WO2020211690A1 - 一种电机变磁通方法及装置 - Google Patents

一种电机变磁通方法及装置 Download PDF

Info

Publication number
WO2020211690A1
WO2020211690A1 PCT/CN2020/083840 CN2020083840W WO2020211690A1 WO 2020211690 A1 WO2020211690 A1 WO 2020211690A1 CN 2020083840 W CN2020083840 W CN 2020083840W WO 2020211690 A1 WO2020211690 A1 WO 2020211690A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic flux
adjusting
stator
motor
insert
Prior art date
Application number
PCT/CN2020/083840
Other languages
English (en)
French (fr)
Inventor
林中尉
Original Assignee
苏州阿福机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910315112.9A external-priority patent/CN109995210B/zh
Priority claimed from CN201920531413.0U external-priority patent/CN209963930U/zh
Application filed by 苏州阿福机器人有限公司 filed Critical 苏州阿福机器人有限公司
Publication of WO2020211690A1 publication Critical patent/WO2020211690A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details

Definitions

  • the invention relates to a method for changing the magnetic flux of a motor, in particular to a method for changing the magnetic flux of a permanent magnet synchronous motor.
  • motors With the popularization and expansion of motor applications, the performance requirements of motors have also increased accordingly. Especially in the field of new energy transportation, motors need to have high torque at low speeds and high power at high speeds. In addition, high efficiency is required under any circumstances. It is often difficult for general motors to meet this requirement. Take the permanent magnet synchronous motor as an example. If the rotor has a large torque at low speed, the magnetic field strength of the rotor will be very high.
  • variable-flux motors that is: at low speeds, they have a strong magnetic field, and at high speeds, the magnetic field becomes weaker to meet the requirements of high-speed operation.
  • the current main technical ideas are the following three types: memory motor, mechanical leakage motor and natural leakage motor.
  • the memory motor uses magnets that are easy to re-magnetize (equivalent to a memory function).
  • the rotor magnets are magnetized and demagnetized through the stator coil, so that the performance of the motor can meet the low-speed and high-speed requirements.
  • strong magnets such as neodymium iron boron
  • the magnetic density of the motor is lower, and the power density of the motor is lower.
  • the magnetization and demagnetization control algorithm is extremely complicated and difficult to control, and the industrialization conditions are not yet available.
  • the mechanical flux leakage motor uses a centrifugal magnetic permeable block and spring structure in the rotor. When the motor reaches a certain speed, the centrifugal force makes the magnetic permeable block close to the magnet. Part of the magnetic force of the magnet passes through the permeable block to form a loop to generate magnetic flux leakage and make the rotor The output magnetic force is reduced, thus playing the role of weakening the magnetic field.
  • the magnetic block is designed in a high-speed rotor, and it is difficult to control movement flexibility, dynamic balance, vibration, etc.
  • the internal environment of the motor is a complex and variable and high-strength magnetic field, and the movement of the magnetic block exists Due to greater uncertainty, in addition, the magnetic circuit design of this motor is also different from the general permanent magnet synchronous motor, so it is difficult to put into practical application.
  • Natural magnetic flux leakage motor through the magnetic pole structure design, the magnetic leakage is small at low speed, and the increase of magnetic leakage at high speed can naturally meet the requirement of reducing the magnetic flux supply at high speed.
  • the adjustment range is limited.
  • this magnetic structure will inevitably lead to the reduction of the q-axis inductance Lq (the flux linkage on the motor rotor can be decomposed into two mutually perpendicular coordinates, the d-axis and the q-axis), the reluctance torque is reduced, and the power Density decreases.
  • the purpose of the present invention is to provide a method for variable magnetic flux of a motor, which changes the effective magnetic flux of the motor by changing the stator magnetic permeability and controls the magnetic flux of the motor flux to meet the low-speed, high-torque, high-speed, high-power, and high-efficiency of the motor demand.
  • the magnetic flux of the stator is changed by changing the cross section of one or several parts of the stator flux linkage, thereby changing the magnetic flux of the motor.
  • stator magnetic flux is changed by changing the cross-sectional size of the stator core flux.
  • the stator core has a magnetic flux adjustment block that can be embedded in a groove on the outer circumference of the iron core.
  • the magnetic flux adjustment block is embedded in the groove or the magnetic flux adjustment block is far away Notch, while changing the stator flux.
  • two tapered adjusting sleeves are provided at both ends of the stator iron core; the diameter of the tapered adjusting sleeve near the end of the iron core is smaller; the two ends of the magnetic flux adjusting block are connected to the two tapered adjusting sleeves.
  • the tapered surfaces are in sliding contact; when the two tapered adjusting sleeves move toward or away from each other, the magnetic flux adjusting block moves away from or approaches the groove in the radial direction.
  • the stator core has inserts embedded in the sliding groove on the outer periphery of the iron core and contacting the bottom surface of the sliding groove. Both sides of the insert and both sides of the sliding groove have The gap, by moving the insert in the circumferential direction of the stator, changes the size of the gap between the insert and the two sides of the sliding groove, and changes the size of the magnetic resistance of the stator core, thereby changing the stator flux.
