十分である。なぜならば、射出面12LSを内包する仮想的な平面の位置が特定されれば、制御装置4は、間隔Dを特定可能であり、且つ、表面WSuに対する射出面12LSの平行度(つまり、表面WSu及び射出面12LSのいずれかの一方であるデータム平面に対する表面WSu及び射出面12LSのいずれかの他方のずれ量)を特定可能であるからである。 However, when the measuring device 8g includes at least three distance sensors 81g, the position of the reference plane BS specified in step S12 is substantially the position of the virtual plane including the reference plane BS (that is,). , Corresponds to the equation) showing the virtual plane including the reference plane BS in the measurement coordinate space. That is, the position of the injection surface 12LS specified in step S13 is substantially the position of the virtual plane including the injection surface 12LS (that is, the position of the virtual plane including the injection surface 12LS) in the measurement coordinate space. Corresponds to the equation shown in. However, considering that the purpose of the position control operation is to make the distance D between the injection surface 12LS and the surface WSu a desired distance D_taget and to make the injection surface 12LS and the surface WSu parallel, in step S12. It is sufficient to specify the position of the virtual plane including the reference plane BS, and in step S13, it is sufficient to specify the position of the virtual plane containing the injection surface 12LS. This is because if the position of the virtual plane including the injection surface 12LS is specified, the control device 4 can specify the interval D and the parallelism of the injection surface 12LS with respect to the surface WSu (that is, the surface WSu). This is because it is possible to specify the amount of deviation of either the surface WSu and the injection surface 12LS with respect to the datum plane which is one of the injection surfaces 12LS).
 このように、射出面12LSと計測装置8gとの位置関係によれば計測装置8gが射出面12LSの位置を直接的に計測することが困難である場合においても、走査型電子顕微鏡SEMgは、基準部材BMを用いて射出面12LSの位置を特定することができる。図20に示す走査型電子顕微鏡SEMgでは、距離センサ81gが計測光MLを射出面12LSに直接的に照射することが困難であるため、計測装置8gが射出面12LSの位置を直接的に計測することが困難である。このため、走査型電子顕微鏡SEMgは、基準部材BMを用いて射出面12LSの位置を特定している。 As described above, even when it is difficult for the measuring device 8g to directly measure the position of the injection surface 12LS according to the positional relationship between the injection surface 12LS and the measuring device 8g, the scanning electron microscope SEMg is a reference. The position of the injection surface 12LS can be specified by using the member BM. In the scanning electron microscope SEMg shown in FIG. 20, since it is difficult for the distance sensor 81 g to directly irradiate the ejection surface 12LS with the measurement light ML, the measuring device 8 g directly measures the position of the ejection surface 12LS. Is difficult. Therefore, in the scanning electron microscope SEMg, the position of the injection surface 12LS is specified by using the reference member BM.
 その後、図23に示すように、射出面12LSに配置されている基準部材BMが、射出面12LSから取り外される(ステップS14)。 After that, as shown in FIG. 23, the reference member BM arranged on the injection surface 12LS is removed from the injection surface 12LS (step S14).
 その後(或いは、ステップS11からステップS14までの処理に先立って)、図22及び図25に示すように、計測装置8gは、ステージ22の保持面HSの位置を計測する(ステップS15)。具体的には、図25に示すように、距離センサ81gは、保持面HSに対して計測光MLを照射し、保持面HSからの計測光MLの反射光を検出する。このため、距離センサ81gは、保持面HSに対して計測光MLを照射可能な位置に配置される。距離センサ81gの計測結果は、制御装置4に出力される。制御装置4は、各距離センサ81gの計測結果に基づいて、各距離センサ81gと保持面HSのうち各距離センサ81gからの計測光MLが照射された面部分との間の距離を特定する。その結果、制御装置4は、上述したステップS12で基準面BSの位置を特定する方法と同様の方法で、保持面HSの位置(つまり、計測座標空間内での、保持面HSの各部分の位置)を特定することができる。言い換えれば、制御装置4は、計測座標空間内での保持面HSを示す方程式を特定することができる。尚、計測装置8gがビーム照射装置1fに対して固定された位置に配置されているため、計測装置8gが保持面HSの位置を計測する際のビーム照射装置1fと計測装置8gとの位置関係は、計測装置8gが射出面12LSの位置を計測する際のビーム照射装置1fと計測装置8gとの位置関係と同じになる。 After that (or prior to the processing from step S11 to step S14), as shown in FIGS. 22 and 25, the measuring device 8g measures the position of the holding surface HS of the stage 22 (step S15). Specifically, as shown in FIG. 25, the distance sensor 81g irradiates the holding surface HS with the measurement light ML and detects the reflected light of the measurement light ML from the holding surface HS. Therefore, the distance sensor 81g is arranged at a position where the measurement light ML can be irradiated to the holding surface HS. The measurement result of the distance sensor 81 g is output to the control device 4. The control device 4 specifies the distance between each distance sensor 81g and the surface portion of the holding surface HS irradiated with the measurement light ML from each distance sensor 81g, based on the measurement result of each distance sensor 81g. As a result, the control device 4 performs the position of the holding surface HS (that is, each part of the holding surface HS in the measurement coordinate space) in the same manner as the method of specifying the position of the reference surface BS in step S12 described above. The position) can be specified. In other words, the control device 4 can specify an equation indicating the holding surface HS in the measurement coordinate space. Since the measuring device 8g is arranged at a fixed position with respect to the beam irradiating device 1f, the positional relationship between the beam irradiating device 1f and the measuring device 8g when the measuring device 8g measures the position of the holding surface HS. Is the same as the positional relationship between the beam irradiation device 1f and the measuring device 8g when the measuring device 8g measures the position of the injection surface 12LS.
 その後、図22及び図26に示すように、制御装置4は、ステージ22が仮想的な試料Wvを保持していると仮定した上で、仮想的な試料Wvの表面WSuvの位置を推定する(ステップS16)。仮想的な試料Wvは、例えば、理想的な試料W(言い換えれば、規格に合致した試料W)と同一形状且つ同一サイズの試料である。この場合、表面WSuが平面であるため、仮想的な試料Wvの表面WSuvもまた平面である。更に、仮想的な試料Wvの表面WSuvは、例えば、保持面HSと平行である。このため、図26に示すように、表面WSuvは、保持面HSをZ軸方向(つまり、仮想的な試料Wvの厚み方向)に沿ってシフトさせることで得られる平面に相当する。このため、制御装置4は、図27に示すように、ステップS15で特定した保持面HSの位置を、仮想的な試料Wvの厚さ(つまり、Z軸方向のサイズ)Whvに相当する距離だけZ軸方向にシフトさせることで得られる仮想的な平面の位置を特定すると共に、当該特定した位置を、表面WSuvの位置として取り扱う。 After that, as shown in FIGS. 22 and 26, the control device 4 estimates the position of the surface WSuv of the virtual sample Wv on the assumption that the stage 22 holds the virtual sample Wv (as shown in FIGS. 22 and 26). Step S16). The virtual sample Wv is, for example, a sample having the same shape and size as the ideal sample W (in other words, the sample W conforming to the standard). In this case, since the surface WSu is flat, the surface WSuv of the virtual sample Wv is also flat. Further, the surface WSuv of the virtual sample Wv is, for example, parallel to the holding surface HS. Therefore, as shown in FIG. 26, the surface WSuv corresponds to a plane obtained by shifting the holding surface HS along the Z-axis direction (that is, the thickness direction of the virtual sample Wv). Therefore, as shown in FIG. 27, the control device 4 sets the position of the holding surface HS specified in step S15 by a distance corresponding to the thickness of the virtual sample Wv (that is, the size in the Z-axis direction) Whv. The position of the virtual plane obtained by shifting in the Z-axis direction is specified, and the specified position is treated as the position of the surface WSuv.
 但し、計測装置8gが少なくとも3つの距離センサ81gを含む場合には、ステップS15において特定される保持面HSの位置は、実質的には、保持面HSを内含する仮想的な平面の位置(つまり、保持面HSを内含する仮想的な平面を、計測座標空間内で示す方程式)に相当する。つまり、ステップS16において特定される仮想的な試料Wvの表面WSuvの位置は、実質的には、表面WSuvを内含する仮想的な平面の位置(つまり、表面WSuvを内含する仮想的な平面を、計測座標空間内で示す方程式)に相当する。しかしながら、位置制御動作の目的が、射出面12LSと表面WSuとの間の間隔Dを所望間隔D_targetにし且つ射出面12LSと表面WSuとを平行にすることであることを考慮すれば、ステップS15では、保持面HSを内含する仮想的な平面の位置が特定されるだけでも十分であり、ステップS16では、表面WSuvを内含する仮想的な平面の位置が特定されるだけでも十分である。なぜならば、表面WSuvを内含する仮想的な平面の位置が特定されれば、制御装置4は、表面WSuvと射出面12LSとの間の間隔D’を特定可能であり、且つ、表面WSuvと射出面12LSとの平行度(つまり、表面WSuv及び射出面12LSのいずれかの一方であるデータム平面に対する表面WSuv及び射出面12LSのいずれかの他方のずれ量)を特定可能であるからである。 However, when the measuring device 8g includes at least three distance sensors 81g, the position of the holding surface HS specified in step S15 is substantially the position of the virtual plane including the holding surface HS ( That is, it corresponds to an equation) indicating a virtual plane including the holding surface HS in the measurement coordinate space. That is, the position of the surface WSuv of the virtual sample Wv specified in step S16 is substantially the position of the virtual plane containing the surface WSuv (that is, the virtual plane containing the surface WSuv). Corresponds to the equation shown in the measurement coordinate space). However, considering that the purpose of the position control operation is to make the distance D between the injection surface 12LS and the surface WSu a desired distance D_taget and to make the injection surface 12LS and the surface WSu parallel, in step S15. It is sufficient to specify the position of the virtual plane including the holding surface HS, and in step S16, it is sufficient to specify the position of the virtual plane containing the surface WSuv. This is because if the position of the virtual plane containing the surface WSuv is specified, the control device 4 can specify the distance D'between the surface WSuv and the injection surface 12LS, and the surface WSuv and the surface WSuv. This is because the parallelism with the injection surface 12LS (that is, the amount of deviation of either the surface WSuv or the injection surface 12LS with respect to the datum plane which is one of the surface WSuv and the injection surface 12LS) can be specified.
 その後、図22に示すように、制御装置4は、表面WSuvと射出面12LSとの間の間隔D’が所望間隔D_targetとなり、且つ、射出面12LSに対して表面WSuvが平行になるように、ビーム照射装置1fとステージ22との位置関係を制御する(ステップS17)。具体的には、制御装置4は、ステップS13で特定した射出面12LSの位置及びステップS16で特定した表面WSuvの位置から、計測座標空間内における射出面12LSと表面WSuvとの間の位置関係を特定することができる。つまり、制御装置4は、表面WSuvと射出面12LSとの間の間隔D’、及び、射出面12LSと表面WSuvとの平行度を特定することができる。その結果、図28(a)に示すように間隔D’が所望間隔D_targetでない場合には、図28(b)に示すように、制御装置4は、間隔D’が所望間隔D_targetとなるように(つまり、所望間隔D_targetに近づくように)、ステージ駆動系23及び位置調整系14gの少なくとも一方を制御してステージ22とビーム照射装置1fとの位置関係を制御する。更に、図28(a)に示すように射出面12LSと表面WSuvとが平行でない場合には、図28(b)に示すように、制御装置4は、射出面12LSと表面WSuvとが平行になるように(つまり、平行状態に近づくように)、ステージ駆動系23及び位置調整系14gの少なくとも一方を制御してステージ22とビーム照射装置1fとの位置関係を制御する。このとき、制御装置4は、射出面12LSと表面WSuvとが(更には、保持面HS)とがXY平面に平行になるように、ステージ22とビーム照射装置1fとの位置関係を制御してもよい。 After that, as shown in FIG. 22, in the control device 4, the distance D'between the surface WSuv and the injection surface 12LS becomes a desired distance D_stage, and the surface WSuv is parallel to the injection surface 12LS. The positional relationship between the beam irradiation device 1f and the stage 22 is controlled (step S17). Specifically, the control device 4 determines the positional relationship between the injection surface 12LS and the surface WSuv in the measurement coordinate space from the position of the injection surface 12LS specified in step S13 and the position of the surface WSuv specified in step S16. Can be identified. That is, the control device 4 can specify the distance D'between the surface WSuv and the injection surface 12LS and the parallelism between the injection surface 12LS and the surface WSuv. As a result, when the interval D'is not the desired interval D_stage as shown in FIG. 28 (a), the control device 4 sets the interval D'to be the desired interval D_stage as shown in FIG. 28 (b). (That is, at least one of the stage drive system 23 and the position adjustment system 14 g is controlled so as to approach the desired interval D_taget) to control the positional relationship between the stage 22 and the beam irradiation device 1f. Further, when the injection surface 12LS and the surface WSuv are not parallel as shown in FIG. 28 (a), in the control device 4, the injection surface 12LS and the surface WSuv are parallel as shown in FIG. 28 (b). (That is, so as to approach the parallel state), at least one of the stage drive system 23 and the position adjustment system 14g is controlled to control the positional relationship between the stage 22 and the beam irradiation device 1f. At this time, the control device 4 controls the positional relationship between the stage 22 and the beam irradiation device 1f so that the injection surface 12LS and the surface WSuv (furthermore, the holding surface HS) are parallel to the XY plane. May be good.
 制御装置4がステージ22とビーム照射装置1fとの位置関係を制御している期間の少なくとも一部において、計測装置8gが保持面HSの位置を計測してもよい。この場合、制御装置4は、計測装置8gの計測結果に基づいて表面WSuvの位置を特定すると共に、特定した表面WSuvの位置に基づいて、間隔D’が所望間隔D_targetになったか否か、及び、射出面12LSに対して表面WSuvが平行になったか否かを判定してもよい。尚、この判定を行うためには、制御装置4は、射出面12LSの位置も特定する必要がある。しかしながら、上述したように計測装置8gがビーム照射装置1fに対して固定された位置に配置されているため、制御装置4がステージ22とビーム照射装置1fとの位置関係を制御したとしても、計測装置8gを基準とする計測座標空間内でのビーム照射装置1fの位置が変わることはない。このため、制御装置4は、計測装置8gにビーム照射装置1fの射出面12LSの位置を再度計測させることなく、計測座標空間内での射出面12LSの位置を特定することができる。 The measuring device 8g may measure the position of the holding surface HS during at least a part of the period in which the control device 4 controls the positional relationship between the stage 22 and the beam irradiation device 1f. In this case, the control device 4 specifies the position of the surface WSuv based on the measurement result of the measuring device 8g, and whether or not the interval D'is the desired interval D_target based on the specified position of the surface WSuv, and , It may be determined whether or not the surface WSuv is parallel to the injection surface 12LS. In order to make this determination, the control device 4 also needs to specify the position of the injection surface 12LS. However, since the measuring device 8g is arranged at a fixed position with respect to the beam irradiating device 1f as described above, even if the control device 4 controls the positional relationship between the stage 22 and the beam irradiating device 1f, the measurement is performed. The position of the beam irradiation device 1f in the measurement coordinate space based on the device 8g does not change. Therefore, the control device 4 can specify the position of the injection surface 12LS in the measurement coordinate space without having the measuring device 8g measure the position of the injection surface 12LS of the beam irradiation device 1f again.
 以上説明した第1制御動作により、間隔D’が所望間隔D_targetとなり、且つ、射出面12LSに対して表面WSuvが平行になる(更には、射出面12LSに対して保持面HSが平行になる)。その結果、ステージ22が実際に保持する試料Wが、仮想的な試料Wvと同一形状で且つ同一サイズの試料である(つまり、理想的な試料である)場合には、ステージ22は、間隔Dが所望間隔D_targetとなり、且つ、射出面12LSに対して表面WSuが平行になる状態で試料Wを保持することができる。一方で、ステージ22が実際に保持する試料Wが、仮想的な試料Wvと同一形状でない及び/又は同一サイズでない試料である場合には、ステージ22は、間隔Dが所望間隔D_targetとなり、且つ、射出面12LSに対して表面WSuが平行になる状態で試料Wを保持することができるとは限らない。そこで、制御装置4は、以下に説明する第2制御動作を行って、ステージ22が試料Wを実際に保持した後に、間隔Dが所望間隔D_targetとなり、且つ、射出面12LSに対して表面WSuvが平行になるように、ステージ22とビーム照射装置1fとの位置関係を制御する。 By the first control operation described above, the interval D'becomes the desired interval D_taget, and the surface WSuv becomes parallel to the injection surface 12LS (furthermore, the holding surface HS becomes parallel to the injection surface 12LS). .. As a result, when the sample W actually held by the stage 22 is a sample having the same shape and the same size as the virtual sample Wv (that is, an ideal sample), the stage 22 has an interval D. Is the desired interval D_stage, and the sample W can be held in a state where the surface WSu is parallel to the injection surface 12LS. On the other hand, when the sample W actually held by the stage 22 is a sample that does not have the same shape and / or the same size as the virtual sample Wv, the interval D of the stage 22 is the desired interval D_target, and It is not always possible to hold the sample W in a state where the surface WSu is parallel to the injection surface 12LS. Therefore, the control device 4 performs the second control operation described below, and after the stage 22 actually holds the sample W, the interval D becomes the desired interval D_taget, and the surface WSuv is set with respect to the injection surface 12LS. The positional relationship between the stage 22 and the beam irradiation device 1f is controlled so as to be parallel.
 尚、第1制御動作が完了するまでは、間隔D’が所望間隔D_targetとなっていない、及び/又は、射出面12LSに対して表面WSuvが平行になっていない可能性がある。このため、第1制御動作が行われている期間の少なくとも一部においてステージ22がXY平面に沿って(つまり、X軸及びY軸の少なくとも一方に沿って)移動すると、図21(b)に示すように、ビーム照射装置1fとステージ22とが接触する可能性がある。このため、第1制御動作が行われている期間中は、制御装置4は、XY平面に沿ってステージ22を移動させない。但し、必要に応じて、第1制御動作が行われている期間の少なくとも一部において、制御装置4は、XY平面に沿ってステージ22を移動させてもよい。 It is possible that the interval D'is not the desired interval D_taget and / or the surface WSuv is not parallel to the injection surface 12LS until the first control operation is completed. Therefore, when the stage 22 moves along the XY plane (that is, along at least one of the X-axis and the Y-axis) during at least a part of the period during which the first control operation is performed, FIG. 21 (b) shows. As shown, the beam irradiator 1f and the stage 22 may come into contact with each other. Therefore, the control device 4 does not move the stage 22 along the XY plane during the period during which the first control operation is performed. However, if necessary, the control device 4 may move the stage 22 along the XY plane during at least a part of the period during which the first control operation is performed.
 (7-2-2)第2制御動作
 続いて、図29から図31(b)を参照しながら、ステージ22が試料Wを保持した後に行われる位置制御動作に相当する第2制御動作について説明する。図29は、ステージ22が試料Wを保持した後に行われる位置制御動作に相当する第2制御動作の流れを示すフローチャートである。図30は、第2制御動作の一工程が行われている様子を示す断面図である。図31(a)は、ビーム照射装置1f及びステージ22の少なくとも一方を移動させる前のビーム照射装置1fの射出面12LS、ステージ22の保持面HS及び試料Wの表面WSuの位置関係を示す模式図であり、図31(b)は、ビーム照射装置1f及びステージ22の少なくとも一方を移動させた後のビーム照射装置1の射出面12LS、ステージ22の保持面HS及び試料Wの表面WSuの位置関係を示す模式図である。
(7-2-2) Second Control Operation Subsequently, with reference to FIGS. 29 to 31 (b), a second control operation corresponding to the position control operation performed after the stage 22 holds the sample W will be described. To do. FIG. 29 is a flowchart showing the flow of the second control operation corresponding to the position control operation performed after the stage 22 holds the sample W. FIG. 30 is a cross-sectional view showing how one step of the second control operation is being performed. FIG. 31A is a schematic view showing the positional relationship between the injection surface 12LS of the beam irradiation device 1f and the holding surface HS of the stage 22 and the surface WSu of the sample W before moving at least one of the beam irradiation device 1f and the stage 22. 31 (b) shows the positional relationship between the injection surface 12LS of the beam irradiation device 1 after moving at least one of the beam irradiation device 1f and the stage 22, the holding surface HS of the stage 22, and the surface WSu of the sample W. It is a schematic diagram which shows.
 図29に示すように、まずは、ステージ22が試料Wを保持する(ステップS21)。その後、走査型電子顕微鏡SEMgが試料Wに電子ビームEBを照射して試料Wの状態の計測を開始する前に、図29及び図30に示すように、計測装置8gは、ステージ22が保持した試料Wの表面WSuの位置を計測する(ステップS22)。具体的には、図30に示すように、距離センサ81gは、表面WSuに対して計測光MLを照射し、表面WSuからの計測光MLの反射光を検出する。このため、距離センサ81gは、表面WSuに対して計測光MLを照射可能な位置に配置される。距離センサ81gの計測結果は、制御装置4に出力される。制御装置4は、各距離センサ81gの計測結果に基づいて、各距離センサ81gと表面WSuのうち各距離センサ81gからの計測光MLが照射された面部分との間の距離を特定する。その結果、制御装置4は、上述した図22のステップS12で基準面BSの位置を特定する方法と同様の方法で、表面WSuの位置(つまり、計測座標空間内での、表面WSuの各部分の位置)を特定することができる。言い換えれば、制御装置4は、計測座標空間内での表面WSuを示す方程式を特定することができる。 As shown in FIG. 29, first, the stage 22 holds the sample W (step S21). Then, as shown in FIGS. 29 and 30, the measuring device 8g was held by the stage 22 before the scanning electron microscope SEMg irradiated the sample W with the electron beam EB and started measuring the state of the sample W. The position of the surface WSu of the sample W is measured (step S22). Specifically, as shown in FIG. 30, the distance sensor 81g irradiates the surface WSu with the measurement light ML and detects the reflected light of the measurement light ML from the surface WSu. Therefore, the distance sensor 81g is arranged at a position where the measurement light ML can be irradiated to the surface WSu. The measurement result of the distance sensor 81 g is output to the control device 4. The control device 4 specifies the distance between each distance sensor 81g and the surface portion of the surface WSu irradiated with the measurement light ML from each distance sensor 81g, based on the measurement result of each distance sensor 81g. As a result, the control device 4 performs the position of the surface WSu (that is, each part of the surface WSu in the measurement coordinate space) in the same manner as the method of specifying the position of the reference surface BS in step S12 of FIG. 22 described above. Position) can be specified. In other words, the control device 4 can specify an equation indicating the surface WSu in the measurement coordinate space.
 その後、図29に示すように、制御装置4は、表面WSuと射出面12LSとの間の間隔Dが所望間隔D_targetとなり、且つ、射出面12LSに対して表面WSuが平行になるように、ビーム照射装置1fとステージ22との位置関係を制御する(ステップS23)。具体的には、上述したように計測装置8gがビーム照射装置1fに対して固定された位置に配置されているため、制御装置4は、計測装置8gにビーム照射装置1fの射出面12LSの位置を再度計測させることなく、計測座標空間内での射出面12LSの位置を特定することができる。つまり、制御装置4は、第1制御動作で特定した射出面12LSの位置を、そのまま第2制御動作においても利用可能である。従って、制御装置4は、第1制御動作で特定した射出面12LSの位置及びステップS22で特定した表面WSuの位置から、計測座標空間内における射出面12LSと表面WSuとの間の位置関係を特定することができる。つまり、制御装置4は、表面WSuと射出面12LSとの間の間隔D、及び、射出面12LSと表面WSuとの平行度を特定することができる。その結果、図31(a)に示すように間隔Dが所望間隔D_targetでない場合には、図31(b)に示すように、制御装置4は、間隔Dが所望間隔D_targetとなるように(つまり、所望間隔D_targetに近づくように)、ステージ駆動系23及び位置調整系14gの少なくとも一方を制御してステージ22とビーム照射装置1fとの位置関係を制御する。更に、図31(a)に示すように射出面12LSと表面WSuとが平行でない場合には、図31(b)に示すように、制御装置4は、射出面12LSと表面WSuとが平行になるように(つまり、平行状態に近づくように)、ステージ駆動系23及び位置調整系14gの少なくとも一方を制御してステージ22とビーム照射装置1fとの位置関係を制御する。このとき、制御装置4は、射出面12LSと表面WSuとがXY平面に平行になるように、ステージ22とビーム照射装置1fとの位置関係を制御してもよい。 After that, as shown in FIG. 29, the control device 4 makes a beam so that the distance D between the surface WSu and the injection surface 12LS becomes a desired distance D_stage and the surface WSu is parallel to the injection surface 12LS. The positional relationship between the irradiation device 1f and the stage 22 is controlled (step S23). Specifically, since the measuring device 8g is arranged at a fixed position with respect to the beam irradiating device 1f as described above, the control device 4 is located on the measuring device 8g at the position of the injection surface 12LS of the beam irradiating device 1f. The position of the injection surface 12LS in the measurement coordinate space can be specified without having to measure again. That is, the control device 4 can use the position of the injection surface 12LS specified in the first control operation as it is in the second control operation. Therefore, the control device 4 specifies the positional relationship between the injection surface 12LS and the surface WSu in the measurement coordinate space from the position of the injection surface 12LS specified in the first control operation and the position of the surface WSu specified in step S22. can do. That is, the control device 4 can specify the distance D between the surface WSu and the injection surface 12LS and the parallelism between the injection surface 12LS and the surface WSu. As a result, when the interval D is not the desired interval D_stage as shown in FIG. 31 (a), the control device 4 sets the interval D to the desired interval D_stage (that is, as shown in FIG. 31 (b)). , At least one of the stage drive system 23 and the position adjustment system 14 g is controlled so as to approach the desired interval D_taget) to control the positional relationship between the stage 22 and the beam irradiation device 1f. Further, when the injection surface 12LS and the surface WSu are not parallel as shown in FIG. 31A, in the control device 4, the injection surface 12LS and the surface WSu are parallel as shown in FIG. 31B. (That is, so as to approach the parallel state), at least one of the stage drive system 23 and the position adjustment system 14g is controlled to control the positional relationship between the stage 22 and the beam irradiation device 1f. At this time, the control device 4 may control the positional relationship between the stage 22 and the beam irradiation device 1f so that the injection surface 12LS and the surface WSu are parallel to the XY plane.
 制御装置4がステージ22とビーム照射装置1fとの位置関係を制御している期間の少なくとも一部において、計測装置8gが表面WSuの位置を計測してもよい。この場合、制御装置4は、計測装置8gの計測結果に基づいて、間隔Dが所望間隔D_targetとなったか否か、及び、射出面12LSに対して表面WSuが平行になったか否かを判定してもよい。尚、上述した判定を行うためには、制御装置4は、射出面12LSの位置も特定する必要があるが、計測装置8gに射出面12LSの位置を再度計測させることなく制御装置4が計測座標空間内での射出面12LSの位置を特定することができるのは、既に上述したとおりである。 The measuring device 8g may measure the position of the surface WSu during at least a part of the period in which the control device 4 controls the positional relationship between the stage 22 and the beam irradiation device 1f. In this case, the control device 4 determines whether or not the interval D is the desired interval D_taget and whether or not the surface WSu is parallel to the injection surface 12LS based on the measurement result of the measuring device 8g. You may. In order to make the above-mentioned determination, the control device 4 also needs to specify the position of the injection surface 12LS, but the control device 4 does not have the measuring device 8g measure the position of the injection surface 12LS again. As described above, the position of the injection surface 12LS in the space can be specified.
 以上説明した第2制御動作により、ステージ22が試料Wを保持した後において、間隔Dが所望間隔D_targetとなり、且つ、射出面12LSに対して表面WSuが平行になる。その結果、ステージ22が実際に保持する試料Wが、仮想的な試料Wvと同一形状でない及び/又は同一サイズでない試料である場合であっても、ステージ22は、間隔Dが所望間隔D_targetとなり、且つ、射出面12LSに対して表面WSuが平行になる状態で試料Wを保持することができる。以降、間隔Dが所望間隔D_targetとなり、且つ、射出面12LSに対して表面WSuが平行になる状態で、走査型電子顕微鏡SEMgは、XY平面に沿ってステージ22を移動させながら(つまり、試料Wを移動させながら)試料Wに電子ビームEBを照射して、試料Wの状態を計測することができる。その結果、走査型電子顕微鏡SEMgは、ビーム照射装置1fと試料Wとの間に形成される真空領域VSPの真空度を適切に維持し且つビーム照射装置1fと試料Wとの接触を防止しながら、試料Wの状態を計測することができる。 By the second control operation described above, after the stage 22 holds the sample W, the interval D becomes the desired interval D_taget, and the surface WSu becomes parallel to the injection surface 12LS. As a result, even when the sample W actually held by the stage 22 is a sample that does not have the same shape and / or the same size as the virtual sample Wv, the interval D of the stage 22 becomes the desired interval D_taget. Moreover, the sample W can be held in a state where the surface WSu is parallel to the injection surface 12LS. After that, the scanning electron microscope SEMg moves the stage 22 along the XY plane (that is, the sample W) in a state where the interval D becomes the desired interval D_target and the surface WSu is parallel to the injection surface 12LS. The state of the sample W can be measured by irradiating the sample W with the electron beam EB (while moving the sample W). As a result, the scanning electron microscope SEMg appropriately maintains the degree of vacuum of the vacuum region VSP formed between the beam irradiation device 1f and the sample W, and prevents contact between the beam irradiation device 1f and the sample W. , The state of the sample W can be measured.
 尚、第2制御動作が完了するまでは、間隔Dが所望間隔D_targetとなっていない、及び/又は、射出面12LSに対して表面WSuが平行になっていない可能性がある。このため、第2制御動作が行われている期間の少なくとも一部においてステージ22がXY平面に沿って(つまり、X軸及びY軸の少なくとも一方に沿って)移動すると、図21(b)に示すように、ビーム照射装置1fと試料Wとが接触する可能性がある。このため、第2制御動作が行われている期間中は、制御装置4は、XY平面に沿ってステージ22を移動させない。但し、必要に応じて、第2制御動作が行われている期間の少なくとも一部において、制御装置4は、XY平面に沿ってステージ22を移動させてもよい。 It is possible that the interval D is not the desired interval D_taget and / or the surface WSu is not parallel to the injection surface 12LS until the second control operation is completed. Therefore, when the stage 22 moves along the XY plane (that is, along at least one of the X-axis and the Y-axis) during at least a part of the period during which the second control operation is performed, FIG. 21B shows. As shown, there is a possibility that the beam irradiation device 1f and the sample W come into contact with each other. Therefore, the control device 4 does not move the stage 22 along the XY plane during the period during which the second control operation is performed. However, if necessary, the control device 4 may move the stage 22 along the XY plane during at least a part of the period during which the second control operation is performed.
 また、上述した説明では、計測装置8gが射出面12LSの位置を直接的に計測することが困難であることを理由に、走査型電子顕微鏡SEMgは、基準部材BMを用いて射出面12LSの位置を特定している。しかしながら、計測装置8gが射出面12LSの位置を直接的に計測することが可能である(例えば、距離センサ81gが射出面12LSに計測光MLを照射可能である)場合には、走査型電子顕微鏡SEMgは、基準部材BMを用いることなく、射出面12LSの位置を特定してもよい。 Further, in the above description, since it is difficult for the measuring device 8g to directly measure the position of the injection surface 12LS, the scanning electron microscope SEMg uses the reference member BM to measure the position of the injection surface 12LS. Is specified. However, when the measuring device 8g can directly measure the position of the injection surface 12LS (for example, the distance sensor 81g can irradiate the injection surface 12LS with the measurement light ML), a scanning electron microscope. The SEMg may specify the position of the injection surface 12LS without using the reference member BM.
 更には、上述した説明では、計測装置8gが保持面HS及び表面WSuの位置を直接的に計測することができる(例えば、距離センサ81gが保持面HS及び表面WSuに計測光MLを直接的に照射可能である)ことを理由に、走査型電子顕微鏡SEMgは、基準部材BMを用いることなく保持面HS及び表面WSuの位置を特定している。しかしながら、計測装置8gが保持面HS及び表面WSuの少なくとも一方の位置を直接的に計測することが困難である場合には、走査型電子顕微鏡SEMgは、基準部材BMを用いて、保持面HS及び表面WSuの少なくとも一方の位置を特定してもよい。具体的には、例えば、走査型電子顕微鏡SEMgは、保持面HSの少なくとも一部と基準部材BMの基準面BSの少なくとも一部とが接触するように保持面HSに基準部材BMを配置し、基準面BSの位置を計測し、計測した基準面BSの位置を保持面HSの位置として取り扱ってもよい。この場合、基準面BSは、保持面HSの少なくとも一部を内包可能な面であってもよい。えば、走査型電子顕微鏡SEMgは、表面WSuの少なくとも一部と基準部材BMの基準面BSの少なくとも一部とが接触するように表面WSuに基準部材BMを配置し、基準面BSの位置を計測し、計測した基準面BSの位置を表面WSuの位置として取り扱ってもよい。この場合、基準面BSは、表面WSuの少なくとも一部を内包可能な面であってもよい。尚、保持面HS及び表面WSuの位置を計測するために用いられる基準部材BMは、射出面12LSの位置を計測するために用いられる基準部材BMと同一であってもよいし、異なっていてもよい。 Further, in the above description, the measuring device 8g can directly measure the positions of the holding surface HS and the surface WSu (for example, the distance sensor 81g directly measures the measurement light ML on the holding surface HS and the surface WSu). The scanning electron microscope SEMg identifies the positions of the holding surface HS and the surface WSu without using the reference member BM because it can be irradiated). However, when it is difficult for the measuring device 8g to directly measure the positions of at least one of the holding surface HS and the surface WSu, the scanning electron microscope SEMg uses the reference member BM to measure the holding surface HS and the surface WSu. At least one position of the surface WSu may be specified. Specifically, for example, in the scanning electron microscope SEMg, the reference member BM is arranged on the holding surface HS so that at least a part of the holding surface HS and at least a part of the reference surface BS of the reference member BM are in contact with each other. The position of the reference surface BS may be measured, and the measured position of the reference surface BS may be treated as the position of the holding surface HS. In this case, the reference surface BS may be a surface that can include at least a part of the holding surface HS. For example, in the scanning electron microscope SEMg, the reference member BM is arranged on the surface WSu so that at least a part of the surface WSu and at least a part of the reference surface BS of the reference member BM are in contact with each other, and the position of the reference surface BS is measured. Then, the measured position of the reference surface BS may be treated as the position of the surface WSu. In this case, the reference surface BS may be a surface that can include at least a part of the surface WSu. The reference member BM used for measuring the positions of the holding surface HS and the surface WSu may be the same as or different from the reference member BM used for measuring the position of the injection surface 12LS. Good.
 また、上述した説明では、位置制御動作が行われている期間中に、ビーム照射装置1fの射出面12LSの位置が計測装置8gによって計測される。しかしながら、計測装置8gがビーム照射装置1に対して固定された位置に配置されているため、位置制御動作が行われている期間中にビーム照射装置1と計測装置8gとの位置関係が変わることはない。このため、位置制御動作が行われる前に、射出面12LSの位置が計測装置8gによって計測され、計測装置8gの計測結果(つまり、射出面12LSの位置を示す情報)が、制御装置4が備える記憶装置等に記憶されていてもよい。この場合には、位置制御動作が行われる期間中は、制御装置4は、計測装置8gに射出面12LSの位置を計測させることなく、記憶装置に記憶されている射出面12LSの位置を示す情報に基づいて位置制御動作を行ってもよい。 Further, in the above description, the position of the injection surface 12LS of the beam irradiation device 1f is measured by the measuring device 8g during the period during which the position control operation is performed. However, since the measuring device 8g is arranged at a fixed position with respect to the beam irradiating device 1, the positional relationship between the beam irradiating device 1 and the measuring device 8g changes during the period during which the position control operation is performed. There is no. Therefore, before the position control operation is performed, the position of the injection surface 12LS is measured by the measuring device 8g, and the measurement result of the measuring device 8g (that is, information indicating the position of the injection surface 12LS) is provided in the control device 4. It may be stored in a storage device or the like. In this case, during the period in which the position control operation is performed, the control device 4 does not cause the measuring device 8g to measure the position of the injection surface 12LS, and the information indicating the position of the injection surface 12LS stored in the storage device. The position control operation may be performed based on.
