WO2020211430A1 - 一种智慧城市系统及其实现方法 - Google Patents
一种智慧城市系统及其实现方法 Download PDFInfo
- Publication number
- WO2020211430A1 WO2020211430A1 PCT/CN2019/127002 CN2019127002W WO2020211430A1 WO 2020211430 A1 WO2020211430 A1 WO 2020211430A1 CN 2019127002 W CN2019127002 W CN 2019127002W WO 2020211430 A1 WO2020211430 A1 WO 2020211430A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- city
- dimensional model
- point cloud
- result
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/70—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F16/73—Querying
- G06F16/738—Presentation of query results
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30242—Counting objects in image
Definitions
- the invention relates to the field of smart cities, in particular to a smart city system and an implementation method thereof.
- Smart city is the use of information and communication technology to sense, analyze, and integrate various key information of the core system of urban operation, so as to meet various needs including people's death, environmental protection, public safety, urban services, industrial and commercial activities, emergency response, etc. Respond intelligently. Its essence is to use advanced information technology to realize the intelligent management and operation of the city, thereby creating a better life for the people and enterprises in the city, and promoting the harmony and sustainable growth of the city.
- smart city systems at home and abroad generally collect data through various sensors in the city, and then cooperate with the city monitoring center to analyze or process the collected data, and perform corresponding operations based on the results of the analysis or processing (such as result display, monitoring, emergency response) Processing etc.).
- most smart city systems at home and abroad can only generate and display two-dimensional city models. Even though some smart city systems can generate and display three-dimensional city models, they can only display static three-dimensional models of cities, and cannot be displayed in three-dimensional models.
- the real-time video stream is displayed inside to realize the display of the real city scene, which cannot give the viewer an immersive experience, and cannot meet the high requirements of urban security monitoring and other application scenarios with high real-time requirements. In addition.
- the purpose of the embodiments of the present invention is to provide a smart city system and an implementation method thereof.
- a smart city system including:
- the first data acquisition module is configured to acquire first data by scanning, and the first data includes three-dimensional data of the city;
- the second data acquisition module is configured to acquire second data, where the second data includes a live video stream and a video stream collected on site;
- the third data acquisition module is configured to acquire third data through a sensor, and the third data includes pressure, temperature, humidity, wind direction, PM2.5 and image data;
- the server is configured to perform intelligent processing based on the first data, the second data, and the third data.
- the intelligent processing includes generating a three-dimensional model of the city and a corresponding link based on the first data, and superimposing the second data on the three-dimensional model of the city Realize the three-dimensional real scene of the city, perform point cloud segmentation and intelligent recognition of the three-dimensional model of the city, and analyze the second and third data;
- the display module is used to display the second data, the result of intelligent recognition and the result of analysis in the three-dimensional model of the city.
- the third-party system includes an government service system, a public information and health service system, a hospital system, an alarm system, and a transportation system.
- server specifically includes:
- the three-dimensional reconstruction unit is used to perform three-dimensional reconstruction according to the first data to obtain the three-dimensional model of the city, the corresponding link and the corresponding point cloud data;
- the superimposition unit is used to superimpose the second data into the three-dimensional model of the city
- the point cloud segmentation and intelligent recognition unit is used to perform point cloud segmentation and intelligent recognition on the three-dimensional model of the city, so as to recognize the names and corresponding numbers of objects in the city, the objects including indoor objects and outdoor objects;
- the database is used to store the second data, the third data, the three-dimensional model of the city, the corresponding link, the result of intelligent recognition and the result of analysis.
- the point cloud segmentation and intelligent recognition unit specifically includes:
- the point cloud segmentation unit is used to obtain point cloud data from the three-dimensional model of the city, and then segment the point cloud of each object in the city according to the correlation between the point cloud data;
- the intelligent recognition unit is used to recognize the name of the point cloud of each object in the city by using artificial intelligence
- the automatic statistics unit is used to automatically count the number of objects in the city according to the identified names.
- the display module specifically includes:
- the input module is used to input display control instructions through any one of somatosensory, gesture, eyeball, touch, voice, and brain waves.
- the display control instructions include zoom in and zoom out instructions, switch instructions, rotation instructions, voice commentary instructions, and Screening instructions;
- the display unit is used to display the second data, the result of intelligent recognition and the result of analysis according to the display control instruction.
- the second data acquisition module specifically includes:
- Video stream capture device for capturing real-time video streams on site
- the networked video stream acquisition module is used to acquire live video streams through the Internet.
- a method for implementing a smart city system includes the following steps:
- the second data includes a live video stream and a video stream collected on site;
- third data through a sensor, the third data including pressure, temperature, humidity, wind direction, PM2.5 and image data;
- the intelligent processing includes generating a three-dimensional model of the city and a corresponding link based on the first data, and superimposing the second data on the three-dimensional model of the city to achieve a three-dimensional real city scene , Perform point cloud segmentation and intelligent recognition of the three-dimensional model of the city, and analyze the second and third data;
- step of performing intelligent processing according to the first data, the second data, and the third data specifically includes:
- the step of performing point cloud segmentation and intelligent recognition on the three-dimensional model of the city to identify the names and corresponding quantities of objects in the city specifically includes:
- step of displaying the second data, the result of intelligent recognition and the result of analysis in the three-dimensional model of the city specifically includes:
- Input display control instructions through any of somatosensory, gestures, eyeballs, touch, voice and brain waves, the display control instructions including zoom in and zoom out instructions, switching instructions, rotation instructions, voice commentary instructions and screening instructions;
- the second data, the result of intelligent recognition and the result of analysis are displayed according to the display control instruction.
- the embodiment of the present invention After the embodiment of the present invention generates a three-dimensional model of the city according to the scanned first data, it superimposes the video stream of the second data in the three-dimensional model of the city and performs real-time
- the display realizes the display of the real city scene, allowing the viewer to not only see the 3D model, but also the dynamic video stream, giving the viewer an immersive experience; through the point cloud segmentation and intelligent recognition of the city’s 3D model, It realizes the recognition of each object in the city model and can count the corresponding quantity, which is highly intelligent and more convenient.
- FIG. 1 is a structural block diagram of a smart city system provided by an embodiment of the present invention
- Fig. 2 is a flowchart of a method for implementing a smart city system provided by an embodiment of the present invention.
- first, second, third, etc. may be used in this disclosure to describe various elements, these elements should not be limited to these terms. These terms are only used to distinguish elements of the same type from each other.
- first element may also be referred to as the second element, and similarly, the second element may also be referred to as the first element.
- second element may also be referred to as the first element.
- the use of any and all examples or exemplary language (“such as”, “such as”, etc.) provided herein is only intended to better illustrate the embodiments of the present invention, and unless otherwise required, will not impose limitations on the scope of the present invention .
- an embodiment of the present invention provides a smart city system, including:
- the first data acquisition module is configured to acquire first data by scanning, and the first data includes three-dimensional data of the city;
- the second data acquisition module is configured to acquire second data, where the second data includes a live video stream and a video stream collected on site;
- the third data acquisition module is configured to acquire third data through a sensor, and the third data includes pressure, temperature, humidity, wind direction, PM2.5 and image data;
- the server is configured to perform intelligent processing based on the first data, the second data, and the third data.
- the intelligent processing includes generating a three-dimensional model of the city and a corresponding link based on the first data, and superimposing the second data on the three-dimensional model of the city Realize the three-dimensional real scene of the city, perform point cloud segmentation and intelligent recognition of the three-dimensional model of the city, and analyze the second and third data;
- the display module is used to display the second data, the result of intelligent recognition and the result of analysis in the three-dimensional model of the city.
- the first data acquisition module is used to scan objects in the urban scene and upload the scanned data to the server.
- the object can be a symmetrical object, an asymmetrical object with an uneven surface, or an environment or a person.
- the first data acquisition module may be an aerial scanning device, an indoor scanning device or an outdoor scanning device.
- the aerial scanning equipment may be aerial photographing equipment such as an aerial photographing plane, which is used to scan the three-dimensional data of the urban area.
- Indoor scanning equipment used to scan the three-dimensional data of the indoor environment (such as the interior of a certain floor of a building in a city).
- the indoor scanning device can be a handheld scanning device (such as a camera with a support frame) or other automatic scanning equipment (such as an automatic scanning robot).
- Outdoor scanning equipment used to scan 3D data in outdoor environments (such as a certain bridge in a city).
- the outdoor scanning equipment can be a handheld scanning equipment (such as a camera with a support frame) or other automatic scanning equipment (such as an automatic scanning robot).
- Three-dimensional data includes data such as two-dimensional pictures and depth information.
- the first data acquisition module may be integrated with a GPU chip, which can perform preliminary processing on the collected data such as two-dimensional pictures and depth information locally (such as preliminary splicing of two-dimensional pictures according to depth information, etc.), which reduces the server Processing burden.
- the second data acquisition module is used to acquire real-time video stream data of a certain area (such as a certain road section, a certain building) in a city.
- the real-time video stream data can be a live real-time video stream collected by CCTV (closed-circuit television) (such as a video stream reflecting human real-time actions), or a video stream played live in the area (such as live TV, network video, live Training videos etc.).
- CCTV closed-circuit television
- the second data acquisition module can be implemented by CCTV, camera and other equipment.
- the third data acquisition module is used to collect various information of the city through temperature, pressure, humidity, wind direction, PM2.5, and image sensors distributed throughout the city for further analysis and processing.
- the third data acquisition module can be implemented by various sensors, which upload various collected information to the server.
- the server is used for intelligent processing according to the first data, the second data and the third data.
- the intelligent processing specifically includes: generating a three-dimensional model of the city and corresponding links according to the first data, superimposing the second data on the three-dimensional model of the city to realize the three-dimensional real scene of the city, and performing point cloud segmentation and intelligent recognition of the three-dimensional model of the city. And analyze the second data and the third data.
- the server when the server generates a three-dimensional model of the city based on the first data, the first data can be processed through operations such as model repair, editing, cropping, surface reduction, model reduction, compression, material processing, texture processing, and light processing. Thereby reconstructing a three-dimensional model of the city.
- the server After reconstructing the three-dimensional model of the city, the server can also generate links to the three-dimensional model (such as URL links, etc.), so that any computing device that supports browsers (including smart phones, tablets, laptops, smart watches, smart TVs, computers, etc.) ) Can access the 3D model through this link.
- the server may be a background server, cloud server, etc. that can communicate with the scanning device in a wired or wireless manner.
- the three-dimensional model of a city is composed of multiple point clouds (a collection of points), so the server can also provide corresponding point cloud data after generating the three-dimensional model of the city to facilitate subsequent segmentation and intelligent recognition.
- the server When the server superimposes the second data on the 3D model of the city to realize the real 3D scene of the city, it can first find the area to be superimposed on the video stream from the model (this area can be preset or has an identifiable label on it). Then superimpose the real-time video stream to this area and continue playing.
- the 3D models obtained by traditional 3D scanning modeling technology are static. Even if the video data can be displayed, they can only be displayed frame by frame (still displaying static non-real-time video data). Show dynamic video stream.
- the embodiment of the present invention superimposes the real-time video stream into the corresponding area of the city's 3D model to truly realize the seamless integration of the 3D model and the real-time video stream, regardless of how the environment changes or the angle changes.
- the real-time video stream is viewed in the 3D model (that is, the real-time video stream is directly integrated into the 3D model, rather than simply fitting), and is not affected by changes in the environment (such as scenes) and changes in angles.
- the server When the server performs point cloud segmentation and intelligent recognition of the three-dimensional model of the city, it can be combined with artificial intelligence for recognition to obtain the name of each object.
- the recognition result server combined with artificial intelligence can automatically count the number of objects with the same name, eliminating the need for manual calculation of the number, greatly improving efficiency and convenience for users. Counting the number of objects with the same name is for the convenience of users to watch, and to perform further applications or operations. For example, using the statistical results of the number of hotels in the current city combined with GPS location information, a person can be very convenient It knows how many hotels and restaurants there are within a 5-minute walk of its current location, so that you can make a corresponding choice.
- the server When the server analyzes the second data and the third data, it can analyze whether the state of the area where the video stream is located (such as the security monitoring area, etc.) is abnormal (such as whether a fire alarm or emergency event occurs in the monitoring area) according to the real-time video stream of the second data.
- the third data can be used to analyze whether the various indicators of the city (such as temperature, pressure, humidity, PM2.5 concentration, etc.) are normal, so that corresponding response or response measures (such as fire alarm handling, emergency incident handling, PM2 .5 Abnormal concentration reminder, etc.).
- the display module is used to display the three-dimensional model of the city, the second data, the results of intelligent recognition (such as the names and corresponding numbers of various types of objects, etc.) and the results of analysis.
- the display module can be implemented by any of AR display devices, VR display devices, mobile terminals, tablet computers, PC computers, air screens, LED displays, LCD displays, OLED displays, and dot matrix displays, etc. .
- this embodiment realizes the real-time display of the city by superimposing the video stream of the second data on the three-dimensional model of the city and displaying it in real time.
- the three-dimensional model of the city you can also see the dynamic video stream, giving the viewer an immersive (ie, immersive) experience; through the point cloud segmentation and intelligent recognition of the city’s three-dimensional model,
- the identification of each object in the city model can also count the corresponding number, which is highly intelligent and more convenient.
- the third-party system includes government service system, public information and health service system, hospital system, alarm system, and transportation system. .
- the communication module of this embodiment may be a wired communication module or a wireless communication module, which is used to interface with third-party systems in cities such as communication and government service systems, public information and health service systems, hospital systems, alarm systems, and transportation systems. , In order to provide better supporting or one-stop service for urban residents or enterprises, and improve the convenience and user experience of the system.
- the server specifically includes:
- the three-dimensional reconstruction unit is used to perform three-dimensional reconstruction according to the first data to obtain the three-dimensional model of the city, the corresponding link and the corresponding point cloud data;
- the superimposition unit is used to superimpose the second data into the three-dimensional model of the city
- the point cloud segmentation and intelligent recognition unit is used to perform point cloud segmentation and intelligent recognition on the three-dimensional model of the city, so as to recognize the names and corresponding numbers of objects in the city, the objects including indoor objects and outdoor objects;
- the database is used to store the second data, the third data, the three-dimensional model of the city, the corresponding link, the result of intelligent recognition and the result of analysis.
- indoor objects include chairs, tables, computers, ceilings, floors, walls, glass mirrors, windows, and so on.
- Outdoor objects include cables, tables, trees, roads, buildings (restaurants, convenience stores, office buildings, etc.), lamp posts, vehicles, video capture devices (CCTV televisions, etc.), green belts (such as lawns, etc.).
- the point cloud segmentation and intelligent recognition unit specifically includes:
- the point cloud segmentation unit is used to obtain point cloud data from the three-dimensional model of the city, and then segment the point cloud of each object in the city according to the correlation between the point cloud data;
- the intelligent recognition unit is used to recognize the name of the point cloud of each object in the city by using artificial intelligence
- the automatic statistics unit is used to automatically count the number of objects in the city according to the identified names.
- the objects in the city may include multiple objects, people, and other objects.
- the scanned point cloud data is segmented, and the point cloud obtained for the first object in the scene also contains multiple point clouds, and the specific names of these segmented point clouds can be obtained after being recognized by artificial intelligence methods.
- each segmented point cloud is associated with a name, and the specific number of each name object can be automatically counted, which is very convenient.
- the names and corresponding numbers of objects in the city are intelligently identified through artificial intelligence methods, so as to automatically count the number of objects and other objects in the city through artificial intelligence. , High degree of intelligence.
- the display module specifically includes:
- the input module is used to input display control instructions through any one of somatosensory, gesture, eyeball, touch, voice, and brain waves.
- the display control instructions include zoom in and zoom out instructions, switch instructions, rotation instructions, voice commentary instructions, and Screening instructions;
- the display unit is used to display the second data, the result of intelligent recognition and the result of analysis according to the display control instruction.
- this embodiment can provide display control instructions through any of somatosensory, gesture, eyeball, touch, voice, and brain waves, so as to facilitate the display control of the three-dimensional real scene of the city, and improve the interactive effect and flexibility.
- the zoom-in and zoom-out commands are mainly used to control the zoom-in and zoom-out of the 3D model in the 3D real scene of the city; the switching commands are used to control the scene switching in the 3D real scene of the city (such as switching from a certain road to a certain building), switching of perspective, etc.
- Rotation instructions should be used to rotate the three-dimensional model of the city's three-dimensional real scene; voice commentary instructions are mainly used to introduce detailed information such as the three-dimensional model of objects in the city to users through multiple languages (such as Chinese, English, French, etc.) Introduce the history of a certain building in the city, the name of the company currently stationed in it, and the corresponding information, etc.); the filtering instructions are mainly used to provide filtering conditions to provide users with a targeted display. For example, the user wants to know a building for 5 minutes or one time. For all hotels within a kilometer, the filter criteria can include: reference object: the building; time or distance: within 5 minutes or one kilometer, type: hotel.
- the second data acquisition module specifically includes:
- Video stream capture device for capturing real-time video streams on site
- the networked video stream acquisition module is used to acquire live video streams through the Internet.
- the on-site real-time video stream may be a real-time video stream of a surveillance area (such as a corner of a building, etc.) shot by CCTV, or a real-time video stream of a certain activity site (such as a certain exhibition, a certain press conference).
- a surveillance area such as a corner of a building, etc.
- a certain activity site such as a certain exhibition, a certain press conference
- the live video stream can be various video streams of live webcast, including movies, TV shows, video clips, short videos, and so on.
- an embodiment of the present invention provides a method for implementing a smart city system, which includes the following steps:
- the second data includes a live video stream and a video stream collected on site;
- third data through a sensor, the third data including pressure, temperature, humidity, wind direction, PM2.5 and image data;
- the intelligent processing includes generating a three-dimensional model of the city and a corresponding link based on the first data, and superimposing the second data on the three-dimensional model of the city to achieve a real three-dimensional city , Perform point cloud segmentation and intelligent recognition of the three-dimensional model of the city, and analyze the second and third data;
- the step of performing intelligent processing according to the first data, the second data and the third data specifically includes:
- the step of performing point cloud segmentation and intelligent recognition on the three-dimensional model of the city, so as to identify the names and corresponding quantities of objects in the city specifically includes:
- the step of displaying the second data, the result of intelligent recognition and the result of analysis in the three-dimensional model of the city specifically includes:
- Input display control instructions through any of somatosensory, gestures, eyeballs, touch, voice and brain waves, the display control instructions including zoom in and zoom out instructions, switching instructions, rotation instructions, voice commentary instructions and screening instructions;
- the second data, the result of intelligent recognition and the result of analysis are displayed according to the display control instruction.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Quality & Reliability (AREA)
- Software Systems (AREA)
- Geometry (AREA)
- Computational Linguistics (AREA)
- Computer Graphics (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- General Engineering & Computer Science (AREA)
- User Interface Of Digital Computer (AREA)
- Processing Or Creating Images (AREA)
Abstract
一种智慧城市系统及其实现方法,系统包括第一数据获取模块、第二数据获取模块、第三数据获取模块、服务器和展示模块,方法包括:通过扫描的方式获取第一数据,第一数据包括城市的三维数据;获取第二数据,第二数据包括直播视频流和现场采集的视频流;通过传感器获取第三数据;根据第一数据、第二数据和第三数据进行智能处理;在城市的三维模型中展示第二数据、智能识别的结果和分析的结果。通过在城市的三维模型中叠加第二数据的视频流并实时展示实现了城市实景的展示,让观看者不仅能看到三维模型,还可以看到动态的视频流;通过对城市的三维模型进行点云分割与智能识别,智能化程度高且更加方便,可广泛应用于智慧城市领域。
Description
本发明涉及智慧城市领域,尤其是一种智慧城市系统及其实现方法。
智慧城市就是运用信息和通信技术手段感测、分析、整合城市运行核心系统的各项关键信息,从而对包括民生、环保、公共安全、城市服务、工商业活动、应急处理等在内的各种需求做出智能响应。其实质是利用先进的信息技术,实现城市智慧式管理和运行,进而为城市中的人、企业创造更美好的生活,促进城市的和谐以及可持续成长。
随着互联网技术的飞速发展带来全球的信息化浪潮,人类世界智能化的要求和需求也越来越高,自2008年美国IBM公司首次提出“智慧地球”的发展战略以来,世界各发达国家已经逐渐意识到智慧城市是人类社会发展的必然趋势,并开始大力积极开展智慧城市的建设,我国一些发达地区在数字城市的建设基础上,也开始探索智慧城市的建设,北京、上海、南京等地区已经将智慧城市列为重点课题。
目前国内外的智慧城市系统一般通过城市内的各个传感器采集数据,然后配合城市监控中心对采集的数据进行分析或处理,并根据分析或处理的结果进行相应的操作(如结果展示、监控、应急处理等)。目前国内外的智慧城市系统大部分只能实现二维城市模型的生成与展示,即使有部分智慧城市系统能生成并展示三维城市模型,但其只能展示城市静态的三维模型,无法在三维模型内展示实时视频流以实现城市实景的展示,无法给观看者沉浸式的体验,满足不了城市安全监控等对实时性要求较高的应用场景的高要求。此外。目前的智慧城市系统大多只能对重建出的城市模型整体进行简单的缩放、旋转等操作,未能对城市模型内的市政设施(如电缆、路灯、道路、桥梁、园林绿化等)等对象进行识别并统计出对应的数量,智能化程度不高。
发明内容
为解决上述技术问题,本发明实施例的目的在于提供一种智慧城市系统及其实现方法。
第一方面,本发明实施例所采取的技术方案是:
一种智慧城市系统,包括:
第一数据获取模块,用于通过扫描的方式获取第一数据,所述第一数据包括城市的三维数据;
第二数据获取模块,用于获取第二数据,所述第二数据包括直播视频流和现场采集的视频流;
第三数据获取模块,用于通过传感器获取第三数据,所述第三数据包括压力、温度、湿度、风向、PM2.5和图像数据;
服务器,用于根据第一数据、第二数据和第三数据进行智能处理,所述智能处理包括根据第一数据生成城市的三维模型和对应的链接,将第二数据叠加到城市的三维模型中实现城市三维实景,对城市的三维模型进行点云分割与智能识别,以及分析第二数据和第三数据;
展示模块,用于在城市的三维模型中展示第二数据、智能识别的结果和分析的结果。
进一步,还包括通讯模块,所述通讯模块用于与第三方系统通讯连接,所述第三方系统包括政务服务系统、公共信息与卫生服务系统、医院系统、报警系统和交通系统。
进一步,所述服务器具体包括:
三维重建单元,用于根据第一数据进行三维重建,得到城市的三维模型、对应的链接以及对应的点云数据;
叠加单元,用于将第二数据叠加到城市的三维模型中;
点云分割与智能识别单元,用于对城市的三维模型进行点云分割与智能识别,从而识别出城市内对象的名称和对应的数量,所述对象包括室内对象和室外对象;
数据库,用于存储第二数据、第三数据、城市的三维模型、对应的链接、智能识别的结果和分析的结果。
进一步,所述点云分割与智能识别单元具体包括:
点云分割单元,用于从城市的三维模型获取点云数据,进而根据点云数据间的关联分割出城市内各个对象的点云;
智能识别单元,用于采用人工智能的方法识别城市内各个对象的点云的名称;
自动统计单元,用于根据识别的名称自动统计城市内各个对象的数量。
进一步,所述展示模块具体包括:
输入模块,用于通过体感、手势、眼球、触摸、语音和脑波中的任一种方式输入展示控制指令,所述展示控制指令包括放大和缩小指令、切换指令、旋转指令、语音解说指令和筛选指令;
展示单元,用于根据展示控制指令展示第二数据、智能识别的结果和分析的结果。
进一步,所述第二数据获取模块具体包括:
视频流捕捉装置,用于采集现场的实时视频流;
联网视频流获取模块,用于通过互联网获取直播视频流。
第二方面,本发明实施例所采取的技术方案是:
一种智慧城市系统的实现方法,包括以下步骤:
通过扫描的方式获取第一数据,所述第一数据包括城市的三维数据;
获取第二数据,所述第二数据包括直播视频流和现场采集的视频流;
通过传感器获取第三数据,所述第三数据包括压力、温度、湿度、风向、PM2.5和图像数据;
根据第一数据、第二数据和第三数据进行智能处理,所述智能处理包括根据第一数据生成城市的三维模型和对应的链接,将第二数据叠加到城市的三维模型中实现城市三维实景,对城市的三维模型进行点云分割与智能识别,以及分析第二数据和第三数据;
在城市的三维模型中展示第二数据、智能识别的结果和分析的结果。
进一步,所述根据第一数据、第二数据和第三数据进行智能处理这一步骤,具体包括:
根据第一数据进行三维重建,得到城市的三维模型、对应的链接以及对应的点云数据;
将第二数据叠加到城市的三维模型中;
对城市的三维模型进行点云分割与智能识别,从而识别出城市内对象的名称和对应的数量,所述对象包括室内对象和室外对象;
存储第二数据、第三数据、城市的三维模型、对应的链接、智能识别的结果和分析的结果。
进一步,所述对城市的三维模型进行点云分割与智能识别,从而识别出城市内对象的名称和对应的数量这一步骤,具体包括:
从城市的三维模型获取点云数据,进而根据点云数据间的关联分割出城市内各个对象的点云;
采用人工智能的方法识别城市内各个对象的点云的名称;
根据识别的名称自动统计城市内各个对象的数量。
进一步,所述在城市的三维模型中展示第二数据、智能识别的结果和分析的结果这一步骤,具体包括:
通过体感、手势、眼球、触摸、语音和脑波中的任一种方式输入展示控制指令,所述展示控制指令包括放大和缩小指令、切换指令、旋转指令、语音解说指令和筛选指令;
根据展示控制指令展示第二数据、智能识别的结果和分析的结果。
上述本发明实施例中的一个或多个技术方案具有如下优点:本发明实施例根据扫描的第 一数据生成城市的三维模型后,通过在城市的三维模型中叠加第二数据的视频流并实时展示实现了城市实景的展示,让观看者不仅能看到三维模型,还可以看到动态的视频流,给了观看者沉浸式的体验;通过对城市的三维模型进行点云分割与智能识别,实现了对城市模型内的各个对象的识别并能统计出对应的数量,智能化程度高且更加方便。
图1为本发明实施例提供的智慧城市系统的结构框图;
图2为本发明实施例提供的智慧城市系统的实现方法流程图。
以下将结合实施例和附图对本发明的构思、具体结构及产生的技术效果进行清楚、完整的描述,以充分地理解本发明的目的、方案和效果。
需要说明的是,如无特殊说明,当某一特征被称为“固定”、“连接”在另一个特征,它可以直接固定、连接在另一个特征上,也可以间接地固定、连接在另一个特征上。此外,本公开中所使用的上、下、左、右等描述仅仅是相对于附图中本公开各组成部分的相互位置关系来说的。在本公开中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。此外,除非另有定义,本文所使用的所有的技术和科学术语与本技术领域的技术人员通常理解的含义相同。本文说明书中所使用的术语只是为了描述具体的实施例,而不是为了限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种元件,但这些元件不应限于这些术语。这些术语仅用来将同一类型的元件彼此区分开。例如,在不脱离本公开范围的情况下,第一元件也可以被称为第二元件,类似地,第二元件也可以被称为第一元件。本文所提供的任何以及所有实例或示例性语言(“例如”、“如”等)的使用仅意图更好地说明本发明的实施例,并且除非另外要求,否则不会对本发明的范围施加限制。
如图1所示,本发明实施例提供了一种智慧城市系统,包括:
第一数据获取模块,用于通过扫描的方式获取第一数据,所述第一数据包括城市的三维数据;
第二数据获取模块,用于获取第二数据,所述第二数据包括直播视频流和现场采集的视频流;
第三数据获取模块,用于通过传感器获取第三数据,所述第三数据包括压力、温度、湿度、风向、PM2.5和图像数据;
服务器,用于根据第一数据、第二数据和第三数据进行智能处理,所述智能处理包括根据第一数据生成城市的三维模型和对应的链接,将第二数据叠加到城市的三维模型中实现城市三维实景,对城市的三维模型进行点云分割与智能识别,以及分析第二数据和第三数据;
展示模块,用于在城市的三维模型中展示第二数据、智能识别的结果和分析的结果。
具体地,第一数据获取模块,用于对城市场景内的对象进行扫描,并将扫描的数据上传给服务器。对象可以是对称物体,具有不平坦表面的不对称物体,还可以是环境或人物。第一数据获取模块可以是航拍扫描设备、室内扫描设备或室外扫描设备。航拍扫描设备,可以是航拍飞机等航拍设备,用于扫描城市区域范围的三维数据。室内扫描设备,用于扫描室内环境(如城市某栋建筑某层楼的内部)的三维数据。室内扫描设备,可以是手持扫描设备(如带支撑架的相机)或其他自动扫描设备(如自动扫描机器人)。室外扫描设备,用于扫描室外环境(如城市的某条桥梁等)的三维数据。室外扫描设备,可以是手持扫描设备(如带支撑架的相机)或其他自动扫描设备(如自动扫描机器人)。三维数据包括二维图片和深度信息等数据。优选地,第一数据获取模块可集成有GPU芯片,能在本地对采集的二维图片和深度信息等数据进行初步的处理(如将二维图片按深度信息进行初步拼接等),减轻了服务器的处理负担。
第二数据获取模块,用于获取城市内某个区域(如某个路段、某栋大楼)现场的实时视频流数据。该实时视频流数据可以是CCTV(闭路电视)采集的现场实时视频流(如反映人的实时动作的视频流),也可以是在该区域现场播放的视频流(如电视直播、网络视频、现场培训视频等)。第二数据获取模块可以采用CCTV、摄像头等设备来实现。
第三数据获取模块,用于通过分布于城市各处的温度、压力、湿度、风向、PM2.5、图像传感器来采集城市的各种信息,以便于进一步的分析和处理。第三数据获取模块可以采用各种传感器来实现,其将采集的各种信息上传给服务器。
服务器,用于根据第一数据、第二数据和第三数据进行智能处理。其中,智能处理具体包括:根据第一数据生成城市的三维模型和对应的链接,将第二数据叠加到城市的三维模型中实现城市三维实景,对城市的三维模型进行点云分割与智能识别,以及分析第二数据和第三数据。
具体地,服务器在根据第一数据生成城市的三维模型时,可通过模型修复、剪辑、裁剪、减面、减模、压缩、处理材质、处理贴图和处理灯等操作对第一数据进行处理,从而重建出城市的三维模型。重建出城市的三维模型后,服务器还可生成三维模型的链接(如URL链接等),这样任何支持浏览器的计算设备(包括智能手机、平板电脑、笔记本电脑、智能手表、 智能电视、计算机等)都可以通过该链接访问该三维模型。服务器可以是能通过有线或无线的方式与扫描设备通讯的后台服务器、云端服务器等。城市的三维模型是由多个点云(点的集合)组成的,故服务器也可以在生成城市的三维模型后提供对应的点云数据,以便于后续的分割与智能识别。
而服务器在将第二数据叠加到城市的三维模型中实现城市三维实景时,可先从模型中找到要叠加视频流的区域(该区域可预先设定或其上带有可识别的标签),然后将实时视频流叠加到该区域持续播放即可。传统3D扫描建模技术得到的3D模型都是静态的,即使能展示视频数据,其也只能以一帧一帧图片的方式进行展示(仍然展示的是静态的非实时视频数据),无法真正展示动态的视频流。由于视频流是实时的,本发明实施例通过将实时视频流叠加到城市三维模型的相应区域中,真正实现3D模型与实时视频流的无缝融合,不论环境如何改变和角度如何改变都能在3D模型中观看到该实时视频流(即实时视频流是直接融合到3D模型中的,而不是简单的贴合),不受环境(如场景)的改变和角度的改变的影响。
服务器对城市的三维模型进行点云分割与智能识别时,可再结合人工智能的方法进行识别,从而得到各个对象的名称。同时由于分割时已对点云进行了划分,结合人工智能的识别结果服务器就可以自动统计出同一名称对象的数量,省去了人工计算数量的过程,极大地提升了效率和方便了用户。统计出同一名称对象的数量,是为了方便用户观看,并可以进行进一步的应用或操作,例如:利用当前城市内酒店这一对象的数量统计结果结合GPS位置定位的信息,某个人就可以很方便地知道距离其当前位置5分钟的步行路程范围内有多少个酒店,有多少个餐饮店等等信息,以便于作出相应的选择。
服务器分析第二数据和第三数据时,可根据第二数据的实时视频流分析视频流所在区域(如安防监控区域等)的状态是否异常(如监控区域是否发生火警或紧急事件等),还可以根据第三数据分析城市的各项指标(如温度、压力、湿度、PM2.5浓度等)是否正常,以便于及时做出相应的应对或响应措施(如火警报警处理、应急事件处置、PM2.5浓度异常提醒等)。
展示模块,用于展示城市的三维模型、第二数据、智能识别的结果(如各种类型对象的名称和对应的数量等)和和分析的结果。展示模块可以采用AR显示设备、VR显示设备、移动终端、平板电脑端、PC电脑端、空气屏、LED显示屏、LCD显示屏、OLED显示屏和点阵显示屏等中的任一种来实现。
由上述的内容可知,本实施例根据扫描的第一数据生成城市的三维模型后,通过在城市的三维模型中叠加第二数据的视频流并实时展示实现了城市实景的展示,让观看者不仅能看到城市的三维模型,还可以看到动态的视频流,给了观看者沉浸式(即身临其境)的体验; 通过对城市的三维模型进行点云分割与智能识别,实现了对城市模型内的各个对象的识别并能统计出对应的数量,智能化程度高且更加方便。
进一步作为优选的实施方式,还包括通讯模块,所述通讯模块用于与第三方系统通讯连接,所述第三方系统包括政务服务系统、公共信息与卫生服务系统、医院系统、报警系统和交通系统。
具体地,本实施例的通讯模块可为有线通讯模块或无线通讯模块,用于通过通讯与政务服务系统、公共信息与卫生服务系统、医院系统、报警系统和交通系统等城市的第三方系统对接,以便于为城市居民或企业提供更好的配套或一站式服务,提升系统的便利性和用户体验。
进一步作为优选的实施方式,所述服务器具体包括:
三维重建单元,用于根据第一数据进行三维重建,得到城市的三维模型、对应的链接以及对应的点云数据;
叠加单元,用于将第二数据叠加到城市的三维模型中;
点云分割与智能识别单元,用于对城市的三维模型进行点云分割与智能识别,从而识别出城市内对象的名称和对应的数量,所述对象包括室内对象和室外对象;
数据库,用于存储第二数据、第三数据、城市的三维模型、对应的链接、智能识别的结果和分析的结果。
具体地,室内对象包括椅子、桌子、电脑、天花板、地板、墙、玻璃镜面和窗口等。
室外对象包括线缆、桌子、树、道路、建筑(餐饮店、便利店、办公楼等)、灯柱、车辆、视频采集装置(CCTV电视等)、绿化带(如草坪等)等。
进一步作为优选的实施方式,所述点云分割与智能识别单元具体包括:
点云分割单元,用于从城市的三维模型获取点云数据,进而根据点云数据间的关联分割出城市内各个对象的点云;
智能识别单元,用于采用人工智能的方法识别城市内各个对象的点云的名称;
自动统计单元,用于根据识别的名称自动统计城市内各个对象的数量。
具体地,城市内对象可包含多个物体、人物等对象。相应地,对扫描点云数据进行分割,得到场景内第一对象的点云也包含了多个点云,这些分割出的点云的具体名称经人工智能的方法识别后即可得出。这样将分割出的每个点云与名称对应起来,即可自动地统计出各个名称对象的具体数量,十分方便。
由上述的内容可知,本实施例点云分割完成后通过人工智能的方法等方法智能识别出城 市内对象的名称及对应的数量,以便于通过人工智能自动统计出城市内各个物体等对象的数量,智能化程度高。
进一步作为优选的实施方式,所述展示模块具体包括:
输入模块,用于通过体感、手势、眼球、触摸、语音和脑波中的任一种方式输入展示控制指令,所述展示控制指令包括放大和缩小指令、切换指令、旋转指令、语音解说指令和筛选指令;
展示单元,用于根据展示控制指令展示第二数据、智能识别的结果和分析的结果。
具体地,本实施例可以通过体感、手势、眼球、触摸、语音和脑波中的任一种方式来提供展示控制指令,以便于对城市的三维实景进行展示控制,提升了互动效果和灵活性。放大和缩小指令主要用于控制城市三维实景内三维模型的放大与缩小;切换指令用于控制控制城市三维实景内的场景切换(如由某条马路切换到某栋建筑)、视角的切换等等;旋转指令要用于对城市三维实景内三维模型进行旋转;语音解说指令,主要用于通过多国语言(如中文、英文、法文等)为用户介绍城市内对象的三维模型等的详细信息(如介绍城市内某栋建筑的历史、当前进驻的公司名及相应的信息等);筛选指令主要用于提供筛选条件来为用户进行针对性的展示,例如,用户想知道某栋建筑5分钟或一公里范围内的所有酒店,那么筛选条件就可以包括:参照物:该栋建筑;时间或距离:5分钟或一公里范围内,类型:酒店。
进一步作为优选的实施方式,所述第二数据获取模块具体包括:
视频流捕捉装置,用于采集现场的实时视频流;
联网视频流获取模块,用于通过互联网获取直播视频流。
具体地,现场的实时视频流可以是CCTV拍摄的某个监控区域(如大楼拐角等)的实时视频流,或者某个活动现场(如某个展会、某个发布会)的实时视频流。
直播视频流,可以是网络直播的各种视频流,包括电影、电视剧、视频片段、短视频等等。
如图2所示,本发明实施例提供了一种智慧城市系统的实现方法,包括以下步骤:
通过扫描的方式获取第一数据,所述第一数据包括城市的三维数据;
获取第二数据,所述第二数据包括直播视频流和现场采集的视频流;
通过传感器获取第三数据,所述第三数据包括压力、温度、湿度、风向、PM2.5和图像数据;
根据第一数据、第二数据和第三数据进行智能处理,所述智能处理包括根据第一数据生成城市的三维模型和对应的链接,将第二数据叠加到城市的三维模型中实现城市三维实景, 对城市的三维模型进行点云分割与智能识别,以及分析第二数据和第三数据;
在城市的三维模型中展示第二数据、智能识别的结果和分析的结果。
进一步作为优选的实施方式,所述根据第一数据、第二数据和第三数据进行智能处理这一步骤,具体包括:
根据第一数据进行三维重建,得到城市的三维模型、对应的链接以及对应的点云数据;
将第二数据叠加到城市的三维模型中;
对城市的三维模型进行点云分割与智能识别,从而识别出城市内对象的名称和对应的数量,所述对象包括室内对象和室外对象;
存储第二数据、第三数据、城市的三维模型、对应的链接、智能识别的结果和分析的结果。
进一步作为优选的实施方式,所述对城市的三维模型进行点云分割与智能识别,从而识别出城市内对象的名称和对应的数量这一步骤,具体包括:
从城市的三维模型获取点云数据,进而根据点云数据间的关联分割出城市内各个对象的点云;
采用人工智能的方法识别城市内各个对象的点云的名称;
根据识别的名称自动统计城市内各个对象的数量。
进一步作为优选的实施方式,所述在城市的三维模型中展示第二数据、智能识别的结果和分析的结果这一步骤,具体包括:
通过体感、手势、眼球、触摸、语音和脑波中的任一种方式输入展示控制指令,所述展示控制指令包括放大和缩小指令、切换指令、旋转指令、语音解说指令和筛选指令;
