WO2020211675A1 - 复合金属带连续生产设备和连续生产方法 - Google Patents

复合金属带连续生产设备和连续生产方法 Download PDF

Info

Publication number
WO2020211675A1
WO2020211675A1 PCT/CN2020/083418 CN2020083418W WO2020211675A1 WO 2020211675 A1 WO2020211675 A1 WO 2020211675A1 CN 2020083418 W CN2020083418 W CN 2020083418W WO 2020211675 A1 WO2020211675 A1 WO 2020211675A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
continuous production
substrate
composite metal
composite
Prior art date
Application number
PCT/CN2020/083418
Other languages
English (en)
French (fr)
Inventor
辛民昌
李长明
廖廷峰
吴超
辛程勋
Original Assignee
青岛九环新越新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910890530.0A external-priority patent/CN111822662A/zh
Priority claimed from CN201910890575.8A external-priority patent/CN111822663B/zh
Application filed by 青岛九环新越新能源科技股份有限公司 filed Critical 青岛九环新越新能源科技股份有限公司
Publication of WO2020211675A1 publication Critical patent/WO2020211675A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the utility model relates to a composite metal belt production equipment and process, in particular to a composite metal belt continuous production equipment and continuous production method.
  • Lithium metal has high capacity (theoretical 3860mAh/g), low density (0.59g/cm3), and low electrochemical potential (-3.04V vs. standard hydrogen electrode). Therefore, lithium metal is used as the negative electrode of lithium metal secondary Compared with lithium-ion batteries with graphite negative electrodes, the battery has excellent performance with high voltage and high energy density.
  • the existing composite lithium belt generally adopts the processing method of the metal lithium belt and the substrate roll forming.
  • the metal lithium belt generally adopts extrusion molding process, such as a metal lithium belt production device disclosed in the Chinese patent with publication number CN204564801U, and a metal lithium belt processing method disclosed in the Chinese patent with publication number CN101497088B.
  • the metal lithium belt is produced by forming.
  • the lithium composite tape produced by the existing extrusion molding process has the disadvantage of thicker thickness. When a thicker metal lithium tape is used in a metal lithium battery, the capacity of the negative electrode is much more than that of the positive electrode, which causes a waste of negative metal lithium, and also increases the volume and weight of the battery, and reduces the volume and quality of the battery. Energy density is not conducive to the improvement of the ultimate energy density of metal lithium batteries.
  • the Chinese patent with the publication number CN206992217U discloses a production device for a composite lithium belt.
  • the production device for the composite lithium belt is provided with a stand on which two upper and lower rollers are installed.
  • a current collector unwinding device, a lithium ribbon unwinding device and a protective film unwinding device are arranged upstream, an unwinding guide roller is arranged downstream of the protective film unwinding device, and a composite lithium belt winding device is arranged downstream of the roll
  • a winding device and a protective film winding device corresponding to the protective film unwinding device are provided with a winding guide roller upstream of the protective film winding device.
  • the production device of the composite lithium belt adopts the method of roll forming to compound the current collector and the metal lithium belt. Because the thickness of the metal lithium belt itself is thick, and the metal lithium belt and the current collector only rely on simple rolling At the same time, there is the problem of insufficient binding power.
  • a Chinese patent with publication number CN109360934A discloses a method for preparing an ultra-thin composite lithium belt. After heating the lithium ingot to a molten state under a high-purity argon atmosphere, the roughened conductive substrate is immersed in the liquid lithium The slurry is suspended in the middle and slowly pulled out. The thickness of the slurry is adjusted by the rollers, and then wind-cooled to obtain an ultra-thin lithium composite belt with a total thickness of 10-50 ⁇ m on both sides.
  • the preparation method of the ultra-thin lithium composite tape adopts the method of immersing the substrate in the molten metal lithium and hanging the paddle.
  • the thickness of the paddle on the substrate There are big differences, and there may be cases where the paddles are not hung in some areas of the substrate. Due to gravity, the paddles on the upper and lower sides of the substrate are also different. It is difficult to hang the paddles stably on the bottom side of the substrate. , Resulting in unstable quality of the composite lithium belt prepared by the preparation method of the ultra-thin lithium composite belt.
  • the purpose of the present invention is to provide a continuous production equipment and a continuous production method for composite metal belts, which can not only meet the requirements of large-scale continuous production of composite metal belts, but also the thickness of the metal layer can be thinner and the quality of the composite metal belts Also more stable.
  • the present invention provides the following technical solutions:
  • a continuous production equipment for composite metal belts including:
  • Unwinding mechanism used for continuous unwinding of substrates
  • Extrusion molding device used to extrude a metal layer on at least one side of the substrate to obtain a composite metal belt;
  • Winding mechanism used to wind the prepared composite metal belt
  • the extrusion molding device includes a squeeze roller set, the squeeze roller set includes two squeeze rollers whose axes are parallel to each other; the feed sides of the two squeeze rollers are provided with a feeding device for adding molten metal material ;
  • the feed side of the squeeze roll set is provided with a high temperature zone for keeping the molten metal material in a molten state, and the discharge side of the squeeze roll set is provided with a cooling zone for cooling and shaping the composite metal belt;
  • a guide mechanism is provided between the unwinding mechanism and the winding mechanism to allow the substrate to pass between the two squeezing rollers.
  • a roll gap adjusting mechanism for adjusting the roll gap is provided between the two squeezing rollers.
  • the feeding device includes a device for adding melting to the side of the substrate facing the other squeeze roller. Feeding mechanism of metal materials;
  • the feeding device When an extrusion gap is provided between the substrate and the two squeezing rollers, the feeding device includes two feeding mechanisms for adding molten metal materials to both sides of the substrate.
  • the upper side of the two squeezing rollers is the feeding side.
  • the guide mechanism guides the base material to move from the two squeezing rollers in a vertical downward direction. Pass between.
  • the guiding mechanism guides the substrate and makes the squeezing gap between the substrate and the two squeezing rollers equal, or makes the substrate and the two squeezing rollers equal
  • the difference of the extrusion gap is within the set range.
  • the feeding mechanism includes a feeding pump or screw extrusion feeding mechanism for conveying molten metal material into the high temperature zone, or the feeding mechanism includes a feeding mechanism for conveying metal particles or metal powder into the high temperature zone.
  • a powder spraying device, the feeding device further includes a melting and heating mechanism arranged in the high temperature zone and used to melt metal particles or metal powders and form molten metal materials.
  • the high temperature zone is provided with a drainage device for leading the molten metal material to the feeding side of the two squeezing rolls.
  • the drainage device includes a drainage plate arranged in the high temperature zone.
  • the guide plate is arranged in two pieces, and the two guide plates are respectively located below the feeding device.
  • a heating zone for heating is provided on the opposite side of the two guide plates, and a constant temperature zone is formed between the two guide plates.
  • a cold air device is provided in the cooling zone;
  • the cold air device includes a cold air unit provided corresponding to the side surface of the substrate where the metal layer is provided, the cold air unit includes an air guide plate;
  • the air guide partition The plate is provided with a cold air passage facing the discharge side of the squeeze roller set with a cooling medium on the outside facing away from the base material, and a cooling medium is formed between the air guide baffle and the base material.
  • Backflow channel; or, a cold air channel for blowing cooling medium is formed between the air guide plate and the substrate facing the discharge side of the squeeze roller set, and the air guide plate faces away from the substrate There is a return channel for the reflux of the cooling medium on the outside.
  • the two air guide plates are symmetrically arranged with respect to the symmetry planes of the two squeezing rollers.
  • it also includes a scraper for scraping off the molten metal material attached to the squeeze roller.
  • the substrate adopts but is not limited to copper strip, aluminum strip, steel strip, nickel strip, silver strip, gold strip or a strip made of metal material and non-metallic material; or the substrate adopts but not limited to release paper.
  • the substrate is a mesh foil or the strip is provided with through holes in an array.
  • the molten metal material uses but is not limited to metallic lithium, metallic sodium, metallic potassium, metallic magnesium, metallic calcium, metallic zinc, metallic aluminum or metallic silver; or the metallic material uses but not limited to metallic lithium, metallic sodium, An alloy of at least two of potassium metal, magnesium metal, calcium metal, zinc metal, aluminum metal and silver metal.
  • a finishing zone is provided between the extrusion molding device and the winding mechanism.
  • a laser finishing equipment for finishing the composite metal strip is provided in the finishing area.
  • At least one set of finishing roller sets are arranged at intervals in the finishing zone, and each set of the finishing roller set includes two corresponding finishing rollers.
  • the gap between the rollers of the finishing roller group on the side close to the extrusion forming device is larger than that of the finishing roller on the side close to the winding mechanism The gap between the rolls of the group.
  • finishing zone is provided with a heat preservation device for keeping the rolling temperature within a set range.
  • the trimming device is arranged in the finishing zone or between the finishing zone and the winding mechanism.
  • the front end of the winding mechanism is provided with a film compounding mechanism for compounding the isolation film on at least one side of the composite metal belt.
  • the film compounding mechanism includes a film unwinding mechanism for unwinding an isolation film and a composite roller set for compounding the composite metal belt and the isolation film.
  • a continuous production method of composite metal belt including:
  • the metal layer is extruded and coated on at least one side surface of the substrate by using a set of extrusion rollers;
  • molten metal material is added to the feeding side of the two squeezing rollers; the two squeezing rollers are driven to rotate, so that the tangential velocity of the squeezing rollers is consistent with the passage between the two squeezing rollers.
  • the speed of the passed substrate is equal.
  • the cooling device set on the discharge side of the two squeeze rollers is used to make the metal layer according to the design. A fixed cooling rate is cooled and shaped to obtain a composite metal strip.
  • the molten metal material is added to the side of the substrate facing the other squeeze roller, and the substrate Extrusion coating the metal layer on one side of
  • the same molten metal material is continuously added on both sides of the base material, and the two sides of the base material are respectively extruded and coated Metal layers of the same molten metal material; or continuously adding different molten metal materials on both sides of the substrate, and extruding and coating metal layers of different molten metal materials on both sides of the substrate.
  • the upper side of the two squeezing rollers is the feeding side.
  • the substrate passes between the two squeezing rollers in a vertical downward direction.
  • the squeezing gap between the substrate and the two squeezing rollers is equal, or the difference in the squeezing gap between the substrate and the two squeezing rollers is within a set range.
  • the molten metal material is directly added to the feeding side of the two squeezing rolls, and the heating device provided on the feeding side of the two squeezing rolls is used to keep the molten metal material in a molten state; or, above the two squeezing rolls
  • the metal particles or metal powder are sprayed in, and the heating device arranged on the feeding side of the two squeezing rollers is used to melt the metal particles or metal powder to obtain the molten metal material.
  • the substrate is a mesh foil, and when the metal layer is provided on only one side of the substrate, the metal layer is embedded in the mesh of the substrate and interacts with the substrate. Composite together; when the metal layers are provided on both sides of the substrate, the metal layers provided on both sides of the substrate are connected together by the mesh on the substrate; or,
  • the substrate is provided with through holes in an array, and when the metal layer is provided on only one side of the substrate, the metal layer is embedded in the through holes of the substrate and is combined with the substrate Together; when the metal layers are provided on both sides of the substrate, the metal layers provided on both sides of the substrate are connected together through the through holes on the substrate.
  • the substrate adopts but is not limited to copper strip, aluminum strip, steel strip, nickel strip, silver strip, gold strip or a strip of metal material and non-metallic material composite, or the substrate adopts but is not limited to release paper.
  • the molten metal material uses but is not limited to metallic lithium, metallic sodium, metallic potassium, metallic magnesium, metallic calcium, metallic zinc, metallic aluminum or metallic silver; or the molten metal material uses but not limited to metallic lithium, metallic sodium , Metal potassium, metal magnesium, metal calcium, metal zinc, metal aluminum and metal silver in a ratio of at least two alloys.
  • the molten metal material is extrusion-coated on the side surface of the substrate under a set atmosphere.
  • the cooling device cools the metal layer to a set temperature range according to a set cooling curve.
  • it also includes a finishing process, using at least one finishing roll set to roll the composite metal strip in sequence; or using laser finishing equipment to make the thickness of the metal layer reach a set thickness.
  • the composite metal belt is cooled and shaped by a cooling device, it returns to normal temperature under natural conditions, and then it is finished.
  • the metal layer is kept within a set temperature range favorable for its finishing and shaping.
  • it also includes a trimming process, which uses trimming tools to trim both sides of the metal layer.
  • a separation film is laminated on at least one side of the composite metal belt to prevent the adhesion of two adjacent layers of the composite metal belt.
  • the composite metal strip continuous production equipment of the utility model uses a guiding mechanism to make the base material pass through two squeezing rollers, and then uses the squeeze roller set to roll the molten metal material on the side of the base material, and then quickly cools and sets after rolling.
