WO2019189360A1 - Charged particle device, measurement system, and method for irradiating charged particle beam - Google Patents

Charged particle device, measurement system, and method for irradiating charged particle beam Download PDF

Info

Publication number
WO2019189360A1
WO2019189360A1 PCT/JP2019/013191 JP2019013191W WO2019189360A1 WO 2019189360 A1 WO2019189360 A1 WO 2019189360A1 JP 2019013191 W JP2019013191 W JP 2019013191W WO 2019189360 A1 WO2019189360 A1 WO 2019189360A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
space
charged particle
vacuum
vacuum region
Prior art date
Application number
PCT/JP2019/013191
Other languages
French (fr)
Japanese (ja)
Inventor
貴行 舩津
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018070220A external-priority patent/JP7000965B2/en
Priority claimed from JP2019052794A external-priority patent/JP2020155313A/en
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2019189360A1 publication Critical patent/WO2019189360A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/16Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/18Vacuum locks ; Means for obtaining or maintaining the desired pressure within the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present invention relates to a technical field of, for example, a charged particle device that irradiates an object with a charged particle beam, a measurement system including the charged particle device, and a charged particle beam irradiation method.
  • Patent Document 1 a scanning electron microscope that forms a local vacuum region by blocking the periphery of an inspection target portion of an object irradiated with an electron beam from outside air is described as an example of a charged particle device. Yes. In an inspection using such an apparatus, it may be required to keep the non-inspection flat in order to reduce measurement errors.
  • the vacuum forming member has a pipe line connectable to the exhaust device, discharges the gas in the first space in contact with the surface of the object through the pipe line, and forms a vacuum region.
  • the relative position between the sample and the vacuum region is changed by changing the relative position between the irradiation device that irradiates the charged particle beam toward the sample through the vacuum region and the sample and the vacuum forming member.
  • a relative position changing device a partition member that divides a second space facing the other surface of the sample located on the opposite side of the surface to which the charged particle beam of the sample is irradiated, into a plurality of sections;
  • An atmospheric pressure adjusting device capable of controlling the atmospheric pressure of each of the compartments, and at least a part of the gas in the space having a higher atmospheric pressure than the vacuum region around the vacuum region passes through the conduit of the vacuum forming member Discharged from the irradiation device.
  • the path of the charged particle beam that charged particle device is provided comprising at least a portion of said vacuum region.
  • the pipe has a first end connected to the exhaust device and a second end connected to the first space in contact with the surface of the object, and the gas in the first space is supplied to the pipe.
  • a vacuum forming member that discharges through a path and forms a vacuum region in the first space having a lower pressure than an external space connected to the first space; and charged particles toward the sample through the vacuum region
  • a partition member that divides the second space facing the other surface of the sample located on the opposite side of the surface to which the sample is irradiated into a plurality of compartments, and an atmospheric pressure adjustment device that can control the atmospheric pressure of each of the plurality of compartments
  • a charged particle device is provided.
  • the pipe has a pipe line connectable to the exhaust device, and the gas is discharged through the pipe line in a state of being opposed to a part of the plane of the object.
  • a vacuum forming member that forms a vacuum region in the first space in contact with the first portion, the pressure of which is lower than the pressure of the external space in contact with the second portion different from the first portion of the surface, and the sample through the vacuum region
  • a partition member that divides the second space facing the other surface of the sample located on the opposite side of the surface irradiated with the charged particle beam into a plurality of sections, and controls the pressure of each of the plurality of sections
  • Charged particle device equipped with possible atmospheric pressure regulator There is provided.
  • the gas in the first space that is in contact with the surface of the object is provided in a state in which the pipe that can be connected to the exhaust device is opposed to the end of the pipe.
  • a vacuum forming member that discharges through the conduit to form a vacuum region, an irradiation device that irradiates a charged particle beam toward the sample through the vacuum region, and a relative relationship between the sample and the vacuum forming member
  • a relative position changing device for changing the relative position between the sample and the vacuum region by changing the position; and the other surface of the sample located on the opposite side of the surface irradiated with the charged particle beam of the sample
  • a partition member that divides the second space facing the space into a plurality of sections, and a pressure adjusting device that can control the pressure of each of the plurality of sections, and the path of the charged particle beam irradiated from the irradiation device is Charged particle packaging including at least part of the vacuum region There is provided.
  • the vacuum forming member has a pipe line connectable to the exhaust device, discharges the gas in the first space in contact with the surface of the object through the pipe line, and forms a vacuum region.
  • a gas in a part of the second space facing the change device and the other surface of the sample located on the opposite side of the surface irradiated with the charged particle beam of the sample can be moved in the second space.
  • An air pressure adjusting device including an exhaust device for exhausting air through an opening, and at least a part of a gas in a space having a higher air pressure than the vacuum region around the vacuum region passes through the conduit of the vacuum forming member. And is emitted from the irradiation device.
  • the conductive particle beam path the charged particle device including at least a part of the vacuum region is provided.
  • the vacuum forming member has a pipe line connectable to the exhaust device, discharges the gas in the first space in contact with the surface of the object through the pipe line, and forms a vacuum region.
  • An irradiation apparatus for irradiating the sample with a charged particle beam through the vacuum region, and a second space facing the other surface of the sample located on the opposite side of the surface of the sample to which the charged particle beam is irradiated A charged particle comprising: a partition wall that can form a pressure difference between the second space and the outside of the second space; and a pressure adjusting device that can adjust the pressure in the second space.
  • the charging The particle device is provided with a measurement system that is a charged particle beam measurement device that measures the sample based on the detection result of the charged particle from the sample irradiated with the charged particle beam.
  • the gas in the first space in contact with the surface of the object is discharged through the conduit to form the vacuum region, and the atmospheric pressure is higher than the vacuum region around the vacuum region.
  • Exhausting at least a portion of the gas through the duct, irradiating the sample with a charged particle beam that has passed through a passage space including at least a portion of the vacuum region, and the sample and the vacuum A second space divided into a plurality of sections facing the other surface of the sample located on the opposite side of the surface irradiated with the charged particle beam of the sample, and changing the relative position to the region In the vacuum region, the relative position with respect to the sample is changed in the second space by making the air pressure of some of the plurality of compartments different from the other compartments of the plurality of compartments And the area facing the sample Irradiation method of a charged particle beam comprising the reducing the difference between the pressure and the pressure of the vacuum region is provided.
  • the gas in the first space in contact with the surface of the object is discharged through the conduit to form a vacuum region, and the atmospheric pressure is higher than the vacuum region around the vacuum region.
  • Exhausting at least a portion of the gas through the duct, irradiating the sample with a charged particle beam that has passed through a passage space including at least a portion of the vacuum region, and the sample and the vacuum Changing the relative position with respect to the region, and changing the pressure of a part of the second space facing the other surface of the sample located on the opposite side of the surface irradiated with the charged particle beam of the sample to the first
  • the relative position with respect to the sample of the second space is changed.
  • the vacuum region and the sample Irradiation method of a charged particle beam comprising the reducing the difference between the pressure and the pressure in the region opposite to the vacuum region Nde is provided.
  • the gas in the first space in contact with the surface of the object is discharged through the pipe line to form the vacuum region, and the atmospheric pressure is higher than the vacuum region around the vacuum region.
  • Exhausting at least a portion of the gas through the duct irradiating the sample with a charged particle beam that has passed through a passage space including at least a portion of the vacuum region, and the sample and the vacuum
  • a second space facing the other surface of the sample located on a side opposite to the surface irradiated with the charged particle beam of the sample is changed between the sample and the partition wall.
  • a charged particle beam comprising: enclosing and forming a pressure difference between the second space and the outside of the second space; and reducing a difference between the pressure in the second space and the pressure in the vacuum region
  • the vacuum forming member capable of locally forming a vacuum region covering a part of the surface of the object in the first space on the object, and the charged particle beam on the object via the vacuum region
  • a relative position changing device that changes a relative position between the object and the vacuum region by changing a relative position between the object and the vacuum forming member, and the charged particle beam of the object includes: A partition member that divides the second space facing the other surface of the object located on the opposite side of the irradiated surface into a plurality of sections, and the relative position of the plurality of sections with respect to the object is changed.
  • the air pressure in a part of the compartment including the opposing region facing the vacuum region and the object is made different from the other compartments of the plurality of compartments, and the air pressure in the opposing region and the air pressure in the vacuum region are The difference between the atmospheric pressure and the atmospheric pressure in the vacuum region
  • the charged particle device and a pressure adjustment device to reduce is provided than the difference.
  • the vacuum forming member capable of locally forming a vacuum region covering a part of the surface of the object in the first space on the object, and the charged particle beam to the object via the vacuum region.
  • a relative position changing device that changes a relative position between the object and the vacuum region by changing a relative position between the object and the vacuum forming member, and the charged particle beam of the object includes: Atmospheric pressure provided with an exhaust device that exhausts a part of the gas in the second space facing the other surface of the object located on the opposite side of the irradiated surface through an opening movable in the second space.
  • An adjustment device wherein the atmospheric pressure adjustment device positions the opening in a facing region opposite to the vacuum region, the relative position of which is changed with respect to the object, and the pressure in the facing region.
  • the difference between the pressure in the vacuum region and the atmospheric pressure The charged particle device to reduce than the difference between the pressure in the vacuum region is provided.
  • the vacuum forming member capable of locally forming a vacuum region covering a part of the surface of the object in the first space on the object, and the charged particle beam on the object via the vacuum region And a second space facing the other surface of the object located on the opposite side of the surface irradiated with the charged particle beam of the object, together with the object, the second space and the The partition that can form a pressure difference with the outside of the second space, and the difference between the pressure in the second space and the pressure in the vacuum region can be reduced by the difference between the atmospheric pressure and the pressure in the vacuum region.
  • a charged particle device comprising an atmospheric pressure adjusting device.
  • the charging The particle apparatus is provided with a measurement system that is a charged particle beam measurement apparatus that measures the object based on a detection result of the charged particle from the object irradiated with the charged particle beam.
  • the vacuum region covering a part of the surface of the object is locally formed in the first space on the object, and the object is irradiated with the charged particle beam through the vacuum region.
  • a charged particle beam irradiation method including reducing the difference between the atmospheric pressure of the vacuum region whose position has been changed and the region facing the object across the object and the atmospheric pressure of the vacuum region.
  • the vacuum region that covers a part of the surface of the object is locally formed in the first space on the object, and the object is irradiated with the charged particle beam through the vacuum region.
  • changing the relative position between the object and the vacuum region, and a second space facing the other surface of the object located on the opposite side of the surface irradiated with the charged particle beam of the object By changing the relative position of the member having an opening communicating with the exhaust device that can reduce the atmospheric pressure of a part of the second space from the atmospheric pressure of the other part of the second space with respect to the object,
  • a charged particle beam irradiation method including reducing the difference between the atmospheric pressure of the vacuum region whose relative position is changed with respect to an object, and the air pressure of the region facing the object across the object and the pressure of the vacuum region .
  • the vacuum region that covers a part of the surface of the object is locally formed in the first space on the object, and the object is irradiated with the charged particle beam through the vacuum region. And changing the relative position between the object and the vacuum region, and a second space facing the other surface of the object located on the opposite side of the surface irradiated with the charged particle beam of the object Is surrounded by the object and the partition wall, and a pressure difference is formed between the second space and the outside of the second space, and a difference between the pressure in the second space and the pressure in the vacuum region is reduced.
  • a charged particle beam irradiation method is provided.
  • FIG. 1 is a cross-sectional view showing the structure of a scanning electron microscope.
  • FIG. 2 is a cross-sectional view showing the structure of the beam irradiation device provided in the scanning electron microscope.
  • FIG. 3 is a perspective view showing a structure of a beam irradiation device provided in the scanning electron microscope.
  • FIG. 4 is a cross-sectional view showing the structure of the stage provided in the scanning electron microscope.
  • FIG. 5 is a plan view showing the structure of the stage provided in the scanning electron microscope.
  • FIGS. 6A to 6C is a cross-sectional view showing a process in which a sample is deformed due to the formation of a vacuum region.
  • FIG. 7 is a cross-sectional view showing a sample whose deformation is suppressed by the deformation suppressing operation.
  • FIG. 8 is a cross-sectional view showing the structure of the stage of the first modification.
  • FIGS. 9A and 9B shows a technical reason why the sample is deformed when a local vacuum region is formed in the vicinity of the outer edge of the sample held by the stage of the first modified example. It is sectional drawing.
  • FIG. 10 is a cross-sectional view showing the structure of the stage of the second modified example.
  • FIG. 11 is a cross-sectional view showing the structure of the stage of the third modified example.
  • FIG. 12 is a cross-sectional view showing the structure of the stage of the fourth modified example.
  • FIG. 13 is a cross-sectional view showing the structure of the stage of the fifth modified example.
  • FIG. 14 is a cross-sectional view showing the structure of the stage of the sixth modified example.
  • FIG. 15A is a cross-sectional view showing the structure of the stage according to the seventh modification
  • FIG. 15B is a plan view showing the structure of the stage according to the seventh modification.
  • FIG. 16A and FIG. 16B is a cross-sectional view schematically showing the force acting on the sample in the seventh modified example.
  • FIG. 17 is a cross-sectional view showing the structure of the stage of the eighth modification.
  • FIG. 18 is a cross-sectional view showing the structure of the stage of the ninth modification.
  • FIG. 19 is a cross-sectional view showing the structure of the stage of the tenth modification.
  • FIG. 20 is a cross-sectional view showing the structure of the stage of the eleventh modification.
  • FIG. 21A is a cross-sectional view showing the structure of the stage of the twelfth modification
  • FIG. 21B is a plan view showing the structure of the stage of the twelfth modification.
  • FIG. 22A is a cross-sectional view showing the structure of the stage of the thirteenth modification
  • FIG. 22B is a plan view showing the structure of the stage of the thirteenth modification.
  • FIG. 23 is a cross-sectional view showing the structure of a scanning electron microscope according to the fourteenth modification.
  • FIG. 24 is a cross-sectional view showing the structure of the stage of the fifteenth modification.
  • FIG. 25 is a cross-sectional view showing the structure of the stage of the sixteenth modification.
  • FIG. 26 is a cross-sectional view showing the structure of the stage of the seventeenth modification.
  • FIG. 27 is a cross-sectional view showing the structure of the stage of the eighteenth modification.
  • FIG. 28 is a cross-sectional view showing the structure of a scanning electron microscope of the nineteenth modification.
  • FIG. 29 is a cross-sectional view showing how the stage holds the sample in the twentieth modification.
  • FIG. 30 is a cross-sectional view showing how the stage holds the sample in the twenty-first modification.
  • FIG. 31 is a cross-sectional view showing how the stage holds the sample in the twenty-second modification.
  • a scanning electron microscope Sccanning Electron Microscope
  • VSP Local vacuum region
  • An embodiment of a charged particle device, a measurement system, and a charged particle beam irradiation method will be described using an SEM.
  • the sample W is, for example, a semiconductor substrate. However, the sample W may be an object different from the semiconductor substrate.
  • the sample W is, for example, a disk-shaped substrate having a diameter of about 300 millimeters and a thickness of about 700 to 800 micrometers.
  • the sample W may be a substrate (or object) having an arbitrary size and an arbitrary shape.
  • the sample W may be a square substrate for a display such as a liquid crystal display element or a square substrate for a photomask.
  • each of the X-axis direction and the Y-axis direction is a horizontal direction (that is, a predetermined direction in the horizontal plane), and the Z-axis direction is a vertical direction (that is, a direction orthogonal to the horizontal plane). Yes, in the vertical direction).
  • the + Z side corresponds to the upper side (that is, the upper side)
  • the ⁇ Z side corresponds to the lower side (that is, the lower side).
  • the Z-axis direction is also a direction parallel to an optical axis AX of a beam optical system 11 (described later) provided in the scanning electron microscope SEM. Further, the rotation directions around the X axis, the Y axis, and the Z axis (in other words, the tilt direction) are referred to as a ⁇ X direction, a ⁇ Y direction, and a ⁇ Z direction, respectively.
  • FIG. 1 is a cross-sectional view showing the structure of a scanning electron microscope SEM.
  • FIG. 2 is a cross-sectional view showing the structure of the beam irradiation apparatus 1 provided in the scanning electron microscope SEM.
  • FIG. 3 is a perspective view showing the structure of the beam irradiation apparatus 1 provided in the scanning electron microscope SEM.
  • FIG. 4 is a cross-sectional view showing the structure of the stage 22 provided in the scanning electron microscope SEM.
  • FIG. 5 is a plan view showing the structure of the stage 22 provided in the scanning electron microscope SEM.
  • FIG. 1 does not show a cross section of some components of the scanning electron microscope SEM.
  • the scanning electron microscope SEM includes a beam irradiation device 1, a stage device 2, a support frame 3, a control device 4, and a pump system 5.
  • the pump system 5 includes a vacuum pump 51, a vacuum pump 52, a vacuum pump 53, and a vacuum pump 54.
  • the scanning electron microscope SEM may include a chamber that accommodates at least the beam irradiation device 1, the stage device 2, and the support frame 3. Further, an air conditioner that is connected to the chamber and controls the temperature and humidity of the space in the chamber, particularly the space around the sample W may be provided.
  • the beam irradiation device 1 can emit an electron beam EB downward from the beam irradiation device 1.
  • the beam irradiation apparatus 1 can irradiate the sample beam W held by the stage apparatus 2 disposed below the beam irradiation apparatus 1 with the electron beam EB.
  • the beam irradiation apparatus 1 includes a beam optical system 11 and a differential pumping system 12 as shown in FIGS.
  • the beam optical system 11 includes a housing 111.
  • the casing 111 is a cylindrical member in which a beam passage space SPb1 extending along the optical axis AX of the beam optical system 11 (that is, extending along the Z axis) is secured.
  • the beam passage space SPb1 is used as a space through which the electron beam EB passes.
  • the casing 111 is made of a high permeability material. Also good.
  • An example of the high magnetic permeability material is at least one of permalloy and silicon steel. The relative permeability of these high permeability materials is 1000 or more.
  • the beam passage space SPb1 is a vacuum space during the period of irradiation with the electron beam EB.
  • a pipe that is, a pipe formed in the casing 111 (and further, a side wall member 122 described later) is connected to the beam passage space SPb1 so as to communicate with the beam passage space SPb1 (that is, to be connected).
  • Path The vacuum pump 51 is connected via the 117.
  • the vacuum pump 51 exhausts the beam passage space SPb1 to reduce the pressure from the atmospheric pressure so that the beam passage space SPb1 becomes a vacuum space.
  • the vacuum space in this embodiment may mean a space whose pressure is lower than atmospheric pressure.
  • the vacuum space is a space in which gas molecules do not exist so much as to prevent proper irradiation of the sample W of the electron beam EB (in other words, a degree of vacuum that does not prevent appropriate irradiation of the sample W of the electron beam EB).
  • Space The beam passage space SPb1 is a space outside the casing 111 (more specifically, a differential exhaust system 12 described later) via a beam emission port (that is, an opening) 119 formed on the lower surface of the casing 111. It communicates with the beam passage space SPb2).
  • the beam passage space SPb1 may be a vacuum space during a period when the electron beam EB is not irradiated.
  • the beam optical system 11 further includes an electron gun 113, an electromagnetic lens 114, an objective lens 115, and an electron detector 116.
  • the electron gun 113 emits an electron beam EB toward the ⁇ Z side.
  • a photoelectric conversion surface that emits electrons when irradiated with light may be used.
  • the electromagnetic lens 114 controls the electron beam EB emitted from the electron gun 113.
  • the electromagnetic lens 114 has a rotation amount of an image (that is, a position in the ⁇ Z direction) formed on a predetermined optical surface (for example, a virtual surface intersecting the optical path of the electron beam EB), and a magnification of the image. And any one of the focal positions corresponding to the imaging positions may be controlled.
  • the objective lens 115 is the surface of the sample W (specifically, the surface on which the electron beam EB is irradiated with the electron beam EB at a predetermined reduction magnification, and faces the + Z side in the examples shown in FIGS. 1 and 2.
  • the image is formed on the surface WSu).
  • the electron detector 116 is a semiconductor-type electron detection device (that is, a semiconductor detection device) using a pn junction or pin junction semiconductor.
  • the electron detector 116 detects electrons (for example, at least one of reflected electrons and scattered electrons.
  • the scattered electrons include secondary electrons) generated by irradiation of the sample W with the electron beam EB.
  • the control device 4 specifies the state of the sample W based on the detection result of the electron detector 116.
  • the control device 4 specifies the three-dimensional shape of the surface WSu of the sample W based on the detection result of the electron detector 116.
  • the surface WSu of the sample W is ideally a flat surface, and the control device 4 identifies the three-dimensional shape of the surface WSu including the shape of the fine uneven pattern formed on the surface WSu. It shall be. Note that the surface WSu of the sample W may not be a flat surface. Further, the electron detector 116 may be provided in the differential exhaust system 12 described later.
  • the differential exhaust system 12 includes a vacuum forming member 121 and a side wall member 122.
  • the side wall member 122 is a cylindrical member extending upward from the vacuum forming member 121.
  • the side wall member 122 accommodates the housing 111 (that is, the beam optical system 11) inside.
  • the side wall member 122 is integrated with the beam optical system 11 in a state where the beam optical system 11 is accommodated therein, but may be separable from the beam optical system 11.
  • the vacuum forming member 121 is disposed below the beam optical system 11 (that is, on the ⁇ Z side).
  • the vacuum forming member 121 is connected (that is, connected) to the beam optical system 11 below the beam optical system 11.
  • the vacuum forming member 121 is connected to the beam optical system 11 and integrated with the beam optical system 11, but may be separable. Inside the vacuum forming member 121, a beam passage space SPb2 is formed.
  • the vacuum forming member 121 is a vacuum forming member 121-1 in which a beam passing space SPb2-1 that is a part of the beam passing space SPb2 is formed, and a beam passing space that is a part of the beam passing space SPb2.
  • the beam passage space SPb2 passes through a beam exit (that is, an opening) 1231 formed on the upper surface of the vacuum forming member 121 (in the example shown in FIG. 3, the surface on the + Z side of the vacuum forming member 121-3).
  • the optical system 11 communicates with the beam passage space SPb1.
  • the beam passage space SPb2 is exhausted (that is, decompressed) by the vacuum pump 51 together with the beam passage space SPb1. Therefore, the beam passage space SPb2 becomes a vacuum space during the period when the electron beam EB is irradiated.
  • the beam passage space SPb2 is used as a space through which the electron beam EB from the beam passage space SPb1 passes.
  • the vacuum forming member 121 and the side wall member 122 may be made of a high magnetic permeability material.
  • the vacuum forming member 121 further includes an emission surface 121LS that can face the surface WSu of the sample W.
  • the vacuum forming member 121-1 includes an emission surface 121LS.
  • the distance D between the emission surface 121LS and the surface WSu is a desired distance D_target (for example, 10 ⁇ m or less and 1 ⁇ m).
  • the alignment is performed with respect to the sample W by the interval adjusting system 14 described later.
  • the interval D may be referred to as a distance in the Z-axis direction between the emission surface 121LS and the surface WSu.
  • a beam exit (that is, an opening) 1232 is formed on the exit surface 121LS.
  • the vacuum forming member 121 may not include the emission surface 121LS that can face the surface WSu of the sample W.
  • the beam passage space SPb ⁇ b> 2 communicates with the beam passage space SPb ⁇ b> 3 outside the vacuum forming member 121 through the beam emission port 1232. That is, the beam passage space SPb1 communicates with the beam passage space SPb3 via the beam passage space SPb2.
  • the beam passage space SPb2 may not be ensured. That is, the beam passage space SPb1 may directly communicate with the beam passage space SPb3 without passing through the beam passage space SPb2.
  • the beam passage space SPb3 is a local space on the sample W.
  • the beam passage space SPb3 is a local space through which the electron beam EB passes between the beam irradiation apparatus 1 and the sample W (specifically, between the emission surface 121LS and the surface WSu).
  • the beam passage space SPb3 is a space that at least faces (or covers or touches) an irradiation region irradiated with the electron beam EB in the surface WSu of the sample W.
  • the beam passage space SPb3 is exhausted (that is, depressurized) by the vacuum pump 51 together with the beam passage spaces SPb1 and SPb2.
  • each of the beam passage spaces SPb1 and SPb2 can also function as an exhaust passage (that is, a pipe line) that connects the beam passage space SPb3 and the vacuum pump 51 in order to exhaust the beam passage space SPb3. Therefore, the beam passage space SPb3 becomes a vacuum space during the period when the electron beam EB is irradiated. Therefore, the electron beam EB emitted from the electron gun 113 is irradiated onto the sample W through at least a part of the beam passage spaces SPb1 to SPb3, which are all vacuum spaces.
  • the beam passage space SPb3 may be a vacuum space during a period when the electron beam EB is not irradiated.
  • the beam passage space SPb3 is located farther from the vacuum pump 51 than the beam passage spaces SPb1 and SPb2.
  • the beam passage space SPb2 is located farther from the vacuum pump 51 than the beam passage space SPb1. Therefore, the degree of vacuum of the beam passage space SPb3 may be lower than the degree of vacuum of the beam passage spaces SPb1 and SPb2, and the degree of vacuum of the beam passage space SPb2 is lower than the degree of vacuum of the beam passage space SPb1. May be lower.
  • the state “the degree of vacuum in the space B is lower than the degree of vacuum in the space A” means “the pressure in the space B is higher than the pressure in the space A”.
  • the vacuum pump 51 is such that the degree of vacuum of the beam passage space SPb3 where the degree of vacuum may be the lowest can be set to a degree of vacuum that does not hinder appropriate irradiation of the sample W of the electron beam EB. Has exhaust capability.
  • a vacuum pump 51 for example, a turbo molecular pump used as a main pump (or another kind of high vacuum pump including at least one of a diffusion pump, a cryopump and a sputter ion pump) and an auxiliary pump are used.
  • a vacuum pump in combination with a dry pump (or another type of low vacuum pump) may be used.
  • the vacuum pump 51 may have an exhaust velocity [m 3 / s] that can maintain the pressure (that is, the atmospheric pressure) of the beam passage space SPb3 at 1 ⁇ 10 ⁇ 3 Pascal or less.
  • the beam passage space SPb3 is not a closed space surrounded by some members (specifically, the casing 111 and the vacuum forming member 121) like the beam passage spaces SPb1 and SPb2. That is, the beam passage space SPb3 is an open space that is not surrounded by any member. For this reason, even if the beam passage space SPb3 is decompressed by the vacuum pump 51, gas flows into the beam passage space SPb3 from the periphery of the beam passage space SPb3. As a result, the vacuum degree of the beam passage space SPb3 may be reduced. Therefore, the differential exhaust system 12 maintains the degree of vacuum in the beam passage space SPb3 by performing differential exhaust between the beam irradiation apparatus 1 and the sample W.
  • the differential pumping system 12 performs differential pumping between the beam irradiation device 1 and the sample W, so that a relatively high vacuum is generated between the beam irradiation device 1 and the sample W compared to the surroundings.
  • a local vacuum region VSP is maintained, and the local vacuum region VSP includes the local beam passage space SPb3.
  • the differential pumping system 12 performs differential pumping so that the local beam passage space SPb3 is included in the local vacuum region VSP.
  • the differential exhaust in the present embodiment is an air pressure between the sample W and the beam irradiation apparatus 1 between one space (for example, the beam passage space SPb3) and another space different from the one space.
  • the vacuum region VSP also includes the surface WSu of the sample W. At least a part (for example, an irradiation region irradiated with the electron beam EB) is locally covered.
  • an exhaust groove that is, an opening that does not penetrate the vacuum forming member 121) 124 that surrounds the beam exit port 1232 is formed on the exit surface 121 LS of the vacuum forming member 121.
  • a vacuum pump 52 is connected to the exhaust groove 124 via a pipe (that is, a pipe line) 125 formed in the vacuum forming member 121 and the side wall member 122 so as to communicate with the exhaust groove 124.
  • a first end (that is, one end portion) of the pipe 125 is connected to the vacuum pump 52, and a second end (that is, the other end portion) of the pipe 125 substantially forms the exhaust groove 124. Part) is in contact with the space between the exit surface 12LS and the surface WSu of the sample W. Note that FIG.
  • FIG. 3 shows an example in which the differential exhaust system 12 has a structure in which the pipes 125 are gathered before reaching the vacuum pump 52 from the exhaust groove 124.
  • FIG. 3 shows an annular channel 125 extending upward from the annular exhaust groove 124 so as to penetrate the vacuum forming member 121-1 to the vacuum forming member 121-1 having the exhaust groove 124 formed therein. -1 is formed, and N1 (four in the example shown in FIG. 3) pipes 125-21 and N1 pipes 125-21 connected to the flow path 125-1 are collected in the vacuum forming member 121-2.
  • N2 (where N2 ⁇ N1) (two in the example shown in FIG. 3) communicating with the aggregation channel 125-22 is formed in the vacuum forming member 121-3.
  • An annular aggregate flow path 125-32 that aggregates the pipes 125-31 and N2 pipes 125-31 is formed, the pipe 125-4 communicates with the aggregate flow path 125-32, and the pipe 125-4 is a vacuum pump.
  • the example connected to 52 is shown.
  • the number N2 of the pipes 125-31 is half of the number N1 of the pipes 125-21, and one pipe 125-31 is located at approximately the same distance from the two pipes 125-21 communicating therewith.
  • the number N2 of the pipes 125-31 is half of the number of the pipes 125-4 (one in the example shown in FIG. 3), and the pipes 125-4 are substantially separated from the two pipes 125-31 communicating therewith. Located equidistant.
  • the vacuum pump 52 exhausts the space around the beam passage space SPb3 via the exhaust groove 124.
  • the differential exhaust system 12 can appropriately maintain the degree of vacuum of the beam passage space SPb3.
  • the exhaust groove 124 may not be connected to one ring, but may be a plurality of exhaust grooves having a plurality of part of the ring.
  • the vacuum pump 52 is mainly used for exhausting a local space around the beam passage space SPb3 in order to relatively increase the degree of vacuum of the beam passage space SPb3. For this reason, the vacuum pump 52 may have an exhaust capability sufficient to maintain a vacuum level lower than the vacuum level maintained by the vacuum pump 51. That is, the exhaust capability of the vacuum pump 52 may be lower than the exhaust capability of the vacuum pump 51.
  • the vacuum pump 52 may be a vacuum pump that includes a dry pump (or other type of low vacuum pump) but does not include a turbo molecular pump (or other type of high vacuum pump). Good.
  • the degree of vacuum in the space in the exhaust groove 124 and the pipe 125 decompressed by the vacuum pump 52 may be lower than the degree of vacuum in the beam irradiation spaces SPb1 to SPb3 decompressed by the vacuum pump 51.
  • the vacuum pump 52 may have an exhaust speed [m 3 / s] that can maintain a vacuum level lower than the vacuum level maintained by the vacuum pump 51.
  • the portion of the surface WSu of the sample W that does not face the beam passage space SPb3 may be covered by a non-vacuum region having a lower degree of vacuum than the vacuum region VSP.
  • at least a part of the surface WSu of the sample W that does not face the beam space SPb3 may be in an atmospheric pressure environment. That is, at least a part of the surface WSu of the sample W that does not face the beam passage space SPb3 may be covered with the atmospheric pressure region.
  • the differential exhaust system 12 forms a vacuum region VSP in the space SP1 (see FIG. 2) including the beam passage space SPb3.
  • the space SP1 includes, for example, a space in contact with at least one of the beam outlet 1232 and the exhaust groove 124.
  • the space SP1 includes a space that faces (that is, touches) a portion of the surface WSu of the sample W that is positioned immediately below at least one of the beam exit port 1232 and the exhaust groove 124.
  • the vacuum region VSP is Not formed in the space SP2 around the space SP1 (that is, the space SP2 connected to the space SP1 (for example, fluidly connected around the space SP1, see FIG. 2)). That is, the space SP2 is a space having a higher pressure than the space SP1.
  • the space SP2 includes, for example, a space away from the beam exit 1232 and the exhaust groove 124.
  • the space SP2 includes, for example, a space that faces a portion of the surface WSu of the sample W that is different from the portion that the space SP1 faces.
  • the space SP2 includes a space that cannot be connected to the beam emission port 1232 and the exhaust groove 124 (further, the beam passage space SPb2 and the pipe 125) without passing through the space SP1.
  • the space SP2 includes a space that can be connected to the beam outlet 1232 and the exhaust groove 124 (further, the beam passage space SPb2 and the pipe 125) via the space SP1.
  • gas may flow into the space SP1 from the space SP2, but the gas flowing into the space SP1 from the space SP2 is discharged into the exhaust groove 124 ( Further, it is discharged from the space SP1 through the beam exit port 1232). That is, the gas flowing into the space SP1 from the space SP2 is discharged from the space SP1 through the pipe 125 (further, the beam passage space SPb2). For this reason, the degree of vacuum of the vacuum region VSP formed in the space SP1 is maintained.
  • the state in which the vacuum region VSP is locally formed is a state in which the vacuum region VSP is locally formed on the surface WSu of the sample W (that is, the vacuum region VSP in the direction along the surface WSu of the sample W). May mean a state in which is locally formed.
  • the stage device 2 is disposed below the beam irradiation device 1 (that is, on the ⁇ Z side).
  • the stage device 2 includes a surface plate 21 and a stage 22.
  • the surface plate 21 is disposed on a support surface SF such as a floor.
  • the stage 22 is disposed on the surface plate 21.
  • an anti-vibration device (not shown) for preventing the vibration of the surface plate 21 from being transmitted to the stage 22 is installed.
  • the stage 22 can hold the sample W.
  • the stage 22 can release the held sample W.
  • the stage 22 includes a bottom member 221, a side wall member 222, and a plurality of support members 223 as shown in FIGS. 4 and 5.
  • the bottom member 221 is a disk-like (or other arbitrary shape) member extending along the XY plane. When the outer shape or contour of the sample W is circular, the bottom member 221 may be disk-shaped, and when the outer shape or contour of the sample W is rectangular, the bottom member 221 is rectangular. There may be.
  • the side wall member 222 is a member formed so as to protrude upward (that is, + Z side) from the bottom member 221 at the outer edge of the bottom member 221.
  • the side wall member 222 is a member having an annular shape (or other arbitrary shape) in plan view. When the outer shape or outline of the sample W is circular, the side wall member 222 may have an annular shape in plan view. When the outer shape or outline of the sample W is rectangular, the side wall member 222 is It may be rectangular in plan view.
  • the upper surface (that is, + Z side surface) 222Su of the side wall member 222 is located above the upper surface 221Su of the bottom member 221.
  • a stage space SPs corresponding to a recessed space surrounded by the bottom member 221 and the side wall member 222 is formed in the stage 22.
  • Each of the plurality of support members 223 has a pin shape formed on the bottom member 221 so as to protrude upward (that is, on the + Z side) from the bottom member 221 in a region surrounded by the side wall member 222 (that is, the stage space SPs). Or a conical or pyramidal member.
  • the plurality of support members 223 are arranged in a regular (or random) arrangement pattern in a region surrounded by the side wall member 222.
  • the plurality of support members 223 may have a regular arrangement pattern in which the support members 223 are uniformly distributed in the region surrounded by the side wall member 222, and the center of the region in the region surrounded by the side wall member 222 ( It may be a regular arrangement pattern in which the density varies depending on the distance from the center of gravity.
  • the upper surface 223Su of the support member 223 is positioned at the same height as the upper surface 222Su of the side wall member 222. That is, the upper surface 223Su of the support member 223 may be located on the same plane as the upper surface 222Su of the side wall member 222.
  • the stage 22 is in a state where the back surface of the sample W (that is, the surface opposite to the front surface WSu and the surface on the ⁇ Z side) WS1 is in contact with the upper surface 222Su of the side wall member 222 and the upper surfaces 223Su of the plurality of support members 223.
  • the sample W is held.
  • the stage 22 holds the sample W with the back surface WSl of the sample W facing the stage space SPs.
  • An exhaust port 2241 is formed on the upper surface 221Su of the bottom member 221.
  • a vacuum pump 53 is connected to the exhaust port 2241 via a pipe 2251.
  • the vacuum pump 53 can evacuate the stage space SPs surrounded by the bottom member 221, the side wall member 222, and the sample W to reduce the pressure from the atmospheric pressure.
  • the surface WSu of the sample W (however, the vacuum surface portion WSu_vac facing the above-described local vacuum region VSP of the surface WSu of the sample W) is exposed to atmospheric pressure.
  • a negative pressure that draws the sample W toward the stage space SPs acts on the sample W.
  • the stage 22 holds the sample W by vacuum-sucking the sample W using this negative pressure. Therefore, it can be said that the stage 22 is a stage for holding the sample W using a so-called vacuum chuck.
  • the vacuum pump 53 only needs to have an exhaust capability that allows the stage 22 to vacuum-suck and hold the sample W.
  • the vacuum pump 53 sets the pressure of the stage space SPs to a pressure (for example, a pressure on the order of about 5 ⁇ 10 4 Pascals) smaller than the atmospheric pressure (that is, a pressure on the order of about 1 ⁇ 10 5 Pascals). What is necessary is just to have the exhaust capability which can be maintained.
  • the vacuum pump 53 may have a lower exhaust capacity than the vacuum pump 51 that exhausts the beam passage spaces SPb1 to SPb3.
  • the vacuum pump 53 lowers the pressure of the stage space SPs facing the back surface WSl of the sample W as low as the pressure of the beam passage space SPb3 facing the surface WSu of the sample W (that is, the pressure of the vacuum region VSP). You may have the exhaust capability of the grade which is not necessary.
  • the vacuum pump 53 may have an exhaust speed [m 3 / s] that can maintain the pressure of the stage space SPs at 5 ⁇ 10 4 Pascal or less.
  • An exhaust port 2242 is further formed on the upper surface of the bottom member 221.
  • a vacuum pump 54 is connected to the exhaust port 2242 via a pipe 2252. As with the vacuum pump 53, the vacuum pump 54 can evacuate the stage space SPs to reduce the pressure from atmospheric pressure. When the stage space SPs is depressurized, the difference between the pressure in the stage space SPs and the pressure in the vacuum region VSP becomes smaller than the difference between the atmospheric pressure and the pressure in the vacuum region VSP.
  • the bottom member 221, the side wall member 222, and the sample W are members that can ensure the airtightness of the stage space SPs (that is, members that can seal the stage space SPs, and the stage space SPs and the stage space SPs).
  • the vacuum pump 54 has an exhaust capability equivalent to that of the vacuum pump 51 that exhausts the beam passage spaces SPb1 to SPb3.
  • the vacuum pump 54 can maintain the pressure of the stage space SPs at 1 ⁇ 10 ⁇ 3 Pascal or less (eg, approximately on the order of 1 ⁇ 10 ⁇ 3 Pascal to 1 ⁇ 10 ⁇ 4 Pascal). It may have a degree of exhaust capability.
  • the vacuum pump 54 may have an exhaust speed [m 3 / s] that can maintain the pressure of the stage space SPs at 1 ⁇ 10 ⁇ 3 Pascal or less.
  • a vacuum pump 54 for example, a turbo molecular pump used as a main pump (or another type of high vacuum pump including at least one of a diffusion pump, a cryopump and a sputter ion pump) and an auxiliary pump are used.
  • a vacuum pump in combination with a dry pump (or another type of low vacuum pump) may be used.
  • the scanning electron microscope SEM uses the vacuum pump 54 in this way to calculate the difference between the pressure on the surface WSu of the sample W (particularly the vacuum surface portion WSu_v) and the pressure on the back surface WSl of the sample W.
  • a deformation suppressing operation for suppressing the deformation of the sample W due to the formation of the vacuum region VSP is performed. The deformation suppressing operation will be described in detail later.
  • the stage 22 holds the sample W under the control of the control device 4 and follows at least one of the X axis direction, the Y axis direction, the Z axis direction, the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction. Can be moved.
  • the stage apparatus 2 includes a stage drive system 23.
  • the stage drive system 23 moves the stage 22 using, for example, an arbitrary motor (for example, a linear motor).
  • the stage device 2 includes a position measuring device 24 that measures the position of the stage 22.
  • the position measurement device 24 includes, for example, at least one of an encoder and a laser interferometer.
  • the control device 4 can specify the position of the sample W from the position of the stage 22.
  • the stage 22 may have a reference plate having a reference mark for associating the position of the electron beam EB by the beam irradiation apparatus 1 with the position of the stage 22 (position in the XYZ directions).
  • the relative position between the sample W and the beam irradiation apparatus 1 in the direction along the XY plane changes. For this reason, when the stage 22 moves along the XY plane, the relative position between the sample W in the direction along the XY plane and the irradiation region of the electron beam EB on the surface WSu of the sample W changes. That is, when the stage 22 moves along the XY plane, the irradiation region of the electron beam EB moves relative to the surface WSu of the sample W in the direction along the XY plane (that is, the direction along the surface WSu of the sample W). To do.
  • the relative positions of the sample W, the beam passage space SPb3, and the vacuum region VSP in the direction along the XY plane change. That is, when the stage 22 moves along the XY plane, the beam passing space SPb3 and the vacuum region VSP with respect to the surface WSu of the sample W in the direction along the XY plane (that is, the direction along the surface WSu of the sample W). Move.
  • the control device 4 controls the stage drive system 23 so that the electron beam EB is irradiated to a desired position on the surface WSu of the sample W and the beam passage space SPb3 is set (that is, the vacuum region VSP is formed).
  • the stage 22 may be moved along the XY plane.
  • the control device 4 controls the stage drive system 23 to move the stage 22 along the XY plane so that the vacuum region VSP is formed in the first portion of the surface WSu of the sample W. .
  • the beam irradiation apparatus 1 irradiates the first portion of the surface WSu of the sample W with the electron beam EB, The state of the first part is measured.
  • the stage drive system 23 does not have to move the stage 22 along the XY plane.
  • the control device 4 controls the stage drive system 23 so that the vacuum region VSP is formed in the second part of the surface WSu of the sample W, and moves the stage 22 to the XY plane. Move along. After the stage 22 moves so that the vacuum region VSP is formed in the second part of the surface WSu of the sample W, the beam irradiation apparatus 1 irradiates the second part of the surface WSu of the sample W with the electron beam EB, The state of the second part is measured.
  • the stage driving system 23 may not move the stage 22 along the XY plane during the period in which the beam irradiation apparatus 1 irradiates the second portion of the surface WSu of the sample W with the electron beam EB. Thereafter, the state of the surface WSu of the sample W is measured by repeating the same operation.
  • the relative position between the sample W and the beam irradiation apparatus 1 in the direction along the Z axis changes.
  • the control device 4 moves the stage 22 along the Z axis by controlling the stage drive system 23 so that the focus position of the electron beam EB is set on the surface WSu of the sample W (or in the vicinity of the surface WSu). You may let them.
  • the focus position of the electron beam EB may be a focal position corresponding to the imaging position of the beam optical system 11 or a position in the Z-axis direction where the blur of the electron beam EB is minimized.
  • the stage drive system 23 may move the stage 22 under the control of the control device 4 so that the interval D becomes the desired interval D_target in cooperation with the interval adjustment system 14 described later.
  • the control device 4 is based on the measurement result of the position measurement device 24 (further, the measurement result of the position measurement device 15 that measures the position of the beam irradiation device 1 described later (in particular, the position of the vacuum forming member 121)).
  • the actual interval D is specified, and at least one of the stage drive system 23 and the interval adjustment system 14 is controlled so that the specified interval D becomes the desired interval D_target.
  • the position measurement devices 15 and 24 can also function as a detection device that detects the interval D.
  • the control device 4 replaces / in addition to the actual distance D, and in addition to the beam irradiation device 1 and the reference surface (for example, the surface of the reference plate).
  • the stage is set so that the distance from the beam irradiation device 1 to the sample W becomes the target distance. At least one of the drive system 23 and the interval adjustment system 14 may be controlled.
  • the support frame 3 supports the beam irradiation device 1.
  • the support frame 3 includes support legs 31 and support members 32.
  • the support leg 31 is disposed on the support surface SF. Between the support leg 31 and the support surface SF, an anti-vibration device (not shown) for preventing or reducing transmission of vibration of the support surface SF to the support leg 31 may be installed.
  • the support leg 31 is a member that extends upward from the support surface SF, for example.
  • the support leg 31 supports the support member 32.
  • the support member 32 is an annular plate member having an opening 321 formed in the center in plan view.
  • the distance adjusting system 14 is extended outward from the outer surface of the beam irradiation apparatus 1 (in the example shown in FIGS.
  • the support frame 3 can support the beam irradiation device 1 so as to lift it from the upper surface of the support member 32.
  • the support frame 3 may support the beam irradiation device 1 by another support method different from the support method shown in FIG. 1 as long as the beam irradiation device 1 can be supported.
  • the support frame 3 may support the beam irradiation device 1 so as to be suspended from the lower surface of the support member 32.
  • the vibration isolator (not shown) for preventing or reducing the transmission of the vibration of the support surface SF to the support member 32 may be provided.
  • the interval adjusting system 14 moves the beam irradiation device 1 at least along the Z axis, thereby causing the interval D between the emission surface 121LS of the vacuum forming member 121 and the surface WSu of the sample W or the emission of the vacuum forming member 121.
  • the distance in the Z-axis direction from the surface 121LS to the surface WSu of the sample W is adjusted.
  • the interval adjusting system 14 may move the beam irradiation apparatus 1 along the Z-axis direction so that the interval D becomes the desired interval D_target.
  • an interval adjustment system 14 for example, a drive system that moves the beam irradiation apparatus 1 using a driving force of a motor, a drive system that moves the beam irradiation apparatus 1 using a force generated by the piezoelectric effect of a piezoelectric element, A drive system that moves the beam irradiation device 1 using Coulomb force (for example, electrostatic force generated between at least two electrodes) and Lorentz force (for example, electromagnetic force generated between the coil and the magnetic pole) are used.
  • Coulomb force for example, electrostatic force generated between at least two electrodes
  • Lorentz force for example, electromagnetic force generated between the coil and the magnetic pole
  • a distance adjusting member such as a shim is provided between the support member 32 and the flange member 13 instead of the distance adjusting system 14. May be arranged.
  • the gap adjusting member such as a shim may not be disposed between the support member 32 and the flange member 13.
  • the beam irradiation apparatus 1 may be movable along the XY directions.
  • the scanning electron microscope SEM includes a position measuring device 15. Yes.
  • the position measuring device 15 includes, for example, at least one of an encoder and a laser interferometer. Note that the position measuring device 15 may measure the position of the beam irradiation apparatus 1 in the XY direction and the attitude in the ⁇ X direction and the ⁇ Y direction. Further, a measurement device that measures the position of the beam irradiation device 1 in the XY direction, the orientation in the ⁇ X direction, and the ⁇ Y direction may be provided separately from the position measuring device 15.
  • Control device 4 controls the operation of the scanning electron microscope SEM.
  • the control device 4 controls the beam irradiation device 1 so as to irradiate the sample W with the electron beam EB.
  • the control device 4 controls the pump system 5 (particularly, the vacuum pumps 51 and 52) so that the beam passage spaces SPb1 to SPb3 are in a vacuum space.
  • the control device 4 controls the stage drive system 23 so that the electron beam EB is irradiated to a desired position on the surface WSu of the sample W.
  • the control device 4 controls the interval adjustment system 14 so that the interval D between the emission surface 121LS of the vacuum forming member 121 and the surface WSu of the sample W becomes the desired interval D_target.
  • control device 4 controls the pump system 5 (particularly, the vacuum pump 53) so that the stage 22 holds the sample W.
  • the control device 4 controls the pump system 5 (particularly, the vacuum pump 54) so that the deformation suppression operation for suppressing the deformation of the sample W due to the formation of the vacuum region VSP is performed.
  • the deformation suppression operation will be further described.
  • the control device 4 may include at least one of an arithmetic device such as a CPU (Central Processing Unit) and a storage device such as a memory.
  • the vacuum pump 53 depressurizes the stage space SPs via the pipe 2251.
  • the negative pressure that draws the back surface WSl of the sample W toward the stage space SPs acts on the back surface WSl of the sample W.
  • the negative pressure that pulls the back surface WSl of the sample W to the stage space SPs is substantially equivalent to the negative pressure that pulls the sample W itself to the stage space SPs.
  • This negative pressure acts on the sample W as a force that presses the sample W against the stage 22 (in particular, the upper surface 222Su of the side wall member 222 and the upper surfaces 223Su of the plurality of support members 223). Therefore, the stage 22 uses the force F_hold1 that acts on the sample W (particularly, the back surface WSl of the sample W) due to the decompression by the vacuum pump 53 as a force for holding the sample W. Hold.
  • the force F_VSP acting on the vacuum surface portion WSu_vac indirectly acts on the specific portion W_vac facing the vacuum region VSP (that is, facing the beam passage space SPb3) of the sample W.
  • the force F_hold1 acting on the vacuum surface portion WSl_vac also acts indirectly on the specific portion W_vac (or on the vacuum surface portion WSu_vac. That is, the specific portion W_vac of the sample W is applied to the sample W from the vacuum region VSP.
  • the acting force (that is, the force by which the vacuum region VSP sucks the sample W) F_VSP and the force that acts on the sample W from the stage space SPs (that is, the force by which the stage space SPs sucks the sample W)
  • the force F_vac that is the sum of F_hold1 and the force that holds the sample W is applied.
  • the pressure in the vacuum region VSP that faces the front surface WSu of the sample W is the stage that faces the back surface WSl of the sample W.
  • the pressure acting on the vacuum surface portion WSu_vac is less than the pressure in the space SPs.
  • the force F_vac acting on the specific portion W_vac is a force that draws the specific portion W_vac to the vacuum region VSP.
  • the force F_vac that pulls the specific portion W_vac away from the stage 22 is applied to the specific portion W_vac, which has been subjected to the force F_hold1 that presses the specific portion W_vac against the stage 22 before the VSP is formed, due to the formation of the vacuum region VSP.
  • the specific portion W_vac pushes or pulls away (that is, displaces) the specific portion W_vac in the direction from the stage 22 toward the beam irradiation device 1.
  • F_vac acts.
  • the specific portion W_vac of the sample W moves from the stage 22 as shown in FIG. May be pulled apart.
  • the vacuum region VSP is not formed in a portion other than the specific portion W_vac in the sample W.
  • the force F_hold1 that presses the other part against the stage 22 continues to act on the part other than the specific part W_vac in the sample W. That is, parts other than the specific part W_vac in the sample W are not easily separated from the stage 22.
  • the sample W may be deformed as shown in FIG.
  • Such deformation of the sample W is not preferable for measurement of the state of the sample W. Therefore, the scanning electron microscope SEM of the present embodiment suppresses such deformation of the sample W by performing a deformation suppressing operation.
  • the scanning electron microscope SEM evacuates the stage space SPs using the vacuum pump 54 in addition to or instead of the vacuum pump 53 used for holding the sample W under the control of the control device 4. Then, the deformation of the sample W is suppressed by reducing the pressure from the atmospheric pressure.
  • the vacuum pump 54 that depressurizes the stage space SPs has an exhaust capacity comparable to that of the vacuum pump 51 for forming the local vacuum region VSP.
  • the pressure of the stage space SPs facing the back surface WSl of the sample W is the pressure of the vacuum region VSP facing the surface WSu (particularly, the vacuum surface portion WSu_vac) of the sample W. It becomes the same level as. That is, the pressure acting on the vacuum surface portion WSu_vac of the surface WSu of the sample W is approximately the same as the pressure acting on the vacuum surface portion WSl_vac of the back surface WSl of the sample W. For this reason, the force F_hold2 resulting from the pressure reduction by the vacuum pump 54 is the same magnitude as the force F_VSP acting on the sample W from the vacuum region VSP, and the force is in the opposite direction.
  • the force F_hold2 acting on the vacuum surface portion WSl_vac is the vacuum surface on which the specific portion W_vac (or the force F_VSP resulting from the formation of the vacuum region VSP is acting). Acts indirectly on the part WSu_vac). Therefore, the force F_hold2 pushes out the specific portion W_vac (or the vacuum surface portion WSu_vac on which the force F_VSP resulting from the formation of the vacuum region VSP is applied) in the direction from the beam irradiation device 1 toward the stage 22 ( That is, it corresponds to a displacement force.
  • the vacuum pump 54 is The force F_vac acting on the specific part W_vac after reducing the pressure of SPs (that is, the sum of the force F_VSP and the force F_hold2) is reduced.
  • the force F_vac does not act on the specific portion W_vac. That is, the force F_hold2 that acts on the sample W from the stage space SPs corresponds to a force that can reduce (or make zero) the force F_vac that acts on the specific portion W_vac.
  • the force F_hold2 that acts on the sample W from the stage space SPs corresponds to a force that can reduce (or cancel) the influence of the force F_VSP that acts on the sample W from the region VSP.
  • the main cause of the deformation of the sample W is the force F_vac that has acted to pull the specific portion W_vac away from the stage 22, if the force F_vac does not act on the specific portion W_vac, as shown in FIG.
  • the deformation of the sample W is appropriately suppressed. That is, the flatness of the surface WSu of the sample W becomes higher (that is, the surface WSu of the sample W approaches a plane) than before the vacuum pump 54 depressurizes the stage space SPs.
  • the vacuum pump 54 since the vacuum pump 54 has the same exhaust capability as the vacuum pump 51, the exhaust capability of the vacuum pump 54 is higher than the exhaust capability of the vacuum pump 53. Therefore, when the vacuum pump 54 is depressurizing the stage space SPs, the vacuum pump 54 is not depressurizing the stage space SPs (that is, the vacuum pump 53 is depressurizing the stage space SPs). In comparison, the negative pressure that draws the sample W toward the stage space SPs becomes relatively large. For this reason, the sample W is more strongly pressed against the stage 22. Even in this case, the back surface WSl of the sample W is still supported by the upper surface 222Su of the side wall member 222 and the upper surfaces 223Su of the plurality of support members 223.
  • the stage 22 uses the negative pressure that draws the sample W toward the stage space SPs in the same manner as when the vacuum pump 53 depressurizes the stage space SPs. Can be held appropriately.
  • the scanning electron microscope SEM does not have to perform the deformation suppressing operation in at least a part of the period in which the local vacuum region VSP is not formed between the beam irradiation apparatus 1 and the sample W.
  • the scanning electron microscope SEM performs a deformation suppressing operation during a period in which a local vacuum region VSP is formed between the beam irradiation apparatus 1 and the sample W.
  • the scanning electron microscope SEM does not have to perform the deformation suppressing operation in at least a part of the period in which the local vacuum region VSP is formed between the beam irradiation apparatus 1 and the sample W.
  • the scanning electron microscope SEM performs a deformation suppressing operation. It does not have to be done.
  • the stage space SPs is depressurized by using the vacuum pump 54 having an exhaust capability equivalent to that of the vacuum pump 51 for forming the vacuum region VSP.
  • the stage space SPs may be decompressed using the vacuum pump 54 having a higher exhaust capacity than the vacuum pump 51. That is, the pressure in the stage space SPs in which the vacuum pump 54 is decompressed may be lower than the pressure in the beam passage space SPb3 in which the vacuum pump 51 is decompressed (that is, the pressure in the vacuum region VSP).
  • a force pressing the specific portion W_vac against the stage 22 acts on the sample W (particularly, the specific portion W_vac).
  • the back surface WSl of the sample W is still supported by the upper surface 222Su of the side wall member 222 and the upper surfaces 223Su of the plurality of support members 223. For this reason, even if the vacuum pump 54 has a higher exhaust capacity than the vacuum pump 51, the sample W is hardly or not deformed due to that.
  • the stage space SPs may be depressurized using the vacuum pump 54 having a lower exhaust capacity than the vacuum pump 51. That is, the pressure in the stage space SPs in which the vacuum pump 54 is decompressed may be higher than the pressure in the beam passage space SPb3 in which the vacuum pump 51 is decompressed (that is, the pressure in the vacuum region VSP). However, in this case, the pressure of the stage space SPs when the vacuum pump 54 is depressurizing the stage space SPs is lower than the pressure of the stage space SPs when the vacuum pump 53 is depressurizing the stage space SPs.
  • the exhaust capacity of the vacuum pumps 53 and 54 is set.
  • the vacuum pump 54 may have a higher exhaust capacity than the vacuum pump 53.
  • the evacuation capabilities of the vacuum pumps 53 and 54 are set in this way, compared to before the vacuum pump 54 depressurizes the stage space SPs (that is, compared with the case where the vacuum pump 53 depressurizes the stage space SPs).
  • the vacuum degree of the stage space SPs approaches the vacuum degree of the beam passage space SPb3. That is, the pressure in the stage space SPs approaches the pressure in the vacuum region VSP.
  • the difference between the pressure in the stage space SPs and the pressure in the vacuum region VSP that is, the difference between the pressure on the back surface WSl of the sample W and the pressure on the surface WSu of the sample W) becomes small. For this reason, the force F_vac acting on the specific portion W_vac is reduced.
  • the stage space SPs is evacuated using the vacuum pump 54 having an evacuation capability comparable to that of the vacuum pump 51 for forming the vacuum region VSP.
  • the stage space SPs may be exhausted using the vacuum pump 51.
  • the pressure of the stage space SPs facing the back surface WSl of the sample W is approximately the same as the pressure of the vacuum region VSP facing the surface WSu of the sample W (particularly, the vacuum surface portion WSu_vac). For this reason, the deformation of the sample W is appropriately suppressed.
  • the pump system 5 may not include the vacuum pump 54.
  • the vacuum pump 51 When the stage space SPs is evacuated using the vacuum pump 51, the vacuum pump 51 is connected to the beam passage spaces SPb1 to SPb3 via the pipe 117, and is connected to the stage space SPs via the pipe 2252.
  • an opening / closing member for example, a valve
  • an opening / closing member capable of opening and closing the pipe 2252 may be disposed in the pipe 2252.
  • the scanning electron microscope SEM exhausts both the state of the vacuum pump 51 (i) the beam passage spaces SPb1 to SPb3 and the stage space SPs.
  • the first state (ii) the second state where the beam passage spaces SPb1 to SPb3 are exhausted while the stage space SPs is not exhausted, and the (iii) the stage space SPs is exhausted while the beam passage spaces SPb1 to SPb3 are not exhausted. It is possible to switch between the third state and (iv) a fourth state in which both the beam passage spaces SPb1 to SPb3 and the stage space SPs are not exhausted.
  • the scanning electron microscope SEM can switch the state of the vacuum pump 51 between the first state and the fourth state even when the opening / closing member is not disposed in both the pipes 117 and 2252. it can.
  • the force F_vac acting on the specific portion W_vac before the vacuum pump 54 depressurizes the stage space SPs is mainly the force F_VSP caused by the vacuum region VSP. Then, considering that the force F_vac acting on the specific portion W_vac before the vacuum pump 54 depressurizes the stage space SPs does not act on the specific portion W_vac due to the vacuum pump 54 reducing the stage space SPs. It can be said that the operation of reducing the stage space SPs using the pump 54 is equivalent to the operation of canceling out the force F_VSP caused by the vacuum region VSP.
  • the force F_cancel that can cancel the force F_vac caused by the vacuum region VSP is applied to the sample W (particularly, at least the specific portion W_vac) as the force F_hold2 described above. It can be said that the operation is equivalent to For this reason, the scanning electron microscope SEM is not limited to the operation of depressurizing the stage space SPs using the vacuum pump 54, but can arbitrarily cancel the force F_VSP acting on the specific portion W_vac due to the formation of the vacuum region VSP. By performing this operation, deformation of the sample W may be suppressed.
  • the scanning electron microscope SEM is not limited to the operation of depressurizing the stage space SPs using the vacuum pump 54, and the force F_cancel that can cancel the force VSP that has acted on the specific portion W_vac due to the formation of the vacuum region VSP.
  • the deformation of the sample W may be suppressed by performing an arbitrary operation applied to the sample W. Note that an example of an arbitrary operation that cancels the force F_VSP that has been applied to the specific portion W_vac (or applies a force F_cancel that can cancel the force F_VSP to the sample W) is a modification described later (for example, a sixth modification) Example).
  • the force F_cancel that can cancel the force F_VSP may be a force determined according to the force F_VSP.
  • the force F_cancel there is a force having an opposite direction and the same magnitude compared to the force F_VSP.
  • the force F_VSP is a force that acts to displace the sample W in the direction from the stage 22 toward the beam irradiation apparatus 1 (for example, the + Z direction), so the force F_cancel is applied from the beam irradiation apparatus 1 to the stage.
  • the force may act to displace the sample W in the direction toward 22 (for example, the ⁇ Z direction) and may be a force having the same magnitude as the force F_VSP.
  • the force F_cancel is not limited to the force determined according to the force F_VSP, and may be any force that can suppress the deformation of the sample W, and increases the flatness of the surface WSu of the sample W (that is, Any force capable of bringing the surface WSu of the sample W close to a plane) may be used.
  • the stage space SPs is used by using the vacuum pump 54.
  • the operation of reducing the pressure is equivalent to the operation of reducing the force F_vac acting on the specific portion W_vac. That is, the operation of depressurizing the stage space SPs using the vacuum pump 54 is an operation of applying to the sample W (particularly at least the specific portion W_vac) a force F_reduce that can reduce the force F_vac acting on the specific portion W_vac. It can be said that it is equivalent to.
  • the scanning electron microscope SEM is not limited to the operation of reducing the pressure of the stage space SPs using the vacuum pump 54, but performs an arbitrary operation of reducing the force F_vac acting on the specific portion W_vac, thereby deforming the sample W. May be suppressed.
  • the scanning electron microscope SEM is not limited to the operation of depressurizing the stage space SPs using the vacuum pump 54, but is an arbitrary operation of applying to the sample W a force F_reduce that can reduce the force F_vac acting on the specific portion W_vac. The deformation of the sample W may be suppressed by performing the above.
  • the force F_reduce that can reduce the force F_vac acting on the specific portion W_vac may also be a force determined according to the force F_VSP.
  • the force F_reduce there is a force having an opposite direction and a different magnitude compared to the force F_VSP.
  • the force F_VSP is a force that acts to displace the sample W in the direction from the stage 22 toward the beam irradiation apparatus 1 (for example, the + Z direction).
  • the force may act to displace the sample W in the direction toward 22 (for example, the ⁇ Z direction) and may be a force smaller or larger than the force F_VSP.
  • the force F_reduce is not limited to the force determined according to the force F_VSP, and may be any force that can suppress the deformation of the sample W, and increases the flatness of the surface WSu of the sample W (that is, Any force capable of bringing the surface WSu of the sample W close to a plane) may be used.
  • a scanning electron microscope SEMa of a first modification will be described.
  • the scanning electron microscope SEMa of the first modification is different from the above-described scanning electron microscope SEM in that a stage 22a is provided instead of the stage 22.
  • the other structure of the scanning electron microscope SEMa may be the same as the other structure of the scanning electron microscope SEM described above. Therefore, hereinafter, the structure of the stage 22a will be described with reference to FIG. In the following description, constituent elements that have already been described are assigned the same reference numerals, and detailed descriptions thereof are omitted.
  • the stage 22a differs from the stage 22 described above in that a side wall member 222a is provided instead of the side wall member 222.
  • the side wall member 222 a is different from the side wall member 222 in that the upper surface 222 Su of the side wall member 222 a is positioned below the upper surface 223 Su of the support member 223.
  • the stage 22a holds the sample W in a state where the back surface WSl of the sample W is in contact with the upper surfaces 223Su of the plurality of support members 223 but not in contact with the upper surface 222Su of the side wall member 222a.
  • the stage 22a may be said to form the outer edge space SPg1 between the sample W and the upper surface 222Su of the side wall member 222a.
  • the dimension of the outer edge space SPg1 in the Z-axis direction in other words, the distance along the Z-axis direction from the lower surface WS1 of the sample W to the upper surface 222Su of the side wall member 222a may be 1 ⁇ m or more and 10 ⁇ m or less.
  • a pin-shaped, conical or pyramidal support member that can contact the lower surface WSl of the sample W may be provided on the upper surface 222Su of the side wall member 222a.
  • a plurality of support members may be provided along the circumferential direction on the upper surface 222Su of the side wall member 222a.
  • Such a support member may be an annular shape extending in the circumferential direction on the upper surface 222Su of the side wall member 222a.
  • the annular support member may not be in contact with the back surface of the sample W.
  • the other structure of the stage 22a may be the same as the other structure of the stage 22 described above.
  • the same effects as those that can be enjoyed by the above-described scanning electron microscope SEM can be obtained.
  • an unnecessary substance for example, at least one of dust, dust, and dust
  • the sample W does not contact the upper surface 222Su of the side wall member 222a, an unnecessary substance (for example, at least one of dust, dust, and dust) adheres to the upper surface 222Su of the side wall member 222a. Even when the sample W is present, distortion (that is, deformation) of the sample W due to the influence of the unnecessary substance can be prevented.
  • the stage 22a of the first modification described above is in a state in which the outer edge space SPg1 exists between the sample W and the upper surface 222Su of the side wall member 222a.
  • the sample W is held.
  • the outer edge space SPg1 communicates with the stage space SPs, the outer edge space SPg1 is exhausted (ie, depressurized) by the vacuum pump 54.
  • the outer edge space SPg1 communicates with an atmospheric pressure space outside the stage space SPs. For this reason, gas tends to flow into the outer edge space SPg1 from the atmospheric pressure space. As a result, the pressure in the outer edge space SPg1 may be higher than the pressure in the stage space SPs.
  • the force F_hold2 acting to press the outer edge portion W_edge of the sample W facing the upper surface 222Su of the side wall member 222a against the stage 22a is other than the outer edge portion W_edge of the sample W. May be smaller than the force F_hold2 that acts to press the portion against the stage 22a. That is, the force F_hold2 that holds the outer edge portion W_edge by the stage 22a may be smaller than the force F_hold2 that holds the portion of the sample W other than the outer edge portion W_edge by the stage 22a.
  • the scanning electron microscope SEMb of the second modified example capable of suppressing the deformation of the sample W caused by the outer edge portion W_edge separating from the stage 22 will be continued.
  • the scanning electron microscope SEMb of the second modified example is different from the above-described scanning electron microscope SEMa in that a stage 22b is provided instead of the stage 22a.
  • the other structure of the scanning electron microscope SEMb may be the same as the other structure of the scanning electron microscope SEMa described above. Therefore, hereinafter, the structure of the stage 22b will be described with reference to FIG.
  • the stage 22b is different from the stage 22a in that an exhaust port 2243b is formed on the upper surface 222Su of the side wall member 222a.
  • Other structures of the stage 22b may be the same as the other structures of the stage 22a described above.
  • the exhaust port 2243b is formed in a portion of the upper surface 222Su of the side wall member 222a that faces the back surface WSl of the sample W. At this time, the exhaust port 2243b may be formed on the outermost periphery of the portion of the upper surface 222Su of the side wall member 222a that faces the back surface WSl of the sample W.
  • the exhaust ports 2243b may be formed in an annular distribution pattern so that the exhaust ports 2243b are continuously distributed on the upper surface 222Su of the side wall member 222a.
  • a plurality of the exhaust ports 2243b may be formed so as to be arranged in a regular (or random) arrangement pattern on the upper surface 222Su of the side wall member 222a.
  • the exhaust ports 2243b may be formed in an arbitrary arrangement pattern or distribution pattern.
  • the exhaust holes 2243b may have a regular arrangement pattern in which the exhaust holes 2243b are uniformly distributed on the upper surface 222Su of the side wall member 222a, and the region in the region surrounded by the side wall member 222a on the upper surface 222Su of the side wall member 222a. It may be an array pattern that is distributed at equal intervals or unequal intervals on the circumference centered on the center (center of gravity) of the. Further, the exhaust holes 2243b may have an arrangement pattern in which the exhaust holes 2243b are distributed at equal intervals or unequal intervals along each of a plurality of circumferences having different radii with the center (center of gravity) of the region as the center.
  • a vacuum pump 54 is connected to the exhaust port 2243b via a pipe 2253b.
  • the vacuum pump 54 can depressurize the outer edge space SPg1 by exhausting it.
  • the outer edge space SPg1 is directly depressurized by the vacuum pump 54 without passing through the stage space SPs in addition to or instead of being depressurized indirectly through the stage space SPs. The For this reason, compared with the case where outer edge space SPg1 is only pressure-reduced indirectly via stage space SPs, possibility that the pressure of outer edge space SPg1 will become higher than the pressure of stage space SPs becomes small.
  • the possibility that the force F_hold2 for holding the outer edge portion W_edge of the sample W by the stage 22a is smaller than the force F_hold2 for holding the portion of the sample W other than the outer edge portion W_edge by the stage 22a is reduced.
  • the possibility that the force F_VSP and the force F_hold2 cancel each other out in the outer edge portion W_edge of the sample W is relatively increased. That is, even if the local vacuum region VSP is formed in the outer edge portion W_edge of the sample W, the possibility that the force F_vac acting to pull the outer edge portion W_edge away from the stage 22 continues to act on the outer edge portion W_edge is reduced. For this reason, as shown in FIG. 10, the possibility that the outer edge portion W_edge of the sample W is separated from the stage 22 is reduced. For this reason, possibility that the sample W will deform
  • the pressure of the outer edge space SPg1 becomes equal to the pressure of the stage space SPs. Therefore, the force F_hold2 at which the stage 22a holds the outer edge portion W_edge of the sample W is equal to the force F_hold2 at which the stage 22a holds a portion other than the outer edge portion W_edge of the sample W. As a result, even if the local vacuum region VSP is formed in the outer edge portion W_edge of the sample W, the force F_vac that acts to pull the outer edge portion W_edge away from the stage 22 does not act on the outer edge portion W_edge. For this reason, as shown in FIG.
  • the outer edge portion W_edge of the sample W is not pulled away from the stage 22. That is, the outer edge portion W_edge of the sample W is continuously held by the stage 22. For this reason, the sample W is not deformed. That is, the deformation of the sample W is appropriately suppressed.
  • the outer edge portion W_edge is separated from the stage 22 due to the formation of the vacuum region VSP when the local vacuum region VSP is formed in the outer edge portion W_edge (that is, the outer edge portion W_edge is separated from the vacuum region VSP). Negative pressure (that is, when suction force is applied). For this reason, the scanning electron microscope SEMb uses the vacuum pump 54 and the outer edge space via the exhaust port 2243b and the exhaust pipe 2253b during at least a part of the period during which the local vacuum region VSP is formed in the outer edge portion W_edge. Reduce pressure of SPg1.
  • the scanning electron microscope SEMb uses the vacuum pump 54 in the outer edge space through the exhaust port 2243b and the exhaust pipe 2253b in at least a part of the period when the local vacuum region VSP is not formed in the outer edge portion W_edge. It is not necessary to depressurize SPg1.
  • an opening / closing member for example, a valve that can open and close the pipe 2253b may be disposed in the pipe 2253b.
  • the scanning electron microscope SEMb uses the vacuum pump 54 to provide the outer edge space through the exhaust port 2243b and the exhaust pipe 2253b even at least during a period when the local vacuum region VSP is not formed in the outer edge portion W_edge.
  • SPg1 may be decompressed.
  • the vacuum pump for decompressing the outer edge section SPg1 may be a vacuum pump different from the vacuum pump 54 for decompressing the stage space SPs.
  • the scanning electron microscope SEMc of the third modification is different from the above-described scanning electron microscope SEMb in that a stage 22c is provided instead of the stage 22b.
  • the other structure of the scanning electron microscope SEMc may be the same as the other structure of the scanning electron microscope SEMb described above. Therefore, hereinafter, the structure of the stage 22c will be described with reference to FIG.
  • the stage 22c is different from the stage 22b in that a guard member 224c is provided.
  • the other structure of the stage 22c may be the same as the other structure of the stage 22b described above.
  • the guard member 224c is formed on a portion of the upper surface 222Su of the side wall member 222a that does not face the rear surface WSl of the sample W.
  • the guard member 224c is formed outside the exhaust port 2243b.
  • the guard member 224c is formed outside the sample W held on the stage 22c.
  • the upper surface 224Su of the guard member 224c may be a flat surface.
  • the upper surface 224Su of the guard member 224c may be located at the same height as the surface WSu of the sample W held on the stage 22c. That is, the upper surface 224Su of the guard member 224c may be located on the same plane as the surface WSu of the sample W held on the stage 22c.
  • a part of the side surface (for example, the inner surface) of the guard member 224c faces the side surface (for example, the outer surface) of the sample W. At this time, the side surface of the guard member 224c does not contact the side surface of the sample W. That is, a gap is secured between the side surface of the guard member 224c and the side surface of the sample W.
  • the scanning electron microscope SEMc of the third modified example includes the guard member 224c formed on the upper surface 222Su of the side wall member 222a, the vacuum region VSP is appropriately formed in the outer edge portion W_edge of the sample W. Can do. Specifically, if the guard member 224c does not exist, a part of the vacuum region VSP becomes a part of the sample W and the beam irradiation device in a state where the vacuum region VSP is formed in the outer edge portion W_edge of the sample W.
  • the guard member 224c when the guard member 224c is present, a part of the vacuum region VSP is formed between the sample W and the beam irradiation apparatus 1 in a situation where the vacuum region VSP is formed in the outer edge portion W_edge of the sample W. There is a possibility that it is formed between the beam irradiation device 1 and the upper surface 224Su of the guard member 224c located outside the sample W, not between them.
  • the distance between the upper surface 224Su of the guard member 224c and the beam irradiation apparatus 1 is the same as the distance D between the sample W and the beam irradiation apparatus 1.
  • the vacuum region VSP can be appropriately maintained as in the case of being formed therebetween.
  • the vacuum region VSP can be appropriately formed in the outer edge portion W_edge of the sample W.
  • the upper surface 224Su of the guard member 224c may not be located at the same height as the surface WSu of the sample W held on the stage 22c. That is, the upper surface 224Su of the guard member 224c does not have to be located on the same plane as the surface WSu of the sample W held on the stage 22c.
  • the upper surface 224Su of the guard member 224c may be positioned above the surface WSu of the sample W held on the stage 22c.
  • the upper surface 224Su of the guard member 224c may be positioned below the surface WSu of the sample W held on the stage 22c.
  • the side surface of the guard member 224c and the side surface of the sample W may be in contact with each other.
  • the upper surface 224Su of the guard member 224c may be inclined with respect to the surface WSu of the sample W. At this time, the height of the surface WSu at the outermost edge of the sample W and the height of the innermost edge of the upper surface 224Su of the inclined guard member 224c may be the same height. Further, the width (dimension in the XY plane) of the upper surface 224Su of the guard member 224c may be 1 ⁇ 2 or more of the dimension in the XY direction of the local vacuum region VSP.
  • the width (dimension in the XY plane) of the upper surface 224Su of the guard member 224c is 1 ⁇ 2 or more of the size in the XY direction of the emission surface 121LS of the vacuum forming member 121, or the outermost periphery of the emission surface 121LS from the center of the beam emission port 1232 It may be more than the distance to the position. Further, the upper surface 224Su of the guard member 224c may be a curved surface.
  • the guard member 224c may be integrated with the side wall member 222a. Alternatively, the guard member 224c may not be integrated with the side wall member 222a. For example, the guard member 224c may be a member that can be detached from the side wall member 222a.
  • the scanning electron microscope SEMd of the fourth modified example is different from the above-described scanning electron microscope SEM in that a stage 22d is provided instead of the stage 22.
  • the other structure of the scanning electron microscope SEMd may be the same as the other structure of the scanning electron microscope SEM described above. Therefore, hereinafter, the structure of the stage 22d will be described with reference to FIG.
  • the stage 22d is different from the stage 22 in that a side wall member 222d is provided instead of the side wall member 222.
  • the upper surface 222Su of the side wall member 222d is positioned above the upper surfaces 223Su of the plurality of support members 223.
  • the side wall member 222 d is formed outside the sample W held on the stage 22.
  • the stage 22d has the back surface WS1 of the sample W in contact with the upper surfaces 223Su of the plurality of support members 223, while not contacting the upper surface 222Su of the side wall member 222d (particularly, the side wall member 222d is not in contact with the sample W).
  • the sample W is held in a state of being located outside the substrate).
  • Other structures of the side wall member 222d may be the same as the other structures of the side wall member 222 described above.
  • the upper surface 222Su of the side wall member 222d may be a flat surface.
  • the upper surface 222Su of the side wall member 222d may be located at the same height as the surface WSu of the sample W held on the stage 22d. That is, the upper surface 222Su of the side wall member 222d may be located on the same plane as the surface WSu of the sample W held on the stage 22d.
  • the side wall member 222d can also function as the guard member 224c of the third modification. That is, the side wall member 222d can be a member that contributes to appropriately forming the vacuum region VSP in the outer edge portion W_edge of the sample W.
  • the upper surface 222Su of the side wall member 222d may not be located at the same height as the surface WSu of the sample W held on the stage 22d. That is, the upper surface 222Su of the side wall member 222d may not be located on the same plane as the surface WSu of the sample W held on the stage 22d.
  • a part of the side surface 222d of the side wall member 222d (in particular, the side surface facing the stage space SPs, for example, the inner surface, the same applies hereinafter) opposes the side surface (for example, the outer surface) of the sample W.
  • the side surface 222Ss of the side wall member 222d does not contact the side surface of the sample W. That is, a gap is secured between the side surface 222Ss of the side wall member 222d and the side surface of the sample W.
  • the outer edge space SPg2 communicating with the atmospheric pressure space outside the stage space SPs through the gap in the stage space SPs is similar to the outer edge space SPg1 in the second or third modification described above from the atmospheric pressure space. Gas tends to flow in.
  • the pressure in the outer edge space SPg2 may be higher than the pressure in the portion of the stage space SPs other than the outer edge space SPg2.
  • the outer edge portion W_edge ′ facing the outer edge space SPg2 of the sample W is pulled away from the stage 22 in the same manner as the stage 22a of the first modified example. May be deformed.
  • the exhaust port 2244d is formed in the side wall member 222d.
  • the exhaust port 2244d is formed on a surface (specifically, the side surface 222Ss) of the side wall member 222d that faces the outer edge space SPg2. Is formed.
  • the exhaust ports 2244d may be formed in an annular distribution pattern so that the exhaust ports 2244d are continuously distributed on the side surface 222Ss of the side wall member 222d.
  • a plurality of exhaust ports 2244d may be formed so as to be arranged in a regular (or random) arrangement pattern on the side surface 222Ss of the side wall member 222d.
  • the exhaust port 2244d may be formed in an arbitrary arrangement pattern or distribution pattern.
  • a vacuum pump 54 is connected to the exhaust port 2244d through a pipe 2254d.
  • the vacuum pump 54 can evacuate the outer edge space SPg2 to reduce the pressure. That is, in the fourth modified example, the outer edge space SPg2 is relative to the outer edge space SPg2 in addition to or instead of being depressurized by the vacuum pump 54 via the exhaust port 2242 relatively distant from the outer edge space SPg2.
  • the pressure is reduced through the exhaust port 2244d close to the. For this reason, also in the fourth modified example, as in the second modified example, the possibility that the outer edge portion W_edge 'of the sample W is separated from the stage 22d is reduced. For this reason, possibility that the sample W will deform
  • the exhaust port 2244d is formed in the side wall member 222d.
  • the exhaust port 2244d may be formed in a member other than the side wall member 222d.
  • the exhaust port 2244d may be formed in a member facing the outer edge space SPg2 other than the side wall member 222d.
  • the exhaust port 2244d may be formed on a surface facing the outer edge space SPg2 among members other than the side wall member 222d.
  • the exhaust port 2244d may be formed in a portion of the upper surface 221Su of the bottom member 221 that faces the outer edge space SPg2.
  • the exhaust port 2244d may be formed in at least one support member 223 facing the outer edge space SPg2 among the plurality of support members 223.
  • the exhaust port 2243b may be formed in a member other than the side wall member 222b.
  • the exhaust port 2243b may be formed in a member facing the outer edge space SPg1 other than the side wall member 222b.
  • the exhaust port 2243b may be formed on a surface facing the outer edge space SPg1 among members other than the side wall member 222b.
  • the upper surface 222Su of the side wall member 222d may be inclined with respect to the surface WSu of the sample W held on the stage 22d. At this time, the height of the surface WSu at the outermost edge of the sample W and the height of the innermost edge of the inclined upper surface 222Su may be the same height.
  • the width (dimension in the XY plane) of the upper surface 222Su of the side wall member 222d may be 1/2 or more of the dimension in the XY direction of the local vacuum region VSP.
  • the width (dimension in the XY plane) of the upper surface 222Su of the side wall member 222d is 1 ⁇ 2 or more of the size in the XY direction of the emission surface 121LS of the vacuum forming member 121, or the outermost periphery of the emission surface 121LS from the center of the beam emission port 1232 It may be more than the distance to the position.
  • the upper surface 222Su of the side wall member 222d may be a curved surface.
  • the scanning electron microscope SEMe of the fifth modified example is different from the scanning electron microscope SEMa of the first modified example described above in that a stage 22e is provided instead of the stage 22a.
  • the other structure of the scanning electron microscope SEMe may be the same as the other structure of the scanning electron microscope SEMa described above. Therefore, hereinafter, the structure of the stage 22e will be described with reference to FIG.
  • the stage 22e is different from the above-described stage 22a in that it includes a temperature adjusting device 2291e and a temperature measuring device 2292e.
  • Other structures of the stage 22e may be the same as the other structures of the stage 22a described above.
  • the temperature adjusting device 2291e is disposed on the side wall member 222a. However, the temperature adjusting device 2291e may be disposed on a member (for example, the bottom member 221) other than the side wall member 222a.
  • the temperature adjusting device 2291e is arranged in an annular distribution pattern so as to be continuously distributed along the upper surface 222Su of the side wall member 222a.
  • the temperature adjustment device 2291e may be arranged in an arbitrary arrangement pattern or distribution pattern. For example, a plurality of temperature adjusting devices 2291e may be arranged so as to be arranged in a regular (or random) arrangement pattern along the upper surface 222Su of the side wall member 222a.
  • the temperature adjustment device 2291e is embedded in the side wall member 222a, but may be disposed on the surface (for example, the upper surface 222Su) of the side wall member 222a.
  • the temperature measuring device 2292e may also be arranged in the same arrangement manner as the temperature adjusting device 2291e.
  • the temperature adjusting device 2291e adjusts the temperature of the space around the side wall member 222a. Specifically, the temperature adjustment device 2291e adjusts the temperature of at least a part of the outer edge space SPg1. The temperature adjusting device 2291e adjusts the temperature of at least part of the outer edge space SPg1 by heating at least part of the outer edge space SPg1. In this case, the temperature adjustment device 2291e includes, for example, a heater.
  • the temperature adjustment by heating at least a part of the outer edge space SPg1 is performed in order to make the temperature of the sample W uniform.
  • gas easily flows from the atmospheric pressure space into the outer edge space SPg1.
  • the temperature of the outer edge portion W_edge facing the outer edge space SPg1 may also decrease.
  • the temperature of the outer edge portion W_edge of the sample W may be lower than the temperature of the portion other than the outer edge portion W_edge of the sample W.
  • the sample W may be thermally deformed. Therefore, in the fifth modification, the temperature adjustment device 2291e adjusts the temperature of at least a part of the outer edge space SPg1 to make the temperature of the sample W uniform. As a result, thermal deformation of the sample W is suppressed.
  • the temperature measuring device 2292e can measure the temperature of the sample W. For this reason, the temperature adjusting device 2291e adjusts the temperature of at least a part of the outer edge space SPg1 so that the temperature of the sample W becomes uniform based on the measurement result of the temperature measuring device 2292e.
  • the scanning electron microscope SEMe of the fifth modified example can appropriately suppress the thermal deformation of the sample W.
  • the temperature adjusting device 2291e may be disposed at a position where it can contact at least a part of the sample W (particularly, the outer edge portion W_edge).
  • one or more temperature adjustment devices 2291e may be arranged on the bottom member 221 to reduce local temperature fluctuations of the sample W caused by the local vacuum region VSP.
  • the scanning electron microscope SEMf of the sixth modified example is different from the above-described scanning electron microscope SEM in that a stage 22f is provided instead of the stage 22.
  • the other structure of the scanning electron microscope SEMf may be the same as the other structure of the scanning electron microscope SEM described above. Therefore, hereinafter, the structure of the stage 22f will be described with reference to FIG.
  • the stage 22f is different from the stage 22 in that an electrostatic chuck 225f is provided.
  • the electrostatic chuck 225f includes at least one electrode.
  • the electrostatic chuck 225f can generate an electrostatic force (that is, coulomb force) F_elec under the control of the control device 4.
  • the electrostatic chuck 225f can generate an electrostatic force F_elec acting on the sample W.
  • the electrostatic chuck 225f can generate an electrostatic force F_elec that acts on the sample W so as to draw the sample W (for example, the back surface WSl of the sample W) to the electrostatic chuck 225f (and as a result, draw it to the stage 22f).
  • the electrostatic chuck 225f can generate an electrostatic force F_elec that acts in a direction from the sample W toward the stage 22f.
  • the electrostatic chuck 225f can generate an electrostatic force F_elec that acts evenly on the sample W in the XY plane.
  • the stage 22f uses the electrostatic force F_elec generated by the electrostatic chuck 225f as a force for holding the sample W.
  • the stage 22f may not be provided with the exhaust port 2241 provided in the stage 22 described above in order to reduce the stage space SPs and hold the sample W.
  • the pipe 2251 may not be arranged on the stage 22f.
  • the pump system 5 may not include the vacuum pump 53.
  • the stage 22f may use a force F_hold1 due to the negative pressure generated by reducing the stage space SPs as a force for holding the sample W.
  • an exhaust port 2241 may be formed on the stage 22f, a pipe 2251 may be disposed on the stage 22f, or the pump system 5 may include a vacuum pump 53.
  • the scanning electron microscope SEMf suppresses deformation of the sample W using the electrostatic force F_elec generated by the electrostatic chuck 225f under the control of the control device 4. That is, the stage 22f uses the electrostatic force F_elec generated by the electrostatic chuck 225f as a force for suppressing the deformation of the sample W.