  • an insert adjusting ring that rotates around the stator axis is arranged on the outer circumference of the stator core, and the outer circumference of the insert is fixedly connected with the insert adjusting ring; when the insert adjusting ring rotates, the insert is driven to move in the chute, thereby changing the insert.
  • This patent also provides a motor variable flux device with simple structure and convenient operation. It changes the effective magnetic flux of the motor by changing the stator magnetic permeability, and controls the magnetic flux of the motor flux to meet the low-speed, high-torque, and high-speed Power and high efficiency requirements.
  • the stator iron core has inserts embedded in the sliding groove on the outer circumference of the iron core and contacting the bottom surface of the sliding groove, and there is a gap on both sides of the insert and both sides of the sliding groove. It also includes an adjusting device that drives the insert to move in the circumferential direction of the stator to change the size of the gap between the insert and the two sides of the sliding groove.
  • the adjusting device includes an insert adjusting ring arranged on the outer circumference of the stator iron core and rotating around the stator axis, and the insert adjusting ring is fixedly connected with the insert adjusting ring.
  • the gear ring is fixed on the insert adjusting ring, and the insert adjusting gear shaft connected with the output shaft of the insert adjusting motor meshes with the gear ring.
  • This patent also provides another motor variable flux device with simple structure and convenient operation. It changes the effective magnetic flux of the motor by changing the stator magnetic permeability and controls the magnetic flux of the motor flux to meet the low-speed, high-torque and High-speed, high-power, and high-efficiency requirements.
  • the stator iron core has a magnetic flux adjusting block that can be embedded in a groove on the outer circumference of the iron core. It also includes a magnetic flux adjusting block that drives the magnetic flux adjusting block to move in the radial direction of the stator so that the magnetic flux adjusting block is embedded Groove or adjusting device that keeps the magnetic flux adjusting block away from the groove;
  • the adjusting device includes two tapered adjusting sleeves respectively provided at the two ends of the stator iron core; the diameter of the tapered adjusting sleeve close to the end of the iron core is smaller; it includes two ends of the magnetic flux adjusting block and two A force applying device for keeping the tapered surfaces of the tapered adjusting sleeve in contact; when the two tapered adjusting sleeves move toward or away from each other, the magnetic flux adjusting block moves away from or approaches the groove in the radial direction.
  • the urging device is a spring.
  • the magnetic flux adjusting block is a magnet
  • the force applying device is a magnetic flux adjusting block and an iron core that are attracted by magnetism.
  • the adjusting device includes a drive motor located on the outer circumference of the stator core, two lead screws connected to both ends of the output shaft of the drive motor, and a nut matched with the lead screw; the thread direction on the two lead screws
  • the two cone adjusting sleeves are respectively connected with the two nuts, and the driving motor is operated, and the two nuts are driven to move toward or away from each other through the lead screw, thereby driving the two cone adjusting sleeves to move toward or away from each other.
  • the urging device is a compression spring with a spring support ring connected to the drive motor housing on the outer periphery of the stator core, and the compression spring is arranged between the magnetic flux adjustment block and the spring support ring.
  • the section of one or several parts of the stator flux is designed to be variable, and the magnetic flux of the stator is changed by changing the shape, size or structure of the section.
  • the stator magnetic flux reaches saturation, the magnetic force of the part of the rotor exceeding the stator saturation magnetic flux cannot pass through the stator core, thereby reducing the saturation back electromotive force that can be generated in the coil when the rotor rotates (the electromotive force is the maximum back electromotive force that the saturation magnetic flux can produce Electromotive force), without changing the magnetic force of the rotor, realize the controllable change of the magnetic flux of the motor.
  • the existing technical routes are all changing the magnetic flux of the rotor. Because the rotor is in a high-speed operation state, it is difficult to change various mechanical or magnetic flux inside. Monitoring and control, so the method of changing the rotor flux is difficult to achieve, or the cost is too high. As for the motor as a whole, the flux linkage between the rotor and the stator is related. For this reason, we change the effective magnetic flux of the motor by changing the stator magnetic permeability, and control the flux of the motor flux to meet the low speed, high torque and High-speed, high-power, and high-efficiency requirements. The structure of changing the magnetic flux of the motor is placed on the stator, which avoids many uncertainties in the design of the rotor, and makes the industrial application of the variable magnetic flux motor possible.
  • the motor variable flux method proposed by the present invention is not limited by the form of the motor, and can be used in any motor that requires variable magnetic flux, and is not limited by specific measures to change the stator saturation magnetic flux, and is also not subject to flux adjustment blocks, concave Restrictions on the shape and quantity of grooves, inserts, chutes, etc.
