WO2020211590A1 - 一种停电自动脱扣掉闸的智能断路器 - Google Patents

一种停电自动脱扣掉闸的智能断路器 Download PDF

Info

Publication number
WO2020211590A1
WO2020211590A1 PCT/CN2020/080082 CN2020080082W WO2020211590A1 WO 2020211590 A1 WO2020211590 A1 WO 2020211590A1 CN 2020080082 W CN2020080082 W CN 2020080082W WO 2020211590 A1 WO2020211590 A1 WO 2020211590A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic
force
circuit breaker
energy storage
iron core
Prior art date
Application number
PCT/CN2020/080082
Other languages
English (en)
French (fr)
Inventor
王克诚
Original Assignee
天津加美特电气设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津加美特电气设备有限公司 filed Critical 天津加美特电气设备有限公司
Priority to EP20792084.4A priority Critical patent/EP3926655A4/en
Priority to US17/428,583 priority patent/US11908651B2/en
Publication of WO2020211590A1 publication Critical patent/WO2020211590A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/24Electromagnetic mechanisms
    • H01H71/32Electromagnetic mechanisms having permanently magnetised part
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/24Electromagnetic mechanisms
    • H01H71/32Electromagnetic mechanisms having permanently magnetised part
    • H01H71/321Electromagnetic mechanisms having permanently magnetised part characterised by the magnetic circuit or active magnetic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/24Electromagnetic mechanisms
    • H01H71/32Electromagnetic mechanisms having permanently magnetised part
    • H01H71/325Housings, assembly or disposition of different elements in the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/12Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by voltage falling below a predetermined value, e.g. for no-volt protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems

Definitions

  • the invention relates to the field of circuit breakers, and in particular to an intelligent circuit breaker that automatically trips and switches off after a power failure.
  • the present invention adds an electromagnetic field force that can change the direction of the current between the mechanical spring tripping force and the permanent magnetic field attraction force that prevents tripping.
  • the program implanted in the control circuit will instantly make the current in the electromagnetic coil It becomes the reverse direction.
  • the magnetic field of the reverse current and the permanent magnetic field form a repulsive force consistent with the tripping force of the tripping energy storage spring.
  • the direction of the magnetic field force generated by the electromagnetic coil changes rapidly, from blocking tripping quickly to assisting tripping. It turns the mechanical energy storage method with complex structure, too sensitive and intolerant of mechanical vibration into electromagnetic energy storage method, thus completely solving the contradiction between the trip sensitivity of the traditional circuit breaker and the resistance to vibration.
  • the present invention provides an intelligent circuit breaker that automatically trips and switches off after a power failure.
  • the electromagnetic force that can be controlled to change the direction of the current is placed between the permanent magnetic field force and the mechanical spring force and is designed on a straight line, including the circuit breaker housing , Permanent magnet static iron core 1, electromagnetic movable iron core 2 and electromagnetic coil 3.
  • the electromagnetic coil frame 4 and the circuit breaker case bracket 5 are arranged in the circuit breaker housing, and the electromagnetic coil frame 4 passes through the first shaft hole 14.
  • the second shaft hole 15 and the wire slot 16 are respectively fixed with a permanent magnet static iron core 1, an electromagnetic moving iron core 2 and an electromagnetic coil 3, the electromagnetic moving iron core 2 is provided with a tripping transmission rod 8, and the The electromagnetic movable iron core 2 and the tripping transmission rod 8 are an integral structure.
  • the tripping transmission rod 8 is sheathed with a tripping energy storage spring 7.
  • the transmission rod 8 constitutes an electromagnetic movable iron core tripping mechanism component, and is attracted by the permanent magnet static iron core 1.
  • a permanent magnet attracting and resetting fork 6 is provided in the shift groove of the tripping transmission rod 8.
  • One end of the trip transmission rod 8 is provided with a trip link 9, the trip transmission rod 8 is in close contact with the trip link 9, and a second energy storage module 12,
  • the control circuit 10 and the first energy storage module 11 are provided with a moving contact movement mechanism 13 on the upper part of the trip transmission rod 8.
  • a further improvement is that the impact force of the tripping energy storage spring 7 and the electromagnetic field force of the electromagnetic core 2 constitute a resultant force, and the resultant force is caused by the tripping transmission rod 8 being transmitted to the tripping link 9
  • the circuit breaker is tripped, and the tripping electromagnetic force of the tripping transmission rod 8 is provided by the energy storage of the second energy storage module 12 during normal operation and the energy storage released at the moment of power failure.
  • a further improvement is that: the second energy storage module 12 is connected to the control circuit 10, and the power release of the second energy storage module 12 is controlled by the control circuit 10.
  • a further improvement is that the area near the point P on the permanent magnet pull-in reset fork 6 contacts the corresponding point P on the moving contact movement mechanism 13, so that the permanent magnet pull-in reset fork 6 pushes the electromagnetic motion
  • the iron core tripping mechanism component is attracted by the permanent magnet static iron core 1 again, and preparations are made for the next trip.
  • a further improvement is that the electrical energy current released by the second energy storage module 12 is a reverse current, the magnetic field force generated by the reverse current repels the permanent magnetic field force, and the magnetic field force generated by the reverse current is consistent with the trip energy storage
  • the direction of the tripping force of the spring 7 is the same.
  • a further improvement is that the working electrical energy of the control circuit 10 after a power failure is derived from the energy storage of the first energy storage module 11 during normal operation, and the program of the control circuit 10 is used to ensure that the current is positive when the circuit breaker is working normally.
  • the electromagnetic field force generated by the forward current and the permanent magnetic field force interact to produce an attractive force.
  • first energy storage module 11 and the second energy storage module 12 are any components that can store electrical energy.
  • a further improvement is that the diameter of the first shaft hole 14 is larger than the diameter of the second shaft hole 15.
  • a further improvement is that the electromagnetic coil 3, the electromagnetic coil skeleton 4 and the permanent magnet static iron core 1 constitute an electromagnetic coil assembly, the electromagnetic coil assembly is installed in the electromagnetic coil acupoint of the circuit breaker shell, and the electromagnetic movable iron core is removed The buckle mechanism component is placed in the shaft hole of the electromagnetic coil component.
  • a further improvement is that: the pull-in force of the permanent magnet static iron core 1 to pull in the electromagnetic movable iron core trip mechanism assembly is greater than the elastic force of the trip energy storage spring 7 when the circuit breaker is working normally.
  • the beneficial effect of the present invention is: by adding an electromagnetic field force that can change the direction of the current between the mechanical spring tripping force and the permanent magnetic field attraction force that prevents tripping, the direction of the current is controlled by the control circuit, and the current direction is controlled by the control circuit.
  • the current in the electromagnetic coil can be maintained in the positive direction when the circuit breaker is working normally, and the magnetic field generated by the forward current can increase the attraction force of the permanent magnetic field, and improve the shock resistance of the circuit breaker.
  • the control circuit is implanted in the program, the current in the electromagnetic coil will be reversed immediately.
  • the magnetic field and the permanent magnetic field of the reverse current form a repulsive force consistent with the tripping force of the tripping energy storage spring.
  • the rapid change of the direction of the generated magnetic field force changes from hindering tripping to assisting tripping, changing the mechanical energy storage method with complex structure, too sensitive and intolerant of mechanical vibration to electromagnetic energy storage method, thus completely solving the traditional circuit breaker The contradiction between trip sensitivity and shock resistance.
  • Figure 1 is a three-dimensional schematic diagram of the structure of the present invention.
  • Figure 2 is a schematic diagram of the working principle of the structure of the present invention.
  • 1-permanent magnet static iron core 2-electromagnetic moving iron core, 3-electromagnetic coil, 4-electromagnetic coil skeleton, 5-circuit breaker shell bracket, 6-permanent magnet pull-in reset fork, 7-trip Energy storage spring, 8-trip transmission rod, 9-trip link, 10-control circuit, 11-first energy storage module, 12-second energy storage module, 13-moving contact movement mechanism, 14-th One shaft hole, 15-second shaft hole, 16-wire slot.