  • the stage 22f may not be provided with the exhaust port 2242 provided in the stage 22 described above in order to reduce the stage space SPs and suppress the deformation of the sample W.
  • the pipe 2252 may not be arranged on the stage 22f.
  • the pump system 5 may not include the vacuum pump 54.
  • the stage 22f may suppress the deformation of the sample W by reducing the stage space SPs in addition to the electrostatic force F_elec generated by the electrostatic chuck 225f.
  • the exhaust port 2242 may be formed in the stage 22f, the pipe 2252 may not be disposed in the stage 22f, and the pump system 5 may include the vacuum pump 54.
  • the control device 4 controls the electrostatic force F_elec generated by the electrostatic chuck 225f according to the force F_VSP caused by the vacuum region VSP (that is, the force acting on the specific portion W_vac so as to separate the specific portion W_vac from the stage 22). To do.
  • the control device 4 cancels the force (that is, the force F_VSP) acting on the specific portion W_vac before the electrostatic chuck 225f applies the electrostatic force F_elec.
  • the electrostatic force F_elec generated by the electrostatic chuck 225f may be controlled.
  • the control device 4 sets the electrostatic force F_elec according to the force F_VSP so that the force F_VSP is canceled by the electrostatic force F_elec (that is, the force F_vac obtained by adding the electrostatic force F_elec and the force F_VSP becomes zero). You may control.
  • control device 4 may control the electrostatic force F_elec according to the force F_VSP so that the electrostatic force F_elec that can cancel the force F_VSP acts on (i.e., is applied to) the sample W.
  • the control device 4 controls the electrostatic force F_elec so that the electrostatic force F_elec that acts in the opposite direction and has the same magnitude acts on the sample W compared to the force F_VSP. Also good. That is, the control device 4 acts to displace the sample W in the direction from the beam irradiation device 1 toward the stage 22f (for example, the ⁇ Z direction), and the electrostatic force F_elec having the same magnitude as the force F_VSP is generated by the sample W.
  • the electrostatic force F_elec may be controlled so as to act on.
  • both the force F_VSP caused by the vacuum region VSP and the electrostatic force F_elec generated by the electrostatic chuck 225f are applied to the specific portion W_vac.
  • the force F_vac acting on the specific portion W_vac before the electrostatic chuck 225f applies the electrostatic force F_elec does not act on the specific portion W_vac after the electrostatic chuck 225f applies the electrostatic force F_elec.
  • the specific portion W_vac is not separated from the stage 22f.
  • deformation of the sample W is appropriately suppressed.
  • the electrostatic force F_elec satisfying such a condition is a specific example of the above-described force F_cancel that can cancel the force F_VSP caused by the vacuum region VSP.
  • the control device 4 may control the electrostatic force F_elec generated by the electrostatic chuck 225f so that the force F_vac acting on the specific portion W_vac is reduced in order to suppress deformation of the sample W.
  • the control device 4 may control the electrostatic force F_elec so that the electrostatic force F_elec acting in the opposite direction and having a different magnitude acts on the sample W compared to the force F_VSP. . That is, the control device 4 acts to displace the sample W in the direction from the beam irradiation device 1 toward the stage 22 (for example, the ⁇ Z direction), and an electrostatic force F_elec having a magnitude different from the force F_VSP acts on the sample W.
  • the electrostatic force F_elec may be controlled.
  • both the force F_VSP caused by the vacuum region VSP and the electrostatic force F_elec generated by the electrostatic chuck 225f are applied to the specific portion W_vac.
  • the electrostatic chuck 225f is identified after the electrostatic force F_elec is applied compared to the force F_vac (that is, the force F_VSP) that has been applied to the specific portion W_vac before the electrostatic force F_elec is applied.
  • the force F_vac acting on the portion W_vac that is, the sum of the force F_VSP and the force F_elec
  • the specific portion W_vac is not easily separated from the stage 22f.
  • the amount of separation that is, the interval between the specific portion W_vac and the stage 22f.
  • the electrostatic force F_elec that satisfies such a condition is a specific example of the above-described force F_reduce that can reduce the force F_vac acting on the specific portion W_vac.
  • the electrostatic chuck 225f may be provided so as to be in contact with the lower surface WSl of the sample W. Further, the electrostatic chuck 225f may be provided at a portion that contacts the lower surface WSl of the sample W in the support member 223 of the stage 22.
  • the deformation of the sample W caused by the outer edge portion W_edge of the sample W being separated from the stage 22a or 22b using the electrostatic force generated by the electrostatic chuck. May be suppressed.
  • the stage 22b adds the outer edge portion W_edge of the sample W to the stage 22a (particularly, in addition to or instead of the exhaust port 2243b for decompressing the space SPg).
  • An electrostatic chuck capable of generating an electrostatic force acting on the outer edge portion W_edge so as to be drawn toward the upper surface 222Su) of the side wall member 222a may be provided.
  • the stage 22b draws the outer edge portion W_edge ′ of the sample W toward the stage 22d (in particular, draws downward) in addition to or instead of the exhaust port 2244d for decompressing the space SPg2.
  • an electrostatic chuck capable of generating an electrostatic force acting on the outer edge portion W_edge ′ may be provided.
  • the scanning electron microscope SEMf may suppress deformation of the sample W by using a different type of force from the electrostatic force F_elec.
  • the scanning electron microscope SEMf includes an applying device that can apply a different type of force from the electrostatic force F_elec as a force for suppressing deformation of the sample W in addition to or instead of the electrostatic chuck 225f. May be.
  • the scanning electron microscope SEMf includes a moving member disposed on the stage 22f so as to be attached to the back surface WSl of the sample W and to be movable along the Z axis while being attached to the back surface WSl. It may be provided as an example.
  • the scanning electron microscope SEMf may use the force accompanying the movement of the moving member as a force for suppressing the deformation of the sample W.
  • the scanning electron microscope SEMf may include a Bernoulli chuck disposed on the stage 22f so as to face the back surface WSl of the sample W as an example of the applying device.
  • the scanning electron microscope SEMf uses a force acting between the Bernoulli chuck and the back surface WSl of the sample W due to the gas ejected from the Bernoulli chuck as a force for suppressing the deformation of the sample W. May be.
  • scanning electron microscope SEMg the seventh modification.
  • the scanning electron microscope SEMg according to the seventh modification is different from the above-described scanning electron microscope SEM in that a stage 22g is provided instead of the stage 22.
  • the other structure of the scanning electron microscope SEMg may be the same as the other structure of the scanning electron microscope SEM described above. Therefore, the structure of the stage 22g will be described below with reference to FIGS. 15 (a) to 15 (b).
  • the stage 22g is different from the stage 22 in that it includes a partition member 227g.
  • the partition member 227g is a member formed so as to protrude upward (that is, on the + Z side) from the bottom member 221 in a region surrounded by the side wall member 222.
  • the upper surface 227Su of the partition wall member 227g is positioned at the same height as the upper surface 222Su of the side wall member 222 and the upper surface 223Su of the support member 223. That is, the upper surface 227Su of the partition wall member 227g is located on the same plane as the upper surface 222Su of the side wall member 222 and the upper surface 223Su of the support member 223.
  • the stage 22g holds the sample W in a state where the back surface WSl of the sample W is in contact with the upper surface 222Su of the side wall member 222, the upper surfaces 223Su of the plurality of support members 223, and the upper surface 227Su of the partition wall member 227g.
  • the partition member 227g has N (where N is an integer of 2 or more) divided spaces SPsg (specifically, divided spaces) in which the stage space SPs is surrounded by the bottom member 221, the sidewall member 222, and the partition member 227g. This is a member for dividing SPsg # 1 to SPsg # N).
  • the partition member 227g is formed on the bottom member 221 so that the stage space SPs is distributed in a distribution pattern that can be divided into N divided spaces SPsg in plan view.
  • the stage 22g further has N exhaust ports 2241g (specifically, exhaust ports 2241g # 1 to 2241g # N) respectively corresponding to the N divided spaces SPsg as compared with the stage 22. It is different in point.
  • a vacuum pump 53 is connected to the N exhaust ports 2241g via N pipes 2251g (specifically, pipes 2251g # 1 to 2251g # N), respectively.
  • the vacuum pump 53 can exhaust the divided space SPsg # i and depressurize it from the atmospheric pressure via the exhaust port 2241g # i (where i is an integer of 1 or more and N or less) and the pipe 2251g # i. .
  • the stage 22g further has N exhaust ports 2242g (specifically, exhaust ports 2242g # 1 to 2242g # N) respectively corresponding to the N divided spaces SPsg compared to the stage 22. It is different in point.
  • a vacuum pump 54 is connected to the N exhaust ports 2242g via N pipes 2252g (specifically, pipes 2252g # 1 to 2252g # N), respectively.
  • the vacuum pump 54 can exhaust the divided space SPsg # i through the exhaust port 2242g # i and the pipe 2252g # i to reduce the pressure from the atmospheric pressure.
  • N pieces of open / close members 2261g (specifically, open / close members 2261g # 1 to 2261g # N) that can open and close the N pieces of pipes 2251g are arranged in the N pieces of pipes 2251g, respectively.
  • the opening / closing member 2261g is, for example, a valve.
  • N open / close members 2262g (specifically, open / close members 2262g # 1 to 2262g # N) that can open and close the N pipes 2252g are arranged in the N pipes 2252g, respectively.
  • the opening / closing member 2262g is, for example, a valve.
  • the state of the opening / closing member 2261g # i is a state in which the pipe 2251g # i is shut off under the control of the control device 4 (that is, a state in which the vacuum pump 53 does not depressurize the divided space SPsg # i) and a pipe 2251g # i is opened (Ie, the vacuum pump 53 depressurizes the divided space SPsg # i).
  • the state of the opening / closing member 2262g # i is a state in which the pipe 2252g # i is shut off under the control of the control device 4 (that is, a state in which the vacuum pump 54 does not depressurize the divided space SPsg # i) and (Ie, the vacuum pump 54 depressurizes the divided space SPsg # i).
  • the control device 4 controls the atmospheric pressure of each of the N divided spaces SPsg.
  • the control device 4 includes at least one divided space SPsg facing the specific portion W_vac in which the vacuum region VSP is formed (that is, irradiated with the electron beam EB) among the N divided spaces SPsg.
  • the N opening / closing members 2261g and the N opening / closing members 2262g are controlled so that the state is reduced by the vacuum pump 54 instead of the vacuum pump 53. That is, the control device 4 reduces the state of at least one divided space SPsg facing the vacuum region VSP across the specific portion W_vac among the N divided spaces SPsg by the vacuum pump 54 instead of the vacuum pump 53.
  • the N opening / closing members 2261g and the N opening / closing members 2262g are controlled so as to be in a state of being performed.
  • the control device 4 has at least one other divided space SPsg that does not face the specific portion W_vac among the N divided spaces SPsg (for example, a division that opposes the atmospheric pressure space with the sample W interposed therebetween).
  • the N opening / closing members 2261g and the N opening / closing members 2262g are controlled so that the state of the space SPsg) is reduced by the vacuum pump 53 instead of the vacuum pump 54.
  • the control device 4 is configured so that a part of the stage space SPs is decompressed by the vacuum pump 54 while another part of the stage space SPs is decompressed by the vacuum pump 53.
  • the number of opening / closing members 2261g and the number N of opening / closing members 2262g are controlled. For example, as illustrated in FIG. 16A, when the divided space SPsg # 2 faces the specific portion W_vac, the control device 4 reduces the divided space SPsg # 2 while the divided space SPsg # 2 is decompressed by the vacuum pump 54.
  • the N opening / closing members 2261g and the N opening / closing members 2262g are controlled so that the spaces SPsg # 1 and SPsg # 3 to SPsg # 9 are depressurized by the vacuum pump 53.
  • the control device 4 reduces the divided space SPsg # 3 while the divided space SPsg # 3 is decompressed by the vacuum pump 54.
  • the N opening / closing members 2261g and the N opening / closing members 2262g are controlled so that the space SPsg # 1, SPsg # 2, and SPsg # 4 to SPsg # 9 is depressurized by the vacuum pump 53.
  • a relatively low vacuum state in which the pressure is reduced by the vacuum pump 53 that is, the atmospheric pressure # 22 in which the atmospheric pressure in the divided space SPsg # 2 is higher than the atmospheric pressure # 21.
  • the state of the divided space SPsg # 3 is reduced by the vacuum pump 54 from a relatively low vacuum state where the pressure is reduced by the vacuum pump 53 (that is, a state where the atmospheric pressure of the divided space SPsg # 3 becomes the atmospheric pressure # 31). Transition to a relatively high vacuum state (that is, a state in which the atmospheric pressure in the divided space SPsg # 3 becomes the atmospheric pressure # 32 lower than the atmospheric pressure # 31).
  • FIG. 16A and 16B show the magnitude of the force acting on the sample W by the thickness of the arrow. Specifically, FIG. 16A and FIG. 16B show the magnitude of the force acting on the sample W so that the arrow indicating the force increases as the force acting on the sample W increases. ing.
  • the pressure of the divided space SPsg not facing the specific part W_vac is lower than the atmospheric pressure.
  • the force F_hold1 that is, the sample due to the depressurization by the vacuum pump 53
  • the pressure in the divided space SPsg facing the specific portion W_vac is approximately the same as the pressure in the beam passage space SPb3 (that is, the pressure in the vacuum region VSP).
  • the difference between the pressure of the divided space SPsg facing the specific portion W_vac and the pressure of the vacuum region VSP is the atmospheric pressure and the vacuum region VSP.
  • the difference from the pressure is smaller.
  • the force F_VSP caused by the vacuum region VSP and the force F_hold2 caused by the pressure reduction by the vacuum pump 54 cancel each other. That is, the force F_vac that is the sum of F_VSP and force F_hold2 does not act on the specific portion W_vac. Therefore, deformation of the specific portion W_vac is suppressed.
  • the scanning electron microscope SEMg according to the seventh modification including such a stage 22g it is possible to enjoy the same effects that the scanning electron microscope SEM described above can enjoy. it can.
  • the seventh modification compared to the case where the entire stage space SPs is depressurized by the vacuum pump 54, the back surface of the sample W is attracted to the stage space SPs due to the depressurization of the stage space SPs.
  • the negative pressure acting on WSl is reduced.
  • a part of the stage space SPs is decompressed by the vacuum pump 54, while the other part of the stage space SPs is decompressed by the vacuum pump 53 having a lower exhaust capacity than the vacuum pump 54. This is because that. For this reason, deformation of the sample W (particularly, deformation of a part other than the specific part W_vac in the sample W) due to the decompression of the stage space SPs is suppressed.
  • the suppression of the deformation of the part other than the specific part W_vac in the sample W is performed by measuring the state of the specific part W_vac in the sample W by irradiating the electron beam EB while the part other than the specific part W_vac in the sample W.
  • the state is measured by another type of measurement device (for example, a measurement device such as an optical microscope described later)
  • this leads to suppression of deterioration in measurement accuracy of the other type of measurement device (fourteenth modification described later). reference).
  • the control device 4 changes at least one divided space SPsg that is decompressed by the vacuum pump 54 among the N divided spaces SPsg, according to the position of the specific portion W_vac in the sample W.
  • the position of the specific portion W_vac in the sample W depends on the relative position between the sample W and the differential exhaust system 12 that forms the vacuum region VSP.
  • the operation of changing at least one divided space SPsg reduced in pressure by the vacuum pump 54 out of the N divided spaces SPsg according to the position of the specific portion W_vac is relative to the sample W and the differential exhaust system 12.
  • This can be regarded as equivalent to an operation of changing at least one divided space SPsg decompressed by the vacuum pump 54 out of the N divided spaces SPsg based on the position information.
  • the scanning electron microscope SEMg appropriately holds the sample W by the stage 22g and deforms the sample W due to the formation of the vacuum region VSP. Can be suppressed.
  • control device 4 may change at least one divided space SPsg that is decompressed by the vacuum pump 54 among the N divided spaces SPsg according to information different from the position of the specific portion W_vac in the sample W. Good. Further, the divided section SPsg decompressed by the vacuum pump 54 may be returned to the original pressure or may remain decompressed.
  • the operation of reducing the stage space SPs using the vacuum pump 54 is an operation of applying to the sample W a force F_cancel that can cancel the force F_VSP or a force F_reduce that can reduce the force F_vac. Is equivalent. Then, the operation of changing at least one divided space SPsg decompressed by the vacuum pump 54 among the N divided spaces SPsg is equivalent to an operation of changing the position to which the force F_cancel or the force F_reduce is applied.
  • the scanning electron microscope SEMh of the eighth modified example is different from the scanning electron microscope SEMg of the seventh modified example described above in that a stage 22h is provided instead of the stage 22g.
  • the other structure of the scanning electron microscope SEMh may be the same as the other structure of the scanning electron microscope SEMg described above. Therefore, hereinafter, the structure of the stage 22h will be described with reference to FIG.
  • the stage 22h has N supply ports 2249h (specifically, exhaust ports 2249h # 1 to 2249h # N corresponding to the N divided spaces SPsg, respectively, as compared with the stage 22g. ) Is formed.
  • the air supply port 2249h # i is formed at a position facing the corresponding divided space SPsg # i.
  • each air supply port 2249 h is formed in the bottom member 221.
  • a gas supply device 55h is connected to the N supply ports 2249h via N pipes 2259h (specifically, pipes 2259h # 1 to 2259h # N), respectively.
  • the gas supply device 55h can be pressurized by supplying gas to the divided space SPsg # i via the air supply port 2249h # i and the pipe 2259h # i.
  • N pieces of open / close members 2269h (specifically, open / close members 2269h # 1 to 2269h # N) that can open and close the N pieces of pipe 2259h are arranged in the N pieces of pipes 2259h, respectively.
  • the opening / closing member 2269h is, for example, a valve.
  • the state of the opening / closing member 2269h # i includes a state where the pipe 2259h # i is shut off under the control of the control device 4 (that is, a state where the gas supply device 55h does not supply gas to the divided space SPsg # i), and a pipe 2259h # i. It is possible to switch between a state in which i is opened (that is, a state in which the gas supply device 55h supplies gas to the divided space SPsg # i).
  • the control device 4 has a gas supply device at a timing when the state of the divided space SPsg # i should be switched from a high vacuum state in which the pressure is reduced by the vacuum pump 54 to a low vacuum state in which the pressure is reduced by the vacuum pump 53.
  • the opening / closing member 2269h # i is controlled so that 55h supplies gas to the divided space SPsg # i. That is, the control device 4 divides the gas supply device 55h at a timing when the state of the divided space SPsg # i should be switched from a high vacuum state with a relatively high degree of vacuum to a low vacuum state with a relatively low degree of vacuum.
  • the opening / closing member 2269h # i is controlled so as to supply gas to the space SPsg # i.
  • the time required for the state of the divided space SPsg # i to switch from the high vacuum state to the low vacuum state is compared with the case where the gas supply device 55h does not supply gas to the divided space SPsg # i at this timing.
  • the scanning electron microscope SEMh according to the eighth modified example enjoys the same effect that can be enjoyed by the scanning electron microscope SEMg according to the seventh modified example described above, but also in the divided space SPsg # i.
  • the time required for the state to switch from the high vacuum state to the low vacuum state can be shortened.
  • the gas supply device 55h supplies the gas having a flow rate sufficient to promote the switching of the state of the divided space SPsg # i from the high vacuum state to the low vacuum state into the divided space SPsg. What is necessary is just to supply to #i. That is, the intake device 55h may not supply the divided space SPsg # i with a gas having such a flow rate that the divided space SPsg # i returns to the atmospheric pressure space. Note that the divided section SPsg decompressed by the vacuum pump 54 may remain decompressed.
  • At least one air inlet 2249h may be formed in the stage 22 or the like in which the stage space SPs is not divided into N divided spaces SPsg.
  • the control device 4 causes the gas supply device 55h to move to the stage space SPs at a timing when the state of the stage space SPs should be switched from a high vacuum state where the pressure is reduced by the vacuum pump 54 to a low vacuum state where the pressure is reduced by the vacuum pump 53.
  • the opening / closing member 2269h disposed in the pipe 2259h that connects the gas supply device 55h and the stage space SPs may be controlled so that gas is supplied to the gas. Also in this case, the time required for the state of the stage space SPs to switch from the high vacuum state to the low vacuum state is shortened.
  • control device 4 causes the gas supply device 55h to supply gas to the divided space SPsg # i at a timing different from the timing at which the state of the divided space SPsg # i should be switched from the high vacuum state to the low vacuum state.
  • the opening / closing member 2269h # i may be controlled.
  • the control device 4 controls the opening / closing member 2269h # i so that the gas supply device 55h supplies gas to the divided space SPsg # i at the timing of releasing the sample W held by the stage 22h. Good.
  • the time required for the divided space SPsg # i in the high vacuum state to return to the atmospheric pressure space is shortened. For this reason, the time required for releasing the sample W (that is, exchanging the sample W held by the stage 22h) is shortened.
  • the scanning electron microscope SMi of the ninth modification differs from the scanning electron microscope SEMf of the sixth modification described above in that a stage 22i is provided instead of the stage 22f.
  • the other structure of the scanning electron microscope SEMi may be the same as the other structure of the scanning electron microscope SEMf described above. Therefore, hereinafter, the structure of the stage 22i will be described with reference to FIG.
  • the stage 22i differs from the stage 22f in that a plurality of electrostatic chucks 225i are provided instead of the single electrostatic chuck 225f.
  • FIG. 18 shows an example in which the stage 22i includes nine electrostatic chucks 225i # 1 to 225i # 9. Each electrostatic chuck 225i acts on the sample W so as to draw the sample W to the electrostatic chuck 225i (as a result, to the stage 22i) under the control of the control device 4 in the same manner as the electrostatic chuck 225f described above.
  • An electrostatic force F_elec can be generated.
  • the stage 22i uses an electrostatic force F_elec generated by at least a part of the plurality of electrostatic chucks 225i as a force for holding the sample W.
  • Each electrostatic chuck 225i can generate an electrostatic force F_elec that acts locally (in other words, partially) on the sample W in the XY plane. That is, each electrostatic chuck 225i can generate an electrostatic force F_elec that acts locally (in other words, partially) on a portion of the sample W corresponding to each electrostatic chuck 225i.
  • the first electrostatic chuck 225i # 1 of the plurality of electrostatic chucks 225i generates an electrostatic force F_elec that acts on the first portion of the sample W, and the first of the plurality of electrostatic chucks 225i.
  • the second electrostatic chuck 225i # 2 different from the electrostatic chuck 225i # 1 is different from the first part (or at least partially overlaps with the first part). Electric power F_elec may be generated.
  • At least one electrostatic chuck 225 i corresponding to the specific portion W_vac in which the vacuum region VSP is formed (that is, irradiated with the electron beam EB) among the plurality of electrostatic chucks 225 i is the sample W
  • the plurality of electrostatic chucks 225i are controlled so as to generate a relatively large electrostatic force F_elec (hereinafter referred to as “electrostatic force F_elec_L”) for suppressing the deformation of the electrostatic chuck.
  • the electrostatic chuck 225i corresponding to the specific portion W_vac is an electrostatic chuck 225i that can generate an electrostatic force F_elec acting on the specific portion W_vac.
  • the electrostatic chuck 225i that can generate the electrostatic force F_elec acting on the specific portion W_vac is typically the electrostatic chuck 225i that faces the vacuum region VSP with the specific portion W_vac interposed therebetween. Therefore, the control device 4 includes the electrostatic force F_elec_L for suppressing at least one electrostatic chuck 225i that can generate the electrostatic force F_elec acting on the specific portion W_vac among the plurality of electrostatic chucks 225i. To control the plurality of electrostatic chucks 225i.
  • the control device 4 applies the sample W to the electrode constituting at least one electrostatic chuck 225i capable of generating an electrostatic force F_elec acting on the specific portion W_vac among the plurality of electrostatic chucks 225i.
  • a first voltage capable of generating an electrostatic force F_elec_L for suppressing deformation is applied.
  • the electrostatic force F_elec_L for suppressing the deformation of the sample W is an electrostatic force F_elec corresponding to the force F_VSP caused by the vacuum region VSP, and is applied to the sample W from the electrostatic chuck 225f in the sixth modification. It is the same force as the electrostatic force F_elec.
  • the control device 4 uses a relatively small electrostatic force F_elec (hereinafter referred to as “electrostatic force”) for holding at least one electrostatic chuck 225i that does not correspond to the specific portion W_vac among the plurality of electrostatic chucks 225i.
  • electrostatic force F_elec_S a relatively small electrostatic force for holding at least one electrostatic chuck 225i that does not correspond to the specific portion W_vac among the plurality of electrostatic chucks 225i.
  • electrostatic force F_elec_S the electrostatic force F_elec_S
  • the plurality of electrostatic chucks 225i are controlled. That is, the control device 4 is configured such that at least one electrostatic chuck 225i capable of generating an electrostatic force F_elec acting on a part other than the specific portion W_vac among the plurality of electrostatic chucks 225i is relatively small for holding the sample W.
  • the plurality of electrostatic chucks 225i are controlled so as to generate the electrostatic force F_elec_S.
  • the control device 4 applies the sample W to the electrode constituting at least one electrostatic chuck 225i capable of generating an electrostatic force F_elec that acts on a part other than the specific portion W_vac among the plurality of electrostatic chucks 225i.
  • a second voltage capable of generating an electrostatic force F_elec_S for holding the voltage that is, a voltage different from the first voltage capable of generating an electrostatic force F_elec_L for suppressing deformation of the sample W) is applied.
  • the electrostatic force F_elec_S is relatively small and the electrostatic force F_elec_L is relatively large, the electrostatic force F_elec_S is smaller than the electrostatic force F_elec_L. It may be the same size.
  • the position of the specific portion W_vac in the sample W depends on the relative position between the sample W and the differential exhaust system 12 that forms the vacuum region VSP. Therefore, the operation of controlling the plurality of electrostatic chucks 225i so that at least one electrostatic chuck 225i corresponding to the specific portion W_vac generates the electrostatic force F_elec_L relates to the relative position between the sample W and the differential exhaust system 12. This can be regarded as equivalent to an operation of controlling the plurality of electrostatic chucks 225i based on the information.
  • FIG. 18 shows an example in which the electrostatic chuck 225i # 5 can generate an electrostatic force F_elec that acts on the specific portion W_vac. Therefore, FIG. 18 shows that the electrostatic chuck 225i # 5 generates an electrostatic force F_elec_L for suppressing deformation of the sample W, and the electrostatic chucks 225i # 1 to 225i # 4 and 225i # 6 to 225i # 9 3 shows an example in which an electrostatic force F_elec_S for holding the sample W is generated.
  • FIG. 18 shows the magnitude of the force acting on the sample W by the length and thickness of the arrow. Specifically, FIG. 18 shows the magnitude of the force acting on the sample W so that the arrow indicating the force becomes thicker and longer as the force acting on the sample W increases.
  • the scanning electron microscope SEMi forms the vacuum region VSP while appropriately holding the sample W by the stage 22i.
  • the deformation of the sample W caused can be suppressed.
  • the control device 4 has at least one electrostatic force for applying an electrostatic force F_elec_L for suppressing deformation of the sample W among the plurality of electrostatic chucks 225i according to the position of the specific portion W_vac in the sample W.
  • the electric chuck 225i is changed.
  • the state of the first portion of the sample W transitions from a state not facing the vacuum region VSP to a state facing the vacuum region VSP (that is, the sample W and the differential exhaust system 12 and Is changed from a positional relationship in which the first portion of the sample W does not face the vacuum region VSP to a positional relationship in which the first portion faces the vacuum region VSP).
  • the voltage applied to the electrostatic chuck 225i corresponding to is changed from a voltage capable of generating the electrostatic force F_elec_S to a voltage capable of generating the electrostatic force F_elec_L (for example, a voltage higher than a voltage capable of generating the electrostatic force F_elec_S).
  • the state of the first portion of the sample W transitions from the state facing the vacuum region VSP to the state not facing the vacuum region VSP (that is, the sample W and the differential exhaust system 12) Is changed from a positional relationship in which the first portion of the sample W faces the vacuum region VSP to a positional relationship in which the first portion does not face the vacuum region VSP).
  • the voltage applied to the electrostatic chuck 225i corresponding to is changed from a voltage capable of generating the electrostatic force F_elec_L to a voltage capable of generating the electrostatic force F_elec_S.
  • the plurality of electrostatic chucks 225i may be provided so as to contact the lower surface WSl of the sample W.
  • the plurality of electrostatic chucks 225i may be provided at portions of the support member 223 of the stage 22i that are in contact with the lower surface WSl of the sample W.
  • the scanning electron microscope SEMi uses a static force as a force for suppressing the deformation of the sample W in addition to or instead of the plurality of electrostatic chucks 225i.
  • a plurality of applying devices capable of applying a different type of power from the electric power F_elec.
  • the control device 4 is configured so that at least one application device corresponding to the specific portion W_vac in which the vacuum region VSP is formed among the plurality of application devices is relatively used for suppressing the deformation of the sample W.
  • a plurality of applying devices may be controlled so as to generate a large force.
  • the control device 4 controls the plurality of application devices such that at least one application device that does not correspond to the specific portion W_vac generates a relatively small force for holding the sample W among the plurality of application devices. You may control.
  • the scanning electron microscope SEMj of the tenth modified example is different from the above-described scanning electron microscope SEM in that a stage 22j is provided instead of the stage 22.
  • the other structure of the scanning electron microscope SEMj may be the same as the other structure of the scanning electron microscope SEM described above. Therefore, hereinafter, the structure of the stage 22j will be described with reference to FIG.
  • the stage 22j is different from the stage 22 in that a vacuum chuck 228j is provided. Further, the stage 22j is different from the stage 22 in that the exhaust port 2242 may not be formed in the bottom member 221 and the pipe 2252 may not be disposed in the stage 22j.
  • the other structure of the stage 22j may be the same as the other structure of the stage 22 described above. In FIG. 19, the description of the plurality of support members 223 is omitted for simplification of the drawing.
  • the vacuum chuck 228j is disposed in the stage space SPs.
  • the vacuum chuck 228j can partially (ie locally) vacuum-suck the back surface WSl of the sample W.
  • the vacuum chuck 228j can define a local adsorption space SPsj facing the back surface WSl of the sample W in a part of the stage space SPs.
  • An exhaust port 2245j is formed in the vacuum chuck 228j.
  • a vacuum pump 54 is connected to the exhaust port 2245j through a pipe 2255j. For this reason, the pressure in the adsorption space SPsj is approximately equal to the pressure in the beam passage space SPb3 (that is, the pressure in the vacuum region VSP).
  • the vacuum chuck 228j can be moved along the XY plane (that is, along the back surface WSl of the sample W) in the stage space SPs by the drive system 24j provided in the stage apparatus 2j of the tenth modification.
  • the control device 4 controls the drive system 24j to move the vacuum chuck 228j in accordance with the position of the specific portion W_vac in the sample W.
  • the position of the specific portion W_vac in the sample W depends on the relative position between the sample W and the differential exhaust system 12 that forms the vacuum region VSP.
  • the operation of moving the vacuum chuck 228j according to the position of the specific portion W_vac can be regarded as equivalent to the operation of moving the vacuum chuck 228j based on information on the relative position between the sample W and the differential exhaust system 12.
  • the control device 4 moves the vacuum chuck 228j so that the suction space SPsj faces the specific portion W_vac. That is, the control device 4 moves the vacuum chuck 228j so that the exhaust port 2245j is located in a region facing the specific portion W_vac.
  • the pressure of the suction space SPsj facing the specific portion W_vac is approximately equal to the pressure of the beam passage space SPb3 (that is, the pressure of the vacuum region VSP).
  • the suction space SPsj facing the specific portion W_vac is exhausted by the vacuum pump 54, so that the difference between the pressure of the suction space SPsj facing the specific portion W_vac and the pressure of the vacuum region VSP is the atmospheric pressure and the vacuum region VSP. The difference from the pressure is smaller.
  • the vacuum pump 54 depressurizes the adsorption space SPsh, in the specific portion W_vac, the force F_VSP acting on the sample W from the vacuum region VSP and the force F_hold2 acting on the sample W from the adsorption space SPsj cancel each other. Therefore, deformation of the specific portion W_vac is suppressed.
  • the stage space SPs (particularly, the space other than the adsorption space SPsj in the stage space SPs) is decompressed by the vacuum pump 53. For this reason, force F_hold1 resulting from the pressure reduction by the vacuum pump 53 acts on at least a part of the sample W other than the specific portion W_vac. Accordingly, the stage 22j holds the sample W by using this force F_hold1 as a force for holding the sample W.
  • the stage space SPs when the state of the first portion of the sample W transitions from a state not facing the vacuum region VSP to a state facing the vacuum region VSP (that is, the sample W and the differential exhaust system 12 and Is changed from a positional relationship in which the first portion of the sample W does not face the vacuum region VSP to a positional relationship in which the first portion faces the vacuum region VSP), the stage space SPs.
  • the pressure of the portion facing the first portion changes from the first pressure to a second pressure lower than the first pressure.
  • the state of the first portion of the sample W transitions from the state facing the vacuum region VSP to the state not facing the vacuum region VSP (that is, the sample W and the differential exhaust system 12) Is changed from a positional relationship in which the first portion of the sample W faces the vacuum region VSP to a positional relationship in which the first portion does not face the vacuum region VSP).
  • the pressure of the part facing the first part changes from the second pressure to the first pressure lower than the second pressure.
  • the vacuum piping of the vacuum chuck 228j may not penetrate the bottom member 221.
  • an opening communicated with the vacuum pump 54 may be provided on the side of the side wall member 222 on the stage space SPs, and a vacuum pipe connecting the opening and the vacuum chuck 228j may be provided.
  • the vacuum pipe may be a flexible member such as a bellows.
  • the scanning electron microscope SEMj of the tenth modified example including the stage 22j can enjoy the same effects as those that can be enjoyed by the above-described scanning electron microscope SEM.
  • the scanning electron microscope SEMj of the tenth modification is caused by the formation of the vacuum region VSP while appropriately holding the sample W by the stage 22j even when the position of the specific portion W_vac in the sample W changes. The deformation of the sample W can be suppressed.
  • the scanning electron microscope SEMk of the eleventh modification is different from the above-described scanning electron microscope SEMj of the tenth modification in that a stage 22k is provided instead of the stage 22j.
  • the other structure of the scanning electron microscope SEMk may be the same as the other structure of the scanning electron microscope SEMj described above. Therefore, hereinafter, the structure of the stage 22k will be described with reference to FIG.
  • the stage 22k is different from the stage 22j in that an electrostatic chuck 225k is provided instead of the vacuum chuck 228j.
  • the other structure of the stage 22k may be the same as the other structure of the stage 22j described above.
  • the description of the plurality of support members 223 is omitted for simplification of the drawing.
  • the electrostatic chuck 225k is similar to the electrostatic chuck 225i of the ninth modified example described above so that the sample W is attracted to the electrostatic chuck 225k (as a result, is attracted to the stage 22k) under the control of the control device 4.
  • An electrostatic force F_elec acting on W can be generated.
  • the electrostatic chuck 225k can generate an electrostatic force F_elec that acts locally (in other words, partially) on the sample W in the XY plane.
  • the electrostatic chuck 225k can locally generate an electrostatic force F_elec for suppressing deformation of the sample W.
  • the electrostatic chuck 225k is moved along the XY plane (that is, the sample W) in the stage space SPs by the drive system 24k provided in the stage device 2k of the eleventh modification. Along the backside WSl).
  • the control device 4 controls the drive system 24k to move the electrostatic chuck 225k according to the position of the specific portion W_vac in the sample W.
  • the position of the specific portion W_vac in the sample W depends on the relative position between the sample W and the differential exhaust system 12 that forms the vacuum region VSP.
  • the operation of moving the electrostatic chuck 225k according to the position of the specific portion W_vac can be regarded as equivalent to the operation of moving the electrostatic chuck 225k based on information on the relative position between the sample W and the differential exhaust system 12. .
  • the control device 4 moves the electrostatic chuck 225k so that the electrostatic force F_elec is applied to the specific portion W_vac. That is, the control device 4 moves the electrostatic chuck 225k to a position facing the vacuum region VSP with the specific portion W_vac in between.
  • the scanning electron microscope SEMk of the eleventh modified example including the stage 22k can enjoy the same effects as those that can be enjoyed by the above-described scanning electron microscope SEM.
  • the scanning electron microscope SEMk of the eleventh modification is caused by the formation of the vacuum region VSP while appropriately holding the sample W by the stage 22k even when the position of the specific portion W_vac in the sample W changes. The deformation of the sample W can be suppressed.
  • the electrostatic chuck 225k may be configured to be able to contact the lower surface WSl of the sample W during at least a part of the period during which the force F_elec is applied to the sample W.
  • the scanning electron microscope SEMk uses the electrostatic force F_elec as a force for suppressing the deformation of the sample W in addition to or instead of the electrostatic chuck 225k. You may provide the provision apparatus which can provide the kind of force different from. Also in this case, the control device 4 may move the applying device according to the position of the specific portion W_vac in the sample W. That is, the control device 4 may move the applying device such that a force is applied to the specific portion W_vac from the applying device. Furthermore, in the eleventh modification, the pump system 5 does not have to include the vacuum pump 54 because the vacuum pump 54 may not be used to suppress the deformation of the sample W.
  • the scanning electron microscope SEMl of the twelfth modified example is different from the above-described scanning electron microscope SEM in that a stage 22l is provided instead of the stage 22.
  • the other structure of the scanning electron microscope SEMl may be the same as the other structure of the scanning electron microscope SEM described above. Therefore, the structure of the stage 22l will be described below with reference to FIGS. 21 (a) and 21 (b).
  • the stage 22l is different from the stage 22 described above in that the arrangement of the plurality of support members 223 is different.
  • the stage 22l is different from the stage 22 described above in that the arrangement mode of the support member 223 in the outer edge portion 22_edge of the stage 22l is different from the arrangement mode of the support member 223 in the center portion 22_center of the stage 22l. It is different in point.
  • the outer edge portion 22_edge of the stage 22l is a portion located outside the center portion 22_center of the stage 22l (that is, the side closer to the side wall member 222).
  • the center portion 22_center of the stage 22l is located closer to the center of the stage 22l (specifically, the center in the XY plane, typically the center of the surface WSu) than the outer edge portion 22_edge of the stage 22l. It is a part to do.
  • the outer edge portion 22_edge of the stage 22l is typically a portion that includes or is close to a portion that faces the outer edge portion W_edge of the sample W.
  • the center portion 22_center of the stage 22l is typically a portion that includes or is close to a portion that faces the center of the surface WSu of the sample W.
  • the other structure of the stage 22l may be the same as the other structure of the stage 22 described above.
  • the arrangement mode of the support members 223 includes the number of the support members 223 per unit area. For this reason, the number of support members 223 per unit area in the outer edge portion 22_edge of the stage 22l is different from the number of support members 223 per unit area in the center portion 22_center of the stage 22l. More specifically, as shown in FIGS. 21A and 21B, the number of support members 223 per unit area in the outer edge portion 22_edge of the stage 22l is equal to the unit area in the central portion 22_center of the stage 22l. The number of the supporting members 223 becomes smaller.
  • the number of support members 223 per unit area in the central portion 22_center of the stage 22l is relatively increased, so that the heat dissipation of the sample W via the support members 223 is further promoted. As a result, thermal deformation of the sample W is suppressed.
  • the scanning electron microscope SEMl can further suppress the thermal deformation of the sample W by further promoting the heat dissipation of the sample W through the support member 223 without causing the deformation of the sample W due to dust or the like.
  • the pressure in the space portion in the center portion 22_center of the stage 22l in the stage space SPs is less likely to decrease. This is because the pressure drop in the stage space SPs is caused by the gas flowing into the stage space SPs through the gap between the side wall member 222 located near the outer edge portion 22_edge of the stage 22l and the sample W. This is because such a decrease in pressure is more likely to occur in the outer edge portion 22_edge of the stage 22l than in the central portion 22_center of the stage 22l.
  • a specific region that is, the central portion 22_center of the stage 22l (that is, The scanning electron microscope SEMl of the twelfth modified example in which the number of support members 223 per unit area is relatively large in the region where the pressure of the stage space SPs is unlikely to decrease) causes deformation of the sample W due to dust or the like. Without excessively increasing the possibility, heat dissipation of the sample W through the support member 223 can be further promoted to suppress thermal deformation of the sample W.
  • the arrangement mode of the support member 223 shown in the twelfth modification may be applied to the above-described embodiment and other modifications.
  • the scanning electron microscope SEMm of the thirteenth modified example is different from the above-described scanning electron microscope SEM in that a stage 22m is provided instead of the stage 22.
  • Other structures of the scanning electron microscope SEMm may be the same as the other structures of the scanning electron microscope SEM described above. Therefore, hereinafter, the structure of the stage 22m will be described with reference to FIGS. 22 (a) and 22 (b).
  • the stage 22m is different from the stage 22 described above in the size (ie, substantially the area) of the upper surface 223Su of the plurality of support members 223. It is different in that. Specifically, in the stage 22m, the size of the upper surface 223Su of the support member 223 at the outer edge portion 22_edge of the stage 22m is larger than the size of the upper surface 223Su of the support member 223 at the center portion 22_center of the stage 22l as compared with the stage 22 described above. It is different in that it is smaller.
  • the other structure of the stage 22m may be the same as the other structure of the stage 22 described above. Note that the outer edge portion 22_edge and the center portion 22_center in the thirteenth modification are the same as the outer edge portion 22_edge and the center portion 22_center in the twelfth modification.
  • the size of the upper surface 223Su of the support member 223 at the center portion 22_center of the stage 22m is relatively large, so that the contact area between the support member 223 and the sample W at the center portion 22_center of the stage 22m is increased. It becomes relatively large. That is, the contact area between the support member 223 and the sample W at the center portion 22_center of the stage 22m is relatively larger than the contact area between the support member 223 and the sample W at the outer edge portion 22_edge of the stage 22m. For this reason, the heat dissipation of the sample W through the support member 223 is further promoted. As a result, thermal deformation of the sample W is suppressed.
  • the scanning electron microscope SEMl of the twelfth modification the scanning electron microscope SEMm of the thirteenth modification also causes the sample through the support member 223 without causing deformation of the sample W due to dust or the like. The heat dissipation of W can be further promoted to suppress thermal deformation of the sample W. Note that the arrangement of the support member 223 shown in the thirteenth modification may be applied to the above-described embodiment and other modifications.
  • the scanning electron microscope SEMn according to the fourteenth modified example is different from the above-described scanning electron microscope SEM in that it includes an optical microscope 16n.
  • the other structure of the scanning electron microscope SEMn may be the same as the other structure of the scanning electron microscope SEM described above.
  • the optical microscope 16n is a device that can optically measure the state of the sample W (for example, the state of at least a part of the surface WSu of the sample W). That is, the optical microscope 16n is an apparatus that can optically measure the state of the sample W and acquire information about the sample W. In particular, the optical microscope 16n is capable of measuring the state of the sample W under an atmospheric pressure environment, and is therefore a beam irradiation apparatus 1 (particularly, the electron detector 116) that measures the state of the sample W under a vacuum environment. Different.
  • the optical microscope 16n measures the state of the sample W before the beam irradiation apparatus 1 irradiates the sample W with the electron beam EB and measures the state of the sample W. That is, the scanning electron microscope SEMn measures the state of the sample W using the beam irradiation apparatus 1 after measuring the state of the sample W using the optical microscope 16n.
  • the beam irradiation apparatus 1 sets the vacuum region VSP during the period when the optical microscope 16n is measuring the state of the sample W. It does not have to be formed. As a result, while the optical microscope 16n is measuring the state of the sample W, the sample W is not deformed due to the formation of the vacuum region VSP.
  • the stage space SPs may be decompressed by the vacuum pump 53 during the period in which the optical microscope 16 n is measuring the state of the sample W. That is, the pressure in the stage space SPs is lower than the atmospheric pressure so that the stage 22 can hold the sample W, but it does not have to be so low that the deformation of the sample W can be suppressed. .
  • the beam irradiation apparatus 1 forms the vacuum region VSP and irradiates the sample W with the electron beam EB after the optical microscope 16n completes the measurement of the state of the sample W. For this reason, during the period when the beam irradiation apparatus 1 measures the state of the sample W, the sample W may be deformed due to the formation of the vacuum region VSP.
  • the stage space SPs is decompressed by the vacuum pump 54 while the beam irradiation apparatus 1 is measuring the state of the sample W. That is, the optical microscope 16n measures the state of the sample W so that the pressure of the stage space SPs during the period when the beam irradiation apparatus 1 is measuring the state of the sample W can suppress the deformation of the sample W. It becomes lower than the pressure of the stage space SPs during the period.
  • the stage 22 may move so that the sample W is positioned at a position where the beam irradiation device 1 can irradiate the electron beam EB during the period in which the beam irradiation device 1 irradiates the sample W with the electron beam EB.
  • the stage 22 may move so that the sample W is positioned at a position where the optical microscope 16n can measure the state of the sample W.
  • the stage 22 may move between a position where the beam irradiation apparatus 1 can irradiate the electron beam EB and a position where the optical microscope 16n can measure.
  • the scanning electron microscope SEMn may measure the state of the sample W using the beam irradiation apparatus 1 based on the measurement result of the state of the sample W using the optical microscope 16n. For example, the scanning electron microscope SEMn may first measure the state of a desired region in the sample W using the optical microscope 16n. Thereafter, the scanning electron microscope SEMn uses the beam irradiation device 1 to determine the state of the same desired region of the sample W (or the desired region and the desired region) based on the measurement result of the state of the desired region of the sample W using the optical microscope 16n. May be measured in different regions).
  • a predetermined indicator that can be used for measuring the state of the sample W using the beam irradiation apparatus 1 may be formed in a desired region of the sample W.
  • the predetermined index object for example, there is a mark (for example, at least one of a fiducial mark and an alignment mark) used for alignment between the sample W and the beam irradiation apparatus 1.
  • a fine uneven pattern is formed on the surface WSu of the sample W.
  • an example of a fine uneven pattern is a resist pattern that remains on a semiconductor substrate after the semiconductor substrate coated with a resist is exposed by an exposure device and developed by a developing device. It is done.
  • the scanning electron microscope SEMn may first measure the state of the concavo-convex pattern formed in a desired region of the sample W using the optical microscope 16n. Thereafter, the scanning electron microscope SEMn uses the beam microscope 1 based on the measurement result of the state of the desired region of the sample W using the optical microscope 16n (that is, the measurement result of the state of the uneven pattern formed in the desired region).
  • the scanning electron microscope SEMn controls the characteristics of the electron beam EB based on the measurement result of the optical microscope 16n so that the electron beam EB optimal for measurement of the uneven pattern is irradiated, and then the beam irradiation apparatus 1 May be used to measure the state of the concavo-convex pattern formed in the same desired region of the sample W.
  • the scanning electron microscope SEMn according to the fourteenth modified example it is possible to receive the same effects as the effects that the above-described scanning electron microscope SEM can enjoy.
  • the scanning electron microscope SEMn of the fourteenth modified example more appropriately measures the state of the sample W using the electron beam EB than the scanning electron microscope of the comparative example that does not include the optical microscope 16n. be able to.
  • the scanning electron microscope SEMn measures the state of the sample W using the beam irradiation apparatus 1 after measuring the state of the sample W using the optical microscope 16n.
  • the scanning electron microscope SEMn may perform the measurement of the state of the sample W using the optical microscope 16n and the measurement of the state of the sample W using the beam irradiation apparatus 1 in parallel.
  • the scanning electron microscope SEMn may simultaneously measure the state of the desired region of the sample W using the optical microscope 16n and the beam irradiation apparatus 1. In this case, since the electron beam EB is irradiated to the desired region of the sample W through the vacuum region VSP, the stage space SPs is decompressed by the vacuum pump 54.
  • the scanning electron microscope SEMn measures the state of the first region of the sample W using the optical microscope 16n and the second region of the sample W using the beam irradiation apparatus 1 (however, the second region is the first region). Measurement of the state of (different from) may be performed in parallel.
  • the stage space SPs is decompressed by the vacuum pump 54.
  • the optical microscope 16n measures the state.
  • the divided space SPsg corresponding to the first region of the sample W being reduced is decompressed to a relatively low degree of vacuum by the vacuum pump 53, while the second of the sample W whose state is being measured by the beam irradiation apparatus 1
  • the divided space SPsg corresponding to the region may be decompressed by the vacuum pump 54 to a relatively high degree of vacuum.
  • the scanning electron microscope SEMn may include an arbitrary measuring device capable of measuring the state of the sample W under an atmospheric pressure environment in addition to or instead of the optical microscope 16n.
  • An example of an arbitrary measurement device is a diffraction interferometer.
  • the diffraction interferometer splits light source light to generate measurement light and reference light, and irradiates the measurement light to the sample W to generate reflected light (or transmitted light or scattered light) and reference light.
  • Is a measurement device that detects an interference pattern generated by interference and measures the state of the sample W.
  • a scatterometer is mentioned as another example of arbitrary measuring devices.
  • the scatterometer is a measuring device that irradiates the sample W with measurement light, receives scattered light (diffracted light or the like) from the sample W, and measures the state of the sample W.
  • the scanning electron microscope SEMo of the fifteenth modification differs from the scanning electron microscope SEMa of the first modification described above in that a stage 22o is provided instead of the stage 22a.
  • the other structure of the scanning electron microscope SEMo may be the same as the other structure of the scanning electron microscope SEMa described above. Therefore, the structure of the stage 22o will be described below with reference to FIG.
  • the stage 22o differs from the stage 22a described above in that a side wall member 222o is provided instead of the side wall member 222a. Similar to the side wall member 222a, the side wall member 222o is the same in that the upper surface 222Su of the side wall member 222o is located below the upper surface 223Su of the support member 223. On the other hand, as compared with the side wall member 222a, the side wall member 222o is located on the outer side (that is, the side away from the center of the stage 22o) of the outer side surface (that is, the outer peripheral end) 222So of the side wall member 222o. That is, the difference is that the outer peripheral edge (WSo) is located.
  • WSo outer peripheral edge
  • the size of the side wall member 222o (that is, the size of the stage 22o) is set so that the outer side surface WSo of the sample W is positioned outside the outer side surface 2w22So of the side wall member 222o.
  • the sample W is held by the stage 22o so that the sample W overhangs with respect to the side wall member 222o (that is, overhangs with respect to the stage 22o).
  • the sample W is held by the stage 22o so that the sample W projects over the side wall member 222o.
  • the other structure of the stage 22o may be the same as the other structure of the stage 22a described above.
  • the stage 22o can hold the sample W having an outer shape larger than the outer shape of the stage 22o. . That is, restrictions on the size of the sample W that can be held by the stage 22o are relaxed.
  • the scanning electron microscope SEMp of the sixteenth modification differs from the scanning electron microscope SEMo of the fifteenth modification in that a stage 22p is provided instead of the stage 22o.
  • the other structure of the scanning electron microscope SEMp may be the same as the other structure of the scanning electron microscope SEMo described above. Therefore, hereinafter, the structure of the stage 22p will be described with reference to FIG.
  • the stage 22p is different from the above-described stage 22o in that a bottom member 221p is provided instead of the bottom member 221. Furthermore, the stage 22p is different from the above-described stage 22o in that it includes a guard member 224p. Furthermore, the stage 22p is different from the stage 22o described above in that an exhaust port 2243p is formed on the upper surface 222Su of the side wall member 222o.
  • the other structure of the stage 22p may be the same as the other structure of the stage 22o described above.
  • the bottom member 221p is different from the above-described bottom member 221 in that it extends to the outside of the side wall member 222o.
  • the other structure of the bottom member 221p may be the same as the other structure of the bottom member 221 described above.
  • the guard member 224p is formed in a region outside the side wall member 222o on the upper surface 221Su of the bottom member 221p.
  • the guard member 224p is formed outside the sample W held on the stage 22p.
  • the upper surface 224Su of the guard member 224p is positioned at the same height as the surface WSu of the sample W held on the stage 22p. That is, the upper surface 224Su of the guard member 224p is positioned on the same plane as the surface WSu of the sample W held on the stage 22p.
  • a part of the side surface (for example, the inner surface) of the guard member 224p faces the side surface (for example, the outer surface) of the sample W.
  • the side surface of the guard member 224p does not contact the side surface of the sample W. That is, a gap is secured between the side surface of the guard member 224p and the side surface of the sample W.
  • the other structure of the guard member 224p may be the same as the other structure of the guard member 224c of the third modification described above.
  • the exhaust port 2243p is formed in a portion of the upper surface 222Su of the side wall member 222o that faces the rear surface WSl of the sample W. At this time, the exhaust port 2243p may be formed on the outermost periphery of the portion of the upper surface 222Su of the side wall member 222o that faces the back surface WSl of the sample W.
  • the exhaust ports 2243p may be formed in an annular distribution pattern so as to be continuously distributed on the upper surface 222Su of the side wall member 222o.
  • a plurality of exhaust ports 2243p may be formed so as to be arranged in a regular (or random) arrangement pattern on the upper surface 222Su of the side wall member 222o.
  • the exhaust port 2243p may be formed in an arbitrary arrangement pattern or distribution pattern.
  • a vacuum pump 54 is connected to the exhaust port 2243p via a pipe 2253p.
  • the vacuum pump 54 can evacuate the outer edge space SPg1 between the sample W and the upper surface 222Su of the side wall member 222o. That is, in the sixteenth modified example, as in the second modified example, the outer edge space SPg1 is reduced in pressure by the vacuum pump 54 indirectly through the stage space SPs, or instead of the stage space SPs. The pressure is reduced directly without intervention.
  • the other structure of the exhaust port 2243p may be the same as the other structure of the exhaust port 2243b formed in the side wall member 222a in the second modification described above.
  • the same effects as those that can be enjoyed by the scanning electron microscope SEMo according to the fifteenth modified example are obtained. Can do. Further, since the scanning electron microscope SEMp of the sixteenth modified example includes the guard member 224p, the vacuum region VSP is formed in the outer edge portion W_edge of the sample W in the same manner as the scanning electron microscope SEMc of the third modified example described above. It can be formed appropriately.
  • the exhaust port 2243p is formed on the upper surface 222Su of the side wall member 222o, so that the deformation of the sample W (particularly, the deformation of the outer edge portion W_edge of the sample W) is appropriate as in the second modified example. To be suppressed.
  • the upper surface 224Su of the guard member 224p does not have to be positioned at the same height as the surface WSu of the sample W held on the stage 22p.
  • the upper surface 224Su of the guard member 224p may be positioned above the surface WSu of the sample W held on the stage 22p.
  • the upper surface 224Su of the guard member 224p may be positioned below the surface WSu of the sample W held on the stage 22p.
  • the side surface of the guard member 224p and the side surface of the sample W may be in contact with each other.
  • the guard member 224p may be integrated with the bottom member 221p. Alternatively, the guard member 224p may not be integrated with the bottom member 221p.
  • the guard member 224p may be a member that can be detached from the bottom member 221p.
  • the exhaust port 2243p may be formed in a member other than the side wall member 222o.
  • the exhaust port 2243p may be formed in a member facing the outer edge space SPg1.
  • scanning electron microscope SEMq seventeenth modification.
  • the scanning electron microscope SEMq of the seventeenth modified example is different from the above-described scanning electron microscope SEMq of the ninth modified example in that a stage 22q is provided instead of the stage 22i.
  • the other structure of the scanning electron microscope SEMq may be the same as the other structure of the scanning electron microscope SEMi described above. Therefore, hereinafter, the structure of the stage 22q will be described with reference to FIG.
  • the stage 22q includes a plurality of electrostatic chucks 225i in the same manner as the stage 22i.
  • the stage 22q is different from the stage 22i in that a plurality of electrostatic chucks 225i (particularly, electrodes constituting the electrostatic chuck 225i) are arranged in the stage space SPs.
  • the stage 22q is different from the stage 22i in that an exhaust port 2246q is formed in the bottom member 221 and a pipe 2256q is connected to the exhaust port 2246q.
  • the other structure of the stage 22q may be the same as the other structure of the stage 22i.
  • At least one electrostatic chuck 225i corresponding to the specific portion W_vac where the vacuum region VSP is formed among the plurality of electrostatic chucks 225i is deformed of the sample W.
  • at least one electrostatic chuck 225i that does not correspond to the specific portion W_vac among the plurality of electrostatic chucks 225i holds the sample W.
  • relatively small electrostatic force F_elec_S relatively small electrostatic force
  • the stage space SPs is evacuated and decompressed. That is, the stage space SPs is a vacuum space whose pressure is lower than the atmospheric pressure. Therefore, the plurality of electrostatic chucks 225i are arranged in the stage space SPs that is a vacuum space. As a result, it is possible to prevent unintended discharge of the plurality of electrostatic chucks 225i as compared to the case where the plurality of electrostatic chucks 225i are arranged in an atmospheric pressure environment.
  • the stage 22f includes a single electrostatic chuck 225f instead of the plurality of electrostatic chucks 225i.
  • the stage where the electrostatic chuck 225f is a vacuum space. It may be arranged in the space SPs. As a result, unintended discharge of the electrostatic chuck 225f can be prevented.
  • the electrostatic chuck 225k is disposed in the stage section SPs decompressed by the vacuum pump 53, unintentional discharge of the electrostatic chuck 225f can be prevented.
  • the plurality of electrostatic chucks 225i may be arranged in a vacuum space different from the stage space SPs.
  • the plurality of electrostatic chucks 225i may be arranged in a space that is secured inside the stage 22q separately from the stage space SPs and can be depressurized (that is, can be made a vacuum space) by a vacuum pump. .
  • the plurality of electrostatic chucks 225i may be provided so as to be in contact with the lower surface WSl of the sample W.
  • the plurality of electrostatic chucks 225i may be provided at portions of the support member 223 of the stage 22q that are in contact with the lower surface WSl of the sample W, respectively.
  • the scanning electron microscope SEMr of the eighteenth modified example is different from the above-described scanning electron microscope SEMq of the seventeenth modified example in that a stage 22r is provided instead of the stage 22q. Furthermore, the scanning electron microscope SEMr of the eighteenth modification is different from the above-described scanning electron microscope SEMq of the seventeenth modification in that a gas supply device 55r is provided.
  • the other structure of the scanning electron microscope SEMr may be the same as the other structure of the scanning electron microscope SEMq described above. Therefore, the structure of the stage 22r will be described below with reference to FIG.
  • the stage 22r includes a plurality of electrostatic chucks 225i arranged in the stage space SPs, like the stage 22q.
  • the stage 22r is different from the stage 22q in that an air supply port 2247r is formed in the bottom member 221 and a pipe 2257r is connected to the air supply port 2247r.
  • Other structures of the stage 22r may be the same as other structures of the stage 22i.
  • a gas supply device 55r is connected to the air supply port 2247r through a pipe 2257r.
  • the gas supply device 55r can supply gas to the stage space SPs via the air supply port 2247r and the pipe 2257r.
  • the gas is air whose humidity is lower than the predetermined humidity.
  • the predetermined humidity is humidity that can prevent unintended discharge of the plurality of electrostatic chucks 225i. That is, the predetermined humidity is a humidity that can prevent discharge from the electrode when a voltage is applied to the electrode constituting the electrostatic chuck 2225i.
  • An example of such a gas is CDA (Clean Dry Air).
  • the gas may be a gas other than air (for example, an inert gas) whose humidity is lower than the predetermined humidity.
  • An example of the inert gas is at least one of nitrogen gas and argon gas.
  • the stage space SPs is a space having a low humidity enough to prevent unintended discharge of the plurality of electrostatic chucks 225i.
  • the plurality of electrostatic chucks 225i are arranged in the stage space SPs, which is a space where the humidity is low enough to prevent unintended discharge of the plurality of electrostatic chucks 225i.
  • a plurality of electrostatic chucks 225i are arranged in an atmospheric pressure environment (particularly, a space where the humidity is not low enough to prevent unintended discharge of the plurality of electrostatic chucks 225i). In comparison, unintentional discharge of the plurality of electrostatic chucks 225i can be prevented.
  • the stage 22f includes a single electrostatic chuck 225f instead of the plurality of electrostatic chucks 225i.
  • the electrostatic chuck 225f also includes a plurality of electrostatic chucks 225f.
  • the chuck 225i may be disposed in the stage space SPs, which is a space having a low humidity to the extent that unintentional discharge can be prevented. As a result, unintended discharge of the electrostatic chuck 225f can be prevented.
  • the plurality of electrostatic chucks 225f may be arranged in a space where the humidity is low enough to prevent unintentional discharge of the plurality of electrostatic chucks 225i, unlike the stage space SPs.
  • the plurality of electrostatic chucks 225f are secured in the stage 22r separately from the stage space SPs and are disposed in a space where the humidity is low enough to prevent unintended discharge of the plurality of electrostatic chucks 225i. May be.
  • the plurality of electrostatic chucks 225i may be provided so as to be in contact with the lower surface WSl of the sample W.
  • the plurality of electrostatic chucks 225i may be provided at portions of the support member 223 of the stage 22r that are in contact with the lower surface WSl of the sample W.
  • FIG. 28 is a cross-sectional view showing the structure of a scanning electron microscope SEMs of the nineteenth modification.
  • the scanning electron microscope SEMs of the nineteenth modified example is different from the above-described scanning electron microscope SEM in that it includes a chamber 181s and an air conditioner 182s.
  • the other structure of the scanning electron microscope SEMs may be the same as the other structure of the scanning electron microscope SEM described above.
  • the chamber 181s accommodates at least the beam irradiation device 1, the stage device 2, and the support frame 3. However, the chamber 181s may not accommodate at least a part of the beam irradiation device 1, the stage device 2, and the support frame 3.
  • the chamber 181s may accommodate other constituent elements (for example, at least a part of the position measurement device 15, the control device 4, and the pump system 5) included in the scanning electron microscope SEMs.
  • the space outside the chamber 181s is, for example, an atmospheric pressure space.
  • the space inside the chamber 181s (that is, the space that accommodates at least the beam irradiation device 1, the stage device 2, and the support frame 3) is also an atmospheric pressure space, for example.
  • at least the beam irradiation device 1, the stage device 2, and the support frame 3 are disposed in the atmospheric pressure space.
  • the beam irradiation apparatus 1 forms a local vacuum region VSP in the atmospheric pressure space inside the chamber 181s.
  • the air conditioner 182s can supply gas (for example, at least one of the above-described inert gas and clean dry air) to the space inside the chamber 181s.
  • the air conditioner 182s can recover the gas from the space inside the chamber 181s.
  • the air conditioner 182s collects gas from the space inside the chamber 181s, so that the cleanliness of the space inside the chamber 181s is kept good.
  • the air conditioner 182s can control at least one of the temperature and the humidity of the space inside the chamber 181s by controlling at least one of the temperature and the humidity of the gas supplied to the space inside the chamber 181s.
  • Such a scanning electron microscope SEMs of the nineteenth modified example can enjoy the same effects as the effects that the scanning electron microscope SEM can enjoy.
  • each of the scanning electron microscope SEMr of the first modification to the scanning electron microscope SEMr of the eighteenth modification may include the chamber 181s and the air conditioner 182s.
  • the sample W has such a large size that the vacuum region VSP can cover only a part of the surface WSu of the sample W.
  • FIG. 29 which is a cross-sectional view showing the stage 22 holding the sample W in the twentieth modified example
  • the sample W has a vacuum region VSP of the surface WSu of the sample W. You may have a size small enough to cover the whole.
  • the sample W may have such a small size that the beam passing space SPb3 included in the vacuum region VSP can cover the entire surface WSu of the sample W. In this case, as shown in FIG.
  • the vacuum region VSP formed by the differential pumping system 12 covers the surface WSu of the sample W and / or faces (ie, contacts) the surface WSu of the sample W. , May cover at least part of the surface of the stage 22 (for example, the outer peripheral surface OS different from the holding surface HS that holds the sample W among the surfaces of the stage 22) and / or the surface of the stage 22 (for example, outer periphery) May face at least part of the surface OS).
  • the outer peripheral surface OS typically includes a surface located around the holding surface HS.
  • FIG. 29 shows an example in which the scanning electron microscope SEM irradiates the electron beam EB to the sample W having a small size described in the twentieth modification for convenience of explanation. It goes without saying that each of the scanning electron microscope SEMs from the scanning electron microscope SEMa to the nineteenth modified example may also irradiate the sample W having a small size described in the twentieth modified example with the electron beam EB. Absent.
  • the scanning electron microscope SEM is configured such that the interval D between the emission surface 121LS of the beam emission apparatus 1 and the surface WSu of the sample W becomes the desired interval D_target, and the emission surface 121LS and the stage 22 are used. At least one of the interval adjustment system 14 and the stage drive system 23 may be controlled so that the interval Do1 between the surface and the surface (for example, the outer peripheral surface OS) becomes the desired interval D_target.
  • the stage 22 may have a structure for performing the above-described deformation suppressing operation. 29, the structure of the stage 22 is simplified in FIG. 29, but the stage 22 may have a structure for performing the above-described deformation suppressing operation.
  • FIG. 30 is a cross-sectional view showing the stage 22 holding the sample W in the twenty-first modification
  • the holding surface HS and the outer peripheral surface OS have different heights (that is, , Different positions in the Z-axis direction).
  • FIG. 30 shows an example in which the holding surface HS is positioned at a position lower than the outer peripheral surface OS, but the holding surface HS may be positioned at a position higher than the outer peripheral surface OS.
  • the stage 22 is substantially a storage space in which the sample W is stored (that is, a space that is recessed so that the sample W can be stored). It can be said that is formed.
  • FIG. 30 shows an example in which the outer peripheral surface OS is located at a position higher than the surface WSu of the sample W. However, the outer peripheral surface OS may be located at a position lower than the surface WSu. The OS may be located at the same height as the surface WSu. 30 shows an example in which the scanning electron microscope SEM irradiates the electron beam EB to the sample W held on the holding surface HS having a height different from that of the outer peripheral surface OS described in the twentieth modification for convenience of explanation.
  • each of the scanning electron microscope SEMa of the first modification to the scanning electron microscope SEMs of the nineteenth modification also has a holding surface whose height is different from that of the outer peripheral surface OS described in the twenty-first modification.
  • the sample W held in the HS may be irradiated with the electron beam EB.
  • the sample W may have a size small enough to allow the vacuum region VSP to cover the entire surface WSu of the sample W.
  • the vacuum region VSP formed by the differential exhaust system 12 covers the surface WSu of the sample W and / or faces the surface WSu of the sample W, in addition to the stage 22 It may cover at least part of the surface (for example, outer peripheral surface OS) and / or face at least part of the surface (for example, outer peripheral surface OS) of the stage 22.
  • the sample W may have such a large size that the vacuum region VSP can cover only a part of the surface WSu of the sample W.
  • the vacuum region VSP formed by the differential exhaust system 12 covers a part of the surface WSu of the sample W and / or faces a part of the surface WSu of the sample W, while the surface of the stage 22 (for example, The outer peripheral surface OS) may not cover at least a portion and / or may not face at least a portion of the surface of the stage 22 (for example, the outer peripheral surface OS).
  • the scanning electron microscope SEM is configured such that the interval D between the emission surface 121LS and the surface WSu becomes the desired interval D_target, and the stage 121LS and the stage At least one of the interval adjustment system 14 and the stage drive system 23 may be controlled such that the interval Do1 between the surface 22 (for example, the outer peripheral surface OS) becomes the desired interval D_target.
  • the structure of the stage 22 is simplified in FIG. 30, but the stage 22 may have a structure for performing the above-described deformation suppressing operation.
  • FIG. 31 which is a cross-sectional view showing the stage 22 holding the sample W in the twenty-second modification
  • the sample W is It may be covered. That is, the sample W may be irradiated with the electron beam EB in a state where the cover member 25 is disposed between the sample W and the beam irradiation apparatus 1 (particularly, the emission surface 121LS). At this time, a through hole may be formed in the cover member 25, and the sample W may be irradiated with the electron beam EB through the through hole of the cover member 25.
  • the cover member 25 may be disposed above the sample W so as to be in contact with the surface WSu of the sample W or to ensure a gap with the surface WSu.
  • the differential exhaust system 12 may form a vacuum region VSP that covers at least a part of the surface 25s of the cover member 25 instead of the vacuum region VSP that covers at least a part of the surface WSu of the sample W.
  • the differential exhaust system 12 may form a vacuum region VSP in contact with the surface 25s of the cover member 25 instead of the vacuum region VSP in contact with the surface WSu of the sample W.
  • FIG. 31 shows an example in which the scanning electron microscope SEM irradiates the electron beam EB to the sample W covered with the cover member 25 described in the twenty-second modification for convenience of explanation.
  • Each of the scanning electron microscope SEMs from the scanning electron microscope SEMa to the nineteenth modified example may also irradiate the sample W covered with the cover member 25 described in the twenty-second modified example with the electron beam EB. Needless to say.
  • the surface 25s of the cover member 25 may be located at the same height as the outer peripheral surface OS of the stage 22.
  • the surface 25s of the cover member 25 may be located above the outer peripheral surface OS of the stage 22.
  • the surface 25s of the cover member 25 may be positioned below the outer peripheral surface OS of the stage 22.
  • the sample W may have a size small enough to allow the vacuum region VSP to cover the entire surface WSu of the sample W, or the vacuum region VSP may be included in the surface WSu of the sample W. It may have a size large enough to cover only a part of the.
  • the scanning electron microscope SEM includes a gap between the emission surface 121LS and the surface 25s of the cover member 25, instead of the interval D between the emission surface 121LS and the surface WSu being the desired interval D_target.
  • the structure of the stage 22 is simplified in FIG. 31, but the stage 22 may have a structure for performing the above-described deformation suppressing operation.
  • the differential exhaust system 12 is a single-stage differential exhaust system including a single exhaust mechanism (specifically, the exhaust groove 124 and the pipe 125). is there.
  • the differential exhaust system 12 may be a multistage differential exhaust system including a plurality of exhaust mechanisms.
  • a plurality of exhaust grooves 124 are formed on the emission surface 121 LS of the vacuum forming member 121, and a plurality of pipes 125 respectively communicating with the plurality of exhaust grooves 124 are formed on the vacuum forming member 121.
  • the plurality of pipes 125 are respectively connected to the plurality of vacuum pumps 52 included in the pump system 5.
  • the exhaust capabilities of the plurality of vacuum pumps 52 may be the same or different.
  • the pump system 5 includes a plurality of vacuum pumps, but the pump system 5 may be configured to include a single vacuum pump.
  • the stage 22 holding the sample W is movable at least in the XY plane. 1 may be configured to be movable in the XY plane.
  • any electron beam apparatus that irradiates the sample W (or any other object) with the electron beam EB has the same structure as the above-described scanning electron microscope SEM. Also good. That is, any electron beam apparatus may include the stage 22 described above. As an example of an arbitrary electron beam apparatus, an electron beam exposure apparatus that forms a pattern on a wafer by exposing a wafer coated with an electron beam resist using the electron beam EB, and the base material is irradiated with the electron beam EB. And at least one of electron beam welding apparatuses for welding the base material with the heat generated by the above.
  • an arbitrary beam apparatus including a beam optical system that can irradiate a charged particle beam or an energy beam may include the stage 22 described above.
  • a focused ion beam (FIB) device that performs processing and observation by irradiating a focused ion beam to a sample, and a soft X-ray region (for example, a wavelength region of 5 to 15 nm)
  • FIB focused ion beam
  • a soft X-ray region for example, a wavelength region of 5 to 15 nm
  • EUV Extreme Ultraviolet
  • the scanning electron described above is not limited to the beam apparatus, but any irradiation apparatus that irradiates an arbitrary sample W (or other arbitrary object) with an arbitrary charged particle including electrons in an irradiation form different from that of the beam.
  • any irradiation apparatus including an irradiation system that can irradiate (for example, emit, generate, eject) charged particles may include the stage 22 described above.
  • an etching apparatus that etches an object using plasma and a film formation apparatus that performs film formation processing on an object using plasma (for example, a PVD (Physical Vapor Deposition) apparatus such as a sputtering apparatus, And at least one of CVD (Chemical Vapor Deposition) equipment.
  • PVD Physical Vapor Deposition
  • CVD Chemical Vapor Deposition
  • any vacuum apparatus that causes an arbitrary substance to act on a sample W (or other arbitrary object) in a form different from that of irradiation under vacuum is the same as the scanning electron microscope SEM described above. It may have the structure.
  • an arbitrary vacuum apparatus there is a vacuum vapor deposition apparatus that forms a film by allowing vapor of a material evaporated or sublimated in a vacuum to reach a sample and accumulate it.
  • a vacuum forming member capable of locally forming a vacuum region covering a part of the surface of the object in a first space on the object, an irradiation device for irradiating the object with a charged particle beam through the vacuum region, and A relative position changing device for changing a relative position between the object and the vacuum forming member to change a relative position between the object and the vacuum region; and a side of the object opposite to the surface irradiated with the charged particle beam
  • a partition member that divides a second space facing the other surface of the object located at a plurality of sections, and the vacuum region whose relative position is changed with respect to the object among the plurality of sections and the object The pressure of a part of the compartment including the opposing region sandwiched therebetween is different from that of the other of the plurality of compartments, and the difference between the air pressure of the opposing region and the air pressure of the vacuum region is expressed by the atmospheric pressure and the
  • the charged particle apparatus and a settling device The charged particle device according to appendix 1, wherein the atmospheric pressure adjusting device further includes a pipe capable of supplying air to the plurality of sections.
  • a vacuum forming member capable of locally forming a vacuum region covering a part of the surface of the object in a first space on the object, an irradiation device for irradiating the object with a charged particle beam through the vacuum region, and A relative position changing device for changing a relative position between the object and the vacuum forming member to change a relative position between the object and the vacuum region; and a side of the object opposite to the surface irradiated with the charged particle beam
  • a pressure adjusting device including an exhaust device that exhausts a part of the gas in the second space facing the other surface of the object located in the second space through an opening movable in the second space; The adjustment device positions the opening in a facing region that is opposed to the vacuum region, the relative position of which is changed with
  • the vacuum forming member forms the vacuum region by exhausting the first space using a first exhaust device, and the atmospheric pressure adjusting device uses a second exhaust device different from the first exhaust device.
  • the charged particle device according to appendix 4 wherein the second exhaust device includes at least one of a diffusion pump, a cryopump, a turbo molecular pump, and a sputter ion pump.
  • the vacuum forming member forms the vacuum region by exhausting the first space using a first exhaust device, and the atmospheric pressure adjusting device exhausts the second space using the first exhaust device.
  • the charged particle device according to any one of appendices 1 to 3.
  • a vacuum forming member capable of locally forming a vacuum region covering a part of the surface of the object in a first space on the object, an irradiation device for irradiating the object with a charged particle beam through the vacuum region, and Surrounding the second space facing the other surface of the object opposite to the surface irradiated with the charged particle beam of the object together with the object, and between the second space and the outside of the second space
  • a pressure adjusting device capable of reducing the difference between the atmospheric pressure in the second space and the atmospheric pressure in the vacuum region from the difference between the atmospheric pressure and the atmospheric pressure in the vacuum region.
  • the partition wall part has an opening that communicates with an atmospheric pressure adjustment device that can reduce a difference between the atmospheric pressure in the second space and the atmospheric pressure in the vacuum region by a difference between the atmospheric pressure and the atmospheric pressure in the vacuum region.
  • Charged particle device Charged particle device.
  • the atmospheric pressure adjusting device calculates the difference between the atmospheric pressure in the second space and the atmospheric pressure in the vacuum region through the opening in at least part of a period in which the vacuum region is formed on the outer edge of the object.
  • the charged particle device according to appendix 8, wherein the charged particle device is reduced by a difference from a pressure in the vacuum region.
  • the contact area of the pin-like member with the object at the portion of the holding member that holds the outer edge of the object is the contact area of the pin-like member with the object that holds the center of the object of the holding member.
  • the vacuum forming member forms a vacuum region having a degree of vacuum higher than a degree of vacuum in a region different from the space in a space between the irradiation device and an irradiation region on the object irradiated with the charged particle beam.
  • the charged particle device according to any one of appendices 1 to 13.
  • [Appendix 15] The charged particle device according to any one of appendices 1 to 14, wherein the vacuum region covers a part of a surface on the object.
  • [Appendix 16] The charged particle device according to any one of appendices 1 to 15, wherein the vacuum region is in contact with a part of the surface on the object.
  • [Appendix 17] 17 17. When the vacuum region is formed, at least another part of the surface of the object is covered with a non-vacuum region or a region having a lower degree of vacuum than the vacuum region. Charged particle device.
  • [Appendix 18] The charged particle device according to any one of appendices 1 to 17, wherein the vacuum forming member has a surface provided with an opening that is provided to face the surface of the object and communicates with an exhaust device.
  • [Appendix 19] The charged particle device according to appendix 18, wherein the opening is a first opening and has a second opening around the first opening on the surface.
  • [Appendix 20] The charged particle apparatus according to appendix 19, wherein the degree of vacuum in the space in the first opening is higher than the degree of vacuum in the second opening.
  • the vacuum forming member forms a vacuum by evacuating the space in which a difference in atmospheric pressure between the space and the other space is maintained by an exhaust resistance of a gap between the object and the vacuum forming member. 21.
  • [Appendix 22] The charged particle device according to any one of appendices 1 to 21, further comprising an applying device that applies an applying force opposite to the attracting force to a portion of the object where the attracting force of the vacuum region acts.
  • [Appendix 23] The charged particle device according to appendix 22, wherein the applying force is determined according to the attractive force.
  • the application force is any one of appendix 22 or 23, wherein the total of the suction force and the application force acting on the portion can be reduced as compared with the case where the application force is not applied.
  • [Appendix 25] The charged particle device according to any one of appendices 22 to 24, wherein the effect of the applied force can cancel the effect of the attractive force.
  • the suction force includes a component that acts to displace at least a part of the object in a first direction from the object toward the irradiation device, and the application force is in a direction opposite to the first direction.
  • the charged particle device according to any one of appendices 22 to 25, including a component that acts to displace at least a part of the object in the second direction.
  • the applying force can bring the surface of the object irradiated with the charged particle beam closer to a plane as compared to a case where the applying force is not applied.
  • Appendix 29 The charged particle device according to any one of appendices 22 to 28, wherein the applying device locally applies the applying force to a part of a surface of the object that is irradiated with the charged particle beam.
  • Appendix 30 The charged particle device according to any one of appendices 22 to 29, wherein the applying force is applied to a portion to be attracted to which the attraction force is applied in the object.
  • [Appendix 31] The charged particle device according to any one of appendices 22 to 30, wherein the applying force is applied to a deformed portion of the object that deforms due to the suction force.
  • [Appendix 32] The charged particle device according to any one of appendices 22 to 31, wherein the applying force is applied to a vacuum portion of the object that faces the vacuum region.
  • [Appendix 33] The charged particle device according to any one of appendices 22 to 32, wherein the applying force is applied to an irradiated portion of the object where an irradiation region of the charged particle beam is set.
  • [Appendix 34] 34. The charged particle device according to any one of appendices 22 to 33, wherein a position where the applying device applies the applying force changes.
  • the irradiation device changes a relative position between the object and an irradiation area of the charged particle beam in a direction along a surface of the object irradiated with the charged particle beam, irradiates the charged particle beam, and applies the application
  • the charged particle device according to any one of appendices 22 to 34, wherein the device changes a position to which the applying force is applied in accordance with the relative position between the object and the irradiation region.
  • the vacuum forming member changes a relative position between the object and the vacuum region in a direction along a surface irradiated with the charged particle beam of the object, and the applying device determines a position at which the applying force is applied. 36.
  • the charged particle device according to any one of appendices 22 to 35, wherein the charged particle device is changed according to the relative position between the object and the vacuum region.
  • the application device includes a plurality of application mechanisms capable of applying the application force to different positions, and the application device is at least one application mechanism to which the application force is to be applied among the plurality of application mechanisms. 37.
  • the apparatus further includes a position changing device that changes a relative position between the object and the applying device, and the applying device applies the applying force by changing the relative position between the object and the applying device by the position changing device.
  • Appendix 39 The charged particle device according to any one of appendices 22 to 38, wherein the applying device includes an electromagnetic force applying device that applies a force resulting from electromagnetic interaction as the applying force.
  • Appendix 40 40.
  • Appendix 41 41.
  • Appendix 42 42.
  • a charged particle device according to any one of appendices 1 to 41, and a measurement device that measures the object under atmospheric pressure, wherein the charged particle device includes a beam from the object irradiated with the charged particle beam.
  • a measurement system which is a charged particle beam measurement device for measuring the object based on a detection result of charged particles.
  • Appendix 43 43.
  • the measurement system according to appendix 42 wherein at least a part of a region on the object measured by the measurement device is measured by the charged particle beam measurement device.
  • Appendix 44 44.
  • [Appendix 45] 45 The measurement system according to appendix 43 or 44, wherein a resist pattern is formed in the region.
  • [Appendix 46] The measurement system according to any one of appendices 42 to 45, wherein the charged particle beam measurement apparatus acquires information related to a pattern formed inside the object.
  • the measurement apparatus includes at least one of an optical microscope and a diffraction interferometer, and the diffraction interferometer is obtained by causing the diffracted light diffracted by irradiating the index object or the resist pattern on the object to interfere with each other. 49.
  • the measurement system according to any one of appendices 42 to 48, wherein the object is measured by detecting interference light generated.
  • the atmospheric pressure adjustment device adjusts the atmospheric pressure of the second space to the first atmospheric pressure, and when the charged particle device measures the object, the atmospheric pressure adjustment device 50.
  • the measurement system according to appendixes 42 to 49 wherein the atmospheric pressure in the two spaces is adjusted to a second atmospheric pressure different from the first atmospheric pressure.
  • [Appendix 53] Forming a vacuum region locally covering a part of the surface of the object in a first space on the object; irradiating the object with a charged particle beam through the vacuum region; and A second space which is divided into a plurality of sections facing the other surface of the object located on the opposite side of the surface irradiated with the charged particle beam of the object, and changing the relative position to the region In the vacuum area, the relative position with respect to the object is changed in the second space by making the pressure of some of the plurality of sections different from the other sections of the plurality of sections.
  • a method of irradiating a charged particle beam including reducing a difference between an air pressure in a region facing the object and an air pressure in the vacuum region.
  • [Appendix 54] Forming a vacuum region locally covering a part of the surface of the object in a first space on the object; irradiating the object with a charged particle beam through the vacuum region; and Changing the relative position with respect to the region, and changing the pressure of a part of the second space facing the other surface of the object located on the opposite side of the surface irradiated with the charged particle beam of the object
  • the relative position with respect to the object is changed in the second space
  • a method of irradiating a charged particle beam comprising: reducing a difference between an air pressure in a region facing the vacuum region and the object sandwiched between the air pressure in the vacuum region and the air pressure in the vacuum region.
  • [Appendix 55] Forming a vacuum region locally covering a part of the surface of the object in a first space on the object; irradiating the object with a charged particle beam through the vacuum region; and A second space facing the other surface of the object located on a side opposite to the surface irradiated with the charged particle beam of the object is changed between the object and the partition wall.
  • a charged particle beam comprising: enclosing and forming a pressure difference between the second space and the outside of the second space; and reducing a difference between the pressure in the second space and the pressure in the vacuum region Irradiation method.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification.
  • the measurement system and the charged particle beam irradiation method are also included in the technical scope of the present invention.

Abstract

A charged particle device comprises: a vacuum formation member having a tubular path that can be connected to an exhaust device, a gas in a first space contacting the surface of an object being discharged via the tubular path, and the vacuum formation member forming a vacuum area; an irradiation device that irradiates a charged particle beam toward a sample via the vacuum area; a relative-position change device that changes the relative positions of the sample and the vacuum formation member, and changes the relative positions of the sample and the vacuum area; a partition wall member that divides a second space into a plurality of sections, the second space facing the other surface of the sample positioned on the opposite side from the surface of the sample irradiated by the charged particle beam; and an atmospheric pressure adjustment device that can control the atmospheric pressure of each of the plurality of sections. At least some of the gas in a space of the vacuum area that has an atmospheric pressure higher than the surrounding vacuum area is discharged via the tubular path of the vacuum formation member, and the passage of the charged particle beam irradiated from the irradiation device includes at least a part of the vacuum area.

Description

荷電粒子装置、計測システム、及び、荷電粒子ビームの照射方法Charged particle apparatus, measurement system, and charged particle beam irradiation method
 本発明は、例えば、荷電粒子ビームを物体に照射する荷電粒子装置、荷電粒子装置を備える計測システム、及び、荷電粒子ビームの照射方法の技術分野に関する。 The present invention relates to a technical field of, for example, a charged particle device that irradiates an object with a charged particle beam, a measurement system including the charged particle device, and a charged particle beam irradiation method.
 特許文献1には、電子ビームが照射される被検物の検査対象部分の周囲を外気から遮断して局所的な真空領域を形成する走査型電子顕微鏡が、荷電粒子装置の一例として記載されている。このような装置を用いた検査においては、計測誤差を低減するため非検物を平坦に保つことが求められる場合がある。 In Patent Document 1, a scanning electron microscope that forms a local vacuum region by blocking the periphery of an inspection target portion of an object irradiated with an electron beam from outside air is described as an example of a charged particle device. Yes. In an inspection using such an apparatus, it may be required to keep the non-inspection flat in order to reduce measurement errors.
米国特許出願公開第2004/0144928号明細書US Patent Application Publication No. 2004/0144928
 第1の態様によれば、排気装置と接続可能な管路を有し、物体の面に接する第1空間の気体を前記管路を介して排出して、真空領域を形成する真空形成部材と、前記真空領域を介して試料に向けて荷電粒子ビームを照射する照射装置と、前記試料と前記真空形成部材との相対位置を変更して、前記試料と前記真空領域との相対位置を変更する相対位置変更装置と、前記試料の前記荷電粒子ビームが照射される面とは反対側に位置する前記試料の他方の面に面する第2空間を複数の区画に分割する隔壁部材と、前記複数の区画のそれぞれの気圧を制御可能な気圧調整装置とを備え、前記真空領域の周囲の前記真空領域よりも気圧が高い空間の少なくとも一部の気体は、前記真空形成部材の前記管路を介して排出され、前記照射装置から照射される荷電粒子ビームの通路は前記真空領域の少なくとも一部を含む荷電粒子装置が提供される。 According to the first aspect, the vacuum forming member has a pipe line connectable to the exhaust device, discharges the gas in the first space in contact with the surface of the object through the pipe line, and forms a vacuum region. The relative position between the sample and the vacuum region is changed by changing the relative position between the irradiation device that irradiates the charged particle beam toward the sample through the vacuum region and the sample and the vacuum forming member. A relative position changing device, a partition member that divides a second space facing the other surface of the sample located on the opposite side of the surface to which the charged particle beam of the sample is irradiated, into a plurality of sections; An atmospheric pressure adjusting device capable of controlling the atmospheric pressure of each of the compartments, and at least a part of the gas in the space having a higher atmospheric pressure than the vacuum region around the vacuum region passes through the conduit of the vacuum forming member Discharged from the irradiation device. The path of the charged particle beam that charged particle device is provided comprising at least a portion of said vacuum region.
 第2の態様によれば、排気装置と接続される第1端と物体の面に接する第1空間と接続される第2端とを有する管路を備え、前記第1空間の気体を前記管路を介して排出して、前記第1空間と接続される外部空間よりも圧力が低い真空領域を前記第1空間に形成する真空形成部材と、前記真空領域を介して試料に向けて荷電粒子ビームを照射する照射装置と、前記試料と前記真空形成部材との相対位置を変更して、前記試料と前記真空領域との相対位置を変更する相対位置変更装置と、前記試料の前記荷電粒子ビームが照射される面とは反対側に位置する前記試料の他方の面に面する第2空間を複数の区画に分割する隔壁部材と、前記複数の区画のそれぞれの気圧を制御可能な気圧調整装置とを備える荷電粒子装置が提供される。 According to the second aspect, the pipe has a first end connected to the exhaust device and a second end connected to the first space in contact with the surface of the object, and the gas in the first space is supplied to the pipe. A vacuum forming member that discharges through a path and forms a vacuum region in the first space having a lower pressure than an external space connected to the first space; and charged particles toward the sample through the vacuum region An irradiation device for irradiating a beam, a relative position changing device for changing a relative position between the sample and the vacuum region by changing a relative position between the sample and the vacuum forming member, and the charged particle beam of the sample A partition member that divides the second space facing the other surface of the sample located on the opposite side of the surface to which the sample is irradiated into a plurality of compartments, and an atmospheric pressure adjustment device that can control the atmospheric pressure of each of the plurality of compartments A charged particle device is provided.
 第3の態様によれば、排気装置と接続可能な管路を有し、物体の面の一部と対向した状態で前記管路を介して気体を排出することにより、前記物体の前記面の第1部分に接する第1空間に、前記面の前記第1部分とは異なる第2部分に接する外部空間の圧力より圧力が低い真空領域を形成する真空形成部材と、前記真空領域を介して試料に向けて荷電粒子ビームを照射する照射装置と、前記試料と前記真空形成部材との相対位置を変更して、前記試料と前記真空領域との相対位置を変更する相対位置変更装置と、前記試料の前記荷電粒子ビームが照射される面とは反対側に位置する前記試料の他方の面に面する第2空間を複数の区画に分割する隔壁部材と、前記複数の区画のそれぞれの気圧を制御可能な気圧調整装置とを備える荷電粒子装置が提供される。 According to the third aspect, the pipe has a pipe line connectable to the exhaust device, and the gas is discharged through the pipe line in a state of being opposed to a part of the plane of the object. A vacuum forming member that forms a vacuum region in the first space in contact with the first portion, the pressure of which is lower than the pressure of the external space in contact with the second portion different from the first portion of the surface, and the sample through the vacuum region An irradiation device for irradiating a charged particle beam toward the surface, a relative position changing device for changing a relative position between the sample and the vacuum region by changing a relative position between the sample and the vacuum forming member, and the sample A partition member that divides the second space facing the other surface of the sample located on the opposite side of the surface irradiated with the charged particle beam into a plurality of sections, and controls the pressure of each of the plurality of sections Charged particle device equipped with possible atmospheric pressure regulator There is provided.
 第4の態様によれば、排気装置と接続可能な管路を有し、物体の面と前記管路の端部とが対向した状態で、前記物体の前記面に接する第1空間の気体を前記管路を介して排出して、真空領域を形成する真空形成部材と、前記真空領域を介して試料に向けて荷電粒子ビームを照射する照射装置と、前記試料と前記真空形成部材との相対位置を変更して、前記試料と前記真空領域との相対位置を変更する相対位置変更装置と、前記試料の前記荷電粒子ビームが照射される面とは反対側に位置する前記試料の他方の面に面する第2空間を複数の区画に分割する隔壁部材と、前記複数の区画のそれぞれの気圧を制御可能な気圧調整装置とを備え、前記照射装置から照射される荷電粒子ビームの通路は前記真空領域の少なくとも一部を含む荷電粒子装置が提供される。 According to the fourth aspect, the gas in the first space that is in contact with the surface of the object is provided in a state in which the pipe that can be connected to the exhaust device is opposed to the end of the pipe. A vacuum forming member that discharges through the conduit to form a vacuum region, an irradiation device that irradiates a charged particle beam toward the sample through the vacuum region, and a relative relationship between the sample and the vacuum forming member A relative position changing device for changing the relative position between the sample and the vacuum region by changing the position; and the other surface of the sample located on the opposite side of the surface irradiated with the charged particle beam of the sample A partition member that divides the second space facing the space into a plurality of sections, and a pressure adjusting device that can control the pressure of each of the plurality of sections, and the path of the charged particle beam irradiated from the irradiation device is Charged particle packaging including at least part of the vacuum region There is provided.
 第5の態様によれば、排気装置と接続可能な管路を有し、物体の面に接する第1空間の気体を前記管路を介して排出して、真空領域を形成する真空形成部材と、前記真空領域を介して試料に荷電粒子ビームを照射する照射装置と、前記試料と前記真空形成部材との相対位置を変更して、前記試料と前記真空領域との相対位置を変更する相対位置変更装置と、前記試料の前記荷電粒子ビームが照射される面とは反対側に位置する前記試料の他方の面に面する第2空間の一部の気体を、前記第2空間内で移動可能な開口を介して排気する排気装置を備える気圧調整装置とを備え、前記真空領域の周囲の前記真空領域よりも気圧が高い空間の少なくとも一部の気体は、前記真空形成部材の前記管路を介して排出され、前記照射装置から照射される荷電粒子ビームの通路は前記真空領域の少なくとも一部を含む荷電粒子装置が提供される。 According to the fifth aspect, the vacuum forming member has a pipe line connectable to the exhaust device, discharges the gas in the first space in contact with the surface of the object through the pipe line, and forms a vacuum region. A relative position for changing the relative position between the sample and the vacuum region by changing the relative position between the sample and the vacuum forming member, and an irradiation device for irradiating the sample with a charged particle beam through the vacuum region; A gas in a part of the second space facing the change device and the other surface of the sample located on the opposite side of the surface irradiated with the charged particle beam of the sample can be moved in the second space. An air pressure adjusting device including an exhaust device for exhausting air through an opening, and at least a part of a gas in a space having a higher air pressure than the vacuum region around the vacuum region passes through the conduit of the vacuum forming member. And is emitted from the irradiation device. The conductive particle beam path the charged particle device including at least a part of the vacuum region is provided.
 第6の態様によれば、排気装置と接続可能な管路を有し、物体の面に接する第1空間の気体を前記管路を介して排出して、真空領域を形成する真空形成部材と、前記真空領域を介して試料に荷電粒子ビームを照射する照射装置と、前記試料の前記荷電粒子ビームが照射される面とは反対側に位置する前記試料の他方の面に面する第2空間を前記試料とともに囲み、前記第2空間と前記第2空間の外部との間に気圧差を形成可能な隔壁部と、前記第2空間の気圧を調整可能である気圧調整装置とを備える荷電粒子装置が提供される。 According to the sixth aspect, the vacuum forming member has a pipe line connectable to the exhaust device, discharges the gas in the first space in contact with the surface of the object through the pipe line, and forms a vacuum region. An irradiation apparatus for irradiating the sample with a charged particle beam through the vacuum region, and a second space facing the other surface of the sample located on the opposite side of the surface of the sample to which the charged particle beam is irradiated A charged particle comprising: a partition wall that can form a pressure difference between the second space and the outside of the second space; and a pressure adjusting device that can adjust the pressure in the second space. An apparatus is provided.
 第7の態様によれば、上述した第1の態様から第6の態様のいずれか一つによって提供される荷電粒子装置と、大気圧下で前記試料を計測する計測装置とを備え、前記荷電粒子装置は、前記荷電粒子ビームが照射された前記試料からの荷電粒子の検出結果に基づいて、前記試料を計測する荷電粒子線計測装置である計測システムが提供される。 According to a seventh aspect, comprising the charged particle device provided by any one of the first to sixth aspects described above, and the measuring device for measuring the sample under atmospheric pressure, the charging The particle device is provided with a measurement system that is a charged particle beam measurement device that measures the sample based on the detection result of the charged particle from the sample irradiated with the charged particle beam.
 第8の態様によれば、物体の面に接する第1空間の気体を管路を介して排出して、真空領域を形成することと、前記真空領域の周囲の前記真空領域よりも気圧が高い空間の少なくとも一部の気体を、前記管路を介して排出することと、前記真空領域の少なくとも一部を含む通過空間を通過した荷電粒子ビームを試料に照射することと、前記試料と前記真空領域との相対位置を変更することと、前記試料の前記荷電粒子ビームが照射される面とは反対側に位置する前記試料の他方の面に面し且つ複数の区画に分割された第2空間において、前記複数の区画のうち一部の区画の気圧を前記複数の区画の他の区画と異ならせることで、前記第2空間のうち、前記試料に対して相対位置が変更された前記真空領域と前記試料を挟んで対向する領域の気圧と前記真空領域の気圧との差を低減することとを含む荷電粒子ビームの照射方法が提供される。 According to the eighth aspect, the gas in the first space in contact with the surface of the object is discharged through the conduit to form the vacuum region, and the atmospheric pressure is higher than the vacuum region around the vacuum region. Exhausting at least a portion of the gas through the duct, irradiating the sample with a charged particle beam that has passed through a passage space including at least a portion of the vacuum region, and the sample and the vacuum A second space divided into a plurality of sections facing the other surface of the sample located on the opposite side of the surface irradiated with the charged particle beam of the sample, and changing the relative position to the region In the vacuum region, the relative position with respect to the sample is changed in the second space by making the air pressure of some of the plurality of compartments different from the other compartments of the plurality of compartments And the area facing the sample Irradiation method of a charged particle beam comprising the reducing the difference between the pressure and the pressure of the vacuum region is provided.
 第9の態様によれば、物体の面に接する第1空間の気体を管路を介して排出して、真空領域を形成することと、前記真空領域の周囲の前記真空領域よりも気圧が高い空間の少なくとも一部の気体を、前記管路を介して排出することと、前記真空領域の少なくとも一部を含む通過空間を通過した荷電粒子ビームを試料に照射することと、前記試料と前記真空領域との相対位置を変更することと、前記試料の前記荷電粒子ビームが照射される面とは反対側に位置する前記試料の他方の面に面する第2空間の一部の気圧を前記第2空間の他の部分の気圧より低減可能である排気装置と連通する開口を有する部材の、前記試料に対する相対位置を変更することで、第2空間のうち、前記試料に対して相対位置が変更された前記真空領域と前記試料を挟んで対向する領域の気圧と前記真空領域の気圧との差を低減することとを含む荷電粒子ビームの照射方法が提供される。 According to the ninth aspect, the gas in the first space in contact with the surface of the object is discharged through the conduit to form a vacuum region, and the atmospheric pressure is higher than the vacuum region around the vacuum region. Exhausting at least a portion of the gas through the duct, irradiating the sample with a charged particle beam that has passed through a passage space including at least a portion of the vacuum region, and the sample and the vacuum Changing the relative position with respect to the region, and changing the pressure of a part of the second space facing the other surface of the sample located on the opposite side of the surface irradiated with the charged particle beam of the sample to the first By changing the relative position of the member having an opening communicating with the exhaust device that can be reduced from the atmospheric pressure of the other part of the two spaces with respect to the sample, the relative position with respect to the sample of the second space is changed. The vacuum region and the sample Irradiation method of a charged particle beam comprising the reducing the difference between the pressure and the pressure in the region opposite to the vacuum region Nde is provided.
 第10の態様によれば、物体の面に接する第1空間の気体を管路を介して排出して、真空領域を形成することと、前記真空領域の周囲の前記真空領域よりも気圧が高い空間の少なくとも一部の気体を、前記管路を介して排出することと、前記真空領域の少なくとも一部を含む通過空間を通過した荷電粒子ビームを試料に照射することと、前記試料と前記真空領域との相対位置を変更することと、前記試料の前記荷電粒子ビームが照射される面とは反対側に位置する前記試料の他方の面に面する第2空間を前記試料と隔壁部とで囲み、前記第2空間と前記第2空間の外部との間に気圧差を形成することと、前記第2空間の気圧と前記真空領域の気圧との差を低減することとを含む荷電粒子ビームの照射方法が提供される。 According to the tenth aspect, the gas in the first space in contact with the surface of the object is discharged through the pipe line to form the vacuum region, and the atmospheric pressure is higher than the vacuum region around the vacuum region. Exhausting at least a portion of the gas through the duct, irradiating the sample with a charged particle beam that has passed through a passage space including at least a portion of the vacuum region, and the sample and the vacuum A second space facing the other surface of the sample located on a side opposite to the surface irradiated with the charged particle beam of the sample is changed between the sample and the partition wall. A charged particle beam comprising: enclosing and forming a pressure difference between the second space and the outside of the second space; and reducing a difference between the pressure in the second space and the pressure in the vacuum region An irradiation method is provided.
 第11の態様によれば、物体上の第1空間に前記物体の表面の一部を覆う真空領域を局所的に形成可能な真空形成部材と、前記真空領域を介して前記物体に荷電粒子ビームを照射する照射装置と、前記物体と前記真空形成部材との相対位置を変更して、前記物体と前記真空領域との相対位置を変更する相対位置変更装置と、前記物体の前記荷電粒子ビームが照射される面とは反対側に位置する前記物体の他方の面に面する第2空間を複数の区画に分割する隔壁部材と、前記複数の区画のうち前記物体に対して相対位置が変更された前記真空領域と前記物体を挟んで対向する対向領域を含む一部の区画の気圧を前記複数の区画のうちの他の区画と異ならせて、前記対向領域の気圧と前記真空領域の気圧との差を大気圧と前記真空領域の気圧との差よりも低減させる気圧調整装置とを備える荷電粒子装置が提供される。 According to the eleventh aspect, the vacuum forming member capable of locally forming a vacuum region covering a part of the surface of the object in the first space on the object, and the charged particle beam on the object via the vacuum region A relative position changing device that changes a relative position between the object and the vacuum region by changing a relative position between the object and the vacuum forming member, and the charged particle beam of the object includes: A partition member that divides the second space facing the other surface of the object located on the opposite side of the irradiated surface into a plurality of sections, and the relative position of the plurality of sections with respect to the object is changed. In addition, the air pressure in a part of the compartment including the opposing region facing the vacuum region and the object is made different from the other compartments of the plurality of compartments, and the air pressure in the opposing region and the air pressure in the vacuum region are The difference between the atmospheric pressure and the atmospheric pressure in the vacuum region The charged particle device and a pressure adjustment device to reduce is provided than the difference.
 第12の態様によれば、物体上の第1空間に前記物体の表面の一部を覆う真空領域を局所的に形成可能な真空形成部材と、前記真空領域を介して前記物体に荷電粒子ビームを照射する照射装置と、前記物体と前記真空形成部材との相対位置を変更して、前記物体と前記真空領域との相対位置を変更する相対位置変更装置と、前記物体の前記荷電粒子ビームが照射される面とは反対側に位置する前記物体の他方の面に面する第2空間の一部の気体を、前記第2空間内で移動可能な開口を介して排気する排気装置を備える気圧調整装置とを備え、前記気圧調整装置は、前記物体に対して相対位置が変更された前記真空領域と前記物体を挟んで対向する対向領域に前記開口を位置させて、前記対向領域の気圧と前記真空領域の気圧との差を大気圧と前記真空領域の気圧との差よりも低減させる荷電粒子装置が提供される。 According to the twelfth aspect, the vacuum forming member capable of locally forming a vacuum region covering a part of the surface of the object in the first space on the object, and the charged particle beam to the object via the vacuum region. A relative position changing device that changes a relative position between the object and the vacuum region by changing a relative position between the object and the vacuum forming member, and the charged particle beam of the object includes: Atmospheric pressure provided with an exhaust device that exhausts a part of the gas in the second space facing the other surface of the object located on the opposite side of the irradiated surface through an opening movable in the second space. An adjustment device, wherein the atmospheric pressure adjustment device positions the opening in a facing region opposite to the vacuum region, the relative position of which is changed with respect to the object, and the pressure in the facing region. The difference between the pressure in the vacuum region and the atmospheric pressure The charged particle device to reduce than the difference between the pressure in the vacuum region is provided.
 第13の態様によれば、物体上の第1空間に前記物体の表面の一部を覆う真空領域を局所的に形成可能な真空形成部材と、前記真空領域を介して前記物体に荷電粒子ビームを照射する照射装置と、前記物体の前記荷電粒子ビームが照射される面とは反対側に位置する前記物体の他方の面に面する第2空間を前記物体とともに囲み、前記第2空間と前記第2空間の外部との間に気圧差を形成可能な隔壁部と、前記第2空間の気圧と前記真空領域の気圧との差を大気圧と前記真空領域の気圧との差より低減可能である気圧調整装置とを備える荷電粒子装置が提供される。 According to the thirteenth aspect, the vacuum forming member capable of locally forming a vacuum region covering a part of the surface of the object in the first space on the object, and the charged particle beam on the object via the vacuum region And a second space facing the other surface of the object located on the opposite side of the surface irradiated with the charged particle beam of the object, together with the object, the second space and the The partition that can form a pressure difference with the outside of the second space, and the difference between the pressure in the second space and the pressure in the vacuum region can be reduced by the difference between the atmospheric pressure and the pressure in the vacuum region. There is provided a charged particle device comprising an atmospheric pressure adjusting device.
 第14の態様によれば、上述した第11の態様から第13の態様のいずれか一つによって提供される荷電粒子装置と、大気圧下で前記物体を計測する計測装置とを備え、前記荷電粒子装置は、前記荷電粒子ビームが照射された前記物体からの荷電粒子の検出結果に基づいて、前記物体を計測する荷電粒子線計測装置である計測システムが提供される。 According to a fourteenth aspect, comprising the charged particle device provided by any one of the eleventh aspect to the thirteenth aspect described above, and a measuring device that measures the object under atmospheric pressure, the charging The particle apparatus is provided with a measurement system that is a charged particle beam measurement apparatus that measures the object based on a detection result of the charged particle from the object irradiated with the charged particle beam.
 第15の態様によれば、物体上の第1空間に前記物体の表面の一部を覆う真空領域を局所的に形成することと、前記真空領域を介して前記物体に荷電粒子ビームを照射することと、前記物体と前記真空領域との相対位置を変更することと、前記物体の前記荷電粒子ビームが照射される面とは反対側に位置する前記物体の他方の面に面し且つ複数の区画に分割された第2空間において、前記複数の区画のうち一部の区画の気圧を前記複数の区画の他の区画と異ならせることで、前記第2空間のうち、前記物体に対して相対位置が変更された前記真空領域と前記物体を挟んで対向する領域の気圧と前記真空領域の気圧との差を低減することとを含む荷電粒子ビームの照射方法が提供される。 According to the fifteenth aspect, the vacuum region covering a part of the surface of the object is locally formed in the first space on the object, and the object is irradiated with the charged particle beam through the vacuum region. And changing the relative position of the object and the vacuum region, facing the other surface of the object opposite to the surface irradiated with the charged particle beam of the object, and a plurality of Relative to the object in the second space by making the atmospheric pressure of some of the plurality of sections different from the other sections of the plurality of sections in the second space divided into the sections There is provided a charged particle beam irradiation method including reducing the difference between the atmospheric pressure of the vacuum region whose position has been changed and the region facing the object across the object and the atmospheric pressure of the vacuum region.
 第16の態様によれば、物体上の第1空間に前記物体の表面の一部を覆う真空領域を局所的に形成することと、前記真空領域を介して前記物体に荷電粒子ビームを照射することと、前記物体と前記真空領域との相対位置を変更することと、前記物体の前記荷電粒子ビームが照射される面とは反対側に位置する前記物体の他方の面に面する第2空間の一部の気圧を前記第2空間の他の部分の気圧より低減可能である排気装置と連通する開口を有する部材の、前記物体に対する相対位置を変更することで、第2空間のうち、前記物体に対して相対位置が変更された前記真空領域と前記物体を挟んで対向する領域の気圧と前記真空領域の気圧との差を低減することとを含む荷電粒子ビームの照射方法が提供される。 According to the sixteenth aspect, the vacuum region that covers a part of the surface of the object is locally formed in the first space on the object, and the object is irradiated with the charged particle beam through the vacuum region. And changing the relative position between the object and the vacuum region, and a second space facing the other surface of the object located on the opposite side of the surface irradiated with the charged particle beam of the object By changing the relative position of the member having an opening communicating with the exhaust device that can reduce the atmospheric pressure of a part of the second space from the atmospheric pressure of the other part of the second space with respect to the object, There is provided a charged particle beam irradiation method including reducing the difference between the atmospheric pressure of the vacuum region whose relative position is changed with respect to an object, and the air pressure of the region facing the object across the object and the pressure of the vacuum region .
 第17の態様によれば、物体上の第1空間に前記物体の表面の一部を覆う真空領域を局所的に形成することと、前記真空領域を介して前記物体に荷電粒子ビームを照射することと、前記物体と前記真空領域との相対位置を変更することと、前記物体の前記荷電粒子ビームが照射される面とは反対側に位置する前記物体の他方の面に面する第2空間を前記物体と隔壁部とで囲み、前記第2空間と前記第2空間の外部との間に気圧差を形成することと、前記第2空間の気圧と前記真空領域の気圧との差を低減することとを含む荷電粒子ビームの照射方法が提供される。 According to the seventeenth aspect, the vacuum region that covers a part of the surface of the object is locally formed in the first space on the object, and the object is irradiated with the charged particle beam through the vacuum region. And changing the relative position between the object and the vacuum region, and a second space facing the other surface of the object located on the opposite side of the surface irradiated with the charged particle beam of the object Is surrounded by the object and the partition wall, and a pressure difference is formed between the second space and the outside of the second space, and a difference between the pressure in the second space and the pressure in the vacuum region is reduced. A charged particle beam irradiation method is provided.
 本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。 The operation and other advantages of the present invention will be clarified from the embodiments to be described below.
図1は、走査型電子顕微鏡の構造を示す断面図である。FIG. 1 is a cross-sectional view showing the structure of a scanning electron microscope. 図2は、走査型電子顕微鏡が備えるビーム照射装置の構造を示す断面図である。FIG. 2 is a cross-sectional view showing the structure of the beam irradiation device provided in the scanning electron microscope. 図3は、走査型電子顕微鏡が備えるビーム照射装置の構造を示す斜視図である。FIG. 3 is a perspective view showing a structure of a beam irradiation device provided in the scanning electron microscope. 図4は、走査型電子顕微鏡が備えるステージの構造を示す断面図である。FIG. 4 is a cross-sectional view showing the structure of the stage provided in the scanning electron microscope. 図5は、走査型電子顕微鏡が備えるステージの構造を示す平面図である。FIG. 5 is a plan view showing the structure of the stage provided in the scanning electron microscope. 図6(a)から図6(c)の夫々は、真空領域の形成に起因して試料が変形する過程を示す断面図である。Each of FIGS. 6A to 6C is a cross-sectional view showing a process in which a sample is deformed due to the formation of a vacuum region. 図7は、変形抑制動作によって変形が抑制された試料を示す断面図である。FIG. 7 is a cross-sectional view showing a sample whose deformation is suppressed by the deformation suppressing operation. 図8は、第1変形例のステージの構造を示す断面図である。FIG. 8 is a cross-sectional view showing the structure of the stage of the first modification. 図9(a)及び図9(b)の夫々は、第1変形例のステージが保持する試料の外縁の近傍に局所的な真空領域が形成される場合に試料が変形する技術的理由を示す断面図である。Each of FIGS. 9A and 9B shows a technical reason why the sample is deformed when a local vacuum region is formed in the vicinity of the outer edge of the sample held by the stage of the first modified example. It is sectional drawing. 図10は、第2変形例のステージの構造を示す断面図である。FIG. 10 is a cross-sectional view showing the structure of the stage of the second modified example. 図11は、第3変形例のステージの構造を示す断面図である。FIG. 11 is a cross-sectional view showing the structure of the stage of the third modified example. 図12は、第4変形例のステージの構造を示す断面図である。FIG. 12 is a cross-sectional view showing the structure of the stage of the fourth modified example. 図13は、第5変形例のステージの構造を示す断面図である。FIG. 13 is a cross-sectional view showing the structure of the stage of the fifth modified example. 図14は、第6変形例のステージの構造を示す断面図である。FIG. 14 is a cross-sectional view showing the structure of the stage of the sixth modified example. 図15(a)は、第7変形例のステージの構造を示す断面図であり、図15(b)は、第7変形例のステージの構造を示す平面図である。FIG. 15A is a cross-sectional view showing the structure of the stage according to the seventh modification, and FIG. 15B is a plan view showing the structure of the stage according to the seventh modification. 図16(a)及び図16(b)の夫々は、第7変形例において試料に作用する力を模式的に示す断面図である。Each of FIG. 16A and FIG. 16B is a cross-sectional view schematically showing the force acting on the sample in the seventh modified example. 図17は、第8変形例のステージの構造を示す断面図である。FIG. 17 is a cross-sectional view showing the structure of the stage of the eighth modification. 図18は、第9変形例のステージの構造を示す断面図である。FIG. 18 is a cross-sectional view showing the structure of the stage of the ninth modification. 図19は、第10変形例のステージの構造を示す断面図である。FIG. 19 is a cross-sectional view showing the structure of the stage of the tenth modification. 図20は、第11変形例のステージの構造を示す断面図である。FIG. 20 is a cross-sectional view showing the structure of the stage of the eleventh modification. 図21(a)は、第12変形例のステージの構造を示す断面図であり、図21(b)は、第12変形例のステージの構造を示す平面図である。FIG. 21A is a cross-sectional view showing the structure of the stage of the twelfth modification, and FIG. 21B is a plan view showing the structure of the stage of the twelfth modification. 図22(a)は、第13変形例のステージの構造を示す断面図であり、図22(b)は、第13変形例のステージの構造を示す平面図である。FIG. 22A is a cross-sectional view showing the structure of the stage of the thirteenth modification, and FIG. 22B is a plan view showing the structure of the stage of the thirteenth modification. 図23は、第14変形例の走査型電子顕微鏡の構造を示す断面図である。FIG. 23 is a cross-sectional view showing the structure of a scanning electron microscope according to the fourteenth modification. 図24は、第15変形例のステージの構造を示す断面図である。FIG. 24 is a cross-sectional view showing the structure of the stage of the fifteenth modification. 図25は、第16変形例のステージの構造を示す断面図である。FIG. 25 is a cross-sectional view showing the structure of the stage of the sixteenth modification. 図26は、第17変形例のステージの構造を示す断面図である。FIG. 26 is a cross-sectional view showing the structure of the stage of the seventeenth modification. 図27は、第18変形例のステージの構造を示す断面図である。FIG. 27 is a cross-sectional view showing the structure of the stage of the eighteenth modification. 図28は、第19変形例の走査型電子顕微鏡の構造を示す断面図である。FIG. 28 is a cross-sectional view showing the structure of a scanning electron microscope of the nineteenth modification. 図29は、第20変形例においてステージが試料を保持する様子を示す断面図である。FIG. 29 is a cross-sectional view showing how the stage holds the sample in the twentieth modification. 図30は、第21変形例においてステージが試料を保持する様子を示す断面図である。FIG. 30 is a cross-sectional view showing how the stage holds the sample in the twenty-first modification. 図31は、第22変形例においてステージが試料を保持する様子を示す断面図である。FIG. 31 is a cross-sectional view showing how the stage holds the sample in the twenty-second modification.
 以下、図面を参照しながら、荷電粒子装置、計測システム、及び、荷電粒子ビームの照射方法の実施形態について説明する。以下では、局所的な真空領域VSPを介して電子ビームEBを試料Wに照射して当該試料Wに関する情報を取得する(例えば、試料Wの状態を計測する)走査型電子顕微鏡(Scanning Electron Microscope)SEMを用いて、荷電粒子装置、計測システム、及び、荷電粒子ビームの照射方法の実施形態を説明する。試料Wは、例えば、半導体基板である。但し、試料Wは、半導体基板とは異なる物体であってもよい。試料Wは、例えば、直径が約300ミリメートルであり、厚さが約700マイクロメートルから800マイクロメートルとなる円板状の基板である。但し、試料Wは、任意のサイズを有する任意の形状の基板(或いは、物体)であってもよい。例えば、試料Wは、液晶表示素子等のディスプレイのための角形基板やフォトマスクのための角形基板であってもよい。 Hereinafter, embodiments of a charged particle device, a measurement system, and a charged particle beam irradiation method will be described with reference to the drawings. In the following, a scanning electron microscope (Scanning Electron Microscope) that acquires information on the sample W by irradiating the sample W with the electron beam EB via the local vacuum region VSP (for example, measuring the state of the sample W). An embodiment of a charged particle device, a measurement system, and a charged particle beam irradiation method will be described using an SEM. The sample W is, for example, a semiconductor substrate. However, the sample W may be an object different from the semiconductor substrate. The sample W is, for example, a disk-shaped substrate having a diameter of about 300 millimeters and a thickness of about 700 to 800 micrometers. However, the sample W may be a substrate (or object) having an arbitrary size and an arbitrary shape. For example, the sample W may be a square substrate for a display such as a liquid crystal display element or a square substrate for a photomask.
 また、以下の説明では、互いに直交するX軸、Y軸及びZ軸から定義されるXYZ直交座標系を用いて、走査型電子顕微鏡SEMを構成する各種構成要素の位置関係について説明する。尚、以下の説明では、説明の便宜上、X軸方向及びY軸方向のそれぞれが水平方向(つまり、水平面内の所定方向)であり、Z軸方向が鉛直方向(つまり、水平面に直交する方向であり、実質的には上下方向)であるものとする。更に、+Z側が上方(つまり、上側)に相当し、-Z側が下方(つまり、下側)に相当するものとする。尚、Z軸方向は、走査型電子顕微鏡SEMが備える後述のビーム光学系11の光軸AXに平行な方向でもある。また、X軸、Y軸及びZ軸周りの回転方向(言い換えれば、傾斜方向)を、それぞれ、θX方向、θY方向及びθZ方向と称する。 In the following description, the positional relationship of various components constituting the scanning electron microscope SEM will be described using an XYZ orthogonal coordinate system defined by mutually orthogonal X, Y, and Z axes. In the following description, for convenience of explanation, each of the X-axis direction and the Y-axis direction is a horizontal direction (that is, a predetermined direction in the horizontal plane), and the Z-axis direction is a vertical direction (that is, a direction orthogonal to the horizontal plane). Yes, in the vertical direction). Further, the + Z side corresponds to the upper side (that is, the upper side), and the −Z side corresponds to the lower side (that is, the lower side). The Z-axis direction is also a direction parallel to an optical axis AX of a beam optical system 11 (described later) provided in the scanning electron microscope SEM. Further, the rotation directions around the X axis, the Y axis, and the Z axis (in other words, the tilt direction) are referred to as a θX direction, a θY direction, and a θZ direction, respectively.
 (1)走査型電子顕微鏡SEMの構造
 はじめに、図1から図5を参照しながら、走査型電子顕微鏡SEMの構造について説明する。図1は、走査型電子顕微鏡SEMの構造を示す断面図である。図2は、走査型電子顕微鏡SEMが備えるビーム照射装置1の構造を示す断面図である。図3は、走査型電子顕微鏡SEMが備えるビーム照射装置1の構造を示す斜視図である。図4は、走査型電子顕微鏡SEMが備えるステージ22の構造を示す断面図である。図5は、走査型電子顕微鏡SEMが備えるステージ22の構造を示す平面図である。尚、図面の簡略化のために、図1は、走査型電子顕微鏡SEMの一部の構成要素については、その断面を示していない。
(1) the structure beginning of the scanning electron microscope SEM, with reference to FIGS. 1-5, a description will be given of the structure of a scanning electron microscope SEM. FIG. 1 is a cross-sectional view showing the structure of a scanning electron microscope SEM. FIG. 2 is a cross-sectional view showing the structure of the beam irradiation apparatus 1 provided in the scanning electron microscope SEM. FIG. 3 is a perspective view showing the structure of the beam irradiation apparatus 1 provided in the scanning electron microscope SEM. FIG. 4 is a cross-sectional view showing the structure of the stage 22 provided in the scanning electron microscope SEM. FIG. 5 is a plan view showing the structure of the stage 22 provided in the scanning electron microscope SEM. For simplification of the drawing, FIG. 1 does not show a cross section of some components of the scanning electron microscope SEM.
 図1に示すように、走査型電子顕微鏡SEMは、ビーム照射装置1と、ステージ装置2と、支持フレーム3と、制御装置4と、ポンプ系5とを備える。更に、ポンプ系5は、真空ポンプ51と、真空ポンプ52と、真空ポンプ53と、真空ポンプ54とを備える。尚、走査型電子顕微鏡SEMは、少なくともビーム照射装置1と、ステージ装置2と、支持フレーム3とを収容するチャンバを備えていてもよい。また、このチャンバに接続されて、チャンバ内の空間、特に試料Wの周囲の空間の温度・湿度を制御する空調機を備えていてもよい。 As shown in FIG. 1, the scanning electron microscope SEM includes a beam irradiation device 1, a stage device 2, a support frame 3, a control device 4, and a pump system 5. Further, the pump system 5 includes a vacuum pump 51, a vacuum pump 52, a vacuum pump 53, and a vacuum pump 54. The scanning electron microscope SEM may include a chamber that accommodates at least the beam irradiation device 1, the stage device 2, and the support frame 3. Further, an air conditioner that is connected to the chamber and controls the temperature and humidity of the space in the chamber, particularly the space around the sample W may be provided.
 ビーム照射装置1は、ビーム照射装置1から下方に向けて電子ビームEBを射出可能である。ビーム照射装置1は、ビーム照射装置1の下方に配置されるステージ装置2が保持する試料Wに対して電子ビームEBを照射可能である。試料Wに対して電子ビームEBを照射するために、ビーム照射装置1は、図2及び図3に示すように、ビーム光学系11と、差動排気系12とを備えている。 The beam irradiation device 1 can emit an electron beam EB downward from the beam irradiation device 1. The beam irradiation apparatus 1 can irradiate the sample beam W held by the stage apparatus 2 disposed below the beam irradiation apparatus 1 with the electron beam EB. In order to irradiate the sample W with the electron beam EB, the beam irradiation apparatus 1 includes a beam optical system 11 and a differential pumping system 12 as shown in FIGS.
 図2に示すように、ビーム光学系11は、筐体111を備えている。筐体111は、ビーム光学系11の光軸AXに沿って延びる(つまり、Z軸に沿って延びる)ビーム通過空間SPb1が内部に確保されている円筒状の部材である。ビーム通過空間SPb1は、電子ビームEBが通過する空間として用いられる。ビーム通過空間SPb1を通過する電子ビームEBが筐体111を通過する(つまり、筐体111の外部へ漏れ出す)ことを防止するために、筐体111は、高透磁率材料から構成されていてもよい。高透磁率材料の一例として、パーマロイ及びケイ素鋼の少なくとも一方があげられる。これらの高透磁率材料の比透磁率は1000以上である。 As shown in FIG. 2, the beam optical system 11 includes a housing 111. The casing 111 is a cylindrical member in which a beam passage space SPb1 extending along the optical axis AX of the beam optical system 11 (that is, extending along the Z axis) is secured. The beam passage space SPb1 is used as a space through which the electron beam EB passes. In order to prevent the electron beam EB passing through the beam passage space SPb1 from passing through the casing 111 (that is, leaking out of the casing 111), the casing 111 is made of a high permeability material. Also good. An example of the high magnetic permeability material is at least one of permalloy and silicon steel. The relative permeability of these high permeability materials is 1000 or more.
 ビーム通過空間SPb1は、電子ビームEBが照射される期間中は、真空空間となる。具体的には、ビーム通過空間SPb1には、ビーム通過空間SPb1に連通するように(つまり、つながるように)筐体111(更には、後述する側壁部材122)に形成される配管(つまり、管路)117を介して真空ポンプ51が連結されている。真空ポンプ51は、ビーム通過空間SPb1が真空空間となるように、ビーム通過空間SPb1を排気して大気圧よりも減圧する。このため、本実施形態における真空空間は、大気圧よりも圧力が低い空間を意味していてもよい。特に、真空空間は、電子ビームEBの試料Wへの適切な照射を妨げないほどにしか気体分子が存在しない空間(言い換えれば、電子ビームEBの試料Wへの適切な照射を妨げない真空度となる空間)を意味していてもよい。ビーム通過空間SPb1は、筐体111の下面に形成されたビーム射出口(つまり、開口)119を介して、筐体111の外部の空間(より具体的には、後述する差動排気系12のビーム通過空間SPb2)に連通している。尚、ビーム通過空間SPb1は、電子ビームEBが照射されない期間中に真空空間となってもよい。 The beam passage space SPb1 is a vacuum space during the period of irradiation with the electron beam EB. Specifically, a pipe (that is, a pipe) formed in the casing 111 (and further, a side wall member 122 described later) is connected to the beam passage space SPb1 so as to communicate with the beam passage space SPb1 (that is, to be connected). Path) The vacuum pump 51 is connected via the 117. The vacuum pump 51 exhausts the beam passage space SPb1 to reduce the pressure from the atmospheric pressure so that the beam passage space SPb1 becomes a vacuum space. For this reason, the vacuum space in this embodiment may mean a space whose pressure is lower than atmospheric pressure. In particular, the vacuum space is a space in which gas molecules do not exist so much as to prevent proper irradiation of the sample W of the electron beam EB (in other words, a degree of vacuum that does not prevent appropriate irradiation of the sample W of the electron beam EB). Space). The beam passage space SPb1 is a space outside the casing 111 (more specifically, a differential exhaust system 12 described later) via a beam emission port (that is, an opening) 119 formed on the lower surface of the casing 111. It communicates with the beam passage space SPb2). The beam passage space SPb1 may be a vacuum space during a period when the electron beam EB is not irradiated.
 ビーム光学系11は更に、電子銃113と、電磁レンズ114と、対物レンズ115と、電子検出器116とを備える。電子銃113は、-Z側に向けて電子ビームEBを放出する。尚、電子銃113の代わりに光が照射されたとき電子を放出する光電変換面を用いてもよい。電磁レンズ114は、電子銃113が放出した電子ビームEBを制御する。例えば、電磁レンズ114は、電子ビームEBが所定の光学面(例えば、電子ビームEBの光路に交差する仮想面)上に形成する像の回転量(つまり、θZ方向の位置)、当該像の倍率、及び、結像位置に対応する焦点位置のいずれか一つを制御してもよい。対物レンズ115は、電子ビームEBを所定の縮小倍率で試料Wの表面(具体的には、電子ビームEBが照射される面であり、図1及び図2に示す例では+Z側を向いている面であって且つXY平面に沿った面)WSuに結像させる。電子検出器116は、pn接合又はpin接合の半導体を使用した半導体型電子検出装置(つまり、半導体検出装置)である。電子検出器116は、試料Wに対する電子ビームEBの照射によって生じた電子(例えば、反射電子及び散乱電子の少なくとも一方。散乱電子は2次電子を含む)を検出する。制御装置4は、電子検出器116の検出結果に基づいて、試料Wの状態を特定する。例えば、制御装置4は、電子検出器116の検出結果に基づいて、試料Wの表面WSuの3次元形状を特定する。尚、本実施形態では、試料Wの表面WSuは理想的には平面であり、制御装置4は、その表面WSuに形成されている微細な凹凸パターンの形状を含む表面WSuの3次元形状を特定するものとする。尚、試料Wの表面WSuは平面でなくてもよい。また、電子検出器116は、後述する差動排気系12に設けられてもよい。 The beam optical system 11 further includes an electron gun 113, an electromagnetic lens 114, an objective lens 115, and an electron detector 116. The electron gun 113 emits an electron beam EB toward the −Z side. Instead of the electron gun 113, a photoelectric conversion surface that emits electrons when irradiated with light may be used. The electromagnetic lens 114 controls the electron beam EB emitted from the electron gun 113. For example, the electromagnetic lens 114 has a rotation amount of an image (that is, a position in the θZ direction) formed on a predetermined optical surface (for example, a virtual surface intersecting the optical path of the electron beam EB), and a magnification of the image. And any one of the focal positions corresponding to the imaging positions may be controlled. The objective lens 115 is the surface of the sample W (specifically, the surface on which the electron beam EB is irradiated with the electron beam EB at a predetermined reduction magnification, and faces the + Z side in the examples shown in FIGS. 1 and 2. The image is formed on the surface WSu). The electron detector 116 is a semiconductor-type electron detection device (that is, a semiconductor detection device) using a pn junction or pin junction semiconductor. The electron detector 116 detects electrons (for example, at least one of reflected electrons and scattered electrons. The scattered electrons include secondary electrons) generated by irradiation of the sample W with the electron beam EB. The control device 4 specifies the state of the sample W based on the detection result of the electron detector 116. For example, the control device 4 specifies the three-dimensional shape of the surface WSu of the sample W based on the detection result of the electron detector 116. In the present embodiment, the surface WSu of the sample W is ideally a flat surface, and the control device 4 identifies the three-dimensional shape of the surface WSu including the shape of the fine uneven pattern formed on the surface WSu. It shall be. Note that the surface WSu of the sample W may not be a flat surface. Further, the electron detector 116 may be provided in the differential exhaust system 12 described later.
 差動排気系12は、真空形成部材121と、側壁部材122とを備える。側壁部材122は、真空形成部材121から上方に延びる筒状の部材である。側壁部材122は、内部に筐体111(つまり、ビーム光学系11)を収容する。側壁部材122は、内部にビーム光学系11を収容した状態でビーム光学系11と一体化されるが、ビーム光学系11から分離可能であってもよい。真空形成部材121は、ビーム光学系11の下方(つまり、-Z側)に配置される。真空形成部材121は、ビーム光学系11の下方において、ビーム光学系11に接続される(つまり、連結)される。真空形成部材121は、ビーム光学系11に接続されてビーム光学系11と一体化されるが、分離可能であってもよい。真空形成部材121の内部には、ビーム通過空間SPb2が形成されている。尚、図3は、真空形成部材121が、ビーム通過空間SPb2の一部であるビーム通過空間SPb2-1が形成された真空形成部材121-1、ビーム通過空間SPb2の一部であるビーム通過空間SPb2-2が形成された真空形成部材121-2、及び、ビーム通過空間SPb2の一部であるビーム通過空間SPb2-3が形成された真空形成部材121-3が、ビーム通過空間SPb2-1からSPb2-3が連通するように積層された構造を有する例を示しているが、真空形成部材121の構造がこの例に限定されることはない。ビーム通過空間SPb2は、真空形成部材121の上面(図3に示す例では、真空形成部材121-3の+Z側の面)に形成されたビーム射出口(つまり、開口)1231を介して、ビーム光学系11のビーム通過空間SPb1に連通している。ビーム通過空間SPb2は、ビーム通過空間SPb1と共に、真空ポンプ51によって排気される(つまり、減圧される)。従って、ビーム通過空間SPb2は、電子ビームEBが照射される期間中は、真空空間となる。ビーム通過空間SPb2は、ビーム通過空間SPb1からの電子ビームEBが通過する空間として用いられる。ビーム通過空間SPb1及びSPb2の少なくとも一方を通過する電子ビームEBが真空形成部材121及び側壁部材122の少なくとも一方を通過する(つまり、差動排気系12の外部へ漏れ出す)ことを防止するために及び/又はビーム照射装置1の外部の磁場(いわゆる、外乱磁場)がビーム通過空間SPb1及びSPb2の少なくとも一方を通過する電子ビームEBに影響を与えることを防止するために、真空形成部材121及び側壁部材122の少なくとも一方は、高透磁率材料から構成されていてもよい。 The differential exhaust system 12 includes a vacuum forming member 121 and a side wall member 122. The side wall member 122 is a cylindrical member extending upward from the vacuum forming member 121. The side wall member 122 accommodates the housing 111 (that is, the beam optical system 11) inside. The side wall member 122 is integrated with the beam optical system 11 in a state where the beam optical system 11 is accommodated therein, but may be separable from the beam optical system 11. The vacuum forming member 121 is disposed below the beam optical system 11 (that is, on the −Z side). The vacuum forming member 121 is connected (that is, connected) to the beam optical system 11 below the beam optical system 11. The vacuum forming member 121 is connected to the beam optical system 11 and integrated with the beam optical system 11, but may be separable. Inside the vacuum forming member 121, a beam passage space SPb2 is formed. In FIG. 3, the vacuum forming member 121 is a vacuum forming member 121-1 in which a beam passing space SPb2-1 that is a part of the beam passing space SPb2 is formed, and a beam passing space that is a part of the beam passing space SPb2. The vacuum forming member 121-2 in which the SPb2-2 is formed and the vacuum forming member 121-3 in which the beam passing space SPb2-3, which is a part of the beam passing space SPb2, is formed from the beam passing space SPb2-1. Although the example has a structure in which SPb2-3 are stacked so as to communicate with each other, the structure of the vacuum forming member 121 is not limited to this example. The beam passage space SPb2 passes through a beam exit (that is, an opening) 1231 formed on the upper surface of the vacuum forming member 121 (in the example shown in FIG. 3, the surface on the + Z side of the vacuum forming member 121-3). The optical system 11 communicates with the beam passage space SPb1. The beam passage space SPb2 is exhausted (that is, decompressed) by the vacuum pump 51 together with the beam passage space SPb1. Therefore, the beam passage space SPb2 becomes a vacuum space during the period when the electron beam EB is irradiated. The beam passage space SPb2 is used as a space through which the electron beam EB from the beam passage space SPb1 passes. In order to prevent the electron beam EB passing through at least one of the beam passage spaces SPb1 and SPb2 from passing through at least one of the vacuum forming member 121 and the side wall member 122 (that is, leaking out of the differential exhaust system 12). In order to prevent the external magnetic field (so-called disturbance magnetic field) of the beam irradiation apparatus 1 from affecting the electron beam EB passing through at least one of the beam passage spaces SPb1 and SPb2, the vacuum forming member 121 and the side wall At least one of the members 122 may be made of a high magnetic permeability material.
 真空形成部材121は更に、試料Wの表面WSuに対向可能な射出面121LSを備える。図3に示す例では、真空形成部材121-1が、射出面121LSを備えている。ビーム照射装置1は、射出面121LSと表面WSuとの間の間隔D(つまり、Z軸方向におけるビーム照射装置1と試料Wとの間の間隔D)が所望間隔D_target(例えば、10μm以下且つ1μm以上)となるように、後述する間隔調整系14によって、試料Wに対して位置合わせされる。尚、間隔Dは射出面121LSと表面WSuとのZ軸方向における距離と称してもよい。射出面121LSには、ビーム射出口(つまり、開口)1232が形成されている。尚、真空形成部材121は、試料Wの表面WSuに対向可能な射出面121LSを備えていなくてもよい。図2に示すように、ビーム通過空間SPb2は、ビーム射出口1232を介して、真空形成部材121の外部のビーム通過空間SPb3に連通している。つまり、ビーム通過空間SPb1は、ビーム通過空間SPb2を介してビーム通過空間SPb3に連通している。但し、ビーム通過空間SPb2が確保されていなくてもよい。つまり、ビーム通過空間SPb1は、ビーム通過空間SPb2を介することなくビーム通過空間SPb3に直接連通していてもよい。ビーム通過空間SPb3は、試料W上の局所的な空間である。ビーム通過空間SPb3は、ビーム照射装置1と試料Wとの間(具体的には、射出面121LSと表面WSuとの間)において電子ビームEBが通過する局所的な空間である。ビーム通過空間SPb3は、試料Wの表面WSuのうち電子ビームEBが照射される照射領域に少なくとも面する(或いは、覆う又は接する)空間である。ビーム通過空間SPb3は、ビーム通過空間SPb1及びSPb2と共に、真空ポンプ51によって排気される(つまり、減圧される)。この場合、ビーム通過空間SPb1及びSPb2のそれぞれは、ビーム通過空間SPb3を排気するためにビーム通過空間SPb3と真空ポンプ51とを接続する排気通路(つまり、管路)としても機能可能である。従って、ビーム通過空間SPb3は、電子ビームEBが照射される期間中は、真空空間となる。このため、電子銃113から放出された電子ビームEBは、いずれも真空空間であるビーム通過空間SPb1からSPb3の少なくとも一部を介して試料Wに照射される。尚、ビーム通過空間SPb3は、電子ビームEBが照射されない期間中に真空空間となってもよい。 The vacuum forming member 121 further includes an emission surface 121LS that can face the surface WSu of the sample W. In the example shown in FIG. 3, the vacuum forming member 121-1 includes an emission surface 121LS. In the beam irradiation apparatus 1, the distance D between the emission surface 121LS and the surface WSu (that is, the distance D between the beam irradiation apparatus 1 and the sample W in the Z-axis direction) is a desired distance D_target (for example, 10 μm or less and 1 μm). As described above, the alignment is performed with respect to the sample W by the interval adjusting system 14 described later. The interval D may be referred to as a distance in the Z-axis direction between the emission surface 121LS and the surface WSu. A beam exit (that is, an opening) 1232 is formed on the exit surface 121LS. Note that the vacuum forming member 121 may not include the emission surface 121LS that can face the surface WSu of the sample W. As shown in FIG. 2, the beam passage space SPb <b> 2 communicates with the beam passage space SPb <b> 3 outside the vacuum forming member 121 through the beam emission port 1232. That is, the beam passage space SPb1 communicates with the beam passage space SPb3 via the beam passage space SPb2. However, the beam passage space SPb2 may not be ensured. That is, the beam passage space SPb1 may directly communicate with the beam passage space SPb3 without passing through the beam passage space SPb2. The beam passage space SPb3 is a local space on the sample W. The beam passage space SPb3 is a local space through which the electron beam EB passes between the beam irradiation apparatus 1 and the sample W (specifically, between the emission surface 121LS and the surface WSu). The beam passage space SPb3 is a space that at least faces (or covers or touches) an irradiation region irradiated with the electron beam EB in the surface WSu of the sample W. The beam passage space SPb3 is exhausted (that is, depressurized) by the vacuum pump 51 together with the beam passage spaces SPb1 and SPb2. In this case, each of the beam passage spaces SPb1 and SPb2 can also function as an exhaust passage (that is, a pipe line) that connects the beam passage space SPb3 and the vacuum pump 51 in order to exhaust the beam passage space SPb3. Therefore, the beam passage space SPb3 becomes a vacuum space during the period when the electron beam EB is irradiated. Therefore, the electron beam EB emitted from the electron gun 113 is irradiated onto the sample W through at least a part of the beam passage spaces SPb1 to SPb3, which are all vacuum spaces. The beam passage space SPb3 may be a vacuum space during a period when the electron beam EB is not irradiated.
 ビーム通過空間SPb3は、ビーム通過空間SPb1及びSPb2よりも真空ポンプ51から離れた位置にある。ビーム通過空間SPb2は、ビーム通過空間SPb1よりも真空ポンプ51から離れた位置にある。このため、ビーム通過空間SPb3の真空度は、ビーム通過空間SPb1及びSPb2の真空度よりも低くなる可能性があり、且つ、ビーム通過空間SPb2の真空度は、ビーム通過空間SPb1の真空度よりも低くなる可能性がある。尚、本実施形態における「空間Aの真空度よりも空間Bの真空度が低い」状態は、「「空間Aの圧力よりも空間Bの圧力が高い」ことを意味する。この場合、真空ポンプ51は、真空度が最も低くなる可能性があるビーム通過空間SPb3の真空度を、電子ビームEBの試料Wへの適切な照射を妨げない真空度にすることができる程度の排気能力を有する。一例として、真空ポンプ51は、ビーム通過空間SPb3の圧力(つまり、気圧)を1×10-3パスカル以下に維持する(例えば、概ね1×10-3パスカルから1×10-4パスカルのオーダーで維持する)ことができる程度の排気能力を有していてもよい。このような真空ポンプ51として、例えば、主ポンプとして用いられるターボ分子ポンプ(或いは、拡散ポンプ、クライオポンプ及びスパッタイオンポンプの少なくとも一つを含む他の種類の高真空用ポンプ)と補助ポンプとして用いられるドライポンプ(或いは、他の種類の低真空用ポンプ)とが組み合わせられた真空ポンプが用いられてもよい。尚、真空ポンプ51は、ビーム通過空間SPb3の圧力(つまり、気圧)を1×10-3パスカル以下に維持することができる程度の排気速度[m/s]であってもよい。 The beam passage space SPb3 is located farther from the vacuum pump 51 than the beam passage spaces SPb1 and SPb2. The beam passage space SPb2 is located farther from the vacuum pump 51 than the beam passage space SPb1. Therefore, the degree of vacuum of the beam passage space SPb3 may be lower than the degree of vacuum of the beam passage spaces SPb1 and SPb2, and the degree of vacuum of the beam passage space SPb2 is lower than the degree of vacuum of the beam passage space SPb1. May be lower. In the present embodiment, the state “the degree of vacuum in the space B is lower than the degree of vacuum in the space A” means “the pressure in the space B is higher than the pressure in the space A”. In this case, the vacuum pump 51 is such that the degree of vacuum of the beam passage space SPb3 where the degree of vacuum may be the lowest can be set to a degree of vacuum that does not hinder appropriate irradiation of the sample W of the electron beam EB. Has exhaust capability. As an example, the vacuum pump 51, the pressure of the beam passing space SPb3 (i.e., atmospheric pressure) to keep the below 1 × 10 -3 pascals (e.g., approximately 1 × 10 -3 pascals at 1 × 10 -4 Pascal order It may have an exhaust capability that can be maintained). As such a vacuum pump 51, for example, a turbo molecular pump used as a main pump (or another kind of high vacuum pump including at least one of a diffusion pump, a cryopump and a sputter ion pump) and an auxiliary pump are used. A vacuum pump in combination with a dry pump (or another type of low vacuum pump) may be used. Note that the vacuum pump 51 may have an exhaust velocity [m 3 / s] that can maintain the pressure (that is, the atmospheric pressure) of the beam passage space SPb3 at 1 × 10 −3 Pascal or less.
 但し、ビーム通過空間SPb3は、ビーム通過空間SPb1及びSPb2のように何らかの部材(具体的には、筐体111及び真空形成部材121)によって周囲を取り囲まれた閉鎖空間ではない。つまり、ビーム通過空間SPb3は、何らかの部材によって周囲を取り囲まれていない開放空間である。このため、ビーム通過空間SPb3が真空ポンプ51によって減圧されたとしても、ビーム通過空間SPb3には、ビーム通過空間SPb3の周囲から気体が流入する。その結果、ビーム通過空間SPb3の真空度が低下する可能性がある。そこで、差動排気系12は、ビーム照射装置1と試料Wとの間において差動排気を行うことで、ビーム通過空間SPb3の真空度を維持する。つまり、差動排気系12は、ビーム照射装置1と試料Wとの間において差動排気を行うことで、ビーム照射装置1と試料Wとの間に、周囲と比較して相対的に高い真空度が維持された局所的な真空領域VSPを形成し、局所的な真空領域VSPが局所的なビーム通過空間SPb3を含むようにする。言い換えれば、差動排気系12は、局所的なビーム通過空間SPb3が局所的な真空領域VSPに含まれるように、差動排気を行う。尚、本実施形態での差動排気は、試料Wとビーム照射装置1との間において、一の空間(例えば、ビーム通過空間SPb3)と一の空間とは異なる他の空間との間の気圧差が試料Wとビーム照射装置1との間の間隙の排気抵抗によって維持されるという性質を利用しながらビーム通過空間SPb3を排気することに相当する。ビーム通過空間SPb3が試料Wの表面WSuのうちの少なくとも一部(例えば、電子ビームEBが照射される照射領域)を局所的に覆うことから、真空領域VSPもまた、試料Wの表面WSuのうちの少なくとも一部(例えば、電子ビームEBが照射される照射領域)を局所的に覆う。具体的には、真空形成部材121の射出面121LSには、ビーム射出口1232を取り囲む排気溝(つまり、真空形成部材121を貫通しない開口)124が形成されている。排気溝124には、排気溝124に連通するように真空形成部材121及び側壁部材122に形成される配管(つまり、管路)125を介して真空ポンプ52が連結されている。配管125の第1端(つまり、一方の端部)は、真空ポンプ52に接続され、配管125の第2端(つまり、他方の端部であり、実質的には、排気溝124を形成する部分)は、射出面12LSと試料Wの表面WSuとの間の空間に接する。尚、図3は、差動排気系12が、排気溝124から真空ポンプ52に到達するまでに配管125が集約されていく構造を有する例を示している。具体的には、図3は、排気溝124が形成されている真空形成部材121-1に、環状の排気溝124から真空形成部材121-1を貫通するように上方に延びる環状の流路125-1が形成され、真空形成部材121-2に、流路125-1に連通するN1本(図3に示す例では、4本)の配管125-21及びN1本の配管125-21を集約する環状の集約流路125-22が形成され、真空形成部材121-3に、集約流路125-22に連通するN2(但し、N2<N1)本(図3に示す例では、2本)の配管125-31及びN2本の配管125-31を集約する環状の集約流路125-32が形成され、集約流路125-32に配管125-4が連通し、配管125-4が真空ポンプ52に接続される例を示している。尚、ここでは配管125-31の本数N2を配管125-21の本数N1の半分であり、1本の配管125-31はこれと連通する2本の配管125-21からほぼ等距離に位置している。また、配管125-31の本数N2を配管125-4の本数(図3に示す例では、1本)の半分であり、配管125-4はこれと連通する2本の配管125-31からほぼ等距離に位置している。よって、それぞれの配管125-21を介した排気経路の長さと圧損はほぼ等しく、排気溝124から排気される空気の量は方位に依らず偏らない。但し、配管125の構造がこの例に限定されることはない。真空ポンプ52は、排気溝124を介して、ビーム通過空間SPb3の周囲の空間を排気する。その結果、差動排気系12は、ビーム通過空間SPb3の真空度を適切に維持することができる。尚、排気溝124は1つにつながった環状でなくてもよく、環の一部を複数有する複数の排気溝であってもよい。 However, the beam passage space SPb3 is not a closed space surrounded by some members (specifically, the casing 111 and the vacuum forming member 121) like the beam passage spaces SPb1 and SPb2. That is, the beam passage space SPb3 is an open space that is not surrounded by any member. For this reason, even if the beam passage space SPb3 is decompressed by the vacuum pump 51, gas flows into the beam passage space SPb3 from the periphery of the beam passage space SPb3. As a result, the vacuum degree of the beam passage space SPb3 may be reduced. Therefore, the differential exhaust system 12 maintains the degree of vacuum in the beam passage space SPb3 by performing differential exhaust between the beam irradiation apparatus 1 and the sample W. That is, the differential pumping system 12 performs differential pumping between the beam irradiation device 1 and the sample W, so that a relatively high vacuum is generated between the beam irradiation device 1 and the sample W compared to the surroundings. A local vacuum region VSP is maintained, and the local vacuum region VSP includes the local beam passage space SPb3. In other words, the differential pumping system 12 performs differential pumping so that the local beam passage space SPb3 is included in the local vacuum region VSP. Note that the differential exhaust in the present embodiment is an air pressure between the sample W and the beam irradiation apparatus 1 between one space (for example, the beam passage space SPb3) and another space different from the one space. This corresponds to exhausting the beam passage space SPb3 while utilizing the property that the difference is maintained by the exhaust resistance of the gap between the sample W and the beam irradiation apparatus 1. Since the beam passage space SPb3 locally covers at least a part of the surface WSu of the sample W (for example, an irradiation region irradiated with the electron beam EB), the vacuum region VSP also includes the surface WSu of the sample W. At least a part (for example, an irradiation region irradiated with the electron beam EB) is locally covered. Specifically, an exhaust groove (that is, an opening that does not penetrate the vacuum forming member 121) 124 that surrounds the beam exit port 1232 is formed on the exit surface 121 LS of the vacuum forming member 121. A vacuum pump 52 is connected to the exhaust groove 124 via a pipe (that is, a pipe line) 125 formed in the vacuum forming member 121 and the side wall member 122 so as to communicate with the exhaust groove 124. A first end (that is, one end portion) of the pipe 125 is connected to the vacuum pump 52, and a second end (that is, the other end portion) of the pipe 125 substantially forms the exhaust groove 124. Part) is in contact with the space between the exit surface 12LS and the surface WSu of the sample W. Note that FIG. 3 shows an example in which the differential exhaust system 12 has a structure in which the pipes 125 are gathered before reaching the vacuum pump 52 from the exhaust groove 124. Specifically, FIG. 3 shows an annular channel 125 extending upward from the annular exhaust groove 124 so as to penetrate the vacuum forming member 121-1 to the vacuum forming member 121-1 having the exhaust groove 124 formed therein. -1 is formed, and N1 (four in the example shown in FIG. 3) pipes 125-21 and N1 pipes 125-21 connected to the flow path 125-1 are collected in the vacuum forming member 121-2. N2 (where N2 <N1) (two in the example shown in FIG. 3) communicating with the aggregation channel 125-22 is formed in the vacuum forming member 121-3. An annular aggregate flow path 125-32 that aggregates the pipes 125-31 and N2 pipes 125-31 is formed, the pipe 125-4 communicates with the aggregate flow path 125-32, and the pipe 125-4 is a vacuum pump. The example connected to 52 is shown. Here, the number N2 of the pipes 125-31 is half of the number N1 of the pipes 125-21, and one pipe 125-31 is located at approximately the same distance from the two pipes 125-21 communicating therewith. ing. Further, the number N2 of the pipes 125-31 is half of the number of the pipes 125-4 (one in the example shown in FIG. 3), and the pipes 125-4 are substantially separated from the two pipes 125-31 communicating therewith. Located equidistant. Therefore, the length and pressure loss of the exhaust path through each pipe 125-21 are substantially equal, and the amount of air exhausted from the exhaust groove 124 is not biased regardless of the direction. However, the structure of the pipe 125 is not limited to this example. The vacuum pump 52 exhausts the space around the beam passage space SPb3 via the exhaust groove 124. As a result, the differential exhaust system 12 can appropriately maintain the degree of vacuum of the beam passage space SPb3. The exhaust groove 124 may not be connected to one ring, but may be a plurality of exhaust grooves having a plurality of part of the ring.
 図2に戻って、真空ポンプ52は、主として、ビーム通過空間SPb3の真空度を相対的に高くするために、ビーム通過空間SPb3の周囲の局所的な空間を排気するために用いられる。このため、真空ポンプ52は、真空ポンプ51が維持する真空度よりも低い真空度を維持することができる程度の排気能力を有していてもよい。つまり、真空ポンプ52の排気能力は、真空ポンプ51の排気能力よりも低くてもよい。例えば、真空ポンプ52は、ドライポンプ(或いは、他の種類の低真空用ポンプ)を含む一方でターボ分子ポンプ(或いは、他の種類の高真空用ポンプ)を含んでいない真空ポンプであってもよい。この場合、真空ポンプ52によって減圧される排気溝124及び配管125内の空間の真空度は、真空ポンプ51によって減圧されるビーム照射空間SPb1からSPb3の真空度よりも低くてもよい。尚、真空ポンプ52は、真空ポンプ51が維持する真空度よりも低い真空度を維持することができる程度の排気速度[m/s]であってもよい。 Returning to FIG. 2, the vacuum pump 52 is mainly used for exhausting a local space around the beam passage space SPb3 in order to relatively increase the degree of vacuum of the beam passage space SPb3. For this reason, the vacuum pump 52 may have an exhaust capability sufficient to maintain a vacuum level lower than the vacuum level maintained by the vacuum pump 51. That is, the exhaust capability of the vacuum pump 52 may be lower than the exhaust capability of the vacuum pump 51. For example, the vacuum pump 52 may be a vacuum pump that includes a dry pump (or other type of low vacuum pump) but does not include a turbo molecular pump (or other type of high vacuum pump). Good. In this case, the degree of vacuum in the space in the exhaust groove 124 and the pipe 125 decompressed by the vacuum pump 52 may be lower than the degree of vacuum in the beam irradiation spaces SPb1 to SPb3 decompressed by the vacuum pump 51. The vacuum pump 52 may have an exhaust speed [m 3 / s] that can maintain a vacuum level lower than the vacuum level maintained by the vacuum pump 51.
 このようにビーム通過空間SPb3に局所的な真空領域VSPが形成される一方で、試料Wの表面WSuのうちビーム通過空間SPb3に面していない部分(特に、ビーム通過空間SPb3から離れた部分)の少なくとも一部は、真空領域VSPよりも真空度が低い非真空領域に覆われていてもよい。典型的には、試料Wの表面WSuのうちビーム空間SPb3に面していない部分の少なくとも一部は、大気圧環境下にあってもよい。つまり、試料Wの表面WSuのうちビーム通過空間SPb3に面していない部分の少なくとも一部は、大気圧領域に覆われていてもよい。具体的には、差動排気系12は、ビーム通過空間SPb3を含む空間SP1(図2参照)に真空領域VSPを形成する。この空間SP1は、例えば、ビーム射出口1232及び排気溝124の少なくとも一つに接する空間を含む。空間SP1は、試料Wの表面WSuのうちビーム射出口1232及び排気溝124の少なくとも一つの直下に位置する部分に面する(つまり、接する)空間を含む。一方で、空間SP1の周囲の空間SP2(つまり、空間SP1の周囲において空間SP1に接続する(例えば、流体的に接続する)空間SP2であり、図2の参照))には、真空領域VSPが形成されない。つまり、空間SP2は、空間SP1よりも圧力が高い空間となる。この空間SP2は、例えば、ビーム射出口1232及び排気溝124から離れた空間を含む。空間SP2は、例えば、試料Wの表面WSuのうち空間SP1が面する部分とは異なる部分に面する空間を含む。空間SP2は、空間SP1を経由することなくビーム射出口1232及び排気溝124(更には、ビーム通過空間SPb2及び配管125)に接続することができない空間を含む。空間SP2は、空間SP1を経由すればビーム射出口1232及び排気溝124(更には、ビーム通過空間SPb2及び配管125)に接続することができる空間を含む。空間SP2の圧力が空間SP1の圧力よりも高いがゆえに、空間SP2から空間SP1に対して気体が流入する可能性があるが、空間SP2から空間SP1に対して流入する気体は、排気溝124(更には、ビーム射出口1232)を介して、空間SP1から排出される。つまり、空間SP2から空間SP1に対して流入する気体は、配管125(更には、ビーム通過空間SPb2)を介して、空間SP1から排出される。このため、空間SP1に形成される真空領域VSPの真空度が維持される。このため、真空領域VSPが局所的に形成される状態は、試料Wの表面WSu上において真空領域VSPが局所的に形成される状態(つまり、試料Wの表面WSuに沿った方向において真空領域VSPが局所的に形成される状態)を意味していてもよい。 Thus, while the local vacuum region VSP is formed in the beam passage space SPb3, the portion of the surface WSu of the sample W that does not face the beam passage space SPb3 (particularly, the portion away from the beam passage space SPb3). May be covered by a non-vacuum region having a lower degree of vacuum than the vacuum region VSP. Typically, at least a part of the surface WSu of the sample W that does not face the beam space SPb3 may be in an atmospheric pressure environment. That is, at least a part of the surface WSu of the sample W that does not face the beam passage space SPb3 may be covered with the atmospheric pressure region. Specifically, the differential exhaust system 12 forms a vacuum region VSP in the space SP1 (see FIG. 2) including the beam passage space SPb3. The space SP1 includes, for example, a space in contact with at least one of the beam outlet 1232 and the exhaust groove 124. The space SP1 includes a space that faces (that is, touches) a portion of the surface WSu of the sample W that is positioned immediately below at least one of the beam exit port 1232 and the exhaust groove 124. On the other hand, in the space SP2 around the space SP1 (that is, the space SP2 connected to the space SP1 (for example, fluidly connected around the space SP1, see FIG. 2)), the vacuum region VSP is Not formed. That is, the space SP2 is a space having a higher pressure than the space SP1. The space SP2 includes, for example, a space away from the beam exit 1232 and the exhaust groove 124. The space SP2 includes, for example, a space that faces a portion of the surface WSu of the sample W that is different from the portion that the space SP1 faces. The space SP2 includes a space that cannot be connected to the beam emission port 1232 and the exhaust groove 124 (further, the beam passage space SPb2 and the pipe 125) without passing through the space SP1. The space SP2 includes a space that can be connected to the beam outlet 1232 and the exhaust groove 124 (further, the beam passage space SPb2 and the pipe 125) via the space SP1. Since the pressure in the space SP2 is higher than the pressure in the space SP1, gas may flow into the space SP1 from the space SP2, but the gas flowing into the space SP1 from the space SP2 is discharged into the exhaust groove 124 ( Further, it is discharged from the space SP1 through the beam exit port 1232). That is, the gas flowing into the space SP1 from the space SP2 is discharged from the space SP1 through the pipe 125 (further, the beam passage space SPb2). For this reason, the degree of vacuum of the vacuum region VSP formed in the space SP1 is maintained. For this reason, the state in which the vacuum region VSP is locally formed is a state in which the vacuum region VSP is locally formed on the surface WSu of the sample W (that is, the vacuum region VSP in the direction along the surface WSu of the sample W). May mean a state in which is locally formed.
 再び図1において、ステージ装置2は、ビーム照射装置1の下方(つまり、-Z側)に配置される。ステージ装置2は、定盤21と、ステージ22とを備える。定盤21は、床等の支持面SF上に配置される。ステージ22は、定盤21上に配置される。ステージ22と定盤21との間には、定盤21の振動のステージ22への伝達を防止するための不図示の防振装置が設置されている。 In FIG. 1 again, the stage device 2 is disposed below the beam irradiation device 1 (that is, on the −Z side). The stage device 2 includes a surface plate 21 and a stage 22. The surface plate 21 is disposed on a support surface SF such as a floor. The stage 22 is disposed on the surface plate 21. Between the stage 22 and the surface plate 21, an anti-vibration device (not shown) for preventing the vibration of the surface plate 21 from being transmitted to the stage 22 is installed.
 ステージ22は、試料Wを保持可能である。ステージ22は、保持した試料Wをリリース可能である。試料Wをリリース可能に保持するために、ステージ22は、図4及び図5に示すように、底部材221と、側壁部材222と、複数の支持部材223とを備える。底部材221は、XY平面に沿って延びる円板状の(或いは、その他の任意の形状の)部材である。試料Wの外形又は輪郭が円形状である場合には、底部材221は円板状であってもよく、試料Wの外形又は輪郭が矩形状である場合には、底部材221は矩形状であってもよい。側壁部材222は、底部材221の外縁において、底部材221から上方(つまり、+Z側)に突き出るように形成される部材である。側壁部材222は、平面視において環状の形状(或いは、その他の任意の形状)を有する部材である。試料Wの外形又は輪郭が円形状である場合には、側壁部材222は平面視において環状の形状であってもよく、試料Wの外形又は輪郭が矩形状である場合には、側壁部材222は平面視において矩形状であってもよい。側壁部材222の上面(つまり、+Z側の面)222Suは、底部材221の上面221Suよりも上方に位置する。このため、ステージ22には、底部材221と側壁部材222とによって囲まれた凹部空間に相当するステージ空間SPsが形成されている。複数の支持部材223の夫々は、側壁部材222によって囲まれた領域(つまり、ステージ空間SPs)において、底部材221から上方(つまり、+Z側)に突き出るように底部材221に形成されるピン状の又は円錐状の若しくは角錐状の部材である。複数の支持部材223は、側壁部材222によって囲まれた領域において、規則的な(或いは、ランダムな)配列パターンで配列されている。尚、複数の支持部材223は、側壁部材222によって囲まれた領域において、一様に分布するという規則的な配列パターンであってもよく、側壁部材222によって囲まれた領域における当該領域の中心(重心)からの距離に応じて密度が異なるという規則的な配列パターンであってもよい。支持部材223の上面223Suは、側壁部材222の上面222Suと同じ高さに位置する。つまり、支持部材223の上面223Suは、側壁部材222の上面222Suと同じ平面に位置していてもよい。ステージ22は、試料Wの裏面(つまり、表面WSuの逆側の面であって、-Z側の面)WSlが側壁部材222の上面222Su及び複数の支持部材223の上面223Suに接触する状態で、試料Wを保持する。ステージ22は、試料Wの裏面WSlがステージ空間SPsに面する状態で、試料Wを保持する。 The stage 22 can hold the sample W. The stage 22 can release the held sample W. In order to hold the sample W in a releasable manner, the stage 22 includes a bottom member 221, a side wall member 222, and a plurality of support members 223 as shown in FIGS. 4 and 5. The bottom member 221 is a disk-like (or other arbitrary shape) member extending along the XY plane. When the outer shape or contour of the sample W is circular, the bottom member 221 may be disk-shaped, and when the outer shape or contour of the sample W is rectangular, the bottom member 221 is rectangular. There may be. The side wall member 222 is a member formed so as to protrude upward (that is, + Z side) from the bottom member 221 at the outer edge of the bottom member 221. The side wall member 222 is a member having an annular shape (or other arbitrary shape) in plan view. When the outer shape or outline of the sample W is circular, the side wall member 222 may have an annular shape in plan view. When the outer shape or outline of the sample W is rectangular, the side wall member 222 is It may be rectangular in plan view. The upper surface (that is, + Z side surface) 222Su of the side wall member 222 is located above the upper surface 221Su of the bottom member 221. Therefore, a stage space SPs corresponding to a recessed space surrounded by the bottom member 221 and the side wall member 222 is formed in the stage 22. Each of the plurality of support members 223 has a pin shape formed on the bottom member 221 so as to protrude upward (that is, on the + Z side) from the bottom member 221 in a region surrounded by the side wall member 222 (that is, the stage space SPs). Or a conical or pyramidal member. The plurality of support members 223 are arranged in a regular (or random) arrangement pattern in a region surrounded by the side wall member 222. The plurality of support members 223 may have a regular arrangement pattern in which the support members 223 are uniformly distributed in the region surrounded by the side wall member 222, and the center of the region in the region surrounded by the side wall member 222 ( It may be a regular arrangement pattern in which the density varies depending on the distance from the center of gravity. The upper surface 223Su of the support member 223 is positioned at the same height as the upper surface 222Su of the side wall member 222. That is, the upper surface 223Su of the support member 223 may be located on the same plane as the upper surface 222Su of the side wall member 222. The stage 22 is in a state where the back surface of the sample W (that is, the surface opposite to the front surface WSu and the surface on the −Z side) WS1 is in contact with the upper surface 222Su of the side wall member 222 and the upper surfaces 223Su of the plurality of support members 223. The sample W is held. The stage 22 holds the sample W with the back surface WSl of the sample W facing the stage space SPs.
 底部材221の上面221Suには、排気口2241が形成されている。排気口2241には、配管2251を介して真空ポンプ53が連結されている。真空ポンプ53は、底部材221と側壁部材222と試料Wとによって囲まれたステージ空間SPsを排気して大気圧よりも減圧可能である。ここで、試料Wの表面WSu(但し、試料Wの表面WSuのうち上述した局所的な真空領域VSPに面する真空面部分WSu_vacを除く)が大気圧にさらされている。このため、ステージ空間SPsが排気される(つまり、減圧される)と、試料Wには、試料Wをステージ空間SPsに引き寄せる負圧が作用する。ステージ22は、この負圧を利用して試料Wを真空吸着することで、試料Wを保持する。従って、ステージ22は、いわゆる真空チャックを利用して試料Wを保持するステージであると言える。 An exhaust port 2241 is formed on the upper surface 221Su of the bottom member 221. A vacuum pump 53 is connected to the exhaust port 2241 via a pipe 2251. The vacuum pump 53 can evacuate the stage space SPs surrounded by the bottom member 221, the side wall member 222, and the sample W to reduce the pressure from the atmospheric pressure. Here, the surface WSu of the sample W (however, the vacuum surface portion WSu_vac facing the above-described local vacuum region VSP of the surface WSu of the sample W) is exposed to atmospheric pressure. For this reason, when the stage space SPs is exhausted (that is, depressurized), a negative pressure that draws the sample W toward the stage space SPs acts on the sample W. The stage 22 holds the sample W by vacuum-sucking the sample W using this negative pressure. Therefore, it can be said that the stage 22 is a stage for holding the sample W using a so-called vacuum chuck.
 真空ポンプ53は、ステージ22が試料Wを真空吸着して保持することができる程度の排気能力を有していればよい。例えば、真空ポンプ53は、ステージ空間SPsの圧力を、大気圧(つまり、概ね1×10パスカル程度のオーダーの圧力)よりも小さい圧力(例えば、5×10パスカル程度のオーダーの圧力)に維持することができる程度の排気能力を有していればよい。更に、真空ポンプ53は、ビーム通過空間SPb1からSPb3を排気する真空ポンプ51よりも低い排気能力を有していてもよい。つまり、真空ポンプ53は、試料Wの裏面WSlに面するステージ空間SPsの圧力を、試料Wの表面WSuに面するビーム通過空間SPb3の圧力(つまり、真空領域VSPの圧力)ほどには低くしなくてもよい程度の排気能力を有していてもよい。尚、真空ポンプ53は、ステージ空間SPsの圧力を5×10パスカル以下に維持することができる程度の排気速度[m/s]であってもよい。 The vacuum pump 53 only needs to have an exhaust capability that allows the stage 22 to vacuum-suck and hold the sample W. For example, the vacuum pump 53 sets the pressure of the stage space SPs to a pressure (for example, a pressure on the order of about 5 × 10 4 Pascals) smaller than the atmospheric pressure (that is, a pressure on the order of about 1 × 10 5 Pascals). What is necessary is just to have the exhaust capability which can be maintained. Furthermore, the vacuum pump 53 may have a lower exhaust capacity than the vacuum pump 51 that exhausts the beam passage spaces SPb1 to SPb3. That is, the vacuum pump 53 lowers the pressure of the stage space SPs facing the back surface WSl of the sample W as low as the pressure of the beam passage space SPb3 facing the surface WSu of the sample W (that is, the pressure of the vacuum region VSP). You may have the exhaust capability of the grade which is not necessary. The vacuum pump 53 may have an exhaust speed [m 3 / s] that can maintain the pressure of the stage space SPs at 5 × 10 4 Pascal or less.
 底部材221の上面には更に、排気口2242が形成されている。排気口2242には、配管2252を介して真空ポンプ54が連結されている。真空ポンプ54は、真空ポンプ53と同様に、ステージ空間SPsを排気して大気圧よりも減圧可能である。ステージ空間SPsが減圧されると、ステージ空間SPsの圧力と真空領域VSPの圧力との差は、大気圧と真空領域VSPの圧力との差よりも小さくなる。この場合、底部材221と側壁部材222と試料Wとは、ステージ空間SPsの気密性を確保可能な部材(つまり、ステージ空間SPsを密閉可能な部材であって、ステージ空間SPsとステージ空間SPsの外部の空間との間に圧力差を形成可能な部材)として用いられる。真空ポンプ54は、ビーム通過空間SPb1からSPb3を排気する真空ポンプ51と同等程度の排気能力を有している。一例として、真空ポンプ54は、ステージ空間SPsの圧力を1×10-3パスカル以下に維持する(例えば、概ね1×10-3パスカルから1×10-4パスカルのオーダーで維持する)ことができる程度の排気能力を有していてもよい。尚、真空ポンプ54は、ステージ空間SPsの圧力を1×10-3パスカル以下に維持することができる程度の排気速度[m/s]であってもよい。このような真空ポンプ54として、例えば、主ポンプとして用いられるターボ分子ポンプ(或いは、拡散ポンプ、クライオポンプ及びスパッタイオンポンプの少なくとも一つを含む他の種類の高真空用ポンプ)と補助ポンプとして用いられるドライポンプ(或いは、他の種類の低真空用ポンプ)とが組み合わせられた真空ポンプが用いられてもよい。このため、真空ポンプ54がステージ空間SPsを排気する場合には、真空ポンプ53がステージ空間SPsを排気する場合と比較して、試料Wの表面WSu(特に、局所的な真空領域VSPに面する真空面部分WSu_v)に対する圧力と、試料Wの裏面WSlに対する圧力との間の差(つまり、圧力差)が小さくなる。つまり、ステージ空間SPsの圧力と真空領域VSPの圧力との差が小さくなる。本実施形態では、走査型電子顕微鏡SEMは、このように真空ポンプ54を用いて試料Wの表面WSu(特に、真空面部分WSu_v)に対する圧力と試料Wの裏面WSlに対する圧力との間の差を小さくすることで、真空領域VSPの形成に起因した試料Wの変形を抑制するための変形抑制動作を行う。尚、変形抑制動作については、後に詳述する。 An exhaust port 2242 is further formed on the upper surface of the bottom member 221. A vacuum pump 54 is connected to the exhaust port 2242 via a pipe 2252. As with the vacuum pump 53, the vacuum pump 54 can evacuate the stage space SPs to reduce the pressure from atmospheric pressure. When the stage space SPs is depressurized, the difference between the pressure in the stage space SPs and the pressure in the vacuum region VSP becomes smaller than the difference between the atmospheric pressure and the pressure in the vacuum region VSP. In this case, the bottom member 221, the side wall member 222, and the sample W are members that can ensure the airtightness of the stage space SPs (that is, members that can seal the stage space SPs, and the stage space SPs and the stage space SPs). It is used as a member capable of forming a pressure difference with the external space. The vacuum pump 54 has an exhaust capability equivalent to that of the vacuum pump 51 that exhausts the beam passage spaces SPb1 to SPb3. As an example, the vacuum pump 54 can maintain the pressure of the stage space SPs at 1 × 10 −3 Pascal or less (eg, approximately on the order of 1 × 10 −3 Pascal to 1 × 10 −4 Pascal). It may have a degree of exhaust capability. The vacuum pump 54 may have an exhaust speed [m 3 / s] that can maintain the pressure of the stage space SPs at 1 × 10 −3 Pascal or less. As such a vacuum pump 54, for example, a turbo molecular pump used as a main pump (or another type of high vacuum pump including at least one of a diffusion pump, a cryopump and a sputter ion pump) and an auxiliary pump are used. A vacuum pump in combination with a dry pump (or another type of low vacuum pump) may be used. For this reason, when the vacuum pump 54 exhausts the stage space SPs, the surface WSu (particularly, the local vacuum region VSP) of the sample W is compared with the case where the vacuum pump 53 exhausts the stage space SPs. The difference (that is, the pressure difference) between the pressure on the vacuum surface portion WSu_v) and the pressure on the back surface WSl of the sample W is reduced. That is, the difference between the pressure in the stage space SPs and the pressure in the vacuum region VSP is reduced. In the present embodiment, the scanning electron microscope SEM uses the vacuum pump 54 in this way to calculate the difference between the pressure on the surface WSu of the sample W (particularly the vacuum surface portion WSu_v) and the pressure on the back surface WSl of the sample W. By making it smaller, a deformation suppressing operation for suppressing the deformation of the sample W due to the formation of the vacuum region VSP is performed. The deformation suppressing operation will be described in detail later.
 再び図1において、ステージ22は、制御装置4の制御下で、試料Wを保持したまま、X軸方向、Y軸方向、Z軸方向、θX方向、θY方向及びθZ方向の少なくとも一つに沿って移動可能である。ステージ22を移動させるために、ステージ装置2は、ステージ駆動系23を備えている。ステージ駆動系23は、例えば、任意のモータ(例えば、リニアモータ等)を用いて、ステージ22を移動させる。更に、ステージ装置2は、ステージ22の位置を計測する位置計測装置24を備えている。位置計測装置24は、例えば、エンコーダ及びレーザ干渉計のうちの少なくとも一方を含む。尚、ステージ22が試料Wを保持している場合には、制御装置4は、ステージ22の位置から試料Wの位置を特定可能である。尚、ステージ22は、ビーム照射装置1による電子ビームEBの位置と、ステージ22の位置(XYZ方向における位置)とを紐付けるための基準マークを備える基準板を有していてもよい。 In FIG. 1 again, the stage 22 holds the sample W under the control of the control device 4 and follows at least one of the X axis direction, the Y axis direction, the Z axis direction, the θX direction, the θY direction, and the θZ direction. Can be moved. In order to move the stage 22, the stage apparatus 2 includes a stage drive system 23. The stage drive system 23 moves the stage 22 using, for example, an arbitrary motor (for example, a linear motor). Furthermore, the stage device 2 includes a position measuring device 24 that measures the position of the stage 22. The position measurement device 24 includes, for example, at least one of an encoder and a laser interferometer. When the stage 22 holds the sample W, the control device 4 can specify the position of the sample W from the position of the stage 22. The stage 22 may have a reference plate having a reference mark for associating the position of the electron beam EB by the beam irradiation apparatus 1 with the position of the stage 22 (position in the XYZ directions).
 ステージ22がXY平面に沿って移動すると、XY平面に沿った方向における試料Wとビーム照射装置1との相対位置が変わる。このため、ステージ22がXY平面に沿って移動すると、XY平面に沿った方向における試料Wと試料Wの表面WSuにおける電子ビームEBの照射領域との相対位置が変わる。つまり、ステージ22がXY平面に沿って移動すると、XY平面に沿った方向(つまり、試料Wの表面WSuに沿った方向)において、電子ビームEBの照射領域が試料Wの表面WSuに対して移動する。更に、ステージ22がXY平面に沿って移動すると、XY平面に沿った方向における試料Wとビーム通過空間SPb3及び真空領域VSPとの相対位置が変わる。つまり、ステージ22がXY平面に沿って移動すると、XY平面に沿った方向(つまり、試料Wの表面WSuに沿った方向)において、ビーム通過空間SPb3及び真空領域VSPが試料Wの表面WSuに対して移動する。制御装置4は、試料Wの表面WSuの所望位置に電子ビームEBが照射され且つビーム通過空間SPb3が設定される(つまり、真空領域VSPが形成される)ように、ステージ駆動系23を制御してステージ22をXY平面に沿って移動させてもよい。具体的には、例えば、制御装置4は、試料Wの表面WSuの第1部分に真空領域VSPが形成されるように、ステージ駆動系23を制御してステージ22をXY平面に沿って移動させる。試料Wの表面WSuの第1部分に真空領域VSPが形成されるようにステージ22が移動した後、ビーム照射装置1は、試料Wの表面WSuの第1部分に電子ビームEBを照射して、第1部分の状態を計測する。ビーム照射装置1が試料Wの表面WSuの第1部分に電子ビームEBを照射している期間中は、ステージ駆動系23は、ステージ22をXY平面に沿って移動させなくてもよい。第1部分の状態の計測が完了した後、制御装置4は、試料Wの表面WSuの第2部分に真空領域VSPが形成されるように、ステージ駆動系23を制御してステージ22をXY平面に沿って移動させる。試料Wの表面WSuの第2部分に真空領域VSPが形成されるようにステージ22が移動した後、ビーム照射装置1は、試料Wの表面WSuの第2部分に電子ビームEBを照射して、第2部分の状態を計測する。ビーム照射装置1が試料Wの表面WSuの第2部分に電子ビームEBを照射している期間中もまた、ステージ駆動系23は、ステージ22をXY平面に沿って移動させなくてもよい。以降、同様の動作が繰り返されることで、試料Wの表面WSuの状態が計測される。 When the stage 22 moves along the XY plane, the relative position between the sample W and the beam irradiation apparatus 1 in the direction along the XY plane changes. For this reason, when the stage 22 moves along the XY plane, the relative position between the sample W in the direction along the XY plane and the irradiation region of the electron beam EB on the surface WSu of the sample W changes. That is, when the stage 22 moves along the XY plane, the irradiation region of the electron beam EB moves relative to the surface WSu of the sample W in the direction along the XY plane (that is, the direction along the surface WSu of the sample W). To do. Further, when the stage 22 moves along the XY plane, the relative positions of the sample W, the beam passage space SPb3, and the vacuum region VSP in the direction along the XY plane change. That is, when the stage 22 moves along the XY plane, the beam passing space SPb3 and the vacuum region VSP with respect to the surface WSu of the sample W in the direction along the XY plane (that is, the direction along the surface WSu of the sample W). Move. The control device 4 controls the stage drive system 23 so that the electron beam EB is irradiated to a desired position on the surface WSu of the sample W and the beam passage space SPb3 is set (that is, the vacuum region VSP is formed). The stage 22 may be moved along the XY plane. Specifically, for example, the control device 4 controls the stage drive system 23 to move the stage 22 along the XY plane so that the vacuum region VSP is formed in the first portion of the surface WSu of the sample W. . After the stage 22 moves so that the vacuum region VSP is formed on the first portion of the surface WSu of the sample W, the beam irradiation apparatus 1 irradiates the first portion of the surface WSu of the sample W with the electron beam EB, The state of the first part is measured. During the period in which the beam irradiation apparatus 1 irradiates the first portion of the surface WSu of the sample W with the electron beam EB, the stage drive system 23 does not have to move the stage 22 along the XY plane. After the measurement of the state of the first part is completed, the control device 4 controls the stage drive system 23 so that the vacuum region VSP is formed in the second part of the surface WSu of the sample W, and moves the stage 22 to the XY plane. Move along. After the stage 22 moves so that the vacuum region VSP is formed in the second part of the surface WSu of the sample W, the beam irradiation apparatus 1 irradiates the second part of the surface WSu of the sample W with the electron beam EB, The state of the second part is measured. The stage driving system 23 may not move the stage 22 along the XY plane during the period in which the beam irradiation apparatus 1 irradiates the second portion of the surface WSu of the sample W with the electron beam EB. Thereafter, the state of the surface WSu of the sample W is measured by repeating the same operation.
 ステージ22がZ軸に沿って移動すると、Z軸に沿った方向における試料Wとビーム照射装置1との相対位置が変わる。このため、ステージ22がZ軸に沿って移動すると、Z軸に沿った方向における試料Wと電子ビームEBのフォーカス位置との相対位置が変わる。制御装置4は、試料Wの表面WSuに(或いは、表面WSuの近傍に)電子ビームEBのフォーカス位置が設定されるように、ステージ駆動系23を制御してステージ22をZ軸に沿って移動させてもよい。ここで、電子ビームEBのフォーカス位置は、ビーム光学系11の結像位置に対応する焦点位置又は電子ビームEBのぼけが最も少なくなるようなZ軸方向の位置であってもよい。 When the stage 22 moves along the Z axis, the relative position between the sample W and the beam irradiation apparatus 1 in the direction along the Z axis changes. For this reason, when the stage 22 moves along the Z axis, the relative position between the sample W and the focus position of the electron beam EB in the direction along the Z axis changes. The control device 4 moves the stage 22 along the Z axis by controlling the stage drive system 23 so that the focus position of the electron beam EB is set on the surface WSu of the sample W (or in the vicinity of the surface WSu). You may let them. Here, the focus position of the electron beam EB may be a focal position corresponding to the imaging position of the beam optical system 11 or a position in the Z-axis direction where the blur of the electron beam EB is minimized.
 更に、ステージ22がZ軸に沿って移動すると、試料Wとビーム照射装置1との間の間隔Dが変わる。このため、ステージ駆動系23は、制御装置4の制御下で、後述する間隔調整系14と協調しながら、間隔Dが所望間隔D_targetとなるようにステージ22を移動させてもよい。このとき、制御装置4は、位置計測装置24の計測結果(更には、後述するビーム照射装置1の位置(特に、真空形成部材121の位置)を計測する位置計測装置15の計測結果)に基づいて、実際の間隔Dを特定すると共に、特定した間隔Dが所望間隔D_targetとなるようにステージ駆動系23及び間隔調整系14の少なくとも一方を制御する。このため、位置計測装置15及び24は、間隔Dを検出する検出装置としても機能し得る。尚、試料WのZ軸方向の厚み(寸法)が既知である場合、制御装置4は、実際の間隔Dに代えて/或いは加えて、ビーム照射装置1と基準面(例えば基準板の表面)とのZ軸方向における距離に関する情報と、試料WのZ軸方向の厚み(寸法)に関する情報とを用いて、ビーム照射装置1から試料Wまでの距離を目標となる距離となるように、ステージ駆動系23及び間隔調整系14のうち少なくとも一方を制御してもよい。 Furthermore, when the stage 22 moves along the Z axis, the interval D between the sample W and the beam irradiation apparatus 1 changes. Therefore, the stage drive system 23 may move the stage 22 under the control of the control device 4 so that the interval D becomes the desired interval D_target in cooperation with the interval adjustment system 14 described later. At this time, the control device 4 is based on the measurement result of the position measurement device 24 (further, the measurement result of the position measurement device 15 that measures the position of the beam irradiation device 1 described later (in particular, the position of the vacuum forming member 121)). Thus, the actual interval D is specified, and at least one of the stage drive system 23 and the interval adjustment system 14 is controlled so that the specified interval D becomes the desired interval D_target. For this reason, the position measurement devices 15 and 24 can also function as a detection device that detects the interval D. In addition, when the thickness (dimension) of the sample W in the Z-axis direction is known, the control device 4 replaces / in addition to the actual distance D, and in addition to the beam irradiation device 1 and the reference surface (for example, the surface of the reference plate). Using the information about the distance in the Z-axis direction and the information about the thickness (dimension) of the sample W in the Z-axis direction, the stage is set so that the distance from the beam irradiation device 1 to the sample W becomes the target distance. At least one of the drive system 23 and the interval adjustment system 14 may be controlled.
 支持フレーム3は、ビーム照射装置1を支持する。具体的には、支持フレーム3は、支持脚31と、支持部材32とを備える。支持脚31は、支持面SF上に配置される。支持脚31と支持面SFとの間には、支持面SFの振動の支持脚31への伝達を防止する、或いは低減するための不図示の防振装置が設置されていてもよい。支持脚31は、例えば、支持面SFから上方に延びる部材である。支持脚31は、支持部材32を支持する。支持部材32は、平面視において、中心に開口321が形成された環状のプレート部材である。支持部材32の上面には、間隔調整系14を介して、ビーム照射装置1の外面(図1から図3に示す例では、差動排気系12が備える側壁部材122の外面)から外側に延びるフランジ部材13の下面が連結されている。このとき、ビーム照射装置1は、開口321を貫通するように配置される。その結果、支持フレーム3は、ビーム照射装置1を支持部材32の上面から持ち上げるように支持することができる。但し、支持フレーム3は、ビーム照射装置1を支持することができる限りは、図1に示す支持方法とは異なる他の支持方法でビーム照射装置1を支持してもよい。例えば、支持フレーム3は、ビーム照射装置1を支持部材32の下面から吊り下げるように支持してもよい。尚、支持脚31と支持部材32との間に、支持面SFの振動の支持部材32への伝達を防止する、或いは低減するための不図示の防振装置が設けられていてもよい。 The support frame 3 supports the beam irradiation device 1. Specifically, the support frame 3 includes support legs 31 and support members 32. The support leg 31 is disposed on the support surface SF. Between the support leg 31 and the support surface SF, an anti-vibration device (not shown) for preventing or reducing transmission of vibration of the support surface SF to the support leg 31 may be installed. The support leg 31 is a member that extends upward from the support surface SF, for example. The support leg 31 supports the support member 32. The support member 32 is an annular plate member having an opening 321 formed in the center in plan view. On the upper surface of the support member 32, the distance adjusting system 14 is extended outward from the outer surface of the beam irradiation apparatus 1 (in the example shown in FIGS. 1 to 3, the outer surface of the side wall member 122 provided in the differential exhaust system 12). The lower surface of the flange member 13 is connected. At this time, the beam irradiation apparatus 1 is disposed so as to penetrate the opening 321. As a result, the support frame 3 can support the beam irradiation device 1 so as to lift it from the upper surface of the support member 32. However, the support frame 3 may support the beam irradiation device 1 by another support method different from the support method shown in FIG. 1 as long as the beam irradiation device 1 can be supported. For example, the support frame 3 may support the beam irradiation device 1 so as to be suspended from the lower surface of the support member 32. In addition, between the support leg 31 and the support member 32, the vibration isolator (not shown) for preventing or reducing the transmission of the vibration of the support surface SF to the support member 32 may be provided.