 また、上述した説明では、第7実施形態では、走査型電子顕微鏡SEMgは、開口126が形成されていないビーム照射装置1fを備えている。しかしながら、走査型電子顕微鏡SEMgは、ビーム照射装置1fに代えて、開口126が形成されたビーム照射装置1a、開口126bが形成されたビーム照射装置1b若しくは1c、アパーチャ部材16dが配置されたビーム照射装置1d、又は、複数の開口126eが形成されたビーム照射装置1eを備えていてもよい。つまり、第7実施形態の走査型電子顕微鏡SEMgに対して、第1実施形態の走査型電子顕微鏡SEMaから第5実施形態の走査型電子顕微鏡SEMgの構成要件の少なくとも一部(特に、ビーム通過空間SPbの少なくとも一部の真空度を制御するための構成要件の少なくとも一部)が組み合わせられてもよい。この場合、走査型電子顕微鏡SEMgは、ビーム通過空間SPbの少なくとも一部の真空度を制御すると共に、間隔Dを制御してもよい。或いは、走査型電子顕微鏡SEMgは、第6実施形態の走査型電子顕微鏡SEMfと同様に、間隔Dを制御することでビーム通過空間SPbの少なくとも一部の真空度を制御してもよい。第7実施形態の走査型電子顕微鏡SEMgの変形例に相当する後述する第8実施形態の走査型電子顕微鏡SEMhから第11実施形態の走査型電子顕微鏡SEMkについても同様である。 Further, in the above description, in the seventh embodiment, the scanning electron microscope SEMg includes a beam irradiation device 1f in which the opening 126 is not formed. However, in the scanning electron microscope SEMg, instead of the beam irradiation device 1f, the beam irradiation device 1a in which the opening 126 is formed, the beam irradiation device 1b or 1c in which the opening 126b is formed, and the aperture member 16d are arranged. The device 1d or the beam irradiation device 1e in which a plurality of openings 126e are formed may be provided. That is, with respect to the scanning electron microscope SEMg of the seventh embodiment, at least a part of the constituent requirements (particularly, the beam passing space) of the scanning electron microscope SEMa of the first embodiment to the scanning electron microscope SEMg of the fifth embodiment (particularly, the beam passing space). At least a part of the constituent requirements for controlling the degree of vacuum of at least a part of SPb) may be combined. In this case, the scanning electron microscope SEMg may control the degree of vacuum of at least a part of the beam passing space SPb and also control the interval D. Alternatively, the scanning electron microscope SEMg may control the degree of vacuum of at least a part of the beam passing space SPb by controlling the interval D, similarly to the scanning electron microscope SEMf of the sixth embodiment. The same applies to the scanning electron microscope SEMh of the eighth embodiment described later to the scanning electron microscope SEMk of the eleventh embodiment, which correspond to a modification of the scanning electron microscope SEMg of the seventh embodiment.
 (8)第8実施形態の走査型電子顕微鏡SEMh
 続いて、図32を参照しながら、第8実施形態の走査型電子顕微鏡SEM(以降、第8実施形態の走査型電子顕微鏡SEMを、“走査型電子顕微鏡SEMh”と称する)について説明する。図32は、第8実施形態の走査型電子顕微鏡SEMhの構造を示す断面図である。
(8) Scanning electron microscope SEMh of the eighth embodiment
Subsequently, with reference to FIG. 32, the scanning electron microscope SEM of the eighth embodiment (hereinafter, the scanning electron microscope SEM of the eighth embodiment will be referred to as “scanning electron microscope SEMh”) will be described. FIG. 32 is a cross-sectional view showing the structure of the scanning electron microscope SEMh of the eighth embodiment.
 図32に示すように、第8実施形態の走査型電子顕微鏡SEMhは、上述した第7実施形態の走査型電子顕微鏡SEMgと比較して、計測装置8gが、ステージ22に対して固定された位置に配置されているという点において異なっている。走査型電子顕微鏡SEMhのその他の特徴は、走査型電子顕微鏡SEMgと同一であってもよい。 As shown in FIG. 32, in the scanning electron microscope SEMh of the eighth embodiment, the position where the measuring device 8g is fixed with respect to the stage 22 as compared with the scanning electron microscope SEMg of the seventh embodiment described above. It differs in that it is located in. Other features of the scanning electron microscope SEMh may be the same as those of the scanning electron microscope SEMg.
 計測装置8gは、ステージ22に対する位置関係が固定された(つまり、変わらない)位置に配置されている。図32に示す例では、計測装置8gは、ステージ22の側面に配置されているが、その他の位置に配置されていてもよい。計測装置8gがステージ22に対して固定された位置に配置されている場合には、ステージ駆動系23によってステージ22が移動したとしても、ステージ22と計測装置8gとの位置関係が変わることはない。つまり、計測装置8gを基準とする計測座標空間内でのステージ22の位置が変わることはない。このため、ステージ22の位置が計測装置8gによって一度計測された後であれば、ステージ駆動系23によってステージ22が移動したとしても、制御装置4は、計測装置8gにステージ22の位置を再度計測させることなく、計測座標空間内でのステージ22の位置を特定することができる。 The measuring device 8g is arranged at a position where the positional relationship with respect to the stage 22 is fixed (that is, does not change). In the example shown in FIG. 32, the measuring device 8g is arranged on the side surface of the stage 22, but may be arranged at other positions. When the measuring device 8g is arranged at a fixed position with respect to the stage 22, even if the stage 22 is moved by the stage drive system 23, the positional relationship between the stage 22 and the measuring device 8g does not change. .. That is, the position of the stage 22 in the measurement coordinate space based on the measuring device 8g does not change. Therefore, if the position of the stage 22 is once measured by the measuring device 8g, the control device 4 measures the position of the stage 22 again on the measuring device 8g even if the stage 22 is moved by the stage drive system 23. The position of the stage 22 in the measurement coordinate space can be specified without causing the stage 22 to be specified.
 ステージ22が試料Wを保持している場合には、計測装置8gは、試料Wに対する位置関係が固定された(つまり、変わらない)位置に配置されているとも言える。計測装置8gが試料Wに対して固定された位置に配置されている場合には、ステージ駆動系23によって試料Wを保持しているステージ22が移動したとしても、試料Wと計測装置8gとの位置関係が変わることはない。つまり、計測装置8gを基準とする計測座標空間内での試料Wの位置が変わることはない。このため、試料Wの位置が計測装置8gによって一度計測された後であれば、ステージ駆動系23によってステージ22が移動したとしても、制御装置4は、計測装置8gに試料Wの位置を再度計測させることなく、計測座標空間内での試料Wの位置を特定することができる。 When the stage 22 holds the sample W, it can be said that the measuring device 8g is arranged at a position where the positional relationship with respect to the sample W is fixed (that is, does not change). When the measuring device 8g is arranged at a fixed position with respect to the sample W, even if the stage 22 holding the sample W is moved by the stage drive system 23, the sample W and the measuring device 8g The positional relationship does not change. That is, the position of the sample W in the measurement coordinate space with respect to the measuring device 8g does not change. Therefore, once the position of the sample W has been measured by the measuring device 8g, the control device 4 measures the position of the sample W again by the measuring device 8g even if the stage 22 is moved by the stage drive system 23. The position of the sample W in the measurement coordinate space can be specified without causing the sample W to be specified.
 走査型電子顕微鏡SEMhは、上述した走査型電子顕微鏡SEMgと同様に、図22に示す第1制御動作を行うことができる。但し、第8実施形態では、計測装置8gが射出面12LSの位置を直接的に計測することができる場合には、走査型電子顕微鏡SEMgは、図22のステップS11からステップS14において、基準部材BMを用いることなく、射出面12LSの位置を特定してもよい。更に、計測装置8gが保持面HSの位置を直接的に計測することが困難である場合には、走査型電子顕微鏡SEMaは、図22のステップS15において、基準部材BMを保持面HSに配置した上で、保持面HSの位置を特定してもよい。 The scanning electron microscope SEMh can perform the first control operation shown in FIG. 22 in the same manner as the scanning electron microscope SEMg described above. However, in the eighth embodiment, when the measuring device 8g can directly measure the position of the injection surface 12LS, the scanning electron microscope SEMg is the reference member BM in steps S11 to S14 of FIG. The position of the injection surface 12LS may be specified without using. Further, when it is difficult for the measuring device 8g to directly measure the position of the holding surface HS, the scanning electron microscope SEMa placed the reference member BM on the holding surface HS in step S15 of FIG. The position of the holding surface HS may be specified above.
 走査型電子顕微鏡SEMhは、上述した走査型電子顕微鏡SEMgと同様に、図29に示す第2制御動作を行うことができる。但し、第8実施形態では、計測装置8gが表面WSuの位置を直接的に計測することが困難である場合には、走査型電子顕微鏡SEMhは、図17のステップS22において、基準部材BMを表面WSuに配置した上で、表面WSuの位置を特定してもよい。更に、第8実施形態では、走査型電子顕微鏡SEMhは、図29のステップS23を行う前に計測装置8gに射出面12LSの位置も計測させた上で、図29のステップS23において、計測した射出面12LSの位置及び表面WSuの位置に基づいて、間隔Dが所望間隔D_targetとなり、且つ、射出面12LSに対して表面WSuが平行になるように、ビーム照射装置1f及びステージ22の少なくとも一つの位置を制御する。 The scanning electron microscope SEMh can perform the second control operation shown in FIG. 29 in the same manner as the scanning electron microscope SEMg described above. However, in the eighth embodiment, when it is difficult for the measuring device 8g to directly measure the position of the surface WSu, the scanning electron microscope SEMh places the reference member BM on the surface in step S22 of FIG. The position of the surface WSu may be specified after being arranged on the WSu. Further, in the eighth embodiment, the scanning electron microscope SEMh causes the measuring device 8g to measure the position of the injection surface 12LS before performing step S23 in FIG. 29, and then measures the injection in step S23 in FIG. At least one position of the beam irradiation device 1f and the stage 22 so that the interval D becomes the desired interval D_taget and the surface WSu is parallel to the injection surface 12LS based on the position of the surface 12LS and the position of the surface WSu. To control.
 このように、第8実施形態の走査型電子顕微鏡SEMhは、上述した走査型電子顕微鏡SEMgが享受可能な効果と同様の効果を享受しつつ、計測装置8gの配置の自由度を増加させることができる。 As described above, the scanning electron microscope SEMh of the eighth embodiment can increase the degree of freedom in arranging the measuring device 8g while enjoying the same effect as the effect that can be enjoyed by the scanning electron microscope SEMg described above. it can.
 尚、第8実施形態では、計測装置8gがステージ22に対して固定された位置に配置されているため、位置制御動作が行われている期間中にステージ22と計測装置8gとの位置関係が変わることはない。このため、位置制御動作が行われる前に、ステージ22の保持面HSの位置が計測装置8gによって計測され、計測装置8gの計測結果(つまり、保持面HSの位置を示す情報)が、制御装置4が備える記憶装置等に記憶されていてもよい。この場合には、位置制御動作が行われる期間中は、制御装置4は、計測装置8gに保持面HSの位置を計測させることなく、記憶装置に記憶されている保持面HSの位置を示す情報に基づいて位置制御動作を行ってもよい。 In the eighth embodiment, since the measuring device 8g is arranged at a fixed position with respect to the stage 22, the positional relationship between the stage 22 and the measuring device 8g is changed during the period when the position control operation is performed. It doesn't change. Therefore, before the position control operation is performed, the position of the holding surface HS of the stage 22 is measured by the measuring device 8g, and the measurement result of the measuring device 8g (that is, information indicating the position of the holding surface HS) is the control device. It may be stored in a storage device or the like provided in 4. In this case, during the period in which the position control operation is performed, the control device 4 does not cause the measuring device 8g to measure the position of the holding surface HS, and the information indicating the position of the holding surface HS stored in the storage device. The position control operation may be performed based on.
 (9)第9実施形態の走査型電子顕微鏡SEMi
 続いて、図33を参照しながら、第9実施形態の走査型電子顕微鏡SEM(以降、第9実施形態の走査型電子顕微鏡SEMを、“走査型電子顕微鏡SEMi”と称する)について説明する。図33は、第9実施形態の走査型電子顕微鏡SEMiの構造を示す断面図である。
(9) Scanning electron microscope SEMi of the ninth embodiment
Subsequently, with reference to FIG. 33, the scanning electron microscope SEM of the ninth embodiment (hereinafter, the scanning electron microscope SEM of the ninth embodiment will be referred to as “scanning electron microscope SEMi”) will be described. FIG. 33 is a cross-sectional view showing the structure of the scanning electron microscope SEMi of the ninth embodiment.
 図33に示すように、第9実施形態の走査型電子顕微鏡SEMiは、上述した第7実施形態の走査型電子顕微鏡SEMgと比較して、計測装置8gが、ビーム照射装置1f及びステージ22の双方に対して非固定的な位置に配置されているという点において異なっている。走査型電子顕微鏡SEMiのその他の特徴は、走査型電子顕微鏡SEMgと同一であってもよい。 As shown in FIG. 33, in the scanning electron microscope SEMi of the ninth embodiment, as compared with the scanning electron microscope SEMg of the seventh embodiment described above, the measuring device 8g has both the beam irradiation device 1f and the stage 22. It differs in that it is placed in a non-fixed position with respect to. Other features of the scanning electron microscope SEMi may be the same as those of the scanning electron microscope SEMg.
 計測装置8gは、ビーム照射装置1f及びステージ22に対する位置関係が非固定的な(つまり、変わる可能性がある)位置に配置されている。図33に示す例では、計測装置8gは、支持フレーム3に配置されているが、その他の位置に配置されていてもよい。計測装置8gがビーム照射装置1fに対して非固定的な位置に配置されている場合には、位置調整系14によってビーム照射装置1fが移動すると、ビーム照射装置1fと計測装置8gとの位置関係が変わる可能性がある。つまり、計測装置8gを基準とする計測座標空間内でのビーム照射装置1fの位置が変わる可能性がある。このため、位置制御動作が行われている期間中に位置調整系14によってビーム照射装置1fが移動する都度、制御装置4は、計測装置8gにビーム照射装置1fの位置を再度計測させ、計測装置8gの再度の計測結果に基づいて、計測座標空間内でのビーム照射装置1fの位置を特定する。同様に、計測装置8gがステージ22に対して非固定的な位置に配置されている場合には、ステージ駆動系23によってステージ22が移動すると、ステージ22と計測装置8gとの位置関係が変わる可能性がある。つまり、計測装置8gを基準とする計測座標空間内でのステージ22の位置が変わる可能性がある。このため、位置制御動作が行われている期間中にステージ駆動系23によってステージ22が移動する都度、制御装置4は、計測装置8gにステージ22の位置を再度計測させ、計測装置8gの再度の計測結果に基づいて、計測座標空間内でのステージ22の位置を特定する。 The measuring device 8g is arranged at a position where the positional relationship with respect to the beam irradiation device 1f and the stage 22 is non-fixed (that is, may change). In the example shown in FIG. 33, the measuring device 8g is arranged on the support frame 3, but may be arranged at other positions. When the measuring device 8g is arranged at a non-fixed position with respect to the beam irradiating device 1f, when the beam irradiating device 1f is moved by the position adjusting system 14, the positional relationship between the beam irradiating device 1f and the measuring device 8g May change. That is, the position of the beam irradiation device 1f in the measurement coordinate space based on the measurement device 8g may change. Therefore, each time the beam irradiation device 1f is moved by the position adjustment system 14 during the period in which the position control operation is performed, the control device 4 causes the measuring device 8g to measure the position of the beam irradiation device 1f again, and the measuring device The position of the beam irradiation device 1f in the measurement coordinate space is specified based on the remeasurement result of 8 g. Similarly, when the measuring device 8g is arranged at a non-fixed position with respect to the stage 22, the positional relationship between the stage 22 and the measuring device 8g may change when the stage 22 is moved by the stage drive system 23. There is sex. That is, the position of the stage 22 in the measurement coordinate space based on the measuring device 8g may change. Therefore, each time the stage 22 is moved by the stage drive system 23 during the period in which the position control operation is performed, the control device 4 causes the measuring device 8g to measure the position of the stage 22 again, and the measuring device 8g is re-measured. Based on the measurement result, the position of the stage 22 in the measurement coordinate space is specified.
 ステージ22が試料Wを保持している場合には、計測装置8gは、試料Wに対する位置関係が非固定的な(つまり、変わる可能性がある)位置に配置されているとも言える。この場合、試料Wを保持しているステージ22が移動すると、試料Wと計測装置8gとの位置関係が変わる可能性がある。つまり、計測装置8gを基準とする計測座標空間内での試料Wの位置が変わる可能性がる。このため、位置制御動作が行われている期間中にステージ22が移動する都度、制御装置4は、計測装置8gに試料Wの位置を再度計測させ、計測装置8gの再度の計測結果に基づいて、計測座標空間内での試料Wの位置を特定する。 When the stage 22 holds the sample W, it can be said that the measuring device 8g is arranged at a position where the positional relationship with respect to the sample W is non-fixed (that is, may change). In this case, if the stage 22 holding the sample W moves, the positional relationship between the sample W and the measuring device 8g may change. That is, the position of the sample W in the measurement coordinate space with respect to the measuring device 8g may change. Therefore, each time the stage 22 moves during the period in which the position control operation is performed, the control device 4 causes the measuring device 8g to measure the position of the sample W again, and based on the measurement result of the measuring device 8g again. , The position of the sample W in the measurement coordinate space is specified.
 走査型電子顕微鏡SEMiは、上述した走査型電子顕微鏡SEMgと同様に、図22に示す第1制御動作を行うことができる。但し、第9実施形態では、計測装置8gが射出面12LSの位置を直接的に計測することができる場合には、走査型電子顕微鏡SEMiは、図22のステップS11からステップS14において、基準部材BMを用いることなく、射出面12LSの位置を特定してもよい。更に、計測装置8gが保持面HSの位置を直接的に計測することが困難である場合には、走査型電子顕微鏡SEMiは、図22のステップS15において、基準部材BMを保持面HSに配置した上で、保持面HSの位置を特定してもよい。 The scanning electron microscope SEMi can perform the first control operation shown in FIG. 22 in the same manner as the scanning electron microscope SEMg described above. However, in the ninth embodiment, when the measuring device 8g can directly measure the position of the injection surface 12LS, the scanning electron microscope SEMi has the reference member BM in steps S11 to S14 of FIG. The position of the injection surface 12LS may be specified without using. Further, when it is difficult for the measuring device 8g to directly measure the position of the holding surface HS, the scanning electron microscope SEMi placed the reference member BM on the holding surface HS in step S15 of FIG. The position of the holding surface HS may be specified above.
 走査型電子顕微鏡SEMiは、上述した走査型電子顕微鏡SEMgと同様に、図29に示す第2制御動作を行うことができる。但し、第9実施形態では、計測装置8gが表面WSuの位置を直接的に計測することが困難である場合には、走査型電子顕微鏡SEMiは、図29のステップS22において、基準部材BMを表面WSuに配置した上で、表面WSuの位置を特定してもよい。更に、第9実施形態では、走査型電子顕微鏡SEMiは、図29のステップS23を行う前に計測装置8gに射出面12LSの位置も計測させた上で、図29のステップS23において、計測した射出面12LSの位置及び表面WSuの位置に基づいて、間隔Dが所望間隔D_targetとなり、且つ、射出面12LSに対して表面WSuが平行になるように、ビーム照射装置1f及びステージ22の少なくとも一つの位置を制御する。 The scanning electron microscope SEMi can perform the second control operation shown in FIG. 29 in the same manner as the scanning electron microscope SEMg described above. However, in the ninth embodiment, when it is difficult for the measuring device 8g to directly measure the position of the surface WSu, the scanning electron microscope SEMi puts the reference member BM on the surface in step S22 of FIG. The position of the surface WSu may be specified after being arranged on the WSu. Further, in the ninth embodiment, the scanning electron microscope SEMi causes the measuring device 8g to measure the position of the injection surface 12LS before performing step S23 in FIG. 29, and then measures the injection in step S23 in FIG. At least one position of the beam irradiation device 1f and the stage 22 so that the interval D becomes the desired interval D_taget and the surface WSu is parallel to the injection surface 12LS based on the position of the surface 12LS and the position of the surface WSu. To control.
 このように、第9実施形態の走査型電子顕微鏡SEMiは、上述した走査型電子顕微鏡SEMgが享受可能な効果と同様の効果を享受しつつ、計測装置8gの配置の自由度を増加させることができる。 As described above, the scanning electron microscope SEMi of the ninth embodiment can increase the degree of freedom in arranging the measuring device 8g while enjoying the same effect as the effect that the scanning electron microscope SEMg described above can enjoy. it can.
 (10)第10実施形態の走査型電子顕微鏡SEMj
 続いて、図34を参照しながら、第10実施形態の走査型電子顕微鏡SEM(以降、第10実施形態の走査型電子顕微鏡SEMを、“走査型電子顕微鏡SEMj”と称する)について説明する。図34は、第10実施形態の走査型電子顕微鏡SEMjの構造を示す断面図である。
(10) Scanning electron microscope SEMj of the tenth embodiment
Subsequently, with reference to FIG. 34, the scanning electron microscope SEM of the tenth embodiment (hereinafter, the scanning electron microscope SEM of the tenth embodiment will be referred to as “scanning electron microscope SEMj”) will be described. FIG. 34 is a cross-sectional view showing the structure of the scanning electron microscope SEMj of the tenth embodiment.
 図34に示すように、第10実施形態の走査型電子顕微鏡SEMjは、上述した第7実施形態の走査型電子顕微鏡SEMgと比較して、ビーム照射装置1fの位置(つまり、射出面12LSの位置)を計測する計測装置8gと、ステージ22及び試料Wの位置(つまり、保持面HS及び表面WSuの位置)を計測する計測装置8gとを別々に備えているという点において異なっている。以降、説明の便宜上、ビーム照射装置1fの位置を計測する計測装置8gを計測装置8gaと称し、且つ、ステージ22及び試料Wの位置を計測する計測装置8gを計測装置8gbと称して、両者を区別する。走査型電子顕微鏡SEMjのその他の特徴は、走査型電子顕微鏡SEMgと同一であってもよい。 As shown in FIG. 34, the scanning electron microscope SEMj of the tenth embodiment is compared with the scanning electron microscope SEMg of the seventh embodiment described above, and the position of the beam irradiation device 1f (that is, the position of the injection surface 12LS). ), And the measuring device 8g for measuring the positions of the stage 22 and the sample W (that is, the positions of the holding surface HS and the surface WSu) are separately provided. Hereinafter, for convenience of explanation, the measuring device 8g for measuring the position of the beam irradiation device 1f is referred to as a measuring device 8ga, and the measuring device 8g for measuring the positions of the stage 22 and the sample W is referred to as a measuring device 8gb. Distinguish. Other features of the scanning electron microscope SEMj may be the same as those of the scanning electron microscope SEMg.
 計測装置8gaは、上述した第7実施形態の走査型電子顕微鏡SEMg(図20参照)が備える計測装置8gと同一である。つまり、計測装置8gaは、ビーム照射装置1fに対して固定された位置に配置されている。但し、計測装置8gaは、ステージ22に対して固定された位置に配置されていてもよいし、ビーム照射装置1f及びステージ22に対して非固定的な位置に配置されていてもよい。計測装置8gaは、基準部材BMを用いて射出面12LSの位置を計測するが、基準部材BMを用いることなく射出面12LSの位置を計測してもよい。計測装置8gaは、計測装置8gaを基準とする第1計測座標空間内における射出面12LSの位置を特定する。 The measuring device 8ga is the same as the measuring device 8g provided in the scanning electron microscope SEMg (see FIG. 20) of the seventh embodiment described above. That is, the measuring device 8ga is arranged at a fixed position with respect to the beam irradiating device 1f. However, the measuring device 8ga may be arranged at a position fixed with respect to the stage 22, or may be arranged at a position non-fixed with respect to the beam irradiation device 1f and the stage 22. Although the measuring device 8ga measures the position of the injection surface 12LS using the reference member BM, the position of the injection surface 12LS may be measured without using the reference member BM. The measuring device 8ga specifies the position of the injection surface 12LS in the first measurement coordinate space with respect to the measuring device 8ga.
 計測装置8gbは、上述した第8実施形態の走査型電子顕微鏡SEMh(図32参照)が備える計測装置8gと同一である。つまり、計測装置8gbは、ステージ22に対して固定された位置に配置されている。但し、計測装置8gbは、ビーム照射装置1fに対して固定された位置に配置されていてもよいし、ビーム照射装置1f及びステージ22に対して非固定的な位置に配置されていてもよい。計測装置8gbは、基準部材BMを用いて保持面HS及び表面WSuの位置を計測するが、基準部材BMを用いることなく保持面HS及び表面WSuの位置を計測してもよい。計測装置8gbは、計測装置8gbを基準とする第2計測座標空間内における保持面HS及び表面WSuの位置を特定する。 The measuring device 8gb is the same as the measuring device 8g provided in the scanning electron microscope SEMh (see FIG. 32) of the eighth embodiment described above. That is, the measuring device 8 gb is arranged at a fixed position with respect to the stage 22. However, the measuring device 8gb may be arranged at a position fixed with respect to the beam irradiation device 1f, or may be arranged at a position non-fixed with respect to the beam irradiation device 1f and the stage 22. The measuring device 8gb measures the positions of the holding surface HS and the surface WSu using the reference member BM, but the positions of the holding surface HS and the surface WSu may be measured without using the reference member BM. The measuring device 8gb specifies the positions of the holding surface HS and the surface WSu in the second measurement coordinate space with respect to the measuring device 8gb.
 走査型電子顕微鏡SEMjは、上述した走査型電子顕微鏡SEMgと同様に、図22に示す第1制御動作を行うことができる。但し、第10実施形態では、計測装置8gaが、計測装置8gaを基準とする第1計測座標空間内における射出面12LSの位置を特定する一方で、計測装置8gbが、計測装置8gbを基準とする第2計測座標空間(つまり、第1計測座標空間とは異なる第2計測座標空間)内における保持面HSの位置を特定している。つまり、計測装置8gaが射出面12LSの位置を特定する座標空間と、計測装置8gbが保持面HSの位置(更には、仮想的な試料Wvの表面WSuvの位置)を特定する座標空間とが異なる。このため、走査型電子顕微鏡SEMjは、図22のステップS17を行う前に、計測装置8gaを基準とする第1計測座標空間と、計測装置8gbを基準とする第2計測座標空間とを関連付ける。 The scanning electron microscope SEMj can perform the first control operation shown in FIG. 22 in the same manner as the scanning electron microscope SEMg described above. However, in the tenth embodiment, the measuring device 8ga specifies the position of the injection surface 12LS in the first measurement coordinate space with respect to the measuring device 8ga, while the measuring device 8gb uses the measuring device 8gb as a reference. The position of the holding surface HS in the second measurement coordinate space (that is, the second measurement coordinate space different from the first measurement coordinate space) is specified. That is, the coordinate space in which the measuring device 8ga specifies the position of the injection surface 12LS and the coordinate space in which the measuring device 8gb specifies the position of the holding surface HS (furthermore, the position of the surface WSuv of the virtual sample Wv) are different. .. Therefore, the scanning electron microscope SEMj associates the first measurement coordinate space based on the measuring device 8ga with the second measurement coordinate space based on the measuring device 8gb before performing step S17 in FIG. 22.
 例えば、走査型電子顕微鏡SEMjは、図35(a)に示すように、2つの基準面BSc1及びBSc2の位置関係が制御装置4にとって既知の基準部材BMcを用いて、第1計測座標空間と第2計測座標空間とを対応付けてもよい。具体的には、計測装置8gaは、第1計測座標空間内での基準面BSc1の位置を計測する。更に、計測装置8gbは、第2計測座標空間内での基準面BSc2の位置を計測する。その後、制御装置4は、基準面BSc1及びBSc2の既知の位置関係と、基準面BSc1及びBSc2の位置の計測結果とに基づいて、第1及び第2計測座標空間を関連付ける。その結果、制御装置4は、第1計測座標空間内における射出面12LSの位置と、第2計測座標空間内における保持面HSの位置とを関連付けることができる。つまり、制御装置4は、共通する計測座標空間内で、射出面12LSと保持面HSとの位置関係(つまり、射出面12LSと表面WSuvとの位置関係)を特定することができる。従って、制御装置4は、射出面12LSと表面WSuvとの間の間隔D’及び射出面12LSと表面WSuvとの平行度を特定することができる。このため、第1及び第2計測座標空間を関連付けた後に、制御装置4は、図22のステップS17において、間隔D’が所望間隔D_targetとなり、且つ、射出面12LSに対して表面WSuvが平行になるように、ビーム照射装置1f及びステージ22の少なくとも一つの位置を制御することができる。 For example, in the scanning electron microscope SEMj, as shown in FIG. 35 (a), the first measurement coordinate space and the first measurement coordinate space are used by using the reference member BMC whose positional relationship between the two reference surfaces BSc1 and BSc2 is known to the control device 4. 2 It may be associated with the measurement coordinate space. Specifically, the measuring device 8ga measures the position of the reference plane BSc1 in the first measurement coordinate space. Further, the measuring device 8gb measures the position of the reference plane BSc2 in the second measurement coordinate space. After that, the control device 4 associates the first and second measurement coordinate spaces with each other based on the known positional relationship between the reference planes BSc1 and BSc2 and the measurement result of the positions of the reference planes BSc1 and BSc2. As a result, the control device 4 can associate the position of the injection surface 12LS in the first measurement coordinate space with the position of the holding surface HS in the second measurement coordinate space. That is, the control device 4 can specify the positional relationship between the injection surface 12LS and the holding surface HS (that is, the positional relationship between the injection surface 12LS and the surface WSuv) within the common measurement coordinate space. Therefore, the control device 4 can specify the distance D'between the injection surface 12LS and the surface WSuv and the parallelism between the injection surface 12LS and the surface WSuv. Therefore, after associating the first and second measurement coordinate spaces, the control device 4 sets the interval D'to the desired interval D_stage in step S17 of FIG. 22 and the surface WSuv is parallel to the injection surface 12LS. As such, at least one position of the beam irradiation device 1f and the stage 22 can be controlled.
 或いは、図35(b)に示すように、走査型電子顕微鏡SEMjは、位置関係が制御装置4にとって既知である2つの基準面BSc3及びBSc4をそれぞれ備える2つの基準部材BMc3及びBMc4を用いて第1及び第2計測座標空間を関連付けてもよい。具体的には、計測装置8gaは、第1計測座標空間内での基準面BSc3の位置を計測し、計測装置8gbは、第2計測座標空間内での基準面BSc4の位置を計測する。その後、制御装置4は、基準面BSc3及びBSc4の既知の位置関係と、基準面BSc3及びBSc4の位置の計測結果とに基づいて、第1及び第2計測座標空間を関連付ける。 Alternatively, as shown in FIG. 35 (b), the scanning electron microscope SEMj uses two reference members BMc3 and BMc4 having two reference planes BSc3 and BSc4 whose positional relationship is known to the control device 4, respectively. The first and second measurement coordinate spaces may be associated. Specifically, the measuring device 8ga measures the position of the reference surface BSc3 in the first measurement coordinate space, and the measuring device 8gb measures the position of the reference surface BSc4 in the second measurement coordinate space. After that, the control device 4 associates the first and second measurement coordinate spaces with each other based on the known positional relationship between the reference planes BSc3 and BSc4 and the measurement result of the positions of the reference planes BSc3 and BSc4.
 或いは、図35(c)に示すように、計測装置8ga及び8gbの位置関係によっては、計測装置8ga及び8gbが、同じ基準部材BMc5の同じ基準面BMc5の位置を計測することができる(例えば、同じ基準面BMc5に計測光MLを照射することができる)場合がある。この場合には、制御装置4は、計測装置8gaによる基準面BSc5の位置の計測結果と、計測装置8gbによる基準面BSc5の位置の計測結果とに基づいて、第1及び第2計測座標空間を関連付けてもよい。 Alternatively, as shown in FIG. 35C, depending on the positional relationship between the measuring devices 8ga and 8gb, the measuring devices 8ga and 8gb can measure the position of the same reference surface BMc5 of the same reference member BMc5 (for example, The same reference plane BMc5 can be irradiated with the measurement light ML). In this case, the control device 4 determines the first and second measurement coordinate spaces based on the measurement result of the position of the reference surface BSc5 by the measuring device 8ga and the measurement result of the position of the reference surface BSc5 by the measuring device 8gb. It may be associated.
 更に、走査型電子顕微鏡SEMjは、上述した走査型電子顕微鏡SEMgと同様に、図29に示す第2制御動作を行うことができる。但し、第10実施形態では、走査型電子顕微鏡SEMjは、図29のステップS22において計測装置8gbに表面WSuの位置を計測させる。更に、計測装置8gaがビーム照射装置1fに対して非固定的な位置に配置されている場合には、走査型電子顕微鏡SEMjは、図29のステップS23を行う前に計測装置8gaに射出面12LSの位置を計測させる。更に、走査型電子顕微鏡SEMjは、図29のステップS23を行う前に、第1及び第2計測座標空間を関連付ける。その後、走査型電子顕微鏡SEMjは、図29のステップS23において、計測した射出面12LSの位置及び表面WSuの位置に基づいて、間隔Dが所望間隔D_targetとなり、且つ、射出面12LSに対して表面WSuが平行になるように、ビーム照射装置1及びステージ22の少なくとも一つの位置を制御する。尚、第2制御動作において第1及び第2計測座標空間を関連付ける方法は、第1制御動作において第1及び第2計測座標空間を関連付ける方法と同一であってもよいため、その詳細な説明を省略する。 Further, the scanning electron microscope SEMj can perform the second control operation shown in FIG. 29 in the same manner as the scanning electron microscope SEMg described above. However, in the tenth embodiment, the scanning electron microscope SEMj causes the measuring device 8gb to measure the position of the surface WSu in step S22 of FIG. 29. Further, when the measuring device 8ga is arranged at a non-fixed position with respect to the beam irradiating device 1f, the scanning electron microscope SEMj has an injection surface 12LS on the measuring device 8ga before performing step S23 in FIG. To measure the position of. Further, the scanning electron microscope SEMj associates the first and second measurement coordinate spaces before performing step S23 in FIG. 29. After that, in step S23 of FIG. 29, the scanning electron microscope SEMj has an interval D of the desired interval D_taget based on the measured position of the injection surface 12LS and the position of the surface WSu, and the surface WSu with respect to the injection surface 12LS. The positions of at least one of the beam irradiation device 1 and the stage 22 are controlled so that they are parallel to each other. Note that the method of associating the first and second measurement coordinate spaces in the second control operation may be the same as the method of associating the first and second measurement coordinate spaces in the first control operation. Omit.
 このように、第10実施形態の走査型電子顕微鏡SEMjは、走査型電子顕微鏡SEMjが備える計測装置8gの数が増えるものの、上述した走査型電子顕微鏡SEMgが享受可能な効果と同様の効果を享受することができる。 As described above, the scanning electron microscope SEMj of the tenth embodiment enjoys the same effect as the above-mentioned scanning electron microscope SEMg, although the number of measuring devices 8g included in the scanning electron microscope SEMj increases. can do.