  • Figure 1 is a schematic diagram of the relative relationship between the iron core and the magnetic flux regulating block when the magnetic flux regulating block is embedded in the groove;
  • FIG. 2 is a schematic diagram of the relative relationship between the iron core, the tapered adjusting sleeve and the magnetic flux adjusting block when the magnetic flux adjusting block is inserted into the groove;
  • Figure 3 is a schematic diagram of the relative relationship between the iron core and the magnetic flux regulating block when the magnetic flux regulating block is separated from the groove;
  • FIG. 4 is a schematic diagram of the relative relationship between the iron core, the tapered adjusting sleeve and the magnetic flux adjusting block when the magnetic flux adjusting block is separated from the groove;
  • Figure 5 is a schematic diagram showing a variable magnetic flux device for a motor with a specific adjusting device
  • Figure 6 is a perspective view of a variable magnetic flux device for a motor with a variable gap
  • Figure 7 is a diagram showing the relationship between gap ⁇ and magnetic flux T
  • Figure 8 is a schematic diagram when the insert is located in the middle of the chute
  • Figure 9 is a schematic diagram when the insert is located on one side of the chute.
  • stator core 1 the slot 11, the groove 2, the magnetic flux adjusting block 3, the tapered surface 31 of the magnetic flux adjusting block, the tapered adjusting sleeve 4, the tapered surface 41 of the tapered adjusting sleeve;
  • Example 1 Motor variable flux device with variable iron core cross-sectional shape and size
  • the stator core 1 with slot 11 has a magnetic flux regulating block 3 that can be inserted into the groove 2 on the outer periphery of the core.
  • Two tapered adjusting sleeves 4 are respectively provided at the ends.
  • the tapered surface 41 of the tapered adjusting sleeve has a smaller diameter close to the end of the iron core and a larger diameter away from the end of the iron core.
  • the two ends of the magnetic flux adjusting block 3 have tapered surfaces 31 that are in sliding contact with the tapered surfaces 41 of the two tapered adjusting sleeves.
  • a spring can be provided, which in the normal state makes the magnetic flux adjusting block 3 have a radial direction along the stator Trend to move to groove 2.
  • the magnetic flux adjusting block 3 adopts a magnet that can attract the magnetism of the iron core 1 in the radial direction of the stator, so that the structure is simpler.
  • a force applying device a spring or a magnetic flux adjusting block and an iron core that are magnetically attracted keeps the two ends of the magnetic flux adjusting block in contact with the tapered surfaces of the two tapered adjusting sleeves.
  • the device changes the stator magnetic flux and the entire magnetic flux of the motor by changing the cross-sectional shape and size of the iron core of the stator.
  • FIG. 5 shows a specific adjustment device, including two symmetrical drive motors 12 located on the outer circumference of the stator core 1 (of course, only one drive motor can be used), two connected to the two ends of the drive motor output shaft Lead screw 13, nut 14, compression spring 15, and compression spring support ring 16.
  • the two lead screws 13 connected to the output shaft of the same drive motor have opposite thread directions, and the two lead screws connected to the output shafts of different drive motors close to the same end of the stator core have the same thread direction.
  • Each conical adjusting sleeve 4 is fixedly connected with two nuts 14.
  • the two driving motors act synchronously, and the nuts fixed on the two tapered adjusting sleeves 4 are driven to move toward or away from each other through the lead screw, thereby driving the two tapered adjusting sleeves to move toward or away from each other.
  • a compression spring support ring 16 connected to the housing of the drive motor is provided on the outer circumference of the stator core, and a compression spring 15 is provided between each magnetic flux adjustment block and the compression spring support ring.
  • the compression spring 15 keeps the tapered surfaces 31 at both ends of the magnetic flux adjusting block 3 in contact with the tapered surfaces 41 of the two tapered adjusting sleeves.
  • Embodiment 2 Motor variable flux device with variable gap size
  • the stator core 1 with slot 11 has inserts 6 embedded in the sliding groove 5 on the outer circumference of the iron core and contacting the bottom surface of the sliding groove. There is a gap between the two sides of the insert and the two sides of the sliding groove. .
  • An insert adjusting ring 7 rotating around the stator axis is arranged on the outer circumference of the stator core, and the outer circumference of the insert 6 is fixedly connected with the inner circumference of the insert adjusting ring 7.
  • the outer circumference of the insert adjusting ring 7 is provided with two gear rings 9 meshing with the insert adjusting gear shaft 8, and the insert adjusting gear shaft 8 is connected with the output shaft of the insert adjusting motor 10.
  • the insert adjusting motor 10 drives the insert adjusting gear shaft 8 to rotate, and the insert adjusting ring 7 rotates through the ring gear 9, and the insert 6 moves in the sliding groove 5, thereby changing the gap between the insert 6 and the two sides of the sliding groove 5 .
  • the device can design the corresponding gap ⁇ according to the needs, obtain the variable magnetic resistance law, so as to realize the required variable magnetic flux control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