  • the continuous production equipment for composite metal belt of the present invention can meet the production requirements of composite metal belts, and compared with the prior art that uses metal belts and substrates to directly roll and composite, the bonding force of the composite metal belts obtained by the continuous production equipment for composite metal belts of the present invention Even better, the metal layer can be thinner, even less than 10um; compared to the existing method of immersing the base material in the molten metal to produce the composite metal belt, the continuous production equipment for the composite metal belt of the present invention is adopted The thickness of the metal layer of the produced composite metal belt is uniform, and there is no defect that some areas of the substrate are not covered with metal, and the quality is more stable. In summary, the continuous production equipment for composite metal belt of the present invention can not only meet the requirements of composite Large-scale continuous production of metal belts is required, and the thickness of the metal layer can be thinner, and the quality of the composite metal belt is more stable.
  • the base material is passed between two squeezing rollers, and the molten metal material is continuously added to the feeding side of the squeezing roller, and the molten metal material is extruded and coated by the squeeze roller
  • the cloth forms a metal layer on the substrate, and the composite metal belt is obtained after cooling and shaping, which can meet the production requirements of the composite metal belt, and is compared with the method in the prior art where the metal lithium belt and the substrate are directly rolled and composited ,
  • the composite metal belt obtained by the continuous production method of the composite metal belt of the present invention has better bonding force, and the metal layer can be thinner, even reaching below 10um; compared with the existing immersion of the substrate into the molten metal, the paddle
  • the thickness of the metal layer of the composite metal belt produced by the continuous production equipment of the lithium composite belt of the present invention is uniform, and there is no defect that there is no covering metal layer in certain areas of the substrate, and the quality is more Stable
  • Figure 1 is a schematic structural diagram of Embodiment 1 of the continuous production equipment for composite metal belts of the present invention
  • Figure 2 is a detailed view of Figure 1 A;
  • Figure 3 is a schematic structural diagram of the second air inlet and outlet mode of the cold air device
  • Figure 4 is a schematic structural diagram of Embodiment 2 of the continuous production equipment for composite metal belts of the present invention.
  • FIG. 1 it is a schematic structural diagram of an embodiment of a continuous production equipment for composite metal belts of the present invention.
  • the composite metal belt continuous production equipment of this embodiment includes:
  • Unwinding mechanism including unwinding roller 16 for continuous unwinding of substrate 1;
  • Extrusion molding device used to extrude a metal layer on at least one side of the substrate 1 to obtain a composite metal belt 2;
  • Winding mechanism including a winding roller 17 for winding the prepared composite metal belt 2;
  • the extrusion molding device includes a squeeze roller set, and the squeeze roller set includes two squeezing rollers 3 with parallel axes; the feeding sides of the two squeezing rollers 3 are provided with a feeding device for adding molten metal material;
  • the feed side of the squeeze roll set is provided with a high temperature zone for keeping the molten metal material in a molten state, and the discharge side of the squeeze roll set is provided with a cooling zone for cooling and shaping the composite metal belt 2;
  • a guide mechanism is provided between the unwinding mechanism and the winding mechanism to allow the substrate 1 to pass between the two squeezing rollers 3, and the guide mechanism includes a plurality of guide rollers 19.
  • a roll gap adjustment mechanism for adjusting the roll gap is provided between the two squeezing rolls 3, which can adjust the width of the roll gap between the two squeezing rolls 3, thereby controlling the forming thickness of the metal layer.
  • the feeding device when the substrate 1 and one of the squeeze rollers 3 are always in contact and fit, the feeding device includes a feeding mechanism for adding molten metal material to the side of the substrate 1 facing the other squeeze roller;
  • the feeding device includes two feeding mechanisms for adding molten metal materials to both sides of the substrate.
  • a squeezing gap is provided between the substrate 1 and the two squeezing rollers 3 respectively.
  • the upper side of the two squeezing rollers 3 is the feeding side.
  • the guiding mechanism of this embodiment guides the substrate 1 to pass between the two squeezing rollers 3 in a vertical downward direction. Specifically, the guiding mechanism guides the substrate 1 and makes the squeezing gap between the substrate 1 and the two squeezing rollers 3 equal, or the difference in the squeezing gap between the substrate 1 and the two squeezing rollers 3 The value is within the set range.
  • the extrusion gap between the substrate 1 and the two squeezing rolls 3 is equal, that is, the thickness of the metal layers extruded on both sides of the substrate 1 are equal.
  • the feeding mechanism includes a feeding pump 4 or a screw extrusion feeding mechanism for conveying molten metal materials into the high temperature zone, or the feeding mechanism includes a powder spraying device for conveying metal particles or metal powder into the high temperature zone, and the feeding device also It includes a melting and heating mechanism arranged in a high temperature zone and used to melt metal particles or metal powders and form molten metal materials.
  • the two feeding mechanisms of this embodiment are respectively located on both sides of the vertical symmetry plane between the two squeezing rollers 3, which can achieve the technical purpose of simultaneously conveying metal to both sides of the substrate.
  • the feeding mechanism of this embodiment includes a feeding pump 4 for feeding molten metal into the high temperature zone, and the feeding pump 4 is provided with a nozzle 4a for feeding molten metal into the high temperature zone.
  • a drainage device for leading the molten metal material to above the two squeezing rollers 3 is provided in the high temperature zone.
  • the drainage device of this embodiment includes a drainage plate 5 arranged in a high temperature zone.
  • the guide plate 5 of this embodiment is arranged in two, the two guide plates 5 are respectively located below the two feeding devices, and the two guide plates 5 of this embodiment are relative to the two squeezing rollers 3
  • the vertical symmetry planes are arranged symmetrically, so that the molten metal materials on both sides of the base material 1 can be respectively guided to between the two squeezing rollers 3.
  • the opposite side of the two guide plates 4 is provided with a heating zone 6 for heating, a constant temperature zone 7 is formed between the two guide plates 5, and heating equipment is provided in the heating zone 6, and the temperature in the constant temperature zone 7 Used to keep molten metal materials in a molten state, or to melt metal particles or metal powders and keep them in a molten state.
  • the cold air device includes cold air units arranged corresponding to the side surface of the substrate 1 where the metal layer is provided.
  • the cold air unit includes an air deflector 8; the air deflector is provided with a cold air channel 8a facing the discharge side of the squeeze roller set on the outside of the base material 1 and is formed between the air deflector and the base material 1.
  • the return passage 8b for the reflux of the cooling medium is shown in Figures 1 and 2; or, a cold air passage for blowing the cooling medium is formed between the air guide baffle and the base material 1 facing the discharge side of the squeeze roller group, and the air guide
  • the separator is provided with a reflux channel for reflux of the cooling medium on the outside of the back of the substrate 1, as shown in FIG. 3.
  • an air inlet gap 9 is provided between the air deflector 8 and the squeeze roller 3, and the air inlet gap connects the cold air passage and the return passage.
  • the continuous production equipment for composite metal strips of this embodiment also includes a scraper 10 for scraping off the metal attached to the squeeze roller 3.
  • a collection box 11 is provided under the scraper 10 of this embodiment to collect scraped metal. recycle.
  • the substrate 1 in this embodiment adopts, but is not limited to, a copper strip, an aluminum strip, a steel strip, a nickel strip, a silver strip, a gold strip, or a composite strip of a metal material and a non-metal material.
  • the base material 1 is a mesh foil or strip with through holes in an array.
  • the metal layers compounded on both sides of the base material 1 are connected as a whole through the mesh or through holes provided on the base material 1, which can effectively improve the metal The bond strength between the layer and the substrate.
  • the molten metal material in this embodiment uses but is not limited to metallic lithium, metallic sodium, metallic potassium, metallic magnesium, metallic calcium, metallic zinc, metallic aluminum or metallic silver; or the metallic material uses but not limited to metallic lithium, metallic sodium, metallic potassium , Metal magnesium, metal calcium, metal zinc, metal aluminum and metal silver in a ratio of at least two alloys.
  • a finishing zone is provided between the extrusion molding device and the winding mechanism of this embodiment.
  • At least one set of finishing roller groups are arranged in the finishing area, and each group of finishing roller groups includes two corresponding finishing rollers 12.
  • the finishing rolls can also be set to 1, 2, 3, 5, or more than 5 groups. The principle is equivalent. , I will not repeat them one by one.
  • other methods can also be used to finish the composite metal strip 2, for example, a laser finishing device for finishing the composite metal strip is arranged in the finishing area, which will not be repeated.
  • the inter-roller gap of the finishing roller group on the side of the extrusion molding device is greater than or equal to the inter-roller gap of the finishing roller group on the side of the winding mechanism.
  • the finishing roll set also includes a pressure adjusting mechanism 18 for adjusting the rolling pressure. Between two adjacent finishing roll sets, the rolling pressure of the finishing roll set on the side of the extrusion forming device is less than or equal to the rolling pressure of the finishing roll set on the side of the winding mechanism, gradually controlling the composite metal strip The thickness of the upper metal layer and the surface accuracy of the composite metal belt reach the set value.
  • finishing zone of this embodiment is provided with a heat preservation device 13 that keeps the rolling temperature within a set range.
  • the metal can be softened to facilitate further rolling.
  • the two finishing rolls 12 of the last finishing roll set are provided with a pin for rolling holes on the corresponding metal layer of the composite metal strip 2,
  • the two finishing rolls 12 of the last finishing roll set are equipped with pins, which can simultaneously process holes on the upper and lower metal layers of the composite metal strip 2 respectively.
  • the hole-rolling area is provided with a roll set or plate set for processing holes on at least one metal layer of the composite metal strip 2.
  • the roller set or the pressing plate set is provided with pins for rolling the holes, which can also meet the technical purpose of processing holes on the metal layer of the composite metal strip 2. The principles are equivalent and will not be repeated.
  • the pin in this embodiment is a nano-scale pin, and the outer diameter of the pin is greater than or equal to 1 nm and less than or equal to 1 um.
  • the distance between two adjacent rolling pins satisfies:
  • L is the hole spacing of nano-scale holes
  • k is the coefficient
  • k ⁇ 1 is the thickness of the diffusion control layer.
  • the thickness of the diffusion control layer is:
  • is the thickness of the diffusion control layer
  • D is the diffusion coefficient
  • t is the time.
  • a film compounding mechanism for compounding the isolation film 20 on at least one side of the composite metal belt 2 is provided.
  • the film composite mechanism of this embodiment composites the isolation film 20 on the lower side of the composite metal belt 2.
  • the film lamination mechanism of this embodiment includes a film unwinding mechanism 21 for unwinding the isolation film 20 and a composite roll group 22 for lamination of the composite metal belt 2 and the isolation film 20 together.
  • the composite metal strip continuous production equipment of this embodiment uses a guiding mechanism to make the base material pass through two squeezing rolls, and then uses the squeeze roll set to roll the molten metal material on the side of the base material, and quickly cool and shape after rolling.
  • the bonding force of the composite metal belts obtained by the continuous production equipment for composite metal belts of the present invention Even better, the metal layer can be thinner, even less than 10um; compared to the existing method of immersing the base material in the molten metal to produce the composite metal belt, the continuous production equipment for the composite metal belt of the present invention is adopted
  • the thickness of the metal layer of the produced composite metal belt is uniform, and there is no defect that some areas of the substrate are not covered with metal, and the quality is more stable.
  • the continuous production equipment for composite metal belt of the present invention can not only meet the requirements of composite Large-scale continuous production of metal belts is required, and the thickness
  • the metal layer is extruded and coated on at least one side surface of the substrate 1 by using a set of extrusion rollers;
  • the molten metal material is added to the feeding side of the two squeezing rolls 3; the two squeezing rolls 3 are driven to rotate, so that the tangential velocity of the squeezing rolls 3 is equal to that of the two squeezing rolls 3
  • the speed of the substrate 1 passing through is equal.
  • the molten metal material is extruded and coated on the substrate 1 by the squeeze roller 3 to form a metal layer, and then the cooling set on the discharge side of the two squeeze rollers 3 is used.
  • the device cools and sets the metal layer according to the set cooling rate to obtain the composite metal belt 2.
  • the molten metal material is added to the side of the substrate 1 facing the other squeeze roll 3, and on the side of the substrate 1
  • the metal layer is extruded and coated on the side;
  • the base material 1 and the two squeeze rolls 3 are respectively provided with an extrusion gap, the molten metal material is added on both sides of the base material 1, and on both sides of the base material 1
  • the side surfaces are respectively extrusion coated with metal layers.
  • the base material 1 and the two squeezing rollers 3 are respectively provided with an extrusion gap, the same molten metal material is continuously added on both sides of the base material 1, and the two sides of the base material 1 are respectively extruded and coated Metal layers of the same molten metal material; or continuously adding different molten metal materials on both sides of the substrate 1, and extruding and coating metal layers of different molten metal materials on both sides of the substrate 1.
  • the upper side of the two squeezing rolls 3 is the feeding side, and the substrate 1 of this embodiment starts from the two squeezing rolls in a vertical downward direction. Pass between the squeeze rollers 3.
  • the squeezing gap between the substrate 1 and the two squeezing rolls 3 is equal, or the difference in the squeezing gap between the substrate 1 and the two squeezing rolls 3 is within a set range.
  • the extrusion gap between the substrate 1 and the two squeezing rolls 3 of this embodiment is equal, that is, metal layers of equal thickness are respectively extruded and coated on both sides of the substrate 1.
  • molten metal material can be directly added on the feeding side of the two squeezing rolls 3, and the heating device provided on the feeding side of the two squeezing rolls can be used to keep the molten metal material in a molten state; or,