 (11)第11実施形態の走査型電子顕微鏡SEMk
 続いて、第11実施形態の走査型電子顕微鏡SEM(以降、第11実施形態の走査型電子顕微鏡SEMを、“走査型電子顕微鏡SEMk”と称する)について説明する。上述した第7実施形態の説明では、走査型電子顕微鏡SEMgは、XY平面に沿ってステージ22を移動させながら試料Wに電子ビームEBを照射して試料Wの状態の計測を開始する前に、第2制御動作を行っている。一方で、第11実施形態の走査型電子顕微鏡SEMkは、XY平面に沿ってステージ22を移動させながら試料Wに電子ビームEBを照射して試料Wの状態を計測している期間の少なくとも一部において第2制御動作を行うという点で、上述した走査型電子顕微鏡SEMgとは異なる。つまり、走査型電子顕微鏡SEMkは、XY平面に沿ってステージ22を移動させながら試料Wに電子ビームEBを照射して試料Wの状態を計測する動作と並行して第2制御動作を行うという点で、上述した走査型電子顕微鏡SEMgとは異なる。従って、以下では、図36を参照しながら、第11実施形態における第2制御動作について説明する。図36は、第11実施形態における第2制御動作の流れを示すフローチャートである。
(11) Scanning electron microscope SEMk of the eleventh embodiment
Subsequently, the scanning electron microscope SEM of the eleventh embodiment (hereinafter, the scanning electron microscope SEM of the eleventh embodiment will be referred to as “scanning electron microscope SEMk”) will be described. In the description of the seventh embodiment described above, the scanning electron microscope SEMg irradiates the sample W with the electron beam EB while moving the stage 22 along the XY plane before starting the measurement of the state of the sample W. The second control operation is performed. On the other hand, the scanning electron microscope SEMk of the eleventh embodiment irradiates the sample W with the electron beam EB while moving the stage 22 along the XY plane, and measures the state of the sample W at least a part of the period. It differs from the scanning electron microscope SEMg described above in that the second control operation is performed in the above. That is, the scanning electron microscope SEMk performs the second control operation in parallel with the operation of irradiating the sample W with the electron beam EB while moving the stage 22 along the XY plane and measuring the state of the sample W. Therefore, it is different from the scanning electron microscope SEMg described above. Therefore, in the following, the second control operation in the eleventh embodiment will be described with reference to FIG. 36. FIG. 36 is a flowchart showing the flow of the second control operation in the eleventh embodiment.
 図36に示すように、ステージ22が試料Wを保持する(ステップS21)。その後、走査型電子顕微鏡SEMkは、試料Wへの電子ビームEBの照射を開始する。つまり、走査型電子顕微鏡SEMkは、試料Wに関する情報の取得を開始する。このため、走査型電子顕微鏡SEMkは、ステージ22をXY平面に沿って移動させながら(つまり、試料WをXY平面に沿って移動させながら)、試料Wに電子ビームEBを照射する。 As shown in FIG. 36, the stage 22 holds the sample W (step S21). After that, the scanning electron microscope SEMk starts irradiating the sample W with the electron beam EB. That is, the scanning electron microscope SEMk starts acquiring information about the sample W. Therefore, the scanning electron microscope SEMk irradiates the sample W with the electron beam EB while moving the stage 22 along the XY plane (that is, moving the sample W along the XY plane).
 走査型電子顕微鏡SEMkが試料Wに電子ビームEBを照射して試料Wの状態を計測している期間中は、計測装置8gは、ステージ22が保持した試料Wの表面WSuのうちの一部である計測対象面DSの位置(つまり、姿勢又は形状)を計測する(ステップS32)。計測対象面DSは、電子ビームEBが照射される照射領域を含む表面WSu上の局所的な領域に相当する。電子ビームEBが真空領域VSPを介して試料Wに照射されるため、計測対象面DSは、真空領域VSPに面する又は覆われる領域を含む表面WSu上の局所的な領域に相当する。 During the period in which the scanning electron microscope SEMk irradiates the sample W with the electron beam EB and measures the state of the sample W, the measuring device 8 g is a part of the surface WSu of the sample W held by the stage 22. The position (that is, the posture or shape) of a certain measurement target surface DS is measured (step S32). The measurement target surface DS corresponds to a local region on the surface WSu including an irradiation region to which the electron beam EB is irradiated. Since the electron beam EB irradiates the sample W via the vacuum region VSP, the measurement target surface DS corresponds to a local region on the surface WSu including a region facing or covering the vacuum region VSP.
 計測対象面DSの位置を計測するために、距離センサ81gは、計測対象面DSに対して計測光MLを照射し、計測対象面DSからの計測光MLの反射光を検出する。このため、距離センサ81gは、計測対象面DSに対して計測光MLを照射可能な位置に配置される。但し、計測対象面DSが表面WSu上の局所的な領域であるため、距離センサ81gが計測対象面DSに対して計測光MLを照射可能な位置に配置されると、複数の距離センサ81gが表面WSuの局所的な領域のみに計測光MLを照射する可能性がある。つまり、複数の距離センサ81gが、試料Wを保持するステージ22の保持面HSの離散的な複数の領域に計測光MLを照射できなくなる可能性がある。その結果、制御装置4は、各距離センサ81gの計測結果から、計測対象面DSを内含可能な程度に大きいステージ22の保持面HS全体としての位置を特定できなくなる可能性がある。つまり、走査型電子顕微鏡SEMjは、第1制御動作を適切に行うことができなくなる可能性がある。このため、走査型電子顕微鏡SEMjは、図37に示すように、計測装置8gとして、保持面HSの離散的な複数の領域(更には、必要に応じて、表面WSuの離散的な複数の領域)に計測光MLを照射するように配置された複数の距離センサ81g-1を含む計測装置8g-1と、表面WSuのうちの局所的な領域(例えば、計測対象領域DSと同等程度の大きさの領域)に計測光MLを照射するように配置された複数の距離センサ81g-2を含む計測装置8g-2とを別個に備えていてもよい。つまり、走査型電子顕微鏡SEMkは、計測装置8gとして、相対的に広い面(例えば、計測対象面DSよりも広い保持面HS全体又は表面WSu全体)の位置を計測するための計測装置8g-1と、相対的に狭い面(例えば、保持面HS及び表面WSuよりも狭い計測対象面DS)の位置を計測するための計測装置8g-2とを別個に備えていてもよい。この場合、計測対象領域DSがビーム光学系11の光軸AX上に位置することから、計測装置8g-1を構成する複数の距離センサ81g-1と比較して、計測装置8g-2を構成する複数の距離センサ81g-2は、光軸AXにより近い位置に(つまり、光軸AXの放射方向における内側に)配置される。但し、同じ計測装置8gを用いて保持面HS全体としての位置及び計測対象面DSの位置の双方が適切に計測可能である場合には、走査型電子顕微鏡SEMkは、計測装置8g-1及び8g-2を別個に備えていなくてもよい。 In order to measure the position of the measurement target surface DS, the distance sensor 81g irradiates the measurement target surface DS with the measurement light ML and detects the reflected light of the measurement light ML from the measurement target surface DS. Therefore, the distance sensor 81g is arranged at a position where the measurement light ML can be irradiated to the measurement target surface DS. However, since the measurement target surface DS is a local region on the surface WSu, when the distance sensor 81g is arranged at a position where the measurement light ML can be irradiated to the measurement target surface DS, a plurality of distance sensors 81g There is a possibility that the measurement light ML is applied only to a local region of the surface WSu. That is, there is a possibility that the plurality of distance sensors 81g cannot irradiate the plurality of discrete regions of the holding surface HS of the stage 22 holding the sample W with the measurement light ML. As a result, the control device 4 may not be able to specify the position of the holding surface HS of the stage 22 as a whole, which is large enough to include the measurement target surface DS from the measurement results of each distance sensor 81g. That is, the scanning electron microscope SEMj may not be able to properly perform the first control operation. Therefore, as shown in FIG. 37, the scanning electron microscope SEMj has a plurality of discrete regions of the holding surface HS (further, if necessary, a plurality of discrete regions of the surface WSu) as the measuring device 8 g. A measuring device 8g-1 including a plurality of distance sensors 81g-1 arranged so as to irradiate the measurement light ML, and a local region (for example, the measurement target region DS) of the surface WSu. A measuring device 8g-2 including a plurality of distance sensors 81g-2 arranged so as to irradiate the measuring light ML may be separately provided. That is, the scanning electron microscope SEMk is a measuring device 8g-1 for measuring the position of a relatively wide surface (for example, the entire holding surface HS wider than the measurement target surface DS or the entire surface WSu) as the measuring device 8g. And a measuring device 8g-2 for measuring the position of a relatively narrow surface (for example, the holding surface HS and the measurement target surface DS narrower than the surface WSu) may be separately provided. In this case, since the measurement target region DS is located on the optical axis AX of the beam optical system 11, the measurement device 8g-2 is configured as compared with the plurality of distance sensors 81g-1 constituting the measurement device 8g-1. The plurality of distance sensors 81g-2 are arranged closer to the optical axis AX (that is, inside the optical axis AX in the radial direction). However, if both the position of the holding surface HS as a whole and the position of the measurement target surface DS can be appropriately measured using the same measuring device 8g, the scanning electron microscope SEMk can be used with the measuring devices 8g-1 and 8g. -2 does not have to be provided separately.
 距離センサ81g-2の計測結果は、制御装置4に出力される。制御装置4は、各距離センサ81g-2の計測結果に基づいて、各距離センサ81g-2から計測対象面DSまでの距離を特定する。その結果、制御装置4は、計測対象面DSの位置(つまり、計測座標空間内での、計測対象面DSの各部分の位置)を特定することができる。言い換えれば、制御装置4は、計測座標空間内での計測対象面DSを示す方程式を特定することができる。 The measurement result of the distance sensor 81g-2 is output to the control device 4. The control device 4 specifies the distance from each distance sensor 81g-2 to the measurement target surface DS based on the measurement result of each distance sensor 81g-2. As a result, the control device 4 can specify the position of the measurement target surface DS (that is, the position of each part of the measurement target surface DS in the measurement coordinate space). In other words, the control device 4 can specify an equation indicating the measurement target surface DS in the measurement coordinate space.
 その後、図36に示すように、制御装置4は、計測対象面DSと射出面12LSとの間の間隔D_DSが所望間隔D_targetとなり、且つ、射出面12LSに対して計測対象面DSが平行になるように、ビーム照射装置1fとステージ22との位置関係を制御する(ステップS33)。具体的には、制御装置4は、図29のステップS23と同様に、第1制御動作で特定した射出面12LSの位置及びステップS32で特定した計測対象面DSの位置から、計測座標空間内における射出面12LSと計測対象面DSとの間の位置関係を特定することができる。つまり、制御装置4は、計測対象面DSと射出面12LSとの間の間隔D_DS、及び、射出面12LSと計測対象面DSとの平行度を特定することができる。従って、間隔D_DSが所望間隔D_targetでない場合には、制御装置4は、間隔D_DSが所望間隔D_targetとなるように、ステージ駆動系23及び位置調整系14の少なくとも一方を制御してビーム照射装置1fとステージ22との位置関係を制御する。更に、射出面12LSと計測対象面DSとが平行でない場合には、制御装置4は、射出面12LSと計測対象面DSとが平行になるように、ステージ駆動系23及び位置調整系14の少なくとも一方を制御してビーム照射装置1fとステージ22との位置関係を制御する。 After that, as shown in FIG. 36, in the control device 4, the distance D_DS between the measurement target surface DS and the injection surface 12LS becomes the desired distance D_stage, and the measurement target surface DS becomes parallel to the injection surface 12LS. As described above, the positional relationship between the beam irradiation device 1f and the stage 22 is controlled (step S33). Specifically, the control device 4 is in the measurement coordinate space from the position of the injection surface 12LS specified in the first control operation and the position of the measurement target surface DS specified in step S32, as in step S23 of FIG. The positional relationship between the injection surface 12LS and the measurement target surface DS can be specified. That is, the control device 4 can specify the distance D_DS between the measurement target surface DS and the injection surface 12LS and the parallelism between the injection surface 12LS and the measurement target surface DS. Therefore, when the interval D_DS is not the desired interval D_taget, the control device 4 controls at least one of the stage drive system 23 and the position adjustment system 14 so that the interval D_DS becomes the desired interval D_target, and the beam irradiation device 1f and the control device 4. The positional relationship with the stage 22 is controlled. Further, when the injection surface 12LS and the measurement target surface DS are not parallel, the control device 4 determines at least the stage drive system 23 and the position adjustment system 14 so that the injection surface 12LS and the measurement target surface DS are parallel. One is controlled to control the positional relationship between the beam irradiation device 1f and the stage 22.
 以上説明したステップS32からステップS33までの動作が、必要に応じて繰り返し行われる。例えば、図36に示す例では、ステップS32からステップS33までの動作が、走査型電子顕微鏡SEMkが試料Wに関する情報の取得を終了するまで繰り返し行われる(ステップS34)。ここで、走査型電子顕微鏡SEMkが試料Wに関する情報を取得する際には、XY平面に沿ってステージ22が移動する。XY平面に沿ってステージ22が移動すると、XY平面に沿った方向(つまり、試料Wの表面WSuに沿った方向)において、電子ビームEBの照射領域が表面WSuに対して相対的に移動することは上述したとおりである。このため、XY平面に沿ったステージ22の移動に合わせて、XY平面に沿った方向において、電子ビームEBの照射領域を含む局所的な領域である計測対象面DSもまた、実質的には、表面WSuに対して相対的に移動する。従って、走査型電子顕微鏡SEMkは、XY平面に沿ったステージ22の移動に合わせて、表面WSu上を移動する計測対象面DSの計測座標空間内での位置(つまり、姿勢)を計測し、且つ、計測対象面DSの位置の計測結果に基づいてビーム照射装置1fとステージ22との位置関係を制御する動作を繰り返す。その結果、例えば、図38(a)から図38(c)に示すように互いに交差する3つの平面WSu1からWSu3を含む表面WSuを備える試料Wの状態を計測する過程において、計測対象面DSが平面WSu1上の局所的な領域となる期間中は、制御装置4は、図38(a)に示すように、計測対象面DSが存在する平面WSu1と射出面12LSとの間の間隔D_DSが所望間隔D_targetとなり、且つ、射出面12LSに対して平面WSu1が平行になるように、ビーム照射装置1fとステージ22との位置関係を制御する。計測対象面DSが平面WSu2上の局所的な領域となる期間中は、制御装置4は、図38(b)に示すように、計測対象面DSが存在する平面WSu2と射出面12LSとの間の間隔D_DSが所望間隔D_targetとなり、且つ、射出面12LSに対して平面WSu2が平行になるように、ビーム照射装置1fとステージ22との位置関係を制御する。計測対象面DSが平面WSu3上の局所的な領域となる期間中は、制御装置4は、図38(c)に示すように、計測対象面DSが存在する平面WSu3と射出面12LSとの間の間隔D_DSが所望間隔D_targetとなり、且つ、射出面12LSに対して平面WSu1が平行になるように、ビーム照射装置1fとステージ22との位置関係を制御する。 The operations from step S32 to step S33 described above are repeated as necessary. For example, in the example shown in FIG. 36, the operations from step S32 to step S33 are repeated until the scanning electron microscope SEMk finishes acquiring information about the sample W (step S34). Here, when the scanning electron microscope SEMk acquires information about the sample W, the stage 22 moves along the XY plane. When the stage 22 moves along the XY plane, the irradiation region of the electron beam EB moves relative to the surface WSu in the direction along the XY plane (that is, the direction along the surface WSu of the sample W). Is as described above. Therefore, in accordance with the movement of the stage 22 along the XY plane, the measurement target surface DS, which is a local region including the irradiation region of the electron beam EB in the direction along the XY plane, is also substantially. It moves relative to the surface WSu. Therefore, the scanning electron microscope SEMk measures the position (that is, the posture) of the measurement target surface DS moving on the surface WSu in the measurement coordinate space in accordance with the movement of the stage 22 along the XY plane, and The operation of controlling the positional relationship between the beam irradiation device 1f and the stage 22 is repeated based on the measurement result of the position of the measurement target surface DS. As a result, for example, in the process of measuring the state of the sample W including the surface WSu including the three planes WSu1 to WSu3 intersecting each other as shown in FIGS. 38 (a) to 38 (c), the measurement target surface DS During the period of being a local region on the plane WSu1, the control device 4 desires a distance D_DS between the plane WSu1 on which the measurement target surface DS exists and the injection surface 12LS, as shown in FIG. 38 (a). The positional relationship between the beam irradiation device 1f and the stage 22 is controlled so that the interval D_taget is set and the plane WSu1 is parallel to the injection surface 12LS. During the period when the measurement target surface DS is a local region on the plane WSu2, the control device 4 is between the plane WSu2 where the measurement target surface DS exists and the injection surface 12LS, as shown in FIG. 38 (b). The positional relationship between the beam irradiation device 1f and the stage 22 is controlled so that the interval D_DS is the desired interval D_taget and the plane WSu2 is parallel to the injection surface 12LS. During the period when the measurement target surface DS is a local region on the plane WSu3, the control device 4 is between the plane WSu3 where the measurement target surface DS exists and the injection surface 12LS, as shown in FIG. 38 (c). The positional relationship between the beam irradiation device 1f and the stage 22 is controlled so that the interval D_DS is the desired interval D_taget and the plane WSu1 is parallel to the injection surface 12LS.
 このように、第11実施形態の走査型電子顕微鏡SEMkは、上述した走査型電子顕微鏡SEMgが享受可能な効果と同様の効果を享受することができる。更には、第11実施形態では、ステージ22が試料Wを保持した後に(特に、走査型電子顕微鏡SEMdが試料Wの状態の計測を開始した後に)何らかの要因で間隔Dが所望間隔D_targetからずれてしまう及び/又は射出面12LSに対して表面WSuが平行でなくなってしまう状況が発生した場合においても、間隔Dが所望間隔D_targetとなり、且つ、射出面12LSに対して表面WSuが平行になるように、ビーム照射装置1fとステージ22との位置関係が制御される。つまり、走査型電子顕微鏡SEMkによる試料Wに関する情報の取得と並行してリアルタイムに、間隔Dが所望間隔D_targetとなり、且つ、射出面12LSに対して表面WSuが平行になるように、ビーム照射装置1fとステージ22との位置関係が制御される。 As described above, the scanning electron microscope SEMk of the eleventh embodiment can enjoy the same effect as the effect that can be enjoyed by the scanning electron microscope SEMg described above. Further, in the eleventh embodiment, after the stage 22 holds the sample W (particularly after the scanning electron microscope SEMd starts measuring the state of the sample W), the interval D deviates from the desired interval D_taget for some reason. Even when the surface WSu is not parallel to the injection surface 12LS, the interval D becomes the desired interval D_target and the surface WSu is parallel to the injection surface 12LS. , The positional relationship between the beam irradiation device 1f and the stage 22 is controlled. That is, in parallel with the acquisition of information on the sample W by the scanning electron microscope SEMk, the beam irradiation device 1f so that the interval D becomes the desired interval D_taget and the surface WSu is parallel to the injection surface 12LS. The positional relationship between the and the stage 22 is controlled.
 尚、上述した説明では、走査型電子顕微鏡SEMkは、試料Wに関する情報の取得と並行して、計測装置8gを用いて、表面WSu上を移動する計測対象面DSの計測座標空間内での位置(つまり、姿勢又は形状)をリアルタイムに計測している。しかしながら、走査型電子顕微鏡SEMkは、試料Wに関する情報の取得を開始する前に、計測装置8gを用いて、表面WSuの各部分の位置を予め計測しておいてもよい。具体的には、走査型電子顕微鏡SEMkは、試料Wに関する情報の取得を開始する前に、計測装置8gを用いて、表面WSuを複数の分割領域に分割した上で各分割領域の位置(つまり、姿勢又は形状)を予め計測しておいてもよい。この場合、走査型電子顕微鏡SEMkは、試料Wの状態の計測を開始した後には、計測装置8gを用いて計測対象面DSの位置(つまり、姿勢又は形状)をリアルタイムに計測することなく、表面WSuの各部分の位置(つまり、姿勢又は形状)の予めの計測結果に基づいて、間隔Dが所望間隔D_targetとなり、且つ、射出面12LSに対して表面WSuが平行になるように、ビーム照射装置1fとステージ22との位置関係を制御してもよい。具体的には、走査型電子顕微鏡SEMkは、表面WSuの各部分の位置の計測結果(つまり、計測装置8gが予め計測しておいた各部分の位置に関する情報)から、表面WSuのうち計測対象面DSが設定されている部分の位置に関する情報を取得し、当該取得した部分の位置に関する情報に基づいて、ビーム照射装置1とステージ22との位置関係を制御してもよい。 In the above description, the scanning electron microscope SEMk uses the measuring device 8g to position the measurement target surface DS moving on the surface WSu in the measurement coordinate space in parallel with the acquisition of information on the sample W. (That is, the posture or shape) is measured in real time. However, in the scanning electron microscope SEMk, the position of each portion of the surface WSu may be measured in advance using the measuring device 8g before starting the acquisition of the information regarding the sample W. Specifically, the scanning electron microscope SEMk divides the surface WSu into a plurality of divided regions using a measuring device 8 g before starting the acquisition of information on the sample W, and then positions each divided region (that is, that is). , Posture or shape) may be measured in advance. In this case, after starting the measurement of the state of the sample W, the scanning electron microscope SEMk does not measure the position (that is, the posture or shape) of the measurement target surface DS in real time by using the measuring device 8g, and the surface surface. A beam irradiator so that the interval D becomes the desired interval D_target and the surface WSu is parallel to the injection surface 12LS based on the preliminary measurement result of the position (that is, the posture or shape) of each part of the WSu. The positional relationship between 1f and the stage 22 may be controlled. Specifically, the scanning electron microscope SEMk is a measurement target of the surface WSu from the measurement result of the position of each part of the surface WSu (that is, information on the position of each part previously measured by the measuring device 8g). Information on the position of the portion where the surface DS is set may be acquired, and the positional relationship between the beam irradiation device 1 and the stage 22 may be controlled based on the information on the position of the acquired portion.
 また、上述した説明では、計測対象面DSは、電子ビームEBが照射される照射領域を含む表面WSu上の局所的な領域(つまり、真空領域VSPに面する又は覆われる領域を含む表面WSu上の局所的な領域)に設定されている。しかしながら、計測対象面DSは、電子ビームEBが照射される照射領域を含まない表面WSu上の局所的な領域に設定されていてもよい。計測対象面DSは、真空領域VSPに面する又は覆われる領域を含まない表面WSu上の局所的な領域に設定されていてもよい。この場合、走査型電子顕微鏡SEMkは、試料Wの表面WSuのうちの第1面部分に電子ビームEBを照射しながら、試料Wの表面WSuのうちの第1面部分とは異なる第2面部分の位置を計測してもよい。その後、走査型電子顕微鏡SEMkは、試料Wの表面WSuのうちの第2面部分に電子ビームEBを照射する際に、予め計測しておいた第2面部分の位置の計測結果に基づいて、第2面部分と射出面121fとの間の間隔Dが所望間隔D_targetとなり、且つ、射出面12LSに対して第2面部分が平行になるように、ビーム照射装置1fとステージ22との位置関係を制御してもよい。 Further, in the above description, the measurement target surface DS is a local region on the surface WSu including an irradiation region to which the electron beam EB is irradiated (that is, on the surface WSu including a region facing or covering the vacuum region VSP. It is set in the local area of. However, the measurement target surface DS may be set to a local region on the surface WSu that does not include the irradiation region to which the electron beam EB is irradiated. The measurement target surface DS may be set to a local region on the surface WSu that does not include a region facing or covering the vacuum region VSP. In this case, the scanning electron microscope SEMk irradiates the first surface portion of the surface WSu of the sample W with the electron beam EB, and the second surface portion different from the first surface portion of the surface WSu of the sample W. The position of may be measured. After that, the scanning electron microscope SEMk is based on the measurement result of the position of the second surface portion measured in advance when irradiating the second surface portion of the surface WSu of the sample W with the electron beam EB. The positional relationship between the beam irradiation device 1f and the stage 22 so that the distance D between the second surface portion and the injection surface 121f is the desired distance D_target and the second surface portion is parallel to the injection surface 12LS. May be controlled.
 (12)第12実施形態の走査型電子顕微鏡SEMl
 続いて、図39を参照しながら、第12実施形態の走査型電子顕微鏡SEM(以降、第12実施形態の走査型電子顕微鏡SEMを、“走査型電子顕微鏡SEMl”と称する)について説明する。図39は、第12実施形態の走査型電子顕微鏡SEMlの構造を示す断面図である。
(12) Scanning electron microscope SEMl of the twelfth embodiment
Subsequently, the scanning electron microscope SEM of the twelfth embodiment (hereinafter, the scanning electron microscope SEM of the twelfth embodiment is referred to as “scanning electron microscope SEMl”) will be described with reference to FIG. 39. FIG. 39 is a cross-sectional view showing the structure of the scanning electron microscope SEMl of the twelfth embodiment.
 図39に示すように、第12実施形態の走査型電子顕微鏡SEMlは、上述した第1実施形態の走査型電子顕微鏡SEMaと比較して、光学顕微鏡17lを備えているという点で異なる。走査型電子顕微鏡SEMlのその他の構造は、上述した走査型電子顕微鏡SEMaのその他の構造と同一であってもよい。 As shown in FIG. 39, the scanning electron microscope SEMl of the twelfth embodiment is different from the scanning electron microscope SEMa of the first embodiment described above in that it includes an optical microscope 17l. The other structure of the scanning electron microscope SEMl may be the same as the other structure of the scanning electron microscope SEMa described above.
 光学顕微鏡17lは、試料Wの状態(例えば、試料Wの表面WSuの少なくとも一部の状態)を光学的に計測可能な装置である。つまり、光学顕微鏡17lは、試料Wの状態を光学的に計測して、試料Wに関する情報を取得可能な装置である。特に、光学顕微鏡17lは、試料Wの状態を大気圧環境下で計測可能であるという点で、試料Wの状態を真空環境下で計測するビーム照射装置1(特に、電子検出器117)とは異なる。 The optical microscope 17l is a device capable of optically measuring the state of the sample W (for example, the state of at least a part of the surface WSu of the sample W). That is, the optical microscope 17l is an apparatus capable of optically measuring the state of the sample W and acquiring information on the sample W. In particular, the optical microscope 17l is different from the beam irradiation device 1 (particularly, the electron detector 117) that measures the state of the sample W in a vacuum environment in that the state of the sample W can be measured in an atmospheric pressure environment. different.
 光学顕微鏡17lは、ビーム照射装置1が電子ビームEBを試料Wに照射して試料Wの状態を計測する前に、試料Wの状態を計測する。つまり、走査型電子顕微鏡SEMlは、光学顕微鏡17lを用いて試料Wの状態を計測した後に、ビーム照射装置1を用いて試料Wの状態を計測する。ここで、光学顕微鏡17lが大気圧環境下で試料Wの状態を計測可能であるため、光学顕微鏡17lが試料Wの状態を計測している期間中は、ビーム照射装置1は、真空領域VSPを形成しなくてもよい。一方で、ビーム照射装置1は、光学顕微鏡17lが試料Wの状態の計測を完了した後に、真空領域VSPを形成して試料Wに電子ビームEBを照射する。 The optical microscope 17l measures the state of the sample W before the beam irradiation device 1 irradiates the sample W with the electron beam EB to measure the state of the sample W. That is, the scanning electron microscope SEMl measures the state of the sample W using the optical microscope 17l and then measures the state of the sample W using the beam irradiation device 1. Here, since the optical microscope 17l can measure the state of the sample W in an atmospheric pressure environment, the beam irradiating device 1 sets the vacuum region VSP during the period when the optical microscope 17l is measuring the state of the sample W. It does not have to be formed. On the other hand, the beam irradiation device 1 forms a vacuum region VSP and irradiates the sample W with the electron beam EB after the optical microscope 17l completes the measurement of the state of the sample W.
 ステージ22は、ビーム照射装置1が電子ビームEBを試料Wに照射する期間中は、ビーム照射装置1が電子ビームEBを照射可能な位置に試料Wが位置するように移動してもよい。ステージ22は、電子顕微鏡17lが試料Wの状態を計測する期間中は、光学顕微鏡17lが試料Wの状態を計測可能な位置に試料Wが位置するように移動してもよい。ステージ22は、ビーム照射装置1が電子ビームEBを照射可能な位置と、光学顕微鏡17lが計測可能な位置との間で移動してもよい。尚、図40は、ビーム照射装置1が電子ビームEBを照射可能な位置に試料Wが位置するように移動したステージ22を示す断面図である。図41は、光学顕微鏡17lが試料Wの状態を計測可能な位置試料Wが位置するように移動したステージ22を示す断面図である。 The stage 22 may move so that the sample W is located at a position where the beam irradiation device 1 can irradiate the electron beam EB while the beam irradiation device 1 irradiates the sample W with the electron beam EB. The stage 22 may be moved so that the sample W is located at a position where the optical microscope 17l can measure the state of the sample W while the electron microscope 17l measures the state of the sample W. The stage 22 may move between a position where the beam irradiation device 1 can irradiate the electron beam EB and a position where the optical microscope 17l can measure. FIG. 40 is a cross-sectional view showing a stage 22 in which the beam irradiation device 1 has moved so that the sample W is positioned at a position where the electron beam EB can be irradiated. FIG. 41 is a cross-sectional view showing a stage 22 in which the optical microscope 17l is moved so that the position sample W where the state of the sample W can be measured is located.
 光学顕微鏡17lが試料Wの状態を計測可能な位置に試料Wが位置している期間(以降、説明の便宜上、この期間を“光学計測期間”と称する)の少なくとも一部において、ビーム照射装置1は、ステージ22の表面との間に真空領域VSPを形成してもよい。つまり、光学計測期間の少なくとも一部においても、ビーム照射装置1が電子ビームEBを試料Wに照射する期間中と同様に、ビーム照射装置1は、真空領域VSPを形成し続けてもよい。例えば、図42に示すように、ビーム照射装置1は、光学計測期間の少なくとも一部において、ステージ22の表面のうち保持面HSとは異なる(典型的には、保持面HSの外側に位置する)外周面OSとの間に真空領域VSPを形成してもよい。この場合、保持面HSに保持された試料Wが光学顕微鏡17lに対向している状態で、外周面OSがビーム照射装置1(特に、射出面12LS)と対向可能となるように、ステージ22の特性(例えば、形状及びサイズの少なくとも一方)が設定されていてもよい。 The beam irradiation device 1 is used for at least a part of the period during which the sample W is located at a position where the optical microscope 17l can measure the state of the sample W (hereinafter, for convenience of explanation, this period is referred to as an “optical measurement period”). May form a vacuum region VSP with the surface of the stage 22. That is, even during at least a part of the optical measurement period, the beam irradiation device 1 may continue to form the vacuum region VSP as during the period during which the beam irradiation device 1 irradiates the sample W with the electron beam EB. For example, as shown in FIG. 42, the beam irradiator 1 is located on the surface of the stage 22 different from the holding surface HS (typically outside the holding surface HS) during at least a portion of the optical measurement period. ) A vacuum region VSP may be formed between the outer peripheral surface OS and the peripheral surface OS. In this case, in a state where the sample W held on the holding surface HS faces the optical microscope 17l, the outer peripheral surface OS of the stage 22 can face the beam irradiation device 1 (particularly, the injection surface 12LS). Properties (eg, at least one of shape and size) may be set.
 ビーム照射装置1が外周面OSとの間に真空領域VSPを形成する場合には、外周面OSの高さ(つまり、Z軸方向の位置)は、保持面HSに保持されたウェハWの表面WSuの高さと同じであってもよい。この場合、ステージ22の移動に伴って真空領域VSPが外周面OSと試料Wの表面WSuとの境界をまたぐ際に真空領域VSPが破壊される可能性が低減可能となる。つまり、ステージ22は、図42に示す光学顕微鏡17lが試料Wを計測可能であって且つビーム照射装置1が外周面OSとの間に真空領域VSPを形成可能な位置と、図43に示すビーム照射装置1が試料Wとの間に真空領域VSPを形成可能な位置(つまり、ビーム照射装置1が電子ビームEBを試料Wに照射可能な位置)との間で、真空領域VSPが破壊される可能性を低減しながら移動することができる。その結果、例えば、図42に示すように光学顕微鏡17lが試料Wを計測可能であって且つビーム照射装置1が外周面OSとの間に真空領域VSPを形成可能な状態から、ステージ22がXY平面に沿って(例えば、図42及び図43に示す例では、Y軸方向に沿って)移動すれば、ビーム照射装置1は、真空領域VSPを介して電子ビームEBを試料Wに照射することができる。その結果、ステージ22の移動に伴って真空領域VSPを新たに形成する必要がある場合と比較して、走査型電子顕微鏡SEMlのスループットが向上する。 When the beam irradiation device 1 forms a vacuum region VSP with the outer peripheral surface OS, the height of the outer peripheral surface OS (that is, the position in the Z-axis direction) is the surface of the wafer W held by the holding surface HS. It may be the same as the height of WSu. In this case, it is possible to reduce the possibility that the vacuum region VSP is destroyed when the vacuum region VSP crosses the boundary between the outer peripheral surface OS and the surface WSu of the sample W as the stage 22 moves. That is, the stage 22 has a position where the optical microscope 17l shown in FIG. 42 can measure the sample W and the beam irradiation device 1 can form a vacuum region VSP between the outer peripheral surface OS and the beam shown in FIG. 43. The vacuum region VSP is destroyed at a position where the irradiation device 1 can form a vacuum region VSP with the sample W (that is, a position where the beam irradiation device 1 can irradiate the sample W with the electron beam EB). You can move while reducing the possibility. As a result, for example, as shown in FIG. 42, the stage 22 is XY from the state where the optical microscope 17l can measure the sample W and the beam irradiation device 1 can form a vacuum region VSP with the outer peripheral surface OS. When moving along a plane (for example, along the Y-axis direction in the examples shown in FIGS. 42 and 43), the beam irradiator 1 irradiates the sample W with the electron beam EB via the vacuum region VSP. Can be done. As a result, the throughput of the scanning electron microscope SEMl is improved as compared with the case where a vacuum region VSP needs to be newly formed as the stage 22 moves.
 走査型電子顕微鏡SEMlは、光学顕微鏡17lを用いた試料Wの状態の計測結果に基づいて、ビーム照射装置1を用いて試料Wの状態を計測してもよい。例えば、走査型電子顕微鏡SEMlは、まず、光学顕微鏡17lを用いて、試料Wのうちの所望領域の状態を計測してもよい。その後、走査型電子顕微鏡SEMlは、光学顕微鏡17lを用いた試料Wの所望領域の状態の計測結果に基づいて、ビーム照射装置1を用いて試料Wの同じ所望領域の状態(或いは、所望領域とは異なる領域の状態)を計測してもよい。この場合、試料Wの所望領域には、ビーム照射装置1を用いた試料Wの状態の計測のために利用可能な所定の指標物が形成されていてもよい。所定の指標物の一例として、例えば、試料Wとビーム照射装置1との位置合わせに用いられるマーク(例えば、フィデュシャルマーク及びアライメントマークの少なくとも一方)があげられる。 The scanning electron microscope SEMl may measure the state of the sample W using the beam irradiation device 1 based on the measurement result of the state of the sample W using the optical microscope 17l. For example, the scanning electron microscope SEMl may first measure the state of a desired region of the sample W using an optical microscope 17l. After that, the scanning electron microscope SEMl uses the beam irradiation device 1 to obtain the same desired region state (or desired region) of the sample W based on the measurement result of the desired region state of the sample W using the optical microscope 17l. May measure the state of different regions). In this case, a predetermined index object that can be used for measuring the state of the sample W using the beam irradiation device 1 may be formed in the desired region of the sample W. As an example of a predetermined index object, for example, a mark used for aligning the sample W and the beam irradiation device 1 (for example, at least one of a fiducial mark and an alignment mark) can be mentioned.