本发明提供一种电机变磁通方法及装置,它是通过改变定子导磁能力以改变电机有效磁通,控制电机磁链的磁通量,以满足电机的低速大扭矩和高速大功率、高效率的需求。该方法,是通过改变定子磁链某个或几个部位截面,改变定子的磁通,从而改变电机磁通。一种电机变磁通装置是在定子铁芯上具有可嵌入铁芯外周上的凹槽内的磁通调节块,及一个带动磁通调节块在定子径向方向移动、使得磁通调节块嵌入凹槽或者使得磁通调节块远离凹槽的调节装置。另一种电机变磁通装置是在定子铁芯上具有嵌入铁芯外周上的滑槽内并与滑槽底面接触的镶块,镶块的两侧与滑槽的两侧面均有间隙,及一个带动镶块在定子周向移动以改变镶块与滑槽两侧的间隙大小的调节装置。

Description

一种电机变磁通方法及装置 技术领域
本发明涉及改变电机磁通的方法,尤其是改变永磁同步电机磁通的方法。
背景技术
随着电机应用的普及和扩大,对电机的性能要求也相应提高,尤其在新能源交通领域,需要电机在低速时具有大扭矩,高速时具有高功率,另外,任何情况下都需要高效率,而一般电机往往很难达到这一要求。以永磁同步电机为例,如果低速时具备大扭矩,则转子的磁场强度就要很高,但是,高的磁场强度在电机高速运行时,自感电动势会抑制电机转速的提高,使电机无法高转速运行,为此,不得不采用弱磁控制,即:用一部分定子电流与磁钢磁力抵消,以降低磁场强度,从而提高转速,但是过大的弱磁电流有使磁钢退磁的风险,且退磁电流大幅度增加了定子的铜耗,使电机的效率下降。
为了解决电机高速效率低的问题,人们开始研究可变磁通电机,即:在低速时,具有强磁场,在高速时磁场变弱,以满足高速运行的要求。目前的主要技术思路是一下三种:记忆电机、机械漏磁电机和自然漏磁电机。
记忆电机部分或全部采用便于重新充磁的磁体(相当于具有记忆功能),根据电机运行的需要,通过定子线圈,对转子磁体进行充磁和退磁,使电机的性能满足低速和高速需求,但是这种电机的磁体磁密度相对于钕铁硼之类的强磁体小,电机功率密度小,另外,充磁和退磁控制算法极其复杂,控制困难,目前尚不具备产业化条件。
机械漏磁电机,是在转子内采用离心导磁块和弹簧结构,当电机达到一定转速后,离心力使导磁块贴近磁体,磁体的一部分磁力经过导磁块构成回路,产生漏磁,使转子输出的磁力减小,从而起到弱磁作用。但是,这种结构,导磁块设计在高速运行的转子中,运动灵活性、动平衡、震动等很难控制,加之电机内部环境是复杂多变和高强度的磁场,导磁块的运动存在着较大的不确定性,另外,这种电机的磁路设计也不同于一般的永磁同步电机,因此很难投入实际应用。
自然漏磁电机,通过磁极结构设计,在低速时漏磁小,高速时漏磁增多就能自然的达到在高速时,减少磁通量供给这种要求。但是,调节幅度有限,另外,这种磁结构必然导致q轴电感Lq(电机转子上的磁链可分解为d轴和q轴两个相互垂直的坐标)减小,磁阻转矩下降,功率密度降低。
发明内容
本发明的目的提供一种电机变磁通方法,它是通过改变定子导磁能力以改变电机有效磁 通,控制电机磁链的磁通量,以满足电机的低速大扭矩和高速大功率、高效率的需求。
本发明所述的电机变磁通方法,通过改变定子磁链某个或几个部位截面,改变定子的磁通,从而改变电机磁通。
作为对上述的电机变磁通方法的进一步改进,通过改变定子的铁芯磁链的截面大小改变定子磁通。
例如,定子铁芯上具有可嵌入铁芯外周上的凹槽内的磁通调节块,通过改变磁通调节块的径向位置,使得磁通调节块嵌入凹槽,或者使得磁通调节块远离凹槽,而改变定子磁通。最好,在定子铁芯的两端处分别设置有两个锥形调节套;锥形调节套靠近铁芯端部的直径较小;磁通调节块的两端与两个锥形调节套的锥面滑动接触;当两个锥形调节套相向或者相背移动时,磁通调节块沿径向方向远离或者靠近凹槽。
作为对上述的电机变磁通方法的进一步改进,定子铁芯上具有嵌入铁芯外周上的滑槽内并与滑槽底面接触的镶块,镶块的两侧与滑槽的两侧面均有间隙,通过在定子周向移动镶块,改变镶块与滑槽两侧的间隙大小,改变定子铁芯的磁阻大小,从而改变定子磁通。最好,定子铁芯外周设置一个绕定子轴线转动的镶块调节圈,镶块外周与镶块调节圈固定相连;当镶块调节圈转动时,带动镶块在滑槽内移动,从而改变镶块与滑槽两侧的间隙大小。
本专利同时提供一种结构简单、操作方便的电机变磁通装置,它是通过改变定子导磁能力以改变电机有效磁通,控制电机磁链的磁通量,以满足电机的低速大扭矩和高速大功率、高效率的需求。