  • this embodiment proposes a smart circuit breaker that automatically trips and trips after a power failure.
  • the electromagnetic force that can be controlled to change the direction of the current is placed between the permanent magnetic field force and the mechanical spring force, and is designed in A straight line.
  • a straight line includes a circuit breaker housing, a permanent magnet static iron core 1, an electromagnetic movable iron core 2 and an electromagnetic coil 3.
  • the electromagnetic coil frame 4 and the circuit breaker housing bracket 5 are arranged in the circuit breaker housing.
  • a permanent magnet static iron core 1, an electromagnetic moving iron core 2 and an electromagnetic coil 3 are respectively fixed on the coil frame 4 through the first shaft hole 14, the second shaft hole 15 and the wire slot 16.
  • the electromagnetic moving iron core 2 is provided with The tripping transmission rod 8, and the electromagnetic movable iron core 2 and the tripping transmission rod 8 are an integrated structure, the tripping transmission rod 8 is sheathed with a tripping energy storage spring 7, and the electromagnetic movable iron core 2, The tripping energy storage spring 7 and the tripping transmission rod 8 constitute an electromagnetic movable iron core tripping mechanism assembly, and are attracted by the permanent magnet static iron core 1, and a permanent magnet is provided in the dial groove of the tripping transmission rod 8.
  • one end of the trip transmission rod 8 is provided with a trip link 9, the trip transmission rod 8 is in close contact with the trip link 9, and the inside of the circuit breaker housing is sequentially
  • a second energy storage module 12 a control circuit 10 and a first energy storage module 11 are provided, and a moving contact movement mechanism 13 is provided on the upper part of the trip transmission rod 8.
  • the impact force of the trip energy storage spring 7 and the electromagnetic field force of the electromagnetic core 2 constitute a resultant force, and the resultant force is transmitted from the trip transmission rod 8 to the trip link 9 to cause the circuit breaker to trip
  • the tripping electromagnetic force of the tripping transmission rod 8 is provided by the energy storage of the second energy storage module 12 during normal operation and the energy storage released at the moment of power failure.
  • the second energy storage module 12 is connected to the control circuit 10, and the power release of the second energy storage module 12 is controlled by the control circuit 10.
  • the area near point P on the permanent magnet pull-in reset fork 6 contacts the corresponding point P on the moving contact movement mechanism 13, so that the permanent magnet pull-in reset fork 6 pushes the electromagnetic core to trip.
  • the mechanism components are attracted by the permanent magnet static iron core 1 again, and prepare for the next trip.
  • the electric energy current released by the second energy storage module 12 is a reverse current, the magnetic field force generated by the reverse current repels the permanent magnetic field force, and the magnetic field force generated by the reverse current and the tripping energy storage spring 7 release The direction of buckle force is the same.
  • the working electric energy of the control circuit 10 after a power failure comes from the energy storage of the first energy storage module 11 during normal operation.
  • the program of the control circuit 10 is used to ensure that the current flows through the electromagnetic Coil 3, the electromagnetic field force generated by the forward current and the permanent magnetic field force interact to produce an attractive force.
  • the first energy storage module 11 and the second energy storage module 12 are any components that can store electrical energy.
  • the diameter of the first shaft hole 14 is larger than the diameter of the second shaft hole 15.
  • the electromagnetic coil 3, the electromagnetic coil skeleton 4 and the permanent magnet static iron core 1 constitute an electromagnetic coil assembly, the electromagnetic coil assembly is installed in the electromagnetic coil point of the circuit breaker shell, and the electromagnetic movable iron core tripping mechanism assembly is placed In the shaft hole of the solenoid coil assembly.
  • the attracting force of the permanent magnet static iron core 1 attracting the electromagnetic movable iron core tripping mechanism assembly is greater than the elastic force of the tripping energy storage spring 7 when the circuit breaker is working normally.
  • the permanent magnet static iron core 1 attracts the electromagnetic moving iron core 2, and the tripping energy storage spring 7 is compressed when the electromagnetic moving iron core 2 and the permanent magnet static iron core 1 are attracted.
  • the kinetic energy required for the electromagnetic core tripping mechanism component to be fired is stored in the form of elastic potential energy.
  • the permanent magnetic field force is greater than the elastic force, which can ensure that the electromagnetic coil 3 is not energized, the electromagnetic core tripping assembly and permanent
  • the magnetostatic iron core 1 remains closed.
  • the filter capacitor in the electronic circuit of the smart circuit breaker will retain some electric energy.
  • the first energy storage module 11 can keep the electronic control circuit 10 to complete some other actions and control After the circuit 10 is connected to the second energy storage module 12, the electric energy in the second energy storage module 12 is converted into electromagnetic energy in the electromagnetic coil 3.
  • the direction of the generated magnetic field and the magnetic field direction of the permanent magnet core 1 form a repulsive force.
  • the force and the tripping force of the tripping energy storage spring 7 are in one direction, which immediately produces a large tripping impact kinetic energy, and then the tripping transmission rod 8 hits the tripping link 9 to trip, making the circuit breaker movable contact movement mechanism 13 quickly makes a counterclockwise disengagement action, and the movement of the moving contact movement mechanism 13 impacts the permanent magnet pull-in reset fork 6 with greater mechanical force at point P, and the permanent magnet pulls the reset fork (6) again
  • the trip transmission rod (8) together with the electromagnetic core 2 automatically presses back to the closing position, and the trip storage spring 7 is compressed at the same time to prepare for the next circuit breaker operation and trip.
  • the direction of the current is controlled by the control circuit 10.
  • the control circuit 10 By implanting a program inside the control circuit 10, When the circuit breaker is working normally, the current in the electromagnetic coil 3 is maintained in the positive direction, and the magnetic field generated by the forward current is used to increase the attraction force of the permanent magnetic field and improve the shock resistance of the circuit breaker; when the power is cut or the protection is tripped, the control The program implanted in the circuit 10 will immediately make the current in the electromagnetic coil 3 reverse, and the magnetic field and the permanent magnetic field of the reverse current will form a repulsive force consistent with the tripping force of the tripping energy storage spring 7; the electromagnetic coil 3
  • the rapid change of the direction of the generated magnetic field force changes from hindering tripping to assisting tripping, changing the mechanical energy storage method with complex structure, too sensitive and intolerant of mechanical vibration to electromagnetic energy storage method, thus completely solving the traditional circuit