 或いは、上述したように、試料Wの表面WSuには、微細な凹凸パターンが形成されている。例えば、試料Wが半導体基板である場合には、微細な凹凸パターンの一例として、レジストが塗布された半導体基板が露光装置によって露光され且つ現像装置によって現像された後に半導体基板に残るレジストパターンがあげられる。この場合、例えば、走査型電子顕微鏡SEMlは、まず、光学顕微鏡17lを用いて、試料Wのうちの所望領域に形成された凹凸パターンの状態を計測してもよい。その後、走査型電子顕微鏡SEMlは、光学顕微鏡17lを用いた試料Wの所望領域の状態の計測結果(つまり、所望領域に形成された凹凸パターンの状態の計測結果)に基づいて、ビーム照射装置1を用いて試料Wの同じ所望領域に形成された凹凸パターンの状態を計測してもよい。例えば、走査型電子顕微鏡SEMlは、光学顕微鏡17lの計測結果に基づいて、凹凸パターンの計測に最適な電子ビームEBが照射されるように電子ビームEBの特性を制御した上で、ビーム照射装置1を用いて試料Wの同じ所望領域に形成された凹凸パターンの状態を計測してもよい。 Alternatively, as described above, a fine uneven pattern is formed on the surface WSu of the sample W. For example, when the sample W is a semiconductor substrate, an example of a fine uneven pattern is a resist pattern that remains on the semiconductor substrate after the semiconductor substrate coated with the resist is exposed by the exposure apparatus and developed by the developing apparatus. Be done. In this case, for example, the scanning electron microscope SEMl may first measure the state of the uneven pattern formed in the desired region of the sample W by using the optical microscope 17l. After that, the scanning electron microscope SEMl uses the optical microscope 17l to measure the state of the desired region of the sample W (that is, the measurement result of the state of the uneven pattern formed in the desired region), and then the beam irradiation device 1 May be used to measure the state of the uneven pattern formed in the same desired region of the sample W. For example, the scanning electron microscope SEMl controls the characteristics of the electron beam EB so that the optimum electron beam EB for measuring the unevenness pattern is irradiated based on the measurement result of the optical microscope 17l, and then the beam irradiation device 1 May be used to measure the state of the uneven pattern formed in the same desired region of the sample W.
 このような第12実施形態の走査型電子顕微鏡SEMlは、走査型電子顕微鏡SEMaが享受可能な効果と同様の効果を享受することができる。加えて、第12実施形態の走査型電子顕微鏡SEMlは、光学顕微鏡17lを備えていない比較例の走査型電子顕微鏡と比較して、電子ビームEBを用いて試料Wの状態をより適切に計測することができる。 The scanning electron microscope SEMl of the twelfth embodiment can enjoy the same effect as the effect that the scanning electron microscope SEMa can enjoy. In addition, the scanning electron microscope SEMl of the twelfth embodiment more appropriately measures the state of the sample W using the electron beam EB as compared with the scanning electron microscope of the comparative example not provided with the optical microscope 17l. be able to.
 尚、上述した説明では、走査型電子顕微鏡SEMlは、光学顕微鏡17lを用いて試料Wの状態を計測した後に、ビーム照射装置1を用いて試料Wの状態を計測している。しかしながら、走査型電子顕微鏡SEMlは、光学顕微鏡17lを用いた試料Wの状態の計測と、ビーム照射装置1を用いた試料Wの状態の計測とを並行して行ってもよい。例えば、走査型電子顕微鏡SEMlは、試料Wの所望領域の状態を、光学顕微鏡17l及びビーム照射装置1を用いて同時に計測してもよい。或いは、走査型電子顕微鏡SEMlは、光学顕微鏡17lを用いた試料Wの第1領域の状態の計測と、ビーム照射装置1を用いた試料Wの第2領域(但し、第2領域は第1領域とは異なる)の状態の計測とを並行して行ってもよい。 In the above description, the scanning electron microscope SEMl measures the state of the sample W using the optical microscope 17l and then measures the state of the sample W using the beam irradiation device 1. However, in the scanning electron microscope SEMl, the measurement of the state of the sample W using the optical microscope 17l and the measurement of the state of the sample W using the beam irradiation device 1 may be performed in parallel. For example, the scanning electron microscope SEMl may simultaneously measure the state of the desired region of the sample W using the optical microscope 17l and the beam irradiation device 1. Alternatively, the scanning electron microscope SEMl measures the state of the first region of the sample W using the optical microscope 17l and the second region of the sample W using the beam irradiation device 1 (however, the second region is the first region). The measurement of the state (different from) may be performed in parallel.
 また、走査型電子顕微鏡SEMlは、光学顕微鏡17lに加えて又は代えて、大気圧環境下で試料Wの状態を計測可能な任意の計測装置を備えていてもよい。任意の計測装置の一例として、回折干渉計があげられる。尚、回折干渉計は、例えば、光源光を分岐して計測光及び参照光を生成し、計測光を試料Wに照射して発生する反射光(或いは、透過光又は散乱光)と参照光とが干渉することで発生する干渉パターンを検出して試料Wの状態(例えば、試料Wの表面形状)を計測する計測装置である。尚、任意の計測装置の他の一例として、スキャトロメータが挙げられる。スキャトロメータは、試料Wに計測光を照射して、試料Wからの散乱光(回折光等)を受光して試料Wの状態を計測する計測装置である。 Further, the scanning electron microscope SEMl may be provided with an arbitrary measuring device capable of measuring the state of the sample W in an atmospheric pressure environment in addition to or in place of the optical microscope 17l. An example of an arbitrary measuring device is a diffraction interferometer. The diffraction interferometer, for example, branches the light source light to generate measurement light and reference light, and irradiates the sample W with the measurement light to generate reflected light (or transmitted light or scattered light) and reference light. This is a measuring device that detects an interference pattern generated by interference with light and measures the state of sample W (for example, the surface shape of sample W). As another example of the arbitrary measuring device, a scatometer can be mentioned. The scatometer is a measuring device that irradiates the sample W with measurement light and receives scattered light (diffracted light or the like) from the sample W to measure the state of the sample W.
 また、上述した走査型電子顕微鏡SEMlの説明では、第1実施形態の走査型電子顕微鏡SEMaが光学顕微鏡17lを備えていることになっている。しかしながら第2実施形態の走査型電子顕微鏡SEMaから第11実施形態の走査型電子顕微鏡SEMk(更には、後述する第13実施形態の走査型電子顕微鏡SEMm)のそれぞれが光学顕微鏡17lを備えていてもよい。 Further, in the above description of the scanning electron microscope SEMl, the scanning electron microscope SEMa of the first embodiment is provided with an optical microscope 17l. However, even if each of the scanning electron microscope SEMa of the second embodiment to the scanning electron microscope SEMk of the eleventh embodiment (furthermore, the scanning electron microscope SEMm of the thirteenth embodiment described later) includes an optical microscope 17l. Good.
 (13)第13実施形態の走査型電子顕微鏡SEMm
 続いて、図44を参照しながら、第13実施形態の走査型電子顕微鏡SEM(以降、第14実施形態の走査型電子顕微鏡SEMを、“走査型電子顕微鏡SEMm”と称する)について説明する。図44は、第13実施形態の走査型電子顕微鏡SEMmの構造を示す断面図である。
(13) Scanning electron microscope SEMm of the thirteenth embodiment
Subsequently, with reference to FIG. 44, the scanning electron microscope SEM of the thirteenth embodiment (hereinafter, the scanning electron microscope SEM of the fourteenth embodiment will be referred to as “scanning electron microscope SEMm”) will be described. FIG. 44 is a cross-sectional view showing the structure of the scanning electron microscope SEMm of the thirteenth embodiment.
 図44に示すように、第13実施形態の走査型電子顕微鏡SEMmは、上述した第1実施形態の走査型電子顕微鏡SEMaと比較して、チャンバ181mと、空調機182mとを備えているという点で異なる。走査型電子顕微鏡SEMmのその他の構造は、上述した走査型電子顕微鏡SEMaのその他の構造と同一であってもよい。 As shown in FIG. 44, the scanning electron microscope SEMm of the thirteenth embodiment includes a chamber 181 m and an air conditioner 182 m as compared with the scanning electron microscope SEMa of the first embodiment described above. Is different. The other structure of the scanning electron microscope SEMm may be the same as the other structure of the scanning electron microscope SEMa described above.
 チャンバ181mは、少なくともビーム照射装置1と、ステージ装置2と、支持フレーム3とを収容する。但し、チャンバ181mは、ビーム照射装置1、ステージ装置2及び支持フレーム3の少なくとも一部を収容していなくてもよい。チャンバ181mは、走査型電子顕微鏡SEMmが備えるその他の構成要件(例えば、位置計測装置15、制御装置4、ポンプ系5、気体供給装置6及び排気装置7の少なくとも一部)を収容していてもよい。 The chamber 181 m accommodates at least the beam irradiation device 1, the stage device 2, and the support frame 3. However, the chamber 181m does not have to accommodate at least a part of the beam irradiation device 1, the stage device 2, and the support frame 3. The chamber 181 m may accommodate other components of the scanning electron microscope SEMm (eg, at least a portion of the position measuring device 15, the control device 4, the pump system 5, the gas supply device 6 and the exhaust device 7). Good.
 チャンバ181mの外部の空間は、例えば、大気圧空間である。チャンバ181mの内部の空間(つまり、少なくともビーム照射装置1と、ステージ装置2と、支持フレーム3とを収容する空間)もまた、例えば、大気圧空間である。この場合、少なくともビーム照射装置1と、ステージ装置2と、支持フレーム3とは、大気圧空間に配置される。但し、上述したように、チャンバ181mの内部の大気圧空間内に、ビーム照射装置1が局所的な真空領域VSPを形成する。 The space outside the chamber 181 m is, for example, an atmospheric pressure space. The space inside the chamber 181 m (that is, the space that accommodates at least the beam irradiation device 1, the stage device 2, and the support frame 3) is also, for example, an atmospheric pressure space. In this case, at least the beam irradiation device 1, the stage device 2, and the support frame 3 are arranged in the atmospheric pressure space. However, as described above, the beam irradiator 1 forms a local vacuum region VSP in the atmospheric pressure space inside the chamber 181 m.
 空調機182mは、チャンバ181mの内部の空間に気体(例えば、上述した不活性ガス及びクリーンドライエアーの少なくとも一方)を供給可能である。空調機182mは、チャンバ181mの内部の空間から気体を回収可能である。空調機182mがチャンバ181mの内部の空間から気体を回収することで、チャンバ181mの内部の空間の清浄度が良好に保たれる。この際、空調機182mは、チャンバ181mの内部の空間に供給する気体の温度及び湿度の少なくとも一方を制御することで、チャンバ181mの内部の空間の温度及び湿度の少なくとも一方を制御可能である。 The air conditioner 182 m can supply a gas (for example, at least one of the above-mentioned inert gas and clean dry air) to the space inside the chamber 181 m. The air conditioner 182 m can recover gas from the space inside the chamber 181 m. The air conditioner 182 m recovers the gas from the space inside the chamber 181 m, so that the cleanliness of the space inside the chamber 181 m is kept good. At this time, the air conditioner 182m can control at least one of the temperature and humidity of the space inside the chamber 181m by controlling at least one of the temperature and humidity of the gas supplied to the space inside the chamber 181m.
 このような第13実施形態の走査型電子顕微鏡SEMmは、走査型電子顕微鏡SEMaが享受可能な効果と同様の効果を享受することができる。 The scanning electron microscope SEMm of the thirteenth embodiment can enjoy the same effect as the effect that the scanning electron microscope SEMa can enjoy.
 尚、上述した走査型電子顕微鏡SEMmの説明では、第1実施形態の走査型電子顕微鏡SEMaがチャンバ181m及び空調機182mを備えていることになっている。しかしながら第2実施形態の走査型電子顕微鏡SEMaから第12実施形態の走査型電子顕微鏡SEMlのそれぞれがチャンバ181m及び空調機182mを備えていてもよい。 In the above description of the scanning electron microscope SEMm, the scanning electron microscope SEMa of the first embodiment is provided with a chamber 181 m and an air conditioner 182 m. However, each of the scanning electron microscope SEMa of the second embodiment to the scanning electron microscope SEMl of the twelfth embodiment may include a chamber 181 m and an air conditioner 182 m.
 (14)第14実施形態の走査型電子顕微鏡SEMn
 続いて、14実施形態の走査型電子顕微鏡SEM(以降、第14実施形態の走査型電子顕微鏡SEMを、“走査型電子顕微鏡SEMn”と称する)について説明する。第14実施形態の走査型電子顕微鏡SEMnは、上述した第1実施形態の走査型電子顕微鏡SEMaと比較して、ポンプ系5に代えてポンプ系5nとを備えているという点で異なる。走査型電子顕微鏡SEMnのその他の構造は、上述した走査型電子顕微鏡SEMaのその他の構造と同一であってもよい。従って、以下では、図45を参照しながら、第14実施形態のポンプ系5nについて説明する。図45は、第14実施形態のポンプ系5nの構造を示す模式図である。
(14) Scanning electron microscope SEMn of the 14th embodiment
Subsequently, the scanning electron microscope SEM of the 14th embodiment (hereinafter, the scanning electron microscope SEM of the 14th embodiment will be referred to as “scanning electron microscope SEMn”) will be described. The scanning electron microscope SEMn of the 14th embodiment is different from the scanning electron microscope SEMa of the first embodiment described above in that it includes a pump system 5n instead of the pump system 5. The other structure of the scanning electron microscope SEMn may be the same as the other structure of the scanning electron microscope SEMa described above. Therefore, in the following, the pump system 5n of the 14th embodiment will be described with reference to FIG. 45. FIG. 45 is a schematic view showing the structure of the pump system 5n of the 14th embodiment.
 図45に示すように、ポンプ系5nは、ポンプ系5と比較して、真空ポンプ51及び52に代えて、真空ポンプ51n及び52nを備えているという点で異なる。真空ポンプ51nは、真空ポンプ51nの一部が真空ポンプ52nの一部として共用されるという点で、真空ポンプ51の一部が真空ポンプ52として共用されなくてもよい真空ポンプ51とは異なる。真空ポンプ52nは、真空ポンプ52nの一部が真空ポンプ51nの一部として共用されるという点で、真空ポンプ52の一部が真空ポンプ51として共用されなくてもよい真空ポンプ52とは異なる。ポンプ系5nのその他の構造は、上述したポンプ系5のその他の構造と同一であってもよい。 As shown in FIG. 45, the pump system 5n is different from the pump system 5 in that it includes vacuum pumps 51n and 52n instead of the vacuum pumps 51 and 52. The vacuum pump 51n is different from the vacuum pump 51 in that a part of the vacuum pump 51n is shared as a part of the vacuum pump 52n, and a part of the vacuum pump 51 does not have to be shared as the vacuum pump 52. The vacuum pump 52n is different from the vacuum pump 52 in that a part of the vacuum pump 52n is shared as a part of the vacuum pump 51n, and a part of the vacuum pump 52 does not have to be shared as the vacuum pump 51. The other structure of the pump system 5n may be the same as the other structure of the pump system 5 described above.
 一例として、図45に示すように、真空ポンプ51nは、上述した真空ポンプ51と同様に、主ポンプとして用いられる高真空用ポンプ511nと、補助ポンプ(具体的には、高真空用ポンプ511nのバックポンプ)として用いられる低真空用ポンプ512nとを備えている。高真空用ポンプ511nの一例として、例えば、ターボ分子ポンプ、拡散ポンプ、クライオポンプ及びスパッタイオンポンプの少なくとも一つがあげられる。低真空用ポンプ512nの一例として、例えば、ドライポンプがあげられる。真空ポンプ51nは、配管117を介して、ビーム光学系11内のビーム通過空間SPb1及び差動排気系12内のビーム通過空間SPb2を排気する。尚、配管117に圧力計591nが配置されていてもよいし、ビーム通過空間SPb1とビーム通過空間SPb2との間(つまり、ビーム光学系11と差動排気系12との間)に圧力計592nが配置されていてもよい。また、ビーム通過空間SPb1及び圧力計592nとビーム通過空間SPb2との間には、バルブ592nが配置されていてもよい。尚、ビーム通過空間SPb2に対して、開口126及び配管127(但し、図45では不図示)と配管1291及びバルブ1281を介して気体供給装置6が接続されており、且つ、開口126及び配管127(但し、図45では不図示)と配管1292及びバルブ1282を介して排気装置7が接続されている点は、第1実施形態と同様である。一方で、真空ポンプ52nは、低真空用ポンプ512nと低真空用ポンプ522n(例えば、ドライポンプ)とを備えている。つまり、真空ポンプ51nと真空ポンプ52とは、低真空用ポンプ512nを共用している。低真空用ポンプ512nは、排気通路EP1を介した排気(具体的には、1段目の差動排気)を行う。低真空用ポンプ522nは、排気通路EP2を介した排気(具体的には、2段目の差動排気)を行う。尚、図45に示す例において、ポンプ系5nは、低真空用ポンプ512n及び522nに代えて、低真空用ポンプ512nとして機能可能であり且つ低真空用ポンプ522nとしても機能可能な1台の低真空用ポンプを備えていてもよい。つまり、ポンプ系5nは、低真空用ポンプ512n及び522nを、1台の低真空用ポンプで兼用してもよい。 As an example, as shown in FIG. 45, the vacuum pump 51n includes a high vacuum pump 511n used as a main pump and an auxiliary pump (specifically, a high vacuum pump 511n), similarly to the vacuum pump 51 described above. It is equipped with a low vacuum pump 512n used as a back pump). As an example of the high vacuum pump 511n, for example, at least one of a turbo molecular pump, a diffusion pump, a cryopump and a sputter ion pump can be mentioned. An example of the low vacuum pump 512n is a dry pump. The vacuum pump 51n exhausts the beam passing space SPb1 in the beam optical system 11 and the beam passing space SPb2 in the differential exhaust system 12 via the pipe 117. A pressure gauge 591n may be arranged in the pipe 117, or a pressure gauge 592n between the beam passage space SPb1 and the beam passage space SPb2 (that is, between the beam optical system 11 and the differential exhaust system 12). May be arranged. Further, a valve 592n may be arranged between the beam passing space SPb1 and the pressure gauge 592n and the beam passing space SPb2. The gas supply device 6 is connected to the beam passage space SPb2 via the opening 126 and the pipe 127 (however, not shown in FIG. 45), the pipe 1291, and the valve 1281, and the opening 126 and the pipe 127. (However, it is not shown in FIG. 45) and the exhaust device 7 is connected via the pipe 1292 and the valve 1282, which is the same as that of the first embodiment. On the other hand, the vacuum pump 52n includes a low vacuum pump 512n and a low vacuum pump 522n (for example, a dry pump). That is, the vacuum pump 51n and the vacuum pump 52 share a low vacuum pump 512n. The low vacuum pump 512n exhausts the air through the exhaust passage EP1 (specifically, the first-stage differential exhaust). The low vacuum pump 522n exhausts air through the exhaust passage EP2 (specifically, second-stage differential exhaust gas). In the example shown in FIG. 45, the pump system 5n can function as a low vacuum pump 512n instead of the low vacuum pumps 512n and 522n, and can also function as a low vacuum pump 522n. A vacuum pump may be provided. That is, in the pump system 5n, the low vacuum pumps 512n and 522n may be combined with one low vacuum pump.
 図45に示す走査型電子顕微鏡SEMnは、例えば以下のように動作してもよい。例えば、走査型電子顕微鏡SEMnが停止している場合には、制御装置4は、バルブ593nを開状態に設定する一方で、バルブ1281及び1282を閉状態に設定してもよい。走査型電子顕微鏡SEMnが動作を開始する場合には、まず、低真空用ポンプ512n及び522nが排気を開始してもよい。その後、低真空用ポンプ512nによるビーム通過空間SPb1の排気によって圧力計591nの計測値が第1所定値(例えば、200パスカル)以下となった時点で、高真空用ポンプ511nが排気を開始してもよい。高真空用ポンプ511nによるビーム通過空間SPb1の排気によって圧力計591nの計測値が第2所定値(例えば、0.1パスカル)以下となった時点で、走査型電子顕微鏡SEMnは、電子ビームEBの照射を開始してもよい。 The scanning electron microscope SEMn shown in FIG. 45 may operate as follows, for example. For example, when the scanning electron microscope SEMn is stopped, the control device 4 may set the valves 593n in the open state and the valves 1281 and 1282 in the closed state. When the scanning electron microscope SEMn starts operation, first, the low vacuum pumps 512n and 522n may start exhausting. After that, when the measured value of the pressure gauge 591n becomes equal to or less than the first predetermined value (for example, 200 pascals) due to the exhaust of the beam passage space SPb1 by the low vacuum pump 512n, the high vacuum pump 511n starts exhausting. May be good. When the measured value of the pressure gauge 591n becomes equal to or less than the second predetermined value (for example, 0.1 Pascal) due to the exhaust of the beam passing space SPb1 by the high vacuum pump 511n, the scanning electron microscope SEMn is the electron beam EB. Irradiation may be started.
 また、気体供給装置6による気体の供給及び/又は排気装置7による排気が行われる場合には、制御装置4は、バルブ593nを閉状態に設定する一方で、バルブ1281及び1282を開状態に設定してもよい。尚、バルブ593nが開状態に設定されている状況下では、制御装置4は、原則として(つまり、一部の例外的な状況を除いて)、バルブ1281及び1282を開状態に設定することを制限してもよい。つまり、制御装置4は、原則として、バルブ593n、1281及び1282の全てを同時に開状態に設定することを制限してもよい。この場合、制御装置4は、圧力計592nの計測値が第3所定値(例えば、100パスカル)以下となるように、バルブ1281及び1291を制御してもよい。但し、圧力計592nの計測値が第3所定値以下となる一方で第2所定値より高い状況では、電子検出器117の一具体例である2次電子検出器のコレクタ(つまり、2次電子を集めるための電圧印加部分)が放電するがゆえに、2次電子検出器は2次電子を検出することが困難になる可能性がある。このため、圧力計592nの計測値が第3所定値以下となる状況では、電子検出器117の一具体例である後方散乱電子検出器が後方散乱電子を検出してもよい。気体供給装置6による気体の供給及び/又は排気装置7による排気を終了する場合には、制御装置4は、バルブ593nを開状態に設定する一方で、バルブ1281及び1282を閉状態に設定してもよい。その結果、圧力計592nの計測値が第2所定値以下に戻る。 Further, when gas is supplied by the gas supply device 6 and / or exhaust is performed by the exhaust device 7, the control device 4 sets the valves 593n in the closed state and the valves 1281 and 1282 in the open state. You may. In the situation where the valve 593n is set to the open state, the control device 4 should, in principle (that is, except for some exceptional situations), set the valves 1281 and 1282 to the open state. You may limit it. That is, in principle, the control device 4 may limit the setting of all the valves 593n, 1281 and 1282 to the open state at the same time. In this case, the control device 4 may control the valves 1281 and 1291 so that the measured value of the pressure gauge 592n is equal to or less than the third predetermined value (for example, 100 pascals). However, in a situation where the measured value of the pressure gauge 592n is equal to or less than the third predetermined value but higher than the second predetermined value, the collector of the secondary electron detector (that is, the secondary electrons, which is a specific example of the electron detector 117). Since the voltage application portion for collecting the secondary electrons is discharged, it may be difficult for the secondary electron detector to detect the secondary electrons. Therefore, in a situation where the measured value of the pressure gauge 592n is equal to or less than the third predetermined value, the backscattered electron detector, which is a specific example of the electron detector 117, may detect the backscattered electrons. When the gas supply by the gas supply device 6 and / or the exhaust by the exhaust device 7 is terminated, the control device 4 sets the valves 593n in the open state and the valves 1281 and 1282 in the closed state. May be good. As a result, the measured value of the pressure gauge 592n returns to the second predetermined value or less.
 走査型電子顕微鏡SEMnが動作を開始終了する場合には、バルブ1281及び1282が閉状態に設定され、その後、バルブ593nが開状態に設定され、その後、高真空用ポンプ511nが停止し、その後、低真空用ポンプ522nが停止し、その後、低真空用ポンプ512nが停止する。尚、高真空用ポンプ511nが動作を停止する(例えば、タービン翼が停止する)まで、低真空用ポンプ512nの動作の停止が制限されてもよい。尚、圧力計591nの計測値が異常値になった(例えば、上述した第1所定値(例えば、200パスカル)以上になった)場合には、走査型電子顕微鏡SEMnが動作を終了する場合と同様の動作(つまり、各ポンプを停止する動作)が行われてもよい。圧力計591nの計測値が異常値になった状態が所定時間(例えば、5分)以上継続した場合には、走査型電子顕微鏡SEMnが動作を終了する場合と同様の動作(つまり、各ポンプを停止する動作)が行われてもよい。 When the scanning electron microscope SEMn starts and ends the operation, the valves 1281 and 1282 are set to the closed state, then the valves 593n are set to the open state, and then the high vacuum pump 511n is stopped, and then the high vacuum pump 511n is stopped. The low vacuum pump 522n is stopped, and then the low vacuum pump 512n is stopped. It should be noted that the stoppage of the operation of the low vacuum pump 512n may be restricted until the operation of the high vacuum pump 511n is stopped (for example, the turbine blades are stopped). When the measured value of the pressure gauge 591n becomes an abnormal value (for example, the above-mentioned first predetermined value (for example, 200 pascals) or more), the scanning electron microscope SEMn ends its operation. A similar operation (that is, an operation of stopping each pump) may be performed. When the state in which the measured value of the pressure gauge 591n becomes an abnormal value continues for a predetermined time (for example, 5 minutes) or more, the operation is the same as when the scanning electron microscope SEMn ends the operation (that is, each pump is operated. The operation to stop) may be performed.
 このような第14実施形態の走査型電子顕微鏡SEMnは、走査型電子顕微鏡SEMaが享受可能な効果と同様の効果を享受することができる。更には、第14実施形態では、第1実施形態と比較して、ポンプ系5nに用いられるポンプの数が少なくなる。 The scanning electron microscope SEMn of the 14th embodiment can enjoy the same effect as the effect that the scanning electron microscope SEMa can enjoy. Further, in the 14th embodiment, the number of pumps used in the pump system 5n is smaller than that in the 1st embodiment.
 尚、上述した走査型電子顕微鏡SEMnの説明では、第1実施形態の走査型電子顕微鏡SEMaがポンプ系5nを備えていることになっている。しかしながら第2実施形態の走査型電子顕微鏡SEMaから第13実施形態の走査型電子顕微鏡SEMmのそれぞれがポンプ系5nを備えていてもよい。 In the above description of the scanning electron microscope SEMn, the scanning electron microscope SEMa of the first embodiment is provided with a pump system 5n. However, each of the scanning electron microscope SEMa of the second embodiment to the scanning electron microscope SEMm of the thirteenth embodiment may include a pump system 5n.
 (15)第15実施形態の走査型電子顕微鏡SEMo
 続いて、第15実施形態の走査型電子顕微鏡SEM(以降、第15実施形態の走査型電子顕微鏡SEMを、“走査型電子顕微鏡SEMo”と称する)について説明する。第15実施形態の走査型電子顕微鏡SEMoは、上述した第1実施形態の走査型電子顕微鏡SEMaと比較して、ビーム照射装置1に代えてビーム照射装置1oを備えているという点で異なっている。走査型電子顕微鏡SEMoのその他の特徴は、上述した走査型電子顕微鏡SEMaのその他の特徴と同一であってもよい。このため、以下では、図46を参照しながら、ビーム照射装置1oの構造について説明する。図46は、第15実施形態の走査型電子顕微鏡SEMoが備えるビーム照射装置1oの構造を示す断面図である。
(15) Scanning electron microscope SEMo of the fifteenth embodiment
Subsequently, the scanning electron microscope SEM of the fifteenth embodiment (hereinafter, the scanning electron microscope SEM of the fifteenth embodiment will be referred to as “scanning electron microscope SEMO”) will be described. The scanning electron microscope SEMO of the fifteenth embodiment is different from the scanning electron microscope SEMa of the first embodiment described above in that it includes a beam irradiating device 1o instead of the beam irradiating device 1. .. Other features of the scanning electron microscope SEMo may be the same as those of the scanning electron microscope SEMa described above. Therefore, in the following, the structure of the beam irradiation device 1o will be described with reference to FIG. 46. FIG. 46 is a cross-sectional view showing the structure of the beam irradiation device 1o included in the scanning electron microscope SEM of the fifteenth embodiment.
 図46に示すように、ビーム照射装置1oは、ビーム照射装置1と比較して、開口126につながる配管127に電子検出器117が配置されていてもよいという点で異なっている。ビーム照射装置1oのその他の特徴は、上述したビーム照射装置1と同一であってもよい。 As shown in FIG. 46, the beam irradiation device 1o is different from the beam irradiation device 1 in that the electron detector 117 may be arranged in the pipe 127 connected to the opening 126. Other features of the beam irradiating device 1o may be the same as those of the beam irradiating device 1 described above.
 配管127に配置される電子検出器117は、試料Wからの反射電子を検出する反射電子検出器であってもよい。配管127に配置される電子検出器117は、試料Wに対する電子ビームEBの照射によって生じた電子を検出する2次電子検出器であってもよい。配管127に配置される電子検出器117は、半導体型電子検出装置であってもよいし、ET(Everhart-Thornley)検出器であってもよい。複数の開口126にそれぞれつながる複数の配管127のそれぞれに、同じ種類の電子検出器117が配置されていてもよいし、異なる種類の電子検出器117が配置されていてもよい。 The electron detector 117 arranged in the pipe 127 may be a reflected electron detector that detects reflected electrons from the sample W. The electron detector 117 arranged in the pipe 127 may be a secondary electron detector that detects electrons generated by irradiation of the sample W with the electron beam EB. The electron detector 117 arranged in the pipe 127 may be a semiconductor type electron detector or an ET (Everhard-Tornley) detector. The same type of electron detector 117 may be arranged in each of the plurality of pipes 127 connected to the plurality of openings 126, or different types of electron detectors 117 may be arranged.
 開口126につながる配管127に、エネルギー分散型X線分析(EDX、EDS:Energy dispersive X-ray spectrometry)の分析器が配置されていてもよい。エネルギー分散型X線分析では、試料Wに対する電子ビームEBの照射によって生じた特性X線(蛍光X線)を、例えば、半導体検出器に導入し、発生した電子-正孔対のエネルギーと個数から試料Wを構成する元素を分析する。電子ビームEBの代わりに荷電粒子ビームを試料Wに照射して生じたX線を分析する粒子線励起X線分析(PIXE:Particle Induced X-ray Emission)を行ってもよい。 An energy dispersive X-ray analysis (EDX, EDS: Energy dispersive X-ray spectrum) analyzer may be arranged in the pipe 127 connected to the opening 126. In energy dispersive X-ray analysis, characteristic X-rays (fluorescent X-rays) generated by irradiation of sample W with electron beam EB are introduced into, for example, a semiconductor detector, and the energy and number of electron-hole pairs generated are used. The elements constituting the sample W are analyzed. Particle-induced X-ray Emission (PIXE) may be performed to analyze X-rays generated by irradiating the sample W with a charged particle beam instead of the electron beam EB.
 複数の開口126にそれぞれつながる複数の配管127のそれぞれに、EDX用の検出器が配置されていてもよい。複数の開口126にそれぞれつながる複数の配管127のそれぞれに、電子検出器とEDX用の検出器とが配置されていてもよい。 A detector for EDX may be arranged in each of the plurality of pipes 127 connected to the plurality of openings 126. An electron detector and a detector for EDX may be arranged in each of the plurality of pipes 127 connected to the plurality of openings 126.
 このような第15実施形態の走査型電子顕微鏡SEMoは、走査型電子顕微鏡SEMaが享受可能な効果と同様の効果を享受することができる。 The scanning electron microscope SEMo of the fifteenth embodiment can enjoy the same effect as the effect that the scanning electron microscope SEMa can enjoy.
 尚、上述した走査型電子顕微鏡SEMoの説明では、第1実施形態の走査型電子顕微鏡SEMaが、配管127に配置される電子検出器117を備えていることになっている。しかしながら第2実施形態の走査型電子顕微鏡SEMaから第14実施形態の走査型電子顕微鏡SEMnのそれぞれが、配管127に配置される電子検出器117を備えていてもよい。 In the above description of the scanning electron microscope SEMo, the scanning electron microscope SEMa of the first embodiment is provided with an electron detector 117 arranged in the pipe 127. However, each of the scanning electron microscope SEMa of the second embodiment to the scanning electron microscope SEMn of the fourteenth embodiment may include an electron detector 117 arranged in the pipe 127.
 (16)第1実施形態の走査型電子顕微鏡SEMaから第14実施形態の走査型電子顕微鏡SEMnに共通する変形例
 (16-1)第1変形例
 上述した説明では、試料Wは、真空領域VSPが試料Wの表面WSuのうちの一部しか覆うことができない程度に大きいサイズを有している。一方で、第1変形例では、第1変形例においてステージ22が試料Wを保持する様子を示す断面図である図47に示すように、試料Wは、真空領域VSPが試料Wの表面WSuの全体を覆うことができる程度に小さいサイズを有していてもよい。或いは、試料Wは、真空領域VSPに含まれるビーム通過空間SPb3が試料Wの表面WSuの全体を覆うことができる程度に小さいサイズを有していてもよい。この場合、図47に示すように、差動排気系12が形成する真空領域VSPは、試料Wの表面WSuを覆っていてもよい及び/又は試料Wの表面WSuに面する(つまり、接する)ことに加えて、ステージ22の表面(例えば、ステージ22の表面のうち保持面HSとは異なる外周面OS)の少なくとも一部を覆う及び/又はステージ22の表面(例えば、外周面OS)の少なくとも一部に面していてもよい。外周面OSは、典型的には、保持面HSの周囲に位置する面を含む。尚、図47は、説明の便宜上、第1実施形態の走査型電子顕微鏡SEMaが、第1変形例で説明しているサイズが小さい試料Wに電子ビームEBを照射する例を示しているが、第2実施形態の走査型電子顕微鏡SEMbから第15実施形態の走査型電子顕微鏡SEMoのそれぞれもまた、第1変形例で説明しているサイズが小さい試料Wに電子ビームEBを照射してもよいことはいうまでもない。
(16) A modified example common to the scanning electron microscope SEMa of the first embodiment to the scanning electron microscope SEMn of the fourteenth embodiment.
(16-1) First Modified Example In the above description, the sample W has a size large enough that the vacuum region VSP can cover only a part of the surface WSu of the sample W. On the other hand, in the first modification, as shown in FIG. 47, which is a cross-sectional view showing how the stage 22 holds the sample W in the first modification, in the sample W, the vacuum region VSP is the surface WSu of the sample W. It may have a size small enough to cover the whole. Alternatively, the sample W may have a size small enough that the beam passing space SPb3 included in the vacuum region VSP can cover the entire surface WSu of the sample W. In this case, as shown in FIG. 47, the vacuum region VSP formed by the differential exhaust system 12 may cover the surface WSu of the sample W and / or face (ie, touch) the surface WSu of the sample W. In addition, it covers at least a portion of the surface of the stage 22 (eg, the outer peripheral OS of the surface of the stage 22 that is different from the holding surface HS) and / or at least the surface of the stage 22 (eg, the outer peripheral OS). It may face a part. The outer peripheral surface OS typically includes a surface located around the holding surface HS. For convenience of explanation, FIG. 47 shows an example in which the scanning electron microscope SEMa of the first embodiment irradiates the small-sized sample W described in the first modification with the electron beam EB. Each of the scanning electron microscope SEMb of the second embodiment to the scanning electron microscope SEMo of the fifteenth embodiment may also irradiate the small-sized sample W described in the first modification with the electron beam EB. Needless to say.
 第1変形例では、第1実施形態の走査型電子顕微鏡SEMaから第15実施形態の走査型電子顕微鏡SEMoは、ビーム射出装置1の射出面12LSと試料Wの表面WSuとの間の間隔Dが所望間隔D_targetとなることに代えて、射出面12LSとステージ22の表面のうち保持面HS又は外周面OSとの間の間隔Do1が所望間隔D_targetとなるように、間隔調整系14(或いは、位置調整系14g)及びステージ駆動系23の少なくとも一方を制御してもよい。 In the first modification, in the scanning electron microscope SEMa of the first embodiment to the scanning electron microscope SEMo of the fifteenth embodiment, the distance D between the injection surface 12LS of the beam emitting device 1 and the surface WSu of the sample W is set. Instead of the desired interval D_taget, the interval adjusting system 14 (or position) so that the interval Do1 between the holding surface HS or the outer peripheral surface OS on the surface of the injection surface 12LS and the stage 22 becomes the desired interval D_taget. At least one of the adjustment system 14 g) and the stage drive system 23 may be controlled.