 間隔調整系14は、少なくともZ軸に沿ってビーム照射装置1を移動させることで、真空形成部材121の射出面121LSと試料Wの表面WSuとの間の間隔D、或いは真空形成部材121の射出面121LSから試料Wの表面WSuまでのZ軸方向の距離を調整する。例えば、間隔調整系14は、間隔Dが所望間隔D_targetとなるように、ビーム照射装置1をZ軸方向に沿って移動させてもよい。このような間隔調整系14として、例えば、モータの駆動力を用いてビーム照射装置1を移動させる駆動系、ピエゾ素子の圧電効果によって発生する力を用いてビーム照射装置1を移動させる駆動系、クーロン力(例えば、少なくとも2つの電極間に発生する静電力)を用いてビーム照射装置1を移動させる駆動系、及び、ローレンツ力(例えば、コイルと磁極との間に発生する電磁力)を用いてビーム照射装置1を移動させる駆動系の少なくとも一つが用いられてもよい。但し、射出面121LSと表面WSuとの間の間隔Dを固定したままでよい場合には、間隔調整系14に代えて、シム等の間隔調整部材が、支持部材32とフランジ部材13との間に配置されていてもよい。尚、この場合、シム等の間隔調整部材は支持部材32とフランジ部材13との間に配置されていなくてもよい。また、ビーム照射装置1は、XY方向に沿って移動可能であってもよい。 The interval adjusting system 14 moves the beam irradiation device 1 at least along the Z axis, thereby causing the interval D between the emission surface 121LS of the vacuum forming member 121 and the surface WSu of the sample W or the emission of the vacuum forming member 121. The distance in the Z-axis direction from the surface 121LS to the surface WSu of the sample W is adjusted. For example, the interval adjusting system 14 may move the beam irradiation apparatus 1 along the Z-axis direction so that the interval D becomes the desired interval D_target. As such an interval adjustment system 14, for example, a drive system that moves the beam irradiation apparatus 1 using a driving force of a motor, a drive system that moves the beam irradiation apparatus 1 using a force generated by the piezoelectric effect of a piezoelectric element, A drive system that moves the beam irradiation device 1 using Coulomb force (for example, electrostatic force generated between at least two electrodes) and Lorentz force (for example, electromagnetic force generated between the coil and the magnetic pole) are used. Thus, at least one of drive systems for moving the beam irradiation apparatus 1 may be used. However, when the distance D between the exit surface 121LS and the surface WSu may be fixed, a distance adjusting member such as a shim is provided between the support member 32 and the flange member 13 instead of the distance adjusting system 14. May be arranged. In this case, the gap adjusting member such as a shim may not be disposed between the support member 32 and the flange member 13. Moreover, the beam irradiation apparatus 1 may be movable along the XY directions.
 間隔調整系14によって移動可能なビーム照射装置1のZ方向における位置(特に、真空形成部材121のZ方向における位置)を計測するために、走査型電子顕微鏡SEMは、位置計測器15を備えている。位置計測器15は、例えば、エンコーダ及びレーザ干渉計のうちの少なくとも一方を含む。尚、位置計測器15は、ビーム照射装置1のXY方向における位置やθX方向、θY方向における姿勢を計測してもよい。また、ビーム照射装置1のXY方向における位置やθX方向、θY方向における姿勢を計測する計測装置が位置計測器15と別に設けられていてもよい。 In order to measure the position in the Z direction of the beam irradiation apparatus 1 movable by the interval adjustment system 14 (particularly, the position in the Z direction of the vacuum forming member 121), the scanning electron microscope SEM includes a position measuring device 15. Yes. The position measuring device 15 includes, for example, at least one of an encoder and a laser interferometer. Note that the position measuring device 15 may measure the position of the beam irradiation apparatus 1 in the XY direction and the attitude in the θX direction and the θY direction. Further, a measurement device that measures the position of the beam irradiation device 1 in the XY direction, the orientation in the θX direction, and the θY direction may be provided separately from the position measuring device 15.
 制御装置4は、走査型電子顕微鏡SEMの動作を制御する。例えば、制御装置4は、電子ビームEBを試料Wに照射するように、ビーム照射装置1を制御する。例えば、制御装置4は、ビーム通過空間SPb1からSPb3を真空空間にするように、ポンプ系5(特に、真空ポンプ51及び52)を制御する。例えば、制御装置4は、試料Wの表面WSuの所望位置に電子ビームEBが照射されるように、ステージ駆動系23を制御する。例えば、制御装置4は、真空形成部材121の射出面121LSと試料Wの表面WSuとの間の間隔Dが所望間隔D_targetとなるように、間隔調整系14を制御する。例えば、制御装置4は、ステージ22が試料Wを保持するように、ポンプ系5(特に、真空ポンプ53)を制御する。本実施形態では特に、制御装置4は、真空領域VSPの形成に起因した試料Wの変形を抑制するための変形抑制動作が行われるように、ポンプ系5(特に、真空ポンプ54)を制御する。以下、変形抑制動作について更に説明を進める。尚、走査型電子顕微鏡SEMの動作を制御するために、制御装置4は、例えば、CPU(Central Processing Unit)等の演算装置及びメモリ等の記憶装置の少なくとも一方を含んでいてもよい。 Control device 4 controls the operation of the scanning electron microscope SEM. For example, the control device 4 controls the beam irradiation device 1 so as to irradiate the sample W with the electron beam EB. For example, the control device 4 controls the pump system 5 (particularly, the vacuum pumps 51 and 52) so that the beam passage spaces SPb1 to SPb3 are in a vacuum space. For example, the control device 4 controls the stage drive system 23 so that the electron beam EB is irradiated to a desired position on the surface WSu of the sample W. For example, the control device 4 controls the interval adjustment system 14 so that the interval D between the emission surface 121LS of the vacuum forming member 121 and the surface WSu of the sample W becomes the desired interval D_target. For example, the control device 4 controls the pump system 5 (particularly, the vacuum pump 53) so that the stage 22 holds the sample W. In the present embodiment, in particular, the control device 4 controls the pump system 5 (particularly, the vacuum pump 54) so that the deformation suppression operation for suppressing the deformation of the sample W due to the formation of the vacuum region VSP is performed. . Hereinafter, the deformation suppression operation will be further described. In order to control the operation of the scanning electron microscope SEM, the control device 4 may include at least one of an arithmetic device such as a CPU (Central Processing Unit) and a storage device such as a memory.
 (2)変形抑制動作
 続いて、変形抑制動作について説明する。
(2) Deformation suppression operation Next, the deformation suppression operation will be described.
 (2-1)局所的な真空領域VSPの形成によって試料Wが変形する技術的理由
 はじめに、変形抑制動作の前提として、図6(a)から図6(c)を参照しながら、真空領域VSPの形成に起因して試料Wが変形する技術的理由について説明した後に、当該変形を抑制するための具体的方法について説明する。
(2-1) Technical Reason for Deformation of Sample W Due to Formation of Local Vacuum Region VSP First, as a premise of the deformation suppression operation, the vacuum region VSP will be described with reference to FIGS. After describing the technical reason why the sample W is deformed due to the formation of, a specific method for suppressing the deformation will be described.
 図6(a)に示すように、ステージ22が試料Wを保持する場合には、真空ポンプ53が、配管2251を介してステージ空間SPsを減圧する。その結果、上述したように、試料Wの裏面WSlをステージ空間SPsに引き寄せる負圧が試料Wの裏面WSlに作用する。試料Wが固体であるため、試料Wの裏面WSlをステージ空間SPsに引き寄せる負圧は、実質的には、試料Wそのものをステージ空間SPsに引き寄せる負圧と等価である。この負圧は、試料Wをステージ22(特に、側壁部材222の上面222Su及び複数の支持部材223の上面223Su)に押し付ける力として試料Wに作用する。従って、ステージ22は、この真空ポンプ53による減圧に起因して試料W(特に、試料Wの裏面WSl)に作用する力F_hold1を、試料Wを保持するための力として用いることで、試料Wを保持する。 As shown in FIG. 6A, when the stage 22 holds the sample W, the vacuum pump 53 depressurizes the stage space SPs via the pipe 2251. As a result, as described above, the negative pressure that draws the back surface WSl of the sample W toward the stage space SPs acts on the back surface WSl of the sample W. Since the sample W is solid, the negative pressure that pulls the back surface WSl of the sample W to the stage space SPs is substantially equivalent to the negative pressure that pulls the sample W itself to the stage space SPs. This negative pressure acts on the sample W as a force that presses the sample W against the stage 22 (in particular, the upper surface 222Su of the side wall member 222 and the upper surfaces 223Su of the plurality of support members 223). Therefore, the stage 22 uses the force F_hold1 that acts on the sample W (particularly, the back surface WSl of the sample W) due to the decompression by the vacuum pump 53 as a force for holding the sample W. Hold.
 図6(a)に示す状況下において、図6(b)に示すように、ビーム照射装置1と試料Wとの間に局所的な真空領域VSPが形成されるとする。この場合、試料Wの表面WSuのうち真空領域VSPに面する(つまり、ビーム通過空間SPb3に面する)真空面部分WSu_vacには、真空領域VSPの形成に起因した力(つまり、真空領域VSPが試料Wの表面WSuを吸引する力)F_VSPが作用する。更には、試料Wの裏面WSlのうち真空面部分WSu_vacに対応する真空面部分WSl_vacには、真空ポンプ53によるステージ空間SPsの減圧に起因した力F_hold1が依然として作用する。試料Wが固体であるため、真空面部分WSu_vacに作用する力F_VSPは、試料Wのうち真空領域VSPに面する(つまり、ビーム通過空間SPb3に面する)特定部分W_vacに間接的に作用する。同様に、真空面部分WSl_vacに作用する力F_hold1もまた、特定部分W_vac(或いは、真空面部分WSu_vacに間接的に作用する。つまり、試料Wの特定部分W_vacには、真空領域VSPから試料Wに作用する力(つまり、真空領域VSPが試料Wを吸引する力)F_VSPと、ステージ空間SPsから試料Wに作用する力(つまり、ステージ空間SPsが試料Wを吸引する力であって、ステージ22が試料Wを保持する力)F_hold1とを合算した力F_vacが作用する。ここで、上述したように、試料Wの表面WSuに面する真空領域VSPの圧力は、試料Wの裏面WSlに面するステージ空間SPsの圧力よりも低くなる。つまり、真空面部分WSu_vacに作用する圧力は、真空面部分WSl_vacに作用する圧力よりも小さくなる。このため、真空領域VSPが形成されると、特定部分W_vacに作用する力F_vacは、当該特定部分W_vacを真空領域VSPに引き寄せる力となる。つまり、真空領域VSPが形成される前は特定部分W_vacをステージ22に押し付ける力F_hold1が作用していた特定部分W_vacには、真空領域VSPの形成に起因して、特定部分W_vacをステージ22から引き離す力F_vacが作用する。言い換えれば、特定部分W_vacには、真空領域VSPの形成に起因して、ステージ22からビーム照射装置1へと向かう方向に向けて特定部分W_vacを押し出す、又は引き離す(つまり、変位させる)力F_vacが作用する。 6A, assume that a local vacuum region VSP is formed between the beam irradiation device 1 and the sample W as shown in FIG. 6B. In this case, the force (that is, the vacuum region VSP) due to the formation of the vacuum region VSP is applied to the vacuum surface portion WSu_vac facing the vacuum region VSP (that is, facing the beam passage space SPb3) of the surface WSu of the sample W. F_VSP acts to attract the surface WSu of the sample W). Furthermore, the force F_hold1 resulting from the pressure reduction of the stage space SPs by the vacuum pump 53 still acts on the vacuum surface portion WSl_vac corresponding to the vacuum surface portion WSu_vac of the back surface WSl of the sample W. Since the sample W is solid, the force F_VSP acting on the vacuum surface portion WSu_vac indirectly acts on the specific portion W_vac facing the vacuum region VSP (that is, facing the beam passage space SPb3) of the sample W. Similarly, the force F_hold1 acting on the vacuum surface portion WSl_vac also acts indirectly on the specific portion W_vac (or on the vacuum surface portion WSu_vac. That is, the specific portion W_vac of the sample W is applied to the sample W from the vacuum region VSP. The acting force (that is, the force by which the vacuum region VSP sucks the sample W) F_VSP and the force that acts on the sample W from the stage space SPs (that is, the force by which the stage space SPs sucks the sample W) The force F_vac that is the sum of F_hold1 and the force that holds the sample W is applied.Here, as described above, the pressure in the vacuum region VSP that faces the front surface WSu of the sample W is the stage that faces the back surface WSl of the sample W. In other words, the pressure acting on the vacuum surface portion WSu_vac is less than the pressure in the space SPs. Therefore, when the vacuum region VSP is formed, the force F_vac acting on the specific portion W_vac is a force that draws the specific portion W_vac to the vacuum region VSP. The force F_vac that pulls the specific portion W_vac away from the stage 22 is applied to the specific portion W_vac, which has been subjected to the force F_hold1 that presses the specific portion W_vac against the stage 22 before the VSP is formed, due to the formation of the vacuum region VSP. In other words, due to the formation of the vacuum region VSP, the specific portion W_vac pushes or pulls away (that is, displaces) the specific portion W_vac in the direction from the stage 22 toward the beam irradiation device 1. F_vac acts.
 このように真空領域VSPの形成に起因して特定部分W_vacをステージ22から引き離す力F_vacが特定部分W_vacに作用すると、図6(c)に示すように、試料Wの特定部分W_vacがステージ22から引き離される可能性がある。一方で、試料Wのうち特定部分W_vac以外の他の部分には、真空領域VSPが形成されない。このため、試料Wのうち特定部分W_vac以外の他の部分には、依然として当該他の部分をステージ22に押し付ける力F_hold1が作用し続ける。つまり、試料Wのうち特定部分W_vac以外の他の部分は、ステージ22から引き離されにくい。その結果、図6(c)に示すように、試料Wが変形してしまう可能性がある。このような試料Wの変形は、試料Wの状態の計測にとって好ましくない。そこで、本実施形態の走査型電子顕微鏡SEMは、変形抑制動作を行うことで、このような試料Wの変形を抑制する。 As described above, when the force F_vac that pulls the specific portion W_vac away from the stage 22 due to the formation of the vacuum region VSP acts on the specific portion W_vac, the specific portion W_vac of the sample W moves from the stage 22 as shown in FIG. May be pulled apart. On the other hand, the vacuum region VSP is not formed in a portion other than the specific portion W_vac in the sample W. For this reason, the force F_hold1 that presses the other part against the stage 22 continues to act on the part other than the specific part W_vac in the sample W. That is, parts other than the specific part W_vac in the sample W are not easily separated from the stage 22. As a result, the sample W may be deformed as shown in FIG. Such deformation of the sample W is not preferable for measurement of the state of the sample W. Therefore, the scanning electron microscope SEM of the present embodiment suppresses such deformation of the sample W by performing a deformation suppressing operation.
 (2-2)変形抑制動作の具体的内容
 続いて、図7を参照しながら、変形抑制動作の具体的内容(つまり、試料Wの変形を抑制するための具体的方法)について説明する。本実施形態では、走査型電子顕微鏡SEMは、制御装置4の制御下で、試料Wを保持するために用いられる真空ポンプ53に加えて又は代えて、真空ポンプ54を用いてステージ空間SPsを排気して大気圧よりも減圧することで、試料Wの変形を抑制する。具体的には、上述したように、ステージ空間SPsを減圧する真空ポンプ54は、局所的な真空領域VSPを形成するための真空ポンプ51と同等程度の排気能力を有している。このため、真空ポンプ54がステージ空間SPsを減圧すると、試料Wの裏面WSlに面するステージ空間SPsの圧力は、試料Wの表面WSu(特に、真空面部分WSu_vac)に面する真空領域VSPの圧力と同等程度になる。つまり、試料Wの表面WSuのうちの真空面部分WSu_vacに作用する圧力は、試料Wの裏面WSlのうちの真空面部分WSl_vacに作用する圧力と同等程度になる。このため、真空ポンプ54による減圧に起因した力F_hold2は、真空領域VSPから試料Wに作用する力F_VSPと同じ大きさであって且つ向きが逆向きの力となる。ここで、上述したように、試料Wが固体であるため、真空面部分WSl_vacに作用する力F_hold2は、特定部分W_vac(或いは、真空領域VSPの形成に起因した力F_VSPが作用している真空面部分WSu_vac)に間接的に作用する。このため、力F_hold2は、ビーム照射装置1からステージ22へと向かう方向に向けて特定部分W_vac(或いは、真空領域VSPの形成に起因した力F_VSPが作用している真空面部分WSu_vac)を押し出す(つまり、変位させる)力に相当する。このため、真空ポンプ54がステージ空間SPsを減圧すると、特定部分W_vacでは、真空領域VSPから試料Wに作用する力F_VSPとステージ空間SPsから試料Wに作用する力F_hold2とが相殺し合う。尚、図7では、打ち消し合っている力F_VSPと力F_hold2とを点線で示している。このため、真空ポンプ54がステージ空間SPsを減圧する前に特定部分W_vacに作用していた力F_vac(つまり、力F_VSPと力F_hold1とを合算した力)と比較して、真空ポンプ54がステージ空間SPsを減圧した後に特定部分W_vacに作用する力F_vac(つまり、力F_VSPと力F_hold2とを合算した力)が小さくなる。典型的には、真空ポンプ54がステージ空間SPsを減圧した後には、特定部分W_vacには力F_vacが作用しなくなる。つまり、ステージ空間SPsから試料Wに作用する力F_hold2は、特定部分W_vacに作用する力F_vacを小さくする(或いは、ゼロにする)ことが可能な力に相当する。言い換えれば、ステージ空間SPsから試料Wに作用する力F_hold2は、領域VSPから試料Wに作用する力F_VSPの影響を小さくする(或いは、相殺する)ことが可能な力に相当する。試料Wを変形させていた主たる原因が、特定部分W_vacをステージ22から引き離すように作用していた力F_vacであるため、特定部分W_vacに力F_vacが作用しなくなれば、図7に示すように、試料Wの変形が適切に抑制される。つまり、真空ポンプ54がステージ空間SPsを減圧する前と比較して、試料Wの表面WSuの平面度が高くなる(つまり、試料Wの表面WSuが平面に近づく)。
(2-2) Specific Content of Deformation Suppressing Operation Next , specific content of the deformation suppressing operation (that is, a specific method for suppressing the deformation of the sample W) will be described with reference to FIG. In the present embodiment, the scanning electron microscope SEM evacuates the stage space SPs using the vacuum pump 54 in addition to or instead of the vacuum pump 53 used for holding the sample W under the control of the control device 4. Then, the deformation of the sample W is suppressed by reducing the pressure from the atmospheric pressure. Specifically, as described above, the vacuum pump 54 that depressurizes the stage space SPs has an exhaust capacity comparable to that of the vacuum pump 51 for forming the local vacuum region VSP. For this reason, when the vacuum pump 54 depressurizes the stage space SPs, the pressure of the stage space SPs facing the back surface WSl of the sample W is the pressure of the vacuum region VSP facing the surface WSu (particularly, the vacuum surface portion WSu_vac) of the sample W. It becomes the same level as. That is, the pressure acting on the vacuum surface portion WSu_vac of the surface WSu of the sample W is approximately the same as the pressure acting on the vacuum surface portion WSl_vac of the back surface WSl of the sample W. For this reason, the force F_hold2 resulting from the pressure reduction by the vacuum pump 54 is the same magnitude as the force F_VSP acting on the sample W from the vacuum region VSP, and the force is in the opposite direction. Here, since the sample W is solid as described above, the force F_hold2 acting on the vacuum surface portion WSl_vac is the vacuum surface on which the specific portion W_vac (or the force F_VSP resulting from the formation of the vacuum region VSP is acting). Acts indirectly on the part WSu_vac). Therefore, the force F_hold2 pushes out the specific portion W_vac (or the vacuum surface portion WSu_vac on which the force F_VSP resulting from the formation of the vacuum region VSP is applied) in the direction from the beam irradiation device 1 toward the stage 22 ( That is, it corresponds to a displacement force. For this reason, when the vacuum pump 54 depressurizes the stage space SPs, in the specific portion W_vac, the force F_VSP that acts on the sample W from the vacuum region VSP and the force F_hold2 that acts on the sample W from the stage space SPs cancel each other. In FIG. 7, the force F_VSP and the force F_hold2 that are canceled out are indicated by dotted lines. For this reason, compared with the force F_vac (that is, the sum of the force F_VSP and the force F_hold1) applied to the specific portion W_vac before the vacuum pump 54 depressurizes the stage space SPs, the vacuum pump 54 is The force F_vac acting on the specific part W_vac after reducing the pressure of SPs (that is, the sum of the force F_VSP and the force F_hold2) is reduced. Typically, after the vacuum pump 54 depressurizes the stage space SPs, the force F_vac does not act on the specific portion W_vac. That is, the force F_hold2 that acts on the sample W from the stage space SPs corresponds to a force that can reduce (or make zero) the force F_vac that acts on the specific portion W_vac. In other words, the force F_hold2 that acts on the sample W from the stage space SPs corresponds to a force that can reduce (or cancel) the influence of the force F_VSP that acts on the sample W from the region VSP. Since the main cause of the deformation of the sample W is the force F_vac that has acted to pull the specific portion W_vac away from the stage 22, if the force F_vac does not act on the specific portion W_vac, as shown in FIG. The deformation of the sample W is appropriately suppressed. That is, the flatness of the surface WSu of the sample W becomes higher (that is, the surface WSu of the sample W approaches a plane) than before the vacuum pump 54 depressurizes the stage space SPs.
 一方で、真空ポンプ54が真空ポンプ51と同等程度の排気能力を有しているがゆえに、真空ポンプ54の排気能力は、真空ポンプ53の排気能力よりも高い。このため、真空ポンプ54がステージ空間SPsを減圧している場合には、真空ポンプ54がステージ空間SPsを減圧していない場合(つまり、真空ポンプ53がステージ空間SPsを減圧している)場合と比較して、試料Wをステージ空間SPsに引き寄せる負圧が相対的に大きくなる。このため、試料Wは、ステージ22に対してより強く押し付けられることになる。この場合であっても、試料Wの裏面WSlが側壁部材222の上面222Su及び複数の支持部材223の上面223Suによって支持されることに変わりはない。このため、真空ポンプ54がステージ空間SPsを減圧することに起因して試料Wをステージ空間SPsに引き寄せる負圧が相対的に大きくなったとしても、当該相対的に大きな負圧に起因して試料Wが変形することは殆ど又は全くない。つまり、真空ポンプ54がステージ空間SPsを減圧する場合においても、真空ポンプ53がステージ空間SPsを減圧する場合と同様に、ステージ22は、試料Wをステージ空間SPsに引き寄せる負圧を用いて試料Wを適切に保持することができる。 On the other hand, since the vacuum pump 54 has the same exhaust capability as the vacuum pump 51, the exhaust capability of the vacuum pump 54 is higher than the exhaust capability of the vacuum pump 53. Therefore, when the vacuum pump 54 is depressurizing the stage space SPs, the vacuum pump 54 is not depressurizing the stage space SPs (that is, the vacuum pump 53 is depressurizing the stage space SPs). In comparison, the negative pressure that draws the sample W toward the stage space SPs becomes relatively large. For this reason, the sample W is more strongly pressed against the stage 22. Even in this case, the back surface WSl of the sample W is still supported by the upper surface 222Su of the side wall member 222 and the upper surfaces 223Su of the plurality of support members 223. For this reason, even if the negative pressure that draws the sample W to the stage space SPs due to the vacuum pump 54 depressurizing the stage space SPs becomes relatively large, the sample is caused by the relatively large negative pressure. There is little or no deformation of W. That is, even when the vacuum pump 54 depressurizes the stage space SPs, the stage 22 uses the negative pressure that draws the sample W toward the stage space SPs in the same manner as when the vacuum pump 53 depressurizes the stage space SPs. Can be held appropriately.
 ビーム照射装置1と試料Wとの間に局所的な真空領域VSPが形成されていない場合には、真空領域VSPの形成に起因して試料Wが変形する可能性はない。このため、走査型電子顕微鏡SEMは、ビーム照射装置1と試料Wとの間に局所的な真空領域VSPが形成されていない期間の少なくとも一部において、変形抑制動作を行わなくてもよい。一方で、走査型電子顕微鏡SEMは、ビーム照射装置1と試料Wとの間に局所的な真空領域VSPが形成されている期間中は、変形抑制動作を行う。但し、走査型電子顕微鏡SEMは、ビーム照射装置1と試料Wとの間に局所的な真空領域VSPが形成されている期間の少なくとも一部において、変形抑制動作を行わなくてもよい。例えば、ビーム照射装置1と試料Wとの間に局所的な真空領域VSPが形成されている状況下で試料Wの変形が許容される場合には、走査型電子顕微鏡SEMは、変形抑制動作を行わなくてもよい。 When the local vacuum region VSP is not formed between the beam irradiation apparatus 1 and the sample W, there is no possibility that the sample W is deformed due to the formation of the vacuum region VSP. For this reason, the scanning electron microscope SEM does not have to perform the deformation suppressing operation in at least a part of the period in which the local vacuum region VSP is not formed between the beam irradiation apparatus 1 and the sample W. On the other hand, the scanning electron microscope SEM performs a deformation suppressing operation during a period in which a local vacuum region VSP is formed between the beam irradiation apparatus 1 and the sample W. However, the scanning electron microscope SEM does not have to perform the deformation suppressing operation in at least a part of the period in which the local vacuum region VSP is formed between the beam irradiation apparatus 1 and the sample W. For example, when deformation of the sample W is allowed in a situation where a local vacuum region VSP is formed between the beam irradiation apparatus 1 and the sample W, the scanning electron microscope SEM performs a deformation suppressing operation. It does not have to be done.
 尚、上述した説明では、真空領域VSPを形成するための真空ポンプ51と同等程度の排気能力を有する真空ポンプ54を用いて、ステージ空間SPsが減圧されている。しかしながら、真空ポンプ51よりも高い排気能力を有する真空ポンプ54を用いて、ステージ空間SPsが減圧されてもよい。つまり、真空ポンプ54が減圧しているステージ空間SPsの圧力が、真空ポンプ51が減圧しているビーム通過空間SPb3の圧力(つまり、真空領域VSPの圧力)よりも低くなってもよい。この場合、試料W(特に、特定部分W_vac)には、特定部分W_vacをステージ22に押し付ける力が作用する。この場合であっても、試料Wの裏面WSlが側壁部材222の上面222Su及び複数の支持部材223の上面223Suによって支持されることに変わりはない。このため、真空ポンプ54が真空ポンプ51よりも高い排気能力を有していたとしても、そのことに起因して試料Wが変形することは殆ど又は全くない。 In the above description, the stage space SPs is depressurized by using the vacuum pump 54 having an exhaust capability equivalent to that of the vacuum pump 51 for forming the vacuum region VSP. However, the stage space SPs may be decompressed using the vacuum pump 54 having a higher exhaust capacity than the vacuum pump 51. That is, the pressure in the stage space SPs in which the vacuum pump 54 is decompressed may be lower than the pressure in the beam passage space SPb3 in which the vacuum pump 51 is decompressed (that is, the pressure in the vacuum region VSP). In this case, a force pressing the specific portion W_vac against the stage 22 acts on the sample W (particularly, the specific portion W_vac). Even in this case, the back surface WSl of the sample W is still supported by the upper surface 222Su of the side wall member 222 and the upper surfaces 223Su of the plurality of support members 223. For this reason, even if the vacuum pump 54 has a higher exhaust capacity than the vacuum pump 51, the sample W is hardly or not deformed due to that.
 或いは、真空ポンプ51よりも低い排気能力を有する真空ポンプ54を用いて、ステージ空間SPsが減圧されてもよい。つまり、真空ポンプ54が減圧しているステージ空間SPsの圧力が、真空ポンプ51が減圧しているビーム通過空間SPb3の圧力(つまり、真空領域VSPの圧力)よりも高くなってもよい。但し、この場合には、真空ポンプ54がステージ空間SPsを減圧している場合におけるステージ空間SPsの圧力が、真空ポンプ53がステージ空間SPsを減圧している場合におけるステージ空間SPsの圧力よりも低くなるように、真空ポンプ53及び54の排気能力が設定される。例えば、真空ポンプ54は、真空ポンプ53よりも高い排気能力を有していてもよい。このように真空ポンプ53及び54の排気能力が設定されると、真空ポンプ54がステージ空間SPsを減圧する前と比較して(つまり、真空ポンプ53がステージ空間SPsを減圧している場合と比較して)、ステージ空間SPsの真空度が、ビーム通過空間SPb3の真空度に近づく。つまり、ステージ空間SPsの圧力が、真空領域VSPの圧力に近づく。言い換えれば、ステージ空間SPsの圧力と真空領域VSPの圧力との差分(つまり、試料Wの裏面WSlに対する圧力と試料Wの表面WSuに対する圧力との差分)が小さくなる。このため、特定部分W_vacに作用する力F_vacが小さくなる。つまり、真空ポンプ54がステージ空間SPsを減圧する前に特定部分W_vacに作用していた力F_vacよりも小さい力F_vacが、特定部分W_vacに作用する。特定部分W_vacに作用していた力F_vacが小さくなれば、試料Wの変形の程度が小さくなる。つまり、試料Wの変形がある程度は抑制可能である。従って、真空ポンプ53がステージ空間SPsを減圧している場合と比較して、ステージ空間SPsの圧力と真空領域VSPの圧力との差分(つまり、試料Wの裏面WSlに対する圧力と試料Wの表面WSuに対する圧力との差分)を小さくすることが可能な程度に排気能力を真空ポンプ54が有している限りは、試料Wの変形が抑制可能である。 Alternatively, the stage space SPs may be depressurized using the vacuum pump 54 having a lower exhaust capacity than the vacuum pump 51. That is, the pressure in the stage space SPs in which the vacuum pump 54 is decompressed may be higher than the pressure in the beam passage space SPb3 in which the vacuum pump 51 is decompressed (that is, the pressure in the vacuum region VSP). However, in this case, the pressure of the stage space SPs when the vacuum pump 54 is depressurizing the stage space SPs is lower than the pressure of the stage space SPs when the vacuum pump 53 is depressurizing the stage space SPs. Thus, the exhaust capacity of the vacuum pumps 53 and 54 is set. For example, the vacuum pump 54 may have a higher exhaust capacity than the vacuum pump 53. When the evacuation capabilities of the vacuum pumps 53 and 54 are set in this way, compared to before the vacuum pump 54 depressurizes the stage space SPs (that is, compared with the case where the vacuum pump 53 depressurizes the stage space SPs). The vacuum degree of the stage space SPs approaches the vacuum degree of the beam passage space SPb3. That is, the pressure in the stage space SPs approaches the pressure in the vacuum region VSP. In other words, the difference between the pressure in the stage space SPs and the pressure in the vacuum region VSP (that is, the difference between the pressure on the back surface WSl of the sample W and the pressure on the surface WSu of the sample W) becomes small. For this reason, the force F_vac acting on the specific portion W_vac is reduced. That is, a force F_vac that is smaller than the force F_vac acting on the specific portion W_vac before the vacuum pump 54 depressurizes the stage space SPs acts on the specific portion W_vac. If the force F_vac acting on the specific portion W_vac is reduced, the degree of deformation of the sample W is reduced. That is, the deformation of the sample W can be suppressed to some extent. Therefore, compared with the case where the vacuum pump 53 depressurizes the stage space SPs, the difference between the pressure in the stage space SPs and the pressure in the vacuum region VSP (that is, the pressure with respect to the back surface WSl of the sample W and the surface WSu of the sample W). The deformation of the sample W can be suppressed as long as the vacuum pump 54 has an evacuation capacity to the extent that the difference between the pressure and the pressure can be reduced.
 上述した説明では、真空領域VSPを形成するための真空ポンプ51と同等程度の排気能力を有する真空ポンプ54を用いて、ステージ空間SPsが排気されている。しかしながら、真空ポンプ51を用いて、ステージ空間SPsが排気されてもよい。この場合であっても、試料Wの裏面WSlに面するステージ空間SPsの圧力は、試料Wの表面WSu(特に、真空面部分WSu_vac)に面する真空領域VSPの圧力と同等程度になる。このため、試料Wの変形が適切に抑制される。尚、この場合には、ポンプ系5は、真空ポンプ54を備えていなくてもよい。 In the above description, the stage space SPs is evacuated using the vacuum pump 54 having an evacuation capability comparable to that of the vacuum pump 51 for forming the vacuum region VSP. However, the stage space SPs may be exhausted using the vacuum pump 51. Even in this case, the pressure of the stage space SPs facing the back surface WSl of the sample W is approximately the same as the pressure of the vacuum region VSP facing the surface WSu of the sample W (particularly, the vacuum surface portion WSu_vac). For this reason, the deformation of the sample W is appropriately suppressed. In this case, the pump system 5 may not include the vacuum pump 54.
 真空ポンプ51を用いてステージ空間SPsが排気される場合には、真空ポンプ51は、配管117を介してビーム通過空間SPb1からSPb3に連結され、且つ、配管2252を介してステージ空間SPsに連結される。この場合、配管117に、配管117を開閉可能な開閉部材(例えば、バルブ)が配置されていてもよい。配管117に開閉部材が配置されることに加えて又は代えて、配管2252に、配管2252を開閉可能な開閉部材(例えば、バルブ)が配置されていてもよい。配管117及び2252の双方に開閉部材が配置されている場合には、走査型電子顕微鏡SEMは、真空ポンプ51の状態を、(i)ビーム通過空間SPb1からSPb3及びステージ空間SPsの双方を排気する第1状態、(ii)ビーム通過空間SPb1からSPb3を排気する一方で、ステージ空間SPsを排気しない第2状態、(iii)ビーム通過空間SPb1からSPb3を排気しない一方で、ステージ空間SPsを排気する第3状態、及び、(iv)ビーム通過空間SPb1からSPb3及びステージ空間SPsの双方を排気しない第4状態との間で切り替えることができる。但し、配管117及び2252の双方に開閉部材が配置されていない場合であっても、走査型電子顕微鏡SEMは、真空ポンプ51の状態を、第1状態と第4状態との間で切り替えることができる。 When the stage space SPs is evacuated using the vacuum pump 51, the vacuum pump 51 is connected to the beam passage spaces SPb1 to SPb3 via the pipe 117, and is connected to the stage space SPs via the pipe 2252. The In this case, an opening / closing member (for example, a valve) that can open and close the pipe 117 may be disposed in the pipe 117. In addition to or in place of the opening / closing member disposed in the pipe 117, an opening / closing member (for example, a valve) capable of opening and closing the pipe 2252 may be disposed in the pipe 2252. When the open / close members are arranged in both the pipes 117 and 2252, the scanning electron microscope SEM exhausts both the state of the vacuum pump 51 (i) the beam passage spaces SPb1 to SPb3 and the stage space SPs. The first state, (ii) the second state where the beam passage spaces SPb1 to SPb3 are exhausted while the stage space SPs is not exhausted, and the (iii) the stage space SPs is exhausted while the beam passage spaces SPb1 to SPb3 are not exhausted. It is possible to switch between the third state and (iv) a fourth state in which both the beam passage spaces SPb1 to SPb3 and the stage space SPs are not exhausted. However, the scanning electron microscope SEM can switch the state of the vacuum pump 51 between the first state and the fourth state even when the opening / closing member is not disposed in both the pipes 117 and 2252. it can.
 真空ポンプ54がステージ空間SPsを減圧する前に特定部分W_vacに作用していた力F_vacは、主として、真空領域VSPに起因した力F_VSPである。そうすると、真空ポンプ54がステージ空間SPsを減圧する前に特定部分W_vacに作用していた力F_vacが、真空ポンプ54によるステージ空間SPsの減圧によって特定部分W_vacに作用しなくなることを考慮すれば、真空ポンプ54を用いてステージ空間SPsを減圧する動作は、真空領域VSPに起因した力F_VSPを相殺する動作と等価であると言える。つまり、真空ポンプ54を用いてステージ空間SPsを減圧する動作は、真空領域VSPに起因した力F_vacを相殺可能な力F_cancelを、上述した力F_hold2として試料W(特に、少なくとも特定部分W_vac)に付与する動作と等価であると言える。このため、走査型電子顕微鏡SEMは、真空ポンプ54を用いてステージ空間SPsを減圧する動作に限らず、真空領域VSPの形成に起因して特定部分W_vacに作用していた力F_VSPを相殺する任意の動作を行うことで、試料Wの変形を抑制してもよい。走査型電子顕微鏡SEMは、真空ポンプ54を用いてステージ空間SPsを減圧する動作に限らず、真空領域VSPの形成に起因して特定部分W_vacに作用していた力VSPを相殺可能な力F_cancelを試料Wに付与する任意の動作を行うことで、試料Wの変形を抑制してもよい。尚、特定部分W_vacに作用していた力F_VSPを相殺する(或いは、力F_VSPを相殺可能な力F_cancelを試料Wに付与する)任意の動作の一例は、後述する変形例(例えば、第6変形例)において説明する。 The force F_vac acting on the specific portion W_vac before the vacuum pump 54 depressurizes the stage space SPs is mainly the force F_VSP caused by the vacuum region VSP. Then, considering that the force F_vac acting on the specific portion W_vac before the vacuum pump 54 depressurizes the stage space SPs does not act on the specific portion W_vac due to the vacuum pump 54 reducing the stage space SPs. It can be said that the operation of reducing the stage space SPs using the pump 54 is equivalent to the operation of canceling out the force F_VSP caused by the vacuum region VSP. That is, in the operation of reducing the stage space SPs using the vacuum pump 54, the force F_cancel that can cancel the force F_vac caused by the vacuum region VSP is applied to the sample W (particularly, at least the specific portion W_vac) as the force F_hold2 described above. It can be said that the operation is equivalent to For this reason, the scanning electron microscope SEM is not limited to the operation of depressurizing the stage space SPs using the vacuum pump 54, but can arbitrarily cancel the force F_VSP acting on the specific portion W_vac due to the formation of the vacuum region VSP. By performing this operation, deformation of the sample W may be suppressed. The scanning electron microscope SEM is not limited to the operation of depressurizing the stage space SPs using the vacuum pump 54, and the force F_cancel that can cancel the force VSP that has acted on the specific portion W_vac due to the formation of the vacuum region VSP. The deformation of the sample W may be suppressed by performing an arbitrary operation applied to the sample W. Note that an example of an arbitrary operation that cancels the force F_VSP that has been applied to the specific portion W_vac (or applies a force F_cancel that can cancel the force F_VSP to the sample W) is a modification described later (for example, a sixth modification) Example).
 力F_VSPを相殺することが可能な力F_cancelは、力F_VSPに応じて定まる力であってもよい。力F_cancelの一例として、力F_VSPと比較して、作用する方向が逆向きであって且つ大きさが同じ力があげられる。例えば、上述したように力F_VSPがステージ22からビーム照射装置1に向かう方向(例えば、+Z方向)に試料Wを変位させるように作用する力であるため、力F_cancelは、ビーム照射装置1からステージ22に向かう方向(例えば、-Z方向)に試料Wを変位させるように作用し且つ力F_VSPと同じ大きさの力であってもよい。但し、力F_cancelは、力F_VSPに応じて定まる力に限らず、試料Wの変形を抑制することが可能な任意の力であってもよいし、試料Wの表面WSuの平面度を高める(つまり、試料Wの表面WSuを平面に近づける)ことが可能な任意の力であってもよい。 The force F_cancel that can cancel the force F_VSP may be a force determined according to the force F_VSP. As an example of the force F_cancel, there is a force having an opposite direction and the same magnitude compared to the force F_VSP. For example, as described above, the force F_VSP is a force that acts to displace the sample W in the direction from the stage 22 toward the beam irradiation apparatus 1 (for example, the + Z direction), so the force F_cancel is applied from the beam irradiation apparatus 1 to the stage. The force may act to displace the sample W in the direction toward 22 (for example, the −Z direction) and may be a force having the same magnitude as the force F_VSP. However, the force F_cancel is not limited to the force determined according to the force F_VSP, and may be any force that can suppress the deformation of the sample W, and increases the flatness of the surface WSu of the sample W (that is, Any force capable of bringing the surface WSu of the sample W close to a plane) may be used.
 或いは、真空ポンプ54がステージ空間SPsを減圧する前に特定部分W_vacに作用していた力F_vacが、真空ポンプ54による空間SPsの減圧によって小さくなる場合には、真空ポンプ54を用いてステージ空間SPsを減圧する動作は、特定部分W_vacに作用する力F_vacを小さくする動作と等価であると言える。つまり、真空ポンプ54を用いてステージ空間SPsを減圧する動作は、特定部分W_vacに作用する力F_vacを小さくすることが可能な力F_reduceを、試料W(特に、少なくとも特定部分W_vac)に付与する動作と等価であると言える。このため、走査型電子顕微鏡SEMは、真空ポンプ54を用いてステージ空間SPsを減圧する動作に限らず、特定部分W_vacに作用する力F_vacを小さくする任意の動作を行うことで、試料Wの変形を抑制してもよい。走査型電子顕微鏡SEMは、真空ポンプ54を用いてステージ空間SPsを減圧する動作に限らず、特定部分W_vacに作用する力F_vacを小さくすることが可能な力F_reduceを試料Wに付与する任意の動作を行うことで、試料Wの変形を抑制してもよい。 Alternatively, when the force F_vac acting on the specific portion W_vac before the vacuum pump 54 depressurizes the stage space SPs is reduced by the depressurization of the space SPs by the vacuum pump 54, the stage space SPs is used by using the vacuum pump 54. It can be said that the operation of reducing the pressure is equivalent to the operation of reducing the force F_vac acting on the specific portion W_vac. That is, the operation of depressurizing the stage space SPs using the vacuum pump 54 is an operation of applying to the sample W (particularly at least the specific portion W_vac) a force F_reduce that can reduce the force F_vac acting on the specific portion W_vac. It can be said that it is equivalent to. For this reason, the scanning electron microscope SEM is not limited to the operation of reducing the pressure of the stage space SPs using the vacuum pump 54, but performs an arbitrary operation of reducing the force F_vac acting on the specific portion W_vac, thereby deforming the sample W. May be suppressed. The scanning electron microscope SEM is not limited to the operation of depressurizing the stage space SPs using the vacuum pump 54, but is an arbitrary operation of applying to the sample W a force F_reduce that can reduce the force F_vac acting on the specific portion W_vac. The deformation of the sample W may be suppressed by performing the above.
 特定部分W_vacに作用する力F_vacを小さくすることが可能な力F_reduceもまた、力F_VSPに応じて定まる力であってもよい。力F_reduceの一例として、力F_VSPと比較して、作用する方向が逆向きであって且つ大きさが異なる力があげられる。例えば、上述したように力F_VSPがステージ22からビーム照射装置1に向かう方向(例えば、+Z方向)に試料Wを変位させるように作用する力であるため、力F_reduceは、ビーム照射装置1からステージ22に向かう方向(例えば、-Z方向)に試料Wを変位させるように作用し且つ力F_VSPよりも小さい又は大きい力であってもよい。但し、力F_reduceは、力F_VSPに応じて定まる力に限らず、試料Wの変形を抑制することが可能な任意の力であってもよいし、試料Wの表面WSuの平面度を高める(つまり、試料Wの表面WSuを平面に近づける)ことが可能な任意の力であってもよい。 The force F_reduce that can reduce the force F_vac acting on the specific portion W_vac may also be a force determined according to the force F_VSP. As an example of the force F_reduce, there is a force having an opposite direction and a different magnitude compared to the force F_VSP. For example, as described above, the force F_VSP is a force that acts to displace the sample W in the direction from the stage 22 toward the beam irradiation apparatus 1 (for example, the + Z direction). The force may act to displace the sample W in the direction toward 22 (for example, the −Z direction) and may be a force smaller or larger than the force F_VSP. However, the force F_reduce is not limited to the force determined according to the force F_VSP, and may be any force that can suppress the deformation of the sample W, and increases the flatness of the surface WSu of the sample W (that is, Any force capable of bringing the surface WSu of the sample W close to a plane) may be used.
 (3)変形例
 続いて、走査型電子顕微鏡SEMの変形例について説明する。
(3) Modified Example Next, a modified example of the scanning electron microscope SEM will be described.
 (3-1)第1変形例
 はじめに、第1変形例の走査型電子顕微鏡SEMaについて説明する。第1変形例の走査型電子顕微鏡SEMaは、上述した走査型電子顕微鏡SEMと比較して、ステージ22に代えてステージ22aを備えているという点で異なっている。走査型電子顕微鏡SEMaのその他の構造は、上述した走査型電子顕微鏡SEMのその他の構造と同一であってもよい。このため、以下では、図8を参照しながら、ステージ22aの構造について説明する。尚、以下では、既に説明済みの構成要件については、同一の参照符号を付してその詳細な説明を省略する。
(3-1) First Modification First , a scanning electron microscope SEMa of a first modification will be described. The scanning electron microscope SEMa of the first modification is different from the above-described scanning electron microscope SEM in that a stage 22a is provided instead of the stage 22. The other structure of the scanning electron microscope SEMa may be the same as the other structure of the scanning electron microscope SEM described above. Therefore, hereinafter, the structure of the stage 22a will be described with reference to FIG. In the following description, constituent elements that have already been described are assigned the same reference numerals, and detailed descriptions thereof are omitted.
 図8に示すように、ステージ22aは、上述したステージ22と比較して、側壁部材222に代えて側壁部材222aを備えているという点で異なっている。側壁部材222aは、側壁部材222と比較して、側壁部材222aの上面222Suが支持部材223の上面223Suよりも下方に位置するという点で異なっている。このため、第1変形例では、ステージ22aは、試料Wの裏面WSlが複数の支持部材223の上面223Suに接触する一方で側壁部材222aの上面222Suに接触しない状態で、試料Wを保持する。第1変型例では、ステージ22aは、試料Wと側壁部材222aの上面222Suとの間に外縁空間SPg1を形成すると言ってもよい。尚、この外縁空間SPg1のZ軸方向の寸法、言い換えると試料Wの下面WSlから側壁部材222aの上面222SuまでのZ軸方向に沿った距離は1μm以上且つ10μm以下であってもよい。尚、側壁部材222aの上面222Suに、試料Wの下面WSlと接触可能なピン状の又は円錐状の若しくは角錐状の支持部材を設けてもよい。この支持部材は側壁部材222aの上面222Su上に周方向に沿って複数設けられていてもよい。尚、このような支持部材は側壁部材222aの上面222Su上の周方向に沿って延びた環状であってもよい。この環状の支持部材は試料Wの裏面に接触していなくてもよい。ステージ22aのその他の構造は、上述したステージ22のその他の構造と同一であってもよい。 As shown in FIG. 8, the stage 22a differs from the stage 22 described above in that a side wall member 222a is provided instead of the side wall member 222. The side wall member 222 a is different from the side wall member 222 in that the upper surface 222 Su of the side wall member 222 a is positioned below the upper surface 223 Su of the support member 223. For this reason, in the first modification, the stage 22a holds the sample W in a state where the back surface WSl of the sample W is in contact with the upper surfaces 223Su of the plurality of support members 223 but not in contact with the upper surface 222Su of the side wall member 222a. In the first variation, the stage 22a may be said to form the outer edge space SPg1 between the sample W and the upper surface 222Su of the side wall member 222a. The dimension of the outer edge space SPg1 in the Z-axis direction, in other words, the distance along the Z-axis direction from the lower surface WS1 of the sample W to the upper surface 222Su of the side wall member 222a may be 1 μm or more and 10 μm or less. A pin-shaped, conical or pyramidal support member that can contact the lower surface WSl of the sample W may be provided on the upper surface 222Su of the side wall member 222a. A plurality of support members may be provided along the circumferential direction on the upper surface 222Su of the side wall member 222a. Such a support member may be an annular shape extending in the circumferential direction on the upper surface 222Su of the side wall member 222a. The annular support member may not be in contact with the back surface of the sample W. The other structure of the stage 22a may be the same as the other structure of the stage 22 described above.
 このようなステージ22aを備える第1変形例の走査型電子顕微鏡SEMaであっても、上述した走査型電子顕微鏡SEMが享受することが可能な効果と同様の効果を享受することができる。加えて、第1変形例では、側壁部材222aの上面222Suに試料Wが接触しないため、側壁部材222aの上面222Suに不要物質(例えば、塵、埃及びゴミ等の少なくとも一つ)が付着している場合であっても、当該不要物質の影響による試料Wの歪み(つまり、変形)が防止可能となる。 Even in the scanning electron microscope SEMa of the first modified example provided with such a stage 22a, the same effects as those that can be enjoyed by the above-described scanning electron microscope SEM can be obtained. In addition, in the first modification, since the sample W does not contact the upper surface 222Su of the side wall member 222a, an unnecessary substance (for example, at least one of dust, dust, and dust) adheres to the upper surface 222Su of the side wall member 222a. Even when the sample W is present, distortion (that is, deformation) of the sample W due to the influence of the unnecessary substance can be prevented.
 (3-2)第2変形例
 上述した第1変形例のステージ22aは、上述した図8に示すように、試料Wと側壁部材222aの上面222Suとの間に、外縁空間SPg1が存在する状態で試料Wを保持することになる。この外縁空間SPg1は、ステージ空間SPsに連通しているため、真空ポンプ54によって排気(つまり、減圧)される。一方で、この外縁空間SPg1は、ステージ空間SPsの外部の大気圧空間にも連通している。このため、外縁空間SPg1には、大気圧空間から気体が流入しやすい。その結果、外縁空間SPg1の圧力は、ステージ空間SPsの圧力よりも高くなる可能性がある。このため、図9(a)に示すように、試料Wのうち側壁部材222aの上面222Suに対向する外縁部分W_edgeをステージ22aに押し付けるように作用する力F_hold2が、試料Wのうち外縁部分W_edge以外の部分をステージ22aに押し付けるように作用する力F_hold2よりも小さくなる可能性がある。つまり、外縁部分W_edgeをステージ22aが保持する力F_hold2が、試料Wのうち外縁部分W_edge以外の部分をステージ22aが保持する力F_hold2よりも小さくなる可能性がある。
(3-2) Second Modification As shown in FIG. 8, the stage 22a of the first modification described above is in a state in which the outer edge space SPg1 exists between the sample W and the upper surface 222Su of the side wall member 222a. Thus, the sample W is held. Since the outer edge space SPg1 communicates with the stage space SPs, the outer edge space SPg1 is exhausted (ie, depressurized) by the vacuum pump 54. On the other hand, the outer edge space SPg1 communicates with an atmospheric pressure space outside the stage space SPs. For this reason, gas tends to flow into the outer edge space SPg1 from the atmospheric pressure space. As a result, the pressure in the outer edge space SPg1 may be higher than the pressure in the stage space SPs. For this reason, as shown in FIG. 9A, the force F_hold2 acting to press the outer edge portion W_edge of the sample W facing the upper surface 222Su of the side wall member 222a against the stage 22a is other than the outer edge portion W_edge of the sample W. May be smaller than the force F_hold2 that acts to press the portion against the stage 22a. That is, the force F_hold2 that holds the outer edge portion W_edge by the stage 22a may be smaller than the force F_hold2 that holds the portion of the sample W other than the outer edge portion W_edge by the stage 22a.
 ここで、図9(b)に示すように、試料Wのうち外縁部分W_edgeに面する局所的な真空領域VSPが形成されると、外縁部分W_edgeには、真空領域VSPの形成に起因して外縁部分W_edgeをステージ22から引き離すように作用する力F_VSPが作用する。この場合、上述したように、外縁部分W_edgeの下方の外縁空間SPg1の圧力が相対的に低い。このため、真空ポンプ54によってステージ空間SPsを介して外縁空間SPg1が減圧されているにも関わらず、外縁部分W_edgeに作用する力F_hold2が力F_VSPを相殺することができない可能性がある。その結果、ステージ空間SPsを介して真空ポンプ54が外縁空間SPg1を減圧しているにも関わらず、外縁部分W_edgeには、外縁部分W_edgeをステージ22から引き離すように作用する力F_vac(つまり、相対的に大きい力F_VSPと相対的に小さい力F_hold2とを合算した力)が作用し続ける可能性がある。言い換えれば、外縁部分W_edgeをステージ22aが保持する力F_hold2が相対的に弱いがゆえに、ステージ空間SPsを介して真空ポンプ54が外縁空間SPg1を減圧しているにも関わらず、外縁部分W_edgeには、外縁部分W_edgeをステージ22から引き離すように作用する力F_vacが作用し続ける可能性がある。その結果、図9(b)に示すように、試料Wの外縁部分W_edgeがステージ22から引き離される可能性がある。このため、試料Wが変形してしまう可能性がある。 Here, as shown in FIG. 9B, when the local vacuum region VSP facing the outer edge portion W_edge of the sample W is formed, the outer edge portion W_edge is caused by the formation of the vacuum region VSP. A force F_VSP that acts to pull the outer edge portion W_edge away from the stage 22 acts. In this case, as described above, the pressure in the outer edge space SPg1 below the outer edge portion W_edge is relatively low. For this reason, although the outer edge space SPg1 is decompressed by the vacuum pump 54 via the stage space SPs, there is a possibility that the force F_hold2 acting on the outer edge portion W_edge cannot cancel the force F_VSP. As a result, a force F_vac (that is, relative force) acting on the outer edge portion W_edge to pull the outer edge portion W_edge away from the stage 22 even though the vacuum pump 54 decompresses the outer edge space SPg1 through the stage space SPs. There is a possibility that a large force F_VSP and a relatively small force F_hold2) continue to act. In other words, since the force F_hold2 that the stage 22a holds the outer edge portion W_edge is relatively weak, the outer edge portion W_edge has the outer edge portion W_edge in spite of the vacuum pump 54 depressurizing the outer edge space SPg1 through the stage space SPs. There is a possibility that the force F_vac acting to pull the outer edge portion W_edge away from the stage 22 continues to act. As a result, the outer edge portion W_edge of the sample W may be separated from the stage 22 as shown in FIG. For this reason, the sample W may be deformed.
 そこで、このような外縁部分W_edgeがステージ22から離れることに起因した試料Wの変形を抑制することが可能な第2変形例の走査型電子顕微鏡SEMbについて以下に説明を続ける。第2変形例の走査型電子顕微鏡SEMbは、上述した走査型電子顕微鏡SEMaと比較して、ステージ22aに代えてステージ22bを備えているという点で異なっている。走査型電子顕微鏡SEMbのその他の構造は、上述した走査型電子顕微鏡SEMaのその他の構造と同一であってもよい。このため、以下では、図10を参照しながら、ステージ22bの構造について説明する。 Therefore, the following description of the scanning electron microscope SEMb of the second modified example capable of suppressing the deformation of the sample W caused by the outer edge portion W_edge separating from the stage 22 will be continued. The scanning electron microscope SEMb of the second modified example is different from the above-described scanning electron microscope SEMa in that a stage 22b is provided instead of the stage 22a. The other structure of the scanning electron microscope SEMb may be the same as the other structure of the scanning electron microscope SEMa described above. Therefore, hereinafter, the structure of the stage 22b will be described with reference to FIG.
 図10に示すように、ステージ22bは、ステージ22aと比較して、側壁部材222aの上面222Suに排気口2243bが形成されているという点で異なっている。ステージ22bのその他の構造は、上述したステージ22aのその他の構造と同一であってもよい。 As shown in FIG. 10, the stage 22b is different from the stage 22a in that an exhaust port 2243b is formed on the upper surface 222Su of the side wall member 222a. Other structures of the stage 22b may be the same as the other structures of the stage 22a described above.
 排気口2243bは、側壁部材222aの上面222Suのうち試料Wの裏面WSlと対向する部分に形成されている。この際、排気口2243bは、側壁部材222aの上面222Suのうち試料Wの裏面WSlと対向する部分の最外周に形成されていてもよい。排気口2243bは、側壁部材222aの上面222Suにおいて排気口2243bが連続的に分布するように環状の分布パターンで形成されていてもよい。排気口2243bは、側壁部材222aの上面222Suにおいて規則的な(或いは、ランダムな)配列パターンで配列するように、複数形成されていてもよい。但し、排気口2243bは、任意の配列パターン又は分布パターンで形成されていてもよい。尚、排気孔2243bは、側壁部材222aの上面222Suにおいて一様に分布するという規則的な配列パターンであっても良く、側壁部材222aの上面222Suにおいて、側壁部材222aに囲まれた領域における当該領域の中心(重心)を中心とする円周上に等間隔或いは不等間隔で分布するという配列パターンであってもよい。また、排気孔2243bは、上記領域の中心(重心)を中心とする、半径が互いに異なる複数の円周のそれぞれに沿って等間隔或いは不等間隔で分布するという配列パターンであってもよい。 The exhaust port 2243b is formed in a portion of the upper surface 222Su of the side wall member 222a that faces the back surface WSl of the sample W. At this time, the exhaust port 2243b may be formed on the outermost periphery of the portion of the upper surface 222Su of the side wall member 222a that faces the back surface WSl of the sample W. The exhaust ports 2243b may be formed in an annular distribution pattern so that the exhaust ports 2243b are continuously distributed on the upper surface 222Su of the side wall member 222a. A plurality of the exhaust ports 2243b may be formed so as to be arranged in a regular (or random) arrangement pattern on the upper surface 222Su of the side wall member 222a. However, the exhaust ports 2243b may be formed in an arbitrary arrangement pattern or distribution pattern. The exhaust holes 2243b may have a regular arrangement pattern in which the exhaust holes 2243b are uniformly distributed on the upper surface 222Su of the side wall member 222a, and the region in the region surrounded by the side wall member 222a on the upper surface 222Su of the side wall member 222a. It may be an array pattern that is distributed at equal intervals or unequal intervals on the circumference centered on the center (center of gravity) of the. Further, the exhaust holes 2243b may have an arrangement pattern in which the exhaust holes 2243b are distributed at equal intervals or unequal intervals along each of a plurality of circumferences having different radii with the center (center of gravity) of the region as the center.
 排気口2243bには、配管2253bを介して真空ポンプ54が連結されている。真空ポンプ54は、外縁空間SPg1を排気して減圧可能である。つまり、第2変形例では、外縁空間SPg1は、真空ポンプ54によって、ステージ空間SPsを介して間接的に減圧されることに加えて又は代えて、ステージ空間SPsを介することなく直接的に減圧される。このため、ステージ空間SPsを介して外縁空間SPg1が間接的に減圧されるだけの場合と比較して、外縁空間SPg1の圧力がステージ空間SPsの圧力よりも高くなってしまう可能性が小さくなる。このため、試料Wの外縁部分W_edgeをステージ22aが保持する力F_hold2が、試料Wのうち外縁部分W_edge以外の部分をステージ22aが保持する力F_hold2よりも小さくなる可能性が小さくなる。その結果、試料Wの外縁部分W_edgeにおいて、力F_VSPと力F_hold2とが相殺し合う可能性が相対的に大きくなる。つまり、試料Wの外縁部分W_edgeに局所的な真空領域VSPが形成されたとしても、外縁部分W_edgeをステージ22から引き離すように作用する力F_vacが外縁部分W_edgeに作用し続ける可能性が小さくなる。このため、図10に示すように、試料Wの外縁部分W_edgeがステージ22から引き離される可能性が小さくなる。このため、試料Wが変形してしまう可能性が小さくなる。つまり、試料Wの変形が適切に抑制される。 A vacuum pump 54 is connected to the exhaust port 2243b via a pipe 2253b. The vacuum pump 54 can depressurize the outer edge space SPg1 by exhausting it. In other words, in the second modified example, the outer edge space SPg1 is directly depressurized by the vacuum pump 54 without passing through the stage space SPs in addition to or instead of being depressurized indirectly through the stage space SPs. The For this reason, compared with the case where outer edge space SPg1 is only pressure-reduced indirectly via stage space SPs, possibility that the pressure of outer edge space SPg1 will become higher than the pressure of stage space SPs becomes small. Therefore, the possibility that the force F_hold2 for holding the outer edge portion W_edge of the sample W by the stage 22a is smaller than the force F_hold2 for holding the portion of the sample W other than the outer edge portion W_edge by the stage 22a is reduced. As a result, the possibility that the force F_VSP and the force F_hold2 cancel each other out in the outer edge portion W_edge of the sample W is relatively increased. That is, even if the local vacuum region VSP is formed in the outer edge portion W_edge of the sample W, the possibility that the force F_vac acting to pull the outer edge portion W_edge away from the stage 22 continues to act on the outer edge portion W_edge is reduced. For this reason, as shown in FIG. 10, the possibility that the outer edge portion W_edge of the sample W is separated from the stage 22 is reduced. For this reason, possibility that the sample W will deform | transform will become small. That is, the deformation of the sample W is appropriately suppressed.
 典型的には、外縁空間SPg1及びステージ空間SPsが同じ真空ポンプ54によって減圧されるため、外縁空間SPg1の圧力は、ステージ空間SPsの圧力と同等になる。このため、試料Wの外縁部分W_edgeをステージ22aが保持する力F_hold2は、試料Wのうち外縁部分W_edge以外の部分をステージ22aが保持する力F_hold2と同等になる。その結果、試料Wの外縁部分W_edgeに局所的な真空領域VSPが形成されたとしても、外縁部分W_edgeをステージ22から引き離すように作用する力F_vacが外縁部分W_edgeに作用しなくなる。このため、図10に示すように、試料Wの外縁部分W_edgeがステージ22から引き離されなくなる。つまり、試料Wの外縁部分W_edgeは、ステージ22によって保持され続ける。このため、試料Wが変形しなくなる。つまり、試料Wの変形が適切に抑制される。 Typically, since the outer edge space SPg1 and the stage space SPs are depressurized by the same vacuum pump 54, the pressure of the outer edge space SPg1 becomes equal to the pressure of the stage space SPs. Therefore, the force F_hold2 at which the stage 22a holds the outer edge portion W_edge of the sample W is equal to the force F_hold2 at which the stage 22a holds a portion other than the outer edge portion W_edge of the sample W. As a result, even if the local vacuum region VSP is formed in the outer edge portion W_edge of the sample W, the force F_vac that acts to pull the outer edge portion W_edge away from the stage 22 does not act on the outer edge portion W_edge. For this reason, as shown in FIG. 10, the outer edge portion W_edge of the sample W is not pulled away from the stage 22. That is, the outer edge portion W_edge of the sample W is continuously held by the stage 22. For this reason, the sample W is not deformed. That is, the deformation of the sample W is appropriately suppressed.
 尚、真空領域VSPの形成に起因して外縁部分W_edgeがステージ22から引き離されるのは、外縁部分W_edgeに局所的な真空領域VSPが形成されている場合(つまり、外縁部分W_edgeに真空領域VSPからの負圧(つまり、吸引力)が作用する場合)である。このため、走査型電子顕微鏡SEMbは、外縁部分W_edgeに局所的な真空領域VSPが形成されている期間の少なくとも一部において、真空ポンプ54を用いて排気口2243b及び排気管2253bを介して外縁空間SPg1を減圧する。一方で、外縁部分W_edgeに局所的な真空領域VSPが形成されていない場合には、真空領域VSPの形成に起因して外縁部分W_edgeがステージ22から引き離される可能性は相対的に低い。このため、走査型電子顕微鏡SEMbは、外縁部分W_edgeに局所的な真空領域VSPが形成されていない期間の少なくとも一部において、真空ポンプ54を用いて排気口2243b及び排気管2253bを介して外縁空間SPg1を減圧しなくてもよい。この場合、配管2253bに、配管2253bを開閉可能な開閉部材(例えば、バルブ)が配置されていてもよい。但し、走査型電子顕微鏡SEMbは、外縁部分W_edgeに局所的な真空領域VSPが形成されていない期間の少なくとも一部においても、真空ポンプ54を用いて排気口2243b及び排気管2253bを介して外縁空間SPg1を減圧してもよい。尚、外縁区間SPg1を減圧するための真空ポンプを、ステージ空間SPsを減圧する真空ポンプ54と異なる真空ポンプとしてもよい。 The outer edge portion W_edge is separated from the stage 22 due to the formation of the vacuum region VSP when the local vacuum region VSP is formed in the outer edge portion W_edge (that is, the outer edge portion W_edge is separated from the vacuum region VSP). Negative pressure (that is, when suction force is applied). For this reason, the scanning electron microscope SEMb uses the vacuum pump 54 and the outer edge space via the exhaust port 2243b and the exhaust pipe 2253b during at least a part of the period during which the local vacuum region VSP is formed in the outer edge portion W_edge. Reduce pressure of SPg1. On the other hand, when the local vacuum region VSP is not formed in the outer edge portion W_edge, the possibility that the outer edge portion W_edge is separated from the stage 22 due to the formation of the vacuum region VSP is relatively low. For this reason, the scanning electron microscope SEMb uses the vacuum pump 54 in the outer edge space through the exhaust port 2243b and the exhaust pipe 2253b in at least a part of the period when the local vacuum region VSP is not formed in the outer edge portion W_edge. It is not necessary to depressurize SPg1. In this case, an opening / closing member (for example, a valve) that can open and close the pipe 2253b may be disposed in the pipe 2253b. However, the scanning electron microscope SEMb uses the vacuum pump 54 to provide the outer edge space through the exhaust port 2243b and the exhaust pipe 2253b even at least during a period when the local vacuum region VSP is not formed in the outer edge portion W_edge. SPg1 may be decompressed. Note that the vacuum pump for decompressing the outer edge section SPg1 may be a vacuum pump different from the vacuum pump 54 for decompressing the stage space SPs.
 (3-3)第3変形例
 続いて、第3変形例の走査型電子顕微鏡SEMcについて説明する。第3変形例の走査型電子顕微鏡SEMcは、上述した走査型電子顕微鏡SEMbと比較して、ステージ22bに代えてステージ22cを備えているという点で異なっている。走査型電子顕微鏡SEMcのその他の構造は、上述した走査型電子顕微鏡SEMbのその他の構造と同一であってもよい。このため、以下では、図11を参照しながら、ステージ22cの構造について説明する。
(3-3) Third Modification Next, a scanning electron microscope SEMc of the third modification will be described. The scanning electron microscope SEMc of the third modification is different from the above-described scanning electron microscope SEMb in that a stage 22c is provided instead of the stage 22b. The other structure of the scanning electron microscope SEMc may be the same as the other structure of the scanning electron microscope SEMb described above. Therefore, hereinafter, the structure of the stage 22c will be described with reference to FIG.
 図11に示すように、ステージ22cは、ステージ22bと比較して、ガード部材224cを備えているという点で異なっている。ステージ22cのその他の構造は、上述したステージ22bのその他の構造と同一であってもよい。 As shown in FIG. 11, the stage 22c is different from the stage 22b in that a guard member 224c is provided. The other structure of the stage 22c may be the same as the other structure of the stage 22b described above.
 ガード部材224cは、側壁部材222aの上面222Suのうち試料Wの裏面WSlに対向しない部分に形成されている。ガード部材224cは、排気口2243bよりも外側に形成されている。ガード部材224cは、ステージ22cに保持されている試料Wよりも外側に形成されている。ガード部材224cの上面224Suは平面であってもよい。ガード部材224cの上面224Suは、ステージ22cに保持されている試料Wの表面WSuと同じ高さに位置していてもよい。つまり、ガード部材224cの上面224Suは、ステージ22cに保持されている試料Wの表面WSuと同じ平面に位置していてもよい。ガード部材224cの側面(例えば、内側面)の一部は、試料Wの側面(例えば、外側面)に対向する。この際、ガード部材224cの側面と試料Wの側面とは接触しない。つまり、ガード部材224cの側面と試料Wの側面との間に、空隙が確保されている。 The guard member 224c is formed on a portion of the upper surface 222Su of the side wall member 222a that does not face the rear surface WSl of the sample W. The guard member 224c is formed outside the exhaust port 2243b. The guard member 224c is formed outside the sample W held on the stage 22c. The upper surface 224Su of the guard member 224c may be a flat surface. The upper surface 224Su of the guard member 224c may be located at the same height as the surface WSu of the sample W held on the stage 22c. That is, the upper surface 224Su of the guard member 224c may be located on the same plane as the surface WSu of the sample W held on the stage 22c. A part of the side surface (for example, the inner surface) of the guard member 224c faces the side surface (for example, the outer surface) of the sample W. At this time, the side surface of the guard member 224c does not contact the side surface of the sample W. That is, a gap is secured between the side surface of the guard member 224c and the side surface of the sample W.
 このようなステージ22cを備える第3変形例の走査型電子顕微鏡SEMcであっても、上述した走査型電子顕微鏡SEMbが享受することが可能な効果と同様の効果を享受することができる。加えて、第3変形例の走査型電子顕微鏡SEMcは、側壁部材222aの上面222Suに形成されたガード部材224cを備えているため、試料Wの外縁部分W_edgeに真空領域VSPを適切に形成することができる。具体的には、仮にガード部材224cが存在していない場合には、試料Wの外縁部分W_edgeに真空領域VSPが形成される状況下で、真空領域VSPの一部が、試料Wとビーム照射装置1との間ではなく、試料Wの外側に位置する側壁部材222aの上面222Suとビーム照射装置1との間に形成される可能性がある。側壁部材222aの上面222Suとビーム照射装置1との間の間隔は、試料Wとビーム照射装置1との間の間隔Dよりも大きい。このため、真空領域VSPの一部が側壁部材222aの上面222Suとビーム照射装置1との間に形成されている場合には、真空領域VSPの全体が試料Wとビーム照射装置1との間に形成されている場合と比較して、真空領域VSPが維持しにくくなる。一方で、ガード部材224cが存在している場合には、試料Wの外縁部分W_edgeに真空領域VSPが形成される状況下で、真空領域VSPの一部が、試料Wとビーム照射装置1との間ではなく、試料Wの外側に位置するガード部材224cの上面224Suとビーム照射装置1との間に形成される可能性がある。ガード部材224cの上面224Suとビーム照射装置1との間の間隔は、試料Wとビーム照射装置1との間の間隔Dと同じである。このため、真空領域VSPの一部がガード部材224aの上面224Suとビーム照射装置1との間に形成されている場合であっても、真空領域VSPの全体が試料Wとビーム照射装置1との間に形成されている場合と同様に、真空領域VSPを適切に維持可能となる。このように、第3変形例では、試料Wの外縁部分W_edgeにおいて真空領域VSPを適切に形成可能となる。 Even in the scanning electron microscope SEMc of the third modified example provided with such a stage 22c, it is possible to enjoy the same effects as those that can be enjoyed by the above-described scanning electron microscope SEMb. In addition, since the scanning electron microscope SEMc of the third modification includes the guard member 224c formed on the upper surface 222Su of the side wall member 222a, the vacuum region VSP is appropriately formed in the outer edge portion W_edge of the sample W. Can do. Specifically, if the guard member 224c does not exist, a part of the vacuum region VSP becomes a part of the sample W and the beam irradiation device in a state where the vacuum region VSP is formed in the outer edge portion W_edge of the sample W. There is a possibility that it is formed between the beam irradiation device 1 and the upper surface 222Su of the side wall member 222a located outside the sample W instead of between the beam irradiation device 1 and the sample. The distance between the upper surface 222Su of the side wall member 222a and the beam irradiation apparatus 1 is larger than the distance D between the sample W and the beam irradiation apparatus 1. Therefore, when a part of the vacuum region VSP is formed between the upper surface 222Su of the side wall member 222a and the beam irradiation device 1, the entire vacuum region VSP is between the sample W and the beam irradiation device 1. Compared with the case where it is formed, it becomes difficult to maintain the vacuum region VSP. On the other hand, when the guard member 224c is present, a part of the vacuum region VSP is formed between the sample W and the beam irradiation apparatus 1 in a situation where the vacuum region VSP is formed in the outer edge portion W_edge of the sample W. There is a possibility that it is formed between the beam irradiation device 1 and the upper surface 224Su of the guard member 224c located outside the sample W, not between them. The distance between the upper surface 224Su of the guard member 224c and the beam irradiation apparatus 1 is the same as the distance D between the sample W and the beam irradiation apparatus 1. Therefore, even if a part of the vacuum region VSP is formed between the upper surface 224Su of the guard member 224a and the beam irradiation device 1, the entire vacuum region VSP is formed between the sample W and the beam irradiation device 1. The vacuum region VSP can be appropriately maintained as in the case of being formed therebetween. Thus, in the third modification, the vacuum region VSP can be appropriately formed in the outer edge portion W_edge of the sample W.
 尚、ガード部材224cの上面224Suは、ステージ22cに保持されている試料Wの表面WSuと同じ高さに位置していなくてもよい。つまり、ガード部材224cの上面224Suは、ステージ22cに保持されている試料Wの表面WSuと同じ平面に位置しなくてもよい。例えば、ガード部材224cの上面224Suは、ステージ22cに保持されている試料Wの表面WSuよりも上方に位置していてもよい。ガード部材224cの上面224Suは、ステージ22cに保持されている試料Wの表面WSuよりも下方に位置していてもよい。ガード部材224cの側面と試料Wの側面とが接触していてもよい。尚、ガード部材224cの上面224Suは、試料Wの表面WSuに対して傾斜していてもよい。このとき、試料Wの最外縁における表面WSuの高さと、傾斜しているガード部材224cの上面224Suの最内縁の高さとは同じ高さであってもよい。また、ガード部材224cの上面224Suの幅(XY平面における寸法)は、局所的な真空領域VSPのXY方向における寸法の1/2以上であってもよい。ガード部材224cの上面224Suの幅(XY平面における寸法)は、真空形成部材121の射出面121LSのXY方向における大きさの1/2以上、或いはビーム射出口1232の中心から射出面121LSの最外周位置までの距離以上であってもよい。また、ガード部材224cの上面224Suは曲面であってもよい。 Note that the upper surface 224Su of the guard member 224c may not be located at the same height as the surface WSu of the sample W held on the stage 22c. That is, the upper surface 224Su of the guard member 224c does not have to be located on the same plane as the surface WSu of the sample W held on the stage 22c. For example, the upper surface 224Su of the guard member 224c may be positioned above the surface WSu of the sample W held on the stage 22c. The upper surface 224Su of the guard member 224c may be positioned below the surface WSu of the sample W held on the stage 22c. The side surface of the guard member 224c and the side surface of the sample W may be in contact with each other. The upper surface 224Su of the guard member 224c may be inclined with respect to the surface WSu of the sample W. At this time, the height of the surface WSu at the outermost edge of the sample W and the height of the innermost edge of the upper surface 224Su of the inclined guard member 224c may be the same height. Further, the width (dimension in the XY plane) of the upper surface 224Su of the guard member 224c may be ½ or more of the dimension in the XY direction of the local vacuum region VSP. The width (dimension in the XY plane) of the upper surface 224Su of the guard member 224c is ½ or more of the size in the XY direction of the emission surface 121LS of the vacuum forming member 121, or the outermost periphery of the emission surface 121LS from the center of the beam emission port 1232 It may be more than the distance to the position. Further, the upper surface 224Su of the guard member 224c may be a curved surface.
 ガード部材224cは、側壁部材222aと一体化されていてもよい。或いは、ガード部材224cは、側壁部材222aと一体化されていなくてもよい。例えば、ガード部材224cは、側壁部材222aから脱着可能な部材であってもよい。 The guard member 224c may be integrated with the side wall member 222a. Alternatively, the guard member 224c may not be integrated with the side wall member 222a. For example, the guard member 224c may be a member that can be detached from the side wall member 222a.
 (3-4)第4変形例
 続いて、第4変形例の走査型電子顕微鏡SEMdについて説明する。第4変形例の走査型電子顕微鏡SEMdは、上述した走査型電子顕微鏡SEMと比較して、ステージ22に代えてステージ22dを備えているという点で異なっている。走査型電子顕微鏡SEMdのその他の構造は、上述した走査型電子顕微鏡SEMのその他の構造と同一であってもよい。このため、以下では、図12を参照しながら、ステージ22dの構造について説明する。
(3-4) Fourth Modification Next, a scanning electron microscope SEMd of the fourth modification will be described. The scanning electron microscope SEMd of the fourth modified example is different from the above-described scanning electron microscope SEM in that a stage 22d is provided instead of the stage 22. The other structure of the scanning electron microscope SEMd may be the same as the other structure of the scanning electron microscope SEM described above. Therefore, hereinafter, the structure of the stage 22d will be described with reference to FIG.
 図12に示すように、ステージ22dは、ステージ22と比較して、側壁部材222に代えて側壁部材222dを備えているという点で異なる。側壁部材222dの上面222Suは、複数の支持部材223の上面223Suよりも上方に位置する。側壁部材222dは、ステージ22に保持されている試料Wよりも外側に形成される。このため、第4変形例では、ステージ22dは、試料Wの裏面WSlが複数の支持部材223の上面223Suに接触する一方で側壁部材222dの上面222Suに接触しない(特に、側壁部材222dが試料Wの外側に位置する)状態で、試料Wを保持する。側壁部材222dのその他の構造は、上述した側壁部材222のその他の構造と同一であってもよい。 12, the stage 22d is different from the stage 22 in that a side wall member 222d is provided instead of the side wall member 222. The upper surface 222Su of the side wall member 222d is positioned above the upper surfaces 223Su of the plurality of support members 223. The side wall member 222 d is formed outside the sample W held on the stage 22. For this reason, in the fourth modification, the stage 22d has the back surface WS1 of the sample W in contact with the upper surfaces 223Su of the plurality of support members 223, while not contacting the upper surface 222Su of the side wall member 222d (particularly, the side wall member 222d is not in contact with the sample W). The sample W is held in a state of being located outside the substrate). Other structures of the side wall member 222d may be the same as the other structures of the side wall member 222 described above.
 側壁部材222dの上面222Suは平面であってもよい。側壁部材222dの上面222Suは、ステージ22dに保持されている試料Wの表面WSuと同じ高さに位置していてもよい。つまり、側壁部材222dの上面222Suは、ステージ22dに保持されている試料Wの表面WSuと同じ平面に位置していてもよい。この場合、側壁部材222dは、第3変形例のガード部材224cとしても機能可能である。つまり、側壁部材222dは、試料Wの外縁部分W_edgeにおいて真空領域VSPを適切に形成することに寄与する部材となり得る。但し、側壁部材222dの上面222Suは、ステージ22dに保持されている試料Wの表面WSuと同じ高さに位置していなくてもよい。つまり、側壁部材222dの上面222Suは、ステージ22dに保持されている試料Wの表面WSuと同じ平面に位置しなくてもよい。 The upper surface 222Su of the side wall member 222d may be a flat surface. The upper surface 222Su of the side wall member 222d may be located at the same height as the surface WSu of the sample W held on the stage 22d. That is, the upper surface 222Su of the side wall member 222d may be located on the same plane as the surface WSu of the sample W held on the stage 22d. In this case, the side wall member 222d can also function as the guard member 224c of the third modification. That is, the side wall member 222d can be a member that contributes to appropriately forming the vacuum region VSP in the outer edge portion W_edge of the sample W. However, the upper surface 222Su of the side wall member 222d may not be located at the same height as the surface WSu of the sample W held on the stage 22d. That is, the upper surface 222Su of the side wall member 222d may not be located on the same plane as the surface WSu of the sample W held on the stage 22d.
 側壁部材222dの側面(特に、ステージ空間SPsに面する側面であり、例えば、内側面、以下同じ)222Ssの一部は、試料Wの側面(例えば、外側面)に対向する。側壁部材222dの側面222Ssと試料Wの側面とは接触しない。つまり、側壁部材222dの側面222Ssと試料Wの側面との間に、空隙が確保されている。この場合、ステージ空間SPsのうち空隙を介してステージ空間SPsの外部の大気圧空間に連通する外縁空間SPg2は、上述した第2又は第3変形例における外縁空間SPg1と同様に、大気圧空間から気体が流入しやすい。その結果、外縁空間SPg2の圧力は、ステージ空間SPsのうち外縁空間SPg2以外の部分の圧力よりも高くなる可能性がある。このため、第4変形例のステージ22dにおいても、第1変形例のステージ22aと同様に、試料Wのうち外縁空間SPg2に面する外縁部分W_edge’がステージ22から引き離され、結果として、試料Wが変形してしまう可能性がある。 A part of the side surface 222d of the side wall member 222d (in particular, the side surface facing the stage space SPs, for example, the inner surface, the same applies hereinafter) opposes the side surface (for example, the outer surface) of the sample W. The side surface 222Ss of the side wall member 222d does not contact the side surface of the sample W. That is, a gap is secured between the side surface 222Ss of the side wall member 222d and the side surface of the sample W. In this case, the outer edge space SPg2 communicating with the atmospheric pressure space outside the stage space SPs through the gap in the stage space SPs is similar to the outer edge space SPg1 in the second or third modification described above from the atmospheric pressure space. Gas tends to flow in. As a result, the pressure in the outer edge space SPg2 may be higher than the pressure in the portion of the stage space SPs other than the outer edge space SPg2. For this reason, also in the stage 22d of the fourth modified example, the outer edge portion W_edge ′ facing the outer edge space SPg2 of the sample W is pulled away from the stage 22 in the same manner as the stage 22a of the first modified example. May be deformed.
 そこで、第4変形例においても、第2変形例と同様に、試料Wの変形を抑制するために、側壁部材222dに排気口2244dが形成される。但し、第4変形例では、側壁部材222dの上面222Suが外縁空間SPg2に面していないため、側壁部材222dのうち外縁空間SPg2に面する面(具体的には、側面222Ss)に排気口2244dが形成される。排気口2244dは、側壁部材222dの側面222Ssにおいて排気口2244dが連続的に分布するように環状の分布パターンで形成されていてもよい。排気口2244dは、側壁部材222dの側面222Ssにおいて規則的な(或いは、ランダムな)配列パターンで配列するように、複数形成されていてもよい。但し、排気口2244dは、任意の配列パターン又は分布パターンで形成されていてもよい。 Therefore, in the fourth modified example, as in the second modified example, in order to suppress the deformation of the sample W, the exhaust port 2244d is formed in the side wall member 222d. However, in the fourth modified example, since the upper surface 222Su of the side wall member 222d does not face the outer edge space SPg2, the exhaust port 2244d is formed on a surface (specifically, the side surface 222Ss) of the side wall member 222d that faces the outer edge space SPg2. Is formed. The exhaust ports 2244d may be formed in an annular distribution pattern so that the exhaust ports 2244d are continuously distributed on the side surface 222Ss of the side wall member 222d. A plurality of exhaust ports 2244d may be formed so as to be arranged in a regular (or random) arrangement pattern on the side surface 222Ss of the side wall member 222d. However, the exhaust port 2244d may be formed in an arbitrary arrangement pattern or distribution pattern.
 排気口2244dには、配管2254dを介して真空ポンプ54が連結されている。真空ポンプ54は、外縁空間SPg2を排気して減圧可能である。つまり、第4変形例では、外縁空間SPg2は、真空ポンプ54によって、外縁空間SPg2から相対的に離れた排気口2242を介して減圧されることに加えて又は代えて、外縁空間SPg2に相対的に近接する排気口2244dを介して減圧される。このため、第4変形例においても、第2変形例と同様に、試料Wの外縁部分W_edge’がステージ22dから引き離される可能性が小さくなる。このため、試料Wが変形してしまう可能性が小さくなる。つまり、試料Wの変形が適切に抑制される。 A vacuum pump 54 is connected to the exhaust port 2244d through a pipe 2254d. The vacuum pump 54 can evacuate the outer edge space SPg2 to reduce the pressure. That is, in the fourth modified example, the outer edge space SPg2 is relative to the outer edge space SPg2 in addition to or instead of being depressurized by the vacuum pump 54 via the exhaust port 2242 relatively distant from the outer edge space SPg2. The pressure is reduced through the exhaust port 2244d close to the. For this reason, also in the fourth modified example, as in the second modified example, the possibility that the outer edge portion W_edge 'of the sample W is separated from the stage 22d is reduced. For this reason, possibility that the sample W will deform | transform will become small. That is, the deformation of the sample W is appropriately suppressed.
 尚、上述した説明では、排気口2244dは、側壁部材222dに形成されている。しかしながら、排気口2244dは、側壁部材222d以外の部材に形成されていてもよい。排気口2244dは、側壁部材222d以外の、外縁空間SPg2に面する部材に形成されていてもよい。排気口2244dは、側壁部材222d以外の部材のうち外縁空間SPg2に面する面に形成されていてもよい。図12に示す例で言えば、排気口2244dは、底部材221の上面221Suのうち外縁空間SPg2に面する部分に形成されていてもよい。排気口2244dは、複数の支持部材223のうち外縁空間SPg2に面する少なくとも一つの支持部材223に形成されていてもよい。上述した第2変形例から第3変形例においても同様に、排気口2243bは、側壁部材222b以外の部材に形成されていてもよい。排気口2243bは、側壁部材222b以外の、外縁空間SPg1に面する部材に形成されていてもよい。排気口2243bは、側壁部材222b以外の部材のうち外縁空間SPg1に面する面に形成されていてもよい。尚、側壁部材222dの上面222Suは、ステージ22dに保持されている試料Wの表面WSuに対して傾斜していてもよい。このとき、試料Wの最外縁における表面WSuの高さと、傾斜している上面222Suの最内縁の高さとは同じ高さであってもよい。また、側壁部材222dの上面222Suの幅(XY平面における寸法)は、局所的な真空領域VSPのXY方向における寸法の1/2以上であってもよい。側壁部材222dの上面222Suの幅(XY平面における寸法)は、真空形成部材121の射出面121LSのXY方向における大きさの1/2以上、或いはビーム射出口1232の中心から射出面121LSの最外周位置までの距離以上であってもよい。また、側壁部材222dの上面222Suは曲面であってもよい。 In the above description, the exhaust port 2244d is formed in the side wall member 222d. However, the exhaust port 2244d may be formed in a member other than the side wall member 222d. The exhaust port 2244d may be formed in a member facing the outer edge space SPg2 other than the side wall member 222d. The exhaust port 2244d may be formed on a surface facing the outer edge space SPg2 among members other than the side wall member 222d. In the example shown in FIG. 12, the exhaust port 2244d may be formed in a portion of the upper surface 221Su of the bottom member 221 that faces the outer edge space SPg2. The exhaust port 2244d may be formed in at least one support member 223 facing the outer edge space SPg2 among the plurality of support members 223. Similarly, in the second to third modifications described above, the exhaust port 2243b may be formed in a member other than the side wall member 222b. The exhaust port 2243b may be formed in a member facing the outer edge space SPg1 other than the side wall member 222b. The exhaust port 2243b may be formed on a surface facing the outer edge space SPg1 among members other than the side wall member 222b. The upper surface 222Su of the side wall member 222d may be inclined with respect to the surface WSu of the sample W held on the stage 22d. At this time, the height of the surface WSu at the outermost edge of the sample W and the height of the innermost edge of the inclined upper surface 222Su may be the same height. Further, the width (dimension in the XY plane) of the upper surface 222Su of the side wall member 222d may be 1/2 or more of the dimension in the XY direction of the local vacuum region VSP. The width (dimension in the XY plane) of the upper surface 222Su of the side wall member 222d is ½ or more of the size in the XY direction of the emission surface 121LS of the vacuum forming member 121, or the outermost periphery of the emission surface 121LS from the center of the beam emission port 1232 It may be more than the distance to the position. Further, the upper surface 222Su of the side wall member 222d may be a curved surface.
 (3-5)第5変形例
 続いて、第5変形例の走査型電子顕微鏡SEMeについて説明する。第5変形例の走査型電子顕微鏡SEMeは、上述した第1変形例の走査型電子顕微鏡SEMaと比較して、ステージ22aに代えてステージ22eを備えているという点で異なっている。走査型電子顕微鏡SEMeのその他の構造は、上述した走査型電子顕微鏡SEMaのその他の構造と同一であってもよい。このため、以下では、図13を参照しながら、ステージ22eの構造について説明する。
(3-5) Fifth Modification Next, a scanning electron microscope SEMe of a fifth modification will be described. The scanning electron microscope SEMe of the fifth modified example is different from the scanning electron microscope SEMa of the first modified example described above in that a stage 22e is provided instead of the stage 22a. The other structure of the scanning electron microscope SEMe may be the same as the other structure of the scanning electron microscope SEMa described above. Therefore, hereinafter, the structure of the stage 22e will be described with reference to FIG.
 図13に示すように、ステージ22eは、上述したステージ22aと比較して、温度調整装置2291e及び温度計測装置2292eを備えているという点で異なっている。ステージ22eのその他の構造は、上述したステージ22aのその他の構造と同一であってもよい。 As shown in FIG. 13, the stage 22e is different from the above-described stage 22a in that it includes a temperature adjusting device 2291e and a temperature measuring device 2292e. Other structures of the stage 22e may be the same as the other structures of the stage 22a described above.
 温度調整装置2291eは、側壁部材222aに配置されている。但し、温度調整装置2291eは、側壁部材222a以外の部材(例えば、底部材221)に配置されていてもよい。温度調整装置2291eは、側壁部材222aの上面222Suに沿って連続的に分布するように環状の分布パターンで配置されている。但し、温度調整装置2291eは、任意の配列パターン又は分布パターンで配置されていてもよい。例えば、温度調整装置2291eは、側壁部材222aの上面222Suに沿って規則的な(或いは、ランダムな)配列パターンで配列するように、複数配置されていてもよい。温度調整装置2291eは、側壁部材222aの内部に埋め込まれているが、側壁部材222aの表面(例えば、上面222Su)に配置されていてもよい。温度計測装置2292eもまた、温度調整装置2291eと同様の配置態様で配置されていてもよい。 The temperature adjusting device 2291e is disposed on the side wall member 222a. However, the temperature adjusting device 2291e may be disposed on a member (for example, the bottom member 221) other than the side wall member 222a. The temperature adjusting device 2291e is arranged in an annular distribution pattern so as to be continuously distributed along the upper surface 222Su of the side wall member 222a. However, the temperature adjustment device 2291e may be arranged in an arbitrary arrangement pattern or distribution pattern. For example, a plurality of temperature adjusting devices 2291e may be arranged so as to be arranged in a regular (or random) arrangement pattern along the upper surface 222Su of the side wall member 222a. The temperature adjustment device 2291e is embedded in the side wall member 222a, but may be disposed on the surface (for example, the upper surface 222Su) of the side wall member 222a. The temperature measuring device 2292e may also be arranged in the same arrangement manner as the temperature adjusting device 2291e.
 温度調整装置2291eは、側壁部材222aの周辺の空間の温度を調整する。具体的には、温度調整装置2291eは、外縁空間SPg1の少なくとも一部の温度を調整する。温度調整装置2291eは、外縁空間SPg1の少なくとも一部を加熱して外縁空間SPg1の少なくとも一部の温度を調整する。この場合、温度調整装置2291eは、例えば、ヒータを備えている。 The temperature adjusting device 2291e adjusts the temperature of the space around the side wall member 222a. Specifically, the temperature adjustment device 2291e adjusts the temperature of at least a part of the outer edge space SPg1. The temperature adjusting device 2291e adjusts the temperature of at least part of the outer edge space SPg1 by heating at least part of the outer edge space SPg1. In this case, the temperature adjustment device 2291e includes, for example, a heater.
 このような外縁空間SPg1の少なくとも一部の加熱による温度調整は、試料Wの温度を均一にするために行われる。具体的には、上述したように、外縁空間SPg1には、大気圧空間から気体が流入しやすい。その結果、大気圧空間から外縁空間SPg1に流入した気体の温度が、断熱膨張によって低下する可能性がある。外縁空間SPg1に流入した気体の温度が低下すると、外縁空間SPg1に面する外縁部分W_edgeの温度もまた低下する可能性がある。その結果、試料Wの外縁部分W_edgeの温度が、試料Wの外縁部分W_edge以外の部分の温度よりも低くなってしまう可能性がある。この場合、試料Wが熱変形する可能性がある。そこで、第5変形例では、温度調整装置2291eは、外縁空間SPg1の少なくとも一部の温度を調整して、試料Wの温度を均一にする。その結果、試料Wの熱変形が抑制される。 The temperature adjustment by heating at least a part of the outer edge space SPg1 is performed in order to make the temperature of the sample W uniform. Specifically, as described above, gas easily flows from the atmospheric pressure space into the outer edge space SPg1. As a result, there is a possibility that the temperature of the gas flowing into the outer edge space SPg1 from the atmospheric pressure space is lowered by adiabatic expansion. When the temperature of the gas flowing into the outer edge space SPg1 decreases, the temperature of the outer edge portion W_edge facing the outer edge space SPg1 may also decrease. As a result, the temperature of the outer edge portion W_edge of the sample W may be lower than the temperature of the portion other than the outer edge portion W_edge of the sample W. In this case, the sample W may be thermally deformed. Therefore, in the fifth modification, the temperature adjustment device 2291e adjusts the temperature of at least a part of the outer edge space SPg1 to make the temperature of the sample W uniform. As a result, thermal deformation of the sample W is suppressed.
 温度計測装置2292eは、試料Wの温度を計測可能である。このため、温度調整装置2291eは、温度計測装置2292eの計測結果に基づいて、試料Wの温度が均一になるように、外縁空間SPg1の少なくとも一部の温度を調整する。 The temperature measuring device 2292e can measure the temperature of the sample W. For this reason, the temperature adjusting device 2291e adjusts the temperature of at least a part of the outer edge space SPg1 so that the temperature of the sample W becomes uniform based on the measurement result of the temperature measuring device 2292e.
 このようなステージ22eを備える第5変形例の走査型電子顕微鏡SEMeであっても、上述した走査型電子顕微鏡SEMaが享受することが可能な効果と同様の効果を享受することができる。加えて、第5変形例の走査型電子顕微鏡SEMeは、試料Wの熱変形を適切に抑制することができる。 Even in the scanning electron microscope SEMe of the fifth modified example provided with such a stage 22e, it is possible to enjoy the same effects as those that can be enjoyed by the above-described scanning electron microscope SEMa. In addition, the scanning electron microscope SEMe of the fifth modified example can appropriately suppress the thermal deformation of the sample W.
 尚、温度調整装置2291eが外縁空間SPg1の温度を調整する目的が、試料Wの温度を均一にする(つまり、試料Wの温度を調整する)ことであることを考慮すれば、温度調整装置2291eは、外縁空間SPg1に加えて又は代えて、試料Wの少なくとも一部(特に、外縁部分W_edge)の温度を調整してもよい。この場合、温度調整装置2291eは、試料Wの少なくとも一部(特に、外縁部分W_edge)に接触可能な位置に配置されていてもよい。尚、1以上の温度調整装置2291eを例えば底部材221に配置して、局所真空領域VSPに起因する試料Wの局所的な温度変動を低減させてもよい。 Considering that the purpose of adjusting the temperature of the outer edge space SPg1 by the temperature adjusting device 2291e is to make the temperature of the sample W uniform (that is, adjusting the temperature of the sample W), the temperature adjusting device 2291e. In addition to or instead of the outer edge space SPg1, the temperature of at least a part of the sample W (particularly, the outer edge portion W_edge) may be adjusted. In this case, the temperature adjustment device 2291e may be disposed at a position where it can contact at least a part of the sample W (particularly, the outer edge portion W_edge). For example, one or more temperature adjustment devices 2291e may be arranged on the bottom member 221 to reduce local temperature fluctuations of the sample W caused by the local vacuum region VSP.
 (3-6)第6変形例
 続いて、第6変形例の走査型電子顕微鏡SEMfについて説明する。第6変形例の走査型電子顕微鏡SEMfは、上述した走査型電子顕微鏡SEMと比較して、ステージ22に代えてステージ22fを備えているという点で異なっている。走査型電子顕微鏡SEMfのその他の構造は、上述した走査型電子顕微鏡SEMのその他の構造と同一であってもよい。このため、以下では、図14を参照しながら、ステージ22fの構造について説明する。
(3-6) Sixth Modification Next, a scanning electron microscope SEMf of the sixth modification will be described. The scanning electron microscope SEMf of the sixth modified example is different from the above-described scanning electron microscope SEM in that a stage 22f is provided instead of the stage 22. The other structure of the scanning electron microscope SEMf may be the same as the other structure of the scanning electron microscope SEM described above. Therefore, hereinafter, the structure of the stage 22f will be described with reference to FIG.
 図14に示すように、ステージ22fは、ステージ22と比較して、静電チャック225fを備えているという点で異なっている。静電チャック225fは、少なくとも一つの電極を備えている。静電チャック225fは、制御装置4の制御下で、静電力(つまり、クーロン力)F_elecを発生可能である。静電チャック225fは、試料Wに作用する静電力F_elecを発生可能である。静電チャック225fは、試料W(例えば、試料Wの裏面WSl)を静電チャック225fに引き寄せる(その結果、ステージ22fに引き寄せる)ように試料Wに作用する静電力F_elecを発生可能である。つまり、静電チャック225fは、試料Wからステージ22fに向かう方向に作用する静電力F_elecを発生可能である。静電チャック225fは、XY平面内において、試料Wに均等に作用する静電力F_elecを発生可能である。ステージ22fは、静電チャック225fが発生させる静電力F_elecを、試料Wを保持するための力として用いる。このため、第6変形例では、ステージ22fには、ステージ空間SPsを減圧して試料Wを保持するために上述したステージ22が備えている排気口2241が形成されていなくてもよい。更に、ステージ22fには、配管2251が配置されていなくてもよい。更に、ポンプ系5は、真空ポンプ53を備えていなくてもよい。但し、ステージ22fは、静電チャック225fが発生させる静電力F_elecに加えて、ステージ空間SPsを減圧して発生する負圧による力F_hold1を、試料Wを保持するための力として用いてもよい。この場合には、ステージ22fに排気口2241が形成されていてもよいし、ステージ22fに配管2251が配置されていてもよいし、ポンプ系5が、真空ポンプ53を備えていてもよい。 As shown in FIG. 14, the stage 22f is different from the stage 22 in that an electrostatic chuck 225f is provided. The electrostatic chuck 225f includes at least one electrode. The electrostatic chuck 225f can generate an electrostatic force (that is, coulomb force) F_elec under the control of the control device 4. The electrostatic chuck 225f can generate an electrostatic force F_elec acting on the sample W. The electrostatic chuck 225f can generate an electrostatic force F_elec that acts on the sample W so as to draw the sample W (for example, the back surface WSl of the sample W) to the electrostatic chuck 225f (and as a result, draw it to the stage 22f). That is, the electrostatic chuck 225f can generate an electrostatic force F_elec that acts in a direction from the sample W toward the stage 22f. The electrostatic chuck 225f can generate an electrostatic force F_elec that acts evenly on the sample W in the XY plane. The stage 22f uses the electrostatic force F_elec generated by the electrostatic chuck 225f as a force for holding the sample W. For this reason, in the sixth modified example, the stage 22f may not be provided with the exhaust port 2241 provided in the stage 22 described above in order to reduce the stage space SPs and hold the sample W. Further, the pipe 2251 may not be arranged on the stage 22f. Further, the pump system 5 may not include the vacuum pump 53. However, in addition to the electrostatic force F_elec generated by the electrostatic chuck 225f, the stage 22f may use a force F_hold1 due to the negative pressure generated by reducing the stage space SPs as a force for holding the sample W. In this case, an exhaust port 2241 may be formed on the stage 22f, a pipe 2251 may be disposed on the stage 22f, or the pump system 5 may include a vacuum pump 53.
 加えて、第6変形例では、走査型電子顕微鏡SEMfは、制御装置4の制御下で、静電チャック225fが発生する静電力F_elecを用いて、試料Wの変形を抑制する。つまり、ステージ22fは、静電チャック225fが発生させる静電力F_elecを、試料Wの変形を抑制するための力として用いる。このため、第6変形例では、ステージ22fには、ステージ空間SPsを減圧して試料Wの変形を抑制するために上述したステージ22が備えている排気口2242が形成されていなくてもよい。更に、ステージ22fには、配管2252が配置されていなくてもよい。更に、ポンプ系5は、真空ポンプ54を備えていなくてもよい。但し、ステージ22fは、静電チャック225fが発生させる静電力F_elecに加えて、ステージ空間SPsを減圧して試料Wの変形を抑制してもよい。この場合には、ステージ22fに排気口2242が形成されていてもよいし、ステージ22fに配管2252が配置されていなくてもよいし、ポンプ系5が、真空ポンプ54を備えていてもよい。 In addition, in the sixth modification, the scanning electron microscope SEMf suppresses deformation of the sample W using the electrostatic force F_elec generated by the electrostatic chuck 225f under the control of the control device 4. That is, the stage 22f uses the electrostatic force F_elec generated by the electrostatic chuck 225f as a force for suppressing the deformation of the sample W. For this reason, in the sixth modified example, the stage 22f may not be provided with the exhaust port 2242 provided in the stage 22 described above in order to reduce the stage space SPs and suppress the deformation of the sample W. Further, the pipe 2252 may not be arranged on the stage 22f. Further, the pump system 5 may not include the vacuum pump 54. However, the stage 22f may suppress the deformation of the sample W by reducing the stage space SPs in addition to the electrostatic force F_elec generated by the electrostatic chuck 225f. In this case, the exhaust port 2242 may be formed in the stage 22f, the pipe 2252 may not be disposed in the stage 22f, and the pump system 5 may include the vacuum pump 54.
 制御装置4は、真空領域VSPに起因した力F_VSP(つまり、特定部分W_vacをステージ22から引き離すように特定部分W_vacに作用する力)に応じて、静電チャック225fが発生する静電力F_elecを制御する。 The control device 4 controls the electrostatic force F_elec generated by the electrostatic chuck 225f according to the force F_VSP caused by the vacuum region VSP (that is, the force acting on the specific portion W_vac so as to separate the specific portion W_vac from the stage 22). To do.
 例えば、制御装置4は、試料Wの変形を抑制するために、静電チャック225fが静電力F_elecを付与する前に特定部分W_vacに作用していた力(つまり、力F_VSP)が相殺されるように、静電チャック225fが発生する静電力F_elecを制御してもよい。この場合、制御装置4は、静電力F_elecによって力F_VSPが相殺される(つまり、静電力F_elecと力F_VSPとを合算した力F_vacがゼロになる)ように、力F_VSPに応じて静電力F_elecを制御してもよい。言い換えれば、制御装置4は、力F_VSPを相殺可能な静電力F_elecが試料Wに作用する(つまり、付与される)ように、力F_VSPに応じて静電力F_elecを制御してもよい。この場合、制御装置4は、力F_VSPと比較して、作用する方向が逆向きであって且つ大きさが同じになる静電力F_elecが試料Wに作用するように、静電力F_elecを制御してもよい。つまり、制御装置4は、ビーム照射装置1からステージ22fに向かう方向(例えば、-Z方向)に試料Wを変位させるように作用し且つ力F_VSPと大きさが同じになる静電力F_elecが試料Wに作用するように、静電力F_elecを制御してもよい。このような静電力F_elecが静電チャック225fによって試料Wに付与されると、特定部分W_vacには、真空領域VSPに起因した力F_VSP及び静電チャック225fが発生した静電力F_elecの双方が付与される。このため、静電チャック225fが静電力F_elecを付与する前に特定部分W_vacに作用していた力F_vacが、静電チャック225fが静電力F_elecを付与した後には特定部分W_vacに作用しなくなる。このため、特定部分W_vacがステージ22fから引き離されることがなくなる。その結果、試料Wの変形が適切に抑制される。尚、このような条件を満たす静電力F_elecは、真空領域VSPに起因した力F_VSPを相殺可能な上述した力F_cancelの一具体例となる。 For example, in order to suppress the deformation of the sample W, the control device 4 cancels the force (that is, the force F_VSP) acting on the specific portion W_vac before the electrostatic chuck 225f applies the electrostatic force F_elec. In addition, the electrostatic force F_elec generated by the electrostatic chuck 225f may be controlled. In this case, the control device 4 sets the electrostatic force F_elec according to the force F_VSP so that the force F_VSP is canceled by the electrostatic force F_elec (that is, the force F_vac obtained by adding the electrostatic force F_elec and the force F_VSP becomes zero). You may control. In other words, the control device 4 may control the electrostatic force F_elec according to the force F_VSP so that the electrostatic force F_elec that can cancel the force F_VSP acts on (i.e., is applied to) the sample W. In this case, the control device 4 controls the electrostatic force F_elec so that the electrostatic force F_elec that acts in the opposite direction and has the same magnitude acts on the sample W compared to the force F_VSP. Also good. That is, the control device 4 acts to displace the sample W in the direction from the beam irradiation device 1 toward the stage 22f (for example, the −Z direction), and the electrostatic force F_elec having the same magnitude as the force F_VSP is generated by the sample W. The electrostatic force F_elec may be controlled so as to act on. When such electrostatic force F_elec is applied to the sample W by the electrostatic chuck 225f, both the force F_VSP caused by the vacuum region VSP and the electrostatic force F_elec generated by the electrostatic chuck 225f are applied to the specific portion W_vac. The For this reason, the force F_vac acting on the specific portion W_vac before the electrostatic chuck 225f applies the electrostatic force F_elec does not act on the specific portion W_vac after the electrostatic chuck 225f applies the electrostatic force F_elec. For this reason, the specific portion W_vac is not separated from the stage 22f. As a result, deformation of the sample W is appropriately suppressed. The electrostatic force F_elec satisfying such a condition is a specific example of the above-described force F_cancel that can cancel the force F_VSP caused by the vacuum region VSP.
 或いは、例えば、制御装置4は、試料Wの変形を抑制するために、特定部分W_vacに作用する力F_vacが小さくなるように、静電チャック225fが発生する静電力F_elecを制御してもよい。この場合、制御装置4は、力F_VSPと比較して、作用する方向が逆向きであって且つ大きさが異なる静電力F_elecが試料Wに作用するように、静電力F_elecを制御してもよい。つまり、制御装置4は、ビーム照射装置1からステージ22に向かう方向(例えば、-Z方向)に試料Wを変位させるように作用し且つ力F_VSPと大きさが異なる静電力F_elecが試料Wに作用するように、静電力F_elecを制御してもよい。このような静電力F_elecが静電チャック225fによって試料Wに付与されると、特定部分W_vacには、真空領域VSPに起因した力F_VSP及び静電チャック225fが発生した静電力F_elecの双方が付与される。このため、静電チャック225fが静電力F_elecを付与する前に特定部分W_vacに作用していた力F_vac(つまり、力F_VSP)と比較して、静電チャック225fが静電力F_elecを付与した後に特定部分W_vacに作用する力F_vac(つまり、力F_VSPと力F_elecとを合算した力)が小さくなる。このため、特定部分W_vacがステージ22fから引き離されにくくなる。或いは、仮に特定部分W_vacがステージ22fから引き離されたとしても、その引き離され量(つまり、特定部分W_vacとステージ22fとの間の間隔)が小さくなる。その結果、少なくとも静電チャック225fが静電力F_elecを付与しない場合と比較すれば、試料Wの変形が適切に抑制される。つまり、試料Wの変形が相応に抑制される。尚、このような条件を満たす静電力F_elecは、特定部分W_vacに作用する力F_vacを小さくすることが可能な上述した力F_reduceの一具体例となる。 Alternatively, for example, the control device 4 may control the electrostatic force F_elec generated by the electrostatic chuck 225f so that the force F_vac acting on the specific portion W_vac is reduced in order to suppress deformation of the sample W. In this case, the control device 4 may control the electrostatic force F_elec so that the electrostatic force F_elec acting in the opposite direction and having a different magnitude acts on the sample W compared to the force F_VSP. . That is, the control device 4 acts to displace the sample W in the direction from the beam irradiation device 1 toward the stage 22 (for example, the −Z direction), and an electrostatic force F_elec having a magnitude different from the force F_VSP acts on the sample W. Thus, the electrostatic force F_elec may be controlled. When such electrostatic force F_elec is applied to the sample W by the electrostatic chuck 225f, both the force F_VSP caused by the vacuum region VSP and the electrostatic force F_elec generated by the electrostatic chuck 225f are applied to the specific portion W_vac. The For this reason, the electrostatic chuck 225f is identified after the electrostatic force F_elec is applied compared to the force F_vac (that is, the force F_VSP) that has been applied to the specific portion W_vac before the electrostatic force F_elec is applied. The force F_vac acting on the portion W_vac (that is, the sum of the force F_VSP and the force F_elec) is reduced. For this reason, the specific portion W_vac is not easily separated from the stage 22f. Alternatively, even if the specific portion W_vac is separated from the stage 22f, the amount of separation (that is, the interval between the specific portion W_vac and the stage 22f) becomes small. As a result, the deformation of the sample W is appropriately suppressed as compared with at least the case where the electrostatic chuck 225f does not apply the electrostatic force F_elec. That is, the deformation of the sample W is appropriately suppressed. The electrostatic force F_elec that satisfies such a condition is a specific example of the above-described force F_reduce that can reduce the force F_vac acting on the specific portion W_vac.
 このようなステージ22fを備える第6変形例の走査型電子顕微鏡SEMfであっても、上述した走査型電子顕微鏡SEMが享受することが可能な効果と同様の効果を享受することができる。 Even in the scanning electron microscope SEMf of the sixth modified example provided with such a stage 22f, it is possible to enjoy the same effects as those that can be enjoyed by the above-described scanning electron microscope SEM.
 尚、静電チャック225fは、試料Wの下面WSlと接触するように設けられていてもよい。また、静電チャック225fは、ステージ22の支持部材223における試料Wの下面WSlと接触する部位に設けられていてもよい。 Note that the electrostatic chuck 225f may be provided so as to be in contact with the lower surface WSl of the sample W. Further, the electrostatic chuck 225f may be provided at a portion that contacts the lower surface WSl of the sample W in the support member 223 of the stage 22.
 尚、上述した第2変形例から第4変形例においても、静電チャックが発生する静電力を用いて、試料Wの外縁部分W_edgeがステージ22a又は22bから引き離されることに起因した試料Wの変形が抑制されてもよい。例えば、上述した第2変形例及び第3変形例の夫々においても、ステージ22bは、空間SPgを減圧するための排気口2243bに加えて又は代えて、試料Wの外縁部分W_edgeをステージ22a(特に、側壁部材222aの上面222Su)に引き寄せるように外縁部分W_edgeに作用する静電力を発生可能な静電チャックを備えていてもよい。上述した第4変形例において、ステージ22bは、空間SPg2を減圧するための排気口2244dに加えて又は代えて、試料Wの外縁部分W_edge’をステージ22dに引き寄せる(特に、下方に向けて引き寄せる)ように外縁部分W_edge’に作用する静電力を発生可能な静電チャックを備えていてもよい。 In the second to fourth modifications described above, the deformation of the sample W caused by the outer edge portion W_edge of the sample W being separated from the stage 22a or 22b using the electrostatic force generated by the electrostatic chuck. May be suppressed. For example, in each of the second modification and the third modification described above, the stage 22b adds the outer edge portion W_edge of the sample W to the stage 22a (particularly, in addition to or instead of the exhaust port 2243b for decompressing the space SPg). An electrostatic chuck capable of generating an electrostatic force acting on the outer edge portion W_edge so as to be drawn toward the upper surface 222Su) of the side wall member 222a may be provided. In the above-described fourth modified example, the stage 22b draws the outer edge portion W_edge ′ of the sample W toward the stage 22d (in particular, draws downward) in addition to or instead of the exhaust port 2244d for decompressing the space SPg2. Thus, an electrostatic chuck capable of generating an electrostatic force acting on the outer edge portion W_edge ′ may be provided.
 走査型電子顕微鏡SEMfは、静電力F_elecとは異なる種類の力を用いて、試料Wの変形を抑制してもよい。つまり、走査型電子顕微鏡SEMfは、静電チャック225fに加えて又は代えて、試料Wの変形を抑制するための力として、静電力F_elecとは異なる種類の力を付与可能な付与装置を備えていてもよい。例えば、走査型電子顕微鏡SEMfは、試料Wの裏面WSlに付着可能であって且つ裏面WSlに付着したままZ軸に沿って移動可能なようにステージ22fに配置された移動部材を、付与装置の一例として備えていてもよい。この場合、走査型電子顕微鏡SEMfは、当該移動部材の移動に伴う力を、試料Wの変形を抑制するための力として用いてもよい。尚、複数の支持部材223の少なくとも一つが、移動部材として用いられてもよい。或いは、例えば、走査型電子顕微鏡SEMfは、試料Wの裏面WSlに対向するようにステージ22fに配置されたベルヌーイチャックを、付与装置の一例として備えていてもよい。この場合、走査型電子顕微鏡SEMfは、ベルヌーイチャックから噴出される気体に起因してベルヌーイチャックと試料Wの裏面WSlとの間に作用する力を、試料Wの変形を抑制するための力として用いてもよい。 The scanning electron microscope SEMf may suppress deformation of the sample W by using a different type of force from the electrostatic force F_elec. In other words, the scanning electron microscope SEMf includes an applying device that can apply a different type of force from the electrostatic force F_elec as a force for suppressing deformation of the sample W in addition to or instead of the electrostatic chuck 225f. May be. For example, the scanning electron microscope SEMf includes a moving member disposed on the stage 22f so as to be attached to the back surface WSl of the sample W and to be movable along the Z axis while being attached to the back surface WSl. It may be provided as an example. In this case, the scanning electron microscope SEMf may use the force accompanying the movement of the moving member as a force for suppressing the deformation of the sample W. Note that at least one of the plurality of support members 223 may be used as a moving member. Alternatively, for example, the scanning electron microscope SEMf may include a Bernoulli chuck disposed on the stage 22f so as to face the back surface WSl of the sample W as an example of the applying device. In this case, the scanning electron microscope SEMf uses a force acting between the Bernoulli chuck and the back surface WSl of the sample W due to the gas ejected from the Bernoulli chuck as a force for suppressing the deformation of the sample W. May be.
 (3-7)第7変形例
 続いて、第7変形例の走査型電子顕微鏡SEMgについて説明する。第7変形例の走査型電子顕微鏡SEMgは、上述した走査型電子顕微鏡SEMと比較して、ステージ22に代えてステージ22gを備えているという点で異なっている。走査型電子顕微鏡SEMgのその他の構造は、上述した走査型電子顕微鏡SEMのその他の構造と同一であってもよい。このため、以下では、図15(a)から図15(b)を参照しながら、ステージ22gの構造について説明する。
(3-7) Subsequently seventh modification will be described scanning electron microscope SEMg the seventh modification. The scanning electron microscope SEMg according to the seventh modification is different from the above-described scanning electron microscope SEM in that a stage 22g is provided instead of the stage 22. The other structure of the scanning electron microscope SEMg may be the same as the other structure of the scanning electron microscope SEM described above. Therefore, the structure of the stage 22g will be described below with reference to FIGS. 15 (a) to 15 (b).
 図15(a)及び図15(b)に示すように、ステージ22gは、ステージ22と比較して、隔壁部材227gを備えているという点で異なる。隔壁部材227gは、側壁部材222によって囲まれた領域において、底部材221から上方(つまり、+Z側)に突き出るように形成される部材である。隔壁部材227gの上面227Suは、側壁部材222の上面222Su及び支持部材223の上面223Suと同じ高さに位置する。つまり、隔壁部材227gの上面227Suは、側壁部材222の上面222Su及び支持部材223の上面223Suと同じ平面に位置する。従って、ステージ22gは、試料Wの裏面WSlが側壁部材222の上面222Su、複数の支持部材223の上面223Su及び隔壁部材227gの上面227Suに接触する状態で、試料Wを保持する。 15 (a) and 15 (b), the stage 22g is different from the stage 22 in that it includes a partition member 227g. The partition member 227g is a member formed so as to protrude upward (that is, on the + Z side) from the bottom member 221 in a region surrounded by the side wall member 222. The upper surface 227Su of the partition wall member 227g is positioned at the same height as the upper surface 222Su of the side wall member 222 and the upper surface 223Su of the support member 223. That is, the upper surface 227Su of the partition wall member 227g is located on the same plane as the upper surface 222Su of the side wall member 222 and the upper surface 223Su of the support member 223. Accordingly, the stage 22g holds the sample W in a state where the back surface WSl of the sample W is in contact with the upper surface 222Su of the side wall member 222, the upper surfaces 223Su of the plurality of support members 223, and the upper surface 227Su of the partition wall member 227g.
 隔壁部材227gは、ステージ空間SPsを、底部材221と側壁部材222と隔壁部材227gとによって囲まれたN(但し、Nは2以上の整数)個の分割空間SPsg(具体的には、分割空間SPsg#1からSPsg#N)に区分けするための部材である。隔壁部材227gは、平面視において、ステージ空間SPsをN個の分割空間SPsgに区分け可能な分布パターンで分布するように、底部材221に形成される。図15(a)及び図15(b)は、隔壁部材227gがステージ空間SPsを9個の分割空間SPsg#1からSPsg#9に区分けする例(つまり、N=9となる例)を示している。 The partition member 227g has N (where N is an integer of 2 or more) divided spaces SPsg (specifically, divided spaces) in which the stage space SPs is surrounded by the bottom member 221, the sidewall member 222, and the partition member 227g. This is a member for dividing SPsg # 1 to SPsg # N). The partition member 227g is formed on the bottom member 221 so that the stage space SPs is distributed in a distribution pattern that can be divided into N divided spaces SPsg in plan view. FIGS. 15A and 15B show an example in which the partition member 227g divides the stage space SPs into nine divided spaces SPsg # 1 to SPsg # 9 (that is, an example in which N = 9). Yes.
 ステージ22gは更に、ステージ22と比較して、N個の分割空間SPsgに夫々対応するN個の排気口2241g(具体的には、排気口2241g#1から2241g#N)が形成されているという点で異なる。N個の排気口2241gには、夫々、N個の配管2251g(具体的には、配管2251g#1から2251g#N)を介して真空ポンプ53が連結されている。真空ポンプ53は、排気口2241g#i(但し、iは、1以上且つN以下の整数)及び配管2251g#iを介して、分割空間SPsg#iを排気して大気圧よりも減圧可能である。 The stage 22g further has N exhaust ports 2241g (specifically, exhaust ports 2241g # 1 to 2241g # N) respectively corresponding to the N divided spaces SPsg as compared with the stage 22. It is different in point. A vacuum pump 53 is connected to the N exhaust ports 2241g via N pipes 2251g (specifically, pipes 2251g # 1 to 2251g # N), respectively. The vacuum pump 53 can exhaust the divided space SPsg # i and depressurize it from the atmospheric pressure via the exhaust port 2241g # i (where i is an integer of 1 or more and N or less) and the pipe 2251g # i. .
 ステージ22gは更に、ステージ22と比較して、N個の分割空間SPsgに夫々対応するN個の排気口2242g(具体的には、排気口2242g#1から2242g#N)が形成されているという点で異なる。N個の排気口2242gには、夫々、N個の配管2252g(具体的には、配管2252g#1から2252g#N)を介して真空ポンプ54が連結されている。真空ポンプ54は、排気口2242g#i及び配管2252g#iを介して、分割空間SPsg#iを排気して大気圧よりも減圧可能である。 The stage 22g further has N exhaust ports 2242g (specifically, exhaust ports 2242g # 1 to 2242g # N) respectively corresponding to the N divided spaces SPsg compared to the stage 22. It is different in point. A vacuum pump 54 is connected to the N exhaust ports 2242g via N pipes 2252g (specifically, pipes 2252g # 1 to 2252g # N), respectively. The vacuum pump 54 can exhaust the divided space SPsg # i through the exhaust port 2242g # i and the pipe 2252g # i to reduce the pressure from the atmospheric pressure.
 N個の配管2251gには、夫々、N個の配管2251gを夫々開閉可能なN個の開閉部材2261g(具体的には、開閉部材2261g#1から2261g#N)が配置されている。開閉部材2261gは、例えば、バルブである。更に、N個の配管2252gには、夫々、N個の配管2252gを夫々開閉可能なN個の開閉部材2262g(具体的には、開閉部材2262g#1から2262g#N)が配置されている。開閉部材2262gは、例えば、バルブである。開閉部材2261g#iの状態は、制御装置4の制御下で、配管2251g#iを遮断する状態(つまり、真空ポンプ53が分割空間SPsg#iを減圧しない状態)と、配管2251g#iを開放する状態(つまり、真空ポンプ53が分割空間SPsg#iを減圧する状態)との間で切替可能である。開閉部材2262g#iの状態は、制御装置4の制御下で、配管2252g#iを遮断する状態(つまり、真空ポンプ54が分割空間SPsg#iを減圧しない状態)と、配管2252g#iを開放する状態(つまり、真空ポンプ54が分割空間SPsg#iを減圧する状態)との間で切替可能である。 N pieces of open / close members 2261g (specifically, open / close members 2261g # 1 to 2261g # N) that can open and close the N pieces of pipes 2251g are arranged in the N pieces of pipes 2251g, respectively. The opening / closing member 2261g is, for example, a valve. Furthermore, N open / close members 2262g (specifically, open / close members 2262g # 1 to 2262g # N) that can open and close the N pipes 2252g are arranged in the N pipes 2252g, respectively. The opening / closing member 2262g is, for example, a valve. The state of the opening / closing member 2261g # i is a state in which the pipe 2251g # i is shut off under the control of the control device 4 (that is, a state in which the vacuum pump 53 does not depressurize the divided space SPsg # i) and a pipe 2251g # i is opened (Ie, the vacuum pump 53 depressurizes the divided space SPsg # i). The state of the opening / closing member 2262g # i is a state in which the pipe 2252g # i is shut off under the control of the control device 4 (that is, a state in which the vacuum pump 54 does not depressurize the divided space SPsg # i) and (Ie, the vacuum pump 54 depressurizes the divided space SPsg # i).
 第7変形例では、制御装置4は、N個の分割空間SPsgのそれぞれの気圧を制御する。具体的には、制御装置4は、N個の分割空間SPsgのうち、真空領域VSPが形成されている(つまり、電子ビームEBが照射される)特定部分W_vacに面する少なくとも一つの分割空間SPsgの状態が、真空ポンプ53ではなく真空ポンプ54によって減圧される状態になるように、N個の開閉部材2261g及びN個の開閉部材2262gを制御する。つまり、制御装置4は、N個の分割空間SPsgのうち、特定部分W_vacを間に挟んで真空領域VSPと対向する少なくとも一つの分割空間SPsgの状態が、真空ポンプ53ではなく真空ポンプ54によって減圧される状態になるように、N個の開閉部材2261g及びN個の開閉部材2262gを制御する。一方で、制御装置4は、N個の分割空間SPsgのうち、特定部分W_vacに面していない少なくとも他の一つの分割空間SPsg(例えば、試料Wを挟んで大気圧空間に対抗している分割空間SPsg)の状態が、真空ポンプ54ではなく真空ポンプ53によって減圧される状態になるように、N個の開閉部材2261g及びN個の開閉部材2262gを制御する。つまり、第7変形例では、制御装置4は、ステージ空間SPsの一部が真空ポンプ54によって減圧される一方で、ステージ空間SPsの他の一部が真空ポンプ53によって減圧されるように、N個の開閉部材2261g及びN個の開閉部材2262gを制御する。例えば、図16(a)に示すように、分割空間SPsg#2が特定部分W_vacに面する場合には、制御装置4は、分割空間SPsg#2が真空ポンプ54によって減圧される一方で、分割空間SPsg#1及びSPsg#3からSPsg#9が真空ポンプ53によって減圧されるように、N個の開閉部材2261g及びN個の開閉部材2262gを制御する。例えば、図16(b)に示すように、分割空間SPsg#3が特定部分W_vacに面する場合には、制御装置4は、分割空間SPsg#3が真空ポンプ54によって減圧される一方で、分割空間SPsg#1、SPsg#2及びSPsg#4からSPsg#9が真空ポンプ53によって減圧されるように、N個の開閉部材2261g及びN個の開閉部材2262gを制御する。この場合、図16(a)に示す位置から図16(b)に示す位置へと真空領域VSPが移動した場合(つまり、試料Wと差動排気系12との相対位置が、図16(a)に示す位置関係から図16(b)に示す位置関係に変化した場合)には、分割空間SPsg#2の状態は、真空ポンプ54によって減圧される相対的に高真空な状態(つまり、分割空間SPsg#2の気圧が気圧#21となる状態)から、真空ポンプ53によって減圧される相対的に低真空な状態(つまり、分割空間SPsg#2の気圧が気圧#21よりも高い気圧#22となる状態)へと遷移する。また、分割空間SPsg#3の状態は、真空ポンプ53によって減圧される相対的に低真空な状態(つまり、分割空間SPsg#3の気圧が気圧#31となる状態)から、真空ポンプ54によって減圧される相対的に高真空な状態(つまり、分割空間SPsg#3の気圧が気圧#31よりも低い気圧#32となる状態)へと遷移する。尚、図16(a)及び図16(b)は、試料Wに作用する力の大きさを、矢印の太さで示している。具体的には、図16(a)及び図16(b)は、試料Wに作用する力が大きくなるほどの当該力を示す矢印が太くなるように、試料Wに作用する力の大きさを示している。 In the seventh modification, the control device 4 controls the atmospheric pressure of each of the N divided spaces SPsg. Specifically, the control device 4 includes at least one divided space SPsg facing the specific portion W_vac in which the vacuum region VSP is formed (that is, irradiated with the electron beam EB) among the N divided spaces SPsg. The N opening / closing members 2261g and the N opening / closing members 2262g are controlled so that the state is reduced by the vacuum pump 54 instead of the vacuum pump 53. That is, the control device 4 reduces the state of at least one divided space SPsg facing the vacuum region VSP across the specific portion W_vac among the N divided spaces SPsg by the vacuum pump 54 instead of the vacuum pump 53. The N opening / closing members 2261g and the N opening / closing members 2262g are controlled so as to be in a state of being performed. On the other hand, the control device 4 has at least one other divided space SPsg that does not face the specific portion W_vac among the N divided spaces SPsg (for example, a division that opposes the atmospheric pressure space with the sample W interposed therebetween). The N opening / closing members 2261g and the N opening / closing members 2262g are controlled so that the state of the space SPsg) is reduced by the vacuum pump 53 instead of the vacuum pump 54. That is, in the seventh modification, the control device 4 is configured so that a part of the stage space SPs is decompressed by the vacuum pump 54 while another part of the stage space SPs is decompressed by the vacuum pump 53. The number of opening / closing members 2261g and the number N of opening / closing members 2262g are controlled. For example, as illustrated in FIG. 16A, when the divided space SPsg # 2 faces the specific portion W_vac, the control device 4 reduces the divided space SPsg # 2 while the divided space SPsg # 2 is decompressed by the vacuum pump 54. The N opening / closing members 2261g and the N opening / closing members 2262g are controlled so that the spaces SPsg # 1 and SPsg # 3 to SPsg # 9 are depressurized by the vacuum pump 53. For example, as shown in FIG. 16B, when the divided space SPsg # 3 faces the specific portion W_vac, the control device 4 reduces the divided space SPsg # 3 while the divided space SPsg # 3 is decompressed by the vacuum pump 54. The N opening / closing members 2261g and the N opening / closing members 2262g are controlled so that the space SPsg # 1, SPsg # 2, and SPsg # 4 to SPsg # 9 is depressurized by the vacuum pump 53. In this case, when the vacuum region VSP moves from the position shown in FIG. 16 (a) to the position shown in FIG. 16 (b) (that is, the relative position between the sample W and the differential exhaust system 12 is shown in FIG. 16 (a)). ) Is changed from the positional relationship shown in FIG. 16B to the positional relationship shown in FIG. 16B), the state of the divided space SPsg # 2 is a relatively high vacuum state (that is, the divided space is reduced by the vacuum pump 54). From a state in which the atmospheric pressure in the space SPsg # 2 becomes the atmospheric pressure # 21, a relatively low vacuum state in which the pressure is reduced by the vacuum pump 53 (that is, the atmospheric pressure # 22 in which the atmospheric pressure in the divided space SPsg # 2 is higher than the atmospheric pressure # 21). State). Further, the state of the divided space SPsg # 3 is reduced by the vacuum pump 54 from a relatively low vacuum state where the pressure is reduced by the vacuum pump 53 (that is, a state where the atmospheric pressure of the divided space SPsg # 3 becomes the atmospheric pressure # 31). Transition to a relatively high vacuum state (that is, a state in which the atmospheric pressure in the divided space SPsg # 3 becomes the atmospheric pressure # 32 lower than the atmospheric pressure # 31). 16A and 16B show the magnitude of the force acting on the sample W by the thickness of the arrow. Specifically, FIG. 16A and FIG. 16B show the magnitude of the force acting on the sample W so that the arrow indicating the force increases as the force acting on the sample W increases. ing.
 その結果、特定部分W_vacに面していない分割空間SPsgの圧力は、大気圧よりも低くなる。このため、真空ポンプ53が特定部分W_vacに面していない分割空間SPsgを減圧すると、試料Wのうちの特定部分W_vac以外の部分には、真空ポンプ53による減圧に起因した力F_hold1(つまり、試料Wをステージ空間SPsに引き寄せる力)作用する。従って、試料Wがステージ22fによって保持される。一方で、特定部分W_vacに面する分割空間SPsgの圧力は、ビーム通過空間SPb3の圧力(つまり、真空領域VSPの圧力)と同等程度になる。つまり、特定部分W_vacに面する分割空間SPsgが真空ポンプ54によって排気されることで、特定部分W_vacに面する分割空間SPsgの圧力と真空領域VSPの圧力との差は、大気圧と真空領域VSPの圧力との差よりも小さくなる。このため、特定部分W_vacにおいて、真空領域VSPに起因した力F_VSPと真空ポンプ54による減圧に起因した力F_hold2とが相殺し合う。つまり、特定部分W_vacには、F_VSPと力F_hold2とを合算した力である力F_vacが作用しなくなる。従って、特定部分W_vacの変形が抑制される。このように、このようなステージ22gを備える第7変形例の走査型電子顕微鏡SEMgであっても、上述した走査型電子顕微鏡SEMが享受することが可能な効果と同様の効果を享受することができる。 As a result, the pressure of the divided space SPsg not facing the specific part W_vac is lower than the atmospheric pressure. For this reason, when the vacuum pump 53 depressurizes the divided space SPsg that does not face the specific portion W_vac, the force F_hold1 (that is, the sample due to the depressurization by the vacuum pump 53) is applied to a portion other than the specific portion W_vac in the sample W. (Force that draws W to the stage space SPs). Accordingly, the sample W is held by the stage 22f. On the other hand, the pressure in the divided space SPsg facing the specific portion W_vac is approximately the same as the pressure in the beam passage space SPb3 (that is, the pressure in the vacuum region VSP). That is, as the divided space SPsg facing the specific portion W_vac is exhausted by the vacuum pump 54, the difference between the pressure of the divided space SPsg facing the specific portion W_vac and the pressure of the vacuum region VSP is the atmospheric pressure and the vacuum region VSP. The difference from the pressure is smaller. For this reason, in the specific portion W_vac, the force F_VSP caused by the vacuum region VSP and the force F_hold2 caused by the pressure reduction by the vacuum pump 54 cancel each other. That is, the force F_vac that is the sum of F_VSP and force F_hold2 does not act on the specific portion W_vac. Therefore, deformation of the specific portion W_vac is suppressed. Thus, even with the scanning electron microscope SEMg according to the seventh modification including such a stage 22g, it is possible to enjoy the same effects that the scanning electron microscope SEM described above can enjoy. it can.
 加えて、第7変形例では、ステージ空間SPs全体が真空ポンプ54によって減圧される場合と比較して、ステージ空間SPsの減圧に起因して試料Wをステージ空間SPsに引き寄せるように試料Wの裏面WSlに作用する負圧が小さくなる。なぜならば、第7変形例では、ステージ空間SPsの一部が真空ポンプ54によって減圧される一方で、ステージ空間SPsの他の一部が真空ポンプ54よりも排気能力の低い真空ポンプ53によって減圧されるからである。このため、ステージ空間SPsの減圧に起因した試料Wの変形(特に、試料Wのうち特定部分W_vac以外の部分の変形)が抑制される。このような試料Wのうち特定部分W_vac以外の部分の変形の抑制は、試料Wのうちの特定部分W_vacの状態を電子ビームEBの照射によって計測しながら試料Wのうちの特定部分W_vac以外の部分の状態を他の種類の計測装置(例えば、後述する光学顕微鏡等の計測装置)によって計測する場合において、他の種類の計測装置の計測精度の悪化の抑制にもつながる(後述する第14変形例参照)。 In addition, in the seventh modification, compared to the case where the entire stage space SPs is depressurized by the vacuum pump 54, the back surface of the sample W is attracted to the stage space SPs due to the depressurization of the stage space SPs. The negative pressure acting on WSl is reduced. This is because in the seventh modification, a part of the stage space SPs is decompressed by the vacuum pump 54, while the other part of the stage space SPs is decompressed by the vacuum pump 53 having a lower exhaust capacity than the vacuum pump 54. This is because that. For this reason, deformation of the sample W (particularly, deformation of a part other than the specific part W_vac in the sample W) due to the decompression of the stage space SPs is suppressed. The suppression of the deformation of the part other than the specific part W_vac in the sample W is performed by measuring the state of the specific part W_vac in the sample W by irradiating the electron beam EB while the part other than the specific part W_vac in the sample W. In the case where the state is measured by another type of measurement device (for example, a measurement device such as an optical microscope described later), this leads to suppression of deterioration in measurement accuracy of the other type of measurement device (fourteenth modification described later). reference).
 上述したように、ステージ22gの移動に伴って、試料Wと試料Wの表面WSuにおける真空領域VSPとの相対位置が変わる。つまり、ステージ22gの移動に伴って、試料Wと特定部分W_vacとの相対位置が変わる。言い換えれば、ステージ22gの移動に伴って、試料Wにおける特定部分W_vacの位置が変わる。このため、制御装置4は、試料Wにおける特定部分W_vacの位置に応じて、N個の分割空間SPsgのうちの真空ポンプ54によって減圧される少なくとも一つの分割空間SPsgを変更する。試料Wにおける特定部分W_vacの位置は、試料Wと真空領域VSPを形成する差動排気系12との相対位置に依存する。このため、特定部分W_vacの位置に応じてN個の分割空間SPsgのうちの真空ポンプ54によって減圧される少なくとも一つの分割空間SPsgを変更する動作は、試料Wと差動排気系12との相対位置に関する情報に基づいてN個の分割空間SPsgのうちの真空ポンプ54によって減圧される少なくとも一つの分割空間SPsgを変更する動作と等価とみなせる。その結果、試料Wにおける特定部分W_vacの位置が変わる場合であっても、走査型電子顕微鏡SEMgは、ステージ22gによって試料Wを適切に保持しつつ、真空領域VSPの形成に起因した試料Wの変形を抑制することができる。尚、制御装置4は、試料Wにおける特定部分W_vacの位置とは異なる情報に応じて、N個の分割空間SPsgのうちの真空ポンプ54によって減圧される少なくとも一つの分割空間SPsgを変更してもよい。また、真空ポンプ54によって減圧された分割区間SPsgは、もとの圧力に戻されてもよく、また減圧されたままでもよい。 As described above, as the stage 22g moves, the relative position between the sample W and the vacuum region VSP on the surface WSu of the sample W changes. That is, as the stage 22g moves, the relative position between the sample W and the specific portion W_vac changes. In other words, the position of the specific portion W_vac in the sample W changes with the movement of the stage 22g. For this reason, the control device 4 changes at least one divided space SPsg that is decompressed by the vacuum pump 54 among the N divided spaces SPsg, according to the position of the specific portion W_vac in the sample W. The position of the specific portion W_vac in the sample W depends on the relative position between the sample W and the differential exhaust system 12 that forms the vacuum region VSP. For this reason, the operation of changing at least one divided space SPsg reduced in pressure by the vacuum pump 54 out of the N divided spaces SPsg according to the position of the specific portion W_vac is relative to the sample W and the differential exhaust system 12. This can be regarded as equivalent to an operation of changing at least one divided space SPsg decompressed by the vacuum pump 54 out of the N divided spaces SPsg based on the position information. As a result, even when the position of the specific portion W_vac in the sample W changes, the scanning electron microscope SEMg appropriately holds the sample W by the stage 22g and deforms the sample W due to the formation of the vacuum region VSP. Can be suppressed. Note that the control device 4 may change at least one divided space SPsg that is decompressed by the vacuum pump 54 among the N divided spaces SPsg according to information different from the position of the specific portion W_vac in the sample W. Good. Further, the divided section SPsg decompressed by the vacuum pump 54 may be returned to the original pressure or may remain decompressed.
 尚、上述したように、真空ポンプ54を用いてステージ空間SPsを減圧する動作は、力F_VSPを相殺可能な力F_cancel又は力F_vacを小さくすることが可能な力F_reduceを試料Wに付与する動作と等価である。そうすると、N個の分割空間SPsgのうちの真空ポンプ54によって減圧される少なくとも一つの分割空間SPsgを変更する動作は、力F_cancel又は力F_reduceが付与される位置を変更する動作と等価である。 As described above, the operation of reducing the stage space SPs using the vacuum pump 54 is an operation of applying to the sample W a force F_cancel that can cancel the force F_VSP or a force F_reduce that can reduce the force F_vac. Is equivalent. Then, the operation of changing at least one divided space SPsg decompressed by the vacuum pump 54 among the N divided spaces SPsg is equivalent to an operation of changing the position to which the force F_cancel or the force F_reduce is applied.
 (3-8)第8変形例
 続いて、第8変形例の走査型電子顕微鏡SEMhについて説明する。第8変形例の走査型電子顕微鏡SEMhは、上述した第7変形例の走査型電子顕微鏡SEMgと比較して、ステージ22gに代えてステージ22hを備えているという点で異なっている。走査型電子顕微鏡SEMhのその他の構造は、上述した走査型電子顕微鏡SEMgのその他の構造と同一であってもよい。このため、以下では、図17を参照しながら、ステージ22hの構造について説明する。
(3-8) Eighth Modification Next, a scanning electron microscope SEMh according to an eighth modification will be described. The scanning electron microscope SEMh of the eighth modified example is different from the scanning electron microscope SEMg of the seventh modified example described above in that a stage 22h is provided instead of the stage 22g. The other structure of the scanning electron microscope SEMh may be the same as the other structure of the scanning electron microscope SEMg described above. Therefore, hereinafter, the structure of the stage 22h will be described with reference to FIG.
 図17に示すように、ステージ22hは、ステージ22gと比較して、N個の分割空間SPsgに夫々対応するN個の給気口2249h(具体的には、排気口2249h#1から2249h#N)が形成されているという点で異なる。給気口2249h#iは、対応する分割空間SPsg#iに面する位置に形成される。図17に示す例では、各給気口2249hは、底部材221に形成されている。N個の給気口2249hには、夫々、N個の配管2259h(具体的には、配管2259h#1から2259h#N)を介して、気体供給装置55hが連結されている。気体供給装置55hは、給気口2249h#i及び配管2259h#iを介して、分割空間SPsg#iに気体を供給して加圧可能である。 As shown in FIG. 17, the stage 22h has N supply ports 2249h (specifically, exhaust ports 2249h # 1 to 2249h # N corresponding to the N divided spaces SPsg, respectively, as compared with the stage 22g. ) Is formed. The air supply port 2249h # i is formed at a position facing the corresponding divided space SPsg # i. In the example shown in FIG. 17, each air supply port 2249 h is formed in the bottom member 221. A gas supply device 55h is connected to the N supply ports 2249h via N pipes 2259h (specifically, pipes 2259h # 1 to 2259h # N), respectively. The gas supply device 55h can be pressurized by supplying gas to the divided space SPsg # i via the air supply port 2249h # i and the pipe 2259h # i.
 N個の配管2259hには、夫々、N個の配管2259hを夫々開閉可能なN個の開閉部材2269h(具体的には、開閉部材2269h#1から2269h#N)が配置されている。開閉部材2269hは、例えば、バルブである。開閉部材2269h#iの状態は、制御装置4の制御下で、配管2259h#iを遮断する状態(つまり、気体供給装置55hが分割空間SPsg#iに気体を供給しない状態)と、配管2259h#iを開放する状態(つまり、気体供給装置55hが分割空間SPsg#iに気体を供給する状態)との間で切替可能である。 N pieces of open / close members 2269h (specifically, open / close members 2269h # 1 to 2269h # N) that can open and close the N pieces of pipe 2259h are arranged in the N pieces of pipes 2259h, respectively. The opening / closing member 2269h is, for example, a valve. The state of the opening / closing member 2269h # i includes a state where the pipe 2259h # i is shut off under the control of the control device 4 (that is, a state where the gas supply device 55h does not supply gas to the divided space SPsg # i), and a pipe 2259h # i. It is possible to switch between a state in which i is opened (that is, a state in which the gas supply device 55h supplies gas to the divided space SPsg # i).
 第8変形例では、制御装置4は、分割空間SPsg#iの状態が真空ポンプ54によって減圧される高真空状態から真空ポンプ53によって減圧される低真空状態へと切り替わるべきタイミングで、気体供給装置55hが分割空間SPsg#iに気体を供給するように、開閉部材2269h#iを制御する。つまり、制御装置4は、分割空間SPsg#iの状態が、真空度が相対的に高い高真空状態から真空度が相対的に低い低真空状態へと切り替わるべきタイミングで、気体供給装置55hが分割空間SPsg#iに気体を供給するように、開閉部材2269h#iを制御する。その結果、このタイミングで気体供給装置55hが分割空間SPsg#iに気体を供給しない場合と比較して、分割空間SPsg#iの状態が高真空状態から低真空状態へと切り替わるのに要する時間が短くなる。つまり、第8変形例の走査型電子顕微鏡SEMhは、上述した第7変形例の走査型電子顕微鏡SEMgが享受することが可能な効果と同様の効果を享受しつつも、分割空間SPsg#iの状態が高真空状態から低真空状態へと切り替わるのに要する時間を短くすることができる。 In the eighth modification, the control device 4 has a gas supply device at a timing when the state of the divided space SPsg # i should be switched from a high vacuum state in which the pressure is reduced by the vacuum pump 54 to a low vacuum state in which the pressure is reduced by the vacuum pump 53. The opening / closing member 2269h # i is controlled so that 55h supplies gas to the divided space SPsg # i. That is, the control device 4 divides the gas supply device 55h at a timing when the state of the divided space SPsg # i should be switched from a high vacuum state with a relatively high degree of vacuum to a low vacuum state with a relatively low degree of vacuum. The opening / closing member 2269h # i is controlled so as to supply gas to the space SPsg # i. As a result, the time required for the state of the divided space SPsg # i to switch from the high vacuum state to the low vacuum state is compared with the case where the gas supply device 55h does not supply gas to the divided space SPsg # i at this timing. Shorter. That is, the scanning electron microscope SEMh according to the eighth modified example enjoys the same effect that can be enjoyed by the scanning electron microscope SEMg according to the seventh modified example described above, but also in the divided space SPsg # i. The time required for the state to switch from the high vacuum state to the low vacuum state can be shortened.
 このような技術的効果を考慮すれば、気体供給装置55hは、分割空間SPsg#iの状態の高真空状態から低真空状態への切替を促進することができる程度の流量の気体を分割空間SPsg#iに供給すればよい。つまり、吸気装置55hは、分割空間SPsg#iが大気圧空間にまで戻ってしまうほどの流量の気体を分割空間SPsg#iに供給しなくてもよい。尚、真空ポンプ54によって減圧された分割区間SPsgは、減圧されたままでもよい。 Considering such a technical effect, the gas supply device 55h supplies the gas having a flow rate sufficient to promote the switching of the state of the divided space SPsg # i from the high vacuum state to the low vacuum state into the divided space SPsg. What is necessary is just to supply to #i. That is, the intake device 55h may not supply the divided space SPsg # i with a gas having such a flow rate that the divided space SPsg # i returns to the atmospheric pressure space. Note that the divided section SPsg decompressed by the vacuum pump 54 may remain decompressed.
 尚、ステージ空間SPsがN個の分割空間SPsgに分割されていないステージ22等においても、少なくとも一つの給気口2249hが形成されていてもよい。この場合、制御装置4は、ステージ空間SPsの状態が真空ポンプ54によって減圧される高真空状態から真空ポンプ53によって減圧される低真空状態へと切り替わるべきタイミングで、気体供給装置55hがステージ空間SPsに気体を供給するように、気体供給装置55hとステージ空間SPsとを連結する配管2259hに配置される開閉部材2269hを制御してもよい。この場合も、ステージ空間SPsの状態が高真空状態から低真空状態へと切り替わるのに要する時間が短くなる。 It should be noted that at least one air inlet 2249h may be formed in the stage 22 or the like in which the stage space SPs is not divided into N divided spaces SPsg. In this case, the control device 4 causes the gas supply device 55h to move to the stage space SPs at a timing when the state of the stage space SPs should be switched from a high vacuum state where the pressure is reduced by the vacuum pump 54 to a low vacuum state where the pressure is reduced by the vacuum pump 53. The opening / closing member 2269h disposed in the pipe 2259h that connects the gas supply device 55h and the stage space SPs may be controlled so that gas is supplied to the gas. Also in this case, the time required for the state of the stage space SPs to switch from the high vacuum state to the low vacuum state is shortened.
 また、制御装置4は、分割空間SPsg#iの状態が高真空状態から低真空状態へと切り替わるべきタイミングとは異なるタイミングで、気体供給装置55hが分割空間SPsg#iに気体を供給するように、開閉部材2269h#iを制御してもよい。例えば、制御装置4は、ステージ22hが保持している試料Wをリリースするタイミングで、気体供給装置55hが分割空間SPsg#iに気体を供給するように、開閉部材2269h#iを制御してもよい。その結果、高真空状態にある分割空間SPsg#iが大気圧空間に戻るまでに要する時間が短くなる。このため、試料Wのリリース(つまり、ステージ22hが保持する試料Wの交換)に要する時間が短くなる。 Further, the control device 4 causes the gas supply device 55h to supply gas to the divided space SPsg # i at a timing different from the timing at which the state of the divided space SPsg # i should be switched from the high vacuum state to the low vacuum state. The opening / closing member 2269h # i may be controlled. For example, the control device 4 controls the opening / closing member 2269h # i so that the gas supply device 55h supplies gas to the divided space SPsg # i at the timing of releasing the sample W held by the stage 22h. Good. As a result, the time required for the divided space SPsg # i in the high vacuum state to return to the atmospheric pressure space is shortened. For this reason, the time required for releasing the sample W (that is, exchanging the sample W held by the stage 22h) is shortened.
 (3-9)第9変形例
 続いて、第9変形例の走査型電子顕微鏡SEMiについて説明する。第9変形例の走査型電子顕微鏡SEMiは、上述した第6変形例の走査型電子顕微鏡SEMfと比較して、ステージ22fに代えてステージ22iを備えているという点で異なっている。走査型電子顕微鏡SEMiのその他の構造は、上述した走査型電子顕微鏡SEMfのその他の構造と同一であってもよい。このため、以下では、図18を参照しながら、ステージ22iの構造について説明する。
(3-9) Ninth Modification Next, a scanning electron microscope SMi of the ninth modification will be described. The scanning electron microscope SMi of the ninth modification differs from the scanning electron microscope SEMf of the sixth modification described above in that a stage 22i is provided instead of the stage 22f. The other structure of the scanning electron microscope SEMi may be the same as the other structure of the scanning electron microscope SEMf described above. Therefore, hereinafter, the structure of the stage 22i will be described with reference to FIG.
 図18に示すように、ステージ22iは、ステージ22fと比較して、単一の静電チャック225fに代えて、複数の静電チャック225iを備えているという点で異なっている。図18は、ステージ22iが9個の静電チャック225i#1から225i#9を備えている例を示している。各静電チャック225iは、上述した静電チャック225fと同様に、制御装置4の制御下で、試料Wを静電チャック225iに引き寄せる(その結果、ステージ22iに引き寄せる)ように試料Wに作用する静電力F_elecを発生可能である。ステージ22iは、複数の静電チャック225iの少なくとも一部が発生させる静電力F_elecを、試料Wを保持するための力として用いる。 As shown in FIG. 18, the stage 22i differs from the stage 22f in that a plurality of electrostatic chucks 225i are provided instead of the single electrostatic chuck 225f. FIG. 18 shows an example in which the stage 22i includes nine electrostatic chucks 225i # 1 to 225i # 9. Each electrostatic chuck 225i acts on the sample W so as to draw the sample W to the electrostatic chuck 225i (as a result, to the stage 22i) under the control of the control device 4 in the same manner as the electrostatic chuck 225f described above. An electrostatic force F_elec can be generated. The stage 22i uses an electrostatic force F_elec generated by at least a part of the plurality of electrostatic chucks 225i as a force for holding the sample W.
 各静電チャック225iは、XY平面内において、試料Wに局所的に(言い換えれば、部分的に)作用する静電力F_elecを発生可能である。つまり、各静電チャック225iは、試料Wのうち各静電チャック225iに対応する部分に局所的に(言い換えれば、部分的に)作用する静電力F_elecを発生可能である。例えば、複数の静電チャック225iのうちの第1の静電チャック225i#1は、試料Wの第1部分に作用する静電力F_elecを発生し、複数の静電チャック225iのうちの第1の静電チャック225i#1とは異なる第2の静電チャック225i#2は、第1部分とは異なる(或いは、第1部分と少なくとも部分的に重複する)試料Wの第2部分に作用する静電力F_elecを発生してもよい。 Each electrostatic chuck 225i can generate an electrostatic force F_elec that acts locally (in other words, partially) on the sample W in the XY plane. That is, each electrostatic chuck 225i can generate an electrostatic force F_elec that acts locally (in other words, partially) on a portion of the sample W corresponding to each electrostatic chuck 225i. For example, the first electrostatic chuck 225i # 1 of the plurality of electrostatic chucks 225i generates an electrostatic force F_elec that acts on the first portion of the sample W, and the first of the plurality of electrostatic chucks 225i. The second electrostatic chuck 225i # 2 different from the electrostatic chuck 225i # 1 is different from the first part (or at least partially overlaps with the first part). Electric power F_elec may be generated.
 制御装置4は、複数の静電チャック225iのうち、真空領域VSPが形成されている(つまり、電子ビームEBが照射される)特定部分W_vacに対応する少なくとも一つの静電チャック225iが、試料Wの変形を抑制するための相対的に大きな静電力F_elec(以降、“静電力F_elec_L”と称する)を発生するように、複数の静電チャック225iを制御する。特定部分W_vacに対応する静電チャック225iは、特定部分W_vacに作用する静電力F_elecを発生可能な静電チャック225iである。このような特定部分W_vacに作用する静電力F_elecを発生可能な静電チャック225iは、典型的には、特定部分W_vacを間に挟んで真空領域VSPと対向する静電チャック225iである。従って、制御装置4は、複数の静電チャック225iのうち、特定部分W_vacに作用する静電力F_elecを発生可能な少なくとも一つの静電チャック225iが、試料Wの変形を抑制するための静電力F_elec_Lを発生するように、複数の静電チャック225iを制御する。具体的には、制御装置4は、複数の静電チャック225iのうち、特定部分W_vacに作用する静電力F_elecを発生可能な少なくとも一つの静電チャック225iを構成する電極に対して、試料Wの変形を抑制するための静電力F_elec_Lを発生可能な第1電圧を印加する。尚、試料Wの変形を抑制するための静電力F_elec_Lは、真空領域VSPに起因した力F_VSPに応じた静電力F_elecであって、第6変形例で静電チャック225fから試料Wに付与される静電力F_elecと同じ力である。一方で、制御装置4は、複数の静電チャック225iのうち、特定部分W_vacに対応していない少なくとも一つの静電チャック225iが、試料Wを保持するための相対的に小さな静電力F_elec(以降、“静電力F_elec_S”と称する)を発生するように、複数の静電チャック225iを制御する。つまり、制御装置4は、複数の静電チャック225iのうち、特定部分W_vac以外に作用する静電力F_elecを発生可能な少なくとも一つの静電チャック225iが、試料Wを保持するための相対的に小さな静電力F_elec_Sを発生するように、複数の静電チャック225iを制御する。具体的には、制御装置4は、複数の静電チャック225iのうち、特定部分W_vac以外に作用する静電力F_elecを発生可能な少なくとも一つの静電チャック225iを構成する電極に対して、試料Wを保持するための静電力F_elec_Sを発生可能な第2電圧(つまり、試料Wの変形を抑制するための静電力F_elec_Lを発生可能な第1電圧とは異なる電圧)を印加する。尚、静電力F_elec_Sが相対的に小さく且つ静電力F_elec_Lが相対的に大きいため、静電力F_elec_Sは静電力F_elec_Lよりも小さくなるが、静電力F_elec_Sが静電力F_elec_Lよりも大きくなってもよいし、同じ大きさになってもよい。尚、第7変形例で説明したように、試料Wにおける特定部分W_vacの位置は、試料Wと真空領域VSPを形成する差動排気系12との相対位置に依存する。このため、特定部分W_vacに対応する少なくとも一つの静電チャック225iが静電力F_elec_Lを発生するように複数の静電チャック225iを制御する動作は、試料Wと差動排気系12との相対位置に関する情報に基づいて複数の静電チャック225iを制御する動作と等価とみなせる。 In the control device 4, at least one electrostatic chuck 225 i corresponding to the specific portion W_vac in which the vacuum region VSP is formed (that is, irradiated with the electron beam EB) among the plurality of electrostatic chucks 225 i is the sample W The plurality of electrostatic chucks 225i are controlled so as to generate a relatively large electrostatic force F_elec (hereinafter referred to as “electrostatic force F_elec_L”) for suppressing the deformation of the electrostatic chuck. The electrostatic chuck 225i corresponding to the specific portion W_vac is an electrostatic chuck 225i that can generate an electrostatic force F_elec acting on the specific portion W_vac. The electrostatic chuck 225i that can generate the electrostatic force F_elec acting on the specific portion W_vac is typically the electrostatic chuck 225i that faces the vacuum region VSP with the specific portion W_vac interposed therebetween. Therefore, the control device 4 includes the electrostatic force F_elec_L for suppressing at least one electrostatic chuck 225i that can generate the electrostatic force F_elec acting on the specific portion W_vac among the plurality of electrostatic chucks 225i. To control the plurality of electrostatic chucks 225i. Specifically, the control device 4 applies the sample W to the electrode constituting at least one electrostatic chuck 225i capable of generating an electrostatic force F_elec acting on the specific portion W_vac among the plurality of electrostatic chucks 225i. A first voltage capable of generating an electrostatic force F_elec_L for suppressing deformation is applied. The electrostatic force F_elec_L for suppressing the deformation of the sample W is an electrostatic force F_elec corresponding to the force F_VSP caused by the vacuum region VSP, and is applied to the sample W from the electrostatic chuck 225f in the sixth modification. It is the same force as the electrostatic force F_elec. On the other hand, the control device 4 uses a relatively small electrostatic force F_elec (hereinafter referred to as “electrostatic force”) for holding at least one electrostatic chuck 225i that does not correspond to the specific portion W_vac among the plurality of electrostatic chucks 225i. , Referred to as “electrostatic force F_elec_S”), the plurality of electrostatic chucks 225i are controlled. That is, the control device 4 is configured such that at least one electrostatic chuck 225i capable of generating an electrostatic force F_elec acting on a part other than the specific portion W_vac among the plurality of electrostatic chucks 225i is relatively small for holding the sample W. The plurality of electrostatic chucks 225i are controlled so as to generate the electrostatic force F_elec_S. Specifically, the control device 4 applies the sample W to the electrode constituting at least one electrostatic chuck 225i capable of generating an electrostatic force F_elec that acts on a part other than the specific portion W_vac among the plurality of electrostatic chucks 225i. A second voltage capable of generating an electrostatic force F_elec_S for holding the voltage (that is, a voltage different from the first voltage capable of generating an electrostatic force F_elec_L for suppressing deformation of the sample W) is applied. In addition, since the electrostatic force F_elec_S is relatively small and the electrostatic force F_elec_L is relatively large, the electrostatic force F_elec_S is smaller than the electrostatic force F_elec_L. It may be the same size. As described in the seventh modification, the position of the specific portion W_vac in the sample W depends on the relative position between the sample W and the differential exhaust system 12 that forms the vacuum region VSP. Therefore, the operation of controlling the plurality of electrostatic chucks 225i so that at least one electrostatic chuck 225i corresponding to the specific portion W_vac generates the electrostatic force F_elec_L relates to the relative position between the sample W and the differential exhaust system 12. This can be regarded as equivalent to an operation of controlling the plurality of electrostatic chucks 225i based on the information.
 図18は、静電チャック225i#5が特定部分W_vacに作用する静電力F_elecを発生可能である例を示している。このため、図18は、静電チャック225i#5が、試料Wの変形を抑制するための静電力F_elec_Lを発生し、静電チャック225i#1から225i#4及び225i#6から225i#9が、試料Wを保持するための静電力F_elec_Sを発生している例を示している。尚、図18は、試料Wに作用する力の大きさを、矢印の長さ及び太さで示している。具体的には、図18は、試料Wに作用する力が大きくなるほどの当該力を示す矢印が太く且つ長くなるように、試料Wに作用する力の大きさを示している。 FIG. 18 shows an example in which the electrostatic chuck 225i # 5 can generate an electrostatic force F_elec that acts on the specific portion W_vac. Therefore, FIG. 18 shows that the electrostatic chuck 225i # 5 generates an electrostatic force F_elec_L for suppressing deformation of the sample W, and the electrostatic chucks 225i # 1 to 225i # 4 and 225i # 6 to 225i # 9 3 shows an example in which an electrostatic force F_elec_S for holding the sample W is generated. FIG. 18 shows the magnitude of the force acting on the sample W by the length and thickness of the arrow. Specifically, FIG. 18 shows the magnitude of the force acting on the sample W so that the arrow indicating the force becomes thicker and longer as the force acting on the sample W increases.
 その結果、このような静電力F_elecが複数の静電チャック225iによって試料Wに付与されると、走査型電子顕微鏡SEMiは、ステージ22iによって試料Wを適切に保持しつつ、真空領域VSPの形成に起因した試料Wの変形を抑制することができる。 As a result, when such an electrostatic force F_elec is applied to the sample W by the plurality of electrostatic chucks 225i, the scanning electron microscope SEMi forms the vacuum region VSP while appropriately holding the sample W by the stage 22i. The deformation of the sample W caused can be suppressed.
 上述したように、ステージ22iの移動に伴って、試料Wにおける特定部分W_vacの位置が変わる。このため、制御装置4は、試料Wにおける特定部分W_vacの位置に応じて、複数の静電チャック225iのうち、試料Wの変形を抑制するための静電力F_elec_Lを付与するための少なくとも一つの静電チャック225iを変更する。その結果、試料Wにおける特定部分W_vacの位置が変わる場合であっても、走査型電子顕微鏡SEMiは、ステージ22iによって試料Wを適切に保持しつつ、真空領域VSPの形成に起因した試料Wの変形を抑制することができる。一例として、試料Wのうちの第1部分の状態が真空領域VSPに面していない状態から真空領域VSPに面している状態へと遷移した場合(つまり、試料Wと差動排気系12との相対位置が、試料Wのうちの第1部分が真空領域VSPに面していない位置関係から第1部分が真空領域VSPに面している位置関係に変化した場合)には、第1部分に対応する静電チャック225iに印加される電圧は、静電力F_elec_Sを発生可能な電圧から静電力F_elec_Lを発生可能な電圧(例えば、静電力F_elec_Sを発生可能な電圧よりも高い電圧)へと変化する。他方で、試料Wのうちの第1部分の状態が真空領域VSPに面している状態から真空領域VSPに面していない状態へと遷移した場合(つまり、試料Wと差動排気系12との相対位置が、試料Wのうちの第1部分が真空領域VSPに面している位置関係から第1部分が真空領域VSPに面していない位置関係に変化した場合)には、第1部分に対応する静電チャック225iに印加される電圧は、静電力F_elec_Lを発生可能な電圧から静電力F_elec_Sを発生可能な電圧へと変化する。 As described above, the position of the specific portion W_vac in the sample W changes with the movement of the stage 22i. For this reason, the control device 4 has at least one electrostatic force for applying an electrostatic force F_elec_L for suppressing deformation of the sample W among the plurality of electrostatic chucks 225i according to the position of the specific portion W_vac in the sample W. The electric chuck 225i is changed. As a result, even when the position of the specific portion W_vac in the sample W changes, the scanning electron microscope SEMi appropriately holds the sample W by the stage 22i, and deforms the sample W due to the formation of the vacuum region VSP. Can be suppressed. As an example, when the state of the first portion of the sample W transitions from a state not facing the vacuum region VSP to a state facing the vacuum region VSP (that is, the sample W and the differential exhaust system 12 and Is changed from a positional relationship in which the first portion of the sample W does not face the vacuum region VSP to a positional relationship in which the first portion faces the vacuum region VSP). The voltage applied to the electrostatic chuck 225i corresponding to is changed from a voltage capable of generating the electrostatic force F_elec_S to a voltage capable of generating the electrostatic force F_elec_L (for example, a voltage higher than a voltage capable of generating the electrostatic force F_elec_S). To do. On the other hand, when the state of the first portion of the sample W transitions from the state facing the vacuum region VSP to the state not facing the vacuum region VSP (that is, the sample W and the differential exhaust system 12) Is changed from a positional relationship in which the first portion of the sample W faces the vacuum region VSP to a positional relationship in which the first portion does not face the vacuum region VSP). The voltage applied to the electrostatic chuck 225i corresponding to is changed from a voltage capable of generating the electrostatic force F_elec_L to a voltage capable of generating the electrostatic force F_elec_S.
 尚、複数の静電チャック225iは、試料Wの下面WSlと接触するように設けられていてもよい。また、複数の静電チャック225iは、ステージ22iの支持部材223における試料Wの下面WSlと接触する部位にそれぞれ設けられていてもよい。 Note that the plurality of electrostatic chucks 225i may be provided so as to contact the lower surface WSl of the sample W. In addition, the plurality of electrostatic chucks 225i may be provided at portions of the support member 223 of the stage 22i that are in contact with the lower surface WSl of the sample W.
 尚、第9変形例においても、第6変形例と同様に、走査型電子顕微鏡SEMiは、複数の静電チャック225iに加えて又は代えて、試料Wの変形を抑制するための力として、静電力F_elecとは異なる種類の力を付与可能な付与装置を複数備えていてもよい。この場合においても、制御装置4は、複数の付与装置のうち、真空領域VSPが形成されている特定部分W_vacに対応する少なくとも一つの付与装置が、試料Wの変形を抑制するための相対的に大きな力を発生するように、複数の付与装置を制御してもよい。制御装置4は、複数の付与装置のうち、特定部分W_vacに対応していない少なくとも一つの付与装置が、試料Wを保持するための相対的に小さな力を発生するように、複数の付与装置を制御してもよい。 In the ninth modified example, similarly to the sixth modified example, the scanning electron microscope SEMi uses a static force as a force for suppressing the deformation of the sample W in addition to or instead of the plurality of electrostatic chucks 225i. There may be provided a plurality of applying devices capable of applying a different type of power from the electric power F_elec. Even in this case, the control device 4 is configured so that at least one application device corresponding to the specific portion W_vac in which the vacuum region VSP is formed among the plurality of application devices is relatively used for suppressing the deformation of the sample W. A plurality of applying devices may be controlled so as to generate a large force. The control device 4 controls the plurality of application devices such that at least one application device that does not correspond to the specific portion W_vac generates a relatively small force for holding the sample W among the plurality of application devices. You may control.
 (3-10)第10変形例
 続いて、第10変形例の走査型電子顕微鏡SEMjについて説明する。第10変形例の走査型電子顕微鏡SEMjは、上述した走査型電子顕微鏡SEMと比較して、ステージ22に代えてステージ22jを備えているという点で異なっている。走査型電子顕微鏡SEMjのその他の構造は、上述した走査型電子顕微鏡SEMのその他の構造と同一であってもよい。このため、以下では、図19を参照しながら、ステージ22jの構造について説明する。
(3-10) Tenth Modification Next, a scanning electron microscope SEMj of the tenth modification will be described. The scanning electron microscope SEMj of the tenth modified example is different from the above-described scanning electron microscope SEM in that a stage 22j is provided instead of the stage 22. The other structure of the scanning electron microscope SEMj may be the same as the other structure of the scanning electron microscope SEM described above. Therefore, hereinafter, the structure of the stage 22j will be described with reference to FIG.
 図19に示すように、ステージ22jは、ステージ22と比較して、真空チャック228jを備えているという点で異なっている。更に、ステージ22jは、ステージ22と比較して、底部材221に排気口2242が形成されていなくてもよく且つステージ22jに配管2252が配置されていなくてもよいという点で異なっている。ステージ22jのその他の構造は、上述したステージ22のその他の構造と同一であってもよい。尚、図19では、図面の簡略化のために、複数の支持部材223の記載を省略している。 As shown in FIG. 19, the stage 22j is different from the stage 22 in that a vacuum chuck 228j is provided. Further, the stage 22j is different from the stage 22 in that the exhaust port 2242 may not be formed in the bottom member 221 and the pipe 2252 may not be disposed in the stage 22j. The other structure of the stage 22j may be the same as the other structure of the stage 22 described above. In FIG. 19, the description of the plurality of support members 223 is omitted for simplification of the drawing.
 真空チャック228jは、ステージ空間SPs内に配置される。真空チャック228jは、試料Wの裏面WSlを部分的に(つまり、局所的に)真空吸着可能である。具体的には、真空チャック228jは、ステージ空間SPs内の一部に、試料Wの裏面WSlに面する局所的な吸着空間SPsjを規定可能である。真空チャック228jには、排気口2245jが形成されている。排気口2245jには、配管2255jを介して真空ポンプ54が連結されている。このため、吸着空間SPsjの圧力は、ビーム通過空間SPb3の圧力(つまり、真空領域VSPの圧力)と同等程度になる。 The vacuum chuck 228j is disposed in the stage space SPs. The vacuum chuck 228j can partially (ie locally) vacuum-suck the back surface WSl of the sample W. Specifically, the vacuum chuck 228j can define a local adsorption space SPsj facing the back surface WSl of the sample W in a part of the stage space SPs. An exhaust port 2245j is formed in the vacuum chuck 228j. A vacuum pump 54 is connected to the exhaust port 2245j through a pipe 2255j. For this reason, the pressure in the adsorption space SPsj is approximately equal to the pressure in the beam passage space SPb3 (that is, the pressure in the vacuum region VSP).
 真空チャック228jは、第10変形例のステージ装置2jが備える駆動系24jによって、ステージ空間SPs内を、XY平面に沿って(つまり、試料Wの裏面WSlに沿って)移動可能である。真空チャック228jが移動すると、試料Wと真空チャック228jとの相対位置が変わる。つまり、真空チャック228jが移動すると、ステージ空間SPs内において排気口2245jが移動する。第10変形例では特に、制御装置4は、駆動系24jを制御して、試料Wにおける特定部分W_vacの位置に応じて、真空チャック228jを移動させる。第7変形例で説明したように、試料Wにおける特定部分W_vacの位置は、試料Wと真空領域VSPを形成する差動排気系12との相対位置に依存する。このため、特定部分W_vacの位置に応じて真空チャック228jを移動させる動作は、試料Wと差動排気系12との相対位置に関する情報に基づいて真空チャック228jを移動させる動作と等価とみなせる。具体的には、制御装置4は、特定部分W_vacに吸着空間SPsjが面するように、真空チャック228jを移動させる。つまり、制御装置4は、特定部分W_vacに面する領域に排気口2245jが位置するように、真空チャック228jを移動させる。その結果、真空ポンプ54によって吸着空間SPsjが減圧されると、特定部分W_vacに面する吸着空間SPsjの圧力は、ビーム通過空間SPb3の圧力(つまり、真空領域VSPの圧力)と同等程度になる。つまり、特定部分W_vacに面する吸着空間SPsjが真空ポンプ54によって排気されることで、特定部分W_vacに面する吸着空間SPsjの圧力と真空領域VSPの圧力との差は、大気圧と真空領域VSPの圧力との差よりも小さくなる。このため、真空ポンプ54が吸着空間SPshを減圧すると、特定部分W_vacでは、真空領域VSPから試料Wに作用する力F_VSPと吸着空間SPsjから試料Wに作用する力F_hold2とが相殺し合う。従って、特定部分W_vacの変形が抑制される。その一方で、ステージ空間SPs(特に、ステージ空間SPsのうち吸着空間SPsj以外の空間)が真空ポンプ53によって減圧される。このため、試料Wのうち特定部分W_vac以外の部分の少なくとも一部には、真空ポンプ53による減圧に起因した力F_hold1が作用する。従って、ステージ22jは、この力F_hold1を、試料Wを保持するための力として用いることで、試料Wを保持する。 The vacuum chuck 228j can be moved along the XY plane (that is, along the back surface WSl of the sample W) in the stage space SPs by the drive system 24j provided in the stage apparatus 2j of the tenth modification. When the vacuum chuck 228j moves, the relative position between the sample W and the vacuum chuck 228j changes. That is, when the vacuum chuck 228j moves, the exhaust port 2245j moves in the stage space SPs. Particularly in the tenth modification, the control device 4 controls the drive system 24j to move the vacuum chuck 228j in accordance with the position of the specific portion W_vac in the sample W. As described in the seventh modification, the position of the specific portion W_vac in the sample W depends on the relative position between the sample W and the differential exhaust system 12 that forms the vacuum region VSP. For this reason, the operation of moving the vacuum chuck 228j according to the position of the specific portion W_vac can be regarded as equivalent to the operation of moving the vacuum chuck 228j based on information on the relative position between the sample W and the differential exhaust system 12. Specifically, the control device 4 moves the vacuum chuck 228j so that the suction space SPsj faces the specific portion W_vac. That is, the control device 4 moves the vacuum chuck 228j so that the exhaust port 2245j is located in a region facing the specific portion W_vac. As a result, when the suction space SPsj is depressurized by the vacuum pump 54, the pressure of the suction space SPsj facing the specific portion W_vac is approximately equal to the pressure of the beam passage space SPb3 (that is, the pressure of the vacuum region VSP). In other words, the suction space SPsj facing the specific portion W_vac is exhausted by the vacuum pump 54, so that the difference between the pressure of the suction space SPsj facing the specific portion W_vac and the pressure of the vacuum region VSP is the atmospheric pressure and the vacuum region VSP. The difference from the pressure is smaller. For this reason, when the vacuum pump 54 depressurizes the adsorption space SPsh, in the specific portion W_vac, the force F_VSP acting on the sample W from the vacuum region VSP and the force F_hold2 acting on the sample W from the adsorption space SPsj cancel each other. Therefore, deformation of the specific portion W_vac is suppressed. On the other hand, the stage space SPs (particularly, the space other than the adsorption space SPsj in the stage space SPs) is decompressed by the vacuum pump 53. For this reason, force F_hold1 resulting from the pressure reduction by the vacuum pump 53 acts on at least a part of the sample W other than the specific portion W_vac. Accordingly, the stage 22j holds the sample W by using this force F_hold1 as a force for holding the sample W.
 一例として、試料Wのうちの第1部分の状態が真空領域VSPに面していない状態から真空領域VSPに面している状態へと遷移した場合(つまり、試料Wと差動排気系12との相対位置が、試料Wのうちの第1部分が真空領域VSPに面していない位置関係から第1部分が真空領域VSPに面している位置関係に変化した場合)には、ステージ空間SPsのうち第1部分に面する部分の気圧は、第1気圧から第1気圧よりも低い第2気圧へと変化する。他方で、試料Wのうちの第1部分の状態が真空領域VSPに面している状態から真空領域VSPに面していない状態へと遷移した場合(つまり、試料Wと差動排気系12との相対位置が、試料Wのうちの第1部分が真空領域VSPに面している位置関係から第1部分が真空領域VSPに面していない位置関係に変化した場合)には、ステージ空間SPsのうち第1部分に面する部分の気圧は、第2気圧から第2気圧よりも低い第1気圧へと変化する。 As an example, when the state of the first portion of the sample W transitions from a state not facing the vacuum region VSP to a state facing the vacuum region VSP (that is, the sample W and the differential exhaust system 12 and Is changed from a positional relationship in which the first portion of the sample W does not face the vacuum region VSP to a positional relationship in which the first portion faces the vacuum region VSP), the stage space SPs. Of these, the pressure of the portion facing the first portion changes from the first pressure to a second pressure lower than the first pressure. On the other hand, when the state of the first portion of the sample W transitions from the state facing the vacuum region VSP to the state not facing the vacuum region VSP (that is, the sample W and the differential exhaust system 12) Is changed from a positional relationship in which the first portion of the sample W faces the vacuum region VSP to a positional relationship in which the first portion does not face the vacuum region VSP). Of these, the pressure of the part facing the first part changes from the second pressure to the first pressure lower than the second pressure.
 尚、真空チャック228jの真空配管は、底部材221を貫通していなくてもよい。例えば、側壁部材222のステージ空間SPs側に真空ポンプ54に連通した開口部を設け、当該開口部と真空チャック228jとを接続する真空配管を設けてもよい。このとき、この真空配管は蛇腹等の可撓性を有する部材であってもよい。 Note that the vacuum piping of the vacuum chuck 228j may not penetrate the bottom member 221. For example, an opening communicated with the vacuum pump 54 may be provided on the side of the side wall member 222 on the stage space SPs, and a vacuum pipe connecting the opening and the vacuum chuck 228j may be provided. At this time, the vacuum pipe may be a flexible member such as a bellows.
 このように、ステージ22jを備える第10変形例の走査型電子顕微鏡SEMjであっても、上述した走査型電子顕微鏡SEMが享受することが可能な効果と同様の効果を享受することができる。特に、第10変形例の走査型電子顕微鏡SEMjは、試料Wにおける特定部分W_vacの位置が変わる場合であっても、ステージ22jによって試料Wを適切に保持しつつ、真空領域VSPの形成に起因した試料Wの変形を抑制することができる。 Thus, even the scanning electron microscope SEMj of the tenth modified example including the stage 22j can enjoy the same effects as those that can be enjoyed by the above-described scanning electron microscope SEM. In particular, the scanning electron microscope SEMj of the tenth modification is caused by the formation of the vacuum region VSP while appropriately holding the sample W by the stage 22j even when the position of the specific portion W_vac in the sample W changes. The deformation of the sample W can be suppressed.
 (3-11)第11変形例
 続いて、第11変形例の走査型電子顕微鏡SEMkについて説明する。第11変形例の走査型電子顕微鏡SEMkは、上述した第10変形例の走査型電子顕微鏡SEMjと比較して、ステージ22jに代えてステージ22kを備えているという点で異なっている。走査型電子顕微鏡SEMkのその他の構造は、上述した走査型電子顕微鏡SEMjのその他の構造と同一であってもよい。このため、以下では、図20を参照しながら、ステージ22kの構造について説明する。
(3-11) Eleventh Modification Next, a scanning electron microscope SEMk of the eleventh modification will be described. The scanning electron microscope SEMk of the eleventh modification is different from the above-described scanning electron microscope SEMj of the tenth modification in that a stage 22k is provided instead of the stage 22j. The other structure of the scanning electron microscope SEMk may be the same as the other structure of the scanning electron microscope SEMj described above. Therefore, hereinafter, the structure of the stage 22k will be described with reference to FIG.
 図20に示すように、ステージ22kは、ステージ22jと比較して、真空チャック228jに代えて、静電チャック225kを備えているという点で異なっている。ステージ22kのその他の構造は、上述したステージ22jのその他の構造と同一であってもよい。尚、図20では、図面の簡略化のために、複数の支持部材223の記載を省略している。 As shown in FIG. 20, the stage 22k is different from the stage 22j in that an electrostatic chuck 225k is provided instead of the vacuum chuck 228j. The other structure of the stage 22k may be the same as the other structure of the stage 22j described above. In FIG. 20, the description of the plurality of support members 223 is omitted for simplification of the drawing.
 静電チャック225kは、上述した第9変形例の静電チャック225iと同様に、制御装置4の制御下で、試料Wを静電チャック225kに引き寄せる(その結果、ステージ22kに引き寄せる)ように試料Wに作用する静電力F_elecを発生可能である。但し、静電チャック225kは、XY平面内において、試料Wに局所的に(言い換えれば、部分的に)作用する静電力F_elecを発生可能である。特に、静電チャック225kは、試料Wの変形を抑制するための静電力F_elecを局所的に発生可能である。 The electrostatic chuck 225k is similar to the electrostatic chuck 225i of the ninth modified example described above so that the sample W is attracted to the electrostatic chuck 225k (as a result, is attracted to the stage 22k) under the control of the control device 4. An electrostatic force F_elec acting on W can be generated. However, the electrostatic chuck 225k can generate an electrostatic force F_elec that acts locally (in other words, partially) on the sample W in the XY plane. In particular, the electrostatic chuck 225k can locally generate an electrostatic force F_elec for suppressing deformation of the sample W.
 静電チャック225kは、第10変形例の真空チャック228jと同様に、第11変形例のステージ装置2kが備える駆動系24kによって、ステージ空間SPs内を、XY平面に沿って(つまり、試料Wの裏面WSlに沿って)移動可能である。静電チャック225kが移動すると、試料Wと静電チャック225kとの相対位置が変わる。第11変形例では特に、制御装置4は、駆動系24kを制御して、試料Wにおける特定部分W_vacの位置に応じて、静電チャック225kを移動させる。第7変形例で説明したように、試料Wにおける特定部分W_vacの位置は、試料Wと真空領域VSPを形成する差動排気系12との相対位置に依存する。このため、特定部分W_vacの位置に応じて静電チャック225kを移動させる動作は、試料Wと差動排気系12との相対位置に関する情報に基づいて静電チャック225kを移動させる動作と等価とみなせる。具体的には、制御装置4は、特定部分W_vacに静電力F_elecが付与されるように、静電チャック225kを移動させる。つまり、制御装置4は、間に特定部分W_vacを挟んで真空領域VSPと対向する位置に静電チャック225kを移動させる。その結果、静電チャック225kによって静電力F_elecが付与されると、特定部分W_vacでは、真空領域VSPから試料Wに作用する力F_VSPと静電チャック225kから試料Wに作用する力F_elecとが相殺し合う。このため、試料Wの変形が適切に抑制される。その一方で、ステージ空間SPsが真空ポンプ53によって減圧される。このため、試料Wには、真空ポンプ53による減圧に起因した力F_hold1もまた作用する。従って、ステージ22kは、この力F_hold1を、試料Wを保持するための力として用いることで、試料Wを保持する。 Similarly to the vacuum chuck 228j of the tenth modification, the electrostatic chuck 225k is moved along the XY plane (that is, the sample W) in the stage space SPs by the drive system 24k provided in the stage device 2k of the eleventh modification. Along the backside WSl). When the electrostatic chuck 225k moves, the relative position between the sample W and the electrostatic chuck 225k changes. Particularly in the eleventh modification, the control device 4 controls the drive system 24k to move the electrostatic chuck 225k according to the position of the specific portion W_vac in the sample W. As described in the seventh modification, the position of the specific portion W_vac in the sample W depends on the relative position between the sample W and the differential exhaust system 12 that forms the vacuum region VSP. Therefore, the operation of moving the electrostatic chuck 225k according to the position of the specific portion W_vac can be regarded as equivalent to the operation of moving the electrostatic chuck 225k based on information on the relative position between the sample W and the differential exhaust system 12. . Specifically, the control device 4 moves the electrostatic chuck 225k so that the electrostatic force F_elec is applied to the specific portion W_vac. That is, the control device 4 moves the electrostatic chuck 225k to a position facing the vacuum region VSP with the specific portion W_vac in between. As a result, when the electrostatic force F_elec is applied by the electrostatic chuck 225k, in the specific portion W_vac, the force F_VSP acting on the sample W from the vacuum region VSP and the force F_elec acting on the sample W from the electrostatic chuck 225k cancel each other. Fit. For this reason, the deformation of the sample W is appropriately suppressed. On the other hand, the stage space SPs is decompressed by the vacuum pump 53. For this reason, force F_hold1 resulting from the pressure reduction by the vacuum pump 53 also acts on the sample W. Therefore, the stage 22k holds the sample W by using this force F_hold1 as a force for holding the sample W.
 このように、ステージ22kを備える第11変形例の走査型電子顕微鏡SEMkであっても、上述した走査型電子顕微鏡SEMが享受することが可能な効果と同様の効果を享受することができる。特に、第11変形例の走査型電子顕微鏡SEMkは、試料Wにおける特定部分W_vacの位置が変わる場合であっても、ステージ22kによって試料Wを適切に保持しつつ、真空領域VSPの形成に起因した試料Wの変形を抑制することができる。 Thus, even the scanning electron microscope SEMk of the eleventh modified example including the stage 22k can enjoy the same effects as those that can be enjoyed by the above-described scanning electron microscope SEM. In particular, the scanning electron microscope SEMk of the eleventh modification is caused by the formation of the vacuum region VSP while appropriately holding the sample W by the stage 22k even when the position of the specific portion W_vac in the sample W changes. The deformation of the sample W can be suppressed.
 尚、静電チャック225kは、試料Wに力F_elecを付与する期間の少なくとも一部において、試料Wの下面WSlに接触可能な構成であってもよい。 The electrostatic chuck 225k may be configured to be able to contact the lower surface WSl of the sample W during at least a part of the period during which the force F_elec is applied to the sample W.
 尚、第11変形例においても、第6変形例と同様に、走査型電子顕微鏡SEMkは、静電チャック225kに加えて又は代えて、試料Wの変形を抑制するための力として、静電力F_elecとは異なる種類の力を付与可能な付与装置を備えていてもよい。この場合においても、制御装置4は、試料Wにおける特定部分W_vacの位置に応じて、付与装置を移動させてもよい。つまり、制御装置4は、特定部分W_vacに付与装置から力が付与されるように、付与装置を移動させてもよい。更に、第11変形例では、試料Wの変形を抑制するために真空ポンプ54が用いられなくてもよいため、ポンプ系5は、真空ポンプ54を備えていなくてもよい。 In the eleventh modified example, similarly to the sixth modified example, the scanning electron microscope SEMk uses the electrostatic force F_elec as a force for suppressing the deformation of the sample W in addition to or instead of the electrostatic chuck 225k. You may provide the provision apparatus which can provide the kind of force different from. Also in this case, the control device 4 may move the applying device according to the position of the specific portion W_vac in the sample W. That is, the control device 4 may move the applying device such that a force is applied to the specific portion W_vac from the applying device. Furthermore, in the eleventh modification, the pump system 5 does not have to include the vacuum pump 54 because the vacuum pump 54 may not be used to suppress the deformation of the sample W.
 (3-12)第12変形例
 続いて、第12変形例の走査型電子顕微鏡SEMlについて説明する。第12変形例の走査型電子顕微鏡SEMlは、上述した走査型電子顕微鏡SEMと比較して、ステージ22に代えてステージ22lを備えているという点で異なっている。走査型電子顕微鏡SEMlのその他の構造は、上述した走査型電子顕微鏡SEMのその他の構造と同一であってもよい。このため、以下では、図21(a)及び図21(b)を参照しながら、ステージ22lの構造について説明する。
(3-12) Twelfth Modification Next, a scanning electron microscope SEMl of a twelfth modification will be described. The scanning electron microscope SEMl of the twelfth modified example is different from the above-described scanning electron microscope SEM in that a stage 22l is provided instead of the stage 22. The other structure of the scanning electron microscope SEMl may be the same as the other structure of the scanning electron microscope SEM described above. Therefore, the structure of the stage 22l will be described below with reference to FIGS. 21 (a) and 21 (b).
 図21(a)及び図21(b)に示すように、ステージ22lは、上述したステージ22と比較して、複数の支持部材223の配置態様が異なるという点で異なっている。具体的には、ステージ22lは、上述したステージ22と比較して、ステージ22lの外縁部分22_edgeにおける支持部材223の配置態様が、ステージ22lの中心部分22_centerにおける支持部材223の配置態様とは異なるという点で異なっている。尚、ステージ22lの外縁部分22_edgeは、ステージ22lの中心部分22_centerよりも外側(つまり、側壁部材222に近い側)に位置する部分である。ステージ22lの中心部分22_centerは、ステージ22lの外縁部分22_edgeよりもステージ22lの中心(具体的には、XY平面内における中心であって、典型的には、表面WSuの中心)に近い側に位置する部分である。ステージ22lの外縁部分22_edgeは、典型的には、試料Wの外縁部分W_edgeに対向する部分を含む又は近接する部分である。ステージ22lの中心部分22_centerは、典型的には、試料Wの表面WSuの中心に対向する部分を含む又は近接する部分である。ステージ22lのその他の構造は、上述したステージ22のその他の構造と同一であってもよい。 21 (a) and 21 (b), the stage 22l is different from the stage 22 described above in that the arrangement of the plurality of support members 223 is different. Specifically, the stage 22l is different from the stage 22 described above in that the arrangement mode of the support member 223 in the outer edge portion 22_edge of the stage 22l is different from the arrangement mode of the support member 223 in the center portion 22_center of the stage 22l. It is different in point. The outer edge portion 22_edge of the stage 22l is a portion located outside the center portion 22_center of the stage 22l (that is, the side closer to the side wall member 222). The center portion 22_center of the stage 22l is located closer to the center of the stage 22l (specifically, the center in the XY plane, typically the center of the surface WSu) than the outer edge portion 22_edge of the stage 22l. It is a part to do. The outer edge portion 22_edge of the stage 22l is typically a portion that includes or is close to a portion that faces the outer edge portion W_edge of the sample W. The center portion 22_center of the stage 22l is typically a portion that includes or is close to a portion that faces the center of the surface WSu of the sample W. The other structure of the stage 22l may be the same as the other structure of the stage 22 described above.
 第12変形例では、支持部材223の配置態様は、単位面積当たりの支持部材223の本数を含む。このため、ステージ22lの外縁部分22_edgeにおける単位面積当たりの支持部材223の本数は、ステージ22lの中心部分22_centerにおける単位面積当たりの支持部材223の本数とは異なる。より具体的には、図21(a)及び図21(b)に示すように、ステージ22lの外縁部分22_edgeにおける単位面積当たりの支持部材223の本数は、ステージ22lの中心部分22_centerにおける単位面積当たりの支持部材223の本数よりも少なくなる。 In the twelfth modification, the arrangement mode of the support members 223 includes the number of the support members 223 per unit area. For this reason, the number of support members 223 per unit area in the outer edge portion 22_edge of the stage 22l is different from the number of support members 223 per unit area in the center portion 22_center of the stage 22l. More specifically, as shown in FIGS. 21A and 21B, the number of support members 223 per unit area in the outer edge portion 22_edge of the stage 22l is equal to the unit area in the central portion 22_center of the stage 22l. The number of the supporting members 223 becomes smaller.
 このようなステージ22lを備える第12変形例の走査型電子顕微鏡SEMlであっても、上述した走査型電子顕微鏡SEMが享受することが可能な効果と同様の効果を享受することができる。加えて、第12変形例では、ステージ22lの中心部分22_centerにおける単位面積当たりの支持部材223の本数が相対的に多くなるため、支持部材223を介した試料Wの放熱がより一層促進される。その結果、試料Wの熱変形が抑制される。 Even in the scanning electron microscope SEMl of the twelfth modified example provided with such a stage 22l, it is possible to enjoy the same effects as those that can be enjoyed by the above-described scanning electron microscope SEM. In addition, in the twelfth modified example, the number of support members 223 per unit area in the central portion 22_center of the stage 22l is relatively increased, so that the heat dissipation of the sample W via the support members 223 is further promoted. As a result, thermal deformation of the sample W is suppressed.
 尚、単位面積当たりの支持部材223の本数が相対的に多くなると、支持部材223と試料Wとの間に塵等が挟まる(その結果、塵等によって、試料Wが変形する)可能性が相対的に大きくなる。しかしながら、上述したように、ステージ空間SPsが真空ポンプ54によって減圧されている場合には、ステージ空間SPsが真空ポンプ53によって減圧されている場合と比較して、試料Wがより強く支持部材223に押し付けられる。このため、支持部材223と試料Wとの間に挟まった塵等が、試料Wが支持部材223に押し付けられる力によってつぶれる可能性が相対的に大きくなる。つまり、塵等によって試料Wが変形する可能性が相対的に小さくなる。従って、走査型電子顕微鏡SEMlは、塵等による試料Wの変形を引き起こすことなく、支持部材223を介した試料Wの放熱をより一層促進して試料Wの熱変形を抑制することができる。 Note that when the number of support members 223 per unit area is relatively large, there is a relative possibility that dust or the like may be trapped between the support member 223 and the sample W (as a result, the sample W may be deformed by dust or the like). Become bigger. However, as described above, when the stage space SPs is depressurized by the vacuum pump 54, the sample W is more strongly applied to the support member 223 than when the stage space SPs is depressurized by the vacuum pump 53. Pressed. For this reason, there is a relatively high possibility that dust or the like sandwiched between the support member 223 and the sample W will be crushed by the force with which the sample W is pressed against the support member 223. That is, the possibility that the sample W is deformed by dust or the like becomes relatively small. Therefore, the scanning electron microscope SEMl can further suppress the thermal deformation of the sample W by further promoting the heat dissipation of the sample W through the support member 223 without causing the deformation of the sample W due to dust or the like.
 特に、ステージ空間SPsのうちのステージ22lの外縁部分22_edgeにおける空間部分の圧力と比較して、ステージ空間SPsのうちのステージ22lの中心部分22_centerにおける空間部分の圧力は低下しにくい。なぜならば、ステージ空間SPsの圧力の低下は、ステージ22lの外縁部分22_edgeの近傍に位置する側壁部材222と試料Wとの間の隙間を介してステージ空間SPsに流入してくる気体によって引き起こされるところ、このような圧力の低下は、ステージ22lの中心部分22_centerよりもステージ22lの外縁部分22_edgeで起こりやすいからである。従って、外縁部分22_edge及び中心部分22_centerを区別することなく単に支持部材223の本数が相対的に多くなる比較例の走査型電子顕微鏡と比較して、ステージ22lの中心部分22_centerという特定の領域(つまり、ステージ空間SPsの圧力の低下が起こりにくい領域)における単位面積当たりの支持部材223の本数が相対的に多くなる第12変形例の走査型電子顕微鏡SEMlは、塵等による試料Wの変形を引き起こす可能性を過度に大きくすることなく、支持部材223を介した試料Wの放熱をより一層促進して試料Wの熱変形を抑制することができる。尚、この第12変型例に示した支持部材223の配置態様を、上述の実施形態及び他の変形例に適用してもよい。 In particular, compared with the pressure in the space portion in the outer edge portion 22_edge of the stage 22l in the stage space SPs, the pressure in the space portion in the center portion 22_center of the stage 22l in the stage space SPs is less likely to decrease. This is because the pressure drop in the stage space SPs is caused by the gas flowing into the stage space SPs through the gap between the side wall member 222 located near the outer edge portion 22_edge of the stage 22l and the sample W. This is because such a decrease in pressure is more likely to occur in the outer edge portion 22_edge of the stage 22l than in the central portion 22_center of the stage 22l. Therefore, compared with the scanning electron microscope of the comparative example in which the number of the support members 223 is relatively increased without distinguishing the outer edge portion 22_edge and the central portion 22_center, a specific region (that is, the central portion 22_center of the stage 22l (that is, The scanning electron microscope SEMl of the twelfth modified example in which the number of support members 223 per unit area is relatively large in the region where the pressure of the stage space SPs is unlikely to decrease) causes deformation of the sample W due to dust or the like. Without excessively increasing the possibility, heat dissipation of the sample W through the support member 223 can be further promoted to suppress thermal deformation of the sample W. The arrangement mode of the support member 223 shown in the twelfth modification may be applied to the above-described embodiment and other modifications.
 (3-13)第13変形例
 続いて、第13変形例の走査型電子顕微鏡SEMmについて説明する。第13変形例の走査型電子顕微鏡SEMmは、上述した走査型電子顕微鏡SEMと比較して、ステージ22に代えてステージ22mを備えているという点で異なっている。走査型電子顕微鏡SEMmのその他の構造は、上述した走査型電子顕微鏡SEMのその他の構造と同一であってもよい。このため、以下では、図22(a)及び図22(b)を参照しながら、ステージ22mの構造について説明する。
(3-13) Thirteenth Modification Next, a scanning electron microscope SEMm of the thirteenth modification will be described. The scanning electron microscope SEMm of the thirteenth modified example is different from the above-described scanning electron microscope SEM in that a stage 22m is provided instead of the stage 22. Other structures of the scanning electron microscope SEMm may be the same as the other structures of the scanning electron microscope SEM described above. Therefore, hereinafter, the structure of the stage 22m will be described with reference to FIGS. 22 (a) and 22 (b).
 図22(a)及び図22(b)に示すように、ステージ22mは、上述したステージ22と比較して、複数の支持部材223の上面223Suのサイズ(つまり、実質的には面積)が異なるという点で異なっている。具体的には、ステージ22mは、上述したステージ22と比較して、ステージ22mの外縁部分22_edgeにおける支持部材223の上面223Suのサイズが、ステージ22lの中心部分22_centerにおける支持部材223の上面223Suのサイズよりも小さいという点で異なっている。ステージ22mのその他の構造は、上述したステージ22のその他の構造と同一であってもよい。尚、第13変形例における外縁部分22_edge及び中心部分22_centerは、第12変形例における外縁部分22_edge及び中心部分22_centerと同様の部分である。 As shown in FIGS. 22A and 22B, the stage 22m is different from the stage 22 described above in the size (ie, substantially the area) of the upper surface 223Su of the plurality of support members 223. It is different in that. Specifically, in the stage 22m, the size of the upper surface 223Su of the support member 223 at the outer edge portion 22_edge of the stage 22m is larger than the size of the upper surface 223Su of the support member 223 at the center portion 22_center of the stage 22l as compared with the stage 22 described above. It is different in that it is smaller. The other structure of the stage 22m may be the same as the other structure of the stage 22 described above. Note that the outer edge portion 22_edge and the center portion 22_center in the thirteenth modification are the same as the outer edge portion 22_edge and the center portion 22_center in the twelfth modification.
 このようなステージ22mを備える第13変形例の走査型電子顕微鏡SEMmであっても、上述した走査型電子顕微鏡SEMが享受することが可能な効果と同様の効果を享受することができる。加えて、第13変形例では、ステージ22mの中心部分22_centerにおける支持部材223の上面223Suのサイズが相対的に大きくなるため、ステージ22mの中心部分22_centerにおける支持部材223と試料Wとの接触面積が相対的に大きくなる。つまり、ステージ22mの外縁部分22_edgeにおける支持部材223と試料Wとの接触面積と比較して、ステージ22mの中心部分22_centerにおける支持部材223と試料Wとの接触面積が相対的に大きくなる。このため、支持部材223を介した試料Wの放熱がより一層促進される。その結果、試料Wの熱変形が抑制される。 Even in the scanning electron microscope SEMm of the thirteenth modified example provided with such a stage 22m, the same effects as those that can be enjoyed by the above-described scanning electron microscope SEM can be obtained. In addition, in the thirteenth modification, the size of the upper surface 223Su of the support member 223 at the center portion 22_center of the stage 22m is relatively large, so that the contact area between the support member 223 and the sample W at the center portion 22_center of the stage 22m is increased. It becomes relatively large. That is, the contact area between the support member 223 and the sample W at the center portion 22_center of the stage 22m is relatively larger than the contact area between the support member 223 and the sample W at the outer edge portion 22_edge of the stage 22m. For this reason, the heat dissipation of the sample W through the support member 223 is further promoted. As a result, thermal deformation of the sample W is suppressed.
 尚、単位面積当たりの支持部材223の本数が相対的に多くなる場合と同様に、支持部材223の上面223Suのサイズが相対的に大きくなる場合においても、支持部材223と試料Wとの間に塵等が挟まる(その結果、塵等によって、試料Wが変形する)可能性が相対的に大きくなる。しかしながら、第12変形例の走査型電子顕微鏡SEMlと同様の理由から、第13変形例の走査型電子顕微鏡SEMmもまた、塵等による試料Wの変形を引き起こすことなく、支持部材223を介した試料Wの放熱をより一層促進して試料Wの熱変形を抑制することができる。尚、この第13変型例に示した支持部材223の配置態様を、上述の実施形態及び他の変形例に適用してもよい。 In addition, when the size of the upper surface 223Su of the support member 223 is relatively large as in the case where the number of the support members 223 per unit area is relatively large, the space between the support member 223 and the sample W is also large. There is a relatively high possibility that dust or the like is caught (as a result, the sample W is deformed by dust or the like). However, for the same reason as the scanning electron microscope SEMl of the twelfth modification, the scanning electron microscope SEMm of the thirteenth modification also causes the sample through the support member 223 without causing deformation of the sample W due to dust or the like. The heat dissipation of W can be further promoted to suppress thermal deformation of the sample W. Note that the arrangement of the support member 223 shown in the thirteenth modification may be applied to the above-described embodiment and other modifications.
 (3-14)第14変形例
 続いて、図23を参照しながら、第14変形例の走査型電子顕微鏡SEMnについて説明する。図23に示すように、第14変形例の走査型電子顕微鏡SEMnは、上述した走査型電子顕微鏡SEMと比較して、光学顕微鏡16nを備えているという点で異なる。走査型電子顕微鏡SEMnのその他の構造は、上述した走査型電子顕微鏡SEMのその他の構造と同一であってもよい。
(3-14) Fourteenth Modification Next, a scanning electron microscope SEMn according to a fourteenth modification will be described with reference to FIG. As shown in FIG. 23, the scanning electron microscope SEMn according to the fourteenth modified example is different from the above-described scanning electron microscope SEM in that it includes an optical microscope 16n. The other structure of the scanning electron microscope SEMn may be the same as the other structure of the scanning electron microscope SEM described above.
 光学顕微鏡16nは、試料Wの状態(例えば、試料Wの表面WSuの少なくとも一部の状態)を光学的に計測可能な装置である。つまり、光学顕微鏡16nは、試料Wの状態を光学的に計測して、試料Wに関する情報を取得可能な装置である。特に、光学顕微鏡16nは、試料Wの状態を大気圧環境下で計測可能であるという点で、試料Wの状態を真空環境下で計測するビーム照射装置1(特に、電子検出器116)とは異なる。 The optical microscope 16n is a device that can optically measure the state of the sample W (for example, the state of at least a part of the surface WSu of the sample W). That is, the optical microscope 16n is an apparatus that can optically measure the state of the sample W and acquire information about the sample W. In particular, the optical microscope 16n is capable of measuring the state of the sample W under an atmospheric pressure environment, and is therefore a beam irradiation apparatus 1 (particularly, the electron detector 116) that measures the state of the sample W under a vacuum environment. Different.
 光学顕微鏡16nは、ビーム照射装置1が電子ビームEBを試料Wに照射して試料Wの状態を計測する前に、試料Wの状態を計測する。つまり、走査型電子顕微鏡SEMnは、光学顕微鏡16nを用いて試料Wの状態を計測した後に、ビーム照射装置1を用いて試料Wの状態を計測する。ここで、光学顕微鏡16nが大気圧環境下で試料Wの状態を計測可能であるため、光学顕微鏡16nが試料Wの状態を計測している期間中は、ビーム照射装置1は、真空領域VSPを形成しなくてもよい。その結果、光学顕微鏡16nが試料Wの状態を計測している期間中は、真空領域VSPの形成に起因して試料Wが変形することはない。従って、光学顕微鏡16nが試料Wの状態を計測している期間中は、ステージ空間SPsは、真空ポンプ53によって減圧されていてもよい。つまり、ステージ空間SPsの圧力は、ステージ22が試料Wを保持することができるように大気圧よりも低くなるものの、試料Wの変形を抑制することができるほどには低くはならなくてもよい。一方で、ビーム照射装置1は、光学顕微鏡16nが試料Wの状態の計測を完了した後に、真空領域VSPを形成して試料Wに電子ビームEBを照射する。このため、ビーム照射装置1が試料Wの状態を計測している期間中は、真空領域VSPの形成に起因して試料Wが変形する可能性がある。従って、ビーム照射装置1が試料Wの状態を計測している期間中は、ステージ空間SPsは、真空ポンプ54によって減圧される。つまり、ビーム照射装置1が試料Wの状態を計測している期間中のステージ空間SPsの圧力は、試料Wの変形を抑制することができるように、光学顕微鏡16nが試料Wの状態を計測している期間中のステージ空間SPsの圧力よりも低くなる。 The optical microscope 16n measures the state of the sample W before the beam irradiation apparatus 1 irradiates the sample W with the electron beam EB and measures the state of the sample W. That is, the scanning electron microscope SEMn measures the state of the sample W using the beam irradiation apparatus 1 after measuring the state of the sample W using the optical microscope 16n. Here, since the optical microscope 16n can measure the state of the sample W under the atmospheric pressure environment, the beam irradiation apparatus 1 sets the vacuum region VSP during the period when the optical microscope 16n is measuring the state of the sample W. It does not have to be formed. As a result, while the optical microscope 16n is measuring the state of the sample W, the sample W is not deformed due to the formation of the vacuum region VSP. Therefore, the stage space SPs may be decompressed by the vacuum pump 53 during the period in which the optical microscope 16 n is measuring the state of the sample W. That is, the pressure in the stage space SPs is lower than the atmospheric pressure so that the stage 22 can hold the sample W, but it does not have to be so low that the deformation of the sample W can be suppressed. . On the other hand, the beam irradiation apparatus 1 forms the vacuum region VSP and irradiates the sample W with the electron beam EB after the optical microscope 16n completes the measurement of the state of the sample W. For this reason, during the period when the beam irradiation apparatus 1 measures the state of the sample W, the sample W may be deformed due to the formation of the vacuum region VSP. Accordingly, the stage space SPs is decompressed by the vacuum pump 54 while the beam irradiation apparatus 1 is measuring the state of the sample W. That is, the optical microscope 16n measures the state of the sample W so that the pressure of the stage space SPs during the period when the beam irradiation apparatus 1 is measuring the state of the sample W can suppress the deformation of the sample W. It becomes lower than the pressure of the stage space SPs during the period.
 ステージ22は、ビーム照射装置1が電子ビームEBを試料Wに照射する期間中は、ビーム照射装置1が電子ビームEBを照射可能な位置に試料Wが位置するように移動してもよい。ステージ22は、光学顕微鏡16nが試料Wの状態を計測する期間中は、光学顕微鏡16nが試料Wの状態を計測可能な位置に試料Wが位置するように移動してもよい。ステージ22は、ビーム照射装置1が電子ビームEBを照射可能な位置と、光学顕微鏡16nが計測可能な位置との間で移動してもよい。 The stage 22 may move so that the sample W is positioned at a position where the beam irradiation device 1 can irradiate the electron beam EB during the period in which the beam irradiation device 1 irradiates the sample W with the electron beam EB. During the period in which the optical microscope 16n measures the state of the sample W, the stage 22 may move so that the sample W is positioned at a position where the optical microscope 16n can measure the state of the sample W. The stage 22 may move between a position where the beam irradiation apparatus 1 can irradiate the electron beam EB and a position where the optical microscope 16n can measure.
 走査型電子顕微鏡SEMnは、光学顕微鏡16nを用いた試料Wの状態の計測結果に基づいて、ビーム照射装置1を用いて試料Wの状態を計測してもよい。例えば、走査型電子顕微鏡SEMnは、まず、光学顕微鏡16nを用いて、試料Wのうちの所望領域の状態を計測してもよい。その後、走査型電子顕微鏡SEMnは、光学顕微鏡16nを用いた試料Wの所望領域の状態の計測結果に基づいて、ビーム照射装置1を用いて試料Wの同じ所望領域の状態(或いは、所望領域とは異なる領域の状態)を計測してもよい。この場合、試料Wの所望領域には、ビーム照射装置1を用いた試料Wの状態の計測のために利用可能な所定の指標物が形成されていてもよい。所定の指標物の一例として、例えば、試料Wとビーム照射装置1との位置合わせに用いられるマーク(例えば、フィデュシャルマーク及びアライメントマークの少なくとも一方)があげられる。 The scanning electron microscope SEMn may measure the state of the sample W using the beam irradiation apparatus 1 based on the measurement result of the state of the sample W using the optical microscope 16n. For example, the scanning electron microscope SEMn may first measure the state of a desired region in the sample W using the optical microscope 16n. Thereafter, the scanning electron microscope SEMn uses the beam irradiation device 1 to determine the state of the same desired region of the sample W (or the desired region and the desired region) based on the measurement result of the state of the desired region of the sample W using the optical microscope 16n. May be measured in different regions). In this case, a predetermined indicator that can be used for measuring the state of the sample W using the beam irradiation apparatus 1 may be formed in a desired region of the sample W. As an example of the predetermined index object, for example, there is a mark (for example, at least one of a fiducial mark and an alignment mark) used for alignment between the sample W and the beam irradiation apparatus 1.
 或いは、上述したように、試料Wの表面WSuには、微細な凹凸パターンが形成されている。例えば、試料Wが半導体基板である場合には、微細な凹凸パターンの一例として、レジストが塗布された半導体基板が露光装置によって露光され且つ現像装置によって現像された後に半導体基板に残るレジストパターンがあげられる。この場合、例えば、走査型電子顕微鏡SEMnは、まず、光学顕微鏡16nを用いて、試料Wのうちの所望領域に形成された凹凸パターンの状態を計測してもよい。その後、走査型電子顕微鏡SEMnは、光学顕微鏡16nを用いた試料Wの所望領域の状態の計測結果(つまり、所望領域に形成された凹凸パターンの状態の計測結果)に基づいて、ビーム照射装置1を用いて試料Wの同じ所望領域に形成された凹凸パターンの状態を計測してもよい。例えば、走査型電子顕微鏡SEMnは、光学顕微鏡16nの計測結果に基づいて、凹凸パターンの計測に最適な電子ビームEBが照射されるように電子ビームEBの特性を制御した上で、ビーム照射装置1を用いて試料Wの同じ所望領域に形成された凹凸パターンの状態を計測してもよい。 Alternatively, as described above, a fine uneven pattern is formed on the surface WSu of the sample W. For example, when the sample W is a semiconductor substrate, an example of a fine uneven pattern is a resist pattern that remains on a semiconductor substrate after the semiconductor substrate coated with a resist is exposed by an exposure device and developed by a developing device. It is done. In this case, for example, the scanning electron microscope SEMn may first measure the state of the concavo-convex pattern formed in a desired region of the sample W using the optical microscope 16n. Thereafter, the scanning electron microscope SEMn uses the beam microscope 1 based on the measurement result of the state of the desired region of the sample W using the optical microscope 16n (that is, the measurement result of the state of the uneven pattern formed in the desired region). May be used to measure the state of the concavo-convex pattern formed in the same desired region of the sample W. For example, the scanning electron microscope SEMn controls the characteristics of the electron beam EB based on the measurement result of the optical microscope 16n so that the electron beam EB optimal for measurement of the uneven pattern is irradiated, and then the beam irradiation apparatus 1 May be used to measure the state of the concavo-convex pattern formed in the same desired region of the sample W.
 このような第14変形例の走査型電子顕微鏡SEMnであっても、上述した走査型電子顕微鏡SEMが享受することが可能な効果と同様の効果を享受することができる。加えて、第14変形例の走査型電子顕微鏡SEMnは、光学顕微鏡16nを備えていない比較例の走査型電子顕微鏡と比較して、電子ビームEBを用いて試料Wの状態をより適切に計測することができる。 Even with the scanning electron microscope SEMn according to the fourteenth modified example, it is possible to receive the same effects as the effects that the above-described scanning electron microscope SEM can enjoy. In addition, the scanning electron microscope SEMn of the fourteenth modified example more appropriately measures the state of the sample W using the electron beam EB than the scanning electron microscope of the comparative example that does not include the optical microscope 16n. be able to.
 尚、上述した説明では、走査型電子顕微鏡SEMnは、光学顕微鏡16nを用いて試料Wの状態を計測した後に、ビーム照射装置1を用いて試料Wの状態を計測している。しかしながら、走査型電子顕微鏡SEMnは、光学顕微鏡16nを用いた試料Wの状態の計測と、ビーム照射装置1を用いた試料Wの状態の計測とを並行して行ってもよい。例えば、走査型電子顕微鏡SEMnは、試料Wの所望領域の状態を、光学顕微鏡16n及びビーム照射装置1を用いて同時に計測してもよい。この場合には、試料Wの所望領域に真空領域VSPを介して電子ビームEBが照射されるため、ステージ空間SPsは、真空ポンプ54によって減圧される。或いは、走査型電子顕微鏡SEMnは、光学顕微鏡16nを用いた試料Wの第1領域の状態の計測と、ビーム照射装置1を用いた試料Wの第2領域(但し、第2領域は第1領域とは異なる)の状態の計測とを並行して行ってもよい。この場合には、試料Wの所望領域に真空領域VSPを介して電子ビームEBが照射されるため、ステージ空間SPsは、真空ポンプ54によって減圧される。或いは、ステージ空間SPsが複数の分割空間SPsgに区分けされている場合(図15(a)及び図15(b)に示す第7変形例のステージ22g参照)には、光学顕微鏡16nが状態を計測している試料Wの第1領域に対応する分割空間SPsgが真空ポンプ53によって相対的に低い真空度にまで減圧される一方で、ビーム照射装置1が状態を計測している試料Wの第2領域に対応する分割空間SPsgが真空ポンプ54によって相対的に高い真空度にまで減圧されてもよい。 In the above description, the scanning electron microscope SEMn measures the state of the sample W using the beam irradiation apparatus 1 after measuring the state of the sample W using the optical microscope 16n. However, the scanning electron microscope SEMn may perform the measurement of the state of the sample W using the optical microscope 16n and the measurement of the state of the sample W using the beam irradiation apparatus 1 in parallel. For example, the scanning electron microscope SEMn may simultaneously measure the state of the desired region of the sample W using the optical microscope 16n and the beam irradiation apparatus 1. In this case, since the electron beam EB is irradiated to the desired region of the sample W through the vacuum region VSP, the stage space SPs is decompressed by the vacuum pump 54. Alternatively, the scanning electron microscope SEMn measures the state of the first region of the sample W using the optical microscope 16n and the second region of the sample W using the beam irradiation apparatus 1 (however, the second region is the first region). Measurement of the state of (different from) may be performed in parallel. In this case, since the electron beam EB is irradiated to the desired region of the sample W through the vacuum region VSP, the stage space SPs is decompressed by the vacuum pump 54. Alternatively, when the stage space SPs is divided into a plurality of divided spaces SPsg (see the stage 22g of the seventh modification shown in FIGS. 15A and 15B), the optical microscope 16n measures the state. The divided space SPsg corresponding to the first region of the sample W being reduced is decompressed to a relatively low degree of vacuum by the vacuum pump 53, while the second of the sample W whose state is being measured by the beam irradiation apparatus 1 The divided space SPsg corresponding to the region may be decompressed by the vacuum pump 54 to a relatively high degree of vacuum.
 また、走査型電子顕微鏡SEMnは、光学顕微鏡16nに加えて又は代えて、大気圧環境下で試料Wの状態を計測可能な任意の計測装置を備えていてもよい。任意の計測装置の一例として、回折干渉計があげられる。尚、回折干渉計は、例えば、光源光を分岐して計測光及び参照光を生成し、計測光を試料Wに照射して発生する反射光(或いは、透過光又は散乱光)と参照光とが干渉することで発生する干渉パターンを検出して試料Wの状態を計測する計測装置である。尚、任意の計測装置の他の一例として、スキャトロメータが挙げられる。スキャトロメータは、試料Wに計測光を照射して、試料Wからの散乱光(回折光等)を受光して試料Wの状態を計測する計測装置である。 Further, the scanning electron microscope SEMn may include an arbitrary measuring device capable of measuring the state of the sample W under an atmospheric pressure environment in addition to or instead of the optical microscope 16n. An example of an arbitrary measurement device is a diffraction interferometer. The diffraction interferometer, for example, splits light source light to generate measurement light and reference light, and irradiates the measurement light to the sample W to generate reflected light (or transmitted light or scattered light) and reference light. Is a measurement device that detects an interference pattern generated by interference and measures the state of the sample W. In addition, a scatterometer is mentioned as another example of arbitrary measuring devices. The scatterometer is a measuring device that irradiates the sample W with measurement light, receives scattered light (diffracted light or the like) from the sample W, and measures the state of the sample W.
 (3-15)第15変形例
 続いて、第15変形例の走査型電子顕微鏡SEMoについて説明する。第15変形例の走査型電子顕微鏡SEMoは、上述した第1変形例の走査型電子顕微鏡SEMaと比較して、ステージ22aに代えてステージ22oを備えているという点で異なっている。走査型電子顕微鏡SEMoのその他の構造は、上述した走査型電子顕微鏡SEMaのその他の構造と同一であってもよい。このため、以下では、図24を参照しながら、ステージ22oの構造について説明する。
(3-15) Fifteenth Modification Next, a scanning electron microscope SEMo of the fifteenth modification will be described. The scanning electron microscope SEMo of the fifteenth modification differs from the scanning electron microscope SEMa of the first modification described above in that a stage 22o is provided instead of the stage 22a. The other structure of the scanning electron microscope SEMo may be the same as the other structure of the scanning electron microscope SEMa described above. Therefore, the structure of the stage 22o will be described below with reference to FIG.
 図24に示すように、ステージ22oは、上述したステージ22aと比較して、側壁部材222aに代えて側壁部材222oを備えているという点で異なっている。側壁部材222oは、側壁部材222aと同様に、側壁部材222oの上面222Suが支持部材223の上面223Suよりも下方に位置するという点で同じである。一方で、側壁部材222oは、側壁部材222aと比較して、側壁部材222oの外側面(つまり、外周端)222Soよりも外側(つまり、ステージ22oの中心から離れる側)に試料Wの外側面(つまり、外周端)WSoが位置しているという点で異なっている。つまり、側壁部材222oのサイズ(つまり、ステージ22oのサイズ)は、側壁部材222oの外側面2w22Soよりも外側に試料Wの外側面WSoが位置するように設定されている。その結果、図24に示すように、試料Wは、試料Wが側壁部材222oに対してオーバーハングする(つまり、ステージ22oに対してオーバーハングする)ようにステージ22oによって保持される。試料Wは、試料Wが側壁部材222oに対して張り出すようにステージ22oによって保持される。ステージ22oのその他の構造は、上述したステージ22aのその他の構造と同一であってもよい。 As shown in FIG. 24, the stage 22o differs from the stage 22a described above in that a side wall member 222o is provided instead of the side wall member 222a. Similar to the side wall member 222a, the side wall member 222o is the same in that the upper surface 222Su of the side wall member 222o is located below the upper surface 223Su of the support member 223. On the other hand, as compared with the side wall member 222a, the side wall member 222o is located on the outer side (that is, the side away from the center of the stage 22o) of the outer side surface (that is, the outer peripheral end) 222So of the side wall member 222o. That is, the difference is that the outer peripheral edge (WSo) is located. That is, the size of the side wall member 222o (that is, the size of the stage 22o) is set so that the outer side surface WSo of the sample W is positioned outside the outer side surface 2w22So of the side wall member 222o. As a result, as shown in FIG. 24, the sample W is held by the stage 22o so that the sample W overhangs with respect to the side wall member 222o (that is, overhangs with respect to the stage 22o). The sample W is held by the stage 22o so that the sample W projects over the side wall member 222o. The other structure of the stage 22o may be the same as the other structure of the stage 22a described above.
 このようなステージ22oを備える第15変形例の走査型電子顕微鏡SEMoであっても、上述した第1変形例の走査型電子顕微鏡SEMaが享受することが可能な効果と同様の効果を享受することができる。加えて、第15変形例では、試料Wが側壁部材222oに対してオーバーハングすることが許容されるため、ステージ22oは、ステージ22oの外形よりも大きい外形を有する試料Wを保持することができる。つまり、ステージ22oが保持可能な試料Wのサイズに関する制約が緩和される。 Even in the scanning electron microscope SEMo of the fifteenth modified example provided with such a stage 22o, the same effect as that which can be enjoyed by the scanning electron microscope SEMa of the first modified example described above is obtained. Can do. In addition, in the fifteenth modification, since the sample W is allowed to overhang with respect to the side wall member 222o, the stage 22o can hold the sample W having an outer shape larger than the outer shape of the stage 22o. . That is, restrictions on the size of the sample W that can be held by the stage 22o are relaxed.
 (3-16)第16変形例
 続いて、第16変形例の走査型電子顕微鏡SEMpについて説明する。第16変形例の走査型電子顕微鏡SEMpは、上述した第15変形例の走査型電子顕微鏡SEMoと比較して、ステージ22oに代えてステージ22pを備えているという点で異なっている。走査型電子顕微鏡SEMpのその他の構造は、上述した走査型電子顕微鏡SEMoのその他の構造と同一であってもよい。このため、以下では、図25を参照しながら、ステージ22pの構造について説明する。
(3-16) Sixteenth Modification Next, a scanning electron microscope SEMp of the sixteenth modification will be described. The scanning electron microscope SEMp of the sixteenth modification differs from the scanning electron microscope SEMo of the fifteenth modification in that a stage 22p is provided instead of the stage 22o. The other structure of the scanning electron microscope SEMp may be the same as the other structure of the scanning electron microscope SEMo described above. Therefore, hereinafter, the structure of the stage 22p will be described with reference to FIG.
 図25に示すように、ステージ22pは、上述したステージ22oと比較して、底部材221に代えて底部材221pを備えているという点で異なっている。更に、ステージ22pは、上述したステージ22oと比較して、ガード部材224pを備えているという点で異なっている。更に、ステージ22pは、上述したステージ22oと比較して、側壁部材222oの上面222Suに排気口2243pが形成されているという点で異なっている。ステージ22pのその他の構造は、上述したステージ22oのその他の構造と同一であってもよい。 As shown in FIG. 25, the stage 22p is different from the above-described stage 22o in that a bottom member 221p is provided instead of the bottom member 221. Furthermore, the stage 22p is different from the above-described stage 22o in that it includes a guard member 224p. Furthermore, the stage 22p is different from the stage 22o described above in that an exhaust port 2243p is formed on the upper surface 222Su of the side wall member 222o. The other structure of the stage 22p may be the same as the other structure of the stage 22o described above.
 底部材221pは、上述した底部材221と比較して、側壁部材222oよりも外側にまで延びているという点で異なっている。底部材221pのその他の構造は、上述した底部材221のその他の構造と同一であってもよい。 The bottom member 221p is different from the above-described bottom member 221 in that it extends to the outside of the side wall member 222o. The other structure of the bottom member 221p may be the same as the other structure of the bottom member 221 described above.
 ガード部材224pは、底部材221pの上面221Suのうち側壁部材222oよりも外側の領域に形成されている。ガード部材224pは、ステージ22pに保持されている試料Wよりも外側に形成されている。ガード部材224pの上面224Suは、ステージ22pに保持されている試料Wの表面WSuと同じ高さに位置する。つまり、ガード部材224pの上面224Suは、ステージ22pに保持されている試料Wの表面WSuと同じ平面に位置する。ガード部材224pの側面(例えば、内側面)の一部は、試料Wの側面(例えば、外側面)に対向する。この際、ガード部材224pの側面と試料Wの側面とは接触しない。つまり、ガード部材224pの側面と試料Wの側面との間に、空隙が確保されている。ガード部材224pのその他の構造は、上述した第3変形例のガード部材224cのその他の構造と同一であってもよい。 The guard member 224p is formed in a region outside the side wall member 222o on the upper surface 221Su of the bottom member 221p. The guard member 224p is formed outside the sample W held on the stage 22p. The upper surface 224Su of the guard member 224p is positioned at the same height as the surface WSu of the sample W held on the stage 22p. That is, the upper surface 224Su of the guard member 224p is positioned on the same plane as the surface WSu of the sample W held on the stage 22p. A part of the side surface (for example, the inner surface) of the guard member 224p faces the side surface (for example, the outer surface) of the sample W. At this time, the side surface of the guard member 224p does not contact the side surface of the sample W. That is, a gap is secured between the side surface of the guard member 224p and the side surface of the sample W. The other structure of the guard member 224p may be the same as the other structure of the guard member 224c of the third modification described above.
 排気口2243pは、側壁部材222oの上面222Suのうち試料Wの裏面WSlと対向する部分に形成されている。この際、排気口2243pは、側壁部材222oの上面222Suのうち試料Wの裏面WSlと対向する部分の最外周に形成されていてもよい。排気口2243pは、側壁部材222oの上面222Suにおいて連続的に分布するように環状の分布パターンで形成されていてもよい。排気口2243pは、側壁部材222oの上面222Suにおいて規則的な(或いは、ランダムな)配列パターンで配列するように、複数形成されていてもよい。但し、排気口2243pは、任意の配列パターン又は分布パターンで形成されていてもよい。排気口2243pには、配管2253pを介して真空ポンプ54が連結されている。真空ポンプ54は、試料Wと側壁部材222oの上面222Suとの間の外縁空間SPg1を排気して減圧可能である。つまり、第16変形例では、第2変形例と同様に、外縁空間SPg1は、真空ポンプ54によって、ステージ空間SPsを介して間接的に減圧されることに加えて又は代えて、ステージ空間SPsを介することなく直接的に減圧される。排気口2243pのその他の構造は、上述した第2変形例において側壁部材222aに形成される排気口2243bのその他の構造と同一であってもよい。 The exhaust port 2243p is formed in a portion of the upper surface 222Su of the side wall member 222o that faces the rear surface WSl of the sample W. At this time, the exhaust port 2243p may be formed on the outermost periphery of the portion of the upper surface 222Su of the side wall member 222o that faces the back surface WSl of the sample W. The exhaust ports 2243p may be formed in an annular distribution pattern so as to be continuously distributed on the upper surface 222Su of the side wall member 222o. A plurality of exhaust ports 2243p may be formed so as to be arranged in a regular (or random) arrangement pattern on the upper surface 222Su of the side wall member 222o. However, the exhaust port 2243p may be formed in an arbitrary arrangement pattern or distribution pattern. A vacuum pump 54 is connected to the exhaust port 2243p via a pipe 2253p. The vacuum pump 54 can evacuate the outer edge space SPg1 between the sample W and the upper surface 222Su of the side wall member 222o. That is, in the sixteenth modified example, as in the second modified example, the outer edge space SPg1 is reduced in pressure by the vacuum pump 54 indirectly through the stage space SPs, or instead of the stage space SPs. The pressure is reduced directly without intervention. The other structure of the exhaust port 2243p may be the same as the other structure of the exhaust port 2243b formed in the side wall member 222a in the second modification described above.
 このようなステージ22pを備える第16変形例の走査型電子顕微鏡SEMpであっても、上述した第15変形例の走査型電子顕微鏡SEMoが享受することが可能な効果と同様の効果を享受することができる。更に、第16変形例の走査型電子顕微鏡SEMpは、ガード部材224pを備えているため、上述した第3変形例の走査型電子顕微鏡SEMcと同様に、試料Wの外縁部分W_edgeに真空領域VSPを適切に形成することができる。更に、第16変形例では、側壁部材222oの上面222Suに排気口2243pが形成されるため、第2変形例と同様に、試料Wの変形(特に、試料Wの外縁部分W_edgeの変形)が適切に抑制される。 Even in the scanning electron microscope SEMp according to the sixteenth modified example having such a stage 22p, the same effects as those that can be enjoyed by the scanning electron microscope SEMo according to the fifteenth modified example are obtained. Can do. Further, since the scanning electron microscope SEMp of the sixteenth modified example includes the guard member 224p, the vacuum region VSP is formed in the outer edge portion W_edge of the sample W in the same manner as the scanning electron microscope SEMc of the third modified example described above. It can be formed appropriately. Further, in the sixteenth modified example, the exhaust port 2243p is formed on the upper surface 222Su of the side wall member 222o, so that the deformation of the sample W (particularly, the deformation of the outer edge portion W_edge of the sample W) is appropriate as in the second modified example. To be suppressed.
 尚、ガード部材224pの上面224Suは、ステージ22pに保持されている試料Wの表面WSuと同じ高さに位置していなくてもよい。例えば、ガード部材224pの上面224Suは、ステージ22pに保持されている試料Wの表面WSuよりも上方に位置していてもよい。ガード部材224pの上面224Suは、ステージ22pに保持されている試料Wの表面WSuよりも下方に位置していてもよい。ガード部材224pの側面と試料Wの側面とが接触していてもよい。ガード部材224pは、底部材221pと一体化されていてもよい。或いは、ガード部材224pは、底部材221pと一体化されていなくてもよい。例えば、ガード部材224pは、底部材221pから脱着可能な部材であってもよい。排気口2243pは、側壁部材222o以外の部材に形成されていてもよい。排気口2243pは、外縁空間SPg1に面する部材に形成されていてもよい。 Note that the upper surface 224Su of the guard member 224p does not have to be positioned at the same height as the surface WSu of the sample W held on the stage 22p. For example, the upper surface 224Su of the guard member 224p may be positioned above the surface WSu of the sample W held on the stage 22p. The upper surface 224Su of the guard member 224p may be positioned below the surface WSu of the sample W held on the stage 22p. The side surface of the guard member 224p and the side surface of the sample W may be in contact with each other. The guard member 224p may be integrated with the bottom member 221p. Alternatively, the guard member 224p may not be integrated with the bottom member 221p. For example, the guard member 224p may be a member that can be detached from the bottom member 221p. The exhaust port 2243p may be formed in a member other than the side wall member 222o. The exhaust port 2243p may be formed in a member facing the outer edge space SPg1.
 (3-17)第17変形例
 続いて、第17変形例の走査型電子顕微鏡SEMqについて説明する。第17変形例の走査型電子顕微鏡SEMqは、上述した第9変形例の走査型電子顕微鏡SEMiと比較して、ステージ22iに代えてステージ22qを備えているという点で異なっている。走査型電子顕微鏡SEMqのその他の構造は、上述した走査型電子顕微鏡SEMiのその他の構造と同一であってもよい。このため、以下では、図26を参照しながら、ステージ22qの構造について説明する。
(3-17) Following seventeenth modified example will be described scanning electron microscope SEMq seventeenth modification. The scanning electron microscope SEMq of the seventeenth modified example is different from the above-described scanning electron microscope SEMq of the ninth modified example in that a stage 22q is provided instead of the stage 22i. The other structure of the scanning electron microscope SEMq may be the same as the other structure of the scanning electron microscope SEMi described above. Therefore, hereinafter, the structure of the stage 22q will be described with reference to FIG.
 図26に示すように、ステージ22qは、ステージ22iと同様に、複数の静電チャック225iを備えている。一方で、ステージ22qは、ステージ22iと比較して、複数の静電チャック225i(特に、静電チャック225iを構成する電極)がステージ空間SPs内に配置されているという点で異なっている。更に、ステージ22qは、ステージ22iと比較して、底部材221に排気口2246qが形成され、排気口2246qに配管2256qが連結されているという点で異なっている。ステージ22qのその他の構造は、ステージ22iのその他の構造と同一であってもよい。 As shown in FIG. 26, the stage 22q includes a plurality of electrostatic chucks 225i in the same manner as the stage 22i. On the other hand, the stage 22q is different from the stage 22i in that a plurality of electrostatic chucks 225i (particularly, electrodes constituting the electrostatic chuck 225i) are arranged in the stage space SPs. Furthermore, the stage 22q is different from the stage 22i in that an exhaust port 2246q is formed in the bottom member 221 and a pipe 2256q is connected to the exhaust port 2246q. The other structure of the stage 22q may be the same as the other structure of the stage 22i.
 第17変形例では、第9変形例と同様に、複数の静電チャック225iのうち、真空領域VSPが形成されている特定部分W_vacに対応する少なくとも一つの静電チャック225iが、試料Wの変形を抑制するための相対的に大きな静電力F_elec_Lを発生する一方で、複数の静電チャック225iのうち、特定部分W_vacに対応していない少なくとも一つの静電チャック225iが、試料Wを保持するための相対的に小さな静電力F_elec_Sを発生する。その結果、第17変形例の走査型電子顕微鏡SEMqは、第9変形例の走査型電子顕微鏡SEMiが享受可能な効果と同様の効果を享受することができる。 In the seventeenth modified example, as in the ninth modified example, at least one electrostatic chuck 225i corresponding to the specific portion W_vac where the vacuum region VSP is formed among the plurality of electrostatic chucks 225i is deformed of the sample W. In order to generate a relatively large electrostatic force F_elec_L for suppressing the above, at least one electrostatic chuck 225i that does not correspond to the specific portion W_vac among the plurality of electrostatic chucks 225i holds the sample W. Of relatively small electrostatic force F_elec_S. As a result, the scanning electron microscope SEMq of the seventeenth modification can enjoy the same effects as those that can be enjoyed by the scanning electron microscope SEMi of the ninth modification.
 第17変形例では特に、真空領域VSPが形成されている期間中は、真空ポンプ53及び54の少なくとも一方(或いは、ポンプ系5が備えるその他の真空ポンプ)は、排気口2246q及び配管2256qを介してステージ空間SPsを排気して減圧する。つまり、ステージ空間SPsは、大気圧よりも圧力が低い真空空間となる。このため、複数の静電チャック225iは、真空空間であるステージ空間SPsに配置される。その結果、複数の静電チャック225iが大気圧環境に配置されている場合と比較して、複数の静電チャック225iの意図せぬ放電が防止可能となる。 Particularly in the seventeenth modification, during the period in which the vacuum region VSP is formed, at least one of the vacuum pumps 53 and 54 (or another vacuum pump included in the pump system 5) is connected via the exhaust port 2246q and the pipe 2256q. The stage space SPs is evacuated and decompressed. That is, the stage space SPs is a vacuum space whose pressure is lower than the atmospheric pressure. Therefore, the plurality of electrostatic chucks 225i are arranged in the stage space SPs that is a vacuum space. As a result, it is possible to prevent unintended discharge of the plurality of electrostatic chucks 225i as compared to the case where the plurality of electrostatic chucks 225i are arranged in an atmospheric pressure environment.
 尚、上述した第6変形例では、ステージ22fが複数の静電チャック225iに代えて単一の静電チャック225fを備えているが、この場合においても、静電チャック225fが真空空間であるステージ空間SPsに配置されてもよい。その結果、静電チャック225fの意図せぬ放電が防止可能となる。また、上述した第11変形例においても、真空ポンプ53によって減圧されるステージ区間SPsに静電チャック225kが配置されているため、静電チャック225fの意図せぬ放電が防止可能となる。 In the above-described sixth modification, the stage 22f includes a single electrostatic chuck 225f instead of the plurality of electrostatic chucks 225i. However, in this case as well, the stage where the electrostatic chuck 225f is a vacuum space. It may be arranged in the space SPs. As a result, unintended discharge of the electrostatic chuck 225f can be prevented. Also in the eleventh modification described above, since the electrostatic chuck 225k is disposed in the stage section SPs decompressed by the vacuum pump 53, unintentional discharge of the electrostatic chuck 225f can be prevented.
 複数の静電チャック225iは、ステージ空間SPsとは異なる真空空間に配置されていてもよい。例えば、複数の静電チャック225iは、ステージ空間SPsとは別個にステージ22qの内部に確保され且つ真空ポンプによって減圧可能(つまり、真空空間にすることが可能な)空間に配置されていてもよい。 The plurality of electrostatic chucks 225i may be arranged in a vacuum space different from the stage space SPs. For example, the plurality of electrostatic chucks 225i may be arranged in a space that is secured inside the stage 22q separately from the stage space SPs and can be depressurized (that is, can be made a vacuum space) by a vacuum pump. .
 また、複数の静電チャック225iは、試料Wの下面WSlと接触するように設けられていてもよい。また、複数の静電チャック225iは、ステージ22qの支持部材223における試料Wの下面WSlと接触する部位にそれぞれ設けられていてもよい。 Further, the plurality of electrostatic chucks 225i may be provided so as to be in contact with the lower surface WSl of the sample W. In addition, the plurality of electrostatic chucks 225i may be provided at portions of the support member 223 of the stage 22q that are in contact with the lower surface WSl of the sample W, respectively.
 (3-18)第18変形例
 続いて、第18変形例の走査型電子顕微鏡SEMrについて説明する。第18変形例の走査型電子顕微鏡SEMrは、上述した第17変形例の走査型電子顕微鏡SEMqと比較して、ステージ22qに代えてステージ22rを備えているという点で異なっている。更に、第18変形例の走査型電子顕微鏡SEMrは、上述した第17変形例の走査型電子顕微鏡SEMqと比較して、気体供給装置55rを備えているという点で異なっている。走査型電子顕微鏡SEMrのその他の構造は、上述した走査型電子顕微鏡SEMqのその他の構造と同一であってもよい。このため、以下では、図27を参照しながら、ステージ22rの構造について説明する。
(3-18) Eighteenth Modification Subsequently, a scanning electron microscope SEMr of the eighteenth modification will be described. The scanning electron microscope SEMr of the eighteenth modified example is different from the above-described scanning electron microscope SEMq of the seventeenth modified example in that a stage 22r is provided instead of the stage 22q. Furthermore, the scanning electron microscope SEMr of the eighteenth modification is different from the above-described scanning electron microscope SEMq of the seventeenth modification in that a gas supply device 55r is provided. The other structure of the scanning electron microscope SEMr may be the same as the other structure of the scanning electron microscope SEMq described above. Therefore, the structure of the stage 22r will be described below with reference to FIG.
 図27に示すように、ステージ22rは、ステージ22qと同様に、ステージ空間SPsに配置された複数の静電チャック225iを備えている。一方で、ステージ22rは、ステージ22qと比較して、底部材221に給気口2247rが形成され、給気口2247rに配管2257rが連結されているという点で異なっている。ステージ22rのその他の構造は、ステージ22iのその他の構造と同一であってもよい。 As shown in FIG. 27, the stage 22r includes a plurality of electrostatic chucks 225i arranged in the stage space SPs, like the stage 22q. On the other hand, the stage 22r is different from the stage 22q in that an air supply port 2247r is formed in the bottom member 221 and a pipe 2257r is connected to the air supply port 2247r. Other structures of the stage 22r may be the same as other structures of the stage 22i.
 第18変形例では、給気口2247rには、配管2257rを介して、気体供給装置55rが連結されている。気体供給装置55rは、給気口2247r及び配管2257rを介して、ステージ空間SPsに気体を供給可能である。気体は、少なくとも湿度が所定湿度よりも低い値となる空気である。所定湿度は、複数の静電チャック225iの意図せぬ放電を防止可能な湿度である。つまり、所定湿度は、静電チャック2225iを構成する電極に電圧が印加された場合において、当該電極からの放電を防止可能な湿度である。このような気体の一例として、CDA(Clean Dry Air:クリーンドライエアー)があげられる。或いは、気体は、少なくとも湿度が所定湿度よりも低い値となる空気以外の気体(例えば、不活性ガス)であってもよい。不活性ガスの一例として、窒素ガス及びアルゴンガスの少なくとも一方があげられる。 In the eighteenth modification, a gas supply device 55r is connected to the air supply port 2247r through a pipe 2257r. The gas supply device 55r can supply gas to the stage space SPs via the air supply port 2247r and the pipe 2257r. The gas is air whose humidity is lower than the predetermined humidity. The predetermined humidity is humidity that can prevent unintended discharge of the plurality of electrostatic chucks 225i. That is, the predetermined humidity is a humidity that can prevent discharge from the electrode when a voltage is applied to the electrode constituting the electrostatic chuck 2225i. An example of such a gas is CDA (Clean Dry Air). Alternatively, the gas may be a gas other than air (for example, an inert gas) whose humidity is lower than the predetermined humidity. An example of the inert gas is at least one of nitrogen gas and argon gas.
 その結果、ステージ空間SPsは、複数の静電チャック225iの意図せぬ放電を防止することができる程度に湿度が低い空間となる。このため、複数の静電チャック225iは、複数の静電チャック225iの意図せぬ放電を防止することができる程度に湿度が低い空間であるステージ空間SPsに配置される。その結果、複数の静電チャック225iが大気圧環境(特に、複数の静電チャック225iの意図せぬ放電を防止することができる程度に湿度が低くなっていない空間)に配置されている場合と比較して、複数の静電チャック225iの意図せぬ放電が防止可能となる。 As a result, the stage space SPs is a space having a low humidity enough to prevent unintended discharge of the plurality of electrostatic chucks 225i. For this reason, the plurality of electrostatic chucks 225i are arranged in the stage space SPs, which is a space where the humidity is low enough to prevent unintended discharge of the plurality of electrostatic chucks 225i. As a result, a plurality of electrostatic chucks 225i are arranged in an atmospheric pressure environment (particularly, a space where the humidity is not low enough to prevent unintended discharge of the plurality of electrostatic chucks 225i). In comparison, unintentional discharge of the plurality of electrostatic chucks 225i can be prevented.
 尚、上述した第6変形例では、ステージ22fが複数の静電チャック225iに代えて単一の静電チャック225fを備えているが、この場合においても、静電チャック225fが、複数の静電チャック225iの意図せぬ放電を防止することができる程度に湿度が低い空間であるステージ空間SPsに配置されてもよい。その結果、静電チャック225fの意図せぬ放電が防止可能となる。 In the above-described sixth modification, the stage 22f includes a single electrostatic chuck 225f instead of the plurality of electrostatic chucks 225i. However, in this case, the electrostatic chuck 225f also includes a plurality of electrostatic chucks 225f. The chuck 225i may be disposed in the stage space SPs, which is a space having a low humidity to the extent that unintentional discharge can be prevented. As a result, unintended discharge of the electrostatic chuck 225f can be prevented.
 複数の静電チャック225fは、ステージ空間SPsとは異なり且つ複数の静電チャック225iの意図せぬ放電を防止することができる程度に湿度が低い空間に配置されていてもよい。例えば、複数の静電チャック225fは、ステージ空間SPsとは別個にステージ22rの内部に確保され且つ複数の静電チャック225iの意図せぬ放電を防止することができる程度に湿度が低い空間に配置されていてもよい。 The plurality of electrostatic chucks 225f may be arranged in a space where the humidity is low enough to prevent unintentional discharge of the plurality of electrostatic chucks 225i, unlike the stage space SPs. For example, the plurality of electrostatic chucks 225f are secured in the stage 22r separately from the stage space SPs and are disposed in a space where the humidity is low enough to prevent unintended discharge of the plurality of electrostatic chucks 225i. May be.
 尚、第18変形例においても、複数の静電チャック225iは、試料Wの下面WSlと接触するように設けられていてもよい。また、複数の静電チャック225iは、ステージ22rの支持部材223における試料Wの下面WSlと接触する部位にそれぞれ設けられていてもよい。 In the eighteenth modified example, the plurality of electrostatic chucks 225i may be provided so as to be in contact with the lower surface WSl of the sample W. In addition, the plurality of electrostatic chucks 225i may be provided at portions of the support member 223 of the stage 22r that are in contact with the lower surface WSl of the sample W.
 (3-19)第19変形例
 続いて、図28を参照しながら、第19変形例の走査型電子顕微鏡SEMsについて説明する。図28は、第19変形例の走査型電子顕微鏡SEMsの構造を示す断面図である。
(3-19) Nineteenth Modification Next, a scanning electron microscope SEMs according to a nineteenth modification will be described with reference to FIG. FIG. 28 is a cross-sectional view showing the structure of a scanning electron microscope SEMs of the nineteenth modification.
 図28に示すように、第19変形例の走査型電子顕微鏡SEMsは、上述した走査型電子顕微鏡SEMと比較して、チャンバ181sと、空調機182sとを備えているという点で異なる。走査型電子顕微鏡SEMsのその他の構造は、上述した走査型電子顕微鏡SEMのその他の構造と同一であってもよい。 As shown in FIG. 28, the scanning electron microscope SEMs of the nineteenth modified example is different from the above-described scanning electron microscope SEM in that it includes a chamber 181s and an air conditioner 182s. The other structure of the scanning electron microscope SEMs may be the same as the other structure of the scanning electron microscope SEM described above.
 チャンバ181sは、少なくともビーム照射装置1と、ステージ装置2と、支持フレーム3とを収容する。但し、チャンバ181sは、ビーム照射装置1、ステージ装置2及び支持フレーム3の少なくとも一部を収容していなくてもよい。チャンバ181sは、走査型電子顕微鏡SEMsが備えるその他の構成要件(例えば、位置計測装置15、制御装置4及びポンプ系5の少なくとも一部)を収容していてもよい。 The chamber 181s accommodates at least the beam irradiation device 1, the stage device 2, and the support frame 3. However, the chamber 181s may not accommodate at least a part of the beam irradiation device 1, the stage device 2, and the support frame 3. The chamber 181s may accommodate other constituent elements (for example, at least a part of the position measurement device 15, the control device 4, and the pump system 5) included in the scanning electron microscope SEMs.
 チャンバ181sの外部の空間は、例えば、大気圧空間である。チャンバ181sの内部の空間(つまり、少なくともビーム照射装置1と、ステージ装置2と、支持フレーム3とを収容する空間)もまた、例えば、大気圧空間である。この場合、少なくともビーム照射装置1と、ステージ装置2と、支持フレーム3とは、大気圧空間に配置される。但し、上述したように、チャンバ181sの内部の大気圧空間内に、ビーム照射装置1が局所的な真空領域VSPを形成する。 The space outside the chamber 181s is, for example, an atmospheric pressure space. The space inside the chamber 181s (that is, the space that accommodates at least the beam irradiation device 1, the stage device 2, and the support frame 3) is also an atmospheric pressure space, for example. In this case, at least the beam irradiation device 1, the stage device 2, and the support frame 3 are disposed in the atmospheric pressure space. However, as described above, the beam irradiation apparatus 1 forms a local vacuum region VSP in the atmospheric pressure space inside the chamber 181s.
 空調機182sは、チャンバ181sの内部の空間に気体(例えば、上述した不活性ガス及びクリーンドライエアーの少なくとも一方)を供給可能である。空調機182sは、チャンバ181sの内部の空間から気体を回収可能である。空調機182sがチャンバ181sの内部の空間から気体を回収することで、チャンバ181sの内部の空間の清浄度が良好に保たれる。この際、空調機182sは、チャンバ181sの内部の空間に供給する気体の温度及び湿度の少なくとも一方を制御することで、チャンバ181sの内部の空間の温度及び湿度の少なくとも一方を制御可能である。 The air conditioner 182s can supply gas (for example, at least one of the above-described inert gas and clean dry air) to the space inside the chamber 181s. The air conditioner 182s can recover the gas from the space inside the chamber 181s. The air conditioner 182s collects gas from the space inside the chamber 181s, so that the cleanliness of the space inside the chamber 181s is kept good. At this time, the air conditioner 182s can control at least one of the temperature and the humidity of the space inside the chamber 181s by controlling at least one of the temperature and the humidity of the gas supplied to the space inside the chamber 181s.
 このような第19変形例の走査型電子顕微鏡SEMsは、走査型電子顕微鏡SEMが享受可能な効果と同様の効果を享受することができる。 Such a scanning electron microscope SEMs of the nineteenth modified example can enjoy the same effects as the effects that the scanning electron microscope SEM can enjoy.
 尚、上述した走査型電子顕微鏡SEMsの説明では、走査型電子顕微鏡SEMがチャンバ181m及び空調機182mを備えていることになっている。しかしながら第1変形例の走査型電子顕微鏡SEMaから第18変形例の走査型電子顕微鏡SEMrのそれぞれがチャンバ181s及び空調機182sを備えていてもよい。 In the description of the scanning electron microscope SEMs described above, the scanning electron microscope SEM is provided with a chamber 181m and an air conditioner 182m. However, each of the scanning electron microscope SEMr of the first modification to the scanning electron microscope SEMr of the eighteenth modification may include the chamber 181s and the air conditioner 182s.
 (3-20)第20変形例
 上述した説明では、試料Wは、真空領域VSPが試料Wの表面WSuのうちの一部しか覆うことができない程度に大きいサイズを有している。一方で、第20変形例では、第20変形例においてステージ22が試料Wを保持する様子を示す断面図である図29に示すように、試料Wは、真空領域VSPが試料Wの表面WSuの全体を覆うことができる程度に小さいサイズを有していてもよい。或いは、試料Wは、真空領域VSPに含まれるビーム通過空間SPb3が試料Wの表面WSuの全体を覆うことができる程度に小さいサイズを有していてもよい。この場合、図29に示すように、差動排気系12が形成する真空領域VSPは、試料Wの表面WSuを覆う及び/又は試料Wの表面WSuに面する(つまり、接する)ことに加えて、ステージ22の表面(例えば、ステージ22の表面のうち試料Wを保持する保持面HSとは異なる外周面OS)の少なくとも一部を覆っていてもよい及び/又はステージ22の表面(例えば、外周面OS)の少なくとも一部に面していてもよい。外周面OSは、典型的には、保持面HSの周囲に位置する面を含む。尚、図29は、説明の便宜上、走査型電子顕微鏡SEMが、第20変形例で説明しているサイズが小さい試料Wに電子ビームEBを照射する例を示しているが、第1変形例の走査型電子顕微鏡SEMaから第19変形例の走査型電子顕微鏡SEMsのそれぞれもまた、第20変形例で説明しているサイズが小さい試料Wに電子ビームEBを照射してもよいことはいうまでもない。
(3-20) Twentieth Modification In the above description, the sample W has such a large size that the vacuum region VSP can cover only a part of the surface WSu of the sample W. On the other hand, in the twentieth modified example, as shown in FIG. 29 which is a cross-sectional view showing the stage 22 holding the sample W in the twentieth modified example, the sample W has a vacuum region VSP of the surface WSu of the sample W. You may have a size small enough to cover the whole. Alternatively, the sample W may have such a small size that the beam passing space SPb3 included in the vacuum region VSP can cover the entire surface WSu of the sample W. In this case, as shown in FIG. 29, the vacuum region VSP formed by the differential pumping system 12 covers the surface WSu of the sample W and / or faces (ie, contacts) the surface WSu of the sample W. , May cover at least part of the surface of the stage 22 (for example, the outer peripheral surface OS different from the holding surface HS that holds the sample W among the surfaces of the stage 22) and / or the surface of the stage 22 (for example, outer periphery) May face at least part of the surface OS). The outer peripheral surface OS typically includes a surface located around the holding surface HS. FIG. 29 shows an example in which the scanning electron microscope SEM irradiates the electron beam EB to the sample W having a small size described in the twentieth modification for convenience of explanation. It goes without saying that each of the scanning electron microscope SEMs from the scanning electron microscope SEMa to the nineteenth modified example may also irradiate the sample W having a small size described in the twentieth modified example with the electron beam EB. Absent.
 第20変形例では、走査型電子顕微鏡SEMは、ビーム射出装置1の射出面121LSと試料Wの表面WSuとの間の間隔Dが所望間隔D_targetとなることに代えて、射出面121LSとステージ22の表面(例えば、外周面OS)との間の間隔Do1が所望間隔D_targetとなるように、間隔調整系14及びステージ駆動系23の少なくとも一方を制御してもよい。また、ステージ22は、上述した変形抑制動作を行うための構造を有していてもよい。尚、図面の簡略化のために図29ではステージ22の構造が簡略化されているが、ステージ22は、上述した変形抑制動作を行うための構造を有していてもよい。 In the twentieth modification, the scanning electron microscope SEM is configured such that the interval D between the emission surface 121LS of the beam emission apparatus 1 and the surface WSu of the sample W becomes the desired interval D_target, and the emission surface 121LS and the stage 22 are used. At least one of the interval adjustment system 14 and the stage drive system 23 may be controlled so that the interval Do1 between the surface and the surface (for example, the outer peripheral surface OS) becomes the desired interval D_target. The stage 22 may have a structure for performing the above-described deformation suppressing operation. 29, the structure of the stage 22 is simplified in FIG. 29, but the stage 22 may have a structure for performing the above-described deformation suppressing operation.
 (3-21)第21変形例
 上述した第20変形例では、ステージ22の保持面HSとステージ22の外周面OSとが同じ高さに位置していた。一方で、第21変形例では、第21変形例においてステージ22が試料Wを保持する様子を示す断面図である図30に示すように、保持面HSと外周面OSとが異なる高さ(つまり、Z軸方向において異なる位置)に位置していてもよい。図30は、保持面HSが外周面OSよりも低い位置に位置する例を示しているが、保持面HSが外周面OSよりも高い位置に位置していてもよい。保持面HSが外周面OSよりも低い位置に位置する場合には、ステージ22には、実質的には、試料Wが収容される収容空間(つまり、試料Wを収容できるように窪んだ空間)が形成されていると言える。また、図30は、外周面OSが試料Wの表面WSuよりも高い位置に位置する例を示しているが、外周面OSが表面WSuよりも低い位置に位置していてもよいし、外周面OSが表面WSuと同じ高さに位置していてもよい。尚、図30は、説明の便宜上、走査型電子顕微鏡SEMが、第20変形例で説明した外周面OSとは高さが異なる保持面HSに保持された試料Wに電子ビームEBを照射する例を示しているが、第1変形例の走査型電子顕微鏡SEMaから第19変形例の走査型電子顕微鏡SEMsのそれぞれもまた、第21変形例で説明した外周面OSとは高さが異なる保持面HSに保持された試料Wに電子ビームEBを照射してもよいことはいうまでもない。
(3-21) 21st Modification In the 20th modification described above, the holding surface HS of the stage 22 and the outer peripheral surface OS of the stage 22 are located at the same height. On the other hand, in the twenty-first modification, as shown in FIG. 30, which is a cross-sectional view showing the stage 22 holding the sample W in the twenty-first modification, the holding surface HS and the outer peripheral surface OS have different heights (that is, , Different positions in the Z-axis direction). FIG. 30 shows an example in which the holding surface HS is positioned at a position lower than the outer peripheral surface OS, but the holding surface HS may be positioned at a position higher than the outer peripheral surface OS. When the holding surface HS is located at a position lower than the outer peripheral surface OS, the stage 22 is substantially a storage space in which the sample W is stored (that is, a space that is recessed so that the sample W can be stored). It can be said that is formed. FIG. 30 shows an example in which the outer peripheral surface OS is located at a position higher than the surface WSu of the sample W. However, the outer peripheral surface OS may be located at a position lower than the surface WSu. The OS may be located at the same height as the surface WSu. 30 shows an example in which the scanning electron microscope SEM irradiates the electron beam EB to the sample W held on the holding surface HS having a height different from that of the outer peripheral surface OS described in the twentieth modification for convenience of explanation. However, each of the scanning electron microscope SEMa of the first modification to the scanning electron microscope SEMs of the nineteenth modification also has a holding surface whose height is different from that of the outer peripheral surface OS described in the twenty-first modification. Needless to say, the sample W held in the HS may be irradiated with the electron beam EB.
 第21変形例では、第20変形例と同様に、試料Wは、真空領域VSPが試料Wの表面WSuの全体を覆うことができる程度に小さいサイズを有していてもよい。この場合、第20変形例と同様に、差動排気系12が形成する真空領域VSPは、試料Wの表面WSuを覆う及び/又は試料Wの表面WSuに面することに加えて、ステージ22の表面(例えば、外周面OS)の少なくとも一部を覆っていてもよい及び/又はステージ22の表面(例えば、外周面OS)の少なくとも一部に面していてもよい。或いは、試料Wは、真空領域VSPが試料Wの表面WSuのうちの一部しか覆うことができない程度に大きいサイズを有していてもよい。この場合、差動排気系12が形成する真空領域VSPは、試料Wの表面WSuの一部を覆う及び/又は試料Wの表面WSuの一部に面する一方で、ステージ22の表面(例えば、外周面OS)の少なくとも一部を覆っていなくてもよい及び/又はステージ22の表面(例えば、外周面OS)の少なくとも一部に面していなくてもよい。 In the twenty-first modification, similarly to the twentieth modification, the sample W may have a size small enough to allow the vacuum region VSP to cover the entire surface WSu of the sample W. In this case, as in the twentieth modification, the vacuum region VSP formed by the differential exhaust system 12 covers the surface WSu of the sample W and / or faces the surface WSu of the sample W, in addition to the stage 22 It may cover at least part of the surface (for example, outer peripheral surface OS) and / or face at least part of the surface (for example, outer peripheral surface OS) of the stage 22. Alternatively, the sample W may have such a large size that the vacuum region VSP can cover only a part of the surface WSu of the sample W. In this case, the vacuum region VSP formed by the differential exhaust system 12 covers a part of the surface WSu of the sample W and / or faces a part of the surface WSu of the sample W, while the surface of the stage 22 (for example, The outer peripheral surface OS) may not cover at least a portion and / or may not face at least a portion of the surface of the stage 22 (for example, the outer peripheral surface OS).
 第21変形例においても、第20変形例と同様に、走査型電子顕微鏡SEMは、射出面121LSと表面WSuとの間の間隔Dが所望間隔D_targetとなることに代えて、射出面121LSとステージ22の表面(例えば、外周面OS)との間の間隔Do1が所望間隔D_targetとなるように、間隔調整系14及びステージ駆動系23の少なくとも一方を制御してもよい。尚、図面の簡略化のために図30ではステージ22の構造が簡略化されているが、ステージ22は、上述した変形抑制動作を行うための構造を有していてもよい。 Also in the twenty-first modification, similarly to the twentieth modification, the scanning electron microscope SEM is configured such that the interval D between the emission surface 121LS and the surface WSu becomes the desired interval D_target, and the stage 121LS and the stage At least one of the interval adjustment system 14 and the stage drive system 23 may be controlled such that the interval Do1 between the surface 22 (for example, the outer peripheral surface OS) becomes the desired interval D_target. For simplification of the drawing, the structure of the stage 22 is simplified in FIG. 30, but the stage 22 may have a structure for performing the above-described deformation suppressing operation.
 (3-22)第22変形例
 第22変形例では、第22変形例においてステージ22が試料Wを保持する様子を示す断面図である図31に示すように、試料Wは、カバー部材25によって覆われていてもよい。つまり、試料Wとビーム照射装置1(特に、射出面121LS)との間にカバー部材25が配置されている状態で、電子ビームEBが試料Wに照射されてもよい。この際、カバー部材25に貫通孔が形成されていてもよく、電子ビームEBは、カバー部材25の貫通孔を介して試料Wに照射されてもよい。カバー部材25は、試料Wの表面WSuに接するように又は表面WSuとの間に間隙を確保するように試料Wの上方に配置されていてもよい。この場合、差動排気系12は、試料Wの表面WSuの少なくとも一部を覆う真空領域VSPに代えて、カバー部材25の表面25sの少なくとも一部を覆う真空領域VSPを形成してもよい。差動排気系12は、試料Wの表面WSuに接する真空領域VSPに代えて、カバー部材25の表面25sに接する真空領域VSPを形成してもよい。尚、図31は、説明の便宜上、走査型電子顕微鏡SEMが、第22変形例で説明したカバー部材25で覆われた試料Wに電子ビームEBを照射する例を示しているが、第1変形例の走査型電子顕微鏡SEMaから第19変形例の走査型電子顕微鏡SEMsのそれぞれもまた、第22変形例で説明したカバー部材25で覆われた試料Wに電子ビームEBを照射してもよいことはいうまでもない。
(3-22) Twenty-second Modification In the twenty-second modification, as shown in FIG. 31 which is a cross-sectional view showing the stage 22 holding the sample W in the twenty-second modification, the sample W is It may be covered. That is, the sample W may be irradiated with the electron beam EB in a state where the cover member 25 is disposed between the sample W and the beam irradiation apparatus 1 (particularly, the emission surface 121LS). At this time, a through hole may be formed in the cover member 25, and the sample W may be irradiated with the electron beam EB through the through hole of the cover member 25. The cover member 25 may be disposed above the sample W so as to be in contact with the surface WSu of the sample W or to ensure a gap with the surface WSu. In this case, the differential exhaust system 12 may form a vacuum region VSP that covers at least a part of the surface 25s of the cover member 25 instead of the vacuum region VSP that covers at least a part of the surface WSu of the sample W. The differential exhaust system 12 may form a vacuum region VSP in contact with the surface 25s of the cover member 25 instead of the vacuum region VSP in contact with the surface WSu of the sample W. FIG. 31 shows an example in which the scanning electron microscope SEM irradiates the electron beam EB to the sample W covered with the cover member 25 described in the twenty-second modification for convenience of explanation. Each of the scanning electron microscope SEMs from the scanning electron microscope SEMa to the nineteenth modified example may also irradiate the sample W covered with the cover member 25 described in the twenty-second modified example with the electron beam EB. Needless to say.
 カバー部材25の表面25sは、ステージ22の外周面OSと同じ高さに位置していてもよい。カバー部材25の表面25sは、ステージ22の外周面OSよりも上方に位置していてもよい。カバー部材25の表面25sは、ステージ22の外周面OSよりも下方に位置していてもよい。 The surface 25s of the cover member 25 may be located at the same height as the outer peripheral surface OS of the stage 22. The surface 25s of the cover member 25 may be located above the outer peripheral surface OS of the stage 22. The surface 25s of the cover member 25 may be positioned below the outer peripheral surface OS of the stage 22.
 第22変形例では、試料Wは、真空領域VSPが試料Wの表面WSuの全体を覆うことができる程度に小さいサイズを有していてもよいし、真空領域VSPが試料Wの表面WSuのうちの一部しか覆うことができない程度に大きいサイズを有していてもよい。 In the twenty-second modification, the sample W may have a size small enough to allow the vacuum region VSP to cover the entire surface WSu of the sample W, or the vacuum region VSP may be included in the surface WSu of the sample W. It may have a size large enough to cover only a part of the.
 第22変形例では、走査型電子顕微鏡SEMは、射出面121LSと表面WSuとの間の間隔Dが所望間隔D_targetとなることに代えて、射出面121LSとカバー部材25の表面25sとの間の間隔Do2が所望間隔D_targetとなるように、間隔調整系14及びステージ駆動系23の少なくとも一方を制御してもよい。尚、図面の簡略化のために図31ではステージ22の構造が簡略化されているが、ステージ22は、上述した変形抑制動作を行うための構造を有していてもよい。 In the twenty-second modified example, the scanning electron microscope SEM includes a gap between the emission surface 121LS and the surface 25s of the cover member 25, instead of the interval D between the emission surface 121LS and the surface WSu being the desired interval D_target. You may control at least one of the space | interval adjustment system 14 and the stage drive system 23 so that the space | interval Do2 may become the desired space | interval D_target. For simplification of the drawing, the structure of the stage 22 is simplified in FIG. 31, but the stage 22 may have a structure for performing the above-described deformation suppressing operation.
 (3-23)その他の変形例
 上述した説明では、差動排気系12は、単一の排気機構(具体的には、排気溝124及び配管125)を備える1段式の差動排気系である。しかしながら、差動排気系12は、複数の排気機構を備える多段式の差動排気系であってもよい。この場合、真空形成部材121の射出面121LSには、複数の排気溝124が形成され、真空形成部材121には、複数の排気溝124に夫々連通する複数の配管125が形成される。複数の配管125は、夫々、ポンプ系5が備える複数の真空ポンプ52に接続される。複数の真空ポンプ52の排気能力は、同一であってもよいし、異なっていてもよい。
(3-23) Other Modifications In the above description, the differential exhaust system 12 is a single-stage differential exhaust system including a single exhaust mechanism (specifically, the exhaust groove 124 and the pipe 125). is there. However, the differential exhaust system 12 may be a multistage differential exhaust system including a plurality of exhaust mechanisms. In this case, a plurality of exhaust grooves 124 are formed on the emission surface 121 LS of the vacuum forming member 121, and a plurality of pipes 125 respectively communicating with the plurality of exhaust grooves 124 are formed on the vacuum forming member 121. The plurality of pipes 125 are respectively connected to the plurality of vacuum pumps 52 included in the pump system 5. The exhaust capabilities of the plurality of vacuum pumps 52 may be the same or different.
 また、上述した説明では、ポンプ系5は複数の真空ポンプを備えていたが、ポンプ系5は単一の真空ポンプを備える構成であってもよい。 In the above description, the pump system 5 includes a plurality of vacuum pumps, but the pump system 5 may be configured to include a single vacuum pump.
 また、上述した説明では、ビーム照射系1によるビーム照射位置を試料W上で任意の位置にするため、試料Wを保持するステージ22が少なくともXY平面内で移動可能であったが、ビーム照射系1をXY平面内で移動可能な構成としてもよい。 In the above description, since the beam irradiation position by the beam irradiation system 1 is set to an arbitrary position on the sample W, the stage 22 holding the sample W is movable at least in the XY plane. 1 may be configured to be movable in the XY plane.
 走査型電子顕微鏡SEMに限らず、電子ビームEBを試料W(或いは、その他の任意の物体)に照射する任意の電子ビーム装置が、上述した走査型電子顕微鏡SEMと同様の構造を有していてもよい。つまり、任意の電子ビーム装置が、上述したステージ22を備えていてもよい。任意の電子ビーム装置の一例として、電子ビームEBを用いて電子線レジストが塗布されたウェハを露光することでウェハにパターンを形成する電子ビーム露光装置、及び、電子ビームEBを母材に照射して発生する熱で母材を溶接する電子ビーム溶接装置の少なくとも一方があげられる。 Not only the scanning electron microscope SEM but also any electron beam apparatus that irradiates the sample W (or any other object) with the electron beam EB has the same structure as the above-described scanning electron microscope SEM. Also good. That is, any electron beam apparatus may include the stage 22 described above. As an example of an arbitrary electron beam apparatus, an electron beam exposure apparatus that forms a pattern on a wafer by exposing a wafer coated with an electron beam resist using the electron beam EB, and the base material is irradiated with the electron beam EB. And at least one of electron beam welding apparatuses for welding the base material with the heat generated by the above.
 或いは、電子ビーム装置に限らず、電子ビームEBとは異なる任意の荷電粒子ビーム又はエネルギビーム(例えば、イオンビーム)を任意の試料W(或いは、その他の任意の物体)に照射する任意のビーム装置が上述した走査型電子顕微鏡SEMと同様の構造を有していてもよい。つまり、荷電粒子ビーム又はエネルギビームを照射可能なビーム光学系を備える任意のビーム装置が、上述したステージ22を備えていてもよい。任意のビーム装置の一例として、集束したイオンビームを試料に照射し加工や観察を行う集束イオンビーム(FIB:Focused Ion Beam)装置、及び、軟X線領域(例えば5~15nmの波長域)のEUV(Extreme Ultraviolet)光を用いてレジストが塗布されたウェハを露光することでウェハにパターンを形成するEUV露光装置の少なくとも一方があげられる。或いは、ビーム装置に限らず、電子を含む任意の荷電粒子を、ビームとは異なる照射形態で任意の試料W(或いは、その他の任意の物体)に照射する任意の照射装置が上述した走査型電子顕微鏡SEMと同様の構造を有していてもよい。つまり、荷電粒子を照射(例えば、放出、生成、噴出又は)可能な照射系を備える任意の照射装置が、上述したステージ22を備えていてもよい。任意の照射装置の一例として、プラズマを用いて物体をエッチングするエッチング装置、及び、プラズマを用いて物体に成膜処理を行う成膜装置(例えば、スパッタリング装置等のPVD(Physical Vapor Deposition)装置、及び、CVD(Chemical Vapor Deposition)装置の少なくとも一方)の少なくとも一方があげられる。 Alternatively, not limited to the electron beam apparatus, any beam apparatus that irradiates an arbitrary sample W (or other arbitrary object) with an arbitrary charged particle beam or energy beam (for example, an ion beam) different from the electron beam EB. May have the same structure as the scanning electron microscope SEM described above. That is, an arbitrary beam apparatus including a beam optical system that can irradiate a charged particle beam or an energy beam may include the stage 22 described above. As an example of an arbitrary beam device, a focused ion beam (FIB) device that performs processing and observation by irradiating a focused ion beam to a sample, and a soft X-ray region (for example, a wavelength region of 5 to 15 nm) Examples include at least one of EUV exposure apparatuses that form a pattern on a wafer by exposing a wafer coated with a resist using EUV (Extreme Ultraviolet) light. Alternatively, the scanning electron described above is not limited to the beam apparatus, but any irradiation apparatus that irradiates an arbitrary sample W (or other arbitrary object) with an arbitrary charged particle including electrons in an irradiation form different from that of the beam. It may have the same structure as the microscope SEM. That is, any irradiation apparatus including an irradiation system that can irradiate (for example, emit, generate, eject) charged particles may include the stage 22 described above. As an example of an arbitrary irradiation apparatus, an etching apparatus that etches an object using plasma, and a film formation apparatus that performs film formation processing on an object using plasma (for example, a PVD (Physical Vapor Deposition) apparatus such as a sputtering apparatus, And at least one of CVD (Chemical Vapor Deposition) equipment.
 或いは、荷電粒子に限らず、任意の物質を照射と異なる形態で任意の試料W(或いは、その他の任意の物体)に真空下で作用させる任意の真空装置が上述した走査型電子顕微鏡SEMと同様の構造を有していてもよい。任意の真空装置の一例として、真空中で蒸発又は昇華させた材料の蒸気を試料に到達させて蓄積させる事で膜を形成する真空蒸着装置があげられる。 Alternatively, not only charged particles, but also any vacuum apparatus that causes an arbitrary substance to act on a sample W (or other arbitrary object) in a form different from that of irradiation under vacuum is the same as the scanning electron microscope SEM described above. It may have the structure. As an example of an arbitrary vacuum apparatus, there is a vacuum vapor deposition apparatus that forms a film by allowing vapor of a material evaporated or sublimated in a vacuum to reach a sample and accumulate it.
 (4)付記
 以上説明した実施形態に関して、更に以下の付記を開示する。
[付記1]
 物体上の第1空間に前記物体の表面の一部を覆う真空領域を局所的に形成可能な真空形成部材と、前記真空領域を介して前記物体に荷電粒子ビームを照射する照射装置と、前記物体と前記真空形成部材との相対位置を変更して、前記物体と前記真空領域との相対位置を変更する相対位置変更装置と、前記物体の前記荷電粒子ビームが照射される面とは反対側に位置する前記物体の他方の面に面する第2空間を複数の区画に分割する隔壁部材と、前記複数の区画のうち前記物体に対して相対位置が変更された前記真空領域と前記物体を挟んで対向する対向領域を含む一部の区画の気圧を前記複数の区画のうちの他の区画と異ならせて、前記対向領域の気圧と前記真空領域の気圧との差を大気圧と前記真空領域の気圧との差よりも低減させる気圧調整装置とを備える荷電粒子装置。
[付記2]
 前記気圧調整装置は、前記複数の区画に給気可能な配管をさらに有する付記1に記載の荷電粒子装置。
[付記3]
 物体上の第1空間に前記物体の表面の一部を覆う真空領域を局所的に形成可能な真空形成部材と、前記真空領域を介して前記物体に荷電粒子ビームを照射する照射装置と、前記物体と前記真空形成部材との相対位置を変更して、前記物体と前記真空領域との相対位置を変更する相対位置変更装置と、前記物体の前記荷電粒子ビームが照射される面とは反対側に位置する前記物体の他方の面に面する第2空間の一部の気体を、前記第2空間内で移動可能な開口を介して排気する排気装置を備える気圧調整装置とを備え、前記気圧調整装置は、前記物体に対して相対位置が変更された前記真空領域と前記物体を挟んで対向する対向領域に前記開口を位置させて、前記対向領域の気圧と前記真空領域の気圧との差を大気圧と前記真空領域の気圧との差よりも低減させる荷電粒子装置。
[付記4]
 前記真空形成部材は、第1排気装置を用いて前記第1空間を排気することで前記真空領域を形成し、前記気圧調整装置は、前記第1排気装置とは異なる第2排気装置を用いて前記第2空間を排気する付記1から3のいずれか一項に記載の荷電粒子装置。
[付記5]
 前記第2排気装置は、拡散ポンプ、クライオポンプ、ターボ分子ポンプ及びスパッタイオンポンプのうち少なくとも1つを含む付記4に記載の荷電粒子装置。
[付記6]
 前記真空形成部材は、第1排気装置を用いて前記第1空間を排気することで前記真空領域を形成し、前記気圧調整装置は、前記第1排気装置を用いて前記第2空間を排気する付記1から3のいずれか一項に記載の荷電粒子装置。
[付記7]
 物体上の第1空間に前記物体の表面の一部を覆う真空領域を局所的に形成可能な真空形成部材と、前記真空領域を介して前記物体に荷電粒子ビームを照射する照射装置と、前記物体の前記荷電粒子ビームが照射される面とは反対側に位置する前記物体の他方の面に面する第2空間を前記物体とともに囲み、前記第2空間と前記第2空間の外部との間に気圧差を形成可能な隔壁部と、前記第2空間の気圧と前記真空領域の気圧との差を大気圧と前記真空領域の気圧との差より低減可能である気圧調整装置とを備える荷電粒子装置。
[付記8]
 前記隔壁部は、前記第2空間の気圧と前記真空領域の気圧との差を大気圧と前記真空領域の気圧との差より低減可能である気圧調整装置と連通する開口を有する付記7に記載の荷電粒子装置。
[付記9]
 前記気圧調整装置は、前記物体の外縁部に前記真空領域が形成される期間の少なくとも一部において、前記開口を介して前記第2空間の気圧と前記真空領域の気圧との差を大気圧と前記真空領域の気圧との差より低減する付記8に記載の荷電粒子装置。
[付記10]
 前記隔壁部は、前記物体とともに前記第2空間を密封可能である付記7から9のいずれか一項に記載の荷電粒子装置。
[付記11]
 前記物体を保持する保持部材を備え、前記保持部材は、前記第2空間に、前記他方の面を支持する複数のピン状部材を有する付記1から10のいずれか一項に記載の荷電粒子装置。
[付記12]
 前記保持部材の前記物体の外縁部を保持する部分における前記ピン状部材の単位面積当たりの本数は、前記保持部材の前記物体の中心部を保持する前記ピン状部材の単位面積当たりの本数よりも少ない付記11に記載の荷電粒子装置。
[付記13]
 前記保持部材の前記物体の外縁部を保持する部分における前記ピン状部材の前記物体との接触面積は、前記保持部材の前記物体の中心部を保持する前記ピン状部材の前記物体との接触面積よりも少ない付記11又は12に記載の荷電粒子装置。
[付記14]
 前記真空形成部材は、前記照射装置と前記荷電粒子ビームが照射される前記物体上の照射領域との間の空間に、前記空間と異なる領域における真空度よりも高い真空度の真空領域を形成する付記1から13のいずれか一項に記載の荷電粒子装置。
[付記15]
 前記真空領域は前記物体上の表面の一部を覆う付記1から14のいずれか一項に記載の荷電粒子装置。
[付記16]
 前記真空領域は前記物体上の表面の一部と接する付記1から15のいずれか一項に記載の荷電粒子装置。
[付記17]
 前記真空領域が形成されているとき、前記物体の表面の少なくとも別の一部は非真空領域又は前記真空領域よりも真空度が低い領域で覆われる付記1から16のいずれか一項に記載の荷電粒子装置。
[付記18]
 前記真空形成部材は、前記物体の表面と対向するように設けられ、排気装置と連通している開口を備える面を有する、付記1から17のいずれか一項に記載の荷電粒子装置。
[付記19]
 前記開口は第1の開口であって、前記面における前記第1の開口の周囲に第2の開口を有する付記18に記載の荷電粒子装置。
[付記20]
 前記第1の開口内の空間の真空度は、前記第2の開口における真空度よりも高い付記19に記載の荷電粒子装置。
[付記21]
 前記真空形成部材は、前記物体と前記真空形成部材との間の間隙の排気抵抗によって前記空間と異なる他の空間との気圧の差が維持される前記空間を排気することによって真空を形成する、差動排気方式の真空形成部材である付記1から20のいずれか一項に記載の荷電粒子装置。
[付記22]
 前記物体のうち前記真空領域の吸引力が作用する部分に、前記吸引力とは逆向きの付与力を付与する付与装置を備える付記1から21のいずれか一項に記載の荷電粒子装置。
[付記23]
 前記付与力は前記吸引力に応じて定まる付記22に記載の荷電粒子装置。
[付記24]
 前記付与力は、前記付与力が付与されていない場合と比較して、前記部分に作用する前記吸引力と前記付与力との合計を小さくすることが可能である付記22又は23のいずれか一項に記載の荷電粒子装置。
[付記25]
 前記付与力による影響は、前記吸引力による影響を相殺可能である付記22から24のいずれか一項に記載の荷電粒子装置。
[付記26]
 前記吸引力は、前記物体から前記照射装置へと向かう第1方向に向けて前記物体の少なくとも一部を変位するように作用する成分を含み、前記付与力は、前記第1方向とは逆向きの第2方向に向けて前記物体の少なくとも一部を変位するように作用する成分を含む付記22から25のいずれか一項に記載の荷電粒子装置。
[付記27]
 前記付与力は、前記付与力が付与されていない場合と比較して、前記吸引力に起因した前記物体の変形を抑制することが可能である付記22から26のいずれか一項に記載の荷電粒子装置。
[付記28]
 前記付与力は、前記付与力が付与されていない場合と比較して、前記物体の前記荷電粒子ビームが照射される面を平面に近づけることが可能である付記22から27のいずれか一項に記載の荷電粒子装置。
[付記29]
 前記付与装置は、前記物体の前記荷電粒子ビームが照射される面の一部に局所的に前記付与力を付与する付記22から28のいずれか一項に記載の荷電粒子装置。
[付記30]
 前記付与力は、前記物体のうち前記吸引力が加えられている被吸引部分に付与される付記22から29のいずれか一項に記載の荷電粒子装置。
[付記31]
 前記付与力は、前記物体のうち前記吸引力に起因して変形する変形部分に付与される付記22から30のいずれか一項に記載の荷電粒子装置。
[付記32]
 前記付与力は、前記物体のうち前記真空領域に面する真空部分に付与される付記22から31のいずれか一項に記載の荷電粒子装置。
[付記33]
 前記付与力は、前記物体のうち前記荷電粒子ビームの照射領域が設定される被照射部分に付与される付記22から32のいずれか一項に記載の荷電粒子装置。
[付記34]
 前記付与装置が前記付与力を付与する位置は変化する付記22から33のいずれか一項に記載の荷電粒子装置。
[付記35]
 前記照射装置は、前記物体の前記荷電粒子ビームが照射される面に沿った方向における前記物体と前記荷電粒子ビームの照射領域との相対位置を変更し、前記荷電粒子ビームを照射し、前記付与装置は、前記付与力を付与する位置を前記物体と前記照射領域との前記相対位置に応じて変更する付記22から34のいずれか一項に記載の荷電粒子装置。
[付記36]
 前記真空形成部材は、前記物体の前記荷電粒子ビームが照射される面に沿った方向における前記物体と前記真空領域との相対位置を変更し、前記付与装置は、前記付与力を付与する位置を前記物体と前記真空領域との前記相対位置に応じて変更する付記22から35のいずれか一項に記載の荷電粒子装置。
[付記37]
 前記付与装置は、夫々が異なる位置に前記付与力を付与可能な複数の付与機構を含んでおり、前記付与装置は、前記複数の付与機構のうち前記付与力を付与するべき少なくとも一つの付与機構の選択を変更することで、前記付与力を付与する位置を変更する付記22から36のいずれか一項に記載の荷電粒子装置。
[付記38]
 前記物体と前記付与装置との相対位置を変更する位置変更装置を更に備え、前記付与装置は、前記位置変更装置による前記物体と前記付与装置との前記相対位置の変更により、前記付与力を付与する位置を変更する付記22から37のいずれか一項に記載の荷電粒子装置。
[付記39]
 前記付与装置は、電磁相互作用に起因した力を前記付与力として付与する電磁力付与装置を含む付記22から38のいずれか一項に記載の荷電粒子装置。
[付記40]
 前記真空領域の気圧は、1×10-3パスカル以下である付記1から39のいずれか一項に記載の荷電粒子装置。
[付記41]
 前記真空系聖部材と前記物体との間の距離は、1μm以上且つ10μm以下である付記1から40のいずれか一項に記載の荷電粒子装置。
[付記42]
 付記1から41のいずれか一項に記載の荷電粒子装置と、大気圧下で前記物体を計測する計測装置とを備え、前記荷電粒子装置は、前記荷電粒子ビームが照射された前記物体からの荷電粒子の検出結果に基づいて、前記物体を計測する荷電粒子線計測装置である計測システム。
[付記43]
 前記計測装置で計測される前記物体上の領域の少なくとも一部を、前記荷電粒子線計測装置で計測する付記42に記載の計測システム。
[付記44]
 前記領域には、所定の指標物が形成されている付記43に記載の計測システム。
[付記45]
 前記領域にはレジストパターンが形成されている付記43又は44に記載の計測システム。
[付記46]
 前記荷電粒子線計測装置は、前記物体の内部に形成されたパターンに関する情報を取得する付記42から45のいずれか一項に記載の計測システム。
[付記47]
 前記計測装置による計測後に、前記荷電粒子線計測装置による計測を行う付記42から46のいずれか一項に記載の計測システム。
[付記48]
 前記計測装置による計測と、前記荷電粒子線計測装置による計測とを並行して行う付記42から47のいずれか一項に記載の計測システム。
[付記49]
 前記計測装置は、光学顕微鏡及び回折干渉計の少なくとも一方を含み、前記回折干渉計は、前記物体上の前記指標物または前記レジストパターンを照射して回折された回折光同士を互いに干渉させて得られる干渉光を検出することで前記物体を計測する付記42から48のいずれか一項に記載の計測システム。
[付記50]
 前記計測装置が前記物体を計測するとき、前記気圧調整装置は前記第2空間の気圧を第1の気圧に調整し、前記荷電粒子装置が前記物体を計測するとき、前記気圧調整装置は前記第2空間の気圧を前記第1の気圧と異なる第2の気圧に調整する付記42から49に記載の計測システム。
[付記51]
 前記第2の気圧は、前記第1の気圧より低い付記50に記載の計測システム。
[付記52]
 前記第2空間は、複数の区画に分割されており、前記気圧調整装置は、前記複数の区画の気圧を変更することで、前記荷電粒子装置が前記物体を計測する位置の裏面の気圧を前記第2の気圧に変更し、前記計測装置が前記物体を計測する位置の裏面を前記第1の気圧に変更する、請求50又は51に記載の計測システム。
[付記53]
 物体上の第1空間に前記物体の表面の一部を覆う真空領域を局所的に形成することと、前記真空領域を介して前記物体に荷電粒子ビームを照射することと、前記物体と前記真空領域との相対位置を変更することと、前記物体の前記荷電粒子ビームが照射される面とは反対側に位置する前記物体の他方の面に面し且つ複数の区画に分割された第2空間において、前記複数の区画のうち一部の区画の気圧を前記複数の区画の他の区画と異ならせることで、前記第2空間のうち、前記物体に対して相対位置が変更された前記真空領域と前記物体を挟んで対向する領域の気圧と前記真空領域の気圧との差を低減することとを含む荷電粒子ビームの照射方法。
[付記54]
 物体上の第1空間に前記物体の表面の一部を覆う真空領域を局所的に形成することと、前記真空領域を介して前記物体に荷電粒子ビームを照射することと、前記物体と前記真空領域との相対位置を変更することと、前記物体の前記荷電粒子ビームが照射される面とは反対側に位置する前記物体の他方の面に面する第2空間の一部の気圧を前記第2空間の他の部分の気圧より低減可能である排気装置と連通する開口を有する部材の、前記物体に対する相対位置を変更することで、第2空間のうち、前記物体に対して相対位置が変更された前記真空領域と前記物体を挟んで対向する領域の気圧と前記真空領域の気圧との差を低減することとを含む荷電粒子ビームの照射方法。
[付記55]
 物体上の第1空間に前記物体の表面の一部を覆う真空領域を局所的に形成することと、前記真空領域を介して前記物体に荷電粒子ビームを照射することと、前記物体と前記真空領域との相対位置を変更することと、前記物体の前記荷電粒子ビームが照射される面とは反対側に位置する前記物体の他方の面に面する第2空間を前記物体と隔壁部とで囲み、前記第2空間と前記第2空間の外部との間に気圧差を形成することと、前記第2空間の気圧と前記真空領域の気圧との差を低減することとを含む荷電粒子ビームの照射方法。
(4) Supplementary Notes The following supplementary notes are further disclosed with respect to the embodiment described above.
[Appendix 1]
A vacuum forming member capable of locally forming a vacuum region covering a part of the surface of the object in a first space on the object, an irradiation device for irradiating the object with a charged particle beam through the vacuum region, and A relative position changing device for changing a relative position between the object and the vacuum forming member to change a relative position between the object and the vacuum region; and a side of the object opposite to the surface irradiated with the charged particle beam A partition member that divides a second space facing the other surface of the object located at a plurality of sections, and the vacuum region whose relative position is changed with respect to the object among the plurality of sections and the object The pressure of a part of the compartment including the opposing region sandwiched therebetween is different from that of the other of the plurality of compartments, and the difference between the air pressure of the opposing region and the air pressure of the vacuum region is expressed by the atmospheric pressure and the vacuum. Pressure to reduce than the difference from the area pressure The charged particle apparatus and a settling device.
[Appendix 2]
The charged particle device according to appendix 1, wherein the atmospheric pressure adjusting device further includes a pipe capable of supplying air to the plurality of sections.
[Appendix 3]
A vacuum forming member capable of locally forming a vacuum region covering a part of the surface of the object in a first space on the object, an irradiation device for irradiating the object with a charged particle beam through the vacuum region, and A relative position changing device for changing a relative position between the object and the vacuum forming member to change a relative position between the object and the vacuum region; and a side of the object opposite to the surface irradiated with the charged particle beam A pressure adjusting device including an exhaust device that exhausts a part of the gas in the second space facing the other surface of the object located in the second space through an opening movable in the second space; The adjustment device positions the opening in a facing region that is opposed to the vacuum region, the relative position of which is changed with respect to the object, and a difference between a pressure in the facing region and a pressure in the vacuum region. Between the atmospheric pressure and the pressure in the vacuum region The charged particle device to reduce than.
[Appendix 4]
The vacuum forming member forms the vacuum region by exhausting the first space using a first exhaust device, and the atmospheric pressure adjusting device uses a second exhaust device different from the first exhaust device. The charged particle device according to any one of appendices 1 to 3, which exhausts the second space.
[Appendix 5]
The charged particle device according to appendix 4, wherein the second exhaust device includes at least one of a diffusion pump, a cryopump, a turbo molecular pump, and a sputter ion pump.
[Appendix 6]
The vacuum forming member forms the vacuum region by exhausting the first space using a first exhaust device, and the atmospheric pressure adjusting device exhausts the second space using the first exhaust device. The charged particle device according to any one of appendices 1 to 3.
[Appendix 7]
A vacuum forming member capable of locally forming a vacuum region covering a part of the surface of the object in a first space on the object, an irradiation device for irradiating the object with a charged particle beam through the vacuum region, and Surrounding the second space facing the other surface of the object opposite to the surface irradiated with the charged particle beam of the object together with the object, and between the second space and the outside of the second space And a pressure adjusting device capable of reducing the difference between the atmospheric pressure in the second space and the atmospheric pressure in the vacuum region from the difference between the atmospheric pressure and the atmospheric pressure in the vacuum region. Particle equipment.
[Appendix 8]
The partition wall part has an opening that communicates with an atmospheric pressure adjustment device that can reduce a difference between the atmospheric pressure in the second space and the atmospheric pressure in the vacuum region by a difference between the atmospheric pressure and the atmospheric pressure in the vacuum region. Charged particle device.
[Appendix 9]
The atmospheric pressure adjusting device calculates the difference between the atmospheric pressure in the second space and the atmospheric pressure in the vacuum region through the opening in at least part of a period in which the vacuum region is formed on the outer edge of the object. The charged particle device according to appendix 8, wherein the charged particle device is reduced by a difference from a pressure in the vacuum region.
[Appendix 10]
The charged particle device according to any one of appendices 7 to 9, wherein the partition wall portion can seal the second space together with the object.
[Appendix 11]
11. The charged particle device according to claim 1, further comprising a holding member that holds the object, wherein the holding member includes a plurality of pin-shaped members that support the other surface in the second space. .
[Appendix 12]
The number per unit area of the pin-shaped member in the portion of the holding member that holds the outer edge portion of the object is greater than the number per unit area of the pin-shaped member that holds the center of the object of the holding member. The charged particle apparatus according to Supplementary Note 11, which is few.
[Appendix 13]
The contact area of the pin-like member with the object at the portion of the holding member that holds the outer edge of the object is the contact area of the pin-like member with the object that holds the center of the object of the holding member. The charged particle apparatus according to Supplementary Note 11 or 12, wherein
[Appendix 14]
The vacuum forming member forms a vacuum region having a degree of vacuum higher than a degree of vacuum in a region different from the space in a space between the irradiation device and an irradiation region on the object irradiated with the charged particle beam. The charged particle device according to any one of appendices 1 to 13.
[Appendix 15]
The charged particle device according to any one of appendices 1 to 14, wherein the vacuum region covers a part of a surface on the object.
[Appendix 16]
The charged particle device according to any one of appendices 1 to 15, wherein the vacuum region is in contact with a part of the surface on the object.
[Appendix 17]
17. When the vacuum region is formed, at least another part of the surface of the object is covered with a non-vacuum region or a region having a lower degree of vacuum than the vacuum region. Charged particle device.
[Appendix 18]
The charged particle device according to any one of appendices 1 to 17, wherein the vacuum forming member has a surface provided with an opening that is provided to face the surface of the object and communicates with an exhaust device.
[Appendix 19]
The charged particle device according to appendix 18, wherein the opening is a first opening and has a second opening around the first opening on the surface.
[Appendix 20]
The charged particle apparatus according to appendix 19, wherein the degree of vacuum in the space in the first opening is higher than the degree of vacuum in the second opening.
[Appendix 21]
The vacuum forming member forms a vacuum by evacuating the space in which a difference in atmospheric pressure between the space and the other space is maintained by an exhaust resistance of a gap between the object and the vacuum forming member. 21. The charged particle device according to any one of appendices 1 to 20, which is a differential evacuation type vacuum forming member.
[Appendix 22]
The charged particle device according to any one of appendices 1 to 21, further comprising an applying device that applies an applying force opposite to the attracting force to a portion of the object where the attracting force of the vacuum region acts.
[Appendix 23]
The charged particle device according to appendix 22, wherein the applying force is determined according to the attractive force.
[Appendix 24]
The application force is any one of appendix 22 or 23, wherein the total of the suction force and the application force acting on the portion can be reduced as compared with the case where the application force is not applied. The charged particle device according to Item.
[Appendix 25]
The charged particle device according to any one of appendices 22 to 24, wherein the effect of the applied force can cancel the effect of the attractive force.
[Appendix 26]
The suction force includes a component that acts to displace at least a part of the object in a first direction from the object toward the irradiation device, and the application force is in a direction opposite to the first direction. 26. The charged particle device according to any one of appendices 22 to 25, including a component that acts to displace at least a part of the object in the second direction.
[Appendix 27]
The charging according to any one of appendices 22 to 26, wherein the applying force is capable of suppressing deformation of the object due to the suction force as compared to a case where the applying force is not applied. Particle equipment.
[Appendix 28]
In any one of appendices 22 to 27, the applying force can bring the surface of the object irradiated with the charged particle beam closer to a plane as compared to a case where the applying force is not applied. The charged particle device described.
[Appendix 29]
The charged particle device according to any one of appendices 22 to 28, wherein the applying device locally applies the applying force to a part of a surface of the object that is irradiated with the charged particle beam.
[Appendix 30]
The charged particle device according to any one of appendices 22 to 29, wherein the applying force is applied to a portion to be attracted to which the attraction force is applied in the object.
[Appendix 31]
The charged particle device according to any one of appendices 22 to 30, wherein the applying force is applied to a deformed portion of the object that deforms due to the suction force.
[Appendix 32]
The charged particle device according to any one of appendices 22 to 31, wherein the applying force is applied to a vacuum portion of the object that faces the vacuum region.
[Appendix 33]
The charged particle device according to any one of appendices 22 to 32, wherein the applying force is applied to an irradiated portion of the object where an irradiation region of the charged particle beam is set.
[Appendix 34]
34. The charged particle device according to any one of appendices 22 to 33, wherein a position where the applying device applies the applying force changes.
[Appendix 35]
The irradiation device changes a relative position between the object and an irradiation area of the charged particle beam in a direction along a surface of the object irradiated with the charged particle beam, irradiates the charged particle beam, and applies the application The charged particle device according to any one of appendices 22 to 34, wherein the device changes a position to which the applying force is applied in accordance with the relative position between the object and the irradiation region.
[Appendix 36]
The vacuum forming member changes a relative position between the object and the vacuum region in a direction along a surface irradiated with the charged particle beam of the object, and the applying device determines a position at which the applying force is applied. 36. The charged particle device according to any one of appendices 22 to 35, wherein the charged particle device is changed according to the relative position between the object and the vacuum region.
[Appendix 37]
The application device includes a plurality of application mechanisms capable of applying the application force to different positions, and the application device is at least one application mechanism to which the application force is to be applied among the plurality of application mechanisms. 37. The charged particle device according to any one of appendices 22 to 36, wherein the position to which the applying force is applied is changed by changing the selection.
[Appendix 38]
The apparatus further includes a position changing device that changes a relative position between the object and the applying device, and the applying device applies the applying force by changing the relative position between the object and the applying device by the position changing device. The charged particle device according to any one of appendices 22 to 37, wherein the position to be changed is changed.
[Appendix 39]
The charged particle device according to any one of appendices 22 to 38, wherein the applying device includes an electromagnetic force applying device that applies a force resulting from electromagnetic interaction as the applying force.
[Appendix 40]
40. The charged particle device according to any one of appendices 1 to 39, wherein the pressure in the vacuum region is 1 × 10 −3 Pascal or less.
[Appendix 41]
41. The charged particle device according to any one of appendices 1 to 40, wherein a distance between the vacuum holy member and the object is 1 μm or more and 10 μm or less.
[Appendix 42]
42. A charged particle device according to any one of appendices 1 to 41, and a measurement device that measures the object under atmospheric pressure, wherein the charged particle device includes a beam from the object irradiated with the charged particle beam. A measurement system which is a charged particle beam measurement device for measuring the object based on a detection result of charged particles.
[Appendix 43]
43. The measurement system according to appendix 42, wherein at least a part of a region on the object measured by the measurement device is measured by the charged particle beam measurement device.
[Appendix 44]
44. The measurement system according to appendix 43, wherein a predetermined index object is formed in the region.
[Appendix 45]
45. The measurement system according to appendix 43 or 44, wherein a resist pattern is formed in the region.
[Appendix 46]
The measurement system according to any one of appendices 42 to 45, wherein the charged particle beam measurement apparatus acquires information related to a pattern formed inside the object.
[Appendix 47]
47. The measurement system according to any one of appendices 42 to 46, wherein measurement is performed by the charged particle beam measurement device after measurement by the measurement device.
[Appendix 48]
48. The measurement system according to any one of appendices 42 to 47, wherein the measurement by the measurement device and the measurement by the charged particle beam measurement device are performed in parallel.
[Appendix 49]
The measurement apparatus includes at least one of an optical microscope and a diffraction interferometer, and the diffraction interferometer is obtained by causing the diffracted light diffracted by irradiating the index object or the resist pattern on the object to interfere with each other. 49. The measurement system according to any one of appendices 42 to 48, wherein the object is measured by detecting interference light generated.
[Appendix 50]
When the measurement device measures the object, the atmospheric pressure adjustment device adjusts the atmospheric pressure of the second space to the first atmospheric pressure, and when the charged particle device measures the object, the atmospheric pressure adjustment device 50. The measurement system according to appendixes 42 to 49, wherein the atmospheric pressure in the two spaces is adjusted to a second atmospheric pressure different from the first atmospheric pressure.
[Appendix 51]
The measurement system according to appendix 50, wherein the second atmospheric pressure is lower than the first atmospheric pressure.
[Appendix 52]
The second space is divided into a plurality of compartments, and the atmospheric pressure adjusting device changes the atmospheric pressure of the plurality of compartments, thereby changing the atmospheric pressure on the back surface of the position where the charged particle device measures the object. 52. The measurement system according to claim 50 or 51, wherein the second atmospheric pressure is changed, and the back surface of the position where the measurement device measures the object is changed to the first atmospheric pressure.
[Appendix 53]
Forming a vacuum region locally covering a part of the surface of the object in a first space on the object; irradiating the object with a charged particle beam through the vacuum region; and A second space which is divided into a plurality of sections facing the other surface of the object located on the opposite side of the surface irradiated with the charged particle beam of the object, and changing the relative position to the region In the vacuum area, the relative position with respect to the object is changed in the second space by making the pressure of some of the plurality of sections different from the other sections of the plurality of sections. And a method of irradiating a charged particle beam including reducing a difference between an air pressure in a region facing the object and an air pressure in the vacuum region.
[Appendix 54]
Forming a vacuum region locally covering a part of the surface of the object in a first space on the object; irradiating the object with a charged particle beam through the vacuum region; and Changing the relative position with respect to the region, and changing the pressure of a part of the second space facing the other surface of the object located on the opposite side of the surface irradiated with the charged particle beam of the object By changing the relative position of the member having the opening communicating with the exhaust device that can be reduced from the atmospheric pressure of the other part of the two spaces with respect to the object, the relative position with respect to the object is changed in the second space A method of irradiating a charged particle beam, comprising: reducing a difference between an air pressure in a region facing the vacuum region and the object sandwiched between the air pressure in the vacuum region and the air pressure in the vacuum region.
[Appendix 55]
Forming a vacuum region locally covering a part of the surface of the object in a first space on the object; irradiating the object with a charged particle beam through the vacuum region; and A second space facing the other surface of the object located on a side opposite to the surface irradiated with the charged particle beam of the object is changed between the object and the partition wall. A charged particle beam comprising: enclosing and forming a pressure difference between the second space and the outside of the second space; and reducing a difference between the pressure in the second space and the pressure in the vacuum region Irradiation method.
 上述の各実施形態(各変形例を含む、以下この段落において同じ)の構成要件の少なくとも一部は、上述の各実施形態の構成要件の少なくとも他の一部と適宜組み合わせることができる。上述の各実施形態の構成要件のうちの一部が用いられなくてもよい。また、法令で許容される限りにおいて、上述の各実施形態で引用した全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。 At least a part of the constituent elements of each of the above-described embodiments (including each modification, the same applies in this paragraph below) can be appropriately combined with at least another part of the constituent elements of each of the above-described embodiments. Some of the configuration requirements of the above-described embodiments may not be used. In addition, as long as permitted by law, the disclosures of all published publications and US patents cited in the above-described embodiments are incorporated as part of the description of the text.
 本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う荷電粒子装置、計測システム、及び、荷電粒子ビームの照射方法もまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification. The measurement system and the charged particle beam irradiation method are also included in the technical scope of the present invention.
 SEM 走査型電子顕微鏡
 1 ビーム照射装置
 11 ビーム光学系
 12 差動排気系
 2 ステージ装置
 22 ステージ
 221 底部材
 221Su 上面
 222 側壁部材
 222Su 上面
 223 支持部材
 223Su 上面
 224c ガード部材
 2241、2242、2243b、2244d 排気口
 2251、2252、2253b、2254d 配管
 225f、225g、225i 静電チャック
 2261f、2262f 開閉部材
 227f 隔壁部材
 228h 真空チャック
 4 制御装置
 5 ポンプ系
 51、52、53、54 真空ポンプ
 6j 計測装置
 SPb1、SPb2、SPb3 ビーム通過空間
 SPs ステージ空間
 SPsf 分割空間
 SPg1、SPg2 外縁空間
 SPsh 吸着空間
 VSP 真空領域
 W 試料
 W_vac 特定部分
 W_edge 外縁部分
 WSu 表面
 WSl 裏面
SEM Scanning electron microscope 1 Beam irradiation device 11 Beam optical system 12 Differential exhaust system 2 Stage device 22 Stage 221 Bottom member 221Su Top surface 222 Side wall member 222Su Top surface 223 Support member 223Su Top surface 224c Guard members 2241, 2242, 2243b, 2244d Exhaust port 2251, 2252, 2253b, 2254d Piping 225f, 225g, 225i Electrostatic chuck 2261f, 2262f Opening / closing member 227f Partition member 228h Vacuum chuck 4 Controller 5 Pump system 51, 52, 53, 54 Vacuum pump 6j Measuring device SPb1, SPb2, SPb3 Beam passage space SPs Stage space SPsf Division space SPg1, SPg2 Outer edge space SPsh Adsorption space VSP Vacuum region W Sample W_vac Specific part W_edg The outer edge portion WSu surface WSl backside

Claims (87)

  1.  排気装置と接続可能な管路を有し、物体の面に接する第1空間の気体を前記管路を介して排出して、真空領域を形成する真空形成部材と、
     前記真空領域を介して試料に向けて荷電粒子ビームを照射する照射装置と、
     前記試料と前記真空形成部材との相対位置を変更して、前記試料と前記真空領域との相対位置を変更する相対位置変更装置と、
     前記試料の前記荷電粒子ビームが照射される面とは反対側に位置する前記試料の他方の面に面する第2空間を複数の区画に分割する隔壁部材と、
     前記複数の区画のそれぞれの気圧を制御可能な気圧調整装置と
     を備え、
     前記真空領域の周囲の前記真空領域よりも気圧が高い空間の少なくとも一部の気体は、前記真空形成部材の前記管路を介して排出され、
     前記照射装置から照射される荷電粒子ビームの通路は前記真空領域の少なくとも一部を含む荷電粒子装置。
    A vacuum forming member that has a pipe line connectable to the exhaust device, discharges the gas in the first space contacting the surface of the object through the pipe line, and forms a vacuum region;
    An irradiation device for irradiating a charged particle beam toward the sample through the vacuum region;
    A relative position changing device for changing a relative position between the sample and the vacuum region by changing a relative position between the sample and the vacuum forming member;
    A partition member that divides a second space facing the other surface of the sample located on the opposite side of the surface irradiated with the charged particle beam of the sample into a plurality of sections;
    An atmospheric pressure adjusting device capable of controlling the atmospheric pressure of each of the plurality of compartments,
    At least a part of the gas in the space having a higher atmospheric pressure than the vacuum region around the vacuum region is discharged through the pipe line of the vacuum forming member,
    A charged particle apparatus in which a passage of a charged particle beam irradiated from the irradiation apparatus includes at least a part of the vacuum region.
  2.  排気装置と接続される第1端と物体の面に接する第1空間と接続される第2端とを有する管路を備え、前記第1空間の気体を前記管路を介して排出して、前記第1空間と接続される外部空間よりも圧力が低い真空領域を前記第1空間に形成する真空形成部材と、
     前記真空領域を介して試料に向けて荷電粒子ビームを照射する照射装置と、
     前記試料と前記真空形成部材との相対位置を変更して、前記試料と前記真空領域との相対位置を変更する相対位置変更装置と、
     前記試料の前記荷電粒子ビームが照射される面とは反対側に位置する前記試料の他方の面に面する第2空間を複数の区画に分割する隔壁部材と、
     前記複数の区画のそれぞれの気圧を制御可能な気圧調整装置と
     を備える荷電粒子装置。
    A pipe having a first end connected to the exhaust device and a second end connected to the first space in contact with the surface of the object, and discharging the gas in the first space through the pipe; A vacuum forming member for forming a vacuum region in the first space having a lower pressure than an external space connected to the first space;
    An irradiation device for irradiating a charged particle beam toward the sample through the vacuum region;
    A relative position changing device for changing a relative position between the sample and the vacuum region by changing a relative position between the sample and the vacuum forming member;
    A partition member that divides a second space facing the other surface of the sample located on the opposite side of the surface irradiated with the charged particle beam of the sample into a plurality of sections;
    A charged particle device comprising: an atmospheric pressure adjustment device capable of controlling an atmospheric pressure of each of the plurality of sections.
  3.  排気装置と接続可能な管路を有し、物体の面の一部と対向した状態で前記管路を介して気体を排出することにより、前記物体の前記面の第1部分に接する第1空間に、前記面の前記第1部分とは異なる第2部分に接する外部空間の圧力より圧力が低い真空領域を形成する真空形成部材と、
     前記真空領域を介して試料に向けて荷電粒子ビームを照射する照射装置と、
     前記試料と前記真空形成部材との相対位置を変更して、前記試料と前記真空領域との相対位置を変更する相対位置変更装置と、
     前記試料の前記荷電粒子ビームが照射される面とは反対側に位置する前記試料の他方の面に面する第2空間を複数の区画に分割する隔壁部材と、
     前記複数の区画のそれぞれの気圧を制御可能な気圧調整装置と
     を備える荷電粒子装置。
    A first space that has a conduit that can be connected to an exhaust device and that is in contact with a first portion of the surface of the object by discharging gas through the conduit while facing a part of the surface of the object In addition, a vacuum forming member that forms a vacuum region whose pressure is lower than the pressure of the external space in contact with the second portion different from the first portion of the surface;
    An irradiation device for irradiating a charged particle beam toward the sample through the vacuum region;
    A relative position changing device for changing a relative position between the sample and the vacuum region by changing a relative position between the sample and the vacuum forming member;
    A partition member that divides a second space facing the other surface of the sample located on the opposite side of the surface irradiated with the charged particle beam of the sample into a plurality of sections;
    A charged particle device comprising: an atmospheric pressure adjustment device capable of controlling an atmospheric pressure of each of the plurality of sections.
  4.  前記外部空間は、前記第1空間を経ずに前記管路と接続できないが前記第1空間を経ると接続できる
     請求項2または3に記載の荷電粒子装置。
    The charged particle device according to claim 2, wherein the external space cannot be connected to the pipe line without passing through the first space, but can be connected through the first space.
  5.  排気装置と接続可能な管路を有し、物体の面と前記管路の端部とが対向した状態で、前記物体の前記面に接する第1空間の気体を前記管路を介して排出して、真空領域を形成する真空形成部材と、
     前記真空領域を介して試料に向けて荷電粒子ビームを照射する照射装置と、
     前記試料と前記真空形成部材との相対位置を変更して、前記試料と前記真空領域との相対位置を変更する相対位置変更装置と、
     前記試料の前記荷電粒子ビームが照射される面とは反対側に位置する前記試料の他方の面に面する第2空間を複数の区画に分割する隔壁部材と、
     前記複数の区画のそれぞれの気圧を制御可能な気圧調整装置と
     を備え、
     前記照射装置から照射される荷電粒子ビームの通路は前記真空領域の少なくとも一部を含む荷電粒子装置。
    A conduit that can be connected to an exhaust device, and with the surface of the object facing the end of the conduit, the gas in the first space in contact with the surface of the object is discharged through the conduit; A vacuum forming member for forming a vacuum region;
    An irradiation device for irradiating a charged particle beam toward the sample through the vacuum region;
    A relative position changing device for changing a relative position between the sample and the vacuum region by changing a relative position between the sample and the vacuum forming member;
    A partition member that divides a second space facing the other surface of the sample located on the opposite side of the surface irradiated with the charged particle beam of the sample into a plurality of sections;
    An atmospheric pressure adjusting device capable of controlling the atmospheric pressure of each of the plurality of compartments,
    A charged particle apparatus in which a passage of a charged particle beam irradiated from the irradiation apparatus includes at least a part of the vacuum region.
  6.  前記気圧調整装置は、前記複数の区画のうちの一つの空間の気圧を、前記複数の空間のうちの他の一つの空間の気圧と異ならせる
     請求項1から5のいずれか一項に記載の荷電粒子装置。
    6. The air pressure adjusting device according to claim 1, wherein the air pressure of one space among the plurality of sections is made different from the air pressure of another space of the plurality of spaces. Charged particle device.
  7.  前記気圧調整装置は、前記試料と前記真空形成部材との相対位置に関する情報に基づいて前記複数の区画のそれぞれの気圧を制御する
     請求項1から6のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 1 to 6, wherein the atmospheric pressure adjustment device controls the atmospheric pressure of each of the plurality of sections based on information related to a relative position between the sample and the vacuum forming member.
  8.  前記試料と前記真空形成部材とが第1相対位置関係から第2相対位置関係に変更されたときに、前記複数の区画の第1区画は第1の気圧から第2気圧に変更される
     請求項1から7のいずれか一項に記載の荷電粒子装置。
    The first compartment of the plurality of compartments is changed from a first atmospheric pressure to a second atmospheric pressure when the sample and the vacuum forming member are changed from a first relative positional relationship to a second relative positional relationship. The charged particle device according to any one of 1 to 7.
  9.  前記第2相対位置関係において前記第1区画は前記試料を挟んで前記真空領域に対向しており、
     前記第2気圧は、前記第1気圧より低い
     請求項8に記載の荷電粒子装置。
    In the second relative positional relationship, the first section is opposed to the vacuum region across the sample,
    The charged particle device according to claim 8, wherein the second atmospheric pressure is lower than the first atmospheric pressure.
  10.  前記第1相対位置関係において、前記第1区画は前記試料を挟んで大気圧空間と対向する
     請求項8または9に記載の荷電粒子装置。
    The charged particle device according to claim 8 or 9, wherein, in the first relative positional relationship, the first section faces an atmospheric pressure space with the sample interposed therebetween.
  11.  前記気圧調整装置は、前記複数の区画に給気可能な配管をさらに有する
     請求項1から10のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 1 to 10, wherein the atmospheric pressure adjusting device further includes a pipe capable of supplying air to the plurality of sections.
  12.  排気装置と接続可能な管路を有し、物体の面に接する第1空間の気体を前記管路を介して排出して、真空領域を形成する真空形成部材と、
     前記真空領域を介して試料に荷電粒子ビームを照射する照射装置と、
     前記試料と前記真空形成部材との相対位置を変更して、前記試料と前記真空領域との相対位置を変更する相対位置変更装置と、
     前記試料の前記荷電粒子ビームが照射される面とは反対側に位置する前記試料の他方の面に面する第2空間の一部の気体を、前記第2空間内で移動可能な開口を介して排気する排気装置を備える気圧調整装置と
     を備え、
     前記真空領域の周囲の前記真空領域よりも気圧が高い空間の少なくとも一部の気体は、前記真空形成部材の前記管路を介して排出され、
     前記照射装置から照射される荷電粒子ビームの通路は前記真空領域の少なくとも一部を含む荷電粒子装置。
    A vacuum forming member that has a pipe line connectable to the exhaust device, discharges the gas in the first space contacting the surface of the object through the pipe line, and forms a vacuum region;
    An irradiation device for irradiating the sample with a charged particle beam through the vacuum region;
    A relative position changing device for changing a relative position between the sample and the vacuum region by changing a relative position between the sample and the vacuum forming member;
    A part of the gas in the second space facing the other surface of the sample located on the opposite side to the surface irradiated with the charged particle beam of the sample is passed through an opening that can move in the second space. And an air pressure adjusting device equipped with an exhaust device for exhausting air,
    At least a part of the gas in the space having a higher atmospheric pressure than the vacuum region around the vacuum region is discharged through the pipe line of the vacuum forming member,
    A charged particle apparatus in which a passage of a charged particle beam irradiated from the irradiation apparatus includes at least a part of the vacuum region.
  13.  前記気圧調整装置は、前記試料と前記真空形成部材との相対位置に関する情報に基づいて、前記開口を移動する
     請求項12に記載の荷電粒子装置
    The charged particle device according to claim 12, wherein the atmospheric pressure adjustment device moves the opening based on information on a relative position between the sample and the vacuum forming member.
  14.  前記気圧調整装置は、前記試料に対して相対位置が変更された前記真空領域と前記試料を挟んで対向する対向領域に前記開口を位置させる
     請求項14に記載の荷電粒子装置。
    The charged particle apparatus according to claim 14, wherein the atmospheric pressure adjusting device positions the opening in a facing region that is opposed to the vacuum region, the relative position of which is changed with respect to the sample, and the sample.
  15.  前記試料と前記真空形成部材とが第1相対位置関係から第2相対位置関係に変更されたときに、前記対向領域は第1の気圧から第2気圧に変更される
     請求項14に記載の荷電粒子装置
    The charge according to claim 14, wherein when the sample and the vacuum forming member are changed from a first relative positional relationship to a second relative positional relationship, the facing region is changed from a first atmospheric pressure to a second atmospheric pressure. Particle equipment
  16.  前記第2気圧は、前記第1気圧より低い
     請求項15に記載の荷電粒子装置
    The charged particle device according to claim 15, wherein the second atmospheric pressure is lower than the first atmospheric pressure.
  17.  前記真空形成部材は、第1排気装置を用いて前記第1空間を排気することで前記真空領域を形成し、
     前記気圧調整装置は、前記第1排気装置とは異なる第2排気装置を用いて前記第2空間を排気する
     請求項1から16のいずれか一項に記載の荷電粒子装置。
    The vacuum forming member forms the vacuum region by exhausting the first space using a first exhaust device,
    The charged particle device according to any one of claims 1 to 16, wherein the atmospheric pressure adjustment device exhausts the second space using a second exhaust device different from the first exhaust device.
  18.  前記第2排気装置は、拡散ポンプ、クライオポンプ、ターボ分子ポンプ及びスパッタイオンポンプのうち少なくとも1つを含む
     請求項17に記載の荷電粒子装置。
    The charged particle device according to claim 17, wherein the second exhaust device includes at least one of a diffusion pump, a cryopump, a turbo molecular pump, and a sputter ion pump.
  19.  前記真空形成部材は、第1排気装置を用いて前記第1空間を排気することで前記真空領域を形成し、
     前記気圧調整装置は、前記第1排気装置を用いて前記第2空間を排気する
     請求項1から16のいずれか一項に記載の荷電粒子装置。
    The vacuum forming member forms the vacuum region by exhausting the first space using a first exhaust device,
    The charged particle device according to any one of claims 1 to 16, wherein the atmospheric pressure adjusting device exhausts the second space using the first exhaust device.
  20.  排気装置と接続可能な管路を有し、物体の面に接する第1空間の気体を前記管路を介して排出して、真空領域を形成する真空形成部材と、
     前記真空領域を介して試料に荷電粒子ビームを照射する照射装置と、
     前記試料の前記荷電粒子ビームが照射される面とは反対側に位置する前記試料の他方の面に面する第2空間を前記試料とともに囲み、前記第2空間と前記第2空間の外部との間に気圧差を形成可能な隔壁部と、
     前記第2空間の気圧を調整可能である気圧調整装置と
     を備える荷電粒子装置。
    A vacuum forming member that has a pipe line connectable to the exhaust device, discharges the gas in the first space contacting the surface of the object through the pipe line, and forms a vacuum region;
    An irradiation device for irradiating the sample with a charged particle beam through the vacuum region;
    A second space facing the other surface of the sample located on the opposite side of the surface irradiated with the charged particle beam of the sample is enclosed with the sample, and the second space and the outside of the second space are A partition wall portion capable of forming a pressure difference therebetween,
    A charged particle device comprising: a pressure adjusting device capable of adjusting a pressure of the second space.
  21. 前記気圧調整装置は、前記第2空間の気圧と前記真空領域の気圧との差を大気圧と前記真空領域の気圧との差より低減可能である気圧調整装置と
     を備える請求項20に記載の荷電粒子装置。
    21. The atmospheric pressure adjustment device according to claim 20, further comprising: an atmospheric pressure adjustment device capable of reducing a difference between an atmospheric pressure in the second space and an atmospheric pressure in the vacuum region based on a difference between an atmospheric pressure and an atmospheric pressure in the vacuum region. Charged particle device.
  22.  前記隔壁部は、前記第2空間の気圧と前記真空領域の気圧との差を大気圧と前記真空領域の気圧との差より低減可能である気圧調整装置と連通する開口を有する
     請求項20又は21に記載の荷電粒子装置。
    21. The partition wall has an opening that communicates with a pressure adjusting device that can reduce a difference between a pressure in the second space and a pressure in the vacuum region by a difference between a pressure in the vacuum region and a pressure in the vacuum region. The charged particle device according to 21.
  23.  前記気圧調整装置は、前記試料の外縁部に前記真空領域が形成される期間の少なくとも一部において、前記開口を介して前記第2空間の気圧と前記真空領域の気圧との差を大気圧と前記真空領域の気圧との差より低減する
     請求項22に記載の荷電粒子装置。
    The atmospheric pressure adjusting device calculates the difference between the atmospheric pressure in the second space and the atmospheric pressure in the vacuum region through the opening as an atmospheric pressure in at least part of a period in which the vacuum region is formed on the outer edge of the sample. The charged particle device according to claim 22, wherein the charged particle device is reduced by a difference from a pressure in the vacuum region.
  24.  前記気圧調整装置は、前記試料の外縁部に前記真空領域の吸引力が作用する期間の少なくとも一部において、前記開口を介して前記第2空間の気圧と前記真空領域の気圧との差を大気圧と前記真空領域の気圧との差より低減する
     請求項22又は23に記載の荷電粒子装置。
    The atmospheric pressure adjusting device increases the difference between the atmospheric pressure in the second space and the atmospheric pressure in the vacuum region through the opening during at least a part of the period during which the suction force of the vacuum region acts on the outer edge of the sample. The charged particle device according to claim 22 or 23, wherein the charged particle device is reduced by a difference between a pressure and a pressure in the vacuum region.
  25.  前記隔壁部は、前記試料とともに前記第2空間を密封可能である
     請求項20から24のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 20 to 24, wherein the partition wall portion can seal the second space together with the sample.
  26.  前記照射装置は、前記真空領域を介して前記試料に前記荷電粒子ビームを照射し、
     前記試料の他方の面は、前記試料の前記荷電粒子ビームが照射される面とは反対側に位置する
     請求項1から25のいずれか一項に記載の荷電粒子装置。
    The irradiation device irradiates the charged particle beam to the sample through the vacuum region,
    The charged particle device according to any one of claims 1 to 25, wherein the other surface of the sample is located on a side opposite to a surface of the sample irradiated with the charged particle beam.
  27.  前記試料を保持する保持部材を備え、
     前記保持部材は、前記第2空間に、前記他方の面を支持する複数のピン状部材を有する
     請求項1から26のいずれか一項に記載の荷電粒子装置。
    A holding member for holding the sample;
    The charged particle device according to any one of claims 1 to 26, wherein the holding member includes a plurality of pin-shaped members that support the other surface in the second space.
  28.  前記保持部材の前記試料の外縁部を保持する部分における前記ピン状部材の単位面積当たりの本数は、前記保持部材の前記試料の中心部を保持する前記ピン状部材の単位面積当たりの本数よりも少ない
     請求項27に記載の荷電粒子装置。
    The number per unit area of the pin-shaped member in the portion of the holding member that holds the outer edge portion of the sample is larger than the number per unit area of the pin-shaped member that holds the central portion of the sample of the holding member. The charged particle device according to claim 27.
  29.  前記保持部材の前記試料の外縁部を保持する部分における前記ピン状部材の前記試料との接触面積は、前記保持部材の前記試料の中心部を保持する前記ピン状部材の前記試料との接触面積よりも少ない
     請求項27又は28に記載の荷電粒子装置。
    The contact area of the pin-shaped member with the sample at the portion of the holding member that holds the outer edge of the sample is the contact area of the pin-shaped member with the sample that holds the center of the sample of the holding member. The charged particle device according to claim 27 or 28.
  30.  前記真空形成部材は、前記照射装置と前記荷電粒子ビームが照射される前記試料上の照射領域との間の空間に、前記空間と異なる領域における真空度よりも高い真空度の真空領域を形成する
     請求項1から29のいずれか一項に記載の荷電粒子装置。
    The vacuum forming member forms a vacuum region having a degree of vacuum higher than a degree of vacuum in a region different from the space in a space between the irradiation device and the irradiation region on the sample irradiated with the charged particle beam. The charged particle device according to any one of claims 1 to 29.
  31.  前記真空領域は前記試料上の表面の一部を覆う
     請求項1から30のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 1 to 30, wherein the vacuum region covers a part of a surface on the sample.
  32.  前記真空領域は前記試料上の表面の一部と接する
     請求項1から31のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 1 to 31, wherein the vacuum region is in contact with a part of a surface on the sample.
  33.  前記真空領域が形成されているとき、前記試料の表面の少なくとも別の一部は非真空領域又は前記真空領域よりも真空度が低い領域で覆われる
     請求項1から32のいずれか一項に記載の荷電粒子装置。
    33. When the vacuum region is formed, at least another part of the surface of the sample is covered with a non-vacuum region or a region whose degree of vacuum is lower than that of the vacuum region. Charged particle device.
  34.  前記真空形成部材は、前記試料の表面と対向するように設けられ、排気装置と連通している開口を備える面を有する、
     請求項1から33のいずれか一項に記載の荷電粒子装置。
    The vacuum forming member is provided so as to face the surface of the sample and has a surface including an opening communicating with an exhaust device.
    The charged particle device according to any one of claims 1 to 33.
  35.  前記開口は第1の開口であって、前記面における前記第1の開口の周囲に第2の開口を有する
     請求項34に記載の荷電粒子装置。
    The charged particle device according to claim 34, wherein the opening is a first opening, and has a second opening around the first opening in the surface.
  36.  前記第1の開口内の空間の真空度は、前記第2の開口における真空度よりも高い
     請求項35に記載の荷電粒子装置。
    36. The charged particle device according to claim 35, wherein the degree of vacuum in the space in the first opening is higher than the degree of vacuum in the second opening.
  37.  前記真空形成部材は、前記物体と前記真空形成部材との間の間隙の排気抵抗によって前記空間と異なる他の空間との気圧の差が維持される前記空間を排気することによって真空を形成する、差動排気方式の真空形成部材である
     請求項1から36のいずれか一項に記載の荷電粒子装置。
    The vacuum forming member forms a vacuum by evacuating the space in which a difference in atmospheric pressure between the space and the other space is maintained by an exhaust resistance of a gap between the object and the vacuum forming member. The charged particle device according to any one of claims 1 to 36, wherein the charged particle device is a differential evacuation type vacuum forming member.
  38.  前記試料のうち前記真空領域の吸引力が作用する部分に、前記吸引力とは逆向きの付与力を付与する付与装置
     を備える請求項1から37のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 1 to 37, further comprising: an applying device that applies an applying force in a direction opposite to the attracting force to a portion of the sample where the attracting force of the vacuum region acts.
  39.  前記付与力は前記吸引力に応じて定まる
     請求項38に記載の荷電粒子装置。
    The charged particle device according to claim 38, wherein the applying force is determined according to the attractive force.
  40.  前記付与力は、前記付与力が付与されていない場合と比較して、前記部分に作用する前記吸引力と前記付与力との合計を小さくすることが可能である
     請求項38又は39のいずれか一項に記載の荷電粒子装置。
    40. The application force can reduce the total of the suction force and the application force acting on the portion as compared with a case where the application force is not applied. The charged particle device according to one item.
  41.  前記付与力による影響は、前記吸引力による影響を相殺可能である
     請求項38から40のいずれか一項に記載の荷電粒子装置。
    41. The charged particle device according to any one of claims 38 to 40, wherein the influence of the applying force can cancel the influence of the attraction force.
  42.  前記吸引力は、前記試料から前記照射装置へと向かう第1方向に向けて前記試料の少なくとも一部を変位するように作用する成分を含み、
     前記付与力は、前記第1方向とは逆向きの第2方向に向けて前記試料の少なくとも一部を変位するように作用する成分を含む
     請求項38から41のいずれか一項に記載の荷電粒子装置。
    The suction force includes a component that acts to displace at least a part of the sample in a first direction from the sample toward the irradiation device;
    The charge according to any one of claims 38 to 41, wherein the applying force includes a component that acts to displace at least a part of the sample in a second direction opposite to the first direction. Particle equipment.
  43.  前記付与力は、前記付与力が付与されていない場合と比較して、前記吸引力に起因した前記試料の変形を抑制することが可能である
     請求項38から42のいずれか一項に記載の荷電粒子装置。
    43. The application force according to any one of claims 38 to 42, wherein the application force is capable of suppressing deformation of the sample due to the suction force as compared to a case where the application force is not applied. Charged particle device.
  44.  前記付与力は、前記付与力が付与されていない場合と比較して、前記試料の前記荷電粒子ビームが照射される面を平面に近づけることが可能である
     請求項38から43のいずれか一項に記載の荷電粒子装置。
    44. The application force can bring the surface of the sample irradiated with the charged particle beam closer to a plane as compared to a case where the application force is not applied. The charged particle device described in 1.
  45.  前記付与装置は、前記試料の前記荷電粒子ビームが照射される面の一部に局所的に前記付与力を付与する
     請求項38から44のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 38 to 44, wherein the applying device locally applies the applying force to a part of a surface of the sample irradiated with the charged particle beam.
  46.  前記付与力は、前記試料のうち前記吸引力が加えられている被吸引部分に付与される
     請求項38から45のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 38 to 45, wherein the applying force is applied to a portion to be sucked to which the suction force is applied in the sample.
  47.  前記付与力は、前記試料のうち前記吸引力に起因して変形する変形部分に付与される
     請求項38から46のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 38 to 46, wherein the applying force is applied to a deformed portion of the sample that deforms due to the suction force.
  48.  前記付与力は、前記試料のうち前記真空領域に面する真空部分に付与される
     請求項38から47のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 38 to 47, wherein the applying force is applied to a vacuum portion of the sample that faces the vacuum region.
  49.  前記付与力は、前記試料のうち前記荷電粒子ビームの照射領域が設定される被照射部分に付与される
     請求項38から48のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 38 to 48, wherein the applying force is applied to an irradiated portion of the sample where an irradiation region of the charged particle beam is set.
  50.  前記付与装置が前記付与力を付与する位置は変化する
     請求項38から49のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 38 to 49, wherein a position where the applying device applies the applying force changes.
  51.  前記照射装置は、前記試料の表面に沿った方向における前記試料と前記荷電粒子ビームの照射領域との相対位置を変更し、前記荷電粒子ビームを照射し、
     前記付与装置は、前記付与力を付与する位置を前記試料と前記照射領域との前記相対位置に応じて変更する
     請求項38から50のいずれか一項に記載の荷電粒子装置。
    The irradiation apparatus changes a relative position between the sample and the irradiation region of the charged particle beam in a direction along the surface of the sample, and irradiates the charged particle beam,
    The charged particle device according to any one of claims 38 to 50, wherein the applying device changes a position to which the applying force is applied according to the relative position between the sample and the irradiation region.
  52.  前記真空形成部材は、前記試料の表面に沿った方向における前記試料と前記真空領域との相対位置を変更し、
     前記付与装置は、前記付与力を付与する位置を前記試料と前記真空領域との前記相対位置に応じて変更する
     請求項38から51のいずれか一項に記載の荷電粒子装置。
    The vacuum forming member changes a relative position between the sample and the vacuum region in a direction along the surface of the sample,
    The charged particle device according to any one of claims 38 to 51, wherein the applying device changes a position to which the applying force is applied according to the relative position between the sample and the vacuum region.
  53.  前記付与装置は、夫々が異なる位置に前記付与力を付与可能な複数の付与機構を含んでおり、
     前記付与装置は、前記複数の付与機構のうち前記付与力を付与するべき少なくとも一つの付与機構の選択を変更することで、前記付与力を付与する位置を変更する
     請求項38から52のいずれか一項に記載の荷電粒子装置。
    The application device includes a plurality of application mechanisms each capable of applying the application force to different positions.
    The said grant apparatus changes the position which provides the said grant force by changing selection of the at least 1 grant mechanism which should give the said grant force among these several grant mechanisms. The charged particle device according to one item.
  54.  前記試料と前記付与装置との相対位置を変更する位置変更装置を更に備え、
     前記付与装置は、前記位置変更装置による前記試料と前記付与装置との前記相対位置の変更により、前記付与力を付与する位置を変更する
     請求項38から53のいずれか一項に記載の荷電粒子装置。
    A position changing device for changing the relative position between the sample and the applying device;
    54. The charged particle according to claim 38, wherein the applying device changes a position to which the applying force is applied by changing the relative position between the sample and the applying device by the position changing device. apparatus.
  55.  前記付与装置は、電磁相互作用に起因した力を前記付与力として付与する電磁力付与装置を含む
     請求項38から54のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 38 to 54, wherein the applying device includes an electromagnetic force applying device that applies a force resulting from electromagnetic interaction as the applying force.
  56.  前記真空領域の気圧は、1×10-3パスカル以下である
     請求項1から55のいずれか一項に記載の荷電粒子装置。
    56. The charged particle device according to any one of claims 1 to 55, wherein an air pressure in the vacuum region is 1 × 10 −3 Pascal or less.
  57.  前記真空形成部材と前記物体との間の距離は、1μm以上且つ10μm以下である
     請求項1から56のいずれか一項に記載の荷電粒子装置。
    57. The charged particle device according to claim 1, wherein a distance between the vacuum forming member and the object is 1 μm or more and 10 μm or less.
  58.  前記物体の前記面の少なくとも一部は、前記真空領域の少なくとも一部に面する
     請求項1から57のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to claim 1, wherein at least a part of the surface of the object faces at least a part of the vacuum region.
  59.  前記物体の前記面の少なくとも一部は、前記真空領域の少なくとも一部に覆われる
     請求項1から58のいずれか一項に記載の荷電粒子装置。
    59. The charged particle device according to any one of claims 1 to 58, wherein at least a part of the surface of the object is covered with at least a part of the vacuum region.
  60.  前記物体の前記面の一部は、前記真空領域に面し、前記物体の前記面の他の一部は、大気圧領域に面する
     請求項1から59のいずれか一項に記載の荷電粒子装置。
    The charged particle according to any one of claims 1 to 59, wherein a part of the surface of the object faces the vacuum region, and another part of the surface of the object faces an atmospheric pressure region. apparatus.
  61.  前記物体の前記面は、前記試料の表面の少なくとも一部を含む
     請求項1から60のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 1 to 60, wherein the surface of the object includes at least a part of a surface of the sample.
  62.  前記物体の前記面は、前記試料を保持する部材の表面の少なくとも一部を含む
     請求項1から61のいずれか一項に記載の荷電粒子装置。
    The charged particle apparatus according to any one of claims 1 to 61, wherein the surface of the object includes at least a part of a surface of a member that holds the sample.
  63.  前記物体の前記面は、前記試料と前記真空形成部材との間に配置される部材の表面の少なくとも一部を含む
     請求項1から62のいずれか一項に記載の荷電粒子装置。
    The charged particle device according to any one of claims 1 to 62, wherein the surface of the object includes at least a part of a surface of a member disposed between the sample and the vacuum forming member.
  64.  前記真空領域の真空度は、前記真空形成部材の外部の空間のうち前記真空領域が形成される空間とは異なる他の空間の真空度と比較して高く維持される
     請求項1から63のいずれか一項に記載の荷電粒子装置。
    64. The degree of vacuum in the vacuum region is maintained higher than the degree of vacuum in a space outside the vacuum forming member that is different from the space in which the vacuum region is formed. The charged particle device according to claim 1.
  65.  請求項1から64のいずれか一項に記載の荷電粒子装置と、
     大気圧下で前記試料を計測する計測装置と
     を備え、
     前記荷電粒子装置は、前記荷電粒子ビームが照射された前記試料からの荷電粒子の検出結果に基づいて、前記試料を計測する荷電粒子線計測装置である
     計測システム。
    A charged particle device according to any one of claims 1 to 64;
    A measuring device for measuring the sample under atmospheric pressure,
    The charged particle device is a charged particle beam measurement device that measures the sample based on a detection result of charged particles from the sample irradiated with the charged particle beam.
  66.  前記計測装置で計測される前記試料上の領域の少なくとも一部を、前記荷電粒子線計測装置で計測する
     請求項65に記載の計測システム。
    The measurement system according to claim 65, wherein at least a part of a region on the sample measured by the measurement device is measured by the charged particle beam measurement device.
  67.  前記領域には、所定の指標物が形成されている
     請求項66に記載の計測システム。
    The measurement system according to claim 66, wherein a predetermined index object is formed in the region.
  68.  前記領域にはレジストパターンが形成されている
     請求項66又は65に記載の計測システム。
    The measurement system according to claim 66, wherein a resist pattern is formed in the region.
  69.  前記荷電粒子線計測装置は、前記試料の内部に形成されたパターンに関する情報を取得する
     請求項65から67のいずれか一項に記載の計測システム。
    The measurement system according to any one of claims 65 to 67, wherein the charged particle beam measurement apparatus acquires information related to a pattern formed in the sample.
  70.  前記計測装置による計測後に、前記荷電粒子線計測装置による計測を行う
     請求項65から69のいずれか一項に記載の計測システム。
    The measurement system according to any one of claims 65 to 69, wherein measurement is performed by the charged particle beam measurement device after measurement by the measurement device.
  71.  前記計測装置による計測と、前記荷電粒子線計測装置による計測とを並行して行う
     請求項65から70のいずれか一項に記載の計測システム。
    The measurement system according to any one of claims 65 to 70, wherein the measurement by the measurement device and the measurement by the charged particle beam measurement device are performed in parallel.
  72.  前記計測装置は、前記試料上の一の領域が前記真空領域に覆われていない期間中に、前記試料上の前記一の領域を計測する
     請求項65から71のいずれか一項に記載の計測システム。
    The measurement according to any one of claims 65 to 71, wherein the measurement device measures the one region on the sample during a period in which the one region on the sample is not covered with the vacuum region. system.
  73.  前記計測装置は、前記試料上の一の領域に前記荷電粒子ビームが照射されていない期間中に、前記試料上の前記一の領域を計測する
     請求項65から71のいずれか一項に記載の計測システム。
    The measurement device according to any one of claims 65 to 71, wherein the measurement device measures the one region on the sample during a period in which the charged particle beam is not irradiated on the one region on the sample. Measuring system.
  74.  前記計測装置は、光学顕微鏡及び回折干渉計の少なくとも一方を含み、
     前記回折干渉計は、前記試料上の前記指標物または前記レジストパターンを照射して回折された回折光同士を互いに干渉させて得られる干渉光を検出することで前記試料を計測する
     請求項65から73のいずれか一項に記載の計測システム。
    The measurement device includes at least one of an optical microscope and a diffraction interferometer,
    66. The diffraction interferometer measures the sample by detecting interference light obtained by causing the diffracted light diffracted by irradiating the index object or the resist pattern on the sample to interfere with each other. 74. The measurement system according to any one of 73.
  75.  前記計測装置が前記試料を計測するとき、前記気圧調整装置は前記第2空間の気圧を第1の気圧に調整し、
     前記荷電粒子装置が前記試料を計測するとき、前記気圧調整装置は前記第2空間の気圧を前記第1の気圧と異なる第2の気圧に調整する
     請求項65から74に記載の計測システム。
    When the measurement device measures the sample, the atmospheric pressure adjustment device adjusts the atmospheric pressure of the second space to the first atmospheric pressure,
    The measurement system according to any one of claims 65 to 74, wherein when the charged particle device measures the sample, the atmospheric pressure adjustment device adjusts the atmospheric pressure in the second space to a second atmospheric pressure different from the first atmospheric pressure.
  76.  前記第2の気圧は、前記第1の気圧より低い
     請求項75に記載の計測システム。
    The measurement system according to claim 75, wherein the second atmospheric pressure is lower than the first atmospheric pressure.
  77.  前記第2空間は、複数の区画に分割されており、
     前記気圧調整装置は、前記複数の区画の気圧を変更することで、
     前記荷電粒子装置が前記試料を計測する位置の裏面の気圧を前記第2の気圧に変更し、
     前記計測装置が前記試料を計測する位置の裏面を前記第1の気圧に変更する、
     請求75又は76に記載の計測システム。
    The second space is divided into a plurality of sections,
    The atmospheric pressure adjustment device changes the atmospheric pressure of the plurality of sections,
    Changing the pressure on the back of the position where the charged particle device measures the sample to the second pressure,
    Changing the back surface of the position where the measurement device measures the sample to the first atmospheric pressure;
    The measurement system according to claim 75 or 76.
  78.  物体の面に接する第1空間の気体を管路を介して排出して、真空領域を形成することと、
     前記真空領域の周囲の前記真空領域よりも気圧が高い空間の少なくとも一部の気体を、前記管路を介して排出することと、
     前記真空領域の少なくとも一部を含む通過空間を通過した荷電粒子ビームを試料に照射することと、
     前記試料と前記真空領域との相対位置を変更することと、
     前記試料の前記荷電粒子ビームが照射される面とは反対側に位置する前記試料の他方の面に面し且つ複数の区画に分割された第2空間において、前記複数の区画のうち一部の区画の気圧を前記複数の区画の他の区画と異ならせることで、前記第2空間のうち、前記試料に対して相対位置が変更された前記真空領域と前記試料を挟んで対向する領域の気圧と前記真空領域の気圧との差を低減することと
     を含む荷電粒子ビームの照射方法。
    Exhausting the gas in the first space in contact with the surface of the object through a conduit to form a vacuum region;
    Exhausting at least a portion of a gas in a space having a higher atmospheric pressure than the vacuum region around the vacuum region through the conduit;
    Irradiating the sample with a charged particle beam that has passed through a passage space including at least a part of the vacuum region;
    Changing the relative position of the sample and the vacuum region;
    In a second space that faces the other surface of the sample located on the opposite side of the surface to which the charged particle beam of the sample is irradiated and is divided into a plurality of partitions, a part of the plurality of partitions By differentiating the air pressure in the compartments from the other compartments in the plurality of compartments, the air pressure in the second space and the area opposite to the sample with the vacuum region whose relative position is changed with respect to the sample And reducing the difference between the pressure in the vacuum region and the charged particle beam irradiation method.
  79.  物体の面に接する第1空間の気体を管路を介して排出して、真空領域を形成することと、
     前記真空領域の周囲の前記真空領域よりも気圧が高い空間の少なくとも一部の気体を、前記管路を介して排出することと、
     前記真空領域の少なくとも一部を含む通過空間を通過した荷電粒子ビームを試料に照射することと、
     前記試料と前記真空領域との相対位置を変更することと、
     前記試料の前記荷電粒子ビームが照射される面とは反対側に位置する前記試料の他方の面に面する第2空間の一部の気圧を前記第2空間の他の部分の気圧より低減可能である排気装置と連通する開口を有する部材の、前記試料に対する相対位置を変更することで、第2空間のうち、前記試料に対して相対位置が変更された前記真空領域と前記試料を挟んで対向する領域の気圧と前記真空領域の気圧との差を低減することと
     を含む荷電粒子ビームの照射方法。
    Exhausting the gas in the first space in contact with the surface of the object through a conduit to form a vacuum region;
    Exhausting at least a portion of a gas in a space having a higher atmospheric pressure than the vacuum region around the vacuum region through the conduit;
    Irradiating the sample with a charged particle beam that has passed through a passage space including at least a part of the vacuum region;
    Changing the relative position of the sample and the vacuum region;
    The pressure of a part of the second space facing the other surface of the sample located on the opposite side of the surface irradiated with the charged particle beam of the sample can be reduced from the pressure of the other part of the second space. By changing the relative position of the member having an opening communicating with the exhaust device that is relative to the sample in the second space, the vacuum region whose relative position is changed with respect to the sample is sandwiched between the sample and the vacuum region. A charged particle beam irradiation method comprising: reducing a difference between an air pressure in an opposing region and an air pressure in the vacuum region.
  80.  物体の面に接する第1空間の気体を管路を介して排出して、真空領域を形成することと、
     前記真空領域の周囲の前記真空領域よりも気圧が高い空間の少なくとも一部の気体を、前記管路を介して排出することと、
     前記真空領域の少なくとも一部を含む通過空間を通過した荷電粒子ビームを試料に照射することと、
     前記試料と前記真空領域との相対位置を変更することと、
     前記試料の前記荷電粒子ビームが照射される面とは反対側に位置する前記試料の他方の面に面する第2空間を前記試料と隔壁部とで囲み、前記第2空間と前記第2空間の外部との間に気圧差を形成することと、
     前記第2空間の気圧と前記真空領域の気圧との差を低減することと
     を含む荷電粒子ビームの照射方法。
    Exhausting the gas in the first space in contact with the surface of the object through a conduit to form a vacuum region;
    Exhausting at least a portion of a gas in a space having a higher atmospheric pressure than the vacuum region around the vacuum region through the conduit;
    Irradiating the sample with a charged particle beam that has passed through a passage space including at least a part of the vacuum region;
    Changing the relative position of the sample and the vacuum region;
    A second space facing the other surface of the sample located on the opposite side of the surface irradiated with the charged particle beam of the sample is surrounded by the sample and the partition wall, and the second space and the second space are enclosed. Forming a pressure difference with the outside of the
    Reducing the difference between the pressure in the second space and the pressure in the vacuum region.
  81.  物体上の第1空間に前記物体の表面の一部を覆う真空領域を局所的に形成可能な真空形成部材と、
     前記真空領域を介して前記物体に荷電粒子ビームを照射する照射装置と、
     前記物体と前記真空形成部材との相対位置を変更して、前記物体と前記真空領域との相対位置を変更する相対位置変更装置と、
     前記物体の前記荷電粒子ビームが照射される面とは反対側に位置する前記物体の他方の面に面する第2空間を複数の区画に分割する隔壁部材と、
     前記複数の区画のうち前記物体に対して相対位置が変更された前記真空領域と前記物体を挟んで対向する対向領域を含む一部の区画の気圧を前記複数の区画のうちの他の区画と異ならせて、前記対向領域の気圧と前記真空領域の気圧との差を大気圧と前記真空領域の気圧との差よりも低減させる気圧調整装置と
     を備える荷電粒子装置。
    A vacuum forming member capable of locally forming a vacuum region covering a part of the surface of the object in a first space on the object;
    An irradiation device for irradiating the object with a charged particle beam through the vacuum region;
    A relative position changing device for changing a relative position between the object and the vacuum forming member to change a relative position between the object and the vacuum region;
    A partition member that divides a second space facing the other surface of the object on the opposite side of the surface irradiated with the charged particle beam of the object into a plurality of sections;
    Among the plurality of compartments, the air pressure in a part of the plurality of compartments including the vacuum region whose relative position is changed with respect to the object and an opposing region that is opposed to the object is placed between the other compartments in the plurality of compartments. A charged particle device comprising: a pressure adjusting device that makes the difference between the air pressure in the opposite region and the air pressure in the vacuum region different from the difference between the atmospheric pressure and the air pressure in the vacuum region.
  82.  物体上の第1空間に前記物体の表面の一部を覆う真空領域を局所的に形成可能な真空形成部材と、
     前記真空領域を介して前記物体に荷電粒子ビームを照射する照射装置と、
     前記物体と前記真空形成部材との相対位置を変更して、前記物体と前記真空領域との相対位置を変更する相対位置変更装置と、
     前記物体の前記荷電粒子ビームが照射される面とは反対側に位置する前記物体の他方の面に面する第2空間の一部の気体を、前記第2空間内で移動可能な開口を介して排気する排気装置を備える気圧調整装置と
     を備え、
     前記気圧調整装置は、前記物体に対して相対位置が変更された前記真空領域と前記物体を挟んで対向する対向領域に前記開口を位置させて、前記対向領域の気圧と前記真空領域の気圧との差を大気圧と前記真空領域の気圧との差よりも低減させる
     荷電粒子装置。
    A vacuum forming member capable of locally forming a vacuum region covering a part of the surface of the object in a first space on the object;
    An irradiation device for irradiating the object with a charged particle beam through the vacuum region;
    A relative position changing device for changing a relative position between the object and the vacuum forming member to change a relative position between the object and the vacuum region;
    A part of the gas in the second space facing the other surface of the object located on the opposite side to the surface irradiated with the charged particle beam of the object is passed through an opening movable in the second space. And an air pressure adjusting device equipped with an exhaust device for exhausting air,
    The air pressure adjusting device positions the opening in a facing region facing the vacuum region whose relative position is changed with respect to the object, and the pressure in the facing region and the pressure in the vacuum region. A charged particle device that reduces the difference between the atmospheric pressure and the atmospheric pressure in the vacuum region.
  83.  物体上の第1空間に前記物体の表面の一部を覆う真空領域を局所的に形成可能な真空形成部材と、
     前記真空領域を介して前記物体に荷電粒子ビームを照射する照射装置と、
     前記物体の前記荷電粒子ビームが照射される面とは反対側に位置する前記物体の他方の面に面する第2空間を前記物体とともに囲み、前記第2空間と前記第2空間の外部との間に気圧差を形成可能な隔壁部と、
     前記第2空間の気圧と前記真空領域の気圧との差を大気圧と前記真空領域の気圧との差より低減可能である気圧調整装置と
     を備える荷電粒子装置。
    A vacuum forming member capable of locally forming a vacuum region covering a part of the surface of the object in a first space on the object;
    An irradiation device for irradiating the object with a charged particle beam through the vacuum region;
    A second space facing the other surface of the object located on the opposite side of the surface irradiated with the charged particle beam of the object is enclosed with the object, and the second space and the outside of the second space are A partition wall portion capable of forming a pressure difference therebetween,
    A charged particle device comprising: an atmospheric pressure adjustment device capable of reducing a difference between an atmospheric pressure in the second space and an atmospheric pressure in the vacuum region by a difference between an atmospheric pressure and an atmospheric pressure in the vacuum region.
  84.  請求項81から83のいずれか一項に記載の荷電粒子装置と、
     大気圧下で前記物体を計測する計測装置と
     を備え、
     前記荷電粒子装置は、前記荷電粒子ビームが照射された前記物体からの荷電粒子の検出結果に基づいて、前記物体を計測する荷電粒子線計測装置である
     計測システム。
    A charged particle device according to any one of claims 81 to 83;
    A measuring device for measuring the object under atmospheric pressure,
    The charged particle device is a charged particle beam measurement device that measures the object based on a detection result of charged particles from the object irradiated with the charged particle beam.
  85.  物体上の第1空間に前記物体の表面の一部を覆う真空領域を局所的に形成することと、
     前記真空領域を介して前記物体に荷電粒子ビームを照射することと、
     前記物体と前記真空領域との相対位置を変更することと、
     前記物体の前記荷電粒子ビームが照射される面とは反対側に位置する前記物体の他方の面に面し且つ複数の区画に分割された第2空間において、前記複数の区画のうち一部の区画の気圧を前記複数の区画の他の区画と異ならせることで、前記第2空間のうち、前記物体に対して相対位置が変更された前記真空領域と前記物体を挟んで対向する領域の気圧と前記真空領域の気圧との差を低減することと
     を含む荷電粒子ビームの照射方法。
    Locally forming a vacuum region covering a part of the surface of the object in a first space on the object;
    Irradiating the object with a charged particle beam through the vacuum region;
    Changing the relative position of the object and the vacuum region;
    In a second space facing the other surface of the object located on the opposite side of the surface irradiated with the charged particle beam of the object and divided into a plurality of sections, a part of the plurality of sections By changing the pressure of the compartments from the other compartments of the plurality of compartments, the air pressure in the second space that is opposed to the vacuum region, the relative position of which is changed with respect to the object, across the object And reducing the difference between the pressure in the vacuum region and the charged particle beam irradiation method.
  86.  物体上の第1空間に前記物体の表面の一部を覆う真空領域を局所的に形成することと、
     前記真空領域を介して前記物体に荷電粒子ビームを照射することと、
     前記物体と前記真空領域との相対位置を変更することと、
     前記物体の前記荷電粒子ビームが照射される面とは反対側に位置する前記物体の他方の面に面する第2空間の一部の気圧を前記第2空間の他の部分の気圧より低減可能である排気装置と連通する開口を有する部材の、前記物体に対する相対位置を変更することで、第2空間のうち、前記物体に対して相対位置が変更された前記真空領域と前記物体を挟んで対向する領域の気圧と前記真空領域の気圧との差を低減することと
     を含む荷電粒子ビームの照射方法。
    Locally forming a vacuum region covering a part of the surface of the object in a first space on the object;
    Irradiating the object with a charged particle beam through the vacuum region;
    Changing the relative position of the object and the vacuum region;
    The pressure of a part of the second space facing the other surface of the object located on the opposite side of the surface irradiated with the charged particle beam of the object can be reduced from the pressure of the other part of the second space. By changing the relative position of the member having an opening communicating with the exhaust device, which is relative to the object, between the vacuum region of the second space whose relative position is changed with respect to the object and the object A charged particle beam irradiation method comprising: reducing a difference between an air pressure in an opposing region and an air pressure in the vacuum region.
  87.  物体上の第1空間に前記物体の表面の一部を覆う真空領域を局所的に形成することと、
     前記真空領域を介して前記物体に荷電粒子ビームを照射することと、
     前記物体と前記真空領域との相対位置を変更することと、
     前記物体の前記荷電粒子ビームが照射される面とは反対側に位置する前記物体の他方の面に面する第2空間を前記物体と隔壁部とで囲み、前記第2空間と前記第2空間の外部との間に気圧差を形成することと、
     前記第2空間の気圧と前記真空領域の気圧との差を低減することと
     を含む荷電粒子ビームの照射方法。
    Locally forming a vacuum region covering a part of the surface of the object in a first space on the object;
    Irradiating the object with a charged particle beam through the vacuum region;
    Changing the relative position of the object and the vacuum region;
    A second space facing the other surface of the object located on the opposite side to the surface irradiated with the charged particle beam of the object is surrounded by the object and the partition wall, and the second space and the second space are enclosed. Forming a pressure difference with the outside of the
    Reducing the difference between the pressure in the second space and the pressure in the vacuum region.
PCT/JP2019/013191 2018-03-30 2019-03-27 Charged particle device, measurement system, and method for irradiating charged particle beam WO2019189360A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018070220A JP7000965B2 (en) 2018-03-30 2018-03-30 Charged particle device, measurement system, and irradiation method of charged particle beam
JP2018-070220 2018-03-30
JP2019052794A JP2020155313A (en) 2019-03-20 2019-03-20 Charged particle device, measurement system, and irradiation method of charged particle beam
JP2019-052794 2019-03-20

Publications (1)

Publication Number Publication Date
WO2019189360A1 true WO2019189360A1 (en) 2019-10-03

Family

ID=68059161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013191 WO2019189360A1 (en) 2018-03-30 2019-03-27 Charged particle device, measurement system, and method for irradiating charged particle beam

Country Status (2)

Country Link
TW (1) TW201942938A (en)
WO (1) WO2019189360A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126309A (en) * 1985-11-27 1987-06-08 Fujitsu Ltd Pattern inspection apparatus
JPS62163248A (en) * 1986-01-14 1987-07-20 Fujitsu Ltd Pattern inspection device
JPH09134949A (en) * 1995-10-27 1997-05-20 Samsung Aerospace Ind Ltd Vacuum chuck

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126309A (en) * 1985-11-27 1987-06-08 Fujitsu Ltd Pattern inspection apparatus
JPS62163248A (en) * 1986-01-14 1987-07-20 Fujitsu Ltd Pattern inspection device
JPH09134949A (en) * 1995-10-27 1997-05-20 Samsung Aerospace Ind Ltd Vacuum chuck

Also Published As

Publication number Publication date
TW201942938A (en) 2019-11-01

Similar Documents

Publication Publication Date Title
JP5141979B2 (en) Stage apparatus and exposure apparatus
WO2016092700A9 (en) Substrate holding apparatus, lithography apparatus, and article manufacturing method
WO2019189373A1 (en) Localized vacuum apparatus and vacuum area forming method
JP6087573B2 (en) Processing apparatus and article manufacturing method using the same
JP7000965B2 (en) Charged particle device, measurement system, and irradiation method of charged particle beam
JP2019179747A (en) Charged particle apparatus, measurement system, and charged particle beam irradiation method
WO2019189360A1 (en) Charged particle device, measurement system, and method for irradiating charged particle beam
WO2019189363A1 (en) Charged particle apparatus, measurement system, and method for irradiating charged particle beam
JP2019179751A (en) Local vacuum device, charged particle device, and method of forming vacuum region
KR20110033998A (en) Referenced inspection device
JP2020155313A (en) Charged particle device, measurement system, and irradiation method of charged particle beam
JP2020155314A (en) Charged particle device, measurement system, and irradiation method of charged particle beam
JP2008258477A (en) Processing equipment, and atmosphere exchanging method
JP2020155315A (en) Local vacuum device, charged particle device, vacuum region forming method and charged particle irradiation device
WO2017188343A1 (en) Holding device, exposure method, exposure system, and transfer system
JP2005116627A (en) Stage apparatus, aligner and device manufacturing method
WO2019189366A1 (en) Local vacuum device, charged particle device, method for forming vacuum region, and charged particle irradiation device
WO2019189382A1 (en) Localized vacuum apparatus, charged particle apparatus, and vacuum area forming method
WO2019189368A1 (en) Localized vacuum apparatus, charged particle apparatus, and vacuum area forming method
WO2019189376A1 (en) Localized vacuum apparatus, charged particle apparatus, and vacuum area forming method
WO2020194498A1 (en) Charged particle apparatus and information acquisition method
JP2001189374A (en) Substrate treatment apparatus and charged particle exposure system
JP2020155322A (en) Local vacuum device and vacuum region forming method
JP2002184664A (en) System and method for charged-particle-beam exposure, and stage device
JP2020155316A (en) Local vacuum device, charged particle device, and vacuum region forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777919

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19777919

Country of ref document: EP

Kind code of ref document: A1