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Breakers (AREA)

Abstract

一种停电自动脱扣掉闸的智能断路器,将可受控改变电流方向的电磁力置于永久磁场力和机械弹簧力之间,并设计在一条直线上,电磁线圈骨架(4)上通过第一轴孔(14)、第二轴孔(15)和线槽(16)分别固定有永磁静铁芯(1)、电磁动铁芯(2)和电磁线圈(3),脱扣传动杆(8)上套设有脱扣储能弹簧(7),脱扣传动杆(8)的拨槽内设有永磁吸合复位拨叉(6),脱扣传动杆(8)的一端设有脱扣联杆(9);该断路器通过在机械弹簧脱扣力和阻止脱扣的永久磁场吸合力之间增加一个可以改变电流方向的电磁场力,控制电路内部植入的程序会即刻让电磁线圈中的电流变为逆向,逆向电流的磁场与永久磁场形成一个方向与脱扣储能弹簧的脱扣力一致的排斥力,解决了传统断路器脱扣灵敏度和耐受震动的矛盾。

Description

一种停电自动脱扣掉闸的智能断路器 技术领域
本发明涉及断路器领域,尤其涉及一种停电自动脱扣掉闸的智能断路器。
背景技术
电网突发停电经常伴随突然来电,一方面会给用电设备造成冲击,另一方面对设备附近的人员带来安全隐患,目前市场上的普通断路器或者现行智能型断路器,在输入端口突然停电情况下,是没有能量再击发断路器脱扣机构掉闸的,一些具有停电自动脱扣掉闸的智能断路器在停电自动脱扣时,若遇到残余电能有限,则不能够提供足够大的力量直接撞击断路器脱扣机构掉闸,若以微小电磁力触发一个非常灵敏的中间机械脱扣器,中间机械脱扣器被触动后再击打断路器脱扣,会造成微型断路器的体积庞大,结构过于复杂的缺点,最大的弊端是微小机械震动就会造成误脱扣,多数情况下智能断路器是可以替代和省略接触器的,如果不能像接触器那样抗击震动以及具备停电后触头自动脱开功能,所谓替代将是无法实现的,因此,本发明提出一种停电自动脱扣掉闸的智能断路器,以解决现有技术中的不足之处。
发明内容
针对上述问题,本发明通过在机械弹簧脱扣力和阻止脱扣的永久磁场吸合力之间增加一个可以改变电流方向的电磁场力,通过控制电路内部植入的程序会即刻让电磁线圈中的电流变为逆向,通过逆向电流的磁场与永久磁场形成一个方向与脱扣储能弹簧的脱扣力一致的排斥力,电磁线圈产生的磁场力方向的迅速转换,从阻碍脱扣迅速变为助力脱扣,将结构复杂、过于灵敏和不耐授机械振动的机械能储存方式变为电磁能储存方式,从而彻底解决了传统断路器脱扣灵敏度和耐受震动的矛盾。
本发明提出一种停电自动脱扣掉闸的智能断路器,将可受控改变电流方向的电磁力置于永久磁场力和机械弹簧力之间,并设计在一条直线上,包括断路器壳体、永磁静铁芯1、电磁动铁芯2和电磁线圈3,所述断路器壳体内设有电磁线圈骨架4和断路器壳体支架5,所述电磁线圈骨架4上通过第一轴孔14、第二轴孔15和线槽16分别固定有永磁静 铁芯1、电磁动铁芯2和电磁线圈3,所述电磁动铁芯2上设有脱扣传动杆8,且所述电磁动铁芯2和脱扣传动杆8为一体结构,所述脱扣传动杆8上套设有脱扣储能弹簧7,所述电磁动铁芯2、脱扣储能弹簧7和脱扣传动杆8构成电磁动铁芯脱扣机构组件,且被所述永磁静铁芯1吸合,所述脱扣传动杆8的拨槽内设有永磁吸合复位拨叉6,所述脱扣传动杆8的一端设有脱扣联杆9,所述脱扣传动杆8与所述脱扣联杆9紧密接触,所述断路器壳体内部依次设有第二储能模块12、控制电路10和第一储能模块11,所述脱扣传动杆8上部设有动触头运动机构13。
进一步改进在于:所述脱扣储能弹簧7的撞击力和所述电磁动铁芯2的电磁场力构成合力,所述合力由所述脱扣传动杆8传给所述脱扣联杆9引起断路器脱扣,所述脱扣传动杆8的脱扣电磁力由第二储能模块12在正常工作时的储能以及在停电瞬间释放的储能提供。
进一步改进在于:所述第二储能模块12连接控制电路10,所述第二储能模块12电能释放受控于所述控制电路10。
进一步改进在于:所述永磁吸合复位拨叉6上的P点附近区域与所述动触头运动机构13上对应的P点接触,实现所述永磁吸合复位拨叉6推动电磁动铁芯脱扣机构组件重新被永磁静铁芯1吸合,并为下一次脱扣做准备。
进一步改进在于:所述第二储能模块12释放的电能电流为逆向电流,所述逆向电流产生的磁场力与永久磁场力相斥,所述逆向电流产生的磁场力与所述脱扣储能弹簧7的脱扣力方向相同。
进一步改进在于:所述控制电路10在停电后的工作电能来源于所述第一储能模块11在正常工作时的储能,所述控制电路10的程序用于保证断路器正常工作时电流正向流经电磁线圈3,正向电流产生的电磁场力和永久磁场力相互作用产生吸合力。
进一步改进在于:所述第一储能模块11和第二储能模块12为任何可以进行电能存储的元件。
进一步改进在于:所述第一轴孔14孔径大于第二轴孔15孔径。
进一步改进在于:所述电磁线圈3、电磁线圈骨架4和永磁静铁芯1构成电磁线圈组件,所述电磁线圈组件安装于断路器壳体的电磁线圈穴位内,所述电磁动铁芯脱扣机构组件放置于电磁线圈组件的轴孔内。
进一步改进在于:所述永磁静铁芯1吸合电磁动铁芯脱扣机构组件的吸合力在断路器正常工作时大于脱扣储能弹簧7的弹性力。
本发明的有益效果为:通过在机械弹簧脱扣力和阻止脱扣的永久磁场吸合力之间增加一个可以改变电流方向的电磁场力,电流的方向受控于控制电路,通过在控制电路内部植入程序,可以在断路器正常工作时保持电磁线圈内的电流为正向,通过正向电流产生的磁场来加大永久磁场的吸合力,提升断路器的抗震能力,当停电或者需要保护脱扣时,通过控制电路内部植入的程序会即刻让电磁线圈中的电流变为逆向,通过逆向电流的磁场与永久磁场形成一个方向与脱扣储能弹簧的脱扣力一致的排斥力,电磁线圈产生的磁场力方向的迅速转换,从阻碍脱扣迅速变为助力脱扣,将结构复杂、过于灵敏和不耐授机械振动的机械能储存方式变为电磁能储存方式,从而彻底解决了传统断路器脱扣灵敏度和耐受震动的矛盾。