 更に、位置制御動作を行う第7実施形態の走査型電子顕微鏡SEMgから第11実施形態の走査型電子顕微鏡SEMkの少なくとも一つは、ビーム射出装置1fの射出面12LSと試料Wの表面WSuとの間の間隔Dが所望間隔D_targetとなるように及び/又は射出面12LSと表面WSuとが平行になるように位置制御動作を行うことに代えて、射出面12LSと保持面HS又は外周面OSとの間の間隔Do1が所望間隔D_targetとなるように及び/又は射出面12LSと保持面HS又は外周面OSとが平行になるように、位置制御動作を行ってもよい。例えば、走査型電子顕微鏡SEMgからSEMkの少なくとも一つは、第1制御動作において、射出面12LSの位置を推定し(図22のステップS11からS13)、ステージ22の保持面HS又は外周面OSの位置を計測し(図22のステップS15に対応する処理)、射出面12LSと保持面HS又は外周面OSとが平行になり且つ間隔Do1が所望間隔D_targetとなるように、ビーム照射装置1とステージ22との位置関係を制御してもよい(図22のステップS17に対応する処理)。その結果、走査型電子顕微鏡SEMgからSEMkの少なくとも一つは、第2制御動作を必ずしも行わなくても、射出面12LSと保持面HS又は外周面OSとが平行になり且つ間隔Do1が所望間隔D_targetとなる状態で、試料Wに電子ビームEBを照射することができる。但し、第1変形例においても、走査型電子顕微鏡SEMgからSEMkの少なくとも一つは、第2制御動作を行ってもよい。つまり、走査型電子顕微鏡SEMgからSEMkの少なくとも一つは、ステージ22が試料Wを保持した後に(図29のステップS21)、ステージ22の保持面HS又は外周面OSの位置を計測し(図29のステップS22に対応する処理)、保持面HS又は外周面OSと射出面12LSとの間の間隔Do1が所望間隔D_targetとなり、且つ、射出面12LSに対して保持面HS又は外周面OSが平行になるように、ビーム照射装置1fとステージ22との位置関係を制御してもよい(図29のステップS23に対応する処理)。 Further, at least one of the scanning electron microscope SEMg of the seventh embodiment to the scanning electron microscope SEMk of the eleventh embodiment that performs the position control operation is formed by the injection surface 12LS of the beam emitting device 1f and the surface WSu of the sample W. Instead of performing the position control operation so that the interval D between them becomes the desired interval D_taget and / or the injection surface 12LS and the surface WSu are parallel to each other, the injection surface 12LS and the holding surface HS or the outer peripheral surface OS The position control operation may be performed so that the interval Do1 between the intervals is the desired interval D_taget and / or the injection surface 12LS and the holding surface HS or the outer peripheral surface OS are parallel to each other. For example, at least one of the scanning electron microscopes SEMg to SEMk estimates the position of the injection surface 12LS in the first control operation (steps S11 to S13 in FIG. 22), and the holding surface HS or the outer peripheral surface OS of the stage 22. The position is measured (process corresponding to step S15 in FIG. 22), and the beam irradiation device 1 and the stage are set so that the injection surface 12LS and the holding surface HS or the outer peripheral surface OS are parallel and the interval Do1 is the desired interval D_taget. The positional relationship with the 22 may be controlled (process corresponding to step S17 in FIG. 22). As a result, in at least one of the scanning electron microscopes SEMg to SEMk, the injection surface 12LS and the holding surface HS or the outer peripheral surface OS are parallel to each other and the interval Do1 is the desired interval D_taget even if the second control operation is not necessarily performed. In this state, the sample W can be irradiated with the electron beam EB. However, also in the first modification, at least one of the scanning electron microscopes SEMg to SEMk may perform the second control operation. That is, at least one of the scanning electron microscopes SEMg to SEMk measures the position of the holding surface HS or the outer peripheral surface OS of the stage 22 after the stage 22 holds the sample W (step S21 in FIG. 29) (FIG. 29). The process corresponding to step S22), the distance Do1 between the holding surface HS or the outer peripheral surface OS and the injection surface 12LS becomes the desired distance D_target, and the holding surface HS or the outer peripheral surface OS is parallel to the injection surface 12LS. Therefore, the positional relationship between the beam irradiation device 1f and the stage 22 may be controlled (process corresponding to step S23 in FIG. 29).
 (15-2)第2変形例
 第1変形例では、ステージ22の保持面HSとステージ22の外周面OSとが同じ高さに位置していた。一方で、第2変形例では、第2変形例においてステージ22が試料Wを保持する様子を示す断面図である図48に示すように、保持面HSと外周面OSとが異なる高さ(つまり、Z軸方向において異なる位置)に位置していてもよい。図48は、保持面HSが外周面OSよりも低い位置に位置する例を示しているが、保持面HSが外周面OSよりも高い位置に位置していてもよい。保持面HSが外周面OSよりも低い位置に位置する場合には、ステージ22には、実質的には、試料Wが収容される収容空間(つまり、試料Wを収容できるように窪んだ空間)が形成されていると言える。また、図48は、外周面OSが試料Wの表面WSuよりも高い位置に位置する例を示しているが、外周面OSが表面WSuよりも低い位置に位置していてもよいし、外周面OSが表面WSuと同じ高さに位置していてもよい。尚、図48は、説明の便宜上、第1実施形態の走査型電子顕微鏡SEMaが、第2変形例で説明した外周面OSとは高さが異なる保持面HSに保持された試料Wに電子ビームEBを照射する例を示しているが、第2実施形態の走査型電子顕微鏡SEMbから第15実施形態の走査型電子顕微鏡SEMoのそれぞれもまた、第2変形例で説明した外周面OSとは高さが異なる保持面HSに保持された試料Wに電子ビームEBを照射してもよいことはいうまでもない。
(15-2) Second Modified Example In the first modified example, the holding surface HS of the stage 22 and the outer peripheral surface OS of the stage 22 were located at the same height. On the other hand, in the second modification, as shown in FIG. 48, which is a cross-sectional view showing how the stage 22 holds the sample W in the second modification, the holding surface HS and the outer peripheral surface OS have different heights (that is, the outer peripheral surface OS). , Different positions in the Z-axis direction). FIG. 48 shows an example in which the holding surface HS is located at a position lower than the outer peripheral surface OS, but the holding surface HS may be located at a position higher than the outer peripheral surface OS. When the holding surface HS is located at a position lower than the outer peripheral surface OS, the stage 22 is substantially a storage space in which the sample W is housed (that is, a space recessed so as to house the sample W). Can be said to have been formed. Further, FIG. 48 shows an example in which the outer peripheral surface OS is located at a position higher than the surface WSu of the sample W, but the outer peripheral surface OS may be located at a position lower than the surface WSu, or the outer peripheral surface. The OS may be located at the same height as the surface WSu. In FIG. 48, for convenience of explanation, the scanning electron microscope SEMa of the first embodiment has an electron beam on a sample W held on a holding surface HS having a height different from that of the outer peripheral surface OS described in the second modification. Although an example of irradiating EB is shown, each of the scanning electron microscope SEMb of the second embodiment to the scanning electron microscope SEM of the fifteenth embodiment is higher than the outer peripheral surface OS described in the second modification. Needless to say, the electron beam EB may be applied to the sample W held on the holding surface HS having a different shape.
 第2変形例では、第1変形例と同様に、試料Wは、真空領域VSPが試料Wの表面WSuの全体を覆うことができる程度に小さいサイズを有していてもよい。この場合、第1変形例と同様に、差動排気系12が形成する真空領域VSPは、試料Wの表面WSuを覆う及び/又は試料Wの表面WSuに面することに加えて、ステージ22の表面(例えば、外周面OS)の少なくとも一部を覆っていてもよい及び/又はステージ22の表面(例えば、外周面OS)の少なくとも一部に面していてもよい。或いは、試料Wは、真空領域VSPが試料Wの表面WSuのうちの一部しか覆うことができない程度に大きいサイズを有していてもよい。この場合、差動排気系12が形成する真空領域VSPは、試料Wの表面WSuの一部を覆う及び/又は試料Wの表面WSuの一部に面する一方で、ステージ22の表面(例えば、外周面OS)の少なくとも一部を覆っていなくてもよい及び/又はステージ22の表面(例えば、外周面OS)の少なくとも一部に面していなくてもよい。 In the second modification, as in the first modification, the sample W may have a size small enough that the vacuum region VSP can cover the entire surface WSu of the sample W. In this case, as in the first modification, the vacuum region VSP formed by the differential exhaust system 12 covers the surface WSu of the sample W and / or faces the surface WSu of the sample W, and in addition, the stage 22 It may cover at least a portion of the surface (eg, the outer peripheral OS) and / or may face at least a portion of the surface of the stage 22 (eg, the outer peripheral OS). Alternatively, the sample W may have a size large enough that the vacuum region VSP can cover only a part of the surface WSu of the sample W. In this case, the vacuum region VSP formed by the differential exhaust system 12 covers a part of the surface WSu of the sample W and / or faces a part of the surface WSu of the sample W while facing the surface of the stage 22 (eg, the surface WSu). It does not have to cover at least a part of the outer peripheral surface OS) and / or may not face at least a part of the surface of the stage 22 (for example, the outer peripheral surface OS).
 第2変形例においても、第1変形例と同様に、第1実施形態の走査型電子顕微鏡SEMaから第15実施形態の走査型電子顕微鏡SEMoの少なくとも一つは、射出面12LSと表面WSuとの間の間隔Dが所望間隔D_targetとなることに代えて、射出面12LSと外周面OSとの間の間隔Do1が所望間隔D_targetとなるように、間隔調整系14(或いは、位置調整系14g)及びステージ駆動系23の少なくとも一方を制御してもよい。更に、位置制御動作を行う第7実施形態の走査型電子顕微鏡SEMgから第11実施形態の走査型電子顕微鏡SEMkの少なくとも一つは、射出面12LSと表面WSuとの間の間隔Dが所望間隔D_targetとなるように及び/又は射出面12LSと表面WSuとが平行になるように、位置制御動作を行うことに加えて又は代えて、射出面12LSと外周面OSとの間の間隔Do1が所望間隔D_targetとなるように及び/又は射出面12LSと外周面OSとが平行になるように、位置制御動作を行ってもよい。 Also in the second modification, similarly to the first modification, at least one of the scanning electron microscope SEMa of the first embodiment to the scanning electron microscope SEMo of the fifteenth embodiment has an injection surface 12LS and a surface WSu. The interval adjusting system 14 (or the position adjusting system 14 g) and the interval adjusting system 14 (or the position adjusting system 14 g) so that the interval Do1 between the injection surface 12LS and the outer peripheral surface OS becomes the desired interval D_target instead of the desired interval D_target. At least one of the stage drive systems 23 may be controlled. Further, in at least one of the scanning electron microscope SEMk of the seventh embodiment to the scanning electron microscope SEMk of the eleventh embodiment in which the position control operation is performed, the distance D between the injection surface 12LS and the surface WSu is a desired distance D_target. In addition to or instead of performing a position control operation so that the injection surface 12LS and the surface WSu are parallel to each other, the interval Do1 between the injection surface 12LS and the outer peripheral surface OS is a desired interval. The position control operation may be performed so as to be D_target and / or so that the injection surface 12LS and the outer peripheral surface OS are parallel to each other.
 尚、上述した光学顕微鏡17lを備える第12実施形態の走査型電子顕微鏡SEMlが第2変形例で説明した外周面OSとは高さが異なる保持面HSに保持された試料Wに電子ビームEBを照射する場合においても、第12実施形態で説明したように、光学顕微鏡17lが試料Wの状態を計測可能な位置に試料Wが位置している期間(つまり、光学計測期間)の少なくとも一部において、ビーム照射装置1は、ステージ22の表面(例えば、外周面OS)との間に真空領域VSPを形成してもよい。また、光学計測期間が終了した後に、ステージ22は、光学顕微鏡17lが試料Wを計測可能であって且つビーム照射装置1が外周面OSとの間に真空領域VSPを形成可能な状態から、XY平面に沿って移動してもよい。その結果、ビーム照射装置1は、真空領域VSPを介して電子ビームEBを試料Wに照射することができる。 The scanning electron microscope SEMl of the twelfth embodiment provided with the above-mentioned optical microscope 17l is provided with an electron beam EB on a sample W held on a holding surface HS having a height different from that of the outer peripheral surface OS described in the second modification. Even in the case of irradiation, as described in the twelfth embodiment, at least a part of the period (that is, the optical measurement period) in which the sample W is located at a position where the state of the sample W can be measured by the optical microscope 17l. The beam irradiation device 1 may form a vacuum region VSP with the surface of the stage 22 (for example, the outer peripheral surface OS). Further, after the optical measurement period is completed, the stage 22 is XY from a state in which the optical microscope 17l can measure the sample W and the beam irradiation device 1 can form a vacuum region VSP with the outer peripheral surface OS. It may move along a plane. As a result, the beam irradiation device 1 can irradiate the sample W with the electron beam EB via the vacuum region VSP.
 また、保持面HSは、試料Wを直接保持することに代えて、試料Wを保持するホルダを保持してもよい。つまり、保持面HSは、試料Wを保持するホルダを介して試料Wを間接的に保持してもよい。例えば、図49は、試料WがホルダHWに保持され、保持面HSと外周面OSとが形成する段差(言い換えれば、収容空間又はポケット)にホルダHWが収容された状態でホルダHWを保持する保持面HSを示す断面図である。この場合においても、上述した光学顕微鏡17lを備える第12実施形態の走査型電子顕微鏡SEMlは、光学顕微鏡17lが試料Wの状態を計測可能な位置に試料Wが位置している期間(つまり、光学計測期間)の少なくとも一部において、ステージ22の表面(例えば、外周面OS)との間に真空領域VSPを形成してもよい。例えば、図49は、光学計測期間の少なくとも一部において、ビーム照射装置1がステージ22の外周面OSとの間に真空領域VSPを形成する例を示している。また、図49に示すように光学顕微鏡17lが試料Wを計測可能であって且つビーム照射装置1が外周面OSとの間に真空領域VSPを形成可能な状態から、ステージ22がXY平面に沿って(例えば、図49及び図50に示す例では、Y軸方向に沿って)移動すれば、ビーム照射装置1は、図50に示すように、ホルダHWとの間に形成された真空領域VSPを介して電子ビームEBを試料Wに照射することができる。尚、外周面OSの高さ(つまり、Z軸方向の位置)は、ホルダHWの表面HWSuの高さと同じであってもよい。この場合、ステージ22の移動に伴って真空領域VSPが外周面OSとホルダHSuの表面HWSuとの境界をまたぐ際に真空領域VSPが破壊される可能性が低減可能となる。従って、走査型電子顕微鏡SEMlのスループットが向上する。 Further, the holding surface HS may hold a holder for holding the sample W instead of directly holding the sample W. That is, the holding surface HS may indirectly hold the sample W via a holder that holds the sample W. For example, in FIG. 49, the sample W is held by the holder HW, and the holder HW is held in a state where the holder HW is housed in a step (in other words, a storage space or a pocket) formed by the holding surface HS and the outer peripheral surface OS. It is sectional drawing which shows the holding surface HS. Even in this case, the scanning electron microscope SEMl of the twelfth embodiment including the above-mentioned optical microscope 17l is a period in which the sample W is located at a position where the optical microscope 17l can measure the state of the sample W (that is, optical). A vacuum region VSP may be formed between the surface of the stage 22 (for example, the outer peripheral surface OS) at least a part of the measurement period). For example, FIG. 49 shows an example in which the beam irradiation device 1 forms a vacuum region VSP with the outer peripheral surface OS of the stage 22 during at least a part of the optical measurement period. Further, as shown in FIG. 49, the stage 22 is along the XY plane from the state where the optical microscope 17l can measure the sample W and the beam irradiation device 1 can form the vacuum region VSP with the outer peripheral surface OS. When moving (for example, along the Y-axis direction in the examples shown in FIGS. 49 and 50), the beam irradiator 1 has a vacuum region VSP formed between the holder HW and the holder HW as shown in FIG. The electron beam EB can be applied to the sample W via the above. The height of the outer peripheral surface OS (that is, the position in the Z-axis direction) may be the same as the height of the surface HWSu of the holder HW. In this case, it is possible to reduce the possibility that the vacuum region VSP is destroyed when the vacuum region VSP crosses the boundary between the outer peripheral surface OS and the surface HWSu of the holder HSu as the stage 22 moves. Therefore, the throughput of the scanning electron microscope SEMl is improved.
 (15-3)第3変形例
 第3変形例では、第3変形例においてステージ22が試料Wを保持する様子を示す断面図である図51に示すように、試料Wは、カバー部材25によって覆われていてもよい。つまり、試料Wとビーム照射装置1(特に、射出面12LS)との間にカバー部材25が配置されている状態で、電子ビームEBが試料Wに照射されてもよい。この際、カバー部材25に貫通孔が形成されていてもよく、電子ビームEBは、カバー部材25の貫通孔を介して試料Wに照射されてもよい。カバー部材25は、試料Wの表面WSuに接するように又は表面WSuとの間に間隙を確保するように試料Wの上方に配置されていてもよい。この場合、差動排気系12は、試料Wの表面WSuの少なくとも一部を覆う真空領域VSPに代えて、カバー部材25の表面25sの少なくとも一部を覆う真空領域VSPを形成してもよい。差動排気系12は、試料Wの表面WSuに接する真空領域VSPに代えて、カバー部材25の表面25sに接する真空領域VSPを形成してもよい。尚、図51は、説明の便宜上、第1実施形態の走査型電子顕微鏡SEMaが、第3変形例で説明したカバー部材25で覆われた試料Wに電子ビームEBを照射する例を示しているが、第2実施形態の走査型電子顕微鏡SEMbから第15実施形態の走査型電子顕微鏡SEMoのそれぞれもまた、第3変形例で説明したカバー部材25で覆われた試料Wに電子ビームEBを照射してもよいことはいうまでもない。
(15-3) Third Modified Example In the third modified example, the sample W is formed by the cover member 25 as shown in FIG. 51, which is a cross-sectional view showing how the stage 22 holds the sample W in the third modified example. It may be covered. That is, the electron beam EB may irradiate the sample W with the cover member 25 arranged between the sample W and the beam irradiating device 1 (particularly, the injection surface 12LS). At this time, a through hole may be formed in the cover member 25, and the electron beam EB may irradiate the sample W through the through hole of the cover member 25. The cover member 25 may be arranged above the sample W so as to be in contact with the surface WSu of the sample W or to secure a gap between the cover member 25 and the surface WSu. In this case, the differential exhaust system 12 may form a vacuum region VSP that covers at least a part of the surface 25s of the cover member 25 instead of the vacuum region VSP that covers at least a part of the surface WSu of the sample W. The differential exhaust system 12 may form a vacuum region VSP in contact with the surface 25s of the cover member 25 instead of the vacuum region VSP in contact with the surface WSu of the sample W. For convenience of explanation, FIG. 51 shows an example in which the scanning electron microscope SEMa of the first embodiment irradiates the sample W covered with the cover member 25 described in the third modification with the electron beam EB. However, each of the scanning electron microscope SEMb of the second embodiment to the scanning electron microscope SEMo of the fifteenth embodiment also irradiates the sample W covered with the cover member 25 described in the third modification with the electron beam EB. Needless to say, it may be done.
 第3変形例では、試料Wは、真空領域VSPが試料Wの表面WSuの全体を覆うことができる程度に小さいサイズを有していてもよいし、真空領域VSPが試料Wの表面WSuのうちの一部しか覆うことができない程度に大きいサイズを有していてもよい。 In the third modification, the sample W may have a size small enough that the vacuum region VSP can cover the entire surface WSu of the sample W, or the vacuum region VSP is of the surface WSu of the sample W. It may have a size large enough to cover only a part of.
 第3変形例では、第1実施形態の走査型電子顕微鏡SEMaから第15実施形態の走査型電子顕微鏡SEMoの少なくとも一つは、射出面12LSと表面WSuとの間の間隔Dが所望間隔D_targetとなることに代えて、射出面12LSとカバー部材25の表面25sとの間の間隔Do2が所望間隔D_targetとなるように、間隔調整系14(或いは、位置調整系14g)及びステージ駆動系23の少なくとも一方を制御してもよい。 In the third modification, at least one of the scanning electron microscope SEMa of the first embodiment to the scanning electron microscope SEMo of the fifteenth embodiment has a desired distance D between the injection surface 12LS and the surface WSu. Instead, at least the interval adjusting system 14 (or the position adjusting system 14 g) and the stage drive system 23 so that the interval Do2 between the injection surface 12LS and the surface 25s of the cover member 25 becomes the desired interval D_taget. One may be controlled.
 更に、位置制御動作を行う第7実施形態の走査型電子顕微鏡SEMgから第11実施形態の走査型電子顕微鏡SEMkの少なくとも一つは、射出面12LSと表面WSuとの間の間隔Dが所望間隔D_targetとなるように及び/又は射出面12LSと表面WSuとが平行になるように位置制御動作を行うことに代えて、射出面12LSとカバー部材25の表面25sとの間の間隔Do2が所望間隔D_targetとなるように及び/又は射出面12LSと表面25sとが平行になるように、位置制御動作を行ってもよい。例えば、走査型電子顕微鏡SEMgからSEMkの少なくとも一つは、第1制御動作において、射出面12LSの位置を推定し(図22のステップS11からS13)、カバー部材25sの表面25sの位置を計測し(図22のステップS15に対応する処理)、射出面12LSとカバー部材25sの表面25sとが平行になり且つ間隔Do2が所望間隔D_targetとなるように、ビーム照射装置1とステージ22との位置関係を制御してもよい(図22のステップS17に対応する処理)。その結果、走査型電子顕微鏡SEMgからSEMkの少なくとも一つは、第2制御動作を必ずしも行わなくても、射出面12LSと表面25sとが平行になり且つ間隔Do2が所望間隔D_targetとなる状態で、試料Wに電子ビームEBを照射することができる。 Further, in at least one of the scanning electron microscope SEMg of the seventh embodiment to the scanning electron microscope SEMk of the eleventh embodiment in which the position control operation is performed, the distance D between the injection surface 12LS and the surface WSu is a desired distance D_target. And / or instead of performing the position control operation so that the injection surface 12LS and the surface WSu are parallel to each other, the distance Do2 between the injection surface 12LS and the surface 25s of the cover member 25 is a desired distance D_target. The position control operation may be performed so that the ejection surface 12LS and the surface 25s are parallel to each other. For example, at least one of the scanning electron microscopes SEMg to SEMk estimates the position of the injection surface 12LS (steps S11 to S13 in FIG. 22) and measures the position of the surface 25s of the cover member 25s in the first control operation. (Process corresponding to step S15 in FIG. 22), The positional relationship between the beam irradiation device 1 and the stage 22 so that the injection surface 12LS and the surface 25s of the cover member 25s are parallel and the interval Do2 is the desired interval D_taget. May be controlled (process corresponding to step S17 in FIG. 22). As a result, at least one of the scanning electron microscopes SEMg to SEMk is in a state where the injection surface 12LS and the surface 25s are parallel and the interval Do2 is the desired interval D_target even if the second control operation is not necessarily performed. The sample W can be irradiated with an electron beam EB.
 或いは、試料Wがステージ22によって保持されていない場合には試料Wを覆うためのカバー部材25もまたステージ22に配置されていない可能性がある。この場合には、走査型電子顕微鏡SEMgからSEMkの少なくとも一つは、第1制御動作において、仮想的な試料Wvの表面WSuvと射出面12LSとの間の間隔D’が所望間隔D_targetとなり且つ射出面12LSに対して表面WSuvが平行になるように、又は、外周面OSと射出面12LSとの間の間隔Do1が所望間隔D_targetとなり且つ射出面12LSに対して外周面OSが平行になるように、ビーム照射装置1とステージ22との位置関係を制御してもよい。その上で、走査型電子顕微鏡SEMgからSEMkの少なくとも一つは、第1制御動作において、ステージ22が試料Wを保持してカバー部材25がステージ22に配置された後に(図29のステップS21に対応する処理)、カバー部材25の表面25sの位置を計測し(図29のステップS22に対応する処理)、表面25sと射出面12LSとの間の間隔Do2が所望間隔D_targetとなり、且つ、射出面12LSに対して表面25sが平行になるように、ビーム照射装置1とステージ22との位置関係を制御してもよい(図29のステップS23に対応する処理)。その結果、走査型電子顕微鏡SEMgからSEMkは、射出面12LSと表面25sとが平行になり且つ間隔Do2が所望間隔D_targetとなる状態で、試料Wに電子ビームEBを照射することができる。 Alternatively, if the sample W is not held by the stage 22, the cover member 25 for covering the sample W may also not be arranged on the stage 22. In this case, in at least one of the scanning electron microscopes SEMg to SEMk, in the first control operation, the distance D'between the surface WSuv of the virtual sample Wv and the injection surface 12LS becomes the desired distance D_taget and is injected. The surface WSuv is parallel to the surface 12LS, or the distance Do1 between the outer peripheral surface OS and the injection surface 12LS is a desired distance D_taget and the outer peripheral surface OS is parallel to the injection surface 12LS. , The positional relationship between the beam irradiation device 1 and the stage 22 may be controlled. On top of that, at least one of the scanning electron microscopes SEMg to SEMk is used after the stage 22 holds the sample W and the cover member 25 is arranged on the stage 22 in the first control operation (in step S21 of FIG. 29). (Corresponding process), the position of the surface 25s of the cover member 25 is measured (process corresponding to step S22 in FIG. 29), the distance Do2 between the surface 25s and the injection surface 12LS becomes the desired distance D_target, and the injection surface. The positional relationship between the beam irradiation device 1 and the stage 22 may be controlled so that the surface 25s is parallel to the 12LS (process corresponding to step S23 in FIG. 29). As a result, the scanning electron microscope SEMg to SEMk can irradiate the sample W with the electron beam EB in a state where the injection surface 12LS and the surface 25s are parallel to each other and the interval Do2 is the desired interval D_taget.
 尚、上述した光学顕微鏡17lを備える第12実施形態の走査型電子顕微鏡SEMlが第3変形例で説明したカバー部材25で覆われた試料Wに電子ビームEBを照射する場合においても、第12実施形態で説明したように、光学顕微鏡17lが試料Wの状態を計測可能な位置に試料Wが位置している期間(つまり、光学計測期間)の少なくとも一部において、ビーム照射装置1は、ステージ22の表面(例えば、外周面OS)との間に真空領域VSPを形成してもよい。また、光学計測期間が終了した後に、ステージ22は、光学顕微鏡17lが試料Wを計測可能であって且つビーム照射装置1が外周面OSとの間に真空領域VSPを形成可能な状態から、XY平面に沿って移動してもよい。その結果、ビーム照射装置1は、真空領域VSPを介して電子ビームEBを試料Wに照射することができる。尚、外周面OSの高さ(つまり、Z軸方向の位置)は、カバー部材25の表面25sの高さと同じであってもよい。この場合、ステージ22の移動に伴って真空領域VSPが外周面OSとカバー部材25の表面25sとの境界をまたぐ際に真空領域VSPが破壊される可能性が低減可能となる。従って、走査型電子顕微鏡SEMlのスループットが向上する。 Even when the scanning electron microscope SEMl of the twelfth embodiment provided with the above-mentioned optical microscope 17l irradiates the sample W covered with the cover member 25 described in the third modification with the electron beam EB, the twelfth embodiment is carried out. As described in the embodiment, during at least a part of the period (that is, the optical measurement period) in which the sample W is located at a position where the optical microscope 17l can measure the state of the sample W, the beam irradiator 1 sets the stage 22. A vacuum region VSP may be formed between the surface of the surface (for example, the outer peripheral surface OS). Further, after the optical measurement period is completed, the stage 22 is XY from a state in which the optical microscope 17l can measure the sample W and the beam irradiation device 1 can form a vacuum region VSP with the outer peripheral surface OS. It may move along a plane. As a result, the beam irradiation device 1 can irradiate the sample W with the electron beam EB via the vacuum region VSP. The height of the outer peripheral surface OS (that is, the position in the Z-axis direction) may be the same as the height of the surface 25s of the cover member 25. In this case, it is possible to reduce the possibility that the vacuum region VSP is destroyed when the vacuum region VSP crosses the boundary between the outer peripheral surface OS and the surface 25s of the cover member 25 as the stage 22 moves. Therefore, the throughput of the scanning electron microscope SEMl is improved.
 (15-4)第4変形例
 第4変形例では、ポンプ系5が備える真空ポンプ51及び52の少なくとも一方(或いは、真空ポンプ51及び52の少なくとも一方を構成するポンプ)とビーム照射装置1とは、真空ポンプ51及び52の少なくとも一方(或いは、真空ポンプ51及び52の少なくとも一方を構成するポンプ)からビーム照射装置1に対する振動の伝達が抑制されるように接続されていてもよい。以下、図52を参照しながら、真空ポンプ51からビーム照射装置1に対する振動の伝達が抑制される真空ポンプ51とビーム照射装置1との接続態様の一例に説明する。図52は、真空ポンプ51からビーム照射装置1に対する振動の伝達が抑制される真空ポンプ51とビーム照射装置1との接続態様を示す断面図である。
(15-4) Fourth Modified Example In the fourth modified example, at least one of the vacuum pumps 51 and 52 (or the pump constituting at least one of the vacuum pumps 51 and 52) and the beam irradiation device 1 included in the pump system 5 May be connected so that the transmission of vibration from at least one of the vacuum pumps 51 and 52 (or the pump constituting at least one of the vacuum pumps 51 and 52) to the beam irradiator 1 is suppressed. Hereinafter, an example of a connection mode between the vacuum pump 51 and the beam irradiation device 1 in which the transmission of vibration from the vacuum pump 51 to the beam irradiation device 1 is suppressed will be described with reference to FIG. 52. FIG. 52 is a cross-sectional view showing a connection mode between the vacuum pump 51 and the beam irradiation device 1 in which the transmission of vibration from the vacuum pump 51 to the beam irradiation device 1 is suppressed.
 上述したように、真空ポンプ51とビーム照射装置1とは、配管117を介して接続される。図52に示すように、配管117は、真空ポンプ51からビーム照射装置1に向かって伸びる配管1171と、ビーム照射装置1から真空ポンプ51に向かって伸びる配管1172とを含む。配管1171は、その先端にフランジ部11711を備える。配管1172は、その先端にフランジ部11721を備える。フランジ部11711は、対向面11712を介してフランジ部11721に対向する。フランジ部11712は、対向面11722を介してフランジ部11711に対向する。配管1171及び1172は、フランジ部11711の対向面11712とフランジ部11721の対向面11722とがOリング1181及びセンターリング1182(或いは、その他任意の弾性部材)を介して対向するように配置される。つまり、フランジ部11711の対向面11712とフランジ部11721の対向面11722との間には、Oリング1181及びセンターリング1182が配置される。 As described above, the vacuum pump 51 and the beam irradiation device 1 are connected via the pipe 117. As shown in FIG. 52, the pipe 117 includes a pipe 1171 extending from the vacuum pump 51 toward the beam irradiation device 1 and a pipe 1172 extending from the beam irradiation device 1 toward the vacuum pump 51. The pipe 1171 is provided with a flange portion 11711 at its tip. The pipe 1172 is provided with a flange portion 11721 at its tip. The flange portion 11711 faces the flange portion 11721 via the facing surface 11712. The flange portion 11712 faces the flange portion 11711 via the facing surface 11722. The pipes 1171 and 1172 are arranged so that the facing surface 11712 of the flange portion 11711 and the facing surface 11722 of the flange portion 11721 face each other via the O-ring 1181 and the center ring 1182 (or any other elastic member). That is, the O-ring 1181 and the center ring 1182 are arranged between the facing surface 11712 of the flange portion 11711 and the facing surface 11722 of the flange portion 11721.
 フランジ部11711及び11721は、クランプ部材1183及び1184によって挟み込まれた状態でクランプ部材1181及び1182によって固定される。クランプ部材1183及び1184は、ナット1185及びボルト1186によって固定される。この際、クランプ部材1183と配管1171(特に、フランジ部11711)との間には、Oリング1187(或いは、その他任意の弾性部材)が配置される。つまり、クランプ部材1183は、Oリング1187を介して配管1171に対して配管1171と配管1172とを固定する力を加える。また、クランプ部材1184と配管1172(特に、フランジ部11721)との間には、Oリング1188(或いは、その他任意の弾性部材)が配置される。つまり、クランプ部材1184は、Oリング1188を介して配管1172に対して配管1171と配管1172とを固定する力を加える。 The flange portions 11711 and 11721 are fixed by the clamp members 1181 and 1182 in a state of being sandwiched by the clamp members 1183 and 1184. The clamp members 1183 and 1184 are fixed by nuts 1185 and bolts 1186. At this time, an O-ring 1187 (or any other elastic member) is arranged between the clamp member 1183 and the pipe 1171 (particularly, the flange portion 11711). That is, the clamp member 1183 applies a force for fixing the pipe 1171 and the pipe 1172 to the pipe 1171 via the O-ring 1187. Further, an O-ring 1188 (or any other elastic member) is arranged between the clamp member 1184 and the pipe 1172 (particularly, the flange portion 11721). That is, the clamp member 1184 applies a force for fixing the pipe 1171 and the pipe 1172 to the pipe 1172 via the O-ring 1188.
 このように、第4変形例では、配管1171と配管1172との間にはOリング1181及びセンターリング1182が配置される。このため、真空ポンプ51から配管1171に伝達された振動は、配管1172に伝達される前にOリング1181及びセンターリング1182によって吸収される。その結果、真空ポンプ51から配管1171及び1172を介したビーム照射装置1への振動の伝達が、Oリング1181及びセンターリング1182によって抑制される。 As described above, in the fourth modification, the O-ring 1181 and the center ring 1182 are arranged between the pipe 1171 and the pipe 1172. Therefore, the vibration transmitted from the vacuum pump 51 to the pipe 1171 is absorbed by the O-ring 1181 and the center ring 1182 before being transmitted to the pipe 1172. As a result, the transmission of vibration from the vacuum pump 51 to the beam irradiation device 1 via the pipes 1171 and 1172 is suppressed by the O-ring 1181 and the center ring 1182.
 また、配管1171とクランプ部材1183との間には、Oリング1187が配置される。このため、真空ポンプ51から配管1171に伝達された振動は、クランプ部材1183に伝達される前にOリング1187によって吸収される。また、配管1172とクランプ部材1184との間は、Oリング1188が配置される。このため、真空ポンプ51から配管1171を介してクランプ部材1183及び1184に振動が伝達されたとしても、クランプ部材1184に伝達された振動は、配管1172に伝達される前にOリング1188によって吸収される。その結果、真空ポンプ51から配管1171及び1172並びにクランプ部材1183及び1184を介したビーム照射装置1への振動の伝達が、Oリング1187及び1188によって抑制される。 Further, an O-ring 1187 is arranged between the pipe 1171 and the clamp member 1183. Therefore, the vibration transmitted from the vacuum pump 51 to the pipe 1171 is absorbed by the O-ring 1187 before being transmitted to the clamp member 1183. Further, an O-ring 1188 is arranged between the pipe 1172 and the clamp member 1184. Therefore, even if the vibration is transmitted from the vacuum pump 51 to the clamp members 1183 and 1184 via the pipe 1171, the vibration transmitted to the clamp member 1184 is absorbed by the O-ring 1188 before being transmitted to the pipe 1172. To. As a result, the transmission of vibration from the vacuum pump 51 to the beam irradiation device 1 via the pipes 1171 and 1172 and the clamp members 1183 and 1184 is suppressed by the O- rings 1187 and 1188.