本专利所述的电机变磁通装置,定子铁芯上具有嵌入铁芯外周上的滑槽内并与滑槽底面接触的镶块,镶块的两侧与滑槽的两侧面均有间隙,它还包括带动镶块在定子周向移动以改变镶块与滑槽两侧的间隙大小的调节装置。
上述的电机变磁通装置,所述调节装置包括在定子铁芯外周设置的一个绕定子轴线转动的镶块调节圈,镶块外周与镶块调节圈固定相连。
上述的电机变磁通装置,镶块调节圈上固定齿圈,与镶块调节电机输出轴相连的镶块调节齿轮轴与齿圈啮合。
本专利还提供了另外一种结构简单、操作方便的电机变磁通装置,它是通过改变定子导磁能力以改变电机有效磁通,控制电机磁链的磁通量,以满足电机的低速大扭矩和高速大功率、高效率的需求。
该电机变磁通装置,定子铁芯上具有可嵌入铁芯外周上的凹槽内的磁通调节块,它还包括一个带动磁通调节块在定子径向方向移动、使得磁通调节块嵌入凹槽或者使得磁通调节块远离凹槽的调节装置;
所述调节装置包括在定子铁芯的两端处分别设置的两个锥形调节套;锥形调节套靠近铁芯端部的直径较小;它包括使得磁通调节块的两端与两个锥形调节套的锥面保持接触的施力装置;当两个锥形调节套相向或者相背移动时,磁通调节块沿径向方向远离或者靠近凹槽。
上述的电机变磁通装置,施力装置为弹簧。
上述的电机变磁通装置,磁通调节块为磁体,施力装置为通过磁性相吸的磁通调节块和铁芯。
上述的电机变磁通装置,所述调节装置包括位于定子铁芯外周的驱动电机、连接在驱动电机输出轴两端的两根丝杠、与丝杠配合的螺母;两根丝杠上的螺纹方向相反,两个锥形调节套分别与两个螺母连接,驱动电机动作,通过丝杠带动两个螺母相向或相背移动,从而带动两个锥形调节套相向或者相背移动。优选,施力装置为压簧,在定子铁芯外周具有连接在驱动电机壳体上的弹簧支撑圈,在磁通调节块与弹簧支撑圈之间设置所述压簧。
本发明的有益效果:将定子磁链的某个或几个部位截面,设计为可变,通过改变截面的形状、大小或者构造,改变定子的磁通。当定子磁通达到饱和时,转子超过定子饱和磁通部分的磁力无法通过定子铁芯,从而降低转子转动时在线圈内所能产生的饱和反电动势(该电动势是饱和磁通所能产生的最大反电动势),在不改变转子磁力的情况下,实现电机的磁通可控变化。
在实现电机可变磁通的技术发展过程中,现有的技术路线都是在改变转子的磁通,由于转子处于高速运行状态,其内部的各种机械或磁通方面的变化是很难进行监测和控制的,所以改变转子磁通的方法难于实现,或者成本太高。而电机作为一个整体,转子与定子的磁链是关联在一起的,为此,我们通过改变定子导磁能力以改变电机有效磁通,控制电机磁链的磁通量,以满足电机的低速大扭矩和高速大功率、高效率的需求。把改变电机磁通的结构等放在定子上,避免了设计在转子内的诸多不确定性,使可变磁通电机的产业化应用成为可能。
本发明提出的电机变磁通方法不受电机形式限制,可以用于任何需要可变磁通的电机,也不受改变定子饱和磁通的具体措施的限制,也不受磁通调节块、凹槽或者镶块、滑槽等形状、数量的限制。
附图说明
图1是磁通调节块嵌入凹槽时铁芯与磁通调节块相对关系示意图;
图2是磁通调节块嵌入凹槽时铁芯、锥形调节套与磁通调节块相对关系示意图;
图3是磁通调节块脱离凹槽时铁芯与磁通调节块相对关系示意图;
图4是磁通调节块脱离凹槽时铁芯、锥形调节套与磁通调节块相对关系示意图;
图5是示出了一种带有具体调节装置的电机变磁通装置示意图;
图6是间隙大小可变的电机变磁通装置立体图;
图7是间隙δ与磁通T关系图;
图8是镶块位于滑槽中间时示意图;
图9是镶块位于滑槽一侧时示意图。
图中,定子铁芯1,线槽11,凹槽2,磁通调节块3,磁通调节块的锥面31,锥形调节套4,锥形调节套的锥面41;
滑槽5,镶块6,镶块调节圈7,镶块调节齿轮轴8,齿圈9,镶块调节电机10;
驱动电机12,丝杠13,螺母14,压簧15,压簧支撑圈16。
具体实施方式
实施例1:铁芯横截面形状、大小可变的电机变磁通装置
参见图1、3所示的电机变磁通装置,在开有线槽11的定子铁芯1上具有可嵌入铁芯外周上的凹槽2内的磁通调节块3,在定子铁芯的两端处分别设置有两个锥形调节套4,在定子轴向方向锥形调节套的锥面41靠近铁芯端部的直径较小、远离铁芯端部的直径较大。
磁通调节块3的两端具有与两个锥形调节套的锥面41滑动接触的锥面31。