附图说明
图1为本发明结构立体示意图。
图2为本发明结构工作原理示意图。
其中:1-永磁静铁芯、2-电磁动铁芯、3-电磁线圈、4-电磁线圈骨架、5-断路器壳体支架、6-永磁吸合复位拨叉、7-脱扣储能弹簧、8-脱扣传动杆、9-脱扣联杆、10-控制电路、11-第一储能模块、12-第二储能模块、13-动触头运动机构、14-第一轴孔、15-第二轴孔、16-线槽。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所 有其他实施例,都属于本发明保护的范围。
根据图1、2所示,本实施例提出一种停电自动脱扣掉闸的智能断路器,将可受控改变电流方向的电磁力置于永久磁场力和机械弹簧力之间,并设计在一条直线上,包括断路器壳体、永磁静铁芯1、电磁动铁芯2和电磁线圈3,所述断路器壳体内设有电磁线圈骨架4和断路器壳体支架5,所述电磁线圈骨架4上通过第一轴孔14、第二轴孔15和线槽16分别固定有永磁静铁芯1、电磁动铁芯2和电磁线圈3,所述电磁动铁芯2上设有脱扣传动杆8,且所述电磁动铁芯2和脱扣传动杆8为一体结构,所述脱扣传动杆8上套设有脱扣储能弹簧7,所述电磁动铁芯2、脱扣储能弹簧7和脱扣传动杆8构成电磁动铁芯脱扣机构组件,且被所述永磁静铁芯1吸合,所述脱扣传动杆8的拨槽内设有永磁吸合复位拨叉6,所述脱扣传动杆8的一端设有脱扣联杆9,所述脱扣传动杆8与所述脱扣联杆9紧密接触,所述断路器壳体内部依次设有第二储能模块12、控制电路10和第一储能模块11,所述脱扣传动杆8上部设有动触头运动机构13。
所述脱扣储能弹簧7的撞击力和所述电磁动铁芯2的电磁场力构成合力,所述合力由所述脱扣传动杆8传给所述脱扣联杆9引起断路器脱扣,所述脱扣传动杆8的脱扣电磁力由第二储能模块12在正常工作时的储能以及在停电瞬间释放的储能提供。所述第二储能模块12连接控制电路10,所述第二储能模块12电能释放受控于所述控制电路10。所述永磁吸合复位拨叉6上的P点附近区域与所述动触头运动机构13上对应的P点接触,实现所述永磁吸合复位拨叉6推动电磁动铁芯脱扣机构组件重新被永磁静铁芯1吸合,并为下一次脱扣做准备。所述第二储能模块12释放的电能电流为逆向电流,所述逆向电流产生的磁场力与永久磁场力相斥,所述逆向电流产生的磁场力与所述脱扣储能弹簧7的脱扣力方向相同。所述控制电路10在停电后的工作电能来源于所述第一储能模块11在正常工作时的储能,所述控制电路10的程序用于保证断路器正常工作时电流正向流经电磁线圈3,正向电流产生的电磁场力和永久磁场力相互作用产生吸合力。所述第一储能模块11和第二储能模块12为任何可以进行电能存储的元件。所述第一轴孔14孔径大于第二轴孔15孔径。所述电磁线圈3、电磁线圈骨架4和永磁静铁芯1构成电磁线圈组件,所述电磁线圈组件安装于断路器壳体的电磁线圈穴位内,所述电磁动铁芯脱扣机构组件放置于电磁线圈组件的轴孔内。所述永磁静铁芯1吸合电磁动铁芯脱扣机构组件的吸合力在断路器正常工作时大于脱扣储能弹簧7的弹性力。
正常工作时,永磁静铁芯1将电磁动铁芯2吸合,脱扣储能弹簧7在电磁动铁芯2与永磁静铁芯1吸合时被压缩,在永久磁场力的作用下,电磁动铁芯脱扣机构组件击发需要的动能,以弹性势能的方式储存起来,永久磁场力大于弹性力,可以确保电磁线圈3在不通电情况下,电磁动铁芯脱扣组件和永磁静铁芯1保持吸合,当发生异常、停电故障时,智能断路器电子线路中的滤波电容会残存一些电能,第一储能模块11足可以保持电子控制电路10完成一些其余动作,控制电路10接通第二储能模块12后将第二储能模块12中的电能在电磁线圈3中转变成电磁能,产生的磁场方向和永磁静铁芯1的磁场方向形成排斥力,排斥力和脱扣储能弹簧7的脱扣力在一个方向,即刻产生了很大的脱扣撞击动能,然后脱扣传动杆8撞击脱扣联杆9脱扣,使得断路器动触头运动机构13迅速做逆时针旋转的脱离动作,动触头运动机构13的动作又以更大的机械力在P点冲击永磁吸合复位拨叉6,永磁吸合复位拨叉(6)又将脱扣传动杆(8)连同电磁动铁芯2自动压回吸合位置,脱扣储能弹簧7同时跟随被压缩,为下一次断路器的工作和脱扣做好准备。
通过在机械弹簧脱扣力和阻止脱扣的永久磁场吸合力之间增加一个可以改变电流方向的电磁场力,电流的方向受控于控制电路10,通过在控制电路10内部植入程序,可以在断路器正常工作时保持电磁线圈3内的电流为正向,通过正向电流产生的磁场来加大永久磁场的吸合力,提升断路器的抗震能力;当停电或者需要保护脱扣时,通过控制电路10内部植入的程序会即刻让电磁线圈3中的电流变为逆向,通过逆向电流的磁场与永久磁场形成一个方向与脱扣储能弹簧7的脱扣力一致的排斥力;电磁线圈3产生的磁场力方向的迅速转换,从阻碍脱扣迅速变为助力脱扣,将结构复杂、过于灵敏和不耐授机械振动的机械能储存方式变为电磁能储存方式,从而彻底解决了传统断路器脱扣灵敏度和耐受震动的矛盾。
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,也不受描述实施例应用举例的限制,本实施例也可应用在其它的保护性智能电磁脱扣装置上,上述实施例和说明书中的描述只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (10)

  1. 一种停电自动脱扣掉闸的智能断路器,将可受控改变电流方向的电磁力置于永久磁场力和机械弹簧力之间,并设计在一条直线上,其特征在于:包括断路器壳体、永磁静铁芯(1)、电磁动铁芯(2)和电磁线圈(3),所述断路器壳体内设有电磁线圈骨架(4)和断路器壳体支架(5),所述电磁线圈骨架(4)上通过第一轴孔(14)、第二轴孔(15)和线槽(16)分别固定有永磁静铁芯(1)、电磁动铁芯(2)和电磁线圈(3),所述电磁动铁芯(2)上设有脱扣传动杆(8),且所述电磁动铁芯(2)和脱扣传动杆(8)为一体结构,所述脱扣传动杆(8)上套设有脱扣储能弹簧(7),所述电磁动铁芯(2)、脱扣储能弹簧(7)和脱扣传动杆(8)构成电磁动铁芯脱扣机构组件,且被所述永磁静铁芯(1)吸合,所述脱扣传动杆(8)的拨槽内设有永磁吸合复位拨叉(6),所述脱扣传动杆(8)的一端设有脱扣联杆(9),所述脱扣传动杆(8)与所述脱扣联杆(9)紧密接触,所述断路器壳体内部依次设有第二储能模块(12)、控制电路(10)和第一储能模块(11),所述脱扣传动杆(8)上部设有动触头运动机构(13)。
  2. 根据权利要求1所述的一种停电自动脱扣掉闸的智能断路器,其特征在于:所述脱扣储能弹簧(7)的撞击力和所述电磁动铁芯(2)的电磁场力构成合力,所述合力由所述脱扣传动杆(8)传给所述脱扣联杆(9)引起断路器脱扣,所述脱扣传动杆(8)的脱扣电磁力由第二储能模块(12)在正常工作时的储能以及在停电瞬间释放的储能提供。
  3. 根据权利要求1所述的一种停电自动脱扣掉闸的智能断路器,其特征在于:所述第二储能模块(12)连接控制电路(10),所述第二储能模块(12)电能释放受控于所述控制电路(10)。
  4. 根据权利要求1所述的一种停电自动脱扣掉闸的智能断路器,其特征在于:所述永磁吸合复位拨叉(6)上的P点附近区域与所述动触头运动机构(13)上对应的P点接触,实现所述永磁吸合复位拨叉(6)推动电磁动铁芯脱扣机构组件重新被永磁静铁芯(1)吸合,并为下一次脱扣做准备。
  5. 根据权利要求1所述的一种停电自动脱扣掉闸的智能断路器,其特征在于:所述第二储能模块(12)释放的电能电流为逆向电流,所述逆向电流产生的磁场力与永久磁场力相斥,所述逆向电流产生的磁场力与所述脱扣储能弹簧(7)的脱扣力方向相同。
  6. 根据权利要求1所述的一种停电自动脱扣掉闸的智能断路器,其特征在于:所述控制电路(10)在停电后的工作电能来源于所述第一储能模块(11)在正常工作时的储能,所述控制电路(10)的程序用于保证断路器正常工作时电流正向流经电磁线圈(3),正向电流产生的电磁场力和永久磁场力相互作用产生吸合力。
  7. 根据权利要求1所述的一种停电自动脱扣掉闸的智能断路器,其特征在于:所述第一储能模块(11)和第二储能模块(12)为任何可以进行电能存储的元件。
  8. 根据权利要求1所述的一种停电自动脱扣掉闸的智能断路器,其特征在于:所述第一轴孔(14)孔径大于第二轴孔(15)孔径。
  9. 根据权利要求1所述的一种停电自动脱扣掉闸的智能断路器,其特征在于:所述电磁线圈(3)、电磁线圈骨架(4)和永磁静铁芯(1)构成电磁线圈组件,所述电磁线圈组件安装于断路器壳体的电磁线圈穴位内,所述电磁动铁芯脱扣机构组件放置于电磁线圈组件的轴孔内。
  10. 根据权利要求1所述的一种停电自动脱扣掉闸的智能断路器,其特征在于:所述永磁静铁芯(1)吸合电磁动铁芯脱扣机构组件的吸合力在断路器正常工作时大于脱扣储能弹簧(7)的弹性力。
PCT/CN2020/080082 2019-04-16 2020-03-18 一种停电自动脱扣掉闸的智能断路器 WO2020211590A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20792084.4A EP3926655A4 (en) 2019-04-16 2020-03-18 INTELLIGENT BREAKER CAPABLE OF AUTOMATICALLY RELEASING AND TRIGGERING AN INTERRUPTION
US17/428,583 US11908651B2 (en) 2019-04-16 2020-03-18 Intelligent circuit breaker capable of automatically releasing and tripping in power failure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910304445.1 2019-04-16
CN201910304445.1A CN109887812A (zh) 2019-04-16 2019-04-16 一种停电自动脱扣掉闸的智能断路器
CN201911250741.4A CN110767513B (zh) 2019-04-16 2019-12-09 一种停电自动脱扣掉闸的智能断路器
CN201911250741.4 2019-12-09