 ここで、Oリング1187は、配管1171及びクランプ部材1183と点接触又は相対的に狭い面で接触し、且つ、Oリング1188は、配管1172及びクランプ部材1184と点接触又は相対的に狭い面で接触する。その結果、Oリング1187が配管1171とクランプ部材1183との間で回転する及び/又はOリング1188が配管1172とクランプ部材1184との間で回転することで、クランプ部材1183及び1184と配管1171及び1172との相対位置が変わってしまう可能性がある。このため、クランプ部材1183及び1184と配管1171及び1172との位置決めが困難になる可能性がある。そこで、Oリング1187に加えて又は代えて、配管1171及びクランプ部材1183と面接触可能な(特に、相対的に広い面で接触可能な)弾性部材が配管1171とクランプ部材1183との間に配置されていてもよい。Oリング1188に加えて又は代えて、配管1171及びクランプ部材1183と面接触可能な(特に、相対的に広い面で接触可能な)弾性部材が配管1172とクランプ部材1184との間に配置されていてもよい。例えば、図53は、Oリング1188に加えて又は代えて、弾性部材の一具体例であるゴムシート1189が配管1172とクランプ部材1184との間に配置される例を示す断面図である。その結果、クランプ部材1183及び1184と配管1171及び1172との位置決めが相対的に容易になる。 Here, the O-ring 1187 makes point contact with the pipe 1171 and the clamp member 1183 or makes contact with a relatively narrow surface, and the O-ring 1188 makes point contact with the pipe 1172 and the clamp member 1184 or makes contact with a relatively narrow surface. Contact. As a result, the O-ring 1187 rotates between the pipe 1171 and the clamp member 1183 and / or the O-ring 1188 rotates between the pipe 1172 and the clamp member 1184, whereby the clamp members 1183 and 1184 and the pipe 1171 and There is a possibility that the relative position with 1172 will change. Therefore, positioning of the clamp members 1183 and 1184 and the pipes 1171 and 1172 may become difficult. Therefore, in addition to or in place of the O-ring 1187, an elastic member capable of surface contact with the pipe 1171 and the clamp member 1183 (particularly, contactable with a relatively wide surface) is arranged between the pipe 1171 and the clamp member 1183. It may have been done. In addition to or in place of the O-ring 1188, a surface contactable (particularly, relatively wide surface) elastic member is arranged between the pipe 1172 and the clamp member 1184 to contact the pipe 1171 and the clamp member 1183. You may. For example, FIG. 53 is a cross-sectional view showing an example in which a rubber sheet 1189, which is a specific example of an elastic member, is arranged between the pipe 1172 and the clamp member 1184 in addition to or in place of the O-ring 1188. As a result, the positioning of the clamp members 1183 and 1184 and the pipes 1171 and 1172 becomes relatively easy.
 尚、真空ポンプ52からビーム照射装置1に対する振動の伝達が抑制される真空ポンプ52とビーム照射装置1との接続態様は、真空ポンプ51からビーム照射装置1に対する振動の伝達が抑制される真空ポンプ51とビーム照射装置1との接続態様と同一であってもよい。このため、その詳細な説明は省略する。 The connection mode between the vacuum pump 52 and the beam irradiation device 1 in which the transmission of vibration from the vacuum pump 52 to the beam irradiation device 1 is suppressed is such that the transmission of vibration from the vacuum pump 51 to the beam irradiation device 1 is suppressed. It may be the same as the connection mode between the 51 and the beam irradiation device 1. Therefore, the detailed description thereof will be omitted.
 (15-5)その他の変形例
 上述した説明では、差動排気系12は、単一の排気機構(具体的には、排気溝124及び配管125)を備える1段式の差動排気系である。しかしながら、差動排気系12は、複数の排気機構を備える多段式の差動排気系であってもよい。この場合、真空形成部材121の射出面12LSには、複数の排気溝124が形成され、真空形成部材121には、複数の排気溝124にそれぞれ接続される複数の配管125が形成される。複数の配管125は、それぞれ、ポンプ系5が備える複数の真空ポンプ52に接続される。複数の真空ポンプ52の排気能力は、同一であってもよいし、異なっていてもよい。
(15-5) Other Modifications In the above description, the differential exhaust system 12 is a one-stage differential exhaust system including a single exhaust mechanism (specifically, an exhaust groove 124 and a pipe 125). is there. However, the differential exhaust system 12 may be a multi-stage differential exhaust system including a plurality of exhaust mechanisms. In this case, a plurality of exhaust grooves 124 are formed on the injection surface 12LS of the vacuum forming member 121, and a plurality of pipes 125 connected to the plurality of exhaust grooves 124 are formed on the vacuum forming member 121. Each of the plurality of pipes 125 is connected to a plurality of vacuum pumps 52 included in the pump system 5. The exhaust capacities of the plurality of vacuum pumps 52 may be the same or different.
 走査型電子顕微鏡SEMに限らず、電子ビームEBを試料W(或いは、その他の任意の物体)に照射する任意の電子ビーム装置が、上述した第1実施形態の走査型電子顕微鏡SEMaから第15実施形態の走査型電子顕微鏡SEMoのうちの少なくとも一つと同様の構造を有していてもよい。つまり、任意の電子ビーム装置が、ビーム通過空間SPbに面する開口を介して(或いは、電子ビームEBを照射するビーム照射装置と電子ビームEBが照射される物体との間の間隔を制御して)ビーム通過空間SPbの少なくとも一部の真空度を制御してもよい。任意の電子ビーム装置が、上述した位置制御動作(つまり、計測装置8gの計測結果に基づいて、電子ビームEBを照射するビーム照射装置とステージの位置関係を制御するための位置制御動作)を行ってもよい。任意の電子ビーム装置の一例として、電子ビームEBを用いて電子線レジストが塗布されたウェハを露光することでウェハにパターンを形成する電子ビーム露光装置、及び、電子ビームEBを母材に照射して発生する熱で母材を溶接する電子ビーム溶接装置の少なくとも一方があげられる。任意の電子ビーム装置の他の一例として、透過型電子顕微鏡(TEM:Transmission Electron Microscope)及び走査型透過電子顕微鏡(STEM:Scanning Transmissuion Electron Microscope)があげられる。 Not limited to the scanning electron microscope SEM, any electron beam device that irradiates the sample W (or any other object) with the electron beam EB is the fifteenth embodiment from the scanning electron microscope SEMa of the first embodiment described above. It may have a structure similar to at least one of the scanning electron microscope SEMO of the form. That is, any electron beam device controls the distance between the beam irradiation device that irradiates the electron beam EB and the object that is irradiated with the electron beam EB through the opening facing the beam passage space SPb (or ) The degree of vacuum of at least a part of the beam passing space SPb may be controlled. An arbitrary electron beam device performs the above-mentioned position control operation (that is, a position control operation for controlling the positional relationship between the beam irradiation device that irradiates the electron beam EB and the stage based on the measurement result of the measurement device 8g). You may. As an example of an arbitrary electron beam device, the electron beam exposure device that forms a pattern on the wafer by exposing the wafer coated with the electron beam resist using the electron beam EB, and the electron beam EB are irradiated to the base material. At least one of the electron beam welding devices that welds the base metal with the heat generated by the metal beam welder can be mentioned. As another example of the arbitrary electron beam apparatus, there are a transmission electron microscope (TEM: Transmission Electron Microscope) and a scanning transmission electron microscope (STEM: Scanning Transmission Electron Microscope).
 或いは、電子ビーム装置に限らず、電子ビームEBとは異なる任意の荷電粒子ビーム又はエネルギビームを任意の試料W(或いは、その他の任意の物体)に照射する任意のビーム装置が上述した第1実施形態の走査型電子顕微鏡SEMaから第15実施形態の走査型電子顕微鏡SEMoのうちの少なくとも一つと同様の構造を有していてもよい。つまり、荷電粒子ビーム又はエネルギビームを照射可能なビーム光学系を備える任意のビーム装置が、荷電粒子ビーム又はエネルギビームが通過するビーム通過空間に面する開口を介して(或いは、荷電粒子ビーム又はエネルギビームを照射するビーム照射装置と荷電粒子ビーム又はエネルギビームが照射される物体との間の間隔を制御して)ビーム通過空間の少なくとも一部の真空度を制御してもよい。荷電粒子ビーム又はエネルギビームを照射可能なビーム光学系を備える任意のビーム装置が、上述した位置制御動作(つまり、計測装置8gの計測結果に基づいて、荷電粒子ビーム又はエネルギビームを照射するビーム照射装置とステージとの位置関係を制御するための位置制御動作)を行ってもよい。任意のビーム装置の一例として、集束したイオンビームを試料に照射し加工や観察を行う集束イオンビーム(FIB:Focused Ion Beam)装置、及び、軟X線領域(例えば5~15nmの波長域)のEUV(Extreme Ultraviolet)光を用いてレジストが塗布されたウェハを露光することでウェハにパターンを形成するEUV露光装置の少なくとも一方があげられる。 Alternatively, not limited to the electron beam device, any beam device that irradiates an arbitrary sample W (or any other object) with an arbitrary charged particle beam or energy beam different from the electron beam EB is the first embodiment described above. It may have the same structure as at least one of the scanning electron microscope SEMa of the embodiment to the scanning electron microscope SEMo of the fifteenth embodiment. That is, any beam device equipped with a beam optical system capable of irradiating a charged particle beam or energy beam can pass through an opening facing the beam passage space through which the charged particle beam or energy beam passes (or the charged particle beam or energy). The degree of vacuum of at least a portion of the beam passage space may be controlled (by controlling the distance between the beam irradiator that irradiates the beam and the object that is irradiated with the charged particle beam or energy beam). Any beam device equipped with a beam optical system capable of irradiating a charged particle beam or an energy beam irradiates a charged particle beam or an energy beam based on the position control operation described above (that is, the measurement result of the measuring device 8 g). A position control operation) for controlling the positional relationship between the device and the stage may be performed. As an example of an arbitrary beam device, a focused ion beam (FIB: Focused Ion Beam) device that irradiates a sample with a focused ion beam for processing and observation, and a soft X-ray region (for example, a wavelength range of 5 to 15 nm). At least one of the EUV exposure devices that form a pattern on a wafer by exposing a wafer coated with a resist using EUV (Extreme Ultraviolet) light can be mentioned.
 或いは、ビーム装置に限らず、電子を含む任意の荷電粒子を、ビームとは異なる照射形態で任意の試料W(或いは、その他の任意の物体)に照射する任意の照射装置が上述した第1実施形態の走査型電子顕微鏡SEMaから第15実施形態の走査型電子顕微鏡SEMoのうちの少なくとも一つと同様の構造を有していてもよい。つまり、荷電粒子を照射(例えば、放出、生成、噴出又は)可能な照射系を備える任意の照射装置が、荷電粒子が通過する荷電粒子通過空間に面する開口を介して(或いは、荷電粒子を照射するビーム照射装置と荷電粒子が照射される物体との間の間隔を制御して)荷電粒子通過空間の少なくとも一部の真空度を制御してもよい。荷電粒子を照射(例えば、放出、生成、噴出又は)可能な照射系を備える任意の照射装置が、上述した位置制御動作(つまり、計測装置8gの計測結果に基づいて、荷電粒子を照射する照射装置とステージとの位置関係を制御するための位置制御動作)を行ってもよい。任意の照射装置の一例として、プラズマを用いて物体をエッチングするエッチング装置、及び、プラズマを用いて物体に成膜処理を行う成膜装置(例えば、スパッタリング装置等のPVD(Physical Vapor Deposition)装置、及び、CVD(Chemical Vapor Deposition)装置の少なくとも一方)の少なくとも一方があげられる。 Alternatively, the first embodiment described above is not limited to the beam device, and any irradiation device that irradiates an arbitrary sample W (or any other object) with an arbitrary charged particle containing an electron in an irradiation form different from the beam. It may have a structure similar to at least one of the scanning electron microscope SEMa of the embodiment to the scanning electron microscope SEMo of the fifteenth embodiment. That is, any irradiator equipped with an irradiation system capable of irradiating (eg, emitting, generating, ejecting or) charged particles can (or radiate) the charged particles through an opening facing the charged particle passage space through which the charged particles pass. The degree of vacuum of at least a part of the charged particle passage space may be controlled (by controlling the distance between the beam irradiator to be irradiated and the object to which the charged particles are irradiated). Irradiation in which any irradiation device provided with an irradiation system capable of irradiating (for example, emitting, generating, ejecting or) charged particles irradiates the charged particles based on the above-mentioned position control operation (that is, the measurement result of the measuring device 8 g). A position control operation) for controlling the positional relationship between the device and the stage may be performed. As an example of an arbitrary irradiation device, an etching device that etches an object using plasma, and a film forming device (for example, a PVD (Physical Vapor Deposition) device such as a sputtering device) that performs a film forming process on an object using plasma. And at least one of CVD (Chemical Vapor Deposition) apparatus).
 或いは、荷電粒子に限らず、任意の物質を照射と異なる形態で任意の試料W(或いは、その他の任意の物体)に真空下で作用させる任意の真空装置が上述した第1実施形態の走査型電子顕微鏡SEMaから第15実施形態の走査型電子顕微鏡SEMoのうちの少なくとも一つと同様の構造を有していてもよい。任意の真空装置の一例として、真空中で蒸発又は昇華させた材料の蒸気を試料に到達させて蓄積させる事で膜を形成する真空蒸着装置があげられる。 Alternatively, the scanning type of the first embodiment described above is an arbitrary vacuum device that causes an arbitrary sample W (or any other object) to act under a vacuum in a form different from irradiation, not limited to charged particles. It may have the same structure as at least one of the scanning electron microscope SEMo of the fifteenth embodiment from the electron microscope SEMa. An example of an arbitrary vacuum device is a vacuum vapor deposition device that forms a film by allowing vapor of a material evaporated or sublimated in a vacuum to reach a sample and accumulate it.
 上述の各実施形態(各変形例を含む、以下この段落において同じ)の構成要件の少なくとも一部は、上述の各実施形態の構成要件の少なくとも他の一部と適宜組み合わせることができる。上述の各実施形態の構成要件のうちの一部が用いられなくてもよい。また、法令で許容される限りにおいて、上述の各実施形態で引用した全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。 At least a part of the constituent elements of each of the above-described embodiments (including each modification, the same shall apply hereinafter in this paragraph) can be appropriately combined with at least another part of the constituent requirements of each of the above-described embodiments. Some of the constituent requirements of each of the above embodiments may not be used. In addition, to the extent permitted by law, all publications cited in each of the above embodiments and disclosures of US patents shall be incorporated as part of the text.
 本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う荷電粒子装置、荷電粒子の照射方法、真空形成装置、及び、真空領域の形成方法もまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiment, and can be appropriately modified within the scope of claims and within the scope not contrary to the gist or idea of the invention that can be read from the entire specification, and the charged particle device accompanied by such modification. , A method of irradiating charged particles, a vacuum forming apparatus, and a method of forming a vacuum region are also included in the technical scope of the present invention.
 SEM 走査型電子顕微鏡
 1 ビーム照射装置
 11 ビーム光学系
 12 差動排気系
 121LS 出射面
 1232 ビーム射出口
 126、126b、126c 開口
 1281、1282 バルブ
 13 フランジ部材
 14 間隔調整系
 14g 位置調整系
 16d アパーチャ部材
 161d 開口
 2 ステージ装置
 22 ステージ
 23 ステージ駆動系
 4 制御装置
 5 ポンプ系
 51、52 真空ポンプ
 6 気体供給装置
 7 排気装置
 8g 計測装置
 SPb1、SPb2、SPb3 ビーム通過空間
 VSP 真空領域
 W 試料
 WSu 表面
 HS 保持面
SEM scanning electron microscope 1 Beam irradiation device 11 Beam optical system 12 Differential exhaust system 121LS Exit surface 1232 Beam injection port 126, 126b, 126c Opening 1281, 1282 Valve 13 Flange member 14 Spacing adjustment system 14g Position adjustment system 16d Aperture member 161d Opening 2 Stage device 22 Stage 23 Stage drive system 4 Control device 5 Pump system 51, 52 Vacuum pump 6 Gas supply device 7 Exhaust device 8g Measuring device SPb1, SPb2, SPb3 Beam passage space VSP Vacuum area W Sample WSu Surface HS holding surface

Claims (201)

  1.  排気装置と接続可能な第1の管路を有し、物体の面に接する空間の気体を前記第1の管路を介して排出して、真空領域を形成する真空形成部材と、
     前記真空領域を介して荷電粒子を試料に向けて照射する照射装置と、
     前記照射装置から照射される荷電粒子の通過空間と接続する第2の管路と、
     を備え、
     前記真空領域よりも気圧が高く前記真空領域の周囲の空間の少なくとも一部の気体は、前記真空形成部材の前記第1の管路を介して排出され、
     前記通過空間は前記真空領域の少なくとも一部を含み、
     前記第2の管路を介して、前記通過空間の少なくとも一部へ気体を供給する
     荷電粒子装置。
    A vacuum forming member having a first pipeline that can be connected to an exhaust device and discharging gas in a space in contact with the surface of an object through the first pipeline to form a vacuum region.
    An irradiation device that irradiates a sample with charged particles through the vacuum region,
    A second conduit connected to the passage space of the charged particles irradiated from the irradiation device, and
    With
    The air pressure is higher than that of the vacuum region, and at least a part of the gas in the space around the vacuum region is discharged through the first pipeline of the vacuum forming member.
    The passage space includes at least a part of the vacuum region.
    A charged particle device that supplies gas to at least a part of the passage space through the second pipeline.
  2.  排気装置と接続される第1端と、物体の面と接する第1空間と接続される第2端とを有する第1の管路を備え、前記第1空間の気体を前記第1の管路を介して排出して、前記第1空間と接続される第2空間よりも圧力が低い真空領域を前記第1空間に形成する真空形成部材と、
     前記照射装置から照射される荷電粒子の真空領域を介して荷電粒子を試料に向けて照射する照射装置と、
     前記通過空間と接続する第2の管路と、
     を備え、
     前記通過空間は前記真空領域の少なくとも一部を含み、
     前記第2の管路を介して、前記通過空間の少なくとも一部へ気体を供給する
     荷電粒子装置。
    A first conduit having a first end connected to an exhaust device and a second end connected to a first space in contact with the surface of an object is provided, and the gas in the first space is passed through the first conduit. A vacuum forming member that discharges through the first space to form a vacuum region having a lower pressure than the second space connected to the first space in the first space.
    An irradiation device that irradiates a sample with charged particles through a vacuum region of the charged particles emitted from the irradiation device, and an irradiation device.
    A second pipeline connecting to the passage space,
    With
    The passage space includes at least a part of the vacuum region.
    A charged particle device that supplies gas to at least a part of the passage space through the second pipeline.
  3.  排気装置と接続可能な第1の管路を有し、物体の面の一部と対向した状態で前記第1の管路を介して気体を排出することにより、前記物体の前記面の第1部分に接する第1空間に、前記面の前記第1部分とは異なる第2部分に接する第2空間の圧力より圧力が低い真空領域を形成可能な真空形成部材と、
     前記真空領域を介して荷電粒子を試料に向けて照射する照射装置と、
     前記照射装置から照射される荷電粒子の通過空間と接続する第2の管路と、
     を備え、
     前記通過空間は前記真空領域の少なくとも一部を含み、
     前記第2の管路を介して、前記通過空間の少なくとも一部へ気体を供給する
     荷電粒子装置。
    By having a first pipeline that can be connected to an exhaust device and discharging gas through the first pipeline in a state of facing a part of the surface of the object, the first of the surface of the object. A vacuum forming member capable of forming a vacuum region having a pressure lower than the pressure of the second space in contact with the second portion different from the first portion of the surface in the first space in contact with the portion.
    An irradiation device that irradiates a sample with charged particles through the vacuum region,
    A second conduit connected to the passage space of the charged particles irradiated from the irradiation device, and
    With
    The passage space includes at least a part of the vacuum region.
    A charged particle device that supplies gas to at least a part of the passage space through the second pipeline.
  4.  前記第2空間は、前記第1空間を経ずに前記第1の管路と接続できないが前記第1空間を経ると前記第1の管路と接続できる
     請求項2又は3に記載の荷電粒子装置。
    The charged particle according to claim 2 or 3, wherein the second space cannot be connected to the first pipeline without passing through the first space, but can be connected to the first pipeline after passing through the first space. apparatus.
  5.  前記第2空間と前記第1の管路との間には前記第1空間が位置する
     請求項2~4のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 2 to 4, wherein the first space is located between the second space and the first pipeline.
  6.  排気装置と接続可能な第1の管路を有し、物体の面と前記第1の管路の端部とが対向した状態で、前記物体の前記面に接する空間の気体を前記第1の管路を介して排出して、真空領域を形成する真空形成部材と、
     前記真空領域を介して荷電粒子を試料に向けて照射する照射装置と、
     前記照射装置から照射される荷電粒子の通過空間と接続する第2の管路と、
     を備え、
     前記通過空間は前記真空領域の少なくとも一部を含み、
     前記第2の管路を介して、前記通過空間の少なくとも一部へ気体を供給する
     荷電粒子装置。
    The first pipeline has a first pipeline that can be connected to an exhaust device, and a gas in a space in contact with the surface of the object is used in a state where the surface of the object and the end of the first pipeline face each other. A vacuum forming member that discharges through a pipeline to form a vacuum region,
    An irradiation device that irradiates a sample with charged particles through the vacuum region,
    A second conduit connected to the passage space of the charged particles irradiated from the irradiation device, and
    With
    The passage space includes at least a part of the vacuum region.
    A charged particle device that supplies gas to at least a part of the passage space through the second pipeline.
  7.  前記第2の管路を介した気体供給により前記通過空間の少なくとも一部の真空度を制御することと並行して、前記物体と前記真空形成部材との間隔を制御する
     請求項1から6のいずれか一項に記載の荷電粒子装置。
    Claims 1 to 6 for controlling the distance between the object and the vacuum forming member in parallel with controlling the degree of vacuum of at least a part of the passing space by supplying gas through the second pipeline. The charged particle apparatus according to any one item.
  8.  前記第2の管路を介した気体供給により前記通過空間の少なくとも一部の真空度を減少させることと並行して、前記物体と前記真空形成部材とを離す方向に付与される力を減少する
     請求項1から7のいずれか一項に記載の荷電粒子装置。
    In parallel with reducing the degree of vacuum of at least a part of the passage space by supplying gas through the second pipeline, the force applied in the direction of separating the object and the vacuum forming member is reduced. The charged particle apparatus according to any one of claims 1 to 7.
  9.  前記第2の管路を介した気体供給により前記通過空間の少なくとも一部の真空度を減少させることと並行して、前記物体と前記真空形成部材とを近づける方向に付与される力を増加する
     請求項1から8のいずれか一項に記載の荷電粒子装置。
    In parallel with reducing the degree of vacuum of at least a part of the passage space by supplying gas through the second pipeline, the force applied in the direction of bringing the object and the vacuum forming member closer to each other is increased. The charged particle apparatus according to any one of claims 1 to 8.
  10.  前記第2の管路を介した気体供給により前記通過空間の少なくとも一部の真空度を減少させることと並行して、前記物体と前記真空形成部材とを近づける
     請求項1から9のいずれか一項に記載の荷電粒子装置。
    Any one of claims 1 to 9 that brings the object and the vacuum forming member closer to each other in parallel with reducing the degree of vacuum of at least a part of the passing space by supplying gas through the second pipeline. The charged particle apparatus according to the section.
  11.  前記第2の管路を介した気体供給により前記通過空間の少なくとも一部の真空度を減少させることと並行して、前記通過空間の少なくとも一部の真空度を減少させる前後における前記物体と前記真空形成部材との間の距離を維持する
     請求項1から10のいずれか一項に記載の荷電粒子装置。
    The object and the object before and after reducing the vacuum degree of at least a part of the passing space in parallel with reducing the vacuum degree of at least a part of the passing space by supplying gas through the second pipeline. The charged particle apparatus according to any one of claims 1 to 10, which maintains a distance between the vacuum forming member and the vacuum forming member.
  12.  前記通過空間は、前記通過空間よりも真空度の低い低真空空間と前記第2の管路を介して接続可能である
     請求項1から11のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 1 to 11, wherein the passage space can be connected to a low vacuum space having a lower degree of vacuum than the passage space via the second pipeline.
  13.  前記低真空空間の気圧は、前記荷電粒子装置の周囲の気圧と等しい
     請求項12に記載の荷電粒子装置。
    The charged particle device according to claim 12, wherein the air pressure in the low vacuum space is equal to the air pressure around the charged particle device.
  14.  前記荷電粒子装置の周囲の気圧は大気圧である
     請求項13に記載の荷電粒子装置。
    The charged particle device according to claim 13, wherein the pressure around the charged particle device is atmospheric pressure.
  15.  前記第2の管路を介して前記通過空間に気体を供給する気体供給装置を備える
     請求項1から14のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 1 to 14, further comprising a gas supply device for supplying gas to the passage space through the second pipeline.
  16.  前記気体供給装置が供給する気体は、ヘリウム、ネオン、アルゴン、窒素及びクリーンドライエアー(CDA)の少なくとも1つを含む
     請求項15に記載の荷電粒子装置。
    The charged particle device according to claim 15, wherein the gas supplied by the gas supply device includes at least one of helium, neon, argon, nitrogen, and clean dry air (CDA).
  17.  前記通過空間と接続する第2の管路を介して、前記通過空間の少なくとも一部から気体を排出する
     請求項1から16のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 1 to 16, wherein gas is discharged from at least a part of the passing space through a second pipeline connected to the passing space.
  18.  排気装置と接続可能な第1の管路を有し、物体の面に接する空間の気体を前記第1の管路を介して排出して、真空領域を形成する真空形成部材と、
     前記真空領域を介して荷電粒子を試料に向けて照射する照射装置と、
     前記照射装置から照射される荷電粒子の通過空間と接続する第2の管路と、
     を備え、
     前記真空領域よりも気圧が高く前記真空領域の周囲の空間の少なくとも一部の気体は、前記真空形成部材の前記第1の管路を介して排出され、
     前記通過空間は前記真空領域の少なくとも一部を含み、
     前記第2の管路を介して、前記通過空間の少なくとも一部から気体を排出する
     荷電粒子装置。
    A vacuum forming member having a first pipeline that can be connected to an exhaust device and discharging gas in a space in contact with the surface of an object through the first pipeline to form a vacuum region.
    An irradiation device that irradiates a sample with charged particles through the vacuum region,
    A second conduit connected to the passage space of the charged particles irradiated from the irradiation device, and
    With
    The air pressure is higher than that of the vacuum region, and at least a part of the gas in the space around the vacuum region is discharged through the first pipeline of the vacuum forming member.
    The passage space includes at least a part of the vacuum region.
    A charged particle device that discharges gas from at least a part of the passage space through the second pipeline.
  19.  前記第2の管路を介した気体排出により前記通過空間の少なくとも一部の真空度を制御することと並行して、前記物体と前記真空形成部材との間隔を制御する
     請求項17又は18に記載の荷電粒子装置。
    17 or 18 of claim 17 or 18, which controls the distance between the object and the vacuum forming member in parallel with controlling the degree of vacuum of at least a part of the passing space by discharging gas through the second pipeline. The charged particle device described.
  20.  前記第2の管路を介した気体排出により前記通過空間の少なくとも一部の真空度を増加させることと並行して、前記物体と前記真空形成部材とを離す方向に付与される力を増加する
     請求項17から19のいずれか一項に記載の荷電粒子装置。
    In parallel with increasing the degree of vacuum of at least a part of the passage space by discharging gas through the second pipeline, the force applied in the direction of separating the object and the vacuum forming member is increased. The charged particle apparatus according to any one of claims 17 to 19.
  21.  前記第2の管路を介した気体排出により前記通過空間の少なくとも一部の真空度を増加させることと並行して、前記物体と前記真空形成部材とを近づける方向に付与される力を減少する
     請求項17から20のいずれか一項に記載の荷電粒子装置。
    In parallel with increasing the degree of vacuum of at least a part of the passage space by discharging gas through the second pipeline, the force applied in the direction of bringing the object and the vacuum forming member closer to each other is reduced. The charged particle apparatus according to any one of claims 17 to 20.
  22.  前記第2の管路を介した気体排出により前記通過空間の少なくとも一部の真空度を増加させることと並行して、前記物体と前記真空形成部材とを離す
     請求項17から21のいずれか一項に記載の荷電粒子装置。
    Any one of claims 17 to 21 that separates the object from the vacuum forming member in parallel with increasing the degree of vacuum of at least a part of the passage space by discharging gas through the second pipeline. The charged particle apparatus according to the section.
  23.  前記第2の管路を介した気体排出により前記通過空間の少なくとも一部の真空度を増加させることと並行して、前記通過空間の少なくとも一部の真空度を増加させる前後における前記物体と前記真空形成部材との間の距離を維持する
     請求項17から22のいずれか一項に記載の荷電粒子装置。
    The object and the object before and after increasing the degree of vacuum of at least a part of the passage space in parallel with increasing the degree of vacuum of at least a part of the passage space by discharging gas through the second pipeline. The charged particle apparatus according to any one of claims 17 to 22, which maintains a distance from a vacuum forming member.
  24.  前記通過空間は、前記通過空間よりも真空度の高い高真空空間と前記第2の管路を介して接続可能である
     請求項17から23のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 17 to 23, wherein the passage space can be connected to a high vacuum space having a higher degree of vacuum than the passage space via the second pipeline.
  25.  前記第2の管路を介して前記通過空間の少なくとも一部の気体を排出する排気装置を備える
     請求項17から24のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 17 to 24, comprising an exhaust device for discharging at least a part of gas in the passage space through the second pipeline.
  26.  前記第2の管路は、前記通過空間の少なくとも一部の真空度を制御するバルブと接続する
     請求項1から25のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 1 to 25, wherein the second pipeline is connected to a valve that controls the degree of vacuum of at least a part of the passage space.
  27.  前記第2の管路を介した気体供給及び気体排出の少なくとも一方により前記通過空間の少なくとも一部の真空度を制御することと並行して、前記物体と前記真空形成部材との間隔を制御する
     請求項1から26のいずれか一項に記載の荷電粒子装置。
    The distance between the object and the vacuum forming member is controlled in parallel with controlling the degree of vacuum of at least a part of the passage space by at least one of gas supply and gas discharge through the second pipeline. The charged particle apparatus according to any one of claims 1 to 26.
  28.  前記第2の管路の前記真空領域側の端部は、前記第1の管路の前記真空領域側の端部よりも前記物体と反対側に位置する
     請求項1から27のいずれか一項に記載の荷電粒子装置。
    Any one of claims 1 to 27, wherein the end portion of the second pipeline on the vacuum region side is located on the opposite side of the object from the end of the first pipeline on the vacuum region side. The charged particle apparatus according to.
  29.  前記通過空間は、前記照射装置と前記第1の管路の前記真空領域側の端部との間の空間を含む
     請求項1から28のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 1 to 28, wherein the passage space includes a space between the irradiation device and the end of the first pipeline on the vacuum region side.
  30.  前記第2の管路の前記真空領域側の端部は、前記照射装置と前記第1の管路の前記真空領域側の端部との間の空間と接続する
     請求項1から29のいずれか一項に記載の荷電粒子装置。
    Any of claims 1 to 29, wherein the end of the second pipeline on the vacuum region side is connected to a space between the irradiation device and the end of the first pipeline on the vacuum region side. The charged particle apparatus according to one item.
  31.  前記通過空間に含まれる、前記照射装置と前記第1の管路の前記真空領域側の端部との間の空間は、前記真空形成部材に形成されている
     請求項29又は30に記載の荷電粒子装置。
    The charge according to claim 29 or 30, wherein the space included in the passage space between the irradiation device and the end of the first pipeline on the vacuum region side is formed in the vacuum forming member. Particle device.
  32.  前記第2の管路の少なくとも一部は、前記真空形成部材に設けられている
     請求項1から31のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 1 to 31, wherein at least a part of the second pipeline is provided in the vacuum forming member.
  33.  前記第2の管路の少なくとも一部は、前記照射装置に設けられている
     請求項1から32のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 1 to 32, wherein at least a part of the second pipeline is provided in the irradiation device.
  34.  前記照射装置は、前記第1の管路の端部における真空度が前記第2の管路の端部における真空度よりも高い状態で、前記荷電粒子を前記試料に向けて照射する
     請求項1から33のいずれか一項に記載の荷電粒子装置。
    The irradiation device irradiates the sample with the charged particles in a state where the degree of vacuum at the end of the first line is higher than the degree of vacuum at the end of the second line. 33. The charged particle apparatus according to any one of 3.
  35.  前記第2の管路は、前記通過空間に向かって前記第2の管路を通過する気体を濾過するフィルタを備える
     請求項1から34のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 1 to 34, wherein the second pipeline includes a filter for filtering a gas passing through the second pipeline toward the passage space.
  36.  荷電粒子を試料に照射する照射装置と、
     排気装置と接続可能な第1の管路を有し、物体の面に接する空間の気体を前記第1の管路を介して排出して、真空領域を形成する真空形成部材と
     を備え、
     前記照射装置から照射される荷電粒子の通過空間は前記真空領域の少なくとも一部を含み、
     前記通過空間の少なくとも一部の真空度を制御することと並行して、前記物体と前記真空形成部材との間隔を制御する
     荷電粒子装置。
    An irradiation device that irradiates a sample with charged particles,
    It has a first pipeline that can be connected to an exhaust device, and is provided with a vacuum forming member that forms a vacuum region by discharging gas in a space in contact with the surface of an object through the first pipeline.
    The passage space of the charged particles irradiated from the irradiation device includes at least a part of the vacuum region.
    A charged particle device that controls the distance between the object and the vacuum forming member in parallel with controlling the degree of vacuum of at least a part of the passing space.
  37.  前記物体と前記真空形成部材との間隔を制御することで、前記通過空間の少なくとも一部の真空度を制御する
     請求項36に記載の荷電粒子装置。
    The charged particle device according to claim 36, wherein the degree of vacuum of at least a part of the passing space is controlled by controlling the distance between the object and the vacuum forming member.
  38.  前記物体と前記真空形成部材との間隔を制御することで、前記通過空間の少なくとも一部の真空度を減少させる
     請求項36又は37に記載の荷電粒子装置。
    The charged particle apparatus according to claim 36 or 37, wherein the degree of vacuum of at least a part of the passing space is reduced by controlling the distance between the object and the vacuum forming member.
  39.  前記物体と前記真空形成部材とを離す方向に付与される力を増加して、前記通過空間の少なくとも一部の真空度を減少させる
     請求項36から38のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 36 to 38, wherein the force applied in the direction of separating the object and the vacuum forming member is increased to reduce the degree of vacuum of at least a part of the passing space. ..
  40.  前記物体と前記真空形成部材とを近づける方向に付与される力を減少して、前記通過空間の少なくとも一部の真空度を減少させる
     請求項36から39のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 36 to 39, wherein the force applied in the direction of bringing the object and the vacuum forming member closer to each other is reduced to reduce the degree of vacuum of at least a part of the passing space. ..
  41.  前記物体と前記真空形成部材とを離して、前記通過空間の少なくとも一部の真空度を減少する
     請求項36から40のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 36 to 40, wherein the object and the vacuum forming member are separated to reduce the degree of vacuum of at least a part of the passing space.
  42.  前記物体と前記真空形成部材との間隔を制御することで、前記通過空間の少なくとも一部の真空度を増加させる
     請求項36から41のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 36 to 41, wherein the degree of vacuum of at least a part of the passing space is increased by controlling the distance between the object and the vacuum forming member.
  43.  前記物体と前記真空形成部材とを近づける方向に付与される力を増加して、前記通過空間の少なくとも一部の真空度を増加させる
     請求項36から42のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 36 to 42, wherein the force applied in the direction of bringing the object and the vacuum forming member closer to each other is increased to increase the degree of vacuum of at least a part of the passing space. ..
  44.  前記物体と前記真空形成部材とを離す方向に付与される力を減少して、前記通過空間の少なくとも一部の真空度を増加させる
     請求項36から43のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 36 to 43, wherein the force applied in the direction of separating the object and the vacuum forming member is reduced to increase the degree of vacuum of at least a part of the passing space. ..
  45.  前記物体と前記真空形成部材とを近づけて、前記通過空間の少なくとも一部の真空度を増加させる
     請求項36から44のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 36 to 44, wherein the object and the vacuum forming member are brought close to each other to increase the degree of vacuum of at least a part of the passing space.