为了使得磁通调节块3的两端锥面31与两个锥形调节套的锥面41保持接触,可以在设置弹簧,该弹簧在常态时使得磁通调节块3具有沿着定子径向方向向凹槽2移动的趋势。当然,也可以是磁通调节块3采用与铁芯1的磁性能够在定子径向方向上相吸的磁体,这样构造更加简单。施力装置(弹簧或者通过磁性相吸的磁通调节块和铁芯)使得磁通调节块的两端与两个锥形调节套的锥面保持接触。
参见图1、2,在电机处于低速大扭转状态时,两个锥形调节套4沿着定子轴向方向相背移动(参见图2中上下两个箭头所示的锥形调节套4移动方向)时,由于铁芯1对磁通调节块3的磁性吸力或者弹簧对磁通调节块3的弹簧力,推动磁通调节块3沿径向方向进入凹槽2(参见图2中左右两个箭头所示的磁通调节块3移动方向),与凹槽2接触,铁芯允许磁通通过的最小磁通截面在径向方向的尺寸a变大,使得定子磁通达到最大。
参见图3、4,在电机处于高转速状态时,两个锥形调节套沿着定子轴向方向相向移动(参见图4中上下两个箭头所示的锥形调节套4移动方向)时,两个锥形调节套的锥面41推动磁通调节块3沿径向方向远离凹槽2(参见图4中左右两个箭头所示的磁通调节块3移动方向),与凹槽2脱离接触,铁芯允许磁通通过的最小磁通截面在径向方向的尺寸a变小,使得定子磁通减小。
该装置通过改变定子的铁芯的横截面形状、大小改变定子磁通和电机的整个磁通。
用于带动磁通调节块在定子径向方向移动、使得磁通调节块嵌入凹槽或者使得磁通调节 块远离凹槽的调节装置可以有多种。图5中示出了一种具体的调节装置,包括位于定子铁芯1外周的两个对称的驱动电机12(当然,只采用一个驱动电机也行)、连接在驱动电机输出轴两端的两根丝杠13、与丝杠配合的螺母14、压簧15、压簧支撑圈16。连接在同一个驱动电机输出轴上的两根丝杠13上的螺纹方向相反,连接在不同的驱动电机输出轴上的靠近定子铁芯同一端的两根丝杠螺纹方向相同。每个锥形调节套4与两个螺母14固定连接。两个驱动电机同步动作,通过丝杠带动固定在两个锥形调节套4上的螺母相向或相背移动,从而带动两个锥形调节套相向或者相背移动。在定子铁芯外周具有连接在驱动电机壳体上的压簧支撑圈16,在各磁通调节块与压簧支撑圈之间设置压簧15。压簧15使得磁通调节块3的两端锥面31与两个锥形调节套的锥面41保持接触。
实施例2:间隙大小可变的电机变磁通装置
参见图6,在开有线槽11的定子铁芯1上具有嵌入铁芯外周上的滑槽5内并与滑槽底面接触的镶块6,镶块的两侧与滑槽的两侧面有间隙。
通过在定子周向移动镶块,通过改变镶块与滑槽两侧的间隙大小,改变定子铁芯的磁阻大小,从而改变定子磁通。
定子铁芯外周设置一个绕定子轴线转动的镶块调节圈7,镶块6外周与镶块调节圈7的内周固定相连。镶块调节圈7的外周具有与镶块调节齿轮轴8相啮合的两个齿圈9,镶块调节齿轮轴8与镶块调节电机10的输出轴相连。镶块调节电机10带动镶块调节齿轮轴8转动,通过齿圈9使得镶块调节圈7转动,镶块6在滑槽5内移动,从而改变镶块6与滑槽5两侧的间隙大小。
我们知道,相邻两个界面之间的间隙δ与通过该间隙的磁通T关系如图7,当间隙δ较小时,间隙δ增大,磁通T大幅度降低,间隙δ减小,磁通T大幅度增加。当间隙δ较大时,间隙δ增大,磁通T降低幅度较小,间隙δ减小,磁通T增加幅度较小。间隙δ大小的界限,根据不同的磁场环境,间隙不同。对于图7来说,当图7中的曲线的切线斜率小于45°时,为间隙较小范围,反之为间隙较大范围。
参见图8,当镶块6两侧与滑槽5两侧面的间隙δ(且δ较小)均相等时,此状态下,磁阻较小,磁通较大,电机处于高转速状态;当镶块6与滑动到左侧,镶块右侧与滑槽右侧面之间的间隙变为2δ时(镶块左侧间隙变小右侧间隙变大),参见图9,由于间隙变小的左侧的磁阻降低幅度大于另一侧磁阻增大的幅度,因此,总磁阻变小,电机磁通变大,电机处于低速大扭转状态。
参见图8,当镶块两侧与滑槽两侧面的间隙δ(且δ较大)均相等时,此状态下,磁阻较 大,磁通较小,电机处于低速大扭转状态;当镶块6与滑动到左侧,镶块右侧与滑槽右侧面之间的间隙变为2δ时(镶块左侧间隙变小右侧间隙变大),参见图9,由于间隙变小的左侧的磁阻降低幅度小于另一侧磁阻增大的幅度,因此,总磁阻变大,电机磁通变小,电机处于高转速状态。
该装置可根据需要设计相应的间隙δ,得到变磁阻规律,从而实现所需的变磁通控制。

Claims (13)

  1. 一种电机变磁通方法,其特征是:通过改变定子磁链某个或几个部位截面,改变定子的磁通,从而改变电机磁通。
  2. 如权利要求1所述的电机变磁通方法,其特征是:通过改变定子的铁芯磁链的截面大小改变定子磁通。
  3. 如权利要求2所述的电机变磁通方法,其特征是:定子铁芯上具有可嵌入铁芯外周上的凹槽内的磁通调节块,通过改变磁通调节块的径向位置,使得磁通调节块嵌入凹槽,或者使得磁通调节块远离凹槽,而改变定子磁通。
  4. 如权利要求3所述的电机变磁通方法,其特征是:在定子铁芯的两端处分别设置有两个锥形调节套;锥形调节套靠近铁芯端部的直径较小;磁通调节块的两端与两个锥形调节套的锥面滑动接触;当两个锥形调节套相向或者相背移动时,磁通调节块沿径向方向远离或者靠近凹槽。
  5. 如权利要求1所述的电机变磁通方法,其特征是:定子铁芯上具有嵌入铁芯外周上的滑槽内并与滑槽底面接触的镶块,镶块的两侧与滑槽的两侧面均有间隙,通过在定子周向移动镶块,通过改变镶块与滑槽两侧的间隙大小,改变定子铁芯的磁阻大小,从而改变定子磁通。
  6. 如权利要求5所述的电机变磁通方法,其特征是:定子铁芯外周设置一个绕定子轴线转动的镶块调节圈,镶块外周与镶块调节圈固定相连;当镶块调节圈转动时,带动镶块在滑槽内移动,从而改变镶块与滑槽两侧的间隙大小。
  7. 电机变磁通装置,其特征是:定子铁芯上具有嵌入铁芯外周上的滑槽内并与滑槽底面接触的镶块,镶块的两侧与滑槽的两侧面均有间隙,它还包括带动镶块在定子周向移动以改变镶块与滑槽两侧的间隙大小的调节装置。
  8. 如权利要求7所述的电机变磁通装置,其特征是:所述调节装置包括在定子铁芯外周设置的一个绕定子轴线转动的镶块调节圈,镶块外周与镶块调节圈固定相连;镶块调节圈上固定齿圈,与镶块调节电机输出轴相连的镶块调节齿轮轴与齿圈啮合。
  9. 电机变磁通装置,其特征是:定子铁芯上具有可嵌入铁芯外周上的凹槽内的磁通调节块,它还包括一个带动磁通调节块在定子径向方向移动、使得磁通调节块嵌入凹槽或者使得磁通调节块远离凹槽的调节装置;
    所述调节装置包括在定子铁芯的两端处分别设置的两个锥形调节套;锥形调节套靠近铁芯端部的直径较小;它包括使得磁通调节块的两端与两个锥形调节套的锥面保持接触的施力装置;当两个锥形调节套相向或者相背移动时,磁通调节块沿径向方向远离或者靠近凹槽。
  10. 如权利要求9所述的电机变磁通装置,其特征是:施力装置为弹簧。
  11. 如权利要求9所述的电机变磁通装置,其特征是:磁通调节块为磁体,施力装置为通过磁性相吸的磁通调节块和铁芯。
  12. 如权利要求9、10、11所述的电机变磁通装置,其特征是:所述调节装置包括位于定子铁芯外周的驱动电机、连接在驱动电机输出轴两端的两根丝杠、与丝杠配合的螺母;两根丝杠上的螺纹方向相反,两个锥形调节套分别与两个螺母连接,驱动电机动作,通过丝杠带动两个螺母相向或相背移动,从而带动两个锥形调节套相向或者相背移动。
  13. 如权利要求12所述的电机变磁通装置,其特征是:施力装置为压簧,在定子铁芯外周具有连接在驱动电机壳体上的弹簧支撑圈,在磁通调节块与弹簧支撑圈之间设置所述压簧。
PCT/CN2020/083840 2019-04-18 2020-04-08 一种电机变磁通方法及装置 WO2020211690A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201910315112.9A CN109995210B (zh) 2019-04-18 2019-04-18 一种电机变磁通方法
CN201910315112.9 2019-04-18
CN201920531414 2019-04-18
CN201920531414.5 2019-04-18
CN201920531413.0U CN209963930U (zh) 2019-04-18 2019-04-18 一种电机变磁通装置
CN201920531413.0 2019-04-18

Publications (1)

Publication Number Publication Date
WO2020211690A1 true WO2020211690A1 (zh) 2020-10-22

Family

ID=72836987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083840 WO2020211690A1 (zh) 2019-04-18 2020-04-08 一种电机变磁通方法及装置

Country Status (1)

Country Link
WO (1) WO2020211690A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5455473A (en) * 1992-05-11 1995-10-03 Electric Power Research Institute, Inc. Field weakening for a doubly salient motor with stator permanent magnets
CN102437707A (zh) * 2011-12-29 2012-05-02 浙江大学 机械调磁式开关磁链永磁直线同步电机
CN106787307A (zh) * 2017-03-09 2017-05-31 东南大学 转子调磁型磁通切换电机
CN109302033A (zh) * 2018-10-22 2019-02-01 江西理工大学 离心式变磁通永磁同步电机
CN109391049A (zh) * 2018-11-26 2019-02-26 史政齐 电动汽车预绕制线圈的可变磁通永磁电机
CN109995210A (zh) * 2019-04-18 2019-07-09 苏州阿福机器人有限公司 一种电机变磁通方法
CN209963930U (zh) * 2019-04-18 2020-01-17 苏州阿福机器人有限公司 一种电机变磁通装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5455473A (en) * 1992-05-11 1995-10-03 Electric Power Research Institute, Inc. Field weakening for a doubly salient motor with stator permanent magnets
CN102437707A (zh) * 2011-12-29 2012-05-02 浙江大学 机械调磁式开关磁链永磁直线同步电机
CN106787307A (zh) * 2017-03-09 2017-05-31 东南大学 转子调磁型磁通切换电机
CN109302033A (zh) * 2018-10-22 2019-02-01 江西理工大学 离心式变磁通永磁同步电机
CN109391049A (zh) * 2018-11-26 2019-02-26 史政齐 电动汽车预绕制线圈的可变磁通永磁电机
CN109995210A (zh) * 2019-04-18 2019-07-09 苏州阿福机器人有限公司 一种电机变磁通方法
CN209963930U (zh) * 2019-04-18 2020-01-17 苏州阿福机器人有限公司 一种电机变磁通装置

Similar Documents

Publication Publication Date Title
CN102155492B (zh) 主动与被动混合型磁悬浮轴承
WO2018000869A1 (zh) 一种磁体径向移动式可调速磁力耦合器
Chen et al. Design and analysis of a new magnetic gear with multiple gear ratios
CN105375715B (zh) 少稀土类宽调速混合永磁磁通切换双定子电机
CN103441592A (zh) 新型磁通可调永磁同步电机
WO2018233173A1 (zh) 一种基于锥齿轮传动的盘式调速磁力耦合器
CN108206614B (zh) 五自由度双定子磁悬浮开关磁阻电机系统
CN105141092A (zh) 一种磁齿轮型双定子混合永磁记忆电机
CN102269221B (zh) 混合励磁轴径向磁悬浮轴承
CN104533948A (zh) 一种永磁偏置外转子四自由度主被动混合磁轴承
JP2012130223A (ja) 同期モータ
EP2429068A1 (en) Electric machine
CN112366838A (zh) 基于组合磁极的表贴-内置式无轴承永磁同步电机
CN106787607A (zh) 可变传动比的磁场调制型磁齿轮
CN213602453U (zh) 基于组合磁极的表贴-内置式无轴承永磁同步电机
CN102392852A (zh) 一种轴向磁轴承
CN202231589U (zh) 一种可控励磁永磁同步电机
CN104617727A (zh) 一种双定子轴向磁场磁通切换型混合永磁记忆电机
CN109995210B (zh) 一种电机变磁通方法
WO2020211690A1 (zh) 一种电机变磁通方法及装置
CN105006950A (zh) 基于永磁体励磁和电励磁的感应子式磁力丝杠
CN101975224B (zh) 一种混合磁路磁悬浮轴承
WO2017158710A1 (ja) フライホイール装置及び、発電及び駆動モータ装置
WO2020147564A1 (zh) 盘式电机及其控制方法
CN209963930U (zh) 一种电机变磁通装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791511

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 218/03/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20791511

Country of ref document: EP

Kind code of ref document: A1