Publications (1)

Publication Number Publication Date
WO2020211590A1 true WO2020211590A1 (zh) 2020-10-22

Family

ID=66937507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080082 WO2020211590A1 (zh) 2019-04-16 2020-03-18 一种停电自动脱扣掉闸的智能断路器

Country Status (4)

Country Link
US (1) US11908651B2 (zh)
EP (1) EP3926655A4 (zh)
CN (2) CN109887812A (zh)
WO (1) WO2020211590A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112802721A (zh) * 2020-12-31 2021-05-14 国网宁夏电力有限公司电力科学研究院 一种高压断路器用长行程混合式快速操动机构
CN115172115A (zh) * 2022-08-26 2022-10-11 天津加美特电气股份有限公司 一种非机械分合触头式断路器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109887812A (zh) 2019-04-16 2019-06-14 天津加美特电气设备有限公司 一种停电自动脱扣掉闸的智能断路器
CN114050016B (zh) * 2021-09-15 2024-03-29 上海欧一安保器材有限公司 螺线管致动器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4251789A (en) * 1979-09-04 1981-02-17 General Electric Company Circuit breaker trip indicator and auxiliary switch combination
US5105326A (en) * 1991-05-31 1992-04-14 Westinghouse Electric Corp. Circuit for controlling the orientation of a magnetic field
WO2002043095A1 (de) * 2000-11-23 2002-05-30 Abb Patent Gmbh Elektrische schalteinrichtung für fehlerstrom-, überstrom- und kurzschlussstromschutz
CN104505315A (zh) * 2014-12-31 2015-04-08 靖江市海源有色金属材料有限公司 脱扣执行机构
CN107622926A (zh) * 2017-10-19 2018-01-23 武汉倍诺德开关股份有限公司 一种电子式塑壳断路器电磁系统
CN109887812A (zh) * 2019-04-16 2019-06-14 天津加美特电气设备有限公司 一种停电自动脱扣掉闸的智能断路器
CN110137044A (zh) * 2019-05-30 2019-08-16 天津加美特电气设备有限公司 一种具有常开常闭功能的智能型断路器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE71036B1 (en) * 1990-02-23 1997-01-15 Square D Co A circuit breaker
JP2570533B2 (ja) * 1991-11-13 1997-01-08 三菱電機株式会社 遮断器小勢力引外し装置リセット機構
ES1043678Y (es) * 1999-07-14 2000-06-16 Bitron Ind Espana Sa Mecanismo interruptor electromagnetico con rearme manual.
KR100662229B1 (ko) * 2004-06-23 2007-01-02 쪼-잉 린 자기적 장치를 포함하는 전기회로 차단기
JP2007234250A (ja) * 2006-02-27 2007-09-13 Fuji Electric Fa Components & Systems Co Ltd 遮断機の引外し装置
CN201616403U (zh) * 2010-02-02 2010-10-27 上海电科电器科技有限公司 微型断路器的欠压脱扣器
KR101297549B1 (ko) * 2011-12-30 2013-08-14 엘에스산전 주식회사 배선용 차단기의 부족 전압 트립 장치
FR3008542B1 (fr) * 2013-07-09 2015-10-02 Schneider Electric Ind Sas Dispositif de detection du rearmement d'un disjoncteur, actionneur d'un mecanisme de separation des contacts du disjoncteur, disjoncteur electrique et utilisation d'un courant induit pour generer un signal d'indication du rearmement
CN104821262B (zh) * 2015-05-06 2017-03-15 深圳市安正顺电气科技有限公司 一种可调整合分闸时间的永磁机构及其调整方法
CN104835694B (zh) * 2015-05-27 2017-05-24 科都电气有限公司 智能断路器
CN107123577B (zh) * 2017-07-01 2019-11-08 中欧电气有限公司 小型智能永磁断路器
DE102017211332A1 (de) * 2017-07-04 2019-01-10 Siemens Aktiengesellschaft Elektromagnetischer Auslöser für elektromagnetische Schaltgeräte

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4251789A (en) * 1979-09-04 1981-02-17 General Electric Company Circuit breaker trip indicator and auxiliary switch combination
US5105326A (en) * 1991-05-31 1992-04-14 Westinghouse Electric Corp. Circuit for controlling the orientation of a magnetic field
WO2002043095A1 (de) * 2000-11-23 2002-05-30 Abb Patent Gmbh Elektrische schalteinrichtung für fehlerstrom-, überstrom- und kurzschlussstromschutz
CN104505315A (zh) * 2014-12-31 2015-04-08 靖江市海源有色金属材料有限公司 脱扣执行机构
CN107622926A (zh) * 2017-10-19 2018-01-23 武汉倍诺德开关股份有限公司 一种电子式塑壳断路器电磁系统
CN109887812A (zh) * 2019-04-16 2019-06-14 天津加美特电气设备有限公司 一种停电自动脱扣掉闸的智能断路器
CN110137044A (zh) * 2019-05-30 2019-08-16 天津加美特电气设备有限公司 一种具有常开常闭功能的智能型断路器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3926655A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112802721A (zh) * 2020-12-31 2021-05-14 国网宁夏电力有限公司电力科学研究院 一种高压断路器用长行程混合式快速操动机构
CN115172115A (zh) * 2022-08-26 2022-10-11 天津加美特电气股份有限公司 一种非机械分合触头式断路器
CN115172115B (zh) * 2022-08-26 2024-03-12 天津加美特电气股份有限公司 一种非机械分合触头式断路器

Also Published As

Publication number Publication date
CN109887812A (zh) 2019-06-14
EP3926655A4 (en) 2022-11-23
US20220028643A1 (en) 2022-01-27
CN110767513A (zh) 2020-02-07
US11908651B2 (en) 2024-02-20
CN110767513B (zh) 2021-07-13
EP3926655A1 (en) 2021-12-22

Similar Documents

Publication Publication Date Title
WO2020211590A1 (zh) 一种停电自动脱扣掉闸的智能断路器
AU2003256374B2 (en) Resettable switching device
CN110137044B (zh) 一种具有常开常闭功能的智能型断路器
US20080284547A1 (en) Magnetostrictive electrical switching device
WO2013139597A1 (en) Line protection switch
CN105513916A (zh) 用在断路器中的延时动作机构、和断路器
US2188803A (en) High speed permanent magnet electroresponsive device
CN209591949U (zh) 一种具有常开常闭功能的智能型断路器
CN105047491A (zh) 一种永磁操作机构防跳装置
CN109841461B (zh) 具有可移动框架和磁耦合的微型电路断路器非接触螺线管
CN208521882U (zh) 电磁触发装置的永磁体安装结构及该电磁触发装置
CN106373836B (zh) 一种保护机构及具有其的断路器
CN216389246U (zh) 一种小型断路器的脱扣器
CN205194636U (zh) 一种永磁操作机构防跳装置
CN209880523U (zh) 一种断路器自动脱扣控制装置
CN218602356U (zh) 用于脱扣装置的驱动装置和断路器
CN211743066U (zh) 一种抗干扰磁保持型继电器
EP2525382B1 (en) Combined function circuit protection and control device actuator
CN220400508U (zh) 一种电磁式分合闸机构及其自保持继电器
CN114078670A (zh) 一种小型断路器的脱扣器
CN212750782U (zh) 一种开关装置的磁保护模块
JP5215268B2 (ja) 遮断器
CN206003724U (zh) 一种辅助脱扣器及具有该辅助脱扣器的断路器组件
CN112382548A (zh) 一种直流断路器用电磁脱扣装置
JP2017520889A (ja) 熱磁気引外し機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20792084

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020792084

Country of ref document: EP

Effective date: 20210914

NENP Non-entry into the national phase

Ref country code: DE