  46.  前記通過空間の少なくとも一部の真空度を制御することと並行して、前記物体と前記真空形成部材との間隔を制御する
     請求項36から45のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 36 to 45, wherein the distance between the object and the vacuum forming member is controlled in parallel with controlling the degree of vacuum of at least a part of the passing space.
  47.  前記真空領域の周囲の少なくとも一部に位置する周辺領域に気体を供給する気体供給装置を備え、
     前記気体供給装置が供給する気体は、ヘリウム、ネオン、アルゴン、窒素及びクリーンドライエアー(CDA)の少なくとも1つを含む
     請求項1から46のいずれか一項に記載の荷電粒子装置。
    A gas supply device for supplying gas to a peripheral region located at least a part around the vacuum region is provided.
    The charged particle device according to any one of claims 1 to 46, wherein the gas supplied by the gas supply device includes at least one of helium, neon, argon, nitrogen, and clean dry air (CDA).
  48.  前記真空領域を第1圧力範囲で使用する第1モードと、前記真空領域を前記第1圧力範囲と異なる第2圧力範囲で用いる第2モードに設定可能である
     請求項36から47のいずれか一項に記載の荷電粒子装置。
    One of claims 36 to 47, which can be set to a first mode in which the vacuum region is used in the first pressure range and a second mode in which the vacuum region is used in a second pressure range different from the first pressure range. The charged particle apparatus according to the section.
  49.  排気装置と接続可能な第1の管路を有し、物体の面に接する空間の気体を前記第1の管路を介して排出して、真空領域を形成する真空形成部材と、
     前記真空領域を介して荷電粒子を試料に向けて照射する照射装置と、
     を備え、
     前記真空領域の周囲の前記真空領域よりも気圧が高い空間の少なくとも一部の気体は、前記真空形成部材の前記第1の管路を介して排出され、
     前記照射装置から照射される荷電粒子の通過空間は前記真空領域の少なくとも一部を含み、
     前記真空領域を第1圧力範囲で使用する第1モードと、前記真空領域を前記第1圧力範囲と異なる第2圧力範囲で用いる第2モードに設定可能である荷電粒子装置。
    A vacuum forming member having a first pipeline that can be connected to an exhaust device and discharging gas in a space in contact with the surface of an object through the first pipeline to form a vacuum region.
    An irradiation device that irradiates a sample with charged particles through the vacuum region,
    With
    At least a part of the gas in the space around the vacuum region having a higher atmospheric pressure than the vacuum region is discharged through the first pipeline of the vacuum forming member.
    The passage space of the charged particles irradiated from the irradiation device includes at least a part of the vacuum region.
    A charged particle device that can be set to a first mode in which the vacuum region is used in a first pressure range and a second mode in which the vacuum region is used in a second pressure range different from the first pressure range.
  50.  前記第1モードと前記第2モードとで、前記物体と前記真空形成部材との間隔はほぼ同じである
     請求項48又は49に記載の荷電粒子装置。
    The charged particle apparatus according to claim 48 or 49, wherein the distance between the object and the vacuum forming member is substantially the same in the first mode and the second mode.
  51.  前記第1モードにおける前記物体と前記真空形成部材との間隔と、前記第2モードにおける前記物体と前記真空形成部材との間隔とは異なる
     請求項48又は49に記載の荷電粒子装置。
    The charged particle device according to claim 48 or 49, wherein the distance between the object and the vacuum forming member in the first mode is different from the distance between the object and the vacuum forming member in the second mode.
  52.  前記物体と前記真空形成部材との間隔を変更することによって、前記第1モードと前記第2モードの一方から他方への変更を行う
     請求項51に記載の荷電粒子装置。
    The charged particle apparatus according to claim 51, which changes from one of the first mode and the second mode to the other by changing the distance between the object and the vacuum forming member.
  53.  前記通過空間と接続する第2の管路を備え、
     前記第2の管路を用いて、前記第1モードと前記第2モードの一方から他方への変更を行う
     請求項48から52のいずれか一項に記載の荷電粒子装置。
    It is provided with a second pipeline that connects to the passage space.
    The charged particle apparatus according to any one of claims 48 to 52, wherein a change from one of the first mode and the second mode to the other is performed by using the second pipeline.
  54.  前記第2の管路の少なくとも一部は、前記真空形成部材に設けられている
     請求項53に記載の荷電粒子装置。
    The charged particle apparatus according to claim 53, wherein at least a part of the second pipeline is provided in the vacuum forming member.
  55.  前記第2の管路の一端は、前記物体の表面が対向するように配置されている
     請求項54に記載の荷電粒子装置。
    The charged particle device according to claim 54, wherein one end of the second pipeline is arranged so that the surfaces of the objects face each other.
  56.  前記真空領域を第1圧力範囲で使用する第1モードと、前記真空領域を前記第1圧力範囲と異なる第2圧力範囲で用いる第2モードに設定可能である
     請求項1から35のいずれか一項に記載の荷電粒子装置。
    Any one of claims 1 to 35, which can be set to a first mode in which the vacuum region is used in the first pressure range and a second mode in which the vacuum region is used in a second pressure range different from the first pressure range. The charged particle apparatus according to the section.
  57.  前記第1モードと前記第2モードとで、前記物体と前記真空形成部材との間隔はほぼ同じである
     請求項56に記載の荷電粒子装置。
    The charged particle device according to claim 56, wherein the distance between the object and the vacuum forming member is substantially the same in the first mode and the second mode.
  58.  前記第1モードにおける前記物体と前記真空形成部材との間隔と、前記第2モードにおける前記物体と前記真空形成部材との間隔とが異なる
     請求項56に記載の荷電粒子装置。
    The charged particle apparatus according to claim 56, wherein the distance between the object and the vacuum forming member in the first mode is different from the distance between the object and the vacuum forming member in the second mode.
  59.  前記物体と前記真空形成部材との間隔を変更することによって、前記第1モードと前記第2モードの一方から他方への変更を行う
     請求項58に記載の荷電粒子装置。
    The charged particle device according to claim 58, which changes from one of the first mode and the second mode to the other by changing the distance between the object and the vacuum forming member.
  60.  前記第1モードにおいて前記第2管路を介して前記通過空間に供給される気体の量と、前記第2モードにおいて前記第2管路を介して前記通過空間に供給される気体の量とが異なる
     請求項53から59のいずれか一行に記載の荷電粒子装置。
    The amount of gas supplied to the passage space via the second pipeline in the first mode and the amount of gas supplied to the passage space via the second pipeline in the second mode are determined. The charged particle apparatus according to any one of different claims 53 to 59.
  61.  前記第2の管路を介して前記通過空間へ供給される気体の量を変更することによって前記第1モードと前記第2モードの一方から他方への変更を行う
     請求項53から60のいずれか一行に記載の荷電粒子装置。
    One of claims 53 to 60, which changes from one of the first mode and the second mode to the other by changing the amount of gas supplied to the passage space through the second pipeline. The charged particle device described in one line.
  62.  前記第1モードにおいて前記第2管路を介して前記通過空間から排出される気体の量と、前記第2モードにおいて前記第2の管路を介して前記通過空間から排出される気体の量とが異なる
     請求項53から61のいずれか一行に記載の荷電粒子装置。
    The amount of gas discharged from the passage space through the second pipeline in the first mode and the amount of gas discharged from the passage space through the second pipeline in the second mode. The charged particle apparatus according to any one of claims 53 to 61, wherein the charged particle apparatus is different.
  63.  前記第2の管路を介して前記通過空間から排出される気体の量を変更することによって前記第1モードと前記第2モードの一方から他方への変更を行う
     請求項53から62のいずれか一行に記載の荷電粒子装置。
    Any of claims 53 to 62, which changes from one of the first mode and the second mode to the other by changing the amount of gas discharged from the passage space through the second pipeline. The charged particle device described in one line.
  64.  前記第1モードにおいて前記第1の管路を介して排出される気体の量と前記第2モードにおいて前記第1の管路を介して排出される気体の量とが異なる
     請求項48から63のいずれか一行に記載の荷電粒子装置。
    Claims 48 to 63, wherein the amount of gas discharged through the first pipeline in the first mode and the amount of gas discharged through the first pipeline in the second mode are different. The charged particle apparatus according to any one line.
  65.  前記第1の管路を介して排出される気体の量を変更することによって前記第1モードと前記第2モードの一方から他方への変更を行う
     請求項64に記載の荷電粒子装置。
    The charged particle apparatus according to claim 64, wherein the change from one of the first mode and the second mode to the other is performed by changing the amount of gas discharged through the first pipeline.
  66.  前記通過空間は、前記照射装置に形成された第1の通過空間と、前記物体の前記面に接する第2の通過空間とを含み、
     前記第1の通過空間と前記第2の通過空間との間に前記荷電粒子が通過可能な開口を備える
     請求項1から65のいずれか一項に記載の荷電粒子装置。
    The passage space includes a first passage space formed in the irradiation device and a second passage space in contact with the surface of the object.
    The charged particle apparatus according to any one of claims 1 to 65, further comprising an opening through which the charged particles can pass between the first passing space and the second passing space.
  67.  前記開口の排気抵抗により、前記第1の通過空間の真空度と前記第2の通過空間の真空度との差が維持される
     請求項66に記載の荷電粒子装置。
    The charged particle apparatus according to claim 66, wherein the difference between the degree of vacuum in the first passing space and the degree of vacuum in the second passing space is maintained by the exhaust resistance of the opening.
  68.  前記開口の面積は可変である
     請求項66又は67に記載の荷電粒子装置。
    The charged particle apparatus according to claim 66 or 67, wherein the area of the opening is variable.
  69.  前記通過空間の少なくとも一部の真空度を変更することと並行して、前記開口の面積を変更する
     請求項66から68のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 66 to 68, wherein the area of the opening is changed in parallel with changing the degree of vacuum of at least a part of the passing space.
  70.  前記第1の通過空間の真空度と、前記第2の通過空間の真空度との差を増加することと並行して、前記開口の面積を減少する
     請求項66から69のいずれか一項に記載の荷電粒子装置。
    According to any one of claims 66 to 69, the area of the opening is reduced in parallel with increasing the difference between the degree of vacuum of the first passing space and the degree of vacuum of the second passing space. The charged particle device described.
  71.  前記第1の通過空間の真空度は前記第2の通過空間の真空度より高く、
     前記第2の通過空間の真空度を減少することと並行して、前記開口の面積を減少する
     請求項66から70のいずれか一項に記載の荷電粒子装置。
    The degree of vacuum of the first passing space is higher than the degree of vacuum of the second passing space.
    The charged particle apparatus according to any one of claims 66 to 70, wherein the area of the opening is reduced in parallel with reducing the degree of vacuum of the second passage space.
  72.  前記第1の通過空間の真空度と、前記第2の通過空間の真空度との差を減少することと並行して、前記開口の面積を増加する
     請求項66から71のいずれか一項に記載の荷電粒子装置。
    According to any one of claims 66 to 71, the area of the opening is increased in parallel with reducing the difference between the degree of vacuum of the first passing space and the degree of vacuum of the second passing space. The charged particle device described.
  73.  前記第1の通過空間の真空度は、前記第2の通過空間の真空度より高く、
     前記第2の通過空間の真空度を増加することと並行して、前記開口の面積を増加する
     請求項66から72のいずれか一項に記載の荷電粒子装置。
    The degree of vacuum of the first passing space is higher than the degree of vacuum of the second passing space.
    The charged particle apparatus according to any one of claims 66 to 72, wherein the area of the opening is increased in parallel with increasing the degree of vacuum of the second passage space.
  74.  前記照射装置は、前記荷電粒子を前記試料に向けて導く荷電粒子用レンズを備え、
     前記開口は、前記荷電粒子用レンズの内側に位置する
     請求項66から73のいずれか一項に記載の荷電粒子装置。
    The irradiation device includes a lens for charged particles that guides the charged particles toward the sample.
    The charged particle device according to any one of claims 66 to 73, wherein the aperture is located inside the lens for charged particles.
  75.  前記開口は、前記荷電粒子用レンズよりも前記荷電粒子用レンズの前記軸の近くであって、前記荷電粒子用レンズの軸に沿う方向に関して、前記荷電粒子用レンズの上端と下端の間に位置する
     請求項74に記載の荷電粒子装置。
    The aperture is closer to the axis of the charged particle lens than the charged particle lens and is located between the upper and lower ends of the charged particle lens in a direction along the axis of the charged particle lens. The charged particle apparatus according to claim 74.
  76.  前記開口は、前記照射装置が有する偏向器の偏向支点に位置する
     請求項66から75のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 66 to 75, wherein the opening is located at a deflection fulcrum of a deflector included in the irradiation device.
  77.  前記荷電粒子が照射された試料からの荷電粒子を検出する荷電粒子検出器を備え、
     前記荷電粒子検出器は、前記開口と前記試料との間に位置する
     請求項66から76のいずれか一項に記載の荷電粒子装置。
    A charged particle detector for detecting charged particles from a sample irradiated with the charged particles is provided.
    The charged particle device according to any one of claims 66 to 76, wherein the charged particle detector is located between the opening and the sample.
  78.  前記荷電粒子が照射された試料からの荷電粒子を検出する荷電粒子検出器を備え、
     前記通過空間は前記試料と前記荷電粒子検出器との間において、前記物体の前記面と交差する方向に関して前記荷電粒子が照射された試料から離れるにつれて、前記物体の前記面に沿う方向に関して、前記試料の前記荷電粒子が照射された位置から離れるように広がっている
     請求項1から76のいずれか一項に記載の荷電粒子装置。
    A charged particle detector for detecting charged particles from a sample irradiated with the charged particles is provided.
    The passage space between the sample and the charged particle detector, with respect to the direction along the surface of the object as the charged particles move away from the irradiated sample in a direction intersecting the surface of the object. The charged particle apparatus according to any one of claims 1 to 76, wherein the charged particles of the sample are spread away from the irradiated position.
  79.  前記試料が絶縁物である場合の前記通過空間の少なくとも一部の真空度は、前記試料が絶縁物でない場合と比較して小さい
     請求項1から78のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 1 to 78, wherein the degree of vacuum of at least a part of the passage space when the sample is an insulator is smaller than that when the sample is not an insulator.
  80.  前記試料が絶縁物である場合の前記物体と前記真空形成部材との間隔は、前記試料が絶縁物でない場合と比較して大きい
     請求項1から79のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 1 to 79, wherein the distance between the object and the vacuum forming member when the sample is an insulator is larger than that when the sample is not an insulator.
  81.  前記真空領域が前記物体の表面の一部を覆うように形成されているとき、前記物体の前記表面の他の一部は非真空領域又は前記真空領域よりも真空度が低い領域で覆われる
     請求項1から80のいずれか一項に記載の荷電粒子装置。
    When the vacuum region is formed so as to cover a part of the surface of the object, the other part of the surface of the object is covered with a non-vacuum region or a region having a lower degree of vacuum than the vacuum region. The charged particle apparatus according to any one of Items 1 to 80.
  82.  前記物体の前記面の少なくとも一部は、前記真空領域の少なくとも一部に面する
     請求項1から81のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 1 to 81, wherein at least a part of the surface of the object faces at least a part of the vacuum region.
  83.  前記物体の前記面の少なくとも一部は、前記真空領域の少なくとも一部に覆われる
     請求項1から82のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 1 to 82, wherein at least a part of the surface of the object is covered with at least a part of the vacuum region.
  84.  前記物体の前記面の一部は、前記真空領域に面し、前記物体の前記面の他の一部は、大気圧領域に面する
     請求項1から83のいずれか一項に記載の荷電粒子装置。
    The charged particle according to any one of claims 1 to 83, wherein a part of the surface of the object faces the vacuum region and the other part of the surface of the object faces the atmospheric pressure region. apparatus.
  85.  前記物体の前記面は、前記試料の表面の少なくとも一部を含む
     請求項1から84のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 1 to 84, wherein the surface of the object includes at least a part of the surface of the sample.
  86.  前記物体の前記面は、前記試料を保持する保持部材の表面の少なくとも一部を含む
     請求項1から84のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 1 to 84, wherein the surface of the object includes at least a part of the surface of a holding member that holds the sample.
  87.  前記物体の前記面は、前記試料と前記真空形成部材との間に配置される部材の表面の少なくとも一部を含む
     請求項1から84のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 1 to 84, wherein the surface of the object includes at least a part of the surface of the member arranged between the sample and the vacuum forming member.
  88.  前記第1の管路と前記通過空間との少なくとも一部の圧力を取得する真空計を備える
     請求項1から87のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 1 to 87, comprising a vacuum gauge for acquiring at least a part of the pressure between the first pipeline and the passing space.
  89.  前記真空系により取得した真空度に基づいて、前記物体と前記真空形成部材との間隔を制御する
     請求項1から87のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 1 to 87, which controls the distance between the object and the vacuum forming member based on the degree of vacuum acquired by the vacuum system.
  90.  排気装置と接続可能な第1の管路を有する真空形成部材を用いて、物体の面に接する空間の気体を前記第1の管路を介して排出して、真空領域を形成することと、
     前記真空領域よりも気圧が高く前記真空領域の周囲の空間の少なくとも一部の気体を、前記第1の管路を介して排出することと、
     前記真空領域の少なくとも一部を含む通過空間を通過した荷電粒子を試料に照射することと、
     前記通過空間の少なくとも一部の真空度を制御することと並行して、前記物体と前記真空形成部材との間隔を制御する
     荷電粒子の照射方法。
    Using a vacuum forming member having a first pipeline that can be connected to an exhaust device, gas in a space in contact with the surface of an object is discharged through the first pipeline to form a vacuum region.
    Discharging at least a part of the gas in the space around the vacuum region, which has a higher atmospheric pressure than the vacuum region, through the first pipeline.
    Irradiating the sample with charged particles that have passed through the passage space including at least a part of the vacuum region.
    A method of irradiating charged particles that controls the distance between the object and the vacuum forming member in parallel with controlling the degree of vacuum of at least a part of the passing space.
  91.  前記荷電粒子は前記真空形成部材に形成された前記通過空間を介して前記試料に照射され、
     前記第1の管路とは別の管路であって且つ前記通過空間と接続する第2の管路を介した気体供給及び気体排出の少なくとも一方により、前記通過空間の少なくとも一部の真空度を制御する
     請求項90に記載の荷電粒子の照射方法。
    The charged particles are applied to the sample through the passage space formed in the vacuum forming member.
    The degree of vacuum of at least a part of the passage space due to at least one of gas supply and gas discharge through the second pipeline connected to the passage space, which is a pipeline different from the first pipeline. The method of irradiating a charged particle according to claim 90.
  92.  前記通過空間の少なくとも一部の真空度を制御することと並行して、前記物体と前記真空形成部材との間隔を制御する
     請求項90又は91に記載の荷電粒子の照射方法。
    The method for irradiating charged particles according to claim 90 or 91, wherein the distance between the object and the vacuum forming member is controlled in parallel with controlling the degree of vacuum of at least a part of the passing space.
  93.  前記真空形成部材は、第1面を有し、且つ、前記第1面に対向可能な第2面を有する物体との間の空間に前記真空領域を形成し、
     前記第1面の姿勢及び形状のいずれか一方に基づいて、前記第1面と前記第2面との位置関係を変更する位置変更装置を備える
     請求項1から89のいずれか一項に記載の荷電粒子装置
    The vacuum forming member forms the vacuum region in a space between an object having a first surface and having a second surface facing the first surface.
    The invention according to any one of claims 1 to 89, further comprising a position changing device for changing the positional relationship between the first surface and the second surface based on either the posture and the shape of the first surface. Charged particle device
  94.  前記照射装置は、前記第1面に形成された射出口から、試料に向けて前記荷電粒子を照射する
     請求項93に記載の荷電粒子装置。
    The charged particle device according to claim 93, wherein the irradiation device irradiates the charged particles toward the sample from the injection port formed on the first surface.
  95.  前記射出口は、前記第1の管路の前記真空領域側の端部を含む
     請求項94に記載の荷電粒子装置。
    The charged particle apparatus according to claim 94, wherein the injection port includes an end portion of the first pipeline on the vacuum region side.
  96.  排気装置と接続可能な第1の管路と第1面とを有し、物体のうち前記第1面に対向可能な第2面に接する空間の気体を前記第1の管路を介して排出して、真空領域を形成する真空形成部材と、
     前記第1面に形成された射出口から、試料に向けて荷電粒子を照射する照射装置と、
     前記第1面の姿勢及び形状のいずれか一方に基づいて、前記第1面と前記第2面との位置関係を変更する位置変更装置と
     を備え、
     前記真空領域の周囲の前記真空領域よりも気圧が高い空間の少なくとも一部の気体は、前記真空形成部材の前記第1の管路を介して排出され、
     前記荷電粒子照射装置から照射される荷電粒子の通路は前記真空領域の少なくとも一部を含む
     荷電粒子装置。
    A gas in a space having a first pipeline and a first surface that can be connected to an exhaust device and in contact with a second surface of an object that can face the first surface is discharged through the first pipeline. Then, the vacuum forming member that forms the vacuum region and
    An irradiation device that irradiates a sample with charged particles from an injection port formed on the first surface.
    A position changing device for changing the positional relationship between the first surface and the second surface based on either the posture or the shape of the first surface is provided.
    At least a part of the gas in the space around the vacuum region having a higher atmospheric pressure than the vacuum region is discharged through the first pipeline of the vacuum forming member.
    A charged particle device in which the passage of charged particles irradiated from the charged particle irradiation device includes at least a part of the vacuum region.
  97.  前記第1の管路の一端となる開口は、前記第1面に形成される
     請求項96に記載の荷電粒子装置。
    The charged particle device according to claim 96, wherein the opening at one end of the first pipeline is formed on the first surface.
  98.  前記第1面の姿勢は、前記第1面の法線方向の情報を含む
     請求項96又は97に記載の荷電粒子装置。
    The charged particle apparatus according to claim 96 or 97, wherein the posture of the first surface includes information in the normal direction of the first surface.
  99.  前記位置変更装置は、前記第2面の姿勢及び形状のいずれか一方に基づいて、前記第1面と前記第2面との位置関係を変更する
     請求項96から98のいずれか一項に記載の荷電粒子装置。
    The position change device according to any one of claims 96 to 98, which changes the positional relationship between the first surface and the second surface based on either the posture and the shape of the second surface. Charged particle device.
  100.  前記第2面の姿勢は、前記第2面の法線方向の情報を含む
     請求項99に記載の荷電粒子装置。
    The charged particle device according to claim 99, wherein the posture of the second surface includes information in the normal direction of the second surface.
  101.  前記第1面と前記第2面との位置関係は、前記第1面と前記第2面との間の間隔及び前記第1面の姿勢と前記第2面の姿勢との相対的関係の少なくとも一方を含む
     請求項96から100のいずれか一項に記載の荷電粒子装置。
    The positional relationship between the first surface and the second surface is at least the distance between the first surface and the second surface and the relative relationship between the posture of the first surface and the posture of the second surface. The charged particle apparatus according to any one of claims 96 to 100, which includes one.
  102.  前記位置変更装置は、前記位置関係を変更する前と比較して、前記第1面と前記第2面とが平行に近づくように、前記位置関係を変更する
     請求項96から101に記載の荷電粒子装置。
    The electric charge according to claims 96 to 101, wherein the position changing device changes the positional relationship so that the first surface and the second surface are closer to parallel than before the positional relationship is changed. Particle device.
  103.  前記位置変更装置は、前記第1面と前記第2面とが平行になるように、前記位置関係を変更する
     請求項96から102のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 96 to 102, wherein the position changing device changes the positional relationship so that the first surface and the second surface are parallel to each other.
  104.  前記位置変更装置は、前記第1面と前記第2面との接触を防止するように、前記位置関係を変更する
     請求項96から103のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 96 to 103, wherein the position changing device changes the positional relationship so as to prevent contact between the first surface and the second surface.
  105.  前記第1面の姿勢及び形状のいずれか一方は、前記第1面の少なくとも一部を含むことができる第3面を有する基準部材を、前記第1面と前記第3面とが接触するように前記真空形成部材に接触させ、前記第3面に検出装置から検出ビームを照射することにより間接的に検出される
     請求項96から104のいずれか一項に記載の荷電粒子装置。
    One of the postures and shapes of the first surface is such that the first surface and the third surface come into contact with a reference member having a third surface that can include at least a part of the first surface. The charged particle device according to any one of claims 96 to 104, which is indirectly detected by bringing the vacuum forming member into contact with the vacuum forming member and irradiating the third surface with a detection beam from the detection device.
  106.  前記第1面の姿勢及び形状のいずれか一方に関する情報を記憶する記憶装置を備え、
     前記位置変更装置は、前記記憶装置に記憶された前記第1面の姿勢及び形状のいずれか一方に関する情報に基づいて、前記第1面と前記第2面との位置関係を変更する
     請求項96から105のいずれか一項に記載の荷電粒子装置。
    A storage device for storing information regarding either the posture or the shape of the first surface is provided.
    The position changing device changes the positional relationship between the first surface and the second surface based on the information about one of the posture and the shape of the first surface stored in the storage device. 10. The charged particle apparatus according to any one of 105.
  107.  前記第1面の姿勢及び形状のいずれか一方を検出する検出装置を備える
     請求項96から106のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 96 to 106, comprising a detection device for detecting either one of the posture and the shape of the first surface.
  108.  前記検出装置は、前記第2面の姿勢及び形状のいずれか一方を検出する
     請求項107に記載の荷電粒子装置。
    The charged particle device according to claim 107, wherein the detection device detects either one of the posture and the shape of the second surface.
  109.  前記検出装置は、同一の検出器を用いて前記第1面及び第2面のそれぞれの姿勢及び形状のいずれか一方を検出する
     請求項108に記載の荷電粒子装置。
    The charged particle device according to claim 108, wherein the detection device uses the same detector to detect one of the postures and shapes of the first surface and the second surface.
  110.  前記検出器は、前記真空形成部材に対して固定された第1位置に配置される
     請求項109に記載の荷電粒子装置。
    The charged particle device according to claim 109, wherein the detector is arranged at a first position fixed to the vacuum forming member.
  111.  前記第1面の姿勢及び形状のいずれか一方を検出する場合の前記検出器と前記真空形成部材との位置関係は、前記第2面の姿勢及び形状のいずれか一方を検出する場合の前記検出器の前記真空形成部材に対する位置関係と同じである
     請求項109又は110に記載の荷電粒子装置。
    The positional relationship between the detector and the vacuum forming member when detecting either one of the posture and shape of the first surface is the detection when detecting either one of the posture and shape of the second surface. The charged particle apparatus according to claim 109 or 110, which has the same positional relationship with respect to the vacuum forming member of the vessel.
  112.  前記検出器は、前記照射装置に対して固定された第1位置に配置される
     請求項109から111のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 109 to 111, wherein the detector is arranged at a first position fixed to the irradiation device.
  113.  前記第1面の姿勢及び形状のいずれか一方を検出する場合の前記検出器と前記照射装置との位置関係は、前記第2面の姿勢及び形状のいずれか一方を検出する場合の前記検出器と前記照射装置との位置関係と同じである
     請求項112に記載の荷電粒子装置。
    The positional relationship between the detector and the irradiation device when detecting either one of the posture and the shape of the first surface is the same as the detector when detecting one of the posture and the shape of the second surface. The charged particle device according to claim 112, which has the same positional relationship as that of the irradiation device.
  114.  前記検出器は、前記物体に対して固定された第2位置に配置される
     請求項109から113のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 109 to 113, wherein the detector is arranged at a second position fixed to the object.
  115.  前記第1面の姿勢及び形状のいずれか一方を検出する場合の前記検出器と前記物体との位置関係は、前記第2面の姿勢及び形状のいずれか一方を検出する場合の前記検出器と前記物体との位置関係と同じである
     請求項109から114のいずれか一項に記載の荷電粒子装置。
    The positional relationship between the detector and the object when detecting either one of the posture and the shape of the first surface is the same as the detector when detecting either the posture and the shape of the second surface. The charged particle apparatus according to any one of claims 109 to 114, which has the same positional relationship with the object.
  116.  前記検出器は、前記第1面に検出ビームを照射して前記第1面の姿勢及び形状のいずれか一方を検出する
     請求項109から115のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 109 to 115, wherein the detector irradiates the first surface with a detection beam to detect one of the posture and the shape of the first surface.
  117.  前記検出器は、前記第2面に検出ビームを照射して前記第2面の姿勢及び形状のいずれか一方を検出する
     請求項109から116のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 109 to 116, wherein the detector irradiates the second surface with a detection beam to detect one of the posture and the shape of the second surface.
  118.  前記検出器は、前記第1面の少なくとも一部を含むことができる第4面を有する基準部材が、前記第1面と前記第4面とが接触するように前記真空形成部材に接触した状態で、前記第4面に検出ビームを照射して前記第1面の姿勢及び形状のいずれか一方を検出する
     請求項109から117のいずれか一項に記載の荷電粒子装置。
    The detector is in a state in which a reference member having a fourth surface capable of including at least a part of the first surface is in contact with the vacuum forming member so that the first surface and the fourth surface are in contact with each other. The charged particle apparatus according to any one of claims 109 to 117, wherein the fourth surface is irradiated with a detection beam to detect one of the posture and the shape of the first surface.
  119.  前記第1面及び前記第4面のそれぞれは、平面である
     請求項118に記載の荷電粒子装置。
    The charged particle apparatus according to claim 118, wherein each of the first surface and the fourth surface is a flat surface.
  120.  前記基準部材は、第1の基準部材であって、
     前記検出器は、前記第2面の少なくとも一部を含むことができる第5面を有し且つ前記第1の基準部材とは異なる第2の基準部材が、前記第2面と前記第5面とが接触するように前記物体に接触した状態で、前記第5面に検出ビームを照射して前記第2面の姿勢及び形状のいずれか一方を検出する
     請求項118又は119に記載の荷電粒子装置。
    The reference member is a first reference member.
    The detector has a fifth surface that can include at least a part of the second surface, and a second reference member different from the first reference member is the second surface and the fifth surface. The charged particle according to claim 118 or 119, which irradiates the fifth surface with a detection beam to detect either the posture or the shape of the second surface in a state of being in contact with the object so as to be in contact with the object. apparatus.
  121.  前記第2面及び前記第5面のそれぞれは、平面である
     請求項120に記載の荷電粒子装置。
    The charged particle apparatus according to claim 120, wherein each of the second surface and the fifth surface is a flat surface.
  122.  前記検出装置は、前記第1面の姿勢及び形状のいずれか一方を検出する第1検出器と、前記第2面の姿勢及び形状のいずれか一方を検出する第2検出器とを含む
     請求項107から121のいずれか一項に記載の荷電粒子装置。
    The claim includes a first detector that detects one of the postures and shapes of the first surface, and a second detector that detects one of the postures and shapes of the second surface. The charged particle apparatus according to any one of 107 to 121.
  123.  前記第1及び第2検出器のいずれか一方は、前記真空形成部材に対して固定された第1位置に配置され、
     前記第1及び第2検出器のいずれか他方は、前記物体に対して固定された第2位置に配置される
     請求項122に記載の荷電粒子装置。
    One of the first and second detectors is arranged in a first position fixed to the vacuum forming member.
    The charged particle apparatus according to claim 122, wherein any one of the first and second detectors is arranged at a second position fixed to the object.
  124.  前記第1及び第2検出器のいずれか一方は、前記照射装置に対して固定された第1位置に配置され、
     前記第1及び第2検出器のいずれか他方は、前記物体に対して固定された第2位置に配置される
     請求項122又は123に記載の荷電粒子装置。
    One of the first and second detectors is arranged in a first position fixed to the irradiation device.
    The charged particle apparatus according to claim 122 or 123, wherein the other of the first and second detectors is arranged at a second position fixed to the object.
  125.  前記第1検出器は、前記第1面に検出ビームを照射して前記第1面の姿勢及び形状のいずれか一方を検出する
     請求項122から124のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 122 to 124, wherein the first detector irradiates the first surface with a detection beam to detect one of the posture and the shape of the first surface.
  126.  前記第2検出器は、前記第2面に検出ビームを照射して前記第2面の姿勢及び形状のいずれか一方を検出する
     請求項122から125のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 122 to 125, wherein the second detector irradiates the second surface with a detection beam to detect one of the posture and the shape of the second surface.
  127.  前記第1検出器は、前記第1面の少なくとも一部を含むことができる第4面を有する基準部材が、前記第1面と前記第4面とが接触するように前記真空形成部材に接触した状態で、前記第4面に検出ビームを照射して前記第1面の姿勢及び形状のいずれか一方を検出する
     請求項122から126のいずれか一項に記載の荷電粒子装置。
    In the first detector, a reference member having a fourth surface capable of including at least a part of the first surface contacts the vacuum forming member so that the first surface and the fourth surface come into contact with each other. The charged particle apparatus according to any one of claims 122 to 126, wherein the fourth surface is irradiated with a detection beam to detect one of the posture and the shape of the first surface.
  128.  前記第1面及び前記第4面のそれぞれは、平面である
     請求項127に記載の荷電粒子装置。
    The charged particle apparatus according to claim 127, wherein each of the first surface and the fourth surface is a flat surface.
  129.  前記基準部材は、第1の基準部材であって、
     前記第2検出器は、前記第2面の少なくとも一部を含むことができる第5面を有し且つ前記第1の基準部材とは異なる第2の基準部材が、前記第2面と前記第5面とが接触するように前記物体に接触した状態で、前記第5面に検出ビームを照射して前記第2面の姿勢及び形状のいずれか一方を検出する
     請求項127又は128に記載の荷電粒子装置。
    The reference member is a first reference member.
    The second detector has a fifth surface that can include at least a part of the second surface, and a second reference member different from the first reference member is the second surface and the second surface. The 127 or 128 according to claim 127 or 128, wherein the fifth surface is irradiated with a detection beam to detect either the posture or the shape of the second surface in a state of being in contact with the object so as to be in contact with the five surfaces. Charged particle device.
  130.  前記第2面及び前記第5面のそれぞれは、平面である
     請求項129に記載の荷電粒子装置。
    The charged particle apparatus according to claim 129, wherein each of the second surface and the fifth surface is a flat surface.
  131.  前記第1及び第2検出器は、同じ第6面に検出ビームを照射して前記第6面の姿勢及び形状のいずれか一方を更に検出し、
     前記第6面の検出結果に基づいて前記第1面の姿勢及び形状のいずれか一方の検出結果と前記第2面の姿勢及び形状のいずれか一方の検出結果とを関連付けた後に、前記関連付けられた前記第1面の姿勢及び形状のいずれか一方の検出結果と前記第2面の姿勢及び形状のいずれか一方の検出結果とに基づいて前記位置関係を変更する
     請求項122から130のいずれか一項に記載の荷電粒子装置。
    The first and second detectors irradiate the same sixth surface with a detection beam to further detect one of the posture and shape of the sixth surface.
    After associating the detection result of one of the posture and the shape of the first surface with the detection result of one of the posture and the shape of the second surface based on the detection result of the sixth surface, the association is made. Any one of claims 122 to 130 that changes the positional relationship based on the detection result of either one of the posture and the shape of the first surface and the detection result of one of the posture and the shape of the second surface. The charged particle apparatus according to one item.
  132.  前記第1及び第2検出器は、位置関係が既知である異なる2つの第7面にそれぞれ検出ビームを照射して前記第7面の姿勢及び形状のいずれか一方を更に検出し、
     前記第7面の検出結果に基づいて前記第1面の姿勢及び形状のいずれか一方の検出結果と前記第2面の姿勢及び形状のいずれか一方の検出結果とを関連付けた後に、前記関連付けられた前記第1面の姿勢及び形状のいずれか一方の検出結果と前記第2面の姿勢及び形状のいずれか一方の検出結果とに基づいて前記位置関係を変更する
     請求項122から131のいずれか一項に記載の荷電粒子装置。
    The first and second detectors irradiate two different seventh surfaces having known positional relationships with a detection beam to further detect one of the posture and shape of the seventh surface.
    After associating the detection result of one of the posture and the shape of the first surface with the detection result of one of the posture and the shape of the second surface based on the detection result of the seventh surface, the association is made. Any one of claims 122 to 131 that changes the positional relationship based on the detection result of either one of the posture and the shape of the first surface and the detection result of one of the posture and the shape of the second surface. The charged particle apparatus according to one item.