根据展示控制指令展示第二数据、智能识别的结果和分析的结果。
上述方法实施例中的内容均适用于本系统实施例中,本系统实施例所具体实现的功能与上述方法实施例相同,并且达到的有益效果与上述方法实施例所达到的有益效果也相同。
以上是对本发明的较佳实施进行了具体说明,但本发明并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。
Claims (10)
- 一种智慧城市系统,其特征在于:包括:第一数据获取模块,用于通过扫描的方式获取第一数据,所述第一数据包括城市的三维数据;第二数据获取模块,用于获取第二数据,所述第二数据包括直播视频流和现场采集的视频流;第三数据获取模块,用于通过传感器获取第三数据,所述第三数据包括压力、温度、湿度、风向、PM2.5和图像数据;服务器,用于根据第一数据、第二数据和第三数据进行智能处理,所述智能处理包括根据第一数据生成城市的三维模型和对应的链接,将第二数据叠加到城市的三维模型中实现城市三维实景,对城市的三维模型进行点云分割与智能识别,以及分析第二数据和第三数据;展示模块,用于在城市的三维模型中展示第二数据、智能识别的结果和分析的结果。
- 根据权利要求1所述的一种智慧城市系统,其特征在于:还包括通讯模块,所述通讯模块用于与第三方系统通讯连接,所述第三方系统包括政务服务系统、公共信息与卫生服务系统、医院系统、报警系统和交通系统。
- 根据权利要求1所述的一种智慧城市系统,其特征在于:所述服务器具体包括:三维重建单元,用于根据第一数据进行三维重建,得到城市的三维模型、对应的链接以及对应的点云数据;叠加单元,用于将第二数据叠加到城市的三维模型中;点云分割与智能识别单元,用于对城市的三维模型进行点云分割与智能识别,从而识别出城市内对象的名称和对应的数量,所述对象包括室内对象和室外对象;数据库,用于存储第二数据、第三数据、城市的三维模型、对应的链接、智能识别的结果和分析的结果。
- 根据权利要求3所述的一种智慧城市系统,其特征在于:所述点云分割与智能识别单元具体包括:点云分割单元,用于从城市的三维模型获取点云数据,进而根据点云数据间的关联分割出城市内各个对象的点云;智能识别单元,用于采用人工智能的方法识别城市内各个对象的点云的名称;自动统计单元,用于根据识别的名称自动统计城市内各个对象的数量。
- 根据权利要求1所述的一种智慧城市系统,其特征在于:所述展示模块具体包括:输入模块,用于通过体感、手势、眼球、触摸、语音和脑波中的任一种方式输入展示控 制指令,所述展示控制指令包括放大和缩小指令、切换指令、旋转指令、语音解说指令和筛选指令;展示单元,用于根据展示控制指令展示第二数据、智能识别的结果和分析的结果。
- 根据权利要求1所述的一种智慧城市系统,其特征在于:所述第二数据获取模块具体包括:视频流捕捉装置,用于采集现场的实时视频流;联网视频流获取模块,用于通过互联网获取直播视频流。
- 一种智慧城市系统的实现方法,其特征在于:包括以下步骤:通过扫描的方式获取第一数据,所述第一数据包括城市的三维数据;获取第二数据,所述第二数据包括直播视频流和现场采集的视频流;通过传感器获取第三数据,所述第三数据包括压力、温度、湿度、风向、PM2.5和图像数据;根据第一数据、第二数据和第三数据进行智能处理,所述智能处理包括根据第一数据生成城市的三维模型和对应的链接,将第二数据叠加到城市的三维模型中实现城市三维实景,对城市的三维模型进行点云分割与智能识别,以及分析第二数据和第三数据;在城市的三维模型中展示第二数据、智能识别的结果和分析的结果。
- 根据权利要求7所述的一种智慧城市系统的实现方法,其特征在于:所述根据第一数据、第二数据和第三数据进行智能处理这一步骤,具体包括:根据第一数据进行三维重建,得到城市的三维模型、对应的链接以及对应的点云数据;将第二数据叠加到城市的三维模型中;对城市的三维模型进行点云分割与智能识别,从而识别出城市内对象的名称和对应的数量,所述对象包括室内对象和室外对象;存储第二数据、第三数据、城市的三维模型、对应的链接、智能识别的结果和分析的结果。
- 根据权利要求8所述的一种智慧城市系统的实现方法,其特征在于:所述对城市的三维模型进行点云分割与智能识别,从而识别出城市内对象的名称和对应的数量这一步骤,具体包括:从城市的三维模型获取点云数据,进而根据点云数据间的关联分割出城市内各个对象的点云;采用人工智能的方法识别城市内各个对象的点云的名称;根据识别的名称自动统计城市内各个对象的数量。
- 根据权利要求7所述的一种智慧城市系统的实现方法,其特征在于:所述在城市的三维模型中展示第二数据、智能识别的结果和分析的结果这一步骤,具体包括:通过体感、手势、眼球、触摸、语音和脑波中的任一种方式输入展示控制指令,所述展示控制指令包括放大和缩小指令、切换指令、旋转指令、语音解说指令和筛选指令;根据展示控制指令展示第二数据、智能识别的结果和分析的结果。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910304767.6A CN110232731A (zh) | 2019-04-16 | 2019-04-16 | 一种智慧城市系统及其实现方法 |
CN201910304767.6 | 2019-04-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020211430A1 true WO2020211430A1 (zh) | 2020-10-22 |
Family
ID=67860213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/127002 WO2020211430A1 (zh) | 2019-04-16 | 2019-12-20 | 一种智慧城市系统及其实现方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110232731A (zh) |
WO (1) | WO2020211430A1 (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112233228A (zh) * | 2020-10-28 | 2021-01-15 | 五邑大学 | 基于无人机的城市三维重建方法、装置及存储介质 |
CN112687174A (zh) * | 2021-01-19 | 2021-04-20 | 上海华野模型有限公司 | 新房沙盘模型图像展示操控装置及图像展示方法 |
CN114697634A (zh) * | 2020-12-31 | 2022-07-01 | 深圳市奥拓电子股份有限公司 | 一种用于智慧城市的数字沙盘显示方法、装置和系统 |
CN115174608A (zh) * | 2022-05-25 | 2022-10-11 | 安徽超清科技股份有限公司 | 一种基于物联网的智慧城市安防监控系统 |
CN115689844A (zh) * | 2023-01-04 | 2023-02-03 | 成都中轨轨道设备有限公司 | 一种基于多维引擎的智能数据管理平台、搭建方法及应用 |
CN117593465A (zh) * | 2023-12-13 | 2024-02-23 | 极视创智(深圳)科技有限公司 | 三维可视化实现智慧城市的虚拟显示方法及系统 |
CN117938927A (zh) * | 2024-03-25 | 2024-04-26 | 厦门瑞为信息技术有限公司 | 基于ar辅助的自助登机系统及自助登机方法 |
CN118196327A (zh) * | 2024-05-13 | 2024-06-14 | 广东科学技术职业学院 | 一种智能绿色建筑施工信息管理方法及系统 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110232731A (zh) * | 2019-04-16 | 2019-09-13 | 广东康云科技有限公司 | 一种智慧城市系统及其实现方法 |
CN110751724B (zh) * | 2019-10-12 | 2023-08-08 | 杭州城市大数据运营有限公司 | 城市三维模型建立方法、装置、计算机设备及存储介质 |
CN111308931A (zh) * | 2020-02-24 | 2020-06-19 | 广东洪亚科技控股有限公司 | 一种基于智慧城市的公众安全监控系统 |
CN112598782A (zh) * | 2020-12-18 | 2021-04-02 | 花王生态工程股份有限公司 | 一种基于三维的观赏性花园设计方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170278037A1 (en) * | 2016-03-22 | 2017-09-28 | Hexagon Technology Center Gmbh | Construction management system and method for linking data to a building information model |
CN107771587A (zh) * | 2016-08-28 | 2018-03-09 | 河南农业大学 | 一种基于无线传感网络的温室内温度控制系统 |
CN109246195A (zh) * | 2018-08-13 | 2019-01-18 | 孙琤 | 一种融合增强现实、虚拟现实的管网智能管控方法及系统 |
CN208691293U (zh) * | 2018-08-13 | 2019-04-02 | 孙琤 | 一种物联网实时监测系统 |
CN110232731A (zh) * | 2019-04-16 | 2019-09-13 | 广东康云科技有限公司 | 一种智慧城市系统及其实现方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150243073A1 (en) * | 2014-02-27 | 2015-08-27 | Here Global B.V. | Systems and Methods for Refining an Aerial Image |
CN104021586A (zh) * | 2014-05-05 | 2014-09-03 | 深圳市城市管理监督指挥中心 | 基于北斗定位的空地一体城市生态文明管理系统及方法 |
CN106197452A (zh) * | 2016-07-21 | 2016-12-07 | 触景无限科技(北京)有限公司 | 一种视觉图像处理设备及系统 |
CN108171638A (zh) * | 2017-12-20 | 2018-06-15 | 中国电子科技集团公司信息科学研究院 | 一种城市数据治理系统 |
CN108846574A (zh) * | 2018-06-12 | 2018-11-20 | 广州广电研究院有限公司 | 一种三维可视化的智慧园区管理系统及方法 |
CN109085966B (zh) * | 2018-06-15 | 2020-09-08 | 广东康云多维视觉智能科技有限公司 | 一种基于云计算的三维展示系统及方法 |
-
2019
- 2019-04-16 CN CN201910304767.6A patent/CN110232731A/zh active Pending
- 2019-12-20 WO PCT/CN2019/127002 patent/WO2020211430A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170278037A1 (en) * | 2016-03-22 | 2017-09-28 | Hexagon Technology Center Gmbh | Construction management system and method for linking data to a building information model |
CN107771587A (zh) * | 2016-08-28 | 2018-03-09 | 河南农业大学 | 一种基于无线传感网络的温室内温度控制系统 |
CN109246195A (zh) * | 2018-08-13 | 2019-01-18 | 孙琤 | 一种融合增强现实、虚拟现实的管网智能管控方法及系统 |
CN208691293U (zh) * | 2018-08-13 | 2019-04-02 | 孙琤 | 一种物联网实时监测系统 |
CN110232731A (zh) * | 2019-04-16 | 2019-09-13 | 广东康云科技有限公司 | 一种智慧城市系统及其实现方法 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112233228A (zh) * | 2020-10-28 | 2021-01-15 | 五邑大学 | 基于无人机的城市三维重建方法、装置及存储介质 |
CN112233228B (zh) * | 2020-10-28 | 2024-02-20 | 五邑大学 | 基于无人机的城市三维重建方法、装置及存储介质 |
CN114697634A (zh) * | 2020-12-31 | 2022-07-01 | 深圳市奥拓电子股份有限公司 | 一种用于智慧城市的数字沙盘显示方法、装置和系统 |
CN114697634B (zh) * | 2020-12-31 | 2024-07-02 | 深圳市奥拓电子股份有限公司 | 一种用于智慧城市的数字沙盘显示方法和存储介质 |
CN112687174A (zh) * | 2021-01-19 | 2021-04-20 | 上海华野模型有限公司 | 新房沙盘模型图像展示操控装置及图像展示方法 |
CN115174608A (zh) * | 2022-05-25 | 2022-10-11 | 安徽超清科技股份有限公司 | 一种基于物联网的智慧城市安防监控系统 |
CN115689844A (zh) * | 2023-01-04 | 2023-02-03 | 成都中轨轨道设备有限公司 | 一种基于多维引擎的智能数据管理平台、搭建方法及应用 |
CN115689844B (zh) * | 2023-01-04 | 2023-03-28 | 成都中轨轨道设备有限公司 | 一种基于多维引擎的智能数据管理平台、搭建方法 |
CN117593465A (zh) * | 2023-12-13 | 2024-02-23 | 极视创智(深圳)科技有限公司 | 三维可视化实现智慧城市的虚拟显示方法及系统 |
CN117938927A (zh) * | 2024-03-25 | 2024-04-26 | 厦门瑞为信息技术有限公司 | 基于ar辅助的自助登机系统及自助登机方法 |
CN117938927B (zh) * | 2024-03-25 | 2024-06-04 | 厦门瑞为信息技术有限公司 | 基于ar辅助的自助登机系统及自助登机方法 |
CN118196327A (zh) * | 2024-05-13 | 2024-06-14 | 广东科学技术职业学院 | 一种智能绿色建筑施工信息管理方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN110232731A (zh) | 2019-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020211430A1 (zh) | 一种智慧城市系统及其实现方法 | |
CN108965825B (zh) | 基于全息位置地图的视频联动调度方法 | |
CN103795976B (zh) | 一种全时空立体可视化方法 | |
KR101617111B1 (ko) | 무선 통신 디바이스들에 대한 핸즈-프리 증강 현실 | |
WO2020211431A1 (zh) | 应用于园区的资源信息处理管理系统 | |
CN102801963B (zh) | 基于高清数字摄像头监控的电子ptz方法及装置 | |
CN112533002A (zh) | 一种用于vr全景直播的动态图像融合方法及系统 | |
WO2020151432A1 (zh) | 一种智能看房的数据处理方法及系统 | |
CN105611246A (zh) | 一种信息显示方法和视频监控平台 | |
CN205666900U (zh) | 一种基于安卓的便携式智能会议系统 | |
WO2020151425A1 (zh) | 3d实景视觉监控的切换展示方法及系统 | |
WO2020151255A1 (zh) | 一种基于移动终端的展示控制系统及方法 | |
WO2021218547A1 (zh) | 用于在现实场景中叠加直播人物影像的方法和电子设备 | |
CN115346026A (zh) | 基于数字孪生技术的应急处理系统 | |
WO2021102845A1 (zh) | 一种基于自然交互的远程家庭感知与虚拟呈现方法 | |
WO2021103588A1 (zh) | 智能制造系统 | |
CN110992484A (zh) | 一种交通动态视频在真景三维平台中的显示方法 | |
WO2023131111A9 (zh) | 图像处理方法及装置和系统、存储介质 | |
CN115859689B (zh) | 一种全景可视化数字孪生应用的方法 | |
CN111083368A (zh) | 一种基于云端的模拟物理云台全景视频展示系统 | |
CN102547222A (zh) | 视频监控中保护用户隐私的只显示动目标图像技术 | |
CN212032143U (zh) | 一种用于博物馆的智慧文物墙及其展示交互系统 | |
CN105338328A (zh) | 一种基于红外/热敏成像的数字影院智能监播系统 | |
CN112532936A (zh) | 一种热力站智能监控方法、系统、设备及存储介质 | |
CN104935794A (zh) | 一种高清智能报警半球形网络摄像机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19925055 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19925055 Country of ref document: EP Kind code of ref document: A1 |