WO2020211632A1 - Procédé de commutation d'enroulement de transformateur - Google Patents

Procédé de commutation d'enroulement de transformateur Download PDF

Info

Publication number
WO2020211632A1
WO2020211632A1 PCT/CN2020/082300 CN2020082300W WO2020211632A1 WO 2020211632 A1 WO2020211632 A1 WO 2020211632A1 CN 2020082300 W CN2020082300 W CN 2020082300W WO 2020211632 A1 WO2020211632 A1 WO 2020211632A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
transformer winding
transformer
voltage
converter
Prior art date
Application number
PCT/CN2020/082300
Other languages
English (en)
Chinese (zh)
Inventor
王林
付守栋
Original Assignee
深圳英飞源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳英飞源技术有限公司 filed Critical 深圳英飞源技术有限公司
Publication of WO2020211632A1 publication Critical patent/WO2020211632A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P13/00Arrangements for controlling transformers, reactors or choke coils, for the purpose of obtaining a desired output
    • H02P13/06Arrangements for controlling transformers, reactors or choke coils, for the purpose of obtaining a desired output by tap-changing; by rearranging interconnections of windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to the field of power electronic products, in particular to a transformer winding switching method.
  • DC-DC power converters have a large number of wide voltage ranges and continuous maximum power output requirements, such as electric vehicle charging power supplies, in order to meet large-scale electric passenger cars, household electric passenger cars and small electric logistics vehicles
  • the output voltage range of the charging power supply must cover the battery voltage levels of various models, and the adjustable range is from 50 to 800V.
  • the maximum power output is required under different output voltages to meet the requirements of fast charging, and the output voltage or current of the system cannot be interrupted due to the switching output range of the converter during the charging process.
  • the technical problem to be solved by the present invention is a transformer winding switching method, which solves the problem that it is difficult to achieve continuous full power in the full range of the power converter output voltage in the prior art.
  • the controller automatically adjusts the transformer ratio according to the output voltage to achieve an ultra-wide voltage Range of continuous full power output.
  • a transformer winding switching method including a high-frequency transformer, a strobe switch and a controller
  • the secondary side of the high-frequency transformer is dual-winding and has at least 3 tapped outputs, one of which is output
  • There is a gate switch in the circuit and the controller controls the high frequency inverter circuit and the gate switch through the drive circuit; when the output voltage of the converter rises or falls to the set voltage switching point, the controller adjusts the primary side according to the transformer winding switching ratio
  • the control quantity of the high-frequency inverter circuit and the on or off of the gate switch complete the switching control of the transformer winding, without interrupting the output voltage and current to realize the continuous high power output of the power converter between different output sections.
  • the controller when the controller detects that the converter output reaches the voltage switching point, it adjusts the primary high frequency inverter according to the transformer winding switching ratio (NS1+NS2): NS2 or (NS1+NS2): NS1 or NS1: NS2
  • the control quantity of the circuit controls K1 and K2 to close or open according to the converter output in the up and down direction.
  • the voltage switching point is the highest output voltage of the low voltage section determined according to the full power output capacity of the smaller winding before and after the transformer winding is switched.
  • the switches K1 and K2 when the output voltage is in the high voltage section, the switches K1 and K2 are closed, and when the output voltage is in the low voltage section, the switches K1 and K2 are opened.
  • NS1 and NS2 are the turns of the secondary winding of the transformer.
  • K1 and K2 are MOS tubes or IGBTs.
  • the beneficial effect of the present invention is that the present invention can automatically switch the transformer ratio without interrupting the output voltage and current of the power converter, and realizes that the maximum power output is always maintained during the charging process from low voltage to high voltage.
  • Figure 1 is a diagram of the working principle of the present invention
  • Figure 2 is the first state diagram of the handover control method of the present invention
  • Figure 3 is the second state diagram of the handover control method of the present invention.
  • Figure 4 is the first implementation principle diagram of the present invention.
  • Figure 5 is the second principle diagram of the implementation of the present invention.
  • plural means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the terms such as “upper”, “above”, “below”, “below” and the like used in the present invention to indicate a relative position in space are for the purpose of facilitating explanation to describe one unit or feature as shown in the drawings relative to another The relationship of a unit or feature.
  • the term of the relative position in space may be intended to include different orientations of the device in use or operation other than those shown in the figures. For example, if the device in the figure is turned over, the unit described as being “below” or “below” other units or features will be “above” the other units or features. Therefore, the exemplary term “below” can encompass both above and below orientations.
  • the device can be oriented in other ways (rotated by 90 degrees or other orientations), and the space-related descriptors used herein are explained accordingly.
  • the terms “set”, “socket”, “connection”, “through”, “plug” and other terms should be understood in a broad sense, for example, it may be a fixed connection, It can also be detachably connected or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediate medium, which can be the internal communication of two components or the interaction of two components Relationship, unless otherwise clearly defined.
  • an intermediate medium which can be the internal communication of two components or the interaction of two components Relationship, unless otherwise clearly defined.
  • a switch device is connected in series on one of the bridge arms to control whether this bridge arm participates in work.
  • the controller samples the output voltage to rise to the switching point, the controller adjusts the current control quantity 1 to the control quantity 1*NS2/(NS1+NS2) according to the transformer winding switching ratio, and controls the gate switches K1 and K2 to close , Then the controller adjusts the control quantity to control quantity 2 by itself, so that the converter does not interrupt the output voltage and current to switch to the high-voltage work mode stably;
  • the controller samples the output voltage to drop to the switching point, the controller adjusts the current control quantity 1 according to The transformer winding switching ratio is adjusted to the control value 1* (NS1+NS2) /NS2, and the gate switches K1 and K2 are controlled to be turned off, and then the controller adjusts the control value to the control value 2 by itself, so that the converter does not interrupt the output voltage and current. Switch to low voltage working mode.
  • the controller disconnects K1 and K2, and the converter works in low voltage mode (power flow is shown in Figure 5) to output low voltage and high current.
  • the devices participating in the work in this working state are D3, D4, D5, D6, and Ns2 of the transformer T1. Since Ns1 is opened by K1 and K2 at this time, it does not participate in the work.
  • the converter maintains a constant power output, and the current decreases accordingly.
  • the controller detects that the output voltage rises to the switching point, the controller adjusts the current control value 1 to the control value according to the transformer winding switching ratio 1*NS2/(NS1+NS2), and control the gate switches K1 and K2 to close, then the controller adjusts the control quantity to the control quantity 2 by itself, so that the converter does not interrupt the output voltage and current and stably switches to the high voltage working mode (power flow such as Figure 4 shows), continue to maintain constant power output.
  • the devices participating in the work in this working state are D1, K1, D5, D6, K2, D2, Ns1 and Ns2 of the transformer T1. At this time, the diodes D3 and D4 are naturally cut off due to the PN junction and do not participate in the work.
  • the controller when the constant power output range of the converter needs to be tested from high voltage to low voltage, the controller first closes K1 and K2 to make the converter work in high voltage mode and output high voltage (power flow is shown in Figure 4). As the test continues to increase the load, the output current increases, the output voltage is pulled down, and the converter maintains a constant power output.
  • the controller When the controller detects that the output voltage of the converter has dropped to the switching point, the controller adjusts the current control value 1 to the control value 1* (NS1+NS2) /NS2 according to the transformer winding switching ratio, and controls the gate switches K1 and K2 After disconnection, the controller adjusts the control quantity to control quantity 2 by itself, so that the converter will switch to the low voltage working mode stably without interrupting the output voltage and current (the power flow is shown in Figure 5), and continue to maintain constant power output. During the whole test process, the converter does not interrupt the output voltage and current, and no additional operation is required to control the converter to switch working modes. In this way, the constant power output range of the converter can be tested without interrupting the output voltage and current.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

L'invention concerne un procédé de commutation d'enroulement de transformateur, comprenant un transformateur haute-fréquence, un commutateur de déclenchement et un dispositif de commande. Le côté secondaire du transformateur haute-fréquence comprend deux enroulements et comporte au moins 3 sorties à prise, il y a un commutateur de déclenchement dans un circuit de sortie, et le dispositif de commande commande un circuit onduleur haute-fréquence et le commutateur de déclenchement au moyen d'un circuit d'attaque. Lorsque la tension de sortie d'un convertisseur augmente ou diminue jusqu'à un point de commutation de tension définie, le dispositif de commande ajuste la quantité de commande du circuit d'onduleur haute-fréquence primaire selon un rapport de commutation d'enroulement de transformateur et commande la marche ou l'arrêt du commutateur de déclenchement, de façon à achever la commande de commutation d'enroulement de transformateur. Selon la présente invention, le dispositif de commande ajuste la quantité de commande selon le rapport de commutation d'enroulement de transformateur et commande la marche et l'arrêt du commutateur d'enroulement de transformateur en fonction de la tension de sortie du convertisseur, de telle sorte que la sortie du convertisseur de puissance n'est pas interrompue pendant le processus de commutation d'enroulement de transformateur, ce qui permet de mettre en oeuvre une sortie de puissance élevée continue du convertisseur de puissance dans différentes sections de sortie.
PCT/CN2020/082300 2019-04-17 2020-03-31 Procédé de commutation d'enroulement de transformateur WO2020211632A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910306788.1A CN109861603B (zh) 2019-04-17 2019-04-17 一种变压器绕组切换方法
CN201910306788.1 2019-04-17

Publications (1)

Publication Number Publication Date
WO2020211632A1 true WO2020211632A1 (fr) 2020-10-22

Family

ID=66889224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082300 WO2020211632A1 (fr) 2019-04-17 2020-03-31 Procédé de commutation d'enroulement de transformateur

Country Status (2)

Country Link
CN (1) CN109861603B (fr)
WO (1) WO2020211632A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2754159C1 (ru) * 2021-03-22 2021-08-30 Максим Юрьевич Кейно Способ и устройство стабилизации напряжения в системе питания асинхронных вспомогательных машин электровозов переменного тока

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109861603B (zh) * 2019-04-17 2024-04-23 深圳英飞源技术有限公司 一种变压器绕组切换方法
CN111835206A (zh) * 2020-05-23 2020-10-27 青岛鼎信通讯股份有限公司 一种应用于充电模块变压器绕组切换装置的切换方法
CN111817567A (zh) * 2020-06-13 2020-10-23 青岛鼎信通讯股份有限公司 一种应用于充电模块高频变压器的绕组切换装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7852650B2 (en) * 2006-10-13 2010-12-14 Pv Powered, Inc. Selectable line voltage inverters and associated methods
CN207664876U (zh) * 2017-12-19 2018-07-27 深圳英飞源技术有限公司 可调节变压器变比dc-dc功率变换器
CN109861603A (zh) * 2019-04-17 2019-06-07 深圳英飞源技术有限公司 一种变压器绕组切换方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0151639A1 (fr) * 1983-08-09 1985-08-21 Haimson Research Corporation Procede et appareil d'acceleration d'un faisceau de particules
JPH08306001A (ja) * 1995-05-10 1996-11-22 Sony Corp 高速再生ビデオテープレコーダ
JP4423458B2 (ja) * 2000-11-10 2010-03-03 富士電機システムズ株式会社 Dc/dcコンバータの制御方法
US6954367B2 (en) * 2002-12-29 2005-10-11 System General Corp. Soft-switching power converter
TWI311394B (en) * 2006-05-09 2009-06-21 Delta Electronics Inc Ups system with low power loss
CN201199672Y (zh) * 2008-05-16 2009-02-25 力信兴业股份有限公司 具有单级功率因子校正电路的返驰式转换装置
DE102012107446B4 (de) * 2012-08-14 2015-12-31 Maschinenfabrik Reinhausen Gmbh Lastumschalter, Laststufenschalter und Verfahren zum Umschalten eines Laststufenschalters
TWM542295U (zh) * 2015-05-20 2017-05-21 半導體組件工業公司 具有在輕負載下高效操作的切換模式電源供應器
CN206452300U (zh) * 2016-12-30 2017-08-29 深圳英飞源技术有限公司 一种dc‑dc功率变换器
CN107482922A (zh) * 2017-08-16 2017-12-15 华北电力大学 一种基于切换开关的双向llc谐振变换器
CN209545483U (zh) * 2019-04-17 2019-10-25 深圳英飞源技术有限公司 一种变压器绕组切换装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7852650B2 (en) * 2006-10-13 2010-12-14 Pv Powered, Inc. Selectable line voltage inverters and associated methods
CN207664876U (zh) * 2017-12-19 2018-07-27 深圳英飞源技术有限公司 可调节变压器变比dc-dc功率变换器
CN109861603A (zh) * 2019-04-17 2019-06-07 深圳英飞源技术有限公司 一种变压器绕组切换方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2754159C1 (ru) * 2021-03-22 2021-08-30 Максим Юрьевич Кейно Способ и устройство стабилизации напряжения в системе питания асинхронных вспомогательных машин электровозов переменного тока

Also Published As

Publication number Publication date
CN109861603A (zh) 2019-06-07
CN109861603B (zh) 2024-04-23

Similar Documents

Publication Publication Date Title
WO2020211632A1 (fr) Procédé de commutation d'enroulement de transformateur
US10348211B2 (en) Power conversion device and power conversion system
US20210296922A1 (en) On-board charger
JP5558631B2 (ja) 電力変換装置およびそれを備えた車載電源装置
JP6003932B2 (ja) 電力変換装置及びその起動方法
US11121634B2 (en) Bidirectional DC-to-DC converter with inrush current suppression
US20150295504A1 (en) Electric power conversion apparatus and method of controlling the same
CN108879895B (zh) 电动汽车能量传输系统及传输方法
EP4159533A1 (fr) Dispositif et procédé de traitement d'énergie de batterie, et véhicule
JP2012130133A (ja) スイッチング素子の駆動回路およびその製造方法
US11594895B2 (en) Power supply system
US20220144093A1 (en) Electric Drive System, Powertrain, and Electric Vehicle
WO2021244649A1 (fr) Appareil de conversion d'énergie et procédé de commande de sécurité associé
WO2023159704A1 (fr) Circuit principal de commutation en couplage série-parallèle de batteries sans interruption de sortie de puissance, et système et procédé
KR102105405B1 (ko) 고압 인버터 초기충전 시스템 및 그 제어방법
CN107124090B (zh) 应用于高压固态开关中的快速驱动电路、高压固态开关
CN209545483U (zh) 一种变压器绕组切换装置
WO2021047221A1 (fr) Circuit et système de charge-décharge, et véhicule électrique
CN105373016B (zh) 闸流体直流开关的快速截止装置及其操作方法
CN111835206A (zh) 一种应用于充电模块变压器绕组切换装置的切换方法
JP2014236620A (ja) 電力変換装置
US20220294340A1 (en) Voltage regulation module, charging module, and charging pile
CN111193406A (zh) 直流转换器、输出电压范围宽的转换方法及车辆充电机
CN111452643A (zh) 车载充电机和车载dc/dc的集成电路、电动汽车
CN111817567A (zh) 一种应用于充电模块高频变压器的绕组切换装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20790609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20790609

Country of ref document: EP

Kind code of ref document: A1