  • the two squeezing rolls 3 are sprayed with metal particles or metal powder, and the heating device arranged on the feeding side of the two squeezing rolls is used to melt the metal particles or metal powder to obtain molten metal material.
  • a feed pump 4 is provided to directly add molten metal above the two squeezing rollers 3.
  • a powder spraying device can also be used to spray metal particles or metal powder above the two squeezing rollers 3. The principle is similar and will not be repeated.
  • the base material 1 may be a mesh foil material or the base material 1 may be provided with through holes in an array. If the base material 1 is a mesh foil, the metal layers arranged on both sides of the base material 1 in this embodiment are connected together by the mesh on the base material 1. If the substrate 1 is provided with through holes in an array, the metal layers provided on both sides of the substrate 1 in this embodiment are connected together through the through holes on the substrate 1. It can effectively enhance the bonding strength between the metal layer and the substrate 1. Specifically, the substrate 1 adopts, but is not limited to, a copper strip, an aluminum strip, a steel strip, a nickel strip, a silver strip, a gold strip, or a strip made of a metal material and a non-metal material, which will not be repeated.
  • the molten metal material uses but is not limited to metallic lithium, metallic sodium, metallic potassium, metallic magnesium, metallic calcium, metallic zinc, metallic aluminum or metallic silver; or the molten metal material uses but not limited to metallic lithium, metallic sodium, metallic potassium, An alloy of at least two of metallic magnesium, metallic calcium, metallic zinc, metallic aluminum and metallic silver.
  • non-metals and the like can also be doped into metals.
  • the metal can also be extrusion coated on the side surface of the substrate 1 in a set atmosphere.
  • the same metal can be continuously added on both sides of the substrate, and metal layers of the same metal can be extruded separately on both sides of the substrate; or different metals can be continuously added on both sides of the substrate, and
  • the two sides of the base material are respectively extruded to form metal layers of different metals, that is, the continuous production method of the composite metal belt of the present invention can separately extrude metal layers of the same metal on both sides of the base material, or according to requirements, it can also be used in the base material.
  • the two sides of the material 1 are respectively extruded to form metal layers of different metals.
  • the metal in this embodiment is lithium metal. According to the usage, the metal lithium can be doped with materials such as rare earth, carbon, graphite, and graphene, which will not be repeated.
  • q is the mass of metal added per unit time
  • v is the speed of the substrate
  • l is the width of the metal layer extruded on the substrate
  • h is the thickness of the metal layer
  • is the density of the metal
  • q 0 is the metal loss per unit time during the extrusion process, such as a small amount of metal adhered to the surface of the extrusion roller 3.
  • the conveying rate of the substrate 1 is 0-400km/h, and the conveying rate of the substrate 1 is adjusted according to different metal layers, so as to ensure that the metal layer can be formed smoothly.
  • the distance between the two sides of the substrate 1 and the two squeezing rollers 3 is equal, and metal layers of the same thickness can be extruded on both sides of the substrate 1 respectively.
  • the distance between the two sides of the substrate 1 and the two squeezing rolls 3 can also be set to be unequal, that is, the two sides of the substrate 1 are extruded to form different thicknesses. Metal layer.
  • the distance between the two sides of the substrate 1 and the two squeezing rollers 3 is greater than or equal to 0.02um, that is, the thickness of the metal layer is greater than or equal to 0.02um, and the distance between the two sides of the substrate 1 and the two squeezing rollers 3 can be Set according to actual requirements, and then extrude metal layers of different thicknesses.
  • the cooling device cools the metal layer to a set temperature range according to a set cooling curve.
  • the cooling device needs to cool the metal layer quickly to avoid the metal that is still in a molten state being extruded onto the substrate 1 from the base.
  • the cooling rate can be adjusted to obtain the desired crystal form in the metal layer, which will not be repeated.
  • the continuous production method of the composite metal strip of the present embodiment further includes a finishing process, using at least one set of finishing rolls to sequentially roll the composite metal strip or laser finishing equipment so that the thickness of the metal layer reaches a set thickness.
  • the composite metal belt can be cooled and shaped by a cooling device, then return to normal temperature under natural conditions, and then finish it.
  • a finishing roller set is used to finish the composite metal belt 2.
  • the metal layer is kept within a set temperature range that is favorable for its finishing and shaping, such as the metal of this embodiment.
  • the use of metallic lithium can keep the metallic lithium at a higher temperature to soften it, and then finish it, and the effect is better.
  • the continuous production method of the composite metal strip of the present embodiment further includes a hole-rolling process after the finishing process, wherein the hole-rolling process is processed on at least one metal layer of the composite metal strip by means of roll pressing or plate pressing.
  • holes are processed in the composite metal belt by setting pins on the finishing rolls of the last set of finishing rolls.
  • the holes rolled on the metal layer are nanoscale holes, the pore diameter of the nanoscale holes is greater than or equal to 1nm and less than or equal to 1um, and the hole spacing between the nanoscale holes satisfies:
  • L is the hole spacing of nano-scale holes
  • k is the coefficient
  • k ⁇ 1 is the thickness of the diffusion control layer.
  • the thickness of the diffusion control layer is:
  • is the thickness of the diffusion control layer
  • D is the diffusion coefficient
  • t is the time.
  • the thickness of the diffusion control layer to define the hole spacing between nano-scale holes, the influence of mass transfer or diffusion control can be eliminated or reduced.
  • the isolation film 20 is compounded on at least one side of the composite metal belt 2 to prevent the adhesion of two adjacent layers of the composite metal belt together.
  • This embodiment is only on the lower side of the composite metal belt 2.
  • the composite isolation film 20 on the side can prevent the metal layers from sticking together for some soft metal layers.
  • FIG. 4 it is a schematic structural diagram of Embodiment 2 of the continuous production equipment for composite metal belts of the present invention.
  • the composite metal belt continuous production equipment of this embodiment includes:
  • Unwinding mechanism including unwinding roller 16 for continuous unwinding of substrate 1;
  • Extrusion molding device used to extrude a metal layer on at least one side of the substrate 1 to obtain a composite metal belt 2;
  • Winding mechanism including a winding roller 17 for winding the prepared composite metal belt 2;
  • the extrusion molding device includes a squeeze roller set, the squeeze roller set includes two squeezing rollers 3 with parallel axes; the feeding side of the two squeezing rollers 3 is provided with a feeding device for adding molten metal material;
  • the feed side of the squeeze roll set is provided with a high temperature zone for keeping the molten metal material in a molten state, and the discharge side of the squeeze roll set is provided with a cooling zone for cooling and shaping the composite metal belt 2;
  • a guide mechanism is provided between the unwinding mechanism and the winding mechanism to allow the substrate 1 to pass between the two squeezing rollers 3, and the guide mechanism includes a plurality of guide rollers 19.
  • a roll gap adjustment mechanism for adjusting the roll gap is provided between the two squeezing rolls 3, which can adjust the width of the roll gap between the two squeezing rolls 3, and thereby control the forming thickness of the metal layer.
  • the feeding device when the substrate 1 and one of the squeeze rollers 3 are always in contact and fit, the feeding device includes a feeding mechanism for adding molten metal material to the side of the substrate 1 facing the other squeeze roller; When the substrate 1 and the two squeezing rollers 3 are respectively provided with squeezing gaps, the feeding device includes two feeding mechanisms for adding molten metal materials to both sides of the substrate.
  • the substrate 1 of this embodiment and one of the squeezing rollers 3 always maintain contact and fit.
  • the axes of the two squeezing rollers 3 in this embodiment are located on the same horizontal plane, and the upper side of the two squeezing rollers 3 is the feeding side.
  • the guiding mechanism of this embodiment always maintains contact and fit between the guiding substrate 1 and one of the squeezing rollers 3, and there is a squeezing gap between the substrate 1 and the other squeezing roller 3, that is, only on the substrate 1 is a metal layer extruded on one side.
  • the feeding mechanism includes a feeding pump 4 or a screw extrusion feeding mechanism for conveying molten metal materials into the high temperature zone, or the feeding mechanism includes a powder spraying device for conveying metal particles or metal powder into the high temperature zone, and the feeding device also It includes a melting and heating mechanism arranged in a high temperature zone and used to melt metal particles or metal powders and form molten metal materials.
  • the feeding mechanism of this embodiment includes a feeding pump 4 for feeding molten metal into the high temperature zone, and the feeding pump 4 is provided with a nozzle 4a for feeding molten metal into the high temperature zone.
  • a drainage device for leading the molten metal material to above the two squeezing rollers 3 is provided in the high temperature zone.
  • the drainage device of this embodiment includes a drainage plate 5 arranged in a high temperature zone.
  • the guide plate 5 of this embodiment is set as one piece, and the guide plate 5 is used to guide the molten metal material into the extrusion gap.
  • the cold air device includes a cold air unit provided corresponding to the side surface of the base material 1 provided with a metal layer, and the number of cold air units in this embodiment is set to one. Of course, the cold air unit can also be set to two located on both sides of the base material 1, which will not be repeated.
  • the cold air unit of this embodiment includes an air deflector 8; the air deflector is provided with a cold air channel 8a facing the discharge side of the squeeze roller set on the outside of the base material 1, the air deflector and the base material.
  • a return passage 8b for the reflux of the cooling medium is formed between 1, as shown in Figure 2; or, a cold air passage for blowing the cooling medium is formed between the air guide baffle and the base material 1 facing the discharge side of the squeeze roller set,
  • the air guide baffle is provided with a return channel for the reflux of the cooling medium on the outside of the back of the base material 1, as shown in FIG. 3.
  • an air inlet gap 9 is provided between the air deflector 8 and the squeeze roller 3, and the air inlet gap connects the cold air passage and the return passage.
  • the substrate 1 in this embodiment adopts, but is not limited to, a copper strip, an aluminum strip, a steel strip, a nickel strip, a silver strip, a gold strip, or a composite strip of a metal material and a non-metal material.
  • the base material 1 is a mesh foil or a strip with through holes arranged in an array, and the metal layer compounded on one side of the base material 1 is embedded in the mesh or through holes to increase the bonding strength.
  • the base material 1 of this embodiment can also be but not limited to release paper.
  • the release paper in the composite metal belt can be peeled from the metal layer to obtain a metal belt.
  • the release paper can be realized by using a variety of existing release films.
  • the release paper of this embodiment can be a release paper for processing battery-grade lithium belts described in the Chinese patent application with publication number CN107236144A Membrane combination, no longer tired.
  • the metal layer is extruded and coated on at least one side surface of the substrate 1 by using a set of extrusion rollers;
  • the molten metal material is added to the feeding side of the two squeezing rolls 3; the two squeezing rolls 3 are driven to rotate, so that the tangential velocity of the squeezing rolls 3 is the same as that between the two squeezing rolls 3.
  • the speed of the substrate 1 passing through is equal.
  • the molten metal material is extruded and coated on the substrate 1 by the squeeze roller 3 to form a metal layer, and then the cooling set on the discharge side of the two squeeze rollers 3 is used.
  • the device cools and sets the metal layer according to the set cooling rate to obtain the composite metal belt 2.
  • the molten metal material is added to the side of the substrate 1 facing the other squeeze roll 3, and on the side of the substrate 1
  • the metal layer is extruded and coated on the side; when the base material 1 and the two squeeze rolls 3 are respectively provided with an extrusion gap, the molten metal material is added on both sides of the base material 1, and on both sides of the base material 1
  • the side surfaces are respectively extrusion coated with metal layers.
  • the substrate 1 of this embodiment and one of the squeeze rolls 3 are always in contact and fit, that is, only the molten metal material is added to the side of the substrate 1 facing the other squeeze roll 3, and the substrate 1 A metal layer is extrusion coated on one side.
  • the axes of the two squeezing rollers 3 in this embodiment are located on the same horizontal plane, and the upper side of the two squeezing rollers 3 is the feeding side.
  • molten metal material can be directly added on the feeding side of the two squeezing rolls 3, and the heating device provided on the feeding side of the two squeezing rolls can be used to keep the molten metal material in a molten state; or,
  • the two squeezing rolls 3 are sprayed with metal particles or metal powder, and the heating device arranged on the feeding side of the two squeezing rolls is used to melt the metal particles or metal powder to obtain molten metal material.
  • a feed pump 4 is provided to directly add molten metal above the two squeezing rollers 3.
  • a powder spraying device can also be used to spray metal particles or metal powder above the two squeezing rollers 3. The principle is similar and will not be repeated.
  • the base material 1 may be a mesh foil material or the base material 1 may be provided with through holes in an array. If the substrate 1 is a mesh foil, the metal layer provided on one side of the substrate 1 in this embodiment is embedded in the mesh of the substrate 1. If the substrate 1 is provided with through holes in an array, the metal layer provided on one side of the substrate 1 in this embodiment is embedded in the through holes of the substrate 1. It can effectively enhance the bonding strength between the metal layer and the substrate 1. Specifically, the substrate 1 adopts, but is not limited to, copper tape, aluminum tape, steel tape, nickel tape, silver tape, gold tape, or a composite tape of a metal material and a non-metal material.
  • the substrate 1 of this embodiment can also Using but not limited to release paper, the release paper in the composite metal belt can be peeled from the metal layer during use to obtain the metal belt.
  • the release paper can be realized by using a variety of existing release films.
  • the release paper of this embodiment can be a release paper for processing battery-grade lithium belts described in the Chinese patent application with publication number CN107236144A Membrane combination, no longer tired.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Coating With Molten Metal (AREA)

Abstract

本发明公开了一种复合金属带连续生产设备,包括:放卷机构;挤压成型装置:用于在基材的至少一侧侧面上挤压成型金属层并得到复合金属带;收卷机构:收卷制备得到的复合金属带;挤压成型装置包括挤压辊组,挤压辊组包括轴线相互平行的两根挤压辊;两根挤压辊的进料侧设有用于加入熔融金属材料的送料装置;挤压辊组的进料侧设有用于使熔融金属材料保持熔融状态的高温区,挤压辊组的出料侧设有使复合金属带降温定型的冷却区;放卷机构和收卷机构之间设有用于使基材从两根挤压辊之间穿过的导向机构。本发明还公开了一种复合金属带连续生产方法,不仅能够满足复合金属带的规模化连续生产要求,而且金属层的厚度可以更薄,复合金属带的质量也更加稳定。

Description

复合金属带连续生产设备和连续生产方法 技术领域
本实用新型涉及一种复合金属带生产设备及工艺,具体的为一种复合金属带连续生产设备和连续生产方法。
背景技术
金属锂具有高的容量(理论3860mAh/g),低的密度(0.59g/cm3),低的电化学势(-3.04V vs.标准氢电极),因此以金属锂作为负极的金属锂二次电池与石墨负极的锂离子电池相比具有电压高能量密度高的优异性能。
现有的复合锂带一般采用金属锂带和基材辊压成型的加工方式。金属锂带一般采用挤压成型工艺,如公开号为CN204564801U的中国专利公开的一种金属锂带生产装置,以及公开号为CN101497088B的中国专利公开的一种金属锂带加工方法,均采用挤压成型的方式生产金属锂带。现有的挤压成型工艺生产得到的复合锂带存在厚度较厚的缺点。当较厚的金属锂带应用于金属锂电池中,负极容量远远过量于正极容量,这样就造成了负极金属锂的浪费,同时也增加了电池的体积和重量,降低了电池的体积和质量能量密度,不利于金属锂电池极限能量密度的提升。
公开号为CN206992217U的中国专利公开了一种复合锂带的生产装置,该复合锂带的生产装置设有机架,在所述机架上安装有上、下两个轧辊,在所述轧辊的上游设有集流体放卷装置、锂带放卷装置和保护膜放卷装置,在所述保护膜放卷装置的下游设有放卷导辊,在所述轧辊的下游设有复合锂带收卷装置和与所述保护膜放卷装置对应的保护膜收卷装置,在所述保护膜收卷装置的上游设有收卷导辊。该复合锂带的生产装置采用辊压成型的方式将集流体与金属锂带复合在一起,由于金属锂带本身厚度较厚,加之金属锂带与集流体之间仅仅依靠简单的辊压结合在一起,存在结合力不足的问题。
当然,现有技术中也存在一些采用非辊压成型的方式加工复合锂带的技术方案。如公开号为CN109360934A的中国专利公开了一种超薄复合锂带的制备方法,在高纯氩气氛围下,将锂锭加热至熔融状态后,将粗化处理的导电基材浸入到液态锂中挂浆并缓慢拉出,通过对轧辊调节挂浆厚度,经风冷后收卷,得到总厚度为10~50μm的双面覆锂的超薄复合锂带。该超薄复合锂带的制备方法采用将基材浸入到熔融态金属锂中挂桨的方式生产复合锂带,然而,由于熔融态金属锂粘稠度较高,在基材上挂桨的厚度存在较大的差异,且在基材某些区域可能存在并未挂桨的情况,由于重力作用,基材上下两侧面挂桨的情况也存在较大差异,基材下侧面难以稳定地挂桨,导致采用该超薄复合锂带的制备方法制备得到的复合锂带的质量不 稳定。
发明内容
有鉴于此,本发明的目的在于提供一种复合金属带连续生产设备和连续生产方法,不仅能够满足复合金属带的规模化连续生产要求,而且金属层的厚度可以更薄,复合金属带的质量也更加稳定。
为达到上述目的,本发明提供如下技术方案:
一种复合金属带连续生产设备,包括:
放卷机构:用于连续放卷基材;
挤压成型装置:用于在基材的至少一侧侧面上挤压成型金属层并得到复合金属带;
收卷机构:用于收卷制备得到的复合金属带;
所述挤压成型装置包括挤压辊组,所述挤压辊组包括轴线相互平行的两根挤压辊;两根所述挤压辊的进料侧设有用于加入熔融金属材料的送料装置;
所述挤压辊组的进料侧设有用于使熔融金属材料保持熔融状态的高温区,所述挤压辊组的出料侧设有使复合金属带降温定型的冷却区;
所述放卷机构和收卷机构之间设有用于使基材从两根所述挤压辊之间穿过的导向机构。
进一步,两根所述挤压辊之间设有用于调节辊缝的辊缝调节机构。
进一步,当所述基材与其中一根所述挤压辊之间始终保持接触配合时,所述送料装置包括用于向所述基材面向另一根所述挤压辊的一侧加入熔融金属材料的加料机构;
当所述基材与两根所述挤压辊之间分别设有挤压间隙时,所述送料装置包括两个分别用于向所述基材两侧加入熔融金属材料的加料机构。
进一步,当两根所述挤压辊的轴线位于同一个水平面上时,两根所述挤压辊的上方为进料侧。
进一步,当所述基材与两根所述挤压辊之间分别设有挤压间隙时,所述导向机构导向所述基材沿着竖直向下的方向从两根所述挤压辊之间穿过。
进一步,所述导向机构导向所述基材、并使所述基材与两根所述挤压辊之间的挤压间隙相等,或使所述基材与两根所述挤压辊之间的挤压间隙的差值在设定范围内。
进一步,所述加料机构包括用于向所述高温区内输送熔融金属材料的送料泵或螺杆挤出送料机构,或所述加料机构包括用于向所述高温区内输送金属颗粒或金属粉末的喷粉装置,所述送料装置还包括设置在所述高温区内并用于使金属颗粒或金属粉末融化并形成熔融金属材料的熔融加热机构。
进一步,所述高温区内设有用于将熔融金属材料引流至两根所述挤压辊的进料侧的引流装置。
进一步,所述引流装置包括设置在所述高温区内的引流板。
进一步,所述引流板设置为两块,两块所述引流板分别位于所述送料装置的下方。
进一步,两块所述引流板相背的一侧设有用于加热的加热区,两块所述引流板之间形成恒温区。
进一步,所述冷却区内设有冷风装置;所述冷风装置包括与所述基材设有所述金属层的侧面对应设置的冷风单元,所述冷风单元包括导风板;所述导风隔板背向所述基材的外侧设有正对所述挤压辊组的出料侧吹冷却介质的冷风通道,所述导风隔板与所述基材之间形成用于冷却介质回流的回流通道;或,所述导风隔板与所述基材之间形成正对所述挤压辊组的出料侧吹冷却介质的冷风通道,所述导风隔板背向所述基材的外侧设有用于冷却介质回流的回流通道。
进一步,所述冷风单元设为两个并分别位于所述基材的两侧。
进一步,两块所述导风板相对于两根所述挤压辊的对称面呈对称设置。
进一步,还包括用于将所述挤压辊上附着的熔融金属材料刮落的刮刀。
进一步,所述刮刀的下方设有收集盒。
进一步,所述基材采用但不限于铜带、铝带、钢带、镍带、银带、金带或金属材料与非金属材料复合的带材;或所述基材采用但不限于离型纸。
进一步,所述基材采用网状箔材或所述带材上阵列设有通孔。
进一步,所述熔融金属材料采用但不限于金属锂、金属钠、金属钾、金属镁、金属钙、金属锌、金属铝或金属银;或所述金属材料采用但不限于金属锂、金属钠、金属钾、金属镁、金属钙、金属锌、金属铝和金属银中的至少两种配比而成的合金。
进一步,所述挤压成型装置与所述收卷机构之间设有精整区。
进一步,所述精整区内设有用于精整所述复合金属带的激光精整设备。
进一步,所述精整区内间隔设有至少一组精整辊组,每一组所述精整辊组包括对应设置的两根精整辊。
进一步,相邻两根所述精整辊组之间,靠近所述挤压成型装置一侧的所述精整辊组的辊间间隙大于靠近所述收卷机构一侧的所述精整辊组的辊间间隙。
进一步,所述精整区内设有保持轧制温度在设定范围内的保温装置。
进一步,还包括修边装置,所述修边装置设置在所述精整区内或设置在所述精整区与所 述收卷机构之间。
进一步,所述收卷机构的前端设有用于将隔离薄膜复合在所述复合金属带的至少一侧侧面上的薄膜复合机构。
进一步,所述薄膜复合机构包括用于放卷隔离薄膜的薄膜放卷机构和用于将所述复合金属带与所述隔离薄膜复合在一起的复合辊组。
一种复合金属带连续生产方法,包括:
挤压涂布工序,利用挤压辊组在基材的至少一侧侧面上挤压涂布金属层;
所述挤压涂布工序中,在两根挤压辊的进料侧加入熔融金属材料;驱动两根挤压辊旋转,使挤压辊的切向速率与从两根挤压辊之间穿过的基材的速率相等,利用挤压辊将熔融金属材料挤压涂布在基材上并形成金属层后,再利用设置在两根挤压辊出料侧的冷却装置使金属层按照设定的冷却速率冷却定型,得到复合金属带。
进一步,当所述基材与其中一根所述挤压辊之间始终保持接触配合时,在所述基材面向另一根所述挤压辊的一侧加入熔融金属材料,并在基材的一侧侧面上挤压涂布所述金属层;
当所述基材与两根所述挤压辊之间分别设有挤压间隙时,在基材两侧分别加入熔融金属材料,并在基材的两侧侧面上分别挤压涂布所述金属层。
进一步,当所述基材与两根所述挤压辊之间分别设有挤压间隙时,在基材两侧持续加入相同的熔融金属材料,并在基材的两侧分别挤压涂布相同熔融金属材料的金属层;或在基材两侧分别持续加入不同的熔融金属材料,并在基材的两侧分别挤压涂布不同熔融金属材料的金属层。
进一步,当两根所述挤压辊的轴线位于同一个水平面上时,两根所述挤压辊的上方为进料侧。
进一步,当所述基材与两根所述挤压辊之间分别设有挤压间隙时,所述基材沿着竖直向下的方向从两根所述挤压辊之间穿过。
进一步,所述基材与两根所述挤压辊之间的挤压间隙相等,或所述基材与两根所述挤压辊之间的挤压间隙的差值在设定范围内。
进一步,在两根挤压辊的进料侧直接加入熔融金属材料,并利用设置在两根挤压辊进料侧的加热装置使熔融金属材料保持熔融状态;或,在两根挤压辊上方喷入金属颗粒或金属粉末,利用设置在两根挤压辊进料侧的加热装置使金属颗粒或金属粉末融化得到所述熔融金属材料。
进一步,所述基材采用网状箔材,当所述基材仅在一侧侧面上设置所述金属层时,所述 金属层嵌入到所述基材的网孔内并与所述基材复合在一起;当所述基材的两侧侧面均设置所述金属层时,设置在所述基材两侧的所述金属层通过所述基材上的网孔连接在一起;或,
所述基材上阵列设有通孔,当所述基材仅在一侧侧面上设置所述金属层时,所述金属层嵌入到所述基材的通孔内并与所述基材复合在一起;当所述基材的两侧侧面均设置所述金属层时,设置在所述基材两侧的所述金属层通过所述基材上的通孔连接在一起。
进一步,所述基材采用但不限于铜带、铝带、钢带、镍带、银带、金带或金属材料与非金属材料复合的带材,或所述基材采用但不限于离型纸。
进一步,所述熔融金属材料采用但不限于金属锂、金属钠、金属钾、金属镁、金属钙、金属锌、金属铝或金属银;或所述熔融金属材料采用但不限于金属锂、金属钠、金属钾、金属镁、金属钙、金属锌、金属铝和金属银中的至少两种配比而成的合金。
进一步,所述熔融金属材料在设定气氛环境下被挤压涂布在基材的侧面上。
进一步,冷却装置按照设定的冷却曲线将金属层冷却至设定温度范围。
进一步,还包括精整工序,利用至少一组精整辊组依次轧制复合金属带;或采用激光精整设备,使金属层的厚度达到设定厚度。
进一步,复合金属带在经冷却装置冷却定型后,在自然条件下恢复常温,而后对其进行精整。
进一步,在精整工序中,使金属层保持在有利于其精整成型的设定温度范围内。
进一步,还包括修边工序,利用修边工具对金属层的两侧侧边进行修边处理。
进一步,在复合金属带收卷之前,在复合金属带的至少一侧侧面上复合防止相邻两层复合金属带粘连在一起的隔离薄膜。
本发明的有益效果在于:
本实用新型的复合金属带连续生产设备,利用导向机构使基材穿过两根挤压辊,而后利用挤压辊组将熔融金属材料轧制在基材的侧面上,轧制后快速冷却定型,能够满足复合金属带的生产要求,且相较于现有技术中的采用金属带与基材直接辊压复合的方式,采用本实用新型复合金属带连续生产设备得到的复合金属带的结合力更好,金属层可以更薄,甚至达到10um以下;相较于现有的将基材浸入到熔融态金属中挂桨的方式生产复合金属带的方式,采用本实用新型复合金属带连续生产设备生产得到的复合金属带的金属层的厚度均匀,不会存在在基材的某些区域没有覆盖金属的缺陷,质量更加稳定;综上可知,本实用新型复合金属带连续生产设备不仅能够满足复合金属带的规模化连续生产要求,而且金属层的厚度可以更薄,复合金属带的质量也更加稳定。
本发明的复合金属带连续生产方法,使基材从两根挤压辊之间穿过,并在挤压辊进料侧持续加入保持熔融金属材料,利用挤压辊将熔融金属材料挤压涂布在基材上形成金属层,并经冷却定型后得到复合金属带,能够满足复合金属带的生产要求,且相较于现有技术中的采用金属锂带与基材直接辊压复合的方式,采用本发明复合金属带连续生产方法得到的复合金属带的结合力更好,且金属层可以更薄,甚至达到10um以下;相较于现有的将基材浸入到熔融态金属中挂桨的方式生产复合锂带的方式,采用本发明复合锂带连续生产设备生产得到的复合金属带的金属层的厚度均匀,不会存在在基材的某些区域没有覆盖金属层的缺陷,质量更加稳定;综上可知,本发明复合金属带连续生产方法不仅能够满足复合金属带的规模化连续生产要求,而且金属层的厚度可以更薄,复合金属带的质量也更加稳定。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为本实用新型复合金属带连续生产设备实施例1的结构示意图;
图2为图1的A详图;
图3为冷风装置的第二种进出风方式的结构示意图;
图4为本实用新型复合金属带连续生产设备实施例2的结构示意图。
附图标记说明:
1-基材;2-复合金属带;3-挤压辊;4-送料泵;4a-喷嘴;5-引流板;6-加热区;7-恒温区;8-导风板;8a-冷风通道;8b-回流通道;9-进风间隙;10-刮刀;11-收集盒;12-精整辊;13-保温装置;14-放卷张力调节辊;15-收卷张力调节辊;16-放卷辊;17-收卷辊;18-压力调节机构;19-导向辊;20-隔离薄膜;21-隔膜放卷机构;22-复合辊组。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1
如图1所示,为本实用新型复合金属带连续生产设备实施例的结构示意图。本实施例的复合金属带连续生产设备,包括:
放卷机构:包括放卷辊16,用于连续放卷基材1;
挤压成型装置:用于在基材1的至少一侧侧面上挤压成型金属层并得到复合金属带2;
收卷机构:包括收卷辊17,用于收卷制备得到的复合金属带2;
挤压成型装置包括挤压辊组,挤压辊组包括轴线相互平行的两根挤压辊3;两根挤压辊3 的进料侧设有用于加入熔融金属材料的送料装置;
挤压辊组的进料侧设有用于使熔融金属材料保持熔融状态的高温区,挤压辊组的出料侧设有使复合金属带2降温定型的冷却区;
放卷机构和收卷机构之间设有用于使基材1从两根挤压辊3之间穿过的导向机构,导向机构包括若干导向辊19。
进一步,两根挤压辊3之间设有用于调节辊缝的辊缝调节机构,能够调节两根挤压辊3之间的辊缝宽度,进而控制金属层的成型厚度。
进一步,当基材1与其中一根挤压辊3之间始终保持接触配合时,送料装置包括用于向基材1面向另一根挤压辊的一侧加入熔融金属材料的加料机构;当基材1与两根挤压辊3之间分别设有挤压间隙时,送料装置包括两个分别用于向基材两侧加入熔融金属材料的加料机构。本实施例的基材1与两根挤压辊3之间分别设有挤压间隙。
进一步,当两根挤压辊3的轴线位于同一个水平面上时,两根挤压辊3的上方为进料侧。本实施例的导向机构导向基材1沿着竖直向下的方向从两根挤压辊3之间穿过。具体的,导向机构导向基材1、并使基材1与两根挤压辊3之间的挤压间隙相等,或使基材1与两根挤压辊3之间的挤压间隙的差值在设定范围内。本实施例的基材1与两根挤压辊3之间的挤压间隙相等,即在基材1两侧分别挤压成型的金属层的厚度相等。
进一步,加料机构包括用于向高温区内输送熔融金属材料的送料泵4或螺杆挤出送料机构,或加料机构包括用于向高温区内输送金属颗粒或金属粉末的喷粉装置,送料装置还包括设置在高温区内并用于使金属颗粒或金属粉末融化并形成熔融金属材料的熔融加热机构。本实施例的两个加料机构分别位于两根挤压辊3之间的竖直对称面的两侧,可实现同时向基材两侧分别输送金属的技术目的。本实施例的加料机构包括用于向高温区内输送熔融态金属的送料泵4,送料泵4上设有用于向高温区内输送熔融态金属的喷嘴4a。
进一步,高温区内设有用于将熔融金属材料引流至两根挤压辊3上方的引流装置。本实施例的引流装置包括设置在高温区内的引流板5。具体的,本实施例的引流板5设置为两块,两块引流板5分别位于两个送料装置的下方,且本实施例的两块引流板5相对于两根挤压辊3之间的竖直对称面呈对称设置,如此,即可分别将位于基材1两侧的熔融金属材料分别导流至两根挤压辊3之间。本实施例的两块引流板4相背的一侧设有用于加热的加热区6,两块引流板5之间形成恒温区7,加热区6内设有加热设备,恒温区7内的温度用于使熔融金属材料保持熔融状态,或使金属颗粒或金属粉末熔化并保持熔融状态。
进一步,冷却区内设有冷风装置。冷风装置包括与基材1设有金属层的侧面对应设置的 冷风单元,本实施例的冷风单元设置为两个,两个冷风单元分别位于基材1的两侧。冷风单元包括导风板8;导风隔板背向基材1的外侧设有正对挤压辊组的出料侧吹冷却介质的冷风通道8a,导风隔板与基材1之间形成用于冷却介质回流的回流通道8b,如图1和2所示;或,导风隔板与基材1之间形成正对挤压辊组的出料侧吹冷却介质的冷风通道,导风隔板背向基材1的外侧设有用于冷却介质回流的回流通道,如图3所示。具体的,导风板8与挤压辊3之间设有进风间隙9,进风间隙连通冷风通道和回流通道。
进一步,本实施例的复合金属带连续生产设备还包括用于将挤压辊3上附着的金属刮落的刮刀10,本实施例的刮刀10的下方设有收集盒11,收集刮落的金属循环使用。
本实施例的基材1采用但不限于铜带、铝带、钢带、镍带、银带、金带或金属材料与非金属材料复合的带材。基材1采用网状箔材或带材上阵列设有通孔,分别复合在基材1两侧的金属层通过设置在基材1上的网孔或通孔连接为一体,能够有效提高金属层与基材之间的结合力强度。本实施例的熔融金属材料采用但不限于金属锂、金属钠、金属钾、金属镁、金属钙、金属锌、金属铝或金属银;或金属材料采用但不限于金属锂、金属钠、金属钾、金属镁、金属钙、金属锌、金属铝和金属银中的至少两种配比而成的合金。
进一步,本实施例的挤压成型装置与收卷机构之间设有精整区。精整区内间隔设有至少一组精整辊组,每一组精整辊组包括对应设置的两根精整辊12。本实施例的精整区内设有4组精整辊组,当然,根据实际需要,精整辊组还可以设置为1组、2组、3组、5组或5组以上,其原理相当,不再一一累述。当然,还可以采用其他方式实现对复合金属带2的精整,如在精整区内设置用于精整所述复合金属带的激光精整设备等,不再累述。
具体的,相邻两根精整辊组之间,靠近挤压成型装置一侧的精整辊组的辊间间隙大于等于靠近收卷机构一侧的精整辊组的辊间间隙。具体的,精整辊组还包括用于调节轧制压力的压力调节机构18。相邻两根精整辊组之间,靠近挤压成型装置一侧的精整辊组的轧制压力小于等于靠近收卷机构一侧的精整辊组的轧制压力,逐渐控制复合金属带上的金属层的厚度,并使复合金属带的表面精度达到设定值。
进一步,本实施例的精整区内设有保持轧制温度在设定范围内的保温装置13,在设定温度范围内,可使金属软化,便于进一步轧制。
进一步,位于最后的一组精整辊组的两根精整辊12中,至少一根所述精整辊12上设有用于在复合金属带2的对应金属层上轧制孔洞的轧针,本实施例位于最后的一组精整辊组的两根精整辊12上均设有轧针,即可同时在复合金属带2的上下两侧金属层上分别加工孔洞。当然,也可以采用在于精整区后侧设置轧孔区的方式,此时的轧孔区内设有用于在复合金属 带2的至少一层金属层上加工孔洞的轧辊辊组或压板组,轧辊辊组或所述压板组上设有用于轧制所述孔洞的轧针,也可满足在复合金属带2的金属层上加工孔洞的技术目的,其原理相当,不再累述。
具体的,本实施例的轧针为纳米尺度轧针,且轧针的外径大于等于1nm并小于等于1um。相邻两根所述轧针之间的间距满足:
L≤kδ
其中,L为纳米尺度孔的孔间距;k为系数,且k≥1;δ为扩散控制层厚度。
扩散控制层厚度为:
Figure PCTCN2020083418-appb-000001
其中,δ为扩散控制层厚度;D为扩散系数;t为时间。
进一步,本实施例的精整区与收卷机构之间设有用于将隔离薄膜20复合在复合金属带2的至少一侧侧面上的薄膜复合机构。本实施例的薄膜复合机构将隔离薄膜20复合在复合金属带2的下侧面上。具体的,本实施例的薄膜复合机构包括用于放卷隔离薄膜20的薄膜放卷机构21和用于将复合金属带2与隔离薄膜20复合在一起的复合辊组22。通过在复合金属带2的至少一个侧面上复合可分离的隔离薄膜,当金属层采用软质金属时,能够避免收卷在一起的复合金属带2的金属层之间粘连。
本实施例的复合金属带连续生产设备,利用导向机构使基材穿过两根挤压辊,而后利用挤压辊组将熔融金属材料轧制在基材的侧面上,轧制后快速冷却定型,能够满足复合金属带的生产要求,且相较于现有技术中的采用金属带与基材直接辊压复合的方式,采用本实用新型复合金属带连续生产设备得到的复合金属带的结合力更好,金属层可以更薄,甚至达到10um以下;相较于现有的将基材浸入到熔融态金属中挂桨的方式生产复合金属带的方式,采用本实用新型复合金属带连续生产设备生产得到的复合金属带的金属层的厚度均匀,不会存在在基材的某些区域没有覆盖金属的缺陷,质量更加稳定;综上可知,本实用新型复合金属带连续生产设备不仅能够满足复合金属带的规模化连续生产要求,而且金属层的厚度可以更薄,复合金属带的质量也更加稳定。
下面结合本实施例复合金属带连续生产设备对复合金属带连续生产方法的具体实施方式进行说明。
本实施例的复合金属带连续生产方法,包括:
挤压涂布工序,利用挤压辊组在基材1的至少一侧侧面上挤压涂布金属层;
挤压涂布工序中,在两根挤压辊3的进料侧加入熔融金属材料;驱动两根挤压辊3旋转, 使挤压辊3的切向速率与从两根挤压辊3之间穿过的基材1的速率相等,利用挤压辊3将熔融金属材料挤压涂布在基材1上并形成金属层后,再利用设置在两根挤压辊3出料侧的冷却装置使金属层按照设定的冷却速率冷却定型,得到复合金属带2。
进一步,当基材1与其中一根挤压辊3之间始终保持接触配合时,在基材1面向另一根挤压辊3的一侧加入熔融金属材料,并在基材1的一侧侧面上挤压涂布金属层;当基材1与两根挤压辊3之间分别设有挤压间隙时,在基材1两侧分别加入熔融金属材料,并在基材1的两侧侧面上分别挤压涂布金属层。
本实施例的基材1与两根挤压辊3之间分别设有挤压间隙,在基材1两侧持续加入相同的熔融金属材料,并在基材1的两侧分别挤压涂布相同熔融金属材料的金属层;或在基材1两侧分别持续加入不同的熔融金属材料,并在基材1的两侧分别挤压涂布不同熔融金属材料的金属层。
本实施例的两根挤压辊3的轴线位于同一个水平面上时,两根挤压辊3的上方为进料侧,本实施例的基材1沿着竖直向下的方向从两根挤压辊3之间穿过。
进一步,基材1与两根挤压辊3之间的挤压间隙相等,或基材1与两根挤压辊3之间的挤压间隙的差值在设定范围内。本实施例的基材1与两根挤压辊3之间的挤压间隙相等,即在基材1的两侧分别挤压涂布厚度相等的金属层。
进一步,在加料时,可以在两根挤压辊3的进料侧直接加入熔融金属材料,并利用设置在两根挤压辊进料侧的加热装置使熔融金属材料保持熔融状态;或,在两根挤压辊3上方喷入金属颗粒或金属粉末,利用设置在两根挤压辊进料侧的加热装置使金属颗粒或金属粉末融化得到熔融金属材料。本实施例通过设置送料泵4向两根挤压辊3上方直接加入熔融态的金属。当然,也可采用喷粉装置向两根挤压辊3上方喷入金属颗粒或金属粉末,其原理相当,不再累述。
进一步,基材1可以采用网状箔材或在基材1上阵列设有通孔。若基材1采用网状箔材,本实施例设置在基材1两侧的金属层通过基材1上的网孔连接在一起。若基材1上阵列设有通孔,本实施例设置在基材1两侧的金属层通过基材1上的通孔连接在一起。能够有效增强金属层与基材1之间的结合力强度。具体的,基材1采用但不限于铜带、铝带、钢带、镍带、银带、金带或金属材料与非金属材料复合的带材,不再累述。
进一步,熔融金属材料采用但不限于金属锂、金属钠、金属钾、金属镁、金属钙、金属锌、金属铝或金属银;或熔融金属材料采用但不限于金属锂、金属钠、金属钾、金属镁、金属钙、金属锌、金属铝和金属银中的至少两种配比而成的合金。具体的,根据不同的情况, 还可以在金属内掺杂设置非金属等。且根据不同金属的特性的不同,还可以使金属在设定气氛环境下被挤压涂布在基材1的侧面上。当然,进一步的,还可以在基材两侧持续加入相同的金属,并在基材的两侧分别挤压成型相同金属的金属层;或在基材两侧分别持续加入不同的金属,并在基材的两侧分别挤压成型不同金属的金属层,即本实用新型的复合金属带连续生产方法可以在基材两侧分别挤压成型相同金属的金属层,或根据需求,也可以在基材1的两侧分别挤压成型不同金属的金属层。本实施例的金属采用金属锂,根据使用情况,金属锂中可以掺杂稀土、碳、石墨和石墨烯等材料,不再累述。
进一步,单位时间内加入的金属的质量为:
q=vlhρ+q 0
其中,q为单位时间内加入的金属的质量;
v为基材的速率;
l为基材上挤压的金属层的宽度;
h为金属层的厚度;
ρ为金属的密度;
q 0为挤压过程中的金属在单位时间内的损耗,如挤压辊3的表面粘附的少量金属。
进一步,基材1的输送速率为0-400km/h,基材1的输送速率根据不同的金属层进行调整,以保证金属层能够顺利成型的目的进行设置。本实施例的基材1两侧面与两根挤压辊3之间的间距相等,可在基材1的两侧分别挤压成型相同厚度的金属层。当然,在生产某些复合金属带时,也可以将基材1两侧面与两根挤压辊3之间的间距设置为不相等,即在基材1的两侧分别挤压成型不同厚度的金属层。进一步,基材1两侧面与两根挤压辊3之间的间距大于等于0.02um,即金属层的厚度大于等于0.02um,基材1两侧面与两根挤压辊3之间的间距可以根据实际要求进行设定,进而可以挤压成型不同厚度的金属层。
进一步,冷却装置按照设定的冷却曲线将金属层冷却至设定温度范围,一方面,冷却装置需要将金属层快速冷却,以避免挤压至基材1上的还处于熔融状态的金属从基材1上脱落,另一方面,可调整冷却速率使金属层内得到所需晶型,不再累述。
进一步,本实施例的复合金属带连续生产方法还包括精整工序,利用至少一组精整辊组依次轧制复合金属带或激光精整设备,使金属层的厚度达到设定厚度。具体的,复合金属带可在经冷却装置冷却定型后,在自然条件下恢复常温,而后对其进行精整。具体的,本实施例采用精整辊组对复合金属带2实现精整,在精整工序中,使金属层保持在有利于其精整成型的设定温度范围内,如本实施例的金属采用金属锂,可使金属锂保持较高温度使其软化, 而后再对其进行精整,效果更好。
进一步,位于最后的一组所述精整辊组的两根精整辊中,至少一根精整辊上设有用于在复合金属带的对应金属层上轧制孔洞的轧针。或,本实施例的复合金属带连续生产方法还包括位于精整工序后的轧孔工序,所述轧孔工序采用轧辊辊压或压板压制的方式在复合金属带的至少一层金属层上加工孔洞。本实施例采用在位于最后的一组所述精整辊组的精整辊上设置轧针的方式在复合金属带上加工孔洞的方式。具体的,在金属层上轧制的孔洞为纳米尺度孔,纳米尺度孔的孔径大于等于1nm并小于等于1um,且纳米尺度孔之间的孔间距满足:
L≤kδ
其中,L为纳米尺度孔的孔间距;k为系数,且k≥1;δ为扩散控制层厚度。
进一步的,扩散控制层厚度为:
Figure PCTCN2020083418-appb-000002
其中,δ为扩散控制层厚度;D为扩散系数;t为时间。
通过以扩散控制层厚度来限定纳米尺度孔之间的孔间距,能够消除或减小传质或扩散控制的影响。
进一步,在复合金属带收卷之前,在复合金属带2的至少一侧侧面上复合防止相邻两层复合金属带粘连在一起的隔离薄膜20,本实施例仅在复合金属带2的下侧侧面上复合隔离薄膜20,对于一些软质金属层,能够防止金属层之间粘连在一起。
实施例2
如图4所示,为本实用新型复合金属带连续生产设备实施例2的结构示意图。本实施例的复合金属带连续生产设备,包括:
放卷机构:包括放卷辊16,用于连续放卷基材1;
挤压成型装置:用于在基材1的至少一侧侧面上挤压成型金属层并得到复合金属带2;
收卷机构:包括收卷辊17,用于收卷制备得到的复合金属带2;
挤压成型装置包括挤压辊组,挤压辊组包括轴线相互平行的两根挤压辊3;两根挤压辊3的进料侧设有用于加入熔融金属材料的送料装置;
挤压辊组的进料侧设有用于使熔融金属材料保持熔融状态的高温区,挤压辊组的出料侧设有使复合金属带2降温定型的冷却区;
放卷机构和收卷机构之间设有用于使基材1从两根挤压辊3之间穿过的导向机构,导向机构包括若干导向辊19。
进一步,两根挤压辊3之间设有用于调节辊缝的辊缝调节机构,能够调节两根挤压辊3 之间的辊缝宽度,进而控制金属层的成型厚度。
进一步,当基材1与其中一根挤压辊3之间始终保持接触配合时,送料装置包括用于向基材1面向另一根挤压辊的一侧加入熔融金属材料的加料机构;当基材1与两根挤压辊3之间分别设有挤压间隙时,送料装置包括两个分别用于向基材两侧加入熔融金属材料的加料机构。本实施例的基材1与其中一根挤压辊3之间始终保持接触配合。
进一步,本实施例的两根挤压辊3的轴线位于同一个水平面上,两根挤压辊3的上方为进料侧。本实施例的导向机构导向基材1与其中一根挤压辊3之间始终保持接触配合,且基材1与另一根挤压辊3之间设有挤压间隙,即仅在基材1的一侧侧面挤压成型的金属层。
进一步,加料机构包括用于向高温区内输送熔融金属材料的送料泵4或螺杆挤出送料机构,或加料机构包括用于向高温区内输送金属颗粒或金属粉末的喷粉装置,送料装置还包括设置在高温区内并用于使金属颗粒或金属粉末融化并形成熔融金属材料的熔融加热机构。本实施例的加料机构包括用于向高温区内输送熔融态金属的送料泵4,送料泵4上设有用于向高温区内输送熔融态金属的喷嘴4a。
进一步,高温区内设有用于将熔融金属材料引流至两根挤压辊3上方的引流装置。本实施例的引流装置包括设置在高温区内的引流板5。具体的,本实施例的引流板5设置为1块,该引流板5用于将熔融金属材料引流至挤压间隙内。
进一步,冷却区内设有冷风装置。冷风装置包括与基材1设有金属层的侧面对应设置的冷风单元,本实施例的冷风单元设置为1个。当然,冷风单元也可以设置为分别位于基材1两侧的两个,不再累述。本实施例的冷风单元包括导风板8;导风隔板背向基材1的外侧设有正对挤压辊组的出料侧吹冷却介质的冷风通道8a,导风隔板与基材1之间形成用于冷却介质回流的回流通道8b,如图2所示;或,导风隔板与基材1之间形成正对挤压辊组的出料侧吹冷却介质的冷风通道,导风隔板背向基材1的外侧设有用于冷却介质回流的回流通道,如图3所示。具体的,导风板8与挤压辊3之间设有进风间隙9,进风间隙连通冷风通道和回流通道。
本实施例的基材1采用但不限于铜带、铝带、钢带、镍带、银带、金带或金属材料与非金属材料复合的带材。基材1采用网状箔材或带材上阵列设有通孔,复合在基材1一侧的金属层嵌入到网孔或通孔内,增大结合力强度。
当然,本实施例的基材1还可以采用但不限于离型纸,使用时可以将复合金属带中的离型纸从金属层上剥离,得到金属带。具体的,离型纸可以采用现有的多种离型膜实现,本实施例的离型纸可以采用公开号为CN107236144A的中国专利申请中记载的一种用于加工电池 级锂带的离型膜组合,不再累述。
本实施例的其他实施方式与实施例1相同,不再一一累述。
下面结合本实施例复合金属带连续生产设备对复合金属带连续生产方法的具体实施方式进行说明。
本实施例的复合金属带连续生产方法,包括:
挤压涂布工序,利用挤压辊组在基材1的至少一侧侧面上挤压涂布金属层;
挤压涂布工序中,在两根挤压辊3的进料侧加入熔融金属材料;驱动两根挤压辊3旋转,使挤压辊3的切向速率与从两根挤压辊3之间穿过的基材1的速率相等,利用挤压辊3将熔融金属材料挤压涂布在基材1上并形成金属层后,再利用设置在两根挤压辊3出料侧的冷却装置使金属层按照设定的冷却速率冷却定型,得到复合金属带2。
进一步,当基材1与其中一根挤压辊3之间始终保持接触配合时,在基材1面向另一根挤压辊3的一侧加入熔融金属材料,并在基材1的一侧侧面上挤压涂布金属层;当基材1与两根挤压辊3之间分别设有挤压间隙时,在基材1两侧分别加入熔融金属材料,并在基材1的两侧侧面上分别挤压涂布金属层。本实施例的基材1与其中一根挤压辊3之间始终保持接触配合,即仅在基材1面向另一根挤压辊3的一侧加入熔融金属材料,并在基材1的一侧侧面上挤压涂布金属层。本实施例的两根挤压辊3的轴线位于同一个水平面上,两根挤压辊3的上方为进料侧。
进一步,在加料时,可以在两根挤压辊3的进料侧直接加入熔融金属材料,并利用设置在两根挤压辊进料侧的加热装置使熔融金属材料保持熔融状态;或,在两根挤压辊3上方喷入金属颗粒或金属粉末,利用设置在两根挤压辊进料侧的加热装置使金属颗粒或金属粉末融化得到熔融金属材料。本实施例通过设置送料泵4向两根挤压辊3上方直接加入熔融态的金属。当然,也可采用喷粉装置向两根挤压辊3上方喷入金属颗粒或金属粉末,其原理相当,不再累述。
进一步,基材1可以采用网状箔材或在基材1上阵列设有通孔。若基材1采用网状箔材,本实施例设置在基材1一侧侧面上的金属层嵌入到基材1的网孔内。若基材1上阵列设有通孔,本实施例设置在基材1一侧侧面上的金属层嵌入到基材1的通孔内。能够有效增强金属层与基材1之间的结合力强度。具体的,基材1采用但不限于铜带、铝带、钢带、镍带、银带、金带或金属材料与非金属材料复合的带材,当然,本实施例的基材1还可以采用但不限于离型纸,使用时可以将复合金属带中的离型纸从金属层上剥离,得到金属带。具体的,离型纸可以采用现有的多种离型膜实现,本实施例的离型纸可以采用公开号为CN107236144A的 中国专利申请中记载的一种用于加工电池级锂带的离型膜组合,不再累述。
本实施例的其他实施方式与实施例1相同,不再一一累述。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (44)

  1. 一种复合金属带连续生产设备,其特征在于:包括:
    放卷机构:用于连续放卷基材(1);
    挤压成型装置:用于在基材(1)的至少一侧侧面上挤压成型金属层并得到复合金属带(2);
    收卷机构:用于收卷制备得到的复合金属带(2);
    所述挤压成型装置包括挤压辊组,所述挤压辊组包括轴线相互平行的两根挤压辊;两根所述挤压辊的进料侧设有用于加入熔融金属材料的送料装置;
    所述挤压辊组的进料侧设有用于使熔融金属材料保持熔融状态的高温区,所述挤压辊组的出料侧设有使复合金属带(2)降温定型的冷却区;
    所述放卷机构和收卷机构之间设有用于使基材(1)从两根所述挤压辊(3)之间穿过的导向机构。
  2. 根据权利要求1所述的复合金属带连续生产设备,其特征在于:两根所述挤压辊之间设有用于调节辊缝的辊缝调节机构。
  3. 根据权利要求1所述的复合金属带连续生产设备,其特征在于:
    当所述基材与其中一根所述挤压辊之间始终保持接触配合时,所述送料装置包括用于向所述基材面向另一根所述挤压辊的一侧加入熔融金属材料的加料机构;
    当所述基材与两根所述挤压辊之间分别设有挤压间隙时,所述送料装置包括两个分别用于向所述基材两侧加入熔融金属材料的加料机构。
  4. 根据权利要求3所述的复合金属带连续生产设备,其特征在于:当两根所述挤压辊的轴线位于同一个水平面上时,两根所述挤压辊的上方为进料侧。
  5. 根据权利要求4所述的复合金属带连续生产设备,其特征在于:当所述基材与两根所述挤压辊之间分别设有挤压间隙时,所述导向机构导向所述基材沿着竖直向下的方向从两根所述挤压辊之间穿过。
  6. 根据权利要求5所述的复合金属带连续生产设备,其特征在于:所述导向机构导向所述基材、并使所述基材与两根所述挤压辊之间的挤压间隙相等,或使所述基材与两根所述挤压辊之间的挤压间隙的差值在设定范围内。
  7. 根据权利要求3所述的复合金属带连续生产设备,其特征在于:所述加料机构包括用于向所述高温区内输送熔融金属材料的送料泵(4)或螺杆挤出送料机构,或所述加料机构包括用于向所述高温区内输送金属颗粒或金属粉末的喷粉装置,所述送料装置还包括设置在所述高温区内并用于使金属颗粒或金属粉末融化并形成熔融金属材料的熔融加热机构。
  8. 根据权利要求1所述的复合金属带连续生产设备,其特征在于:所述高温区内设有用 于将熔融金属材料引流至两根所述挤压辊(3)的进料侧的引流装置。
  9. 根据权利要求8所述的复合金属带连续生产设备,其特征在于:所述引流装置包括设置在所述高温区内的引流板(5)。
  10. 根据权利要求9所述的复合金属带连续生产设备,其特征在于:所述引流板(5)设置为两块,两块所述引流板(5)分别位于所述送料装置的下方。
  11. 根据权利要求10所述的复合金属带连续生产设备,其特征在于:两块所述引流板(4)相背的一侧设有用于加热的加热区(6),两块所述引流板(5)之间形成恒温区(7)。
  12. 根据权利要求1所述的复合金属带连续生产设备,其特征在于:所述冷却区内设有冷风装置;所述冷风装置包括与所述基材(1)设有所述金属层的侧面对应设置的冷风单元,所述冷风单元包括导风板(8);所述导风隔板背向所述基材(1)的外侧设有正对所述挤压辊组的出料侧吹冷却介质的冷风通道,所述导风隔板与所述基材(1)之间形成用于冷却介质回流的回流通道;或,所述导风隔板与所述基材(1)之间形成正对所述挤压辊组的出料侧吹冷却介质的冷风通道,所述导风隔板背向所述基材(1)的外侧设有用于冷却介质回流的回流通道。
  13. 根据权利要求12所述的复合金属带连续生产设备,其特征在于:所述冷风单元设为两个并分别位于所述基材(1)的两侧。
  14. 根据权利要求13所述的复合金属带连续生产设备,其特征在于:两块所述导风板(8)相对于两根所述挤压辊(3)的对称面呈对称设置。
  15. 根据权利要求1所述的复合金属带连续生产设备,其特征在于:还包括用于将所述挤压辊(3)上附着的熔融金属材料刮落的刮刀(10)。
  16. 根据权利要求15所述的复合金属带连续生产设备,其特征在于:所述刮刀(10)的下方设有收集盒(11)。
  17. 根据权利要求1-16任一项所述的复合金属带连续生产设备,其特征在于:所述基材(1)采用但不限于铜带、铝带、钢带、镍带、银带、金带或金属材料与非金属材料复合的带材;或所述基材采用但不限于离型纸。
  18. 根据权利要求17所述的复合金属带连续生产设备,其特征在于:所述基材(1)采用网状箔材或所述带材上阵列设有通孔。
  19. 根据权利要求1-16任一项所述的复合金属带连续生产设备,其特征在于:所述熔融金属材料采用但不限于金属锂、金属钠、金属钾、金属镁、金属钙、金属锌、金属铝或金属银;或所述金属材料采用但不限于金属锂、金属钠、金属钾、金属镁、金属钙、金属锌、金 属铝和金属银中的至少两种配比而成的合金。
  20. 根据权利要求1-16任一项所述的复合金属带连续生产设备,其特征在于:所述挤压成型装置与所述收卷机构之间设有精整区。
  21. 根据权利要求20所述的复合金属带连续生产设备,其特征在于:所述精整区内设有用于精整所述复合金属带的激光精整设备。
  22. 根据权利要求21所述的复合金属带连续生产设备,其特征在于:所述精整区内间隔设有至少一组精整辊组,每一组所述精整辊组包括对应设置的两根精整辊(12)。
  23. 根据权利要求22所述的复合金属带连续生产设备,其特征在于:相邻两根所述精整辊组之间,靠近所述挤压成型装置一侧的所述精整辊组的辊间间隙大于靠近所述收卷机构一侧的所述精整辊组的辊间间隙。
  24. 根据权利要求20所述的复合金属带连续生产设备,其特征在于:所述精整区内设有保持轧制温度在设定范围内的保温装置(13)。
  25. 根据权利要求20所述的复合金属带连续生产设备,其特征在于:还包括修边装置,所述修边装置设置在所述精整区内或设置在所述精整区与所述收卷机构之间。
  26. 根据权利要求1所述的复合金属带连续生产设备,其特征在于:所述收卷机构的前端设有用于将隔离薄膜(20)复合在所述复合金属带(2)的至少一侧侧面上的薄膜复合机构。
  27. 根据权利要求26所述的复合金属带连续生产设备,其特征在于:所述薄膜复合机构包括用于放卷隔离薄膜(20)的薄膜放卷机构(21)和用于将所述复合金属带(2)与所述隔离薄膜(20)复合在一起的复合辊组(22)。
  28. 一种复合金属带连续生产方法,其特征在于:包括:
    挤压涂布工序,利用挤压辊组在基材的至少一侧侧面上挤压涂布金属层;
    所述挤压涂布工序中,在两根挤压辊的进料侧加入熔融金属材料;驱动两根挤压辊旋转,使挤压辊的切向速率与从两根挤压辊之间穿过的基材的速率相等,利用挤压辊将熔融金属材料挤压涂布在基材上并形成金属层后,再利用设置在两根挤压辊出料侧的冷却装置使金属层按照设定的冷却速率冷却定型,得到复合金属带。
  29. 根据权利要求28所述的复合金属带连续生产方法,其特征在于:
    当所述基材与其中一根所述挤压辊之间始终保持接触配合时,在所述基材面向另一根所述挤压辊的一侧加入熔融金属材料,并在基材的一侧侧面上挤压涂布所述金属层;
    当所述基材与两根所述挤压辊之间分别设有挤压间隙时,在基材两侧分别加入熔融金属材料,并在基材的两侧侧面上分别挤压涂布所述金属层。
  30. 根据权利要求29所述的复合金属带连续生产方法,其特征在于:当所述基材与两根所述挤压辊之间分别设有挤压间隙时,在基材两侧持续加入相同的熔融金属材料,并在基材的两侧分别挤压涂布相同熔融金属材料的金属层;或在基材两侧分别持续加入不同的熔融金属材料,并在基材的两侧分别挤压涂布不同熔融金属材料的金属层。
  31. 根据权利要求29所述的复合金属带连续生产方法,其特征在于:当两根所述挤压辊的轴线位于同一个水平面上时,两根所述挤压辊的上方为进料侧。
  32. 根据权利要求31所述的复合金属带连续生产方法,其特征在于:当所述基材与两根所述挤压辊之间分别设有挤压间隙时,所述基材沿着竖直向下的方向从两根所述挤压辊之间穿过。
  33. 根据权利要求32所述的复合金属带连续生产方法,其特征在于:所述基材与两根所述挤压辊之间的挤压间隙相等,或所述基材与两根所述挤压辊之间的挤压间隙的差值在设定范围内。
  34. 根据权利要求28所述的复合金属带连续生产方法,其特征在于:在两根挤压辊的进料侧直接加入熔融金属材料,并利用设置在两根挤压辊进料侧的加热装置使熔融金属材料保持熔融状态;或,在两根挤压辊上方喷入金属颗粒或金属粉末,利用设置在两根挤压辊进料侧的加热装置使金属颗粒或金属粉末融化得到所述熔融金属材料。
  35. 根据权利要求28-34任一项所述的复合金属带连续生产方法,其特征在于:
    所述基材采用网状箔材,当所述基材(1)仅在一侧侧面上设置所述金属层时,所述金属层嵌入到所述基材(1)的网孔内并与所述基材(1)复合在一起;当所述基材(1)的两侧侧面均设置所述金属层时,设置在所述基材(1)两侧的所述金属层通过所述基材(1)上的网孔连接在一起;或,
    所述基材上阵列设有通孔,当所述基材(1)仅在一侧侧面上设置所述金属层时,所述金属层嵌入到所述基材(1)的通孔内并与所述基材(1)复合在一起;当所述基材(1)的两侧侧面均设置所述金属层时,设置在所述基材(1)两侧的所述金属层通过所述基材(1)上的通孔连接在一起。
  36. 根据权利要求35所述的复合金属带连续生产方法,其特征在于:所述基材(1)采用但不限于铜带、铝带、钢带、镍带、银带、金带或金属材料与非金属材料复合的带材,或所述基材(1)采用但不限于离型纸。
  37. 根据权利要求28-34任一项所述的复合金属带连续生产方法,其特征在于:所述熔融金属材料采用但不限于金属锂、金属钠、金属钾、金属镁、金属钙、金属锌、金属铝或金 属银;或所述熔融金属材料采用但不限于金属锂、金属钠、金属钾、金属镁、金属钙、金属锌、金属铝和金属银中的至少两种配比而成的合金。
  38. 根据权利要求28所述的复合金属带连续生产方法,其特征在于:所述熔融金属材料在设定气氛环境下被挤压涂布在基材的侧面上。
  39. 根据权利要求28所述的复合金属带连续生产方法,其特征在于:冷却装置按照设定的冷却曲线将金属层冷却至设定温度范围。
  40. 根据权利要求28-34,38-39任一项所述的复合金属带连续生产方法,其特征在于:还包括精整工序,利用至少一组精整辊组依次轧制复合金属带;或采用激光精整设备,使金属层的厚度达到设定厚度。
  41. 根据权利要求40所述的复合金属带连续生产方法,其特征在于:复合金属带在经冷却装置冷却定型后,在自然条件下恢复常温,而后对其进行精整。
  42. 根据权利要求40所述的复合金属带连续生产方法,其特征在于:在精整工序中,使金属层保持在有利于其精整成型的设定温度范围内。
  43. 根据权利要求40所述的复合金属带连续生产方法,其特征在于:还包括修边工序,利用修边工具对金属层的两侧侧边进行修边处理。
  44. 根据权利要求28所述的复合金属带连续生产方法,其特征在于:在复合金属带收卷之前,在复合金属带的至少一侧侧面上复合防止相邻两层复合金属带粘连在一起的隔离薄膜。
PCT/CN2020/083418 2019-04-17 2020-04-06 复合金属带连续生产设备和连续生产方法 WO2020211675A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201910309438 2019-04-17
CN201910309438.0 2019-04-17
CN201910310270.5 2019-04-17
CN201910310270 2019-04-17
CN201910890530.0A CN111822662A (zh) 2019-04-17 2019-09-20 复合金属带连续生产设备
CN201910890530.0 2019-09-20
CN201910890575.8A CN111822663B (zh) 2019-04-17 2019-09-20 复合金属带连续生产方法
CN201910890575.8 2019-09-20

Publications (1)

Publication Number Publication Date
WO2020211675A1 true WO2020211675A1 (zh) 2020-10-22

Family

ID=72837731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083418 WO2020211675A1 (zh) 2019-04-17 2020-04-06 复合金属带连续生产设备和连续生产方法

Country Status (1)

Country Link
WO (1) WO2020211675A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1225762A (zh) * 1967-03-15 1971-03-24
CN1329951A (zh) * 2000-06-19 2002-01-09 东北大学 液-固相异种金属轧制复合方法及设备
CN1398691A (zh) * 2002-05-15 2003-02-26 李铁顺 连铸连轧生产双面复合金属薄板的方法及其连铸连轧机
CN102962418A (zh) * 2012-12-11 2013-03-13 武汉钢铁(集团)公司 高硅钢薄带的铸轧复合生产方法及其装置
CN103495618A (zh) * 2013-09-12 2014-01-08 武汉钢铁(集团)公司 金属复合板的铸轧复合生产装置及方法
CN105290352A (zh) * 2015-11-20 2016-02-03 燕山大学 生产网状增强夹层复合材料的固液铸轧复合设备及方法
CN210429957U (zh) * 2019-04-17 2020-04-28 青岛九环新越新能源科技股份有限公司 复合金属带连续生产设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1225762A (zh) * 1967-03-15 1971-03-24
CN1329951A (zh) * 2000-06-19 2002-01-09 东北大学 液-固相异种金属轧制复合方法及设备
CN1398691A (zh) * 2002-05-15 2003-02-26 李铁顺 连铸连轧生产双面复合金属薄板的方法及其连铸连轧机
CN102962418A (zh) * 2012-12-11 2013-03-13 武汉钢铁(集团)公司 高硅钢薄带的铸轧复合生产方法及其装置
CN103495618A (zh) * 2013-09-12 2014-01-08 武汉钢铁(集团)公司 金属复合板的铸轧复合生产装置及方法
CN105290352A (zh) * 2015-11-20 2016-02-03 燕山大学 生产网状增强夹层复合材料的固液铸轧复合设备及方法
CN210429957U (zh) * 2019-04-17 2020-04-28 青岛九环新越新能源科技股份有限公司 复合金属带连续生产设备

Similar Documents

Publication Publication Date Title
CA1278036C (en) Method and apparatus for making electrode material from high hardness active materials
CN111822663B (zh) 复合金属带连续生产方法
WO2021057688A1 (zh) 一种异步加热延压装置、大宽幅超薄金属锂箔及其制备方法和应用
HU218189B (hu) Eljárás és berendezés öntött fémszalag előállítására
CN111822662A (zh) 复合金属带连续生产设备
CN109201767A (zh) 一种动力电池极耳用铜带的生产工艺
CN210429957U (zh) 复合金属带连续生产设备
WO2021253318A1 (zh) 超薄锂条预制件、复合负极及其制备方法和电池
CN111883737A (zh) 集成式极片补锂系统
WO2020211675A1 (zh) 复合金属带连续生产设备和连续生产方法
CN211191409U (zh) 一种连铸轧制复合金属带的生产线
CN210614173U (zh) 一种制备大宽幅超薄金属锂带的凹版涂布装置
CN112439785A (zh) 一种连铸轧制复合金属带的生产线
CN112403806A (zh) 一种制备大宽幅超薄金属锂带的凹版涂布装置及其方法
CN112151758A (zh) 超薄锂膜预制件及其制备方法
CN116826025B (zh) 锂复合体及其制备方法
CN106216396B (zh) 一种双零银箔的生产工艺
CN210333167U (zh) 多辊涂布复合金属带的生产设备
CN112138961B (zh) 多辊涂布复合金属带的生产方法
CN210877451U (zh) 一种连铸轧制金属带的生产线
CN112439786B (zh) 一种连铸轧制复合金属带的生产方法
CN212277234U (zh) 集成式极片补锂系统
CN212571044U (zh) 极片生产设备及具有其的锂离子电池生产线
WO2021037182A1 (zh) 一种连铸轧制金属带、复合金属带的生产线和生产方法
CN113492084A (zh) 多辊双面涂布复合金属带的生产设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791131

Country of ref document: EP

Kind code of ref document: A1