  133.  前記位置変更装置は、前記第1面及び前記第2面の少なくとも一方に沿って前記照射装置と前記物体との相対位置が変化する前に、前記位置関係を変更する
     請求項96から132のいずれか一項に記載の荷電粒子装置。
    Any of claims 96 to 132, wherein the position changing device changes the positional relationship before the relative position between the irradiation device and the object changes along at least one of the first surface and the second surface. The charged particle device according to one item.
  134.  前記位置変更装置は、前記第1面及び前記第2面の少なくとも一方に沿って前記照射装置と前記物体との相対位置が変化している期間の少なくとも一部において、前記照射装置に対する前記物体の相対的な移動に合わせて前記位置関係を変更する
     請求項96から133のいずれか一項に記載の荷電粒子装置。
    The position changing device of the object with respect to the irradiation device during at least a part of a period in which the relative positions of the irradiation device and the object are changing along at least one of the first surface and the second surface. The charged particle apparatus according to any one of claims 96 to 133, wherein the positional relationship is changed according to the relative movement.
  135.  前記第1面の姿勢及び形状のいずれか一方と前記第2面の姿勢及び形状のいずれか一方とを検出する検出装置を備え、
     前記第1面及び前記第2面の少なくとも一方に沿って前記照射装置と前記物体との相対位置が変化している期間の少なくとも一部において、前記検出装置が前記第1面の姿勢及び形状のいずれか一方と前記第2面の姿勢及び形状のいずれか一方とを検出しながら、前記位置変更装置が前記位置関係を変更する
     請求項96から134のいずれか一項に記載の荷電粒子装置。
    A detection device for detecting either one of the posture and shape of the first surface and one of the posture and shape of the second surface is provided.
    During at least a part of the period in which the relative positions of the irradiation device and the object are changing along at least one of the first surface and the second surface, the detection device has the posture and shape of the first surface. The charged particle device according to any one of claims 96 to 134, wherein the position changing device changes the positional relationship while detecting either one and one of the posture and the shape of the second surface.
  136.  前記第1面及び前記第2面の少なくとも一方に沿って前記照射装置と前記物体との相対位置が変化する前に、前記第1面の姿勢及び形状のいずれか一方と前記第2面の姿勢及び形状のいずれか一方とを検出する検出装置を備え、
     前記位置変更装置は、前記第1面及び前記第2面の少なくとも一方に沿って前記照射装置と前記物体との相対位置が変化している期間の少なくとも一部において、前記検出装置による前記第1面の姿勢及び形状のいずれか一方の検出結果と前記第2面の姿勢及び形状のいずれか一方の検出結果とに基づいて、前記位置関係を変更する
     請求項96から135のいずれか一項に記載の荷電粒子装置。
    One of the postures and shapes of the first surface and the posture of the second surface before the relative positions of the irradiation device and the object change along at least one of the first surface and the second surface. And equipped with a detection device to detect either one of the shapes
    The position changing device is the first by the detection device during at least a part of a period in which the relative position between the irradiation device and the object is changing along at least one of the first surface and the second surface. According to any one of claims 96 to 135, the positional relationship is changed based on the detection result of either one of the attitudes and shapes of the surfaces and the detection result of either one of the attitudes and shapes of the second surface. The charged particle device described.
  137.  前記物体の前記面の少なくとも一部は、前記真空領域の少なくとも一部に面する
     請求項96から136のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 96 to 136, wherein at least a part of the surface of the object faces at least a part of the vacuum region.
  138.  前記物体の前記面の少なくとも一部は、前記真空領域の少なくとも一部に覆われる
     請求項96から137のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 96 to 137, wherein at least a part of the surface of the object is covered with at least a part of the vacuum region.
  139.  前記物体の前記面の一部は、前記真空領域に面し、前記物体の前記面の他の一部は、大気圧領域に面する
     請求項96から138のいずれか一項に記載の荷電粒子装置。
    The charged particle according to any one of claims 96 to 138, wherein a part of the surface of the object faces the vacuum region and the other part of the surface of the object faces the atmospheric pressure region. apparatus.
  140.  前記物体の前記面は、前記試料の表面の少なくとも一部を含む
     請求項96から139のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 96 to 139, wherein the surface of the object includes at least a part of the surface of the sample.
  141.  前記第2面は、前記試料の表面のうち前記第1面に対向する対向面を含む
     請求項140に記載の荷電粒子装置。
    The charged particle apparatus according to claim 140, wherein the second surface includes an opposing surface of the surface of the sample facing the first surface.
  142.  前記物体の前記面は、前記試料を保持する保持部材の表面の少なくとも一部を含む
     請求項96から139のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 96 to 139, wherein the surface of the object includes at least a part of the surface of a holding member that holds the sample.
  143.  前記第2面は、前記保持部材のうち前記試料を保持する保持面を含む
     請求項142に記載の荷電粒子装置。
    The charged particle apparatus according to claim 142, wherein the second surface includes a holding surface for holding the sample among the holding members.
  144.  前記第2面は、前記保持部材のうち前記試料を保持する保持面に沿って前記保持面とは異なる位置に位置する周辺面を含む
     請求項142又は143に記載の荷電粒子装置。
    The charged particle apparatus according to claim 142 or 143, wherein the second surface includes a peripheral surface of the holding member located at a position different from the holding surface along the holding surface for holding the sample.
  145.  前記物体の前記面は、前記試料と前記真空形成部材との間に配置される部材の表面の少なくとも一部を含む
     請求項96から139のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 96 to 139, wherein the surface of the object includes at least a part of the surface of the member arranged between the sample and the vacuum forming member.
  146.  前記第2面は、前記試料と前記真空形成部材との間に配置される部材の表面のうち前記第1面に対向する対向面を含む
     請求項145に記載の荷電粒子装置。
    The charged particle apparatus according to claim 145, wherein the second surface includes an opposing surface facing the first surface among the surfaces of a member arranged between the sample and the vacuum forming member.
  147.  前記照射装置は、保持部材によって保持された試料に前記荷電粒子を照射し、
     前記保持部材が前記試料を保持する前は、(i)前記物体は、前記保持部材であり、(ii)前記第2面は、前記保持部材のうち前記試料を保持する保持面を含み、(iii)検出装置は、前記第1面の姿勢及び形状のいずれか一方と前記保持面の姿勢及び形状のいずれか一方とを検出し、且つ、(iv)前記位置変更装置は、前記第1面の姿勢及び形状のいずれか一方の検出結果と前記保持面の姿勢及び形状のいずれか一方の検出結果とに基づいて、前記位置関係を変更し、
     前記保持部材が前記試料を保持した後は、(i)前記物体は、前記試料であり、(ii)前記第2面は、前記試料の表面のうち前記第1面に対向する対向面を含み、(iii)検出装置は、前記第1面の姿勢及び形状のいずれか一方と前記対向面の姿勢及び形状のいずれか一方とを検出し、且つ、(iv)前記位置変更装置は、前記第1面の姿勢及び形状のいずれか一方の検出結果と前記対向面の姿勢及び形状のいずれか一方の検出結果とに基づいて、前記位置関係を変更する
     請求項96から139のいずれか一項に記載の荷電粒子装置。
    The irradiation device irradiates the sample held by the holding member with the charged particles.
    Before the holding member holds the sample, (i) the object is the holding member, and (ii) the second surface includes a holding surface of the holding member that holds the sample. iii) The detection device detects one of the posture and shape of the first surface and one of the posture and shape of the holding surface, and (iv) the position change device is the first surface. Based on the detection result of either one of the posture and the shape of the holding surface and the detection result of either the posture and the shape of the holding surface, the positional relationship is changed.
    After the holding member holds the sample, (i) the object is the sample, and (ii) the second surface includes an opposing surface of the surface of the sample that faces the first surface. , (Iii) The detection device detects one of the posture and shape of the first surface and one of the posture and shape of the facing surface, and (iv) the position change device is the first. According to any one of claims 96 to 139, the positional relationship is changed based on the detection result of either one of the posture and the shape of one surface and the detection result of either one of the attitude and the shape of the facing surface. The charged particle device described.
  148.  前記位置変更装置は、前記第2面のうちの一部であるターゲット面に前記荷電粒子が照射されるタイミングで、前記第1面の姿勢及び形状のいずれか一方と前記ターゲット面の姿勢及び形状のいずれか一方とに基づいて、前記位置関係を変更する
     請求項96から147に記載の荷電粒子装置。
    The position changing device has one of the posture and shape of the first surface and the posture and shape of the target surface at the timing when the charged particles are irradiated on the target surface which is a part of the second surface. The charged particle apparatus according to any one of claims 96 to 147, which changes the positional relationship based on any one of the above.
  149.  前記照射装置は、前記第2面上で前記荷電粒子の照射位置が相対的に移動するように、前記荷電粒子を照射し、
     前記第2面上での前記ターゲット面の位置は、前記第2面に対する前記荷電粒子の照射位置の相対的な移動に合わせて変わる
     請求項148に記載の荷電粒子装置。
    The irradiation device irradiates the charged particles so that the irradiation positions of the charged particles move relatively on the second surface.
    The charged particle apparatus according to claim 148, wherein the position of the target surface on the second surface changes according to the relative movement of the irradiation position of the charged particles with respect to the second surface.
  150.  前記ターゲット面の姿勢及び形状のいずれか一方を検出すると共に、前記第2面のうちの一部であって且つ前記ターゲット面を包含する包含面の姿勢及び形状のいずれか一方を検出する検出装置を備える
     請求項148又は149に記載の荷電粒子装置。
    A detection device that detects either one of the posture and shape of the target surface and also detects one of the posture and shape of the inclusion surface that is a part of the second surface and includes the target surface. The charged particle apparatus according to claim 148 or 149.
  151.  前記検出装置は、同一の検出器を用いて前記ターゲット面及び前記包含面のそれぞれの姿勢及び形状のいずれか一方を検出する
     請求項150に記載の荷電粒子装置。
    The charged particle device according to claim 150, wherein the detection device uses the same detector to detect one of the postures and shapes of the target surface and the inclusion surface.
  152.  前記検出装置は、前記ターゲット面の姿勢及び形状のいずれか一方を検出可能な第3検出器と、前記包含面の姿勢及び形状のいずれか一方を検出可能な第4検出器とを含む
     請求項150又は151に記載の荷電粒子装置。
    The claim includes a third detector capable of detecting either one of the posture and the shape of the target surface and a fourth detector capable of detecting one of the posture and the shape of the inclusion surface. The charged particle apparatus according to 150 or 151.
  153.  前記第3検出器は、前記第4検出器よりも、前記荷電粒子に沿った軸の放射方向における内側に配置される
     請求項152に記載の荷電粒子装置。
    The charged particle device according to claim 152, wherein the third detector is arranged inside the fourth detector in the radial direction of the axis along the charged particles.
  154.  前記位置変更装置は、前記照射装置を移動可能な第1移動装置を含む
     請求項96から153のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 96 to 153, wherein the position changing device includes a first moving device capable of moving the irradiation device.
  155.  前記位置変更装置は、前記物体を移動可能な第2移動装置を含む
     請求項96から154のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 96 to 154, wherein the position changing device includes a second moving device capable of moving the object.
  156.  前記射出口は、排気装置と接続されている
     請求項96から155のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 96 to 155, wherein the injection port is connected to an exhaust device.
  157.  前記第1面における前記射出口の周囲に前記第1の管路の前記真空領域側の他の端部が形成されている
     請求項156に記載の荷電粒子装置。
    The charged particle apparatus according to claim 156, wherein the other end of the first pipeline on the vacuum region side is formed around the injection port on the first surface.
  158.  前記射出口における真空度は、前記他の端部における真空度よりも高い
     請求項157に記載の荷電粒子装置。
    The charged particle apparatus according to claim 157, wherein the degree of vacuum at the outlet is higher than the degree of vacuum at the other end.
  159.  前記真空形成部材は、差動排気方式の真空形成部材である
     請求項1から158のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 1 to 158, wherein the vacuum forming member is a differential exhaust type vacuum forming member.
  160.  前記照射装置が照射した荷電粒子は、前記真空領域を介して、前記試料に照射される
     請求項1から159のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 1 to 159, wherein the charged particles irradiated by the irradiation device irradiate the sample through the vacuum region.
  161.  前記荷電粒子が照射された前記試料から放出される荷電粒子を検出する荷電粒子検出装置を備え、
     前記荷電粒子検出装置の検出結果に基づいて、前記試料の情報を取得する
     請求項1から160のいずれか一項に記載の荷電粒子装置。
    A charged particle detection device for detecting charged particles emitted from the sample irradiated with the charged particles is provided.
    The charged particle device according to any one of claims 1 to 160, which acquires information on the sample based on the detection result of the charged particle detection device.
  162. 前記真空形成部材が接続する前記排気装置は、第1の排気装置と、第2の排気装置とを含み、
     前記第2の排気装置は、前記第1の排気装置が形成する真空よりも真空度が低い領域を排気するとともに、前記第1の排気装置の補助ポンプとして用いられる
    請求項1から161のいずれか一項に記載の荷電粒子装置。
    The exhaust device to which the vacuum forming member is connected includes a first exhaust device and a second exhaust device.
    The second exhaust device exhausts a region having a lower degree of vacuum than the vacuum formed by the first exhaust device, and is used as an auxiliary pump of the first exhaust device according to any one of claims 1 to 161. The charged particle device according to paragraph 1.
  163.  排気装置と接続可能な第1の管路と第1面とを有する真空形成部材を用いて、物体のうち前記第1面に対向可能な第2面に接する空間の気体を第1の管路を介して排出して、真空領域を形成することと、
     前記真空領域よりも気圧が高く前記真空領域の周囲の空間の少なくとも一部の気体を、前記第1の管路を介して排出することと、
     前記第1面に形成された射出口から、試料に向けて荷電粒子を照射することと、
     前記荷電粒子に前記真空領域の少なくとも一部を通過させて前記試料に照射することと、
     前記第1面の姿勢及び形状のいずれか一方に基づいて、前記第1面と前記第2面との位置関係を変更することと
     を含む荷電粒子の照射方法。
    Using a vacuum forming member having a first pipeline and a first surface that can be connected to the exhaust device, the gas in the space of the object in contact with the second surface that can face the first surface is passed through the first pipeline. To form a vacuum region by discharging through
    Discharging at least a part of the gas in the space around the vacuum region, which has a higher atmospheric pressure than the vacuum region, through the first pipeline.
    Irradiating charged particles toward the sample from the injection port formed on the first surface, and
    Irradiating the sample by passing at least a part of the vacuum region through the charged particles.
    A method of irradiating charged particles, which comprises changing the positional relationship between the first surface and the second surface based on either the posture and the shape of the first surface.
  164.  排気装置と接続可能な第1の管路と第1面を有し、物体のうち前記第1面に対向可能な第2面に接する空間の気体を前記第1の管路を介して排出して、真空領域を形成する真空形成部材と、
     前記第1面の姿勢及び形状のいずれか一方に基づいて、前記第1面と前記第2面との位置関係を変更する位置変更装置と
     を備え、
     前記真空領域の周囲の前記真空領域よりも気圧が高い空間の少なくとも一部の気体は、前記真空形成部材の前記第1の管路を介して排出される真空形成装置。
    A gas in a space having a first pipeline and a first surface that can be connected to an exhaust device and in contact with a second surface of an object that can face the first surface is discharged through the first pipeline. And the vacuum forming member that forms the vacuum region,
    A position changing device for changing the positional relationship between the first surface and the second surface based on either the posture or the shape of the first surface is provided.
    A vacuum forming apparatus in which at least a part of a gas in a space around the vacuum region having a higher atmospheric pressure than the vacuum region is discharged through the first pipeline of the vacuum forming member.
  165.  前記第1面の姿勢は、前記第1面の法線方向の情報を含む
     請求項163又は164に記載の真空形成装置。
    The vacuum forming apparatus according to claim 163 or 164, wherein the posture of the first surface includes information in the normal direction of the first surface.
  166.  前記位置変更装置は、前記第2面の姿勢及び形状のいずれか一方に基づいて、前記第1面と前記第2面との位置関係を変更する
     請求項163から165のいずれか一項に記載の真空形成装置。
    The position change device according to any one of claims 163 to 165, which changes the positional relationship between the first surface and the second surface based on either the posture and the shape of the second surface. Vacuum forming device.
  167.  前記第2面の姿勢は、前記第2面の法線方向の情報を含む
     請求項166に記載の真空形成装置。
    The vacuum forming apparatus according to claim 166, wherein the posture of the second surface includes information in the normal direction of the second surface.
  168.  前記第1面と前記第2面との位置関係は、前記第1面と前記第2面との間の間隔及び前記第1面の姿勢と前記第2面の姿勢との相対的関係の少なくとも一方を含む
     請求項163から167のいずれか一項に記載の真空形成装置。
    The positional relationship between the first surface and the second surface is at least the distance between the first surface and the second surface and the relative relationship between the posture of the first surface and the posture of the second surface. The vacuum forming apparatus according to any one of claims 163 to 167, which includes one.
  169.  前記位置変更装置は、前記位置関係を変更する前と比較して、前記第1面と前記第2面とが平行に近づくように、前記位置関係を変更する
     請求項163から168に記載の真空形成装置。
    The vacuum according to claims 163 to 168, wherein the position changing device changes the positional relationship so that the first surface and the second surface approach parallel to each other as compared with before the positional relationship is changed. Forming device.
  170.  前記位置変更装置は、前記第1面と前記第2面とが平行になるように、前記位置関係を変更する
     請求項163から169のいずれか一項に記載の真空形成装置。
    The vacuum forming device according to any one of claims 163 to 169, wherein the position changing device changes the positional relationship so that the first surface and the second surface are parallel to each other.
  171.  前記位置変更装置は、前記第1面と前記第2面との接触を防止するように、前記位置関係を変更する
     請求項163から170のいずれか一項に記載の真空形成装置。
    The vacuum forming device according to any one of claims 163 to 170, wherein the position changing device changes the positional relationship so as to prevent contact between the first surface and the second surface.
  172.  前記第1面の姿勢及び形状のいずれか一方は、前記第1面の少なくとも一部を含むことができる第3面を有する基準部材を、前記第1面と前記第3面とが接触するように前記真空形成部材に接触させ、前記第3面に検出装置から検出ビームを照射することにより間接的に検出される
     請求項163から171のいずれか一項に記載の真空形成装置。
    One of the postures and shapes of the first surface is such that the first surface and the third surface come into contact with a reference member having a third surface that can include at least a part of the first surface. The vacuum forming apparatus according to any one of claims 163 to 171, which is indirectly detected by contacting the vacuum forming member with the vacuum forming member and irradiating the third surface with a detection beam from the detection apparatus.
  173.  前記第1面の姿勢及び形状のいずれか一方に関する情報を記憶する記憶装置を備え、
     前記位置変更装置は、前記記憶装置に記憶された前記第1面の姿勢及び形状のいずれか一方に基づいて、前記第1面と前記第2面との位置関係を変更する
     請求項163から172のいずれか一項に記載の真空形成装置。
    A storage device for storing information regarding either the posture or the shape of the first surface is provided.
    Claims 163 to 172 change the positional relationship between the first surface and the second surface based on either the posture and the shape of the first surface stored in the storage device. The vacuum forming apparatus according to any one of the above.
  174.  前記第1面の姿勢及び形状のいずれか一方を検出する検出装置を備える
     請求項163から173のいずれか一項に記載の真空形成装置。
    The vacuum forming apparatus according to any one of claims 163 to 173, comprising a detecting apparatus for detecting either one of the posture and the shape of the first surface.
  175.  前記検出装置は、前記第2面の姿勢及び形状のいずれか一方を検出する
     請求項174に記載の真空形成装置。
    The vacuum forming device according to claim 174, wherein the detection device detects either one of the posture and the shape of the second surface.
  176.  前記検出装置は、同一の検出器を用いて前記第1面及び第2面のそれぞれの姿勢及び形状のいずれか一方を検出する
     請求項175に記載の真空形成装置。
    The vacuum forming device according to claim 175, wherein the detection device detects one of the postures and shapes of the first surface and the second surface using the same detector.
  177.  前記検出器は、前記真空形成部材に対して固定された第1位置に配置される
     請求項176に記載の真空形成装置。
    The vacuum forming apparatus according to claim 176, wherein the detector is arranged at a first position fixed to the vacuum forming member.
  178.  前記第1面の姿勢及び形状のいずれか一方を検出する場合の前記検出器と前記真空形成部材との位置関係は、前記第2面の姿勢及び形状のいずれか一方を検出する場合の前記検出器の前記真空形成部材に対する位置関係と同じである
     請求項176又は177に記載の真空形成装置。
    The positional relationship between the detector and the vacuum forming member when detecting either one of the posture and shape of the first surface is the detection when detecting either one of the posture and shape of the second surface. The vacuum forming apparatus according to claim 176 or 177, which has the same positional relationship with respect to the vacuum forming member of the vessel.
  179.  前記検出器は、前記物体に対して固定された第2位置に配置される
     請求項176から178のいずれか一項に記載の真空形成装置。
    The vacuum forming apparatus according to any one of claims 176 to 178, wherein the detector is arranged at a second position fixed to the object.
  180.  前記第1面の姿勢及び形状のいずれか一方を検出する場合の前記検出器と前記物体との位置関係は、前記第2面の姿勢及び形状のいずれか一方を検出する場合の前記検出器と前記物体との位置関係と同じである
     請求項176から179のいずれか一項に記載の真空形成装置。
    The positional relationship between the detector and the object when detecting either one of the posture and the shape of the first surface is the same as that of the detector when detecting either the posture and the shape of the second surface. The vacuum forming apparatus according to any one of claims 176 to 179, which has the same positional relationship with the object.
  181.  前記検出器は、前記第1面に検出ビームを照射して前記第1面の姿勢及び形状のいずれか一方を検出する
     請求項176から180のいずれか一項に記載の真空形成装置。
    The vacuum forming apparatus according to any one of claims 176 to 180, wherein the detector irradiates the first surface with a detection beam to detect one of the posture and the shape of the first surface.
  182.  前記検出器は、前記第2面に検出ビームを照射して前記第2面の姿勢及び形状のいずれか一方を検出する
     請求項176から181のいずれか一項に記載の真空形成装置。
    The vacuum forming apparatus according to any one of claims 176 to 181. The detector irradiates the second surface with a detection beam to detect one of the posture and the shape of the second surface.
  183.  前記検出器は、前記第1面の少なくとも一部を含むことができる第4面を有する基準部材が、前記第1面と前記第4面とが接触するように前記真空形成部材に接触した状態で、前記第4面に検出ビームを照射して前記第1面の姿勢及び形状のいずれか一方を検出する
     請求項176から182のいずれか一項に記載の真空形成装置。
    The detector is in a state in which a reference member having a fourth surface capable of including at least a part of the first surface is in contact with the vacuum forming member so that the first surface and the fourth surface are in contact with each other. The vacuum forming apparatus according to any one of claims 176 to 182, wherein the fourth surface is irradiated with a detection beam to detect one of the posture and the shape of the first surface.
  184.  前記第1面及び前記第4面のそれぞれは、平面である
     請求項183に記載の真空形成装置。
    The vacuum forming apparatus according to claim 183, wherein each of the first surface and the fourth surface is a flat surface.
  185.  前記基準部材は、第1の基準部材であって、
     前記検出器は、前記第2面の少なくとも一部を含むことができる第5面を有し且つ前記第1の基準部材とは異なる第2の基準部材が、前記第2面と前記第5面とが接触するように前記物体に接触した状態で、前記第5面に検出ビームを照射して前記第2面の姿勢及び形状のいずれか一方を検出する
     請求項183又は184に記載の真空形成装置。
    The reference member is a first reference member.
    The detector has a fifth surface that can include at least a part of the second surface, and a second reference member different from the first reference member is the second surface and the fifth surface. The vacuum formation according to claim 183 or 184, wherein the fifth surface is irradiated with a detection beam to detect either the posture and the shape of the second surface in a state of being in contact with the object. apparatus.
  186.  前記第2面及び前記第5面のそれぞれは、平面である
     請求項185に記載の真空形成装置。
    The vacuum forming apparatus according to claim 185, wherein each of the second surface and the fifth surface is a flat surface.
  187.  前記検出装置は、前記第1面の姿勢及び形状のいずれか一方を検出する第1検出器と、前記第2面の姿勢及び形状のいずれか一方を検出する第2検出器とを含む
     請求項175から186のいずれか一項に記載の真空形成装置。
    The claim includes a first detector that detects one of the postures and shapes of the first surface, and a second detector that detects one of the postures and shapes of the second surface. The vacuum forming apparatus according to any one of 175 to 186.
  188.  前記第1及び第2検出器のいずれか一方は、前記真空形成部材に対して固定された第1位置に配置され、
     前記第1及び第2検出器のいずれか他方は、前記物体に対して固定された第2位置に配置される
     請求項187に記載の真空形成装置。
    One of the first and second detectors is arranged in a first position fixed to the vacuum forming member.
    The vacuum forming apparatus according to claim 187, wherein the other of the first and second detectors is arranged at a second position fixed to the object.
  189.  前記第1検出器は、前記第1面に検出ビームを照射して前記第1面の姿勢及び形状のいずれか一方を検出する
     請求項187又は188に記載の真空形成装置。
    The vacuum forming apparatus according to claim 187 or 188, wherein the first detector irradiates the first surface with a detection beam to detect either the posture or the shape of the first surface.
  190.  前記第2検出器は、前記第2面に検出ビームを照射して前記第2面の姿勢及び形状のいずれか一方を検出する
     請求項187から189のいずれか一項に記載の真空形成装置。
    The vacuum forming apparatus according to any one of claims 187 to 189, wherein the second detector irradiates the second surface with a detection beam to detect one of the posture and the shape of the second surface.
  191.  前記第1検出器は、前記第1面の少なくとも一部を含むことができる第4面を有する基準部材が、前記第1面と前記第4面とが接触するように前記真空形成部材に接触した状態で、前記第4面に検出ビームを照射して前記第1面の姿勢及び形状のいずれか一方を検出する
     請求項187から190のいずれか一項に記載の真空形成装置。
    In the first detector, a reference member having a fourth surface capable of including at least a part of the first surface contacts the vacuum forming member so that the first surface and the fourth surface come into contact with each other. The vacuum forming apparatus according to any one of claims 187 to 190, wherein the fourth surface is irradiated with a detection beam to detect one of the posture and the shape of the first surface.
  192.  前記第1面及び前記第4面のそれぞれは、平面である
     請求項191に記載の真空形成装置。
    The vacuum forming apparatus according to claim 191 in which each of the first surface and the fourth surface is a flat surface.
  193.  前記基準部材は、第1の基準部材であって、
     前記第2検出器は、前記第2面の少なくとも一部を含むことができる第5面を有し且つ前記第1の基準部材とは異なる第2の基準部材が、前記第2面と前記第5面とが接触するように前記物体に接触した状態で、前記第5面に検出ビームを照射して前記第2面の姿勢及び形状のいずれか一方を検出する
     請求項191又は192に記載の真空形成装置。
    The reference member is a first reference member.
    The second detector has a fifth surface that can include at least a part of the second surface, and a second reference member different from the first reference member is the second surface and the second surface. The 191 or 192 according to claim 191 or 192, in which the fifth surface is irradiated with a detection beam to detect either the posture or the shape of the second surface in a state of being in contact with the object so as to be in contact with the five surfaces. Vacuum forming device.
  194.  前記第2面及び前記第5面のそれぞれは、平面である
     請求項193に記載の真空形成装置。
    The vacuum forming apparatus according to claim 193, wherein each of the second surface and the fifth surface is a flat surface.
  195.  前記第1及び第2検出器は、同じ第6面に検出ビームを照射して前記第6面の姿勢及び形状のいずれか一方を更に検出し、
     前記第6面の検出結果に基づいて前記第1面の姿勢及び形状のいずれか一方の検出結果と前記第2面の姿勢及び形状のいずれか一方の検出結果とを関連付けた後に、前記関連付けられた前記第1面の姿勢及び形状のいずれか一方の検出結果と前記第2面の姿勢及び形状のいずれか一方の検出結果とに基づいて前記位置関係を変更する
     請求項187から194のいずれか一項に記載の真空形成装置。
    The first and second detectors irradiate the same sixth surface with a detection beam to further detect one of the posture and shape of the sixth surface.
    After associating the detection result of one of the posture and the shape of the first surface with the detection result of one of the posture and the shape of the second surface based on the detection result of the sixth surface, the association is made. Any one of claims 187 to 194 that changes the positional relationship based on the detection result of either one of the posture and shape of the first surface and the detection result of either one of the posture and shape of the second surface. The vacuum forming apparatus according to one item.
  196.  前記第1及び第2検出器は、位置関係が既知である異なる2つの第7面にそれぞれ検出ビームを照射して前記第7面の姿勢及び形状のいずれか一方を更に検出し、
     前記第7面の検出結果に基づいて前記第1面の姿勢及び形状のいずれか一方の検出結果と前記第2面の姿勢及び形状のいずれか一方の検出結果とを関連付けた後に、前記関連付けられた前記第1面の姿勢及び形状のいずれか一方の検出結果と前記第2面の姿勢及び形状のいずれか一方の検出結果とに基づいて前記位置関係を変更する
     請求項187から195のいずれか一項に記載の真空形成装置。
    The first and second detectors irradiate two different seventh surfaces having known positional relationships with a detection beam to further detect one of the posture and shape of the seventh surface.
    After associating the detection result of one of the posture and the shape of the first surface with the detection result of one of the posture and the shape of the second surface based on the detection result of the seventh surface, the association is made. Any one of claims 187 to 195 that changes the positional relationship based on the detection result of either one of the posture and shape of the first surface and the detection result of either one of the posture and shape of the second surface. The vacuum forming apparatus according to one item.
  197.  前記第1面には、前記第1の管路の前記真空領域側の端部が形成されている
     請求項163から196のいずれか一項に記載の真空形成装置。
    The vacuum forming apparatus according to any one of claims 163 to 196, wherein an end portion of the first pipeline on the vacuum region side is formed on the first surface.
  198.  前記端部は前記第1の管路の前記真空領域側の第1の端部であって、前記第1面に前記第1の管路の前記真空領域側の第2の端部が形成されている
     請求項197に記載の真空形成装置。
    The end portion is a first end portion of the first pipeline on the vacuum region side, and a second end portion of the first pipeline on the vacuum region side is formed on the first surface. The vacuum forming apparatus according to claim 197.
  199.  前記第1の端部における真空度は、前記第2の端部における真空度よりも高い
     請求項198に記載の真空形成装置。
    The vacuum forming apparatus according to claim 198, wherein the degree of vacuum at the first end is higher than the degree of vacuum at the second end.
  200.  前記真空形成装置は、差動排気方式の真空形成部材である
     請求項163から199のいずれか一項に記載の真空形成装置。
    The vacuum forming apparatus according to any one of claims 163 to 199, wherein the vacuum forming apparatus is a differential exhaust type vacuum forming member.
  201.  排気装置と接続可能な第1の管路と第1面とを有する真空形成部材を用いて、物体のうち前記第1面に対向可能な第2面に接する空間の気体を第1の管路を介して排出して、真空領域を形成することと、
     前記真空領域よりも気圧が高く前記真空領域の周囲の空間の少なくとも一部の気体を、前記第1の管路を介して排出することと、
     前記第1面の姿勢及び形状のいずれか一方に基づいて、前記第1面と前記第2面との位置関係を変更することと
     を含む真空領域の形成方法。
    Using a vacuum forming member having a first pipeline and a first surface that can be connected to the exhaust device, the gas in the space of the object in contact with the second surface that can face the first surface is passed through the first pipeline. To form a vacuum region by discharging through
    Discharging at least a part of the gas in the space around the vacuum region, which has a higher atmospheric pressure than the vacuum region, through the first pipeline.
    A method for forming a vacuum region, which comprises changing the positional relationship between the first surface and the second surface based on either the posture and the shape of the first surface.
PCT/JP2019/016363 2019-04-16 2019-04-16 Charged particle device, method for emitting charged particle, vacuum forming device, and method for forming vacuum region WO2020213065A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/016363 WO2020213065A1 (en) 2019-04-16 2019-04-16 Charged particle device, method for emitting charged particle, vacuum forming device, and method for forming vacuum region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/016363 WO2020213065A1 (en) 2019-04-16 2019-04-16 Charged particle device, method for emitting charged particle, vacuum forming device, and method for forming vacuum region

Publications (1)

Publication Number Publication Date
WO2020213065A1 true WO2020213065A1 (en) 2020-10-22

Family

ID=72838139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016363 WO2020213065A1 (en) 2019-04-16 2019-04-16 Charged particle device, method for emitting charged particle, vacuum forming device, and method for forming vacuum region

Country Status (1)

Country Link
WO (1) WO2020213065A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993249A (en) * 1982-10-19 1984-05-29 バリアン・アソシエイツ・インコ−ポレイテツド Clearance controller for partial vacuum treatment
JPH08212959A (en) * 1995-02-07 1996-08-20 Hamamatsu Photonics Kk Electron microscope
JPH11154640A (en) * 1997-09-18 1999-06-08 Toshiba Corp Charge particle beam device, absorbing board therefor and deflecting electrode for the same
JP2004158364A (en) * 2002-11-08 2004-06-03 Keyence Corp Electron microscope, operating method of electron microscope, operating program of electron microscope and computer readable record medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993249A (en) * 1982-10-19 1984-05-29 バリアン・アソシエイツ・インコ−ポレイテツド Clearance controller for partial vacuum treatment
JPH08212959A (en) * 1995-02-07 1996-08-20 Hamamatsu Photonics Kk Electron microscope
JPH11154640A (en) * 1997-09-18 1999-06-08 Toshiba Corp Charge particle beam device, absorbing board therefor and deflecting electrode for the same
JP2004158364A (en) * 2002-11-08 2004-06-03 Keyence Corp Electron microscope, operating method of electron microscope, operating program of electron microscope and computer readable record medium

Similar Documents

Publication Publication Date Title
US7049585B2 (en) Sheet beam-type testing apparatus
JP2016183976A (en) Inspection device
US7829870B2 (en) Method and apparatus for in-situ sample preparation
WO2002037527A1 (en) Electron beam apparatus and device production method using the apparatus
WO2019189373A1 (en) Localized vacuum apparatus and vacuum area forming method
WO2020213065A1 (en) Charged particle device, method for emitting charged particle, vacuum forming device, and method for forming vacuum region
JP6695223B2 (en) Vienna filter
JP7000965B2 (en) Charged particle device, measurement system, and irradiation method of charged particle beam
JP2016143651A (en) Inspection apparatus and inspection method
WO2021053753A1 (en) Vacuum forming member, vacuum forming device, and charged particle device
JP7192117B2 (en) Method of critical dimension measurement on substrates and apparatus for inspecting and cutting electronic devices on substrates
JP2020155315A (en) Local vacuum device, charged particle device, vacuum region forming method and charged particle irradiation device
WO2020188645A1 (en) Charged particle device, support device, and observation method
JP2020155322A (en) Local vacuum device and vacuum region forming method
JP2019179747A (en) Charged particle apparatus, measurement system, and charged particle beam irradiation method
JP2007048754A (en) Inspection device with charged particle beam and device manufacturing method using inspection device
TWI812993B (en) Actuator arrangement, method of manufacturing the same, vacuum chamber, and electron-optical column
JP6715603B2 (en) Inspection device
WO2019189363A1 (en) Charged particle apparatus, measurement system, and method for irradiating charged particle beam
WO2020194498A1 (en) Charged particle apparatus and information acquisition method
JP2020155313A (en) Charged particle device, measurement system, and irradiation method of charged particle beam
JP2020155314A (en) Charged particle device, measurement system, and irradiation method of charged particle beam
WO2019189360A1 (en) Charged particle device, measurement system, and method for irradiating charged particle beam
WO2019189368A1 (en) Localized vacuum apparatus, charged particle apparatus, and vacuum area forming method
TW201946088A (en) Local vacuum device, charged particle device, method for forming vacuum region, and charged particle irradiation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924884

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP