WO2020211055A1 - 可移动平台的导航方法、设备、计算机可读存储介质 - Google Patents

可移动平台的导航方法、设备、计算机可读存储介质 Download PDF

Info

Publication number
WO2020211055A1
WO2020211055A1 PCT/CN2019/083300 CN2019083300W WO2020211055A1 WO 2020211055 A1 WO2020211055 A1 WO 2020211055A1 CN 2019083300 W CN2019083300 W CN 2019083300W WO 2020211055 A1 WO2020211055 A1 WO 2020211055A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
coordinate
distance information
area
ultrasonic sensor
Prior art date
Application number
PCT/CN2019/083300
Other languages
English (en)
French (fr)
Inventor
刘寒颖
李星河
邱凡
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/083300 priority Critical patent/WO2020211055A1/zh
Priority to CN201980008889.9A priority patent/CN111656137A/zh
Publication of WO2020211055A1 publication Critical patent/WO2020211055A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/539Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Definitions

  • This specification relates to the field of navigation technology, in particular to a navigation method, equipment, and computer-readable storage medium for a mobile platform.
  • the map is an indispensable part of the mobile platform to achieve navigation.
  • Movable platforms include, for example, drones, vehicles, robots, etc., which can use maps to implement path planning, and then move according to the planned path to avoid obstacles. Take the drone as an example.
  • obstacles in the environment, especially in the indoor flying environment, there will be various obstacles such as walls and equipment, so it is necessary to form a map describing the environment and follow the path Planning to avoid obstacles during flight.
  • This manual provides a navigation method, equipment, and computer-readable storage medium for a movable platform, which can solve the navigation problem of the movable platform in the blind zone of sensors such as cameras, lidars and millimeter wave radars.
  • a navigation method for a movable platform is provided.
  • the movable platform is provided with multiple ultrasonic sensors, and the method includes:
  • the detection area description map being related to the scene in the detection area of the plurality of ultrasonic sensors
  • an electronic device includes: a memory and a processor
  • the memory is used to store program code
  • the processor is used to call the program code, and when the program code is executed, it is used to perform the following operations:
  • the detection area description map being related to the scene in the detection area of the plurality of ultrasonic sensors
  • a computer-readable storage medium stores computer instructions.
  • the computer-readable storage medium described in the first aspect of the embodiments of this specification is implemented. Navigation methods for mobile platforms.
  • the detection area description map is determined according to the detection data of each ultrasonic sensor. Since the detection area description map is related to the scene in the detection area of the plurality of ultrasonic sensors, it indicates that the detection area description map can determine the obstacles in the scene, and therefore the detection area description map is used to determine that the movable platform is in the scene It can realize the navigation of the movable platform and avoid obstacles in time during the driving process.
  • the ultrasonic sensor can detect in the range of less than 0.3m, compared with these sensors such as camera, lidar and millimeter wave radar, it can To achieve closer detection, navigate the movable platform in the detection blind zone of these sensors to make up for the deficiencies of these sensors.
  • FIG. 1 is a schematic flowchart of a navigation method for a movable platform according to an embodiment of this specification
  • FIG. 2 is a schematic diagram of the detection area of the ultrasonic sensor according to an embodiment of the present specification
  • FIG. 3 is a schematic diagram of three detection areas in which an unpassable state has been determined according to an embodiment of this specification
  • FIG. 4 is a schematic diagram of a distance field description map according to an embodiment of this specification.
  • Fig. 5 is a structural block diagram of an electronic device according to an embodiment of this specification.
  • first, second, third, etc. may be used in this specification to describe various information, the information should not be limited to these terms. These terms are used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • word “if” used can be interpreted as "when", or "when”, or "in response to certainty.”
  • a navigation method for a movable platform wherein multiple ultrasonic sensors are arranged on the movable platform. Referring to FIG. 1, the method includes the following steps:
  • S200 Generate a detection area description map according to the detection data, where the detection area description map is related to a scene in the detection area of the multiple ultrasonic sensors;
  • S300 Determine a driving route of the movable platform in the scene according to the detection area description map.
  • the execution subject of the navigation method of the movable platform in the embodiment of this specification may be an electronic device, and more specifically may be a processor of the electronic device.
  • the electronic device may be, for example, a movable platform, or a device mounted on the movable platform and communicatively coupled with the movable platform in a wired or wireless manner.
  • the movable platform may be an unmanned aerial vehicle, a vehicle, a robot, etc., and the map obtained by the navigation method of the movable platform according to the embodiment of this specification can realize autonomous navigation functions such as path planning.
  • a plurality of ultrasonic sensors (or can be called ultrasonic probes) are arranged on the movable platform.
  • the number of ultrasonic sensors set on the movable platform can be 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or more.
  • the embodiment of this specification is incorrect.
  • the specific number of ultrasonic sensors is limited.
  • the ultrasonic sensors appear in pairs and are installed symmetrically on the movable platform.
  • each ultrasonic sensor may be arranged around the movable platform, and the transmitting probe of each ultrasonic sensor faces the outside of the movable platform.
  • the detection range of all ultrasonic sensors can cover all or part of the periphery of the movable platform, and some areas include the front, left, right, upper, and lower sides of the movable platform.
  • Each ultrasonic sensor is also electrically connected to the electronic device, and can process the received reflected echo to obtain detection data, and transmit the detection data to the electronic device.
  • multiple ultrasonic sensors are installed on the vehicle to emit ultrasonic waves in a specified direction and detect the surrounding conditions of the vehicle based on the reflected echo.
  • the detection ranges of the two adjacent ultrasonic sensors may partially overlap, or of course, they may not overlap, which may be determined according to the relative positional relationship of the ultrasonic sensors.
  • ultrasonic sensors can send out ultrasonic waves for detection at the same time or in sequence, and determine the corresponding detection data according to the reflected echo.
  • the ultrasonic sensor receives the reflected echo, it means that it has been detected within the effective range of the ultrasonic sensor
  • the detection data calculated according to the ultrasonic flight time can be regarded as the distance of the detected surrounding objects. If the ultrasonic sensor does not receive an echo, it means that the obstacle is not detected within the effective range of the ultrasonic sensor, and the detection data It is the distance when no obstacle is detected (it can be expressed by a value exceeding the range, or by other data).
  • step S100 the detection data of the multiple ultrasonic sensors is acquired.
  • These detection data may be the result of simultaneous detection of multiple ultrasonic sensors during the movement of the movable platform.
  • the detection data of multiple ultrasonic sensors can characterize the surrounding obstacles when the movable platform is in that position.
  • step S200 a detection area description map is generated according to the detection data, and the detection area description map is related to the scene in the detection area of the plurality of ultrasonic sensors.
  • the detection data is the distance when the obstacle is not detected, it means that there is no obstacle in the detection range of the ultrasonic sensor. If the detection data is when the obstacle is detected Distance, it means that there is an obstacle in the detection range of the ultrasonic sensor, and the detection data is the distance between the obstacle and the ultrasonic sensor.
  • the detection data can explain the situation in the scene in the detection area of the ultrasonic sensor, such as whether there is an obstacle, and the distance of the obstacle. Therefore, the detection area description map required for the driving route of the movable platform can be determined according to the detection data, and the detection area description map is related to the scene in the detection area of the plurality of ultrasonic sensors, so that the movable platform can be Avoid obstacles in the scene.
  • the shape of the detection area of the ultrasonic sensor may be as shown in FIG. 2, and the detection area of multiple ultrasonic sensors may be overlapped as shown in FIG. 3, and these two figures will be expanded and described in the following embodiments.
  • the detection area description map can be used to describe which positions in the scene in the detection area of the ultrasonic sensor are passable by the movable platform and which positions are not passable by the movable platform.
  • X2 is not passable by the movable platform
  • the area between X2 and U2 is passable by the movable platform.
  • the detection area description map can be used to describe the distance between each position in the scene in the detection area of the ultrasonic sensor and the obstacle (when there is an obstacle in the detection area), if a certain position is close to the obstacle, it means that The position is not suitable for the passage of the movable platform. If a certain position is far away from the obstacle, the position is suitable for the passage of the movable platform.
  • the detection area description map is divided into grids. The value in the grid describes the distance between the grid and the obstacle. The larger the value, the farther away from the obstacle, and the value is less than When it is equal to a certain value, it means that it is too close to the obstacle and is not suitable for the movement of the movable platform. Because the distance between the grid and the obstacle in the detection area description map is different, the value between the grids shows a certain gradient.
  • step S300 the driving route of the movable platform in the scene is determined according to the detection area description map.
  • the obstacle situation in the scene can be determined according to the detection area description map.
  • the driving route required for the mobile platform to drive in the scene can be determined.
  • the determined driving route can be an optimal route or Two or more alternative routes.
  • the movable platform can drive according to the determined driving route.
  • the passable positions can be used to form a driving route.
  • a map describing the detection area can be used to determine the best route for the movable platform.
  • the detection area description map is used to describe the distance between each position in the scene in the detection area of the ultrasonic sensor and the obstacle.
  • the best path can be determined by the gradient change of the distance between the obstacle and the obstacle described in the detection area state diagram .
  • using the grid above U1 with a value of 255 as the starting point look for the next grid with the smallest difference from 255 and greater than the specified value. For example, the grid above the 255 grid in the figure A grid with a value of 254, and so on, find subsequent grids, and use the found grids to form the best route.
  • multiple ultrasonic sensors are used to detect the situation in the scene where the movable platform is located, and the detection area description map is determined according to the detection data of each ultrasonic sensor, because the detection area description map and the multiple ultrasonic sensors
  • the detection area of the sensor is related to the scene, which means that the detection area description map can determine the obstacles in the scene. Therefore, according to the detection area description map to determine the driving route of the movable platform in the scene, the navigation of the movable platform can be realized. Avoid obstacles in time during driving. Because ultrasonic sensors can detect within a range of less than 0.3m, they can achieve closer detection than sensors such as cameras, lidars, and millimeter-wave radars. The mobile platform is used for navigation in the blind zone to make up for the deficiencies of these sensors.
  • step S200 generating a detection area description map according to the detection data includes the following steps:
  • For each ultrasonic sensor determine the target distance related to the scene in the detection area of the ultrasonic sensor according to the detection data of the ultrasonic sensor;
  • the detection area description map is generated according to the target distance of each ultrasonic sensor.
  • abnormal detection data may appear, and these abnormal detection data are not suitable for determining the detection area status, otherwise it may cause the detection area status error or large deviation, leading to navigation problem.
  • the detection data is processed to obtain the target distance related to the scene in the detection area of the ultrasonic sensor. Then, the detection area description map is generated according to the target distance of each ultrasonic sensor. Since the target distance is more suitable for determining the status of the detection area than the detection data, it can reduce the problem of abnormal detection data causing errors or large deviations in the detection area status.
  • the detection data of ultrasonic sensors is a one-dimensional distance value, and usually two or even three-dimensional data is required to describe the distribution of obstacles in space. Therefore, it is impossible to clearly describe the distribution of obstacles in space by relying solely on target distance.
  • the ultrasonic sensor detects a one-dimensional distance value
  • the actual detection range of the ultrasonic sensor is planar. This manual establishes a two-dimensional planar ultrasonic sensor detection area model for this purpose. Describe the distribution of obstacles in space more clearly.
  • a two-dimensional plane as shown in FIG. 2 is established as the detection area model of the ultrasonic sensor.
  • the detection area of the ultrasonic sensor has a narrow top and wide bottom shape, similar to a "pear shape.”
  • the detection area model is used to describe the detection range of the ultrasonic sensor and the detection area of the map in the detection area.
  • COB is a fan-shaped area with O as the center.
  • the ultrasonic sensor U is approximately simplified as a point.
  • the detection area of U is defined as being surrounded by line segments BA, AU, UD, DC and arc segment CB.
  • the shape of this area is similar to "pear shape” and is part of COB.
  • the maximum range of U is the shortest distance from U to CB.
  • the detection area description map includes a state description map.
  • the generating the detection area description map according to the target distance of each ultrasonic sensor includes the following steps:
  • S220 Determine an unpassable state in the detection area of each ultrasonic sensor in the first map according to the target distance; the unpassable state indicates that the movable platform is unpassable;
  • S230 Determine, according to the target distance, the passable state in each detection area in the first map whose unpassable state has been determined to obtain a state description map; the passable state indicates that the movable platform is passable.
  • the first map may be a map in which the states of all coordinates are unknown, and the detection area of each ultrasonic sensor has been planned in the first map.
  • the shape and size of each detection area can be the same. As long as the coordinates and detection direction of the ultrasonic sensor are determined in the first map, the detection area of the ultrasonic sensor can be determined in it.
  • the shape of the detection area can be shown in Figure 2. Shown.
  • the coordinates and detection direction of the ultrasonic sensor can be determined according to its installation position and orientation on the movable platform.
  • the obstacle situation around the movable platform can be determined according to the target distance, so the passable state and the unpassable state in each detection area in the first map can be determined according to the target distance.
  • the unpassable state means that it is occupied by obstacles, and the movable platform cannot pass through the corresponding area.
  • the passable state indicates that it is not occupied by obstacles, and the movable platform can pass through the corresponding area.
  • the detection range of the ultrasonic sensor may partially overlap, so there will be an intersection area between the detection areas in the first map. If the passable and unpassable states in one detection area are determined first, and then the passable and unpassable states in the next detection area are determined, and so on to determine the states in all detection areas, there will be errors in the intersection area. Status, for example, in the intersection area, there are two areas with an unpassable state, and an area with a passable state is sandwiched between them.
  • the unpassable state of each detection area in the first map is determined first, and after all the unpassable states are determined, the passable state of each detection area in the first map is determined, and the first map after the passable state is determined Describe the map as a state.
  • the passable state is determined, the area in the intersection area that is incorrectly marked as an unpassable state can be found and corrected, thereby avoiding an error state in each intersection area of the first map.
  • step S220 determining the unpassable state in the detection area of each ultrasonic sensor in the first map according to the target distance includes the following steps:
  • S222 If the target distance of the ultrasonic sensor traversed is the distance when the obstacle is detected, determine the sub-area corresponding to the target distance in the detection area of the ultrasonic sensor in the first map, and compare the sub-area in the first map. The status is changed from the identified unknown status to the unpassable status.
  • the traversal can be performed in accordance with the position sequence of the ultrasonic sensor on the movable platform.
  • the position sequence is, for example, a clockwise sequence or a counterclockwise sequence. For example, if the target distance of an ultrasonic sensor is the first traversed target distance, then the next traversed target distance is the target distance of the ultrasonic sensor adjacent to the ultrasonic sensor that has not been traversed.
  • the traversed target distance is the distance when the obstacle is detected. It can be checked by judging whether the target distance exceeds the maximum range of the ultrasonic sensor. If the target distance exceeds the maximum range, it means that there is no distance observation. The target distance is the distance when no obstacle is detected. Otherwise, it means there is a distance observation. The target distance is the distance when an obstacle is detected. For example, if the traversed target distance is 2m and the maximum range is 5m, then the target distance is the distance when the obstacle is detected.
  • step S222 if the traversed target distance is the distance when the obstacle is detected, it indicates that there is an obstacle in the detection range of the ultrasonic sensor, and the shortest distance between the obstacle and the ultrasonic sensor is the target distance.
  • the sub-area corresponding to the target distance in the detection area of the ultrasonic sensor in the first map can be determined.
  • This sub-area is the area where the obstacle is located, and the status of the sub-area in the first map is changed from the identified unknown The status is changed to unpassable status.
  • the sub-area may be an arc area with O as the center in the "pear-shaped" detection area as shown in FIG. 2.
  • the arc in the arc area closest to the coordinate of the ultrasonic sensor and the ultrasonic wave The closest distance of the sensor's coordinates is the target distance.
  • the sub-region can be specifically the region composed of X1, X2, and X3 in FIG. 3.
  • the corresponding relationship between each distance and the sub-region can be established in advance according to the detection area model, and after the target distance is determined, the sub-region corresponding to the target distance can be determined in the corresponding relationship.
  • the detection areas of adjacent ultrasonic sensors in the first map have an intersection area.
  • steps S221 and S222 when the unpassable state is determined, the possibility of an error state in the intersection area is not considered.
  • the following situations may exist as shown in Figure 3: There is an area X3 with an unpassable state and another area X4 with an unpassable state. In this way, there are two areas in the intersection area that are in an unpassable state, and this needs to be corrected.
  • the passable state when the passable state is determined, the error state in this situation can be corrected together.
  • step S230 the determination of the passable state in each detection area in the first map in which the unpassable state has been determined according to the target distance includes the following steps:
  • S232 If the target distance of the ultrasonic sensor traversed is the distance when the obstacle is detected, determine the sub-area corresponding to the target distance in the detection area of the ultrasonic sensor in the first map, and determine the first local area in the sub-area, The first local area is located in the designated intersection area of the detection area, and the passable state of the designated intersection area is determined according to the first local area.
  • step S231 The way of traversing the target distance in step S231 can be the same as or similar to that in step S221, and will not be repeated here. Every time a target distance is traversed, it can be checked whether the traversed target distance is the distance when the obstacle is detected.
  • step S232 if the target distance of the traversed ultrasonic sensor is the distance when the obstacle is detected, determine the sub-area corresponding to the target distance in the detection area of the ultrasonic sensor in the first map, and determine the designated area according to the first local area.
  • the passable state of the intersection area The method for determining the sub-region is the same or similar to that in the foregoing step S222.
  • the first local area in the sub-area is determined, and the first local area is located in the designated intersection area of the detection area.
  • X1, X2, and X3 form a sub-area.
  • X1 is in the intersection area between the detection areas of U1 and U2
  • X2 is in the non-intersection area
  • X3 is in the intersection between the detection areas of U2 and U3.
  • Area (for the detection area of U2, the intersection area is the designated intersection area described in this embodiment)
  • X3 is the first local area of the sub-area, and it is in the designated intersection area with X4.
  • step S232 determining the passable state of the designated intersection area according to the first local area includes the following steps:
  • the first coordinate is the coordinate of the ultrasonic sensor in the first map.
  • step S2321 it is checked whether in the designated intersection area, in addition to the state of the first partial area being the unpassable state, whether there are other areas whose state is the unpassable state, and if so, the area is the target local area. There may be no intersection or partial intersection between the target local area and the first local area, as long as the two are not areas on the same arc-shaped area.
  • the intersection area between the detection area of the ultrasonic sensor U2 and the detection area of the ultrasonic sensor U3 is the designated intersection area, and there are two areas X3 and X4 in the designated intersection area
  • the state of is an unpassable state, where X3 is the first local area, and X4 is the target local area. At this time, it is necessary to correct the unpassable state in the designated intersection area to ensure that only one area is in the unpassable state.
  • step S2322 in the case that there is a target local area in the designated intersection area, compare which of the first local area and the target local area is farther from the first coordinate of the ultrasonic sensor in the first map.
  • the area is the reference position.
  • the first area Z1 is an area on the side of the designated intersection area that is located at the farther local area and is close to the first coordinate.
  • the designated point is, for example, the first local area, the target local The intersection of the area and the same boundary of the specified intersection area.
  • the distance from X3 to the first coordinate of U2 is shorter than the distance from X4 to the first coordinate. Therefore, X4 is used as the reference position to determine the first zone Z1.
  • This Z1 is the designated intersection area located near X4. The area on one side of a coordinate.
  • step S2323 if the target local area does not exist in the designated intersection area, it means that only the first local area in the designated intersection area is in an unpassable state. In this case, the specified intersection area is not modified and corrected. The unpassable status.
  • the second area Z2 is an area located on the side of the first local area close to the first coordinate in the designated intersection area.
  • the first zone Z1 includes an area in an unknown state and an area in an unpassable state, so it is necessary to adjust these states to a passable state.
  • adjusting the state of the first zone Z1 to a passable state includes:
  • step S232 after determining the sub-area corresponding to the target distance in the detection area of the ultrasonic sensor in the first map, the method further includes the following steps:
  • S2324 Determine a second local area in the sub-area, where the second local area is located in a non-intersecting area within the detection area;
  • S2325 Determine the third area Z3 to be adjusted in the non-intersection area by using the second local area as a reference position, and modify the state of the third area Z3 from an unknown state to a passable state.
  • the second local area is an area in the non-intersection area in the sub-area
  • the third area Z3 may be an area in the non-intersection area that is located on a side of the second local area close to the first coordinate.
  • the state in the third zone Z3 has not been modified and is still an unknown state, so the state of the third zone Z3 is modified from the unknown state to the passable state.
  • step S230 determining, according to the target distance, the passable state in each detection area in the first map in which the unpassable state has been determined, further includes:
  • the target distance of the traversed ultrasonic sensor is the distance when no obstacle is detected, it means that there is no obstacle in the detection area of the ultrasonic sensor, and all the states in the detection area should be passable, so the first map The state of the detection area of the ultrasonic sensor is adjusted to a passable state.
  • step S233 adjusting the detection area state of the ultrasonic sensor in the first map to a passable state includes:
  • the coordinates in the detection area can also be traversed. If the state of the traversed coordinate is an unknown state, the unknown state is modified to a passable state, and if the state of the traversed coordinate is an unpassable state, then Modify the unpassable state to passable state.
  • determining the sub-area corresponding to the target distance in the detection area of the ultrasonic sensor in the first map includes:
  • the area located by all the determined coordinates in the detection area in the first map is determined as the sub-area.
  • an arc determined by all the coordinates can be expanded in the width direction to form a sub-region with a width.
  • the width of the sub-region is, for example, 0.02 m, which is not particularly limited.
  • the preset correspondence relationship can be presented in the form of a table, and all the coordinates corresponding to the target distance can be found in the table.
  • the driving route of the movable platform can be determined according to the state description map, for example, the driving route is determined from an area in the state description map that is in a passable state.
  • the detection area description map includes a distance field description map
  • the generating the detection area description map according to the target distance of each ultrasonic sensor includes the following steps:
  • S250 Determine the distance information of the coordinates in each detection area in the second map according to the target distance of each ultrasonic sensor; where the distance information indicates the closest distance between the coordinates and the obstacle, and the closest distance between the coordinates and the designated boundary of the detection area.
  • the distance information indicates the closest distance between the coordinates and the obstacle, and the closest distance between the coordinates and the designated boundary of the detection area.
  • S260 Use the second map with the distance information of the coordinates as the distance field description map.
  • the second map may be a map in which the distance information of all coordinates is a first set value, the first set value represents an unknown distance, and each ultrasonic sensor has been determined in the second map Detection area.
  • the shape and size of each detection area can be the same. As long as the coordinates and detection direction of the ultrasonic sensor are determined in the second map, the detection area of the ultrasonic sensor can be determined in it. The shape of the detection area can be shown in Figure 2. Shown. The coordinates and detection direction of the ultrasonic sensor can be determined according to its installation position and orientation on the movable platform.
  • the distance information indicates the shorter of the closest distance between the coordinates and the obstacle and the closest distance between the coordinates and the designated boundary of the detection area. It can be understood that when there is an obstacle in front of the coordinates of the detection area, the distance information must be the closest distance between the coordinates and the obstacle, and if there is no obstacle in front of the coordinates of the detection area, the distance information must be the coordinates from the specified boundary The closest distance.
  • the target distance is the distance when the obstacle is detected
  • the target distance is the distance between the obstacle in the detection area and the ultrasonic sensor
  • the location or area of the obstacle can be determined according to the target distance. Determining the distance between each coordinate in the detection area and the obstacle can determine the distance information of each coordinate that is less than or equal to the second set value, indicating the closest distance between the coordinate and the obstacle. If the target distance is the distance when the obstacle is not detected, it can be determined that there is no obstacle in the detection area, and the distance information of each coordinate greater than the second set value can be determined, and the distance information indicates the coordinate distance from the detection area The closest distance to the specified boundary. Specify the boundary such as CB as shown in Figure 2.
  • step S260 after the processing of the second map is completed, the obtained map is used as the distance field description map.
  • step S250 determining the distance information of the coordinates in each detection area in the second map according to the target distance of each ultrasonic sensor includes:
  • S252 If the target distance of the traversed ultrasonic sensor is the distance when the obstacle is detected, determine at least one obstacle coordinate corresponding to the target distance in the detection area of the ultrasonic sensor on the second map, and take all obstacle coordinates as The reference position determines the fifth zone Z5 in the detection area where distance information needs to be determined;
  • S253 For each coordinate in the fifth zone Z5, determine the current distance information of the coordinate according to the historical distance information of the coordinate and the position relationship between the coordinate and all obstacle coordinates.
  • the traversal may be performed according to the position sequence of the ultrasonic sensor on the movable platform, for example, the position sequence is a clockwise sequence or a counterclockwise sequence. For example, if the target distance of an ultrasonic sensor is the first traversed target distance, then the next traversed target distance is the target distance of the ultrasonic sensor adjacent to the ultrasonic sensor that has not been traversed.
  • the embodiment of this specification does not limit the specific traversal mode.
  • step S252 every time a target distance is traversed, it can be checked whether the traversed target distance is the distance when the obstacle is detected. It can be checked by judging whether the target distance exceeds the maximum range of the ultrasonic sensor. If the target distance exceeds the maximum range, it means that there is no distance observation. The target distance is the distance when no obstacle is detected. Otherwise, it means there is a distance observation. The target distance is the distance when an obstacle is detected. For example, if the traversed target distance is 2m and the maximum range is 5m, then the target distance is the distance when the obstacle is detected.
  • the target distance of the traversed ultrasonic sensor is the distance when the obstacle is detected, it means that there is an obstacle in the detection range of the ultrasonic sensor, and the distance between the obstacle and the ultrasonic sensor is the target distance.
  • At least one obstacle coordinate corresponding to the target distance is determined in the detection area of the ultrasonic sensor on the second map.
  • the detection area model of the ultrasonic sensor as shown in Figure 2 with U as the starting point, one distance can determine an arc with O as the center. Therefore, the prediction of each distance and all coordinates on the corresponding arc can be established in advance. Set the corresponding relationship.
  • it can be determined from the preset correspondence relationship that all the coordinates corresponding to the target distance are used as obstacle coordinates, and it is determined that all the obstacle coordinates are on an arc with O as the center.
  • the fifth zone Z5 in the detection area where the distance information needs to be determined is determined by taking all the obstacle coordinates as the reference position, and the fifth zone Z5 is located, for example, on the side of the arc close to the coordinates of the ultrasonic sensor.
  • step S253 for each coordinate in the fifth zone Z5, the current distance information of the coordinate is determined according to the historical distance information of the coordinate and the position relationship between the coordinate and all obstacle coordinates.
  • step S253 determining the current distance information of the coordinate according to the historical distance information of the coordinate and the position relationship between the coordinate and all obstacle coordinates includes:
  • S2532 If the historical distance information is greater than the first set value and less than or equal to the second set value, determine the target distance information according to the closest distance between the coordinate and all obstacle coordinates, and select the target distance information and the historical distance information.
  • the optimal distance information S1, and the optimal distance information S1 is determined as the current distance information of the coordinate;
  • the first set value can be, for example, 0.
  • the value here is only an example, and can also be other values, such as 1 or 2, etc.
  • the first set value represents an unknown distance.
  • the coordinates are the location of the obstacle. If the historical distance information in the fifth zone Z5 is equal to the first set value, it means that the distance information of the coordinate has not been modified, and the distance is still unknown.
  • a target distance information can be determined based on the closest distance between the coordinate and all obstacle coordinates.
  • This target distance information can indicate the closest distance between the coordinate and the obstacle, and the closest distance to the target distance The information can be proportional, for example, the closer the closest distance is, the smaller the target distance information can be, and the target distance information is determined as the current distance information of the coordinate.
  • the second setting value can be, for example, 127.
  • the value here is only an example, and it can also be other values, such as 126, 125, 128, etc. If it is less than or equal to 127, it means that the obstacle is too close and the movable platform cannot by.
  • step S2532 if the historical distance information is greater than the first set value and less than or equal to the second set value, the first set value is less than the second set value, indicating that the coordinates in the fifth zone Z5 have been modified Distance information, that is, an obstacle has been detected before, and the obstacle is too close to the movable platform to pass.
  • the optimal distance information S1 and the optimal distance information S1 may be the smaller of the two, and the optimal distance information S1 is determined as the current distance information of the coordinate.
  • step S2533 if the historical distance information is greater than the second set value, it means that this position is passable and there is no obstacle in front of it, and the distance information of the coordinate can be maintained, that is, the historical distance information is determined as the coordinate The current distance information.
  • the coordinate can be determined to be passable; and if the distance information of the coordinate is less than the second set value, the coordinate is considered to be unpassable, and the smaller, Explain that the closer you are to the obstacle, the more unsafe.
  • determining the target distance information less than or equal to the second set value according to the closest distance between the coordinate and all obstacle coordinates includes:
  • the second coordinate is the coordinate of the ultrasonic sensor in the second map
  • the optimal distance information S1 is the smaller distance information in the target distance information and the historical distance information.
  • the first difference is the closest distance from the coordinate to all obstacle coordinates, that is, the first distance information is determined based on the closest distance of the coordinate to the obstacle. The smaller the first difference, the calculated target The smaller the distance information, the closer to the obstacle.
  • the target distance information is used as the optimal distance information S1 to ensure that the distance information of the coordinate reflects the closest distance of the coordinate to the obstacle.
  • determining the distance information of the coordinates in each detection area in the second map according to the target distance of each ultrasonic sensor further includes:
  • S254 If the target distance of the ultrasonic sensor traversed is the distance when the obstacle is not detected, for each coordinate in the detection area of the ultrasonic sensor on the second map, according to the historical distance information of the coordinate, and the coordinate and The positional relationship between the designated boundaries of the detection area determines the current distance information of the coordinate.
  • the distance information of each coordinate in the detection area should be greater than the second set value, indicating the closest distance between the coordinates and the designated boundary of the detection area, indicating that the movable platform can pass.
  • the current distance information of the coordinate is determined according to the historical distance information of the coordinate and the position relationship between the coordinate and the designated boundary of the detection area.
  • step S254 determining the current distance information of the coordinate according to the historical distance information of the coordinate and the position relationship between the coordinate and the designated boundary of the detection area includes:
  • step S2541 if the historical distance information is less than or equal to the second set value, the historical distance information of the coordinate indicates that there is an obstacle ahead or has not been marked, but in fact, no obstacle has been detected at this time, so The distance information of the coordinate needs to be modified, and the target distance information is determined according to the closest distance between the coordinate and the designated boundary of the detection area.
  • the target distance information is greater than the second set value, indicating that the coordinate is in a passable state, indicating the The closest distance between the coordinates and the specified boundary of the detection area.
  • step S2542 if the historical distance information is greater than the second set value, it means that the distance information of the coordinate in the detection area has been modified and is in a passable state. According to the coordinate and the designated boundary of the detection area, the nearest The distance determines the target distance information. The target distance information is greater than the second set value, indicating that the coordinates are passable. The target distance information and the optimal distance information S2 in the historical distance information are selected, and the optimal distance information is selected. The distance information S2 is determined as the current distance information of the coordinate, and it is guaranteed that the distance information of the coordinate characterizes the closest distance of the coordinate from the designated boundary.
  • the designated boundary is the boundary of the maximum range of the ultrasonic sensor that is the closest distance to the second coordinate in the detection area; the second coordinate is the ultrasonic sensor's position in the second map coordinate;
  • Determining target distance information greater than the second set value according to the closest distance between the coordinates and the designated boundary of the detection area includes:
  • the optimal distance information S2 is the smaller distance information in the target distance information and the historical distance information.
  • the maximum range is the shortest distance from the specified boundary to the second coordinate, then the second difference between the maximum range and the calculated distance The closest distance of the coordinate from the specified boundary.
  • the designated boundary of its detection area is the arc CB.
  • the second difference is the closest distance between the coordinate and the coordinates of all points on the specified boundary, that is, the target distance information is based on the closest distance from the coordinate to the specified boundary.
  • the smaller the second difference the calculated The smaller the target distance information, the closer to the designated boundary.
  • the calculated target distance information is still greater than the second set value, indicating that the movable platform can pass.
  • the driving route of the movable platform is determined according to the distance field description map. Since the distance information of the coordinates in the distance field description map represents the distance between the coordinates and the designated boundary or the distance between the coordinates and the obstacle, it can be judged whether it is too close to the obstacle according to the distance information, so that it can determine whether each coordinate is passable. For example, if the distance information is less than or equal to the second set value, it is considered to be too close to the obstacle and impassable; and if the distance information is greater than the second set value, it is considered that it is not too close to the obstacle and still within a safe distance, and it is passable . Therefore, the driving route of the movable platform can be determined according to the distance information of the coordinates in the distance field description map.
  • determining the driving route of the movable platform in the scene according to the detection area description map includes:
  • the search starts from the coordinates of the maximum distance information, and gradually searches for the coordinates with the smaller distance information according to the gradient of the distance information between the coordinates.
  • the distance information of the searched coordinates is greater than the second set value and less than or equal to The coordinates of the second set value are considered unpassable, and all the target coordinates found can form the driving route of the movable platform.
  • the way of determining the driving route is not limited to this.
  • the distance field description map is divided into many grids (each grid serves as a coordinate in the map), and the distance information range of the grid can be 0-255. It can be understood that 0-255 is just an example.
  • An 8-bit binary number is used to represent the distance from the grid to the obstacle. Of course, it can also be represented by more digits, such as 9 digits, and the corresponding distance information is 0-511.
  • the second set value is related to the maximum range of the ultrasonic sensor at this time, and the distance indicated by the second set value may be the maximum range. Half of it. For example, when the maximum range is 5m, then the second set value represents 2.5m. In the case that the distance information range of the grid is 0-255, the second set value can be 127. If the distance information is less than or equal to the second set value, it means that the shortest distance is less than or equal to 2.5m, which is not a safe distance and cannot be passed; if the distance information is greater than the second set value, the shortest distance is greater than 2.5m and it is considered to be at a safe distance before passing.
  • the second setting value in this embodiment may not represent half of the maximum range, but represents one-third, two-thirds, etc., of the maximum range, etc., depending on actual needs, and is used to indicate the safety distance.
  • the threshold may not represent half of the maximum range, but represents one-third, two-thirds, etc., of the maximum range, etc., depending on actual needs, and is used to indicate the safety distance.
  • a plurality of ultrasonic sensors are arranged around the movable platform C1.
  • Fig. 4 schematically shows four ultrasonic sensors U1-U4 arranged in the front, rear, left, and right directions of the platform.
  • the detection data of sensors U1-U4 get the distance field description map, and the value in the grid is the distance information.
  • the distance information of the grids closer to the obstacles Barrier1 and Barrier2 is less than 127, indicating that the movable platform C1 cannot pass; and the closer to the obstacles Barrier1 and Barrier2, the smaller the distance information.
  • the distance information is greater than 127, indicating that the movable platform C1 can pass through.
  • a driving route can be determined from the grid where the distance information is located to realize navigation, while avoiding obstacles Barrier1 and Barrier2 in time. For example, first find a grid with distance information of 255 as the target grid, such as the grid where 255 is located at the upper left of U1, then find the target grid with distance information of 254, and then find the target grid with distance information of 253 , And so on, use the found grid to determine the driving route of the movable platform.
  • the size and density of the grid are related to the distance division accuracy of the ultrasonic sensor. For example, when the maximum range is 5 meters and the distance division accuracy is high, there are many, small and dense grids, which are not limited to Figure 4 The example shown in.
  • determining the target distance related to the scene in the detection area of the ultrasonic sensor according to the detection data of the ultrasonic sensor includes the following steps:
  • S201 Acquire M historical detection data detected by the ultrasonic sensor before the detection data, and M is greater than or equal to 1.
  • S202 Calculate the median value of the detection data and the M historical detection data
  • the detection data obtained by the ultrasonic sensor has flicker characteristics, that is, abnormal data will appear in the detection data, but generally speaking, the possibility of continuous occurrence of abnormal data is small. Therefore, in this embodiment, the current detection data is combined with M historical detections. The median value of the data is used as the target distance to determine the state of the detection area, which can effectively remove the abnormal data that occurs during the use of the ultrasonic sensor.
  • M is equal to 4 or greater than 4.
  • determining the target distance related to the scene in the detection area of the ultrasonic sensor according to the detection data of the ultrasonic sensor includes:
  • S204 Acquire M historical detection data detected by the ultrasonic sensor before the detection data, and M is greater than or equal to 1.
  • S205 Calculate the median value of the detection data and the M historical detection data
  • the calculated median value is further subjected to smoothing filtering processing, and the smoothing filtering processing result is determined as the The target distance. This can make the final target distance more stable and further reduce fluctuations.
  • step S206 performing smoothing filtering processing on the median value includes:
  • S2061 Acquire N historical median values of the ultrasonic sensor determined before the median value, where N is greater than or equal to 1;
  • S2062 Calculate the average value of the median value and the N historical median values
  • step S207 determining the smoothing filter processing result as the target distance includes:
  • the average value is determined as the target distance.
  • N may be equal to 6, or greater than 6, of course, the embodiment of this specification does not limit N. The same is true for M.
  • Step A101 Obtain M historical detection data detected by the ultrasonic sensor before the current detection data, and calculate the median value of the current detection data and the M historical detection data;
  • Step A102 if the median value is the distance when the obstacle is detected, obtain the N historical median values of the ultrasonic sensor determined before the median value, and calculate the mean value of the median value and the N historical median values, The average value is used as the target distance; if the median value is the distance when no obstacle is detected, the median value is used as the target distance.
  • a detection area description map can be generated according to the target distance of each ultrasonic sensor, and the detection area state of each ultrasonic sensor is determined in the detection area description map.
  • the detection area description map includes a state description map and/or a distance field description map.
  • the state description map describes the three discrete states of the detection area, which are the unpassable state indicating that it is occupied by obstacles, the passable state indicating that the obstacle is not occupied, and the unknown state.
  • Three discrete values can be used to represent the three states, such as , 0 represents an unknown state, 127 represents a passable state, and 255 represents an unpassable state.
  • the distance field description map can use continuous distance information to characterize the shortest distance between the coordinates and the obstacle, or the shortest distance between the coordinates and the designated boundary of the detection area. For example, if the distance information is less than or equal to the second set value, it indicates the state of impossibility, and the smaller the value is, the closer the distance to the obstacle is, the greater the probability of impossibility; the distance information is greater than the second set value, which indicates the pass Status, and the larger the value, the farther the distance from the obstacle or the specified boundary, the greater the probability of passing.
  • an ultrasonic coordinate system can be established first, in which the detection area of each ultrasonic sensor is determined, and the corresponding ultrasonic sensor is used as the starting point in the ultrasonic coordinate system. Detect the coordinates corresponding to each detection data (such as the detection data 0.2-4m from the starting point, the resolution can be 0.01m) in the detection area, and record the detection data and the corresponding coordinates in the distance coordinate table.
  • the detection area can be in a "pear shape" as shown in FIG. 2, and one detection data can correspond to multiple coordinates, and the coordinates corresponding to the same detection data form an arc area with O as the center.
  • Step A103 Create a first map and initialize the coordinate state in the first map.
  • the initializing the coordinate state in the first map includes setting the coordinate state in the first map to an unknown state.
  • Setting the coordinate state in the first map to the unknown state includes using 0 to represent the state information in the map.
  • Step A111 traverse the target distance of each ultrasonic sensor; multiple ultrasonic sensors can be arranged around the vehicle, and the target distance of each ultrasonic sensor can be traversed in a clockwise or counterclockwise order according to the position of each ultrasonic sensor on the vehicle.
  • Step A112 if the target distance of the traversed ultrasonic sensor is the distance when the obstacle is detected, determine the sub-area corresponding to the target distance in the detection area of the ultrasonic sensor in the first map, and the target can be determined in the distance coordinate table All the coordinates corresponding to the distance are used to locate the sub-area in the detection area.
  • the sub-area is an arc area and the thickness can be 0.02m (the target distance is represented by dist, and the distance from the starting point in the detection area is dist ⁇ dist+0.02m
  • the area within the range is a sub-area), and the state of the sub-area in the first map is changed from the identified unknown state to the unpassable state.
  • Step A113 If the target distance of the traversed ultrasonic sensor is the distance when no obstacle is detected, then no processing is performed on the detection area of the ultrasonic sensor.
  • the passable state of the detection area of each ultrasonic sensor in the first map with the unpassable state identified is determined.
  • the detection areas of two adjacent ultrasonic sensors in the first map have an intersection area.
  • Step A114 traverse the target distance of each ultrasonic sensor.
  • Step A115 if the target distance of the traversed ultrasonic sensor is the distance when the obstacle is detected, determine the sub-area corresponding to the target distance in the detection area of the ultrasonic sensor in the first map, and the method of determining the sub-area can be the same as the aforementioned method Similarly, the first local area and the second local area in the sub-area are determined, the first local area is located in the designated intersection area of the detection area, and the second local area is located in the non-intersection area of the detection area.
  • a local area is X3 in Fig. 3, and the second local area is X2 in Fig. 3.
  • X1-X3 form a sub-area; the designated intersection area can be the intersection area between the current detection area and the next detection area.
  • the first local area For the first local area, check whether there is a target local area outside the first local area whose state is not passable in the designated intersection area; if so, as shown in Figure 3, there is a target local area X4 in the designated intersection area, compare The distance from the first local area to the first coordinate, and the distance from the target local area to the first coordinate, where the first coordinate is the coordinate of the ultrasonic sensor in the first map, such as the coordinate of U2 in Fig.
  • the distance between X3 and the first coordinate of the ultrasonic sensor U2 is shorter than the distance between X4 and the first coordinate. Therefore, the first zone Z1 is determined with X4 as the reference position, which is the designated intersection area located close to X4 The area on one side of the first coordinate.
  • Adjusting the state of the first zone Z1 to the passable state includes: changing the state of the local area with a closer comparison result in the first zone Z1 from the unpassable state to the passable state, and dividing the first zone Z1 The status of the other areas other than the local area with the closer result is changed from the unknown state to the passable state.
  • the second local area is used as the reference position to determine the third area Z3 to be adjusted in the non-intersection area, and the state of the third area Z3 is changed from the unknown state to the passable state.
  • the third zone Z3 is the non-intersecting area of the detection zone located on the side of the second local zone X2 close to the first coordinate U2. Since it is all unknown, the state of each coordinate in Z3 is changed from Unknown status is changed to passable status.
  • Step A116 If the target distance of the traversed ultrasonic sensor is the distance when no obstacle is detected, adjust the detection area state of the ultrasonic sensor in the first map to a passable state.
  • the detection area state of the ultrasonic sensor in the first map is adjusted to the passable state, including: checking the detection Whether there is a fourth zone Z4 marked as an unpassable state in the zone; if it is, the state of the fourth zone Z4 in the detection zone is changed from an unpassable state to a passable state, and the detection zone is outside the fourth zone Z4 Change the state of the area from the unknown state to the passable state; if not, change the state of the detection area from the unknown state to the passable state.
  • the first map in which the passable state is determined is determined as the state description map, and the next driving route for the vehicle can be determined based on the state description map.
  • Step A120 Create a second map and initialize the distance information of the coordinates in the second map.
  • the initializing the distance information in the second map includes setting the coordinate distance information in the second map as a first set value.
  • Setting the coordinate distance information in the second map to the first set value includes using 0 to represent the distance information of the coordinates in the map.
  • Step A121 Traverse the target distance of each ultrasonic sensor
  • Step A122 If the target distance of the traversed ultrasonic sensor is the distance when the obstacle is detected, determine at least one obstacle coordinate corresponding to the target distance in the detection area of the ultrasonic sensor on the second map, and use all obstacle coordinates For the reference position to determine the fifth zone Z5 in the detection area where distance information representing the state needs to be determined, for each coordinate in the fifth zone Z5, the historical distance information of the coordinate and the distance between the coordinate and all obstacle coordinates The position relationship determines the current distance information of the coordinate.
  • the coordinates corresponding to the target distance can be found in the distance coordinate table, and all the coordinates found are determined as obstacle coordinates.
  • the coordinates of all the obstacles found are arcs in the detection area.
  • the fifth zone Z5 is the area on the side of the arc that is close to the second coordinate in the detection area.
  • the second coordinate is the ultrasonic sensor in the second map. coordinate.
  • the second map describes the state through distance information. For each coordinate in the fifth zone Z5, the current distance information needs to be determined. According to the historical distance information of the coordinate and the positional relationship between the coordinate and all obstacle coordinates, the current distance information of the coordinate is determined, including the following three situations:
  • Case 1 If the historical distance information is equal to the first set value representing the unknown distance, the target distance information is determined according to the closest distance between the coordinate and all obstacle coordinates, and the target distance information is determined as the current distance information of the coordinate .
  • the first set value represents the unknown distance, and the first set value is, for example, zero.
  • the target distance is represented by dist, and the target distance information can be calculated by the following formula: 127*(dist-d1)/4.
  • the first difference (dist-d1) is the shortest distance in the distance between the coordinate and each obstacle coordinate, that is, the target distance information is determined based on the shortest distance from the coordinate to the obstacle.
  • the smaller the nearest distance, the first difference The smaller the value, the smaller the first distance information.
  • the calculated target distance information is greater than 127, it means that it is at a safe distance and the movable platform can pass, and if the calculated target distance information is less than or equal to 127, it means that it is not at a safe distance and the movable platform cannot pass.
  • Case 2 If the historical distance information is greater than the first set value and less than or equal to the second set value, the target distance information is determined according to the closest distance between the coordinate and all obstacle coordinates, and the target distance information and the historical distance information are selected And determine the optimal distance information S1 as the current distance information of the coordinate.
  • the calculation formula of the target distance information can also adopt the formula: 127*(dist-d1)/4.
  • the optimal distance information S1 may be the smaller value of the target distance information and the historical distance information, that is, the distance information determined according to the closest distance to the obstacle is recorded on the coordinates.
  • the historical distance information is greater than the second set value, indicating that the movable platform is passable, and maintaining the distance information of the coordinates as the historical distance information indicates that the movable platform is still passable.
  • Step A123 If the target distance of the ultrasonic sensor traversed is the distance when no obstacle is detected, for each coordinate in the detection area of the ultrasonic sensor on the second map, the historical distance information of the coordinate and the coordinate The positional relationship with the designated boundary of the detection area determines the current distance information of the coordinate.
  • the closest distance from the designated boundary to the second coordinate is the maximum range of the ultrasonic sensor, which is the boundary that can be detected by the maximum range of the ultrasonic sensor in the detection area.
  • the second map describes the status through distance information.
  • the current distance information to be identified needs to be determined.
  • the current distance information of the coordinate is determined according to the historical distance information of the coordinate and the position relationship between the coordinate and the designated boundary of the detection area, including the following two cases:
  • Case 1 If the historical distance information is less than or equal to the second set value, the target distance information is determined according to the closest distance between the coordinate and the designated boundary of the detection area, and the target distance information is determined as the current distance information of the coordinate.
  • the maximum range is represented by dmax
  • the second distance information can be calculated by the following formula: 128+127*(dmax-d)/4.
  • the second difference (dmax-d) is the closest distance from the coordinate to the specified boundary.
  • the calculated target distance information must be greater than the second set value, indicating that the movable platform can pass.
  • Case 2 If the historical distance information is greater than the second set value, the target distance information is determined according to the closest distance between the coordinate and the designated boundary of the detection area, and the optimal distance information in the target distance information and the historical distance information is selected S2, and determine the optimal distance information S2 as the current distance information of the coordinate.
  • the calculation formula of the target distance information can also adopt the formula: 128+127*(dmax–d)/4.
  • the optimal distance information S2 may be the smaller distance information in the target distance information and the historical distance information, that is, the distance information determined according to the closest distance to the designated boundary is recorded on the coordinates.
  • the processed second map is determined as the distance field description map, and the next driving route for the vehicle can be determined based on the distance field description map.
  • the state description map and the distance field description map can be combined to determine the next driving route for the vehicle.
  • this specification also provides an electronic device 100, including: a memory 101 and a processor 102 (such as one or more processors).
  • the memory is used to store program code
  • the processor is used to call the program code, and when the program code is executed, it is used to execute the navigation method of the movable platform described in the foregoing embodiment.
  • the embodiments of this specification also provide a computer-readable storage medium.
  • the computer-readable storage medium stores computer instructions. When the computer instructions are executed, the computer-readable The navigation method of the movable platform described.
  • a typical implementation device is a computer.
  • the specific form of the computer can be a personal computer, a laptop computer, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email receiving and sending device, and a game control A console, a tablet computer, a wearable device, or a combination of any of these devices.
  • these computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device,
  • the instruction device realizes the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded into a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, thereby executing instructions on the computer or other programmable equipment Provides steps for realizing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Acoustics & Sound (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Navigation (AREA)

Abstract

一种可移动平台的导航方法、设备、计算机可读存储介质,所述可移动平台上设有多个超声波传感器,该方法包括:获取所述多个超声波传感器的探测数据(S100);依据所述探测数据生成探测区域描述地图,所述探测区域描述地图与所述多个超声波传感器的探测区域内的场景相关(S200);依据所述探测区域描述地图确定所述可移动平台在所述场景中的行驶路线(S300)。可解决可移动平台在相机、激光雷达和毫米波雷达等传感器盲区内的导航问题。

Description

可移动平台的导航方法、设备、计算机可读存储介质 技术领域
本说明书涉及导航技术领域,尤其是涉及一种可移动平台的导航方法、设备、计算机可读存储介质。
背景技术
地图是可移动平台实现导航所不可缺少的部分。可移动平台例如包括无人机、车辆、机器人等,可利用地图实现路径规划,进而按照规划的路径移动,避开障碍物。以无人机为例,在飞行过程中,环境中会存在障碍物,尤其是在室内飞行的环境中,会存在墙壁、设备等各种障碍物,因而需要形成一个描述环境的地图,进行路径规划,以在飞行时实现避障。
传感器如相机、激光雷达和毫米波雷达在导航中发挥了重要作用。然而,这些传感器由于安装位置及本身特性限制,存在范围较大的检测盲区,无法保证距可移动平台较近范围内的检测性能,因而如何实现可移动平台在这些传感器盲区内的导航仍是需要解决的技术问题。
发明内容
本说明书提供一种可移动平台的导航方法、设备、计算机可读存储介质,可解决可移动平台在相机、激光雷达和毫米波雷达等传感器盲区内的导航问题。
本说明书实施例第一方面,提供一种可移动平台的导航方法,所述可移动平台上设有多个超声波传感器,该方法包括:
获取所述多个超声波传感器的探测数据;
依据所述探测数据生成探测区域描述地图,所述探测区域描述地图与所述多个超声波传感器的探测区域内的场景相关;
依据所述探测区域描述地图确定所述可移动平台在所述场景中的行驶路线。
本说明书实施例第二方面,一种电子设备,包括:存储器和处理器;
所述存储器,用于存储程序代码;
所述处理器,用于调用所述程序代码,当程序代码被执行时,用于执行以下操作:
获取多个超声波传感器的探测数据;所述多个超声波传感器设置于可移动平台上;
依据所述探测数据生成探测区域描述地图,所述探测区域描述地图与所述多个超声波传感器的探测区域内的场景相关;
依据所述探测区域描述地图确定所述可移动平台在所述场景中的行驶路线。
本说明书实施例第三方面,提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机指令,所述计算机指令被执行时,实现本说明书实施例第一方面所述的可移动平台的导航方法。
基于上述技术方案,本说明书实施例的可移动平台的导航方法中,采用多个超声波传感器来探测可移动平台所处的场景中的情况,依据各个超声波传感器的探测数据来确定探测区域描述地图,由于该探测区域描述地图与所述多个超声波传感器的探测区域内的场景相关,说明该探测区域描述地图可确定场景中的障碍物情况,因而依据探测区域描述地图来确定可移动平台在场景中的行驶路线,实现可移动平台的导航,可在行驶过程中及时避障,由于超声波传感器可在小于0.3m范围内进行探测,相比相机、激光雷达和毫米波雷达等这些传感器来说,可实现更近距离的探测,在这些传感器的检测盲区内为可移动平台进行导航,弥补这些传感器的不足。
附图说明
为了更加清楚地说明本说明书实施例中的技术方案,下面将对本说明书 实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本说明书中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据本说明书实施例的这些附图获得其它的附图。
图1是本说明书一实施例的可移动平台的导航方法的流程示意图;
图2是本说明书一实施例的超声波传感器的探测区域的示意图;
图3是本说明书一实施例的已确定了不可通过状态的三个探测区域的示意图;
图4是本说明书一实施例的距离场描述地图的示意图;
图5是本说明书一实施例的电子设备的结构框图。
具体实施方式
下面将结合本说明书实施例中的附图,对本说明书实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本说明书一部分实施例,而不是全部的实施例。基于本说明书中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本说明书保护的范围。另外,在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本说明书使用的术语仅仅是出于描述特定实施例的目的,而非限制本说明书。本说明书和权利要求书所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其它含义。应当理解的是,本文中使用的术语“和/或”是指包含一个或多个相关联的列出项目的任何或所有可能组合。
尽管在本说明书可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语用来将同一类型的信息彼此区分开。例如,在不脱离本说明书范围的情况下,第一信息也可以被称为第二信息, 类似地,第二信息也可以被称为第一信息。取决于语境,此外,所使用的词语“如果”可以被解释成为“在……时”,或者,“当……时”,或者,“响应于确定”。
下面对本说明书实施例的可移动平台的导航方法进行更具体的描述,但不应以此为限。
一种可移动平台的导航方法,所述可移动平台上设有多个超声波传感器,参看图1,该方法包括以下步骤:
S100:获取所述多个超声波传感器的探测数据;
S200:依据所述探测数据生成探测区域描述地图,所述探测区域描述地图与所述多个超声波传感器的探测区域内的场景相关;
S300:依据所述探测区域描述地图确定所述可移动平台在所述场景中的行驶路线。
本说明书实施例的可移动平台的导航方法的执行主体可以为电子设备,更具体可以是电子设备的处理器。该电子设备例如可以是可移动平台,或者是搭载于可移动平台并与可移动平台通过有线或者无线方式通信耦合的设备。
可移动平台可以是无人机、车辆、机器人等,利用本说明书实施例的可移动平台的导航方法所得的地图,可实现路径规划等自主导航功能。
多个超声波传感器(或者可以称为超声波探测器)设置在可移动平台上。可移动平台上设置的超声波传感器的数量可以是4个、5个、6个、7个、8个、9个、10个、11个、12个、13个或者更多,本说明书实施例不对超声波传感器的具体数量进行限制。作为可选的实施例,超声波传感器成对出现,对称地安装于所述可移动平台。
比如,各超声波传感器可环绕所述可移动平台设置,并且各超声波传感器的发射探头朝向可移动平台的外侧。所有超声波传感器的探测范围可覆盖可移动平台的周边的全部或者部分区域,部分区域包括可移动平台的前方, 左侧,右侧,上方,下方等。
各个超声波传感器还与电子设备电连接,可将收到的反射回波进行处理得到探测数据,并将探测数据传输给电子设备。
以可移动平台为车辆为例,多个超声波传感器设置在车辆上,用于向指定方向发射超声波,并根据反射回波探测车辆四周的情况。这多个超声波传感器中,相邻的两个超声波传感器的探测范围可以有部分重叠,当然也可以不重叠,具体可根据超声波传感器的相对位置关系而定。
多个超声波传感器可同时或者按照顺序发出探测用的超声波,并根据反射回波情况确定相应的探测数据,一般来说,如果超声波传感器收到反射回波,说明已经在超声波传感器的有效量程内探测到了障碍物,则根据超声波飞行时间计算得到的探测数据可以被认为是探测到的周围物体距离,如果超声波传感器未收到回波,说明在超声波传感器的有效量程内未探测到障碍物,探测数据是未探测到障碍物时的距离(可以用一个超过量程的数值来表示,也可以用其他数据表示)。
步骤S100中,获取所述多个超声波传感器的探测数据。
这些探测数据可以是可移动平台在移动过程中,多个超声波传感器同步探测所得的结果。可移动平台移动到某个位置时,多个超声波传感器的探测数据可以表征可移动平台在处于该位置时四周的障碍物情况。
步骤S200中,依据所述探测数据生成探测区域描述地图,所述探测区域描述地图与所述多个超声波传感器的探测区域内的场景相关。
针对获取的每个超声波传感器的探测数据,如果该探测数据是未探测到障碍物时的距离,那么说明该超声波传感器的探测范围内不存在障碍物,如果该探测数据是探测到障碍物时的距离,那么说明该超声波传感器的探测范围内存在障碍物,并且该探测数据为障碍物与该超声波传感器之间的距离。
换言之,探测数据可以说明超声波传感器的探测区域内的场景中的情况,比如是否存在障碍物、以及障碍物的距离等。因而,可根据探测数据来确定可移动平台的行驶路线所需的探测区域描述地图,探测区域描述地图与所述 多个超声波传感器的探测区域内的场景相关,以使得可移动平台在行驶时可以避开场景中的障碍物。
超声波传感器的探测区域的形状可以如图2所示,多个超声波传感器的探测区域发生重叠的情况可以如图3所示,在后面的实施例中将对这两个图进行展开说明。
比如,探测区域描述地图可以用于描述超声波传感器的探测区域内的场景中哪些位置是可移动平台可通过的,哪些位置是可移动平台不可通过的。示例性的,如图3所示,X2是可移动平台不可通过的,而X2到U2之间的区域是可移动平台可通过的。
又如,探测区域描述地图可以用于描述超声波传感器的探测区域内的场景中各个位置与障碍物之间的距离(探测区域存在障碍物的情况下),如果某个位置靠近障碍物,说明该位置不适于可移动平台通行,如果某个位置远离障碍物,说明该位置适于可移动平台通行。示例性的,如图4所示,探测区域描述地图被划分成了网格,网格中的数值描述了该网格与障碍物的距离情况,数值越大则离障碍物越远,数值小于等于某个值时,说明离障碍物过近,不适于可移动平台通行,因探测区域描述地图中网格与障碍物距离远近不同,所以网格间的数值呈现一定的梯度变化。
步骤S300中,依据所述探测区域描述地图确定所述可移动平台在所述场景中的行驶路线。
得到探测区域描述地图之后,依据探测区域描述地图可以确定场景中障碍物情况,据此可以为可移动平台确定在场景中行驶所需的行驶路线,确定出的行驶路线可以为一条最佳路线或两条以上可供选择的路线。可移动平台可按照确定出的行驶路线行驶。
如果探测区域描述地图描述了场景中哪些位置是可移动平台可通过的,哪些位置是可移动平台不可通过的,那么可以利用可通过的位置组成行驶路线。
在一个可选的实施例中,利用探测区域描述地图可确定可移动平台的最 佳路线。探测区域描述地图用于描述超声波传感器的探测区域内的场景中各个位置与障碍物之间的距离,最佳路径可以通过探测区域状态图中描述的与障碍物之间的距离的梯度变化情况确定。如图4,以U1上方的数值为255的其中网格为起点,寻找下一个与255差值最小且差值大于指定值的数值所在网格,比如图中该数值为255的网格上方的数值为254的网格,依此类推找后续的网格,利用找出的网格组成最佳路线。
本说明书实施例中,采用多个超声波传感器来探测可移动平台所处的场景中的情况,依据各个超声波传感器的探测数据来确定探测区域描述地图,由于该探测区域描述地图与所述多个超声波传感器的探测区域内的场景相关,说明该探测区域描述地图可确定场景中的障碍物情况,因而依据探测区域描述地图来确定可移动平台在场景中的行驶路线,实现可移动平台的导航,可在行驶过程中及时避障,由于超声波传感器可在小于0.3m范围内进行探测,相比相机、激光雷达和毫米波雷达等这些传感器来说,可实现更近距离的探测,在这些传感器的检测盲区内为可移动平台进行导航,弥补这些传感器的不足。
在一个实施例中,步骤S200中,依据所述探测数据生成探测区域描述地图,包括以下步骤:
针对每个超声波传感器,依据该超声波传感器的探测数据确定与该超声波传感器的探测区域内的场景相关的目标距离;
根据各个超声波传感器的目标距离生成所述探测区域描述地图。
由于超声波传感器在使用过程中会存在闪烁特性,即可能会出现异常的探测数据,而这些异常探测数据并不适用于确定探测区域状态,否则可能导致探测区域状态错误或偏差较大,导致导航出现问题。
因而,针对每个超声波传感器,对其探测数据进行处理后得到与该超声波传感器的探测区域内的场景相关的目标距离。再依据各个超声波传感器的目标距离生成探测区域描述地图。由于目标距离相比探测数据更适用于确定探测区域状态,可减少异常探测数据导致探测区域状态错误或偏差较大的问 题。
超声波传感器的探测数据是一维距离值,而通常需要二维甚至三维数据才可描述清楚空间中的障碍物分布情况,因此,单纯依靠目标距离还无法清楚地描述空间中障碍物分布情况。而事实上,虽然超声波传感器探测到的是一维距离值,但是,超声波传感器理实际的探测范围是呈面状的,本说明书为此建立了一个二维平面的超声波传感器的探测区域模型,以更清楚地描述空间中障碍物分布情况。
在一个可选的实施例中,建立如图2所示的二维平面作为超声波传感器的探测区域模型。该超声波传感器的探测区域,具有上窄下宽的形状,类似于“梨形”。该探测区域模型用于描述超声波传感器的探测范围、及在探测区域描述地图的探测区域。在图2中,COB为一个以O为圆心的扇形区域,超声波传感器U在其中近似简化为一个点,定义U的探测区域为依次由线段BA、AU、UD、DC以及弧线段CB围成的区域,该区域的形状类似于“梨形”且为COB的一部分,U的最大量程为U到CB的最近距离。
在一个实施例中,所述探测区域描述地图包括状态描述地图。
所述根据各个超声波传感器的目标距离生成所述探测区域描述地图,包括以下步骤:
S210:构建待处理的第一地图;
S220:根据所述目标距离确定第一地图中各超声波传感器的探测区域内的不可通过状态;所述不可通过状态指示了所述可移动平台不可通过;
S230:根据所述目标距离确定已确定不可通过状态的第一地图中各探测区域内的可通过状态,得到状态描述地图;所述可通过状态指示了所述可移动平台可通过。
步骤S210中,该第一地图可以一张所有坐标的状态均为未知状态的地图,并且该第一地图中已经规划好了每个超声波传感器的探测区域。每个探测区域的形状和大小可以是相同的,只要在第一地图中确定好了超声波传感器的坐标及探测方向,即可在其中确定该超声波传感器的探测区域,探测区域的 形状可以如图2所示。超声波传感器的坐标及探测方向可根据其在可移动平台上的安装位置及朝向而定。
根据目标距离可以确定可移动平台周边的障碍物情况,因而可以根据目标距离来确定第一地图中各探测区域内的可通过状态和不可通过状态。不可通过状态表示被障碍物占用,可移动平台无法在相应区域通行。可通过状态表示未被障碍物占用,可移动平台可在相应区域通行。
在一些情况下,超声波传感器的探测范围会存在部分重叠,因而第一地图中的探测区域之间也相应会存在交集区域。如果先确定一个探测区域内的可通过状态和不可通过状态,再确定下一个探测区域内的可通过状态和不可通过状态,以此类推来确定所有探测区域内的状态,交集区域会存在错误的状态,比如交集区域中出现两块状态为不可通过状态的区域,中间夹着状态为可通过状态的区域的情况。
本实施例中,先确定第一地图中各探测区域的不可通过状态,不可通过状态全部确定之后,再确定第一地图中各探测区域的可通过状态,确定了可通过状态后的第一地图作为状态描述地图。由于在确定可通过状态时,可发现交集区域中被错误标记为不可通过状态的区域并对其进行纠正,从而避免第一地图的各交集区域中出现错误的状态。
当然,在超声波传感器的探测范围不存在重叠的情况下,也可以确定完一个探测区域的不可通过状态和可通过状态之后,再确定下一个探测区域的不可通过状态和可通过状态。
在一个实施例中,步骤S220中,根据所述目标距离确定第一地图中各超声波传感器的探测区域内的不可通过状态,包括以下步骤:
S221:遍历各个超声波传感器的目标距离;
S222:如果遍历到的超声波传感器的目标距离为探测到障碍物时的距离,确定第一地图中该超声波传感器的探测区域内与目标距离对应的子区域,并将第一地图中该子区域的状态从已标识的未知状态修改为不可通过状态。
步骤S221中,可以按照超声波传感器在可移动平台上的位置顺序进行遍 历,位置顺序比如是顺时针顺序或者逆时针顺序。比如,如果某个超声波传感器的目标距离为首个遍历到的目标距离,那么下一个遍历到的目标距离为未遍历过的与该超声波传感器相邻的超声波传感器的目标距离。
每遍历到一个目标距离,可以检查遍历到的目标距离是否为探测到障碍物时的距离。可以通过判断目标距离是否超出该超声波传感器的最大量程来检查,如果目标距离超出最大量程,说明不存在距离观测,该目标距离为未探测到障碍物时的距离,否则,说明存在距离观测,该目标距离为探测到障碍物时的距离。比如,遍历到的目标距离为2m,而最大量程为5m,那么该目标距离为探测到障碍物时的距离。
步骤S222中,如果遍历到的目标距离为探测到障碍物时的距离,说明在该超声波传感器的探测范围内存在障碍物,并且该障碍物距该超声波传感器的最近距离为该目标距离。
此时,可以确定第一地图中该超声波传感器的探测区域内与目标距离对应的子区域,该子区域即为障碍物所在的区域,将第一地图中该子区域的状态从已标识的未知状态修改为不可通过状态。
示例性的,该子区域可以是如图2所示的“梨形”探测区域内的一条以O为圆心的弧线区域,该弧线区域上最靠近超声波传感器的坐标的弧线与该超声波传感器的坐标的最近距离为目标距离。子区域具体可如图3中的X1、X2、X3组成的区域。
可以根据探测区域模型预先建立好各个距离与子区域的对应关系,确定出目标距离后,可在对应关系中确定目标距离对应的子区域。
在一个实施例中,所述第一地图中相邻超声波传感器的探测区域存在交集区域。
步骤S221、S222中,确定不可通过状态的时候,并未考虑到交集区域中可能存在错误状态的情况,确定完不可通过状态后,有可能存在如图3所示的以下情况:交集区域中既存在一块状态为不可通过状态的区域X3、又存在另一块状态为不可通过状态的区域X4,如此,交集区域中就有两块区域的状 态为不可通过状态,需要对此进行纠正。本说明书实施例中,在确定可通过状态时,可一并纠正该情况下的错误状态。
步骤S230中,所述根据所述目标距离确定已确定不可通过状态的第一地图中各探测区域内的可通过状态,包括以下步骤:
S231:遍历各个超声波传感器的目标距离;
S232:如果遍历到的超声波传感器的目标距离为探测到障碍物时的距离,确定第一地图中该超声波传感器的探测区域内与目标距离对应的子区域,确定子区域中的第一局部区域,所述第一局部区域位于该探测区域的指定交集区域内,并依据所述第一局部区域确定所述指定交集区域的可通过状态。
步骤S231中对目标距离的遍历方式可以与步骤S221中的相同或相似,在此不再赘述。每遍历到一个目标距离,可以检查遍历到的目标距离是否为探测到障碍物时的距离。
步骤S232中,如果遍历到的超声波传感器的目标距离为探测到障碍物时的距离,确定第一地图中该超声波传感器的探测区域内与目标距离对应的子区域,依据该第一局部区域确定指定交集区域的可通过状态。该子区域的确定方式与前述步骤S222中的相同或相似。
本实施例中,确定子区域中的第一局部区域,所述第一局部区域位于该探测区域的指定交集区域内。如图3中,由X1、X2、X3组成了一个子区域,X1处于U1和U2的探测区域之间的交集区域,X2处于非交集区域,X3处于U2和U3的的探测区域之间的交集区域(对于U2的探测区域来说,该交集区域为本实施例所述的指定交集区域),X3为子区域的第一局部区域、且与X4共处于指定交集区域内。
在一个实施例中,步骤S232中,依据所述第一局部区域确定所述指定交集区域的可通过状态,包括以下步骤:
S2321:检查该指定交集区域中是否存在所述第一局部区域之外状态为不可通过状态的目标局部区域;
S2322:若是,比较所述第一局部区域到第一坐标的距离、与目标局部区 域到所述第一坐标的距离,以比较结果较远的局部区域为参考位置确定指定交集区域中待调整的第一区域Z1,并将第一区域Z1的状态调整为可通过状态。
S2323:若否,以所述第一局部区域为参考位置确定所述指定交集区域中待调整的第二区域Z2,并将第二区域Z2的状态从未知状态修改为可通过状态;
其中,所述第一坐标是该超声波传感器在第一地图中的坐标。
步骤S2321中,检查该指定交集区域中,除了该第一局部区域的状态是不可通过状态之外,是否还有其他区域的状态是不可通过状态,如果是,那么该区域即为目标局部区域。该目标局部区域与该第一局部区域之间可以无交集或有部分交集,只要两者不是同一个弧形区域上的区域即可。
如图3所示,对于超声波传感器U2的探测区域来说,超声波传感器U2的探测区域与超声波传感器U3的探测区域之间的交集区域为指定交集区域,指定交集区域中存在X3和X4两个区域的状态为不可通过状态,其中X3为第一局部区域,X4为目标局部区域。此时,需要纠正该指定交集区域中的不可通过状态,保证仅有一个区域的状态为不可通过状态。
步骤S2322中,在指定交集区域中存在目标局部区域的情况下,比较所述第一局部区域与目标局部区域中哪个距超声波传感器在第一地图中的第一坐标较远,以较远的局部区域为参考位置确定指定交集区域中待调整的第一区域Z1,并将第一区域Z1的状态调整为可通过状态。第一区域Z1为指定交集区域中位于所述较远的局部区域靠近第一坐标的一侧区域。
比较距离时,可以将第一局部区域上指定点的坐标与第一坐标的距离、目标局部区域上指定点的坐标与第一坐标的距离进行比较,指定点比如是第一局部区域、目标局部区域与该指定交集区域的同一边界的交点。
如图3所示,X3到U2的第一坐标的距离比X4到第一坐标的距离近,因而,以X4为参考位置确定第一区域Z1,该Z1即为指定交集区域中位于X4靠近第一坐标的一侧区域。
步骤S2323中,在指定交集区域中不存在目标局部区域的情况下,说明该指定交集区域中仅有第一局部区域这一个区域的状态为不可通过状态,此情况下不修改纠正指定交集区域中的不可通过状态。
以所述第一局部区域为参考位置确定所述指定交集区域中待调整的第二区域Z2,并将第二区域Z2的状态从未知状态修改为可通过状态。该第二区域Z2为指定交集区域中位于第一局部区域靠近第一坐标的一侧区域。
步骤S2322中,第一区域Z1中包含了未知状态的区域和不可通过状态的区域,因而需要将这些状态均调整为可通过状态。在一个实施例中,步骤S2322中,将第一区域Z1的状态调整为可通过状态,包括:
将第一区域Z1中比较结果较近的局部区域的状态从不可通过状态修改为可通过状态,并将第一区域Z1中除所述比较结果较近的局部区域之外的其他区域的状态从未知状态修改为可通过状态。
在一个实施例中,步骤S232中,确定第一地图中对应超声波传感器的探测区域内与目标距离对应的子区域之后,还进一步包括以下步骤:
S2324:确定子区域中的第二局部区域,所述第二局部区域位于该探测区域内的非交集区域;
S2325:以第二局部区域为参考位置确定该非交集区域中待调整的第三区域Z3,将第三区域Z3的状态从未知状态修改为可通过状态。
第二局部区域是子区域中位于非交集区域的区域,第三区域Z3可以是该非交集区域中位于第二局部区域靠近第一坐标的一侧区域。该第三区域Z3中的状态未被修改过,仍为未知状态,因而将第三区域Z3的状态从未知状态修改为可通过状态。
在一个实施例中,步骤S230中,根据所述目标距离确定已确定不可通过状态的第一地图中各探测区域内的可通过状态,还进一步包括:
S233:如果遍历到的超声波传感器的目标距离为未探测到障碍物时的距离,将该第一地图中该超声波传感器的探测区域状态调整为可通过状态。
如果遍历到的超声波传感器的目标距离为未探测到障碍物时的距离,说 明该超声波传感器的探测区域内无障碍物,该探测区域内的状态应全部为可通过状态,因而将第一地图中该超声波传感器的探测区域状态调整为可通过状态。
由于该超声波传感器的探测区域的交集区域中的状态可能已经被修改过,因而交集区域中可能存在不可通过状态和未知状态;而该超声波传感器的探测区域的非交集区域中未被修改过,仅存在未知状态。
在一个实施例中,步骤S233中,将该第一地图中该超声波传感器的探测区域状态调整为可通过状态,包括:
S2331:检查该探测区域是否存在标识为不可通过状态的第四区域Z4;
S2332:如果是,将该探测区域中第四区域Z4的状态从不可通过状态修改为可通过状态,并将该探测区域中第四区域Z4之外的区域的状态从未知状态修改为可通过状态;
S2333:如果否,将该探测区域状态从未知状态修改为可通过状态。
可以根据确定不可通过状态时的处理结果来检查该探测区域是否存在第四区域Z4。将该探测区域中第四区域Z4之外的区域的状态从未知状态修改为可通过状态。
本实施例中,还可以遍历该探测区域中的坐标,如果遍历到的坐标的状态为未知状态,则将该未知状态修改为可通过状态,如果遍历到的坐标的状态为不可通过状态,则将该不可通过状态修改为可通过状态。
在一个实施例中,确定第一地图中该超声波传感器的探测区域内与目标距离对应的子区域,包括:
在距离与坐标的预设对应关系中确定该目标距离对应的至少一坐标;
将第一地图中该探测区域内的由确定出的所有坐标定位出的区域确定为所述子区域。
如图2所示的超声波传感器的探测区域模型中,以U为起点,一个距离便可确定一条以O为圆心的弧线,因而可以预先建立好每个距离与对应弧线上所有坐标的预设对应关系。在确定子区域时,可从该预设对应关系中确定 目标距离对应的所有坐标,所有坐标可以构成相应的弧线。
本实施例中,可以将所有坐标确定出的一条弧线进行宽度方向的扩展,使其构成一个有宽度的子区域,子区域的宽度比如为0.02m,具体不限。预设对应关系可以以表格的形式呈现,可以在表格中查找目标距离对应的所有坐标。
得到状态描述地图之后,可以依据该状态描述地图确定所述可移动平台的行驶路线,比如从状态描述地图中状态为可通过状态的区域中确定出行驶路线。
在一个实施例中,所述探测区域描述地图包括距离场描述地图;
所述根据各个超声波传感器的目标距离生成所述探测区域描述地图,包括以下步骤:
S240:构建待处理的第二地图;
S250:依据各个超声波传感器的目标距离确定第二地图中各探测区域内坐标的距离信息;其中,距离信息指示了坐标距障碍物的最近距离、与坐标距探测区域的指定边界的最近距离中的一个;
S260:将确定了坐标的距离信息的第二地图作为所述距离场描述地图。
步骤S240中,该第二地图可以一张所有坐标的距离信息为第一设定值的地图,该第一设定值表示未知的距离,并且该第二地图中已经确定好了每个超声波传感器的探测区域。每个探测区域的形状和大小可以是相同的,只要在第二地图中确定好了超声波传感器的坐标及探测方向,即可在其中确定该超声波传感器的探测区域,探测区域的形状可以如图2所示。超声波传感器的坐标及探测方向可根据其在可移动平台上的安装位置及朝向而定。
步骤S250中,距离信息指示了坐标距障碍物的最近距离、与坐标距探测区域的指定边界的最近距离中的较小者。可以理解,在探测区域的坐标前方存在障碍物时,该距离信息必然是坐标距障碍物的最近距离,而如果探测区域的坐标前方不存在障碍物时,该距离信息必然是坐标距指定边界的最近距离。
举例来说,如果目标距离是探测到障碍物时的距离,那么该目标距离即为探测区域中障碍物距超声波传感器的距离,根据该目标距离可以确定障碍物的位置或者说区域,如此,可以确定探测区域内各坐标与障碍物之间的距离情况,即可确定各坐标的小于等于第二设定值的距离信息,指示了坐标距障碍物的最近距离。如果目标距离是未探测到障碍物时的距离,那么可以确定探测区域内不存在障碍物,可以确定出各坐标的大于所述第二设定值的距离信息,距离信息指示了坐标距探测区域的指定边界的最近距离。指定边界比如如图2所示的CB。
步骤S260中,完成对第二地图的处理后,得到的地图作为距离场描述地图。
在一个实施例中,步骤S250中,依据各个超声波传感器的目标距离确定第二地图中各探测区域内坐标的距离信息,包括:
S251:遍历各个超声波传感器的目标距离;
S252:如果遍历到的超声波传感器的目标距离为探测到障碍物时的距离,在第二地图的该超声波传感器的探测区域中确定与目标距离对应的至少一障碍物坐标,以所有障碍物坐标为参考位置确定探测区域中需确定距离信息的第五区域Z5;
S253:针对第五区域Z5中的每一坐标,依据该坐标的历史距离信息、及该坐标与所有障碍物坐标之间的位置关系确定该坐标的当前距离信息。
步骤S251中,可以按照超声波传感器在可移动平台上的位置顺序进行遍历,位置顺序比如是顺时针顺序或者逆时针顺序。比如,如果某个超声波传感器的目标距离为首个遍历到的目标距离,那么下一个遍历到的目标距离为未遍历过的与该超声波传感器相邻的超声波传感器的目标距离。本说明书实施例并不对具体遍历的方式进行限制。
步骤S252中,每遍历到一个目标距离,可以检查遍历到的目标距离是否为探测到障碍物时的距离。可以通过判断目标距离是否超出该超声波传感器的最大量程来检查,如果目标距离超出最大量程,说明不存在距离观测,该 目标距离为未探测到障碍物时的距离,否则,说明存在距离观测,该目标距离为探测到障碍物时的距离。比如,遍历到的目标距离为2m,而最大量程为5m,那么该目标距离为探测到障碍物时的距离。
如果遍历到的超声波传感器的目标距离为探测到障碍物时的距离,说明在该超声波传感器的探测范围内存在障碍物,并且该障碍物距该超声波传感器的距离为该目标距离。
在第二地图的该超声波传感器的探测区域中确定与目标距离对应的至少一障碍物坐标。如图2所示的超声波传感器的探测区域模型中,以U为起点,一个距离便可确定一条以O为圆心的弧线,因而可以预先建立好每个距离与对应弧线上所有坐标的预设对应关系。在确定所有障碍物坐标时,可从该预设对应关系中确定目标距离对应的所有坐标均作为障碍物坐标,确定出所有障碍物坐标处于一条以O为圆心的弧线上。
以所有障碍物坐标为参考位置确定探测区域中需确定距离信息的第五区域Z5,该第五区域Z5比如位于该弧线的靠近超声波传感器的坐标的一侧区域。
步骤S253中,针对第五区域Z5中的每一坐标,依据该坐标的历史距离信息、及该坐标与所有障碍物坐标之间的位置关系确定该坐标的当前距离信息。
在一个实施例中,步骤S253中,依据该坐标的历史距离信息、及该坐标与所有障碍物坐标之间的位置关系确定该坐标的当前距离信息,包括:
S2531:如果该历史距离信息等于表征未知距离的第一设定值,依据该坐标与所有障碍物坐标之间的最近距离确定目标距离信息,并将目标距离信息确定为该坐标的当前距离信息;
S2532:如果该历史距离信息大于第一设定值且小于等于第二设定值,依据该坐标与所有障碍物坐标之间的最近距离确定目标距离信息,选择目标距离信息与历史距离信息中的最优距离信息S1,并将最优距离信息S1确定为该坐标的当前距离信息;
S2533:如果该历史距离信息大于所述第二设定值,将该历史距离信息确定为该坐标的当前距离信息。
步骤S2531中,该第一设定值比如可以为0,当然,此处的数值仅是举例,还可以是其他数值,比如1或2等等,第一设定值表示未知距离,当然,也可以认为是该坐标是障碍物所在位置。如果第五区域Z5中该历史距离信息等于第一设定值,说明该坐标的距离信息还未被修改过,距离仍是未知的。
由于当前探测区域内已经存在障碍物,所以可以依据该坐标与所有障碍物坐标之间的最近距离确定一个目标距离信息,这个目标距离信息可以指示坐标距障碍物的最近距离,最近距离与目标距离信息可以成正比,比如,最近距离越近,该目标距离信息可以越小,将目标距离信息确定为该坐标的当前距离信息。
第二设定值比如可以是127,当然,此处的数值仅是举例,还可以是其他数值,比如126、125、128等,如果小于等于127,表示距离障碍物过近,可移动平台无法通过。
步骤S2532中,如果该历史距离信息大于第一设定值且小于等于所述第二设定值,第一设定值小于第二设定值,说明第五区域Z5中该坐标已经被修改过距离信息,即之前已经探测到前方存在障碍物,并且距离障碍物过近,可移动平台无法通过。
当前又探测到前方存在障碍物,因而需要确定哪次确定出的最近距离更近,依据该坐标与所有障碍物坐标之间的最近距离确定一个目标距离信息,选择目标距离信息与历史距离信息中的最优距离信息S1,最优距离信息S1可以是两者中的较小者,并将最优距离信息S1确定为该坐标的当前距离信息。
步骤S2533中,如果该历史距离信息大于所述第二设定值,说明这个位置是可以通行的,前方没有障碍物,继续维持该坐标的距离信息即可,即将该历史距离信息确定为该坐标的当前距离信息。
本实施例中,如果坐标的距离信息大于第二设定值,可以将该坐标确定为可通过;而如果坐标的距离信息小于第二设定值,则认为该坐标不可通过, 并且越小,说明离障碍物的距离越近,越不安全。
在一个实施例中,依据该坐标与所有障碍物坐标之间的最近距离确定小于等于第二设定值的目标距离信息,包括:
计算该坐标与第二坐标之间的距离;所述第二坐标是该超声波传感器在第二地图中的坐标;
遍历到的目标距离与计算出的距离之间的第一差值;所述第一差值为该坐标与所有障碍物坐标的最近距离;
依据所述第一差值确定所述目标距离信息,其中,第一差值越小,所述目标距离信息越小;
所述最优距离信息S1为目标距离信息与历史距离信息中的较小距离信息。
计算第五区域Z5中该坐标与超声波传感器在第二地图中的第二坐标之间的距离,由于目标距离为障碍物与第二坐标的最近距离,那么目标距离与计算出的距离之间的第一差值为该坐标到障碍物的最近距离。
换言之,第一差值是该坐标到所有障碍物坐标的距离中的最近距离,即第一距离信息是依据该坐标离障碍物的最近距离确定的,第一差值越小,计算出的目标距离信息可以越小,表示距离障碍物越近。
比如,目标距离信息比历史距离信息小,则目标距离信息作为最优距离信息S1,保证坐标的距离信息体现该坐标距障碍物的最近距离。
在一个实施例中,步骤S250中,依据各个超声波传感器的目标距离确定第二地图中各探测区域内坐标的距离信息,进一步包括:
S254:如果遍历到的超声波传感器的目标距离为未探测到障碍物时的距离,针对第二地图的该超声波传感器的探测区域中的每一坐标,依据该坐标的历史距离信息、及该坐标与该探测区域的指定边界之间的位置关系确定该坐标的当前距离信息。
由于未探测到障碍物,因而该探测区域中的每一坐标的距离信息应该大于所述第二设定值,指示坐标距探测区域的指定边界的最近距离,说明可移 动平台可以通过。
因而,针对每一坐标,依据该坐标的历史距离信息、及该坐标与该探测区域的指定边界之间的位置关系确定该坐标的当前距离信息。
步骤S254中,依据该坐标的历史距离信息、及该坐标与该探测区域的指定边界之间的位置关系确定该坐标的当前距离信息,包括:
S2541:如果该历史距离信息小于等于第二设定值,依据该坐标与该探测区域的指定边界的最近距离确定目标距离信息,并将目标距离信息确定为该坐标的当前距离信息;
S2542:如果该历史距离信息大于所述第二设定值,依据该坐标与该探测区域的指定边界的最近距离确定目标距离信息,并选择目标距离信息与历史距离信息中的最优距离信息S2,并将最优距离信息S2确定为该坐标的当前距离信息。
步骤S2541中,如果历史距离信息小于等于所述第二设定值,该坐标的历史距离信息表示前方存在障碍物或者未被标记过,但是,事实上,此时并未探测到障碍物,因而需要修改该坐标的距离信息,依据该坐标与该探测区域的指定边界的最近距离确定目标距离信息,该目标距离信息大于所述第二设定值,表明该坐标是可通过的状态,指示该坐标距探测区域的指定边界的最近距离。
步骤S2542中,如果该历史距离信息大于所述第二设定值,说明该探测区域中该坐标的距离信息已经修改过,并且处于可通过状态,依据该坐标与该探测区域的指定边界的最近距离确定目标距离信息,该目标距离信息大于所述第二设定值,表明该坐标是可通过的状态,选择该目标距离信息与该历史距离信息中的最优距离信息S2,并将最优距离信息S2确定为该坐标的当前距离信息,保证该坐标的距离信息表征的是该坐标距指定边界的最近距离。
在一个实施例中,所述指定边界为所述探测区域中与第二坐标之间的最近距离为该超声波传感器的最大量程的边界;所述第二坐标是该超声波传感器在第二地图中的坐标;
依据该坐标与该探测区域的指定边界的最近距离确定大于所述第二设定值的目标距离信息,包括:
计算该坐标与所述第二坐标之间的距离;
计算所述最大量程与计算出的距离之间的第二差值,所述第二差值为该坐标与该探测区域的指定边界的最近距离;
依据所述第二差值确定所述目标距离信息,其中,所述第二差值越小,则所述目标距离信息越小,并且所述目标距离信息大于所述第二设定值;
所述最优距离信息S2为目标距离信息与历史距离信息中的较小距离信息。
计算该坐标与超声波传感器在第二地图中的第二坐标之间的距离,最大量程为指定边界到第二坐标的最近距离,那么所述最大量程与计算出的距离之间的第二差值为该坐标距指定边界的最近距离。如图2,对于超声波传感器U来说,其探测区域的指定边界即为弧线CB。
换言之,该第二差值是该坐标与指定边界上所有点的坐标的距离中的最近距离,即目标距离信息是依据该坐标距指定边界的最近距离,第二差值越小,计算出的目标距离信息越小,表示距离指定边界越近。当然,计算出的目标距离信息仍是大于第二设定值的,表示可移动平台可通过。
得到距离场描述地图之后,依据该距离场描述地图确定所述可移动平台的行驶路线。由于距离场描述地图中坐标的距离信息表征了坐标距指定边界的距离、或者坐标距障碍物的距离,所以可以根据距离信息来判断是否离障碍物过近,如此可以确定各个坐标是否可通行。比如,距离信息小于等于第二设定值则认为距障碍物过近,不可通行;而距离信息大于第二设定值则认为距障碍物还不是很近,还在安全距离范围内,可通行。因此,可以根据距离场描述地图中坐标的距离信息确定出可移动平台的行驶路线。
在一个实施例中,依据所述探测区域描述地图确定所述可移动平台在所述场景中的行驶路线,包括:
在所述距离场描述地图中确定一距离信息最大的坐标作为目标坐标;
在所述距离场描述地图的所述目标坐标周围的坐标中查找距离信息大于第二设定值且小于目标坐标的距离信息的坐标;
如果查找到,将查找出的坐标确定为目标坐标,并返回在所述距离场描述地图的所述目标坐标周围的坐标中查找距离信息大于第二设定值且小于目标坐标的距离信息的坐标的操作;
如果未查找到,利用已确定出的目标坐标确定所述可移动平台的行驶路线。
上述方式中,先从最大距离信息的坐标开始查找,根据坐标间距离信息的梯度,逐渐查找距离信息更小的坐标,当然查找的坐标的距离信息都是大于第二设定值的,小于等于第二设定值的坐标被认为不可通过,找出的所有目标坐标可以组成可移动平台的行驶路线。当然,行驶路线的确定方式也不限于此。
具体的,参看图4,距离场描述地图被划分为很多网格(每个网格作为地图中的一个坐标),网格的距离信息范围可以是0-255。可以理解,0-255仅是举例,用一个8位二进制数来表示这个网格到障碍物的距离,当然还可以用更多位数来表示,比如用9位数,相应的距离信息即为0-511。
本实施例中,在距离信息小于第二设定值时,定义成为不安全距离,第二设定值与此时超声波传感器的最大量程有关,第二设定值所表示的距离可以是最大量程的一半。例如最大量程为5m时,那么第二设定值表示2.5m,在网格的距离信息范围为0-255的情况下,第二设定值可以为127。距离信息小于等于第二设定值就是最近距离小于等于2.5m,不是安全距离,不能通过;距离信息大于第二设定值是最近距离大于2.5m,被认为处于安全距离,才能通过。
可以理解,本实施例中第二设定值也可以不表示最大量程的一半,而表示最大量程的三分之一、三分之二等等,具体可视需要而定,用于表示安全距离的阈值。
如图4所示,可移动平台C1上环绕设置了多个超声波传感器,图4中示 意性表示出设置于平台前后左右四个方向上的四个超声波传感器U1-U4,根据包括但不限于超声波传感器U1-U4的探测数据得到了距离场描述地图,网格中的数值为其距离信息。距障碍物Barrier1、Barrier2较近的网格的距离信息小于127,表明可移动平台C1不可通过;并且越靠近障碍物Barrier1、Barrier2则距离信息越小。
图4中,距离信息大于127,表明可移动平台C1可通过,可以从这些距离信息所在的网格中确定出一条行驶路线,实现导航,同时可以及时避开障碍物Barrier1和Barrier2。比如,先找出距离信息为255的一个网格作为目标网格,比如U1左上方的255所在网格,接着,找到距离信息为254的目标网格,接着找到距离信息为253的目标网格,以此类推,利用找出的网格确定可移动平台的行驶路线。
可以理解,网格的大小及密度和超声波传感器距离划分精度是关联的,比如最大量程为5米且距离划分精度较高的情况下,网格很多、较小且较为密集,并不限于图4中示出的例子。
在一个实施例中,依据该超声波传感器的探测数据确定与该超声波传感器的探测区域内的场景相关的目标距离,包括以下步骤:
S201:获取该超声波传感器在所述探测数据之前探测的M个历史探测数据,M大于等于1;
S202:计算所述探测数据和所述M个历史探测数据的中位值;
S203:将中位值确定为所述目标距离。
超声波传感器得到的探测数据存在闪烁特性,即探测数据中会出现异常数据,但是一般来说,异常数据连续出现的可能性较小,因而本实施例中,将当前的探测数据与M个历史探测数据的中位值作为用于确定探测区域状态的目标距离,可以有效去除超声波传感器在使用过程中出现的异常数据。
由于一般超声波传感器不可能连续出现超过3帧异常探测数据,因而本实施例中,优选M等于4、或者大于4。
在一个实施例中,依据该超声波传感器的探测数据确定与该超声波传感 器的探测区域内的场景相关的目标距离,包括:
S204:获取该超声波传感器在所述探测数据之前探测的M个历史探测数据,M大于等于1;
S205:计算所述探测数据和所述M个历史探测数据的中位值;
S206:如果所述中位值为探测到障碍物时的距离,对所述中位值进行平滑滤波处理;
S207:将平滑滤波处理结果确定为所述目标距离。
本实施例中,在去除异常数据的基础上,如果所述中位值为探测到障碍物时的距离,还对计算出的中位值进一步进行平滑滤波处理,将平滑滤波处理结果确定为所述目标距离。可以使得最终得到的目标距离更稳定,进一步减小波动。
在一个实施例中,步骤S206中,对所述中位值进行平滑滤波处理,包括:
S2061:获取在所述中位值之前确定的该超声波传感器的N个历史中位值,N大于等于1;
S2062:计算所述中位值与N个历史中位值的均值;
步骤S207中,将平滑滤波处理结果确定为所述目标距离,包括:
将所述均值确定为所述目标距离。
优选的,N可以等于6、或者大于6,当然,本说明书实施例对N不做限定。同理,M也是如此。
为了更好地理解,下面通过一个更完整的实施例来描述,但不应以此作为限制。本实施例中,以可移动平台为车辆为例展开说明。
获取到多个超声波传感器当前的探测数据之后,为了消除距离闪烁特性,先针对每个超声波传感器的探测数据进行以下处理,得到与该超声波传感器的探测区域状态相关的目标距离:
步骤A101,获取该超声波传感器在当前的探测数据之前探测的M个历史探测数据,计算所述当前的探测数据和所述M个历史探测数据的中位值;
步骤A102,如果该中位值为探测到障碍物时的距离,获取在中位值之前 确定的该超声波传感器的N个历史中位值,计算中位值与N个历史中位值的均值,将均值作为所述的目标距离;如果中位值为未探测到障碍物时的距离,将中位值作为所述的目标距离。
确定出各个超声波传感器的目标距离后,可根据各个超声波传感器的目标距离生成探测区域描述地图,探测区域描述地图中确定了各超声波传感器的探测区域状态。探测区域描述地图包括状态描述地图、和/或距离场描述地图。
状态描述地图描述了探测区域的三个离散状态,分别是指示被障碍物占用的不可通过状态、指示未被障碍物占用的可通过状态及未知状态,可用三个离散值表征三个状态,比如,0表征未知状态,127表征可通过状态,255表征不可通过状态。
距离场描述地图可通过连续的距离信息来表征坐标距障碍物的最近距离、或与坐标距探测区域的指定边界的最近距离。比如,距离信息小于等于第二设定值,表明不可通过状态,并且取值越小表明距障碍物的距离越近、不可通过的概率越大;距离信息大于第二设定值,表明可通过状态,并且取值越大,表明距离障碍物或指定边界的距离越远、可通过的概率越大。
在生成上述状态描述地图和距离场描述地图之前,可先建立一个超声波坐标系,在该超声波坐标系中确定各超声波传感器的探测区域,并在该超声波坐标系中以相应超声波传感器为起点,确定探测区域内各探测数据(比如距起点0.2~4m的探测数据,分辨率可为0.01m)对应的坐标,将探测数据和对应坐标记录在距离坐标表中。探测区域可以呈如图2所示的“梨形”,一个探测数据可以对应多个坐标,同一探测数据对应的坐标构成以O为圆心的弧线区域。
下面详细说明一下生成状态描述地图的方式:
步骤A103,创建第一地图并初始化第一地图中的坐标状态。其中,所述初始化第一地图中的坐标状态包括将第一地图中的坐标状态设置为未知状态。将第一地图中的坐标状态设置为未知状态包括将地图中的状态信息使用0 来表示。
首先,根据所述目标距离确定第一地图中各超声波传感器的探测区域内的不可通过状态。
步骤A111,遍历各个超声波传感器的目标距离;多个超声波传感器可环设在车辆上,可按照各个超声波传感器在车辆上的位置,以顺时针或逆时针的顺序遍历各个超声波传感器的目标距离。
步骤A112,如果遍历到的超声波传感器的目标距离为探测到障碍物时的距离,确定第一地图中该超声波传感器的探测区域内与目标距离对应的子区域,可以在距离坐标表中确定该目标距离对应的所有坐标,由该所有坐标定位出探测区域内的子区域,该子区域为弧线区域,厚度可以为0.02m(目标距离用dist表示,探测区域中距起点dist~dist+0.02m范围内的区域为子区域),并将第一地图中该子区域的状态从已标识的未知状态修改为不可通过状态。
步骤A113,如果遍历到的超声波传感器的目标距离为未探测到障碍物时的距离,那么针对该超声波传感器的探测区域不做处理。
接着,根据所述目标距离确定已标识不可通过状态的第一地图中各超声波传感器的探测区域的可通过状态。其中,第一地图中相邻两个超声波传感器的探测区域存在交集区域。
步骤A114,遍历各个超声波传感器的目标距离。
步骤A115,如果遍历到的超声波传感器的目标距离为探测到障碍物时的距离,确定第一地图中该超声波传感器的探测区域内与目标距离对应的子区域,确定子区域的方式可与前述方式相同,确定子区域中的第一局部区域和第二局部区域,所述第一局部区域位于该探测区域的指定交集区域内,所述第二局部区域位于该探测区域内的非交集区域,第一局部区域如图3中的X3,第二局部区域如图3中的X2,X1-X3组成一个子区域;指定交集区域可以是当前探测区域与下一个探测区域之间的交集区域。
针对该第一局部区域,检查该指定交集区域中是否存在第一局部区域之外状态为不可通过状态的目标局部区域;若是,如图3中,指定交集区域中 存在目标局部区域X4,比较所述第一局部区域到第一坐标的距离、与目标局部区域到所述第一坐标的距离,所述第一坐标是该超声波传感器在第一地图中的坐标,如图3中U2的坐标,以比较结果较远的局部区域为参考位置确定指定交集区域中待调整的第一区域Z1,并将第一区域Z1的状态调整为可通过状态,若否,以所述第一局部区域为参考位置确定所述指定交集区域中待调整的第二区域Z2,并将第二区域Z2的状态从未知状态修改为可通过状态。
如图3所示,X3距超声波传感器U2的第一坐标的距离比X4距第一坐标的距离近,因而,以X4为参考位置确定第一区域Z1,该Z1为指定交集区域中位于X4靠近第一坐标的一侧区域。
由于第一区域Z1中包含第一局部区域,因而存在不可通过状态与未知状态两种状态。将第一区域Z1的状态调整为可通过状态,包括:将第一区域Z1中比较结果较近的局部区域的状态从不可通过状态修改为可通过状态,并将第一区域Z1中除所述比较结果较近的局部区域之外的其他区域的状态从未知状态修改为可通过状态。继续看图3,在指定交集区域位于X4靠近U2的坐标的一侧区域(第一区域Z1)中,将第一局部区域X3的状态从不可通过状态修改为可通过状态,将除X3之外的其他区域的状态从未知状态修改为可通过状态。
针对该第二局部区域,以第二局部区域为参考位置确定该非交集区域中待调整的第三区域Z3,将第三区域Z3的状态从未知状态修改为可通过状态。继续参看图3,该第三区域Z3即为该探测区域的非交集区域中位于第二局部区域X2靠近第一坐标U2的一侧区域,由于全是未知状态,将Z3中各坐标的状态从未知状态修改为可通过状态。
步骤A116,如果遍历到的超声波传感器的目标距离为未探测到障碍物时的距离,将该第一地图中该超声波传感器的探测区域状态调整为可通过状态。
由于该探测区域状态可能存在不可通过状态和未知状态两种,也可能仅存在未知状态一种,因而将该第一地图中该超声波传感器的探测区域状态调整为可通过状态,包括:检查该探测区域是否存在标识为不可通过状态的第 四区域Z4;如果是,将该探测区域中第四区域Z4的状态从不可通过状态修改为可通过状态,并将该探测区域中第四区域Z4之外的区域的状态从未知状态修改为可通过状态;如果否,将该探测区域状态从未知状态修改为可通过状态。
将确定完可通过状态的第一地图确定为状态描述地图,可以依据该状态描述地图为车辆确定下一步的行驶路线。
下面详细说明一下距离场描述地图的确定方式:
步骤A120,创建第二地图并初始化第二地图中的坐标的距离信息。其中,所述初始化第二地图中的的距离信息包括将第二地图中的坐标距离信息设置为第一设定值。将第二地图中的坐标距离信息设置为第一设定值包括将地图中坐标的距离信息使用0来表示。
步骤A121:遍历各个超声波传感器的目标距离;
步骤A122:如果遍历到的超声波传感器的目标距离为探测到障碍物时的距离,在第二地图的该超声波传感器的探测区域中确定与目标距离对应的至少一障碍物坐标,以所有障碍物坐标为参考位置确定探测区域中需确定表征状态的距离信息的第五区域Z5,针对第五区域Z5中的每一坐标,依据该坐标的历史距离信息、及该坐标与所有障碍物坐标之间的位置关系确定该坐标的当前距离信息。
可以在距离坐标表中查找该目标距离对应的坐标,将查找出的所有坐标均确定为障碍物坐标。查找出的所有障碍物坐标在探测区域中呈弧线,该第五区域Z5为探测区域中位于该弧线靠近第二坐标的一侧区域,第二坐标为该超声波传感器在第二地图中的坐标。
第二地图是通过距离信息来描述状态的,针对第五区域Z5中的每一坐标,均需要确定其当前距离信息。依据该坐标的历史距离信息、及该坐标与所有障碍物坐标之间的位置关系确定该坐标的当前距离信息,包括以下三种情况:
情况一、如果该历史距离信息等于表征未知距离的第一设定值,依据该坐标与所有障碍物坐标之间的最近距离确定目标距离信息,并将目标距离信 息确定为该坐标的当前距离信息。
该第一设定值表征了未知距离,第一设定值比如为0。假设该坐标与第二坐标的距离为d1,目标距离用dist表示,目标距离信息可以用以下公式来计算:127*(dist–d1)/4。
第一差值(dist–d1)是该坐标到各个障碍物坐标的距离中的最近距离,即目标距离信息是依据该坐标到障碍物的最近距离确定的,最近距离越小,即第一差值越小,则第一距离信息越小。当然,如果计算出的目标距离信息大于127,说明其处于安全距离,可移动平台可通过,而如果计算出的目标距离信息小于等于127,说明其未处于安全距离,可移动平台不可通过。
情况二、如果该历史距离信息大于第一设定值且小于等于第二设定值,依据该坐标与所有障碍物坐标之间的最近距离确定目标距离信息,选择目标距离信息与历史距离信息中的最优距离信息S1,并将最优距离信息S1确定为该坐标的当前距离信息。
该情况中,目标距离信息的计算公式同样可以采用公式:127*(dist–d1)/4。最优距离信息S1可以为所述目标距离信息与历史距离信息中的较小值,即该坐标上记录了依据距障碍物的最近距离确定的距离信息。
情况三、如果该历史距离信息大于所述第二设定值,将该历史距离信息确定为该坐标的当前距离信息。
该历史距离信息大于所述第二设定值,表明可移动平台是可通过的,将该坐标的距离信息维持为该历史距离信息,表明可移动平台仍是可通过的。
步骤A123:如果遍历到的超声波传感器的目标距离为未探测到障碍物时的距离,针对第二地图的该超声波传感器的探测区域中的每一坐标,依据该坐标的历史距离信息、及该坐标与该探测区域的指定边界之间的位置关系确定该坐标的当前距离信息。
指定边界到与第二坐标的最近距离为该超声波传感器的最大量程,就是探测区域中超声波传感器最大量程所能探测到的边界处。
第二地图是通过距离信息来描述状态的,未探测到该探测区域中有障碍 物时,针对该探测区域的每一坐标,均需要确定其当前需标识的距离信息。依据该坐标的历史距离信息、及该坐标与该探测区域的指定边界之间的位置关系确定该坐标的当前距离信息,包括以下两种情况:
情况一、如果该历史距离信息小于等于第二设定值,依据该坐标与该探测区域的指定边界的最近距离确定目标距离信息,并将目标距离信息确定为该坐标的当前距离信息。
假设该坐标与第二坐标的距离为d2,最大量程用dmax表示,第二距离信息可以用以下公式来计算:128+127*(dmax–d)/4。
第二差值(dmax–d)是该坐标到指定边界的最近距离,最近距离越小,即第二差值越小,则目标距离信息越小。当然,计算出的目标距离信息必然大于第二设定值,表明可移动平台可通过。
情况二、如果该历史距离信息大于所述第二设定值,依据该坐标与该探测区域的指定边界的最近距离确定目标距离信息,并选择目标距离信息与历史距离信息中的最优距离信息S2,并将最优距离信息S2确定为该坐标的当前距离信息。
该情况中,目标距离信息的计算公式同样可以采用公式:128+127*(dmax–d)/4。最优距离信息S2可以为所述目标距离信息与历史距离信息中的较小距离信息,即该坐标上记录了依据距指定边界的最近距离确定的距离信息。
遍历完成所有目标距离之后,将处理所得的第二地图确定为距离场描述地图,可以依据该距离场描述地图为车辆确定下一步的行驶路线。
当然,可以结合状态描述地图和距离场描述地图为车辆确定下一步的行驶路线。
基于与上述方法同样的构思,参见图5所示,本说明书还提供一种电子设备100,包括:存储器101和处理器102(如一个或多个处理器)。
所述存储器,用于存储程序代码;
所述处理器,用于调用所述程序代码,当程序代码被执行时,用于执行前述实施例所述的可移动平台的导航方法。
基于与上述方法同样的发明构思,本说明书实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机指令,所述计算机指令被执行时,实现前述实施例所述的可移动平台的导航方法。
上述实施例阐明的系统、装置、模块或单元,可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机,计算机的具体形式可以是个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件收发设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任意几种设备的组合。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本说明书时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
本领域内的技术人员应明白,本说明书实施例可提供为方法、系统、或计算机程序产品。因此,本说明书可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本说明书实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本说明书是参照根据本说明书实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可以由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其它可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其它可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
而且,这些计算机程序指令也可以存储在能引导计算机或其它可编程数 据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或者多个流程和/或方框图一个方框或者多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其它可编程数据处理设备,使得在计算机或者其它可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其它可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅为本说明书实施例而已,并不用于限制本说明书。对于本领域技术人员来说,本说明书可以有各种更改和变化。凡在本说明书的精神和原理之内所作的任何修改、等同替换、改进,均应包含在本说明书的权利要求范围之内。

Claims (45)

  1. 一种可移动平台的导航方法,其特征在于,所述可移动平台上设有多个超声波传感器,该方法包括:
    获取所述多个超声波传感器的探测数据;
    依据所述探测数据生成探测区域描述地图,所述探测区域描述地图与所述多个超声波传感器的探测区域内的场景相关;
    依据所述探测区域描述地图确定所述可移动平台在所述场景中的行驶路线。
  2. 如权利要求1所述的可移动平台的导航方法,其特征在于,依据所述探测数据生成探测区域描述地图,包括:
    针对每个超声波传感器,依据该超声波传感器的探测数据确定与该超声波传感器的探测区域内的场景相关的目标距离;
    根据各个超声波传感器的目标距离生成所述探测区域描述地图。
  3. 如权利要求2所述的可移动平台的导航方法,其特征在于,所述探测区域描述地图包括状态描述地图;
    根据各个超声波传感器的目标距离生成所述探测区域描述地图,包括:
    构建待处理的第一地图;
    根据所述目标距离确定第一地图中各超声波传感器的探测区域内的不可通过状态;所述不可通过状态指示了所述可移动平台不可通过;
    根据所述目标距离确定已确定不可通过状态的第一地图中各探测区域内的可通过状态,得到状态描述地图;所述可通过状态指示了所述可移动平台可通过。
  4. 如权利要求3所述的可移动平台的导航方法,其特征在于,根据所述目标距离确定第一地图中各超声波传感器的探测区域内的不可通过状态,包括:
    遍历各个超声波传感器的目标距离;
    如果遍历到的超声波传感器的目标距离为探测到障碍物时的距离,确定 第一地图中该超声波传感器的探测区域内与目标距离对应的子区域,并将第一地图中该子区域的状态从已标识的未知状态修改为不可通过状态。
  5. 如权利要求3所述的可移动平台的导航方法,其特征在于,
    所述第一地图中相邻超声波传感器的探测区域存在交集区域;
    根据所述目标距离确定已确定不可通过状态的第一地图中各探测区域内的可通过状态,包括:
    遍历各个超声波传感器的目标距离;
    如果遍历到的超声波传感器的目标距离为探测到障碍物时的距离,确定第一地图中该超声波传感器的探测区域内与目标距离对应的子区域,确定子区域中的第一局部区域,所述第一局部区域位于该探测区域的指定交集区域内,并依据所述第一局部区域确定所述指定交集区域的可通过状态。
  6. 如权利要求5所述的可移动平台的导航方法,其特征在于,依据所述第一局部区域确定所述指定交集区域的可通过状态,包括:
    检查该指定交集区域中是否存在所述第一局部区域之外状态为不可通过状态的目标局部区域;
    若是,比较所述第一局部区域到第一坐标的距离、与目标局部区域到所述第一坐标的距离,以比较结果较远的局部区域为参考位置确定指定交集区域中待调整的第一区域Z1,并将第一区域Z1的状态调整为可通过状态;
    若否,以所述第一局部区域为参考位置确定所述指定交集区域中待调整的第二区域Z2,并将第二区域Z2的状态从未知状态修改为可通过状态;
    其中,所述第一坐标是该超声波传感器在第一地图中的坐标。
  7. 如权利要求6所述的可移动平台的导航方法,其特征在于,将第一区域Z1的状态调整为可通过状态,包括:
    将第一区域Z1中比较结果较近的局部区域的状态从不可通过状态修改为可通过状态,并将第一区域Z1中除所述比较结果较近的局部区域之外的其他区域的状态从未知状态修改为可通过状态。
  8. 如权利要求5所述的可移动平台的导航方法,其特征在于,确定第一 地图中对应超声波传感器的探测区域内与目标距离对应的子区域之后,还进一步包括:
    确定子区域中的第二局部区域,所述第二局部区域位于该探测区域内的非交集区域;
    以第二局部区域为参考位置确定该非交集区域中待调整的第三区域Z3,将第三区域Z3的状态从未知状态修改为可通过状态。
  9. 如权利要求5所述的可移动平台的导航方法,其特征在于,根据所述目标距离确定已确定不可通过状态的第一地图中各探测区域内的可通过状态,还进一步包括:
    如果遍历到的超声波传感器的目标距离为未探测到障碍物时的距离,将该第一地图中该超声波传感器的探测区域状态调整为可通过状态。
  10. 如权利要求9所述的可移动平台的导航方法,其特征在于,将该第一地图中该超声波传感器的探测区域状态调整为可通过状态,包括:
    检查该探测区域是否存在标识为不可通过状态的第四区域Z4;
    如果是,将该探测区域中第四区域Z4的状态从不可通过状态修改为可通过状态,并将该探测区域中第四区域Z4之外的区域的状态从未知状态修改为可通过状态;
    如果否,将该探测区域状态从未知状态修改为可通过状态。
  11. 如权利要求4或5所述的可移动平台的导航方法,其特征在于,确定第一地图中该超声波传感器的探测区域内与目标距离对应的子区域,包括:
    在距离与坐标的预设对应关系中确定该目标距离对应的至少一坐标;
    将第一地图中该探测区域内的由确定出的所有坐标定位出的区域确定为所述子区域。
  12. 如权利要求2所述的可移动平台的导航方法,其特征在于,所述探测区域描述地图包括距离场描述地图;
    根据各个超声波传感器的目标距离生成所述探测区域描述地图,包括:
    构建待处理的第二地图;
    依据各个超声波传感器的目标距离确定第二地图中各探测区域内坐标的距离信息;其中,距离信息指示了坐标距障碍物的最近距离、与坐标距探测区域的指定边界的最近距离中的一个;
    将确定了坐标的距离信息的第二地图作为所述距离场描述地图。
  13. 如权利要求12所述的可移动平台的导航方法,其特征在于,依据各个超声波传感器的目标距离确定第二地图中各探测区域内坐标的距离信息,包括:
    遍历各个超声波传感器的目标距离;
    如果遍历到的超声波传感器的目标距离为探测到障碍物时的距离,在第二地图的该超声波传感器的探测区域中确定与目标距离对应的至少一障碍物坐标,以所有障碍物坐标为参考位置确定探测区域中需确定距离信息的第五区域Z5;
    针对第五区域Z5中的每一坐标,依据该坐标的历史距离信息、及该坐标与所有障碍物坐标之间的位置关系确定该坐标的当前距离信息。
  14. 如权利要求13所述的可移动平台的导航方法,其特征在于,依据该坐标的历史距离信息、及该坐标与所有障碍物坐标之间的位置关系确定该坐标的当前距离信息,包括:
    如果该历史距离信息等于表征未知距离的第一设定值,依据该坐标与所有障碍物坐标之间的最近距离确定目标距离信息,并将目标距离信息确定为该坐标的当前距离信息;
    如果该历史距离信息大于第一设定值且小于等于第二设定值,依据该坐标与所有障碍物坐标之间的最近距离确定目标距离信息,选择目标距离信息与历史距离信息中的最优距离信息S1,并将最优距离信息S1确定为该坐标的当前距离信息;
    如果该历史距离信息大于所述第二设定值,将该历史距离信息确定为该坐标的当前距离信息。
  15. 如权利要求14所述的可移动平台的导航方法,其特征在于,依据该 坐标与所有障碍物坐标之间的最近距离确定目标距离信息,包括:
    计算该坐标与第二坐标之间的距离;所述第二坐标是该超声波传感器在第二地图中的坐标;
    遍历到的目标距离与计算出的距离之间的第一差值;所述第一差值为该坐标与所有障碍物坐标的最近距离;
    依据所述第一差值确定所述目标距离信息,其中,第一差值越小,所述目标距离信息越小;
    所述最优距离信息S1为目标距离信息与历史距离信息中的较小距离信息。
  16. 如权利要求12所述的可移动平台的导航方法,其特征在于,依据各个超声波传感器的目标距离确定第二地图中各探测区域内坐标的距离信息,进一步包括:
    如果遍历到的超声波传感器的目标距离为未探测到障碍物时的距离,针对第二地图的该超声波传感器的探测区域中的每一坐标,依据该坐标的历史距离信息、及该坐标与该探测区域的指定边界之间的位置关系确定该坐标的当前距离信息。
  17. 如权利要求16所述的可移动平台的导航方法,其特征在于,依据该坐标的历史距离信息、及该坐标与该探测区域的指定边界之间的位置关系确定该坐标的当前距离信息,包括:
    如果该历史距离信息小于等于第二设定值,依据该坐标与该探测区域的指定边界的最近距离确定目标距离信息,并将目标距离信息确定为该坐标的当前距离信息;
    如果该历史距离信息大于所述第二设定值,依据该坐标与该探测区域的指定边界的最近距离确定目标距离信息,并选择目标距离信息与历史距离信息中的最优距离信息S2,并将最优距离信息S2确定为该坐标的当前距离信息。
  18. 如权利要求17所述的可移动平台的导航方法,其特征在于,
    所述指定边界为所述探测区域中与第二坐标之间的最近距离为该超声波传感器的最大量程的边界;所述第二坐标是该超声波传感器在第二地图中的坐标;
    依据该坐标与该探测区域的指定边界的最近距离确定大于所述第二设定值的目标距离信息,包括:
    计算该坐标与所述第二坐标之间的距离;
    计算所述最大量程与计算出的距离之间的第二差值,所述第二差值为该坐标与该探测区域的指定边界的最近距离;
    依据所述第二差值确定所述目标距离信息,其中,所述第二差值越小,则所述目标距离信息越小,并且所述目标距离信息大于所述第二设定值;
    所述最优距离信息S2为目标距离信息与历史距离信息中的较小距离信息。
  19. 如权利要求12所述的可移动平台的导航方法,其特征在于,依据所述探测区域描述地图确定所述可移动平台在所述场景中的行驶路线,包括:
    在所述距离场描述地图中确定一距离信息最大的坐标作为目标坐标;
    在所述距离场描述地图的所述目标坐标周围的坐标中查找距离信息大于第二设定值且小于目标坐标的距离信息的坐标;
    如果查找到,将查找出的坐标确定为目标坐标,并返回在所述距离场描述地图的所述目标坐标周围的坐标中查找距离信息大于第二设定值且小于目标坐标的距离信息的坐标的操作;
    如果未查找到,利用已确定出的目标坐标确定所述可移动平台的行驶路线。
  20. 如权利要求2所述的可移动平台的导航方法,其特征在于,依据该超声波传感器的探测数据确定与该超声波传感器的探测区域内的场景相关的目标距离,包括:
    获取该超声波传感器在所述探测数据之前探测的M个历史探测数据,M大于等于1;
    计算所述探测数据和所述M个历史探测数据的中位值;
    将中位值确定为所述目标距离。
  21. 如权利要求2所述的可移动平台的导航方法,其特征在于,依据该超声波传感器的探测数据确定与该超声波传感器的探测区域内的场景相关的目标距离,包括:
    获取该超声波传感器在所述探测数据之前探测的M个历史探测数据,M大于等于1;
    计算所述探测数据和所述M个历史探测数据的中位值;
    如果所述中位值为探测到障碍物时的距离,对所述中位值进行平滑滤波处理;
    将平滑滤波处理结果确定为所述目标距离。
  22. 如权利要求21所述的可移动平台的导航方法,其特征在于,对所述中位值进行平滑滤波处理,包括:
    获取在所述中位值之前确定的该超声波传感器的N个历史中位值,N大于等于1;
    计算所述中位值与N个历史中位值的均值;
    将平滑滤波处理结果确定为所述目标距离,包括:
    将所述均值确定为所述目标距离。
  23. 一种电子设备,其特征在于,包括:存储器和处理器;
    所述存储器,用于存储程序代码;
    所述处理器,用于调用所述程序代码,当程序代码被执行时,用于执行以下操作:
    获取多个超声波传感器的探测数据;所述多个超声波传感器设置于可移动平台上;
    依据所述探测数据生成探测区域描述地图,所述探测区域描述地图与所述多个超声波传感器的探测区域内的场景相关;
    依据所述探测区域描述地图确定所述可移动平台在所述场景中的行驶路 线。
  24. 如权利要求23所述的电子设备,其特征在于,所述处理器依据所述探测数据生成探测区域描述地图时,具体用于:
    针对每个超声波传感器,依据该超声波传感器的探测数据确定与该超声波传感器的探测区域内的场景相关的目标距离;
    根据各个超声波传感器的目标距离生成所述探测区域描述地图。
  25. 如权利要求24所述的电子设备,其特征在于,所述探测区域描述地图包括状态描述地图;
    所述处理器根据各个超声波传感器的目标距离生成所述探测区域描述地图时,具体用于:
    构建待处理的第一地图;
    根据所述目标距离确定第一地图中各超声波传感器的探测区域内的不可通过状态;所述不可通过状态指示了所述可移动平台不可通过;
    根据所述目标距离确定已确定不可通过状态的第一地图中各探测区域内的可通过状态,得到状态描述地图;所述可通过状态指示了所述可移动平台可通过。
  26. 如权利要求25所述的电子设备,其特征在于,所述处理器根据所述目标距离确定第一地图中各超声波传感器的探测区域内的不可通过状态时,具体用于:
    遍历各个超声波传感器的目标距离;
    如果遍历到的超声波传感器的目标距离为探测到障碍物时的距离,确定第一地图中该超声波传感器的探测区域内与目标距离对应的子区域,并将第一地图中该子区域的状态从已标识的未知状态修改为不可通过状态。
  27. 如权利要求25所述的电子设备,其特征在于,
    所述第一地图中相邻超声波传感器的探测区域存在交集区域;
    所述处理器根据所述目标距离确定已确定不可通过状态的第一地图中各探测区域内的可通过状态时,具体用于:
    遍历各个超声波传感器的目标距离;
    如果遍历到的超声波传感器的目标距离为探测到障碍物时的距离,确定第一地图中该超声波传感器的探测区域内与目标距离对应的子区域,确定子区域中的第一局部区域,所述第一局部区域位于该探测区域的指定交集区域内,并依据所述第一局部区域确定所述指定交集区域的可通过状态。
  28. 如权利要求27所述的电子设备,其特征在于,所述处理器依据所述第一局部区域确定所述指定交集区域的可通过状态时,具体用于:
    检查该指定交集区域中是否存在所述第一局部区域之外状态为不可通过状态的目标局部区域;
    若是,比较所述第一局部区域到第一坐标的距离、与目标局部区域到所述第一坐标的距离,以比较结果较远的局部区域为参考位置确定指定交集区域中待调整的第一区域Z1,并将第一区域Z1的状态调整为可通过状态;
    若否,以所述第一局部区域为参考位置确定所述指定交集区域中待调整的第二区域Z2,并将第二区域Z2的状态从未知状态修改为可通过状态;
    其中,所述第一坐标是该超声波传感器在第一地图中的坐标。
  29. 如权利要求28所述的电子设备,其特征在于,所述处理器将第一区域Z1的状态调整为可通过状态时,具体用于:
    将第一区域Z1中比较结果较近的局部区域的状态从不可通过状态修改为可通过状态,并将第一区域Z1中除所述比较结果较近的局部区域之外的其他区域的状态从未知状态修改为可通过状态。
  30. 如权利要求27所述的电子设备,其特征在于,所述处理器确定第一地图中对应超声波传感器的探测区域内与目标距离对应的子区域之后,还进一步用于:
    确定子区域中的第二局部区域,所述第二局部区域位于该探测区域内的非交集区域;
    以第二局部区域为参考位置确定该非交集区域中待调整的第三区域Z3,将第三区域Z3的状态从未知状态修改为可通过状态。
  31. 如权利要求27所述的电子设备,其特征在于,所述处理器根据所述目标距离确定已确定不可通过状态的第一地图中各探测区域内的可通过状态,还进一步用于:
    如果遍历到的超声波传感器的目标距离为未探测到障碍物时的距离,将该第一地图中该超声波传感器的探测区域状态调整为可通过状态。
  32. 如权利要求31所述的电子设备,其特征在于,所述处理器将该第一地图中该超声波传感器的探测区域状态调整为可通过状态时,具体用于:
    检查该探测区域是否存在标识为不可通过状态的第四区域Z4;
    如果是,将该探测区域中第四区域Z4的状态从不可通过状态修改为可通过状态,并将该探测区域中第四区域Z4之外的区域的状态从未知状态修改为可通过状态;
    如果否,将该探测区域状态从未知状态修改为可通过状态。
  33. 如权利要求26或27所述的电子设备,其特征在于,所述处理器确定第一地图中该超声波传感器的探测区域内与目标距离对应的子区域时,具体用于:
    在距离与坐标的预设对应关系中确定该目标距离对应的至少一坐标;
    将第一地图中该探测区域内的由确定出的所有坐标定位出的区域确定为所述子区域。
  34. 如权利要求24所述的电子设备,其特征在于,所述探测区域描述地图包括距离场描述地图;
    所述处理器根据各个超声波传感器的目标距离生成所述探测区域描述地图时,具体用于:
    构建待处理的第二地图;
    依据各个超声波传感器的目标距离确定第二地图中各探测区域内坐标的距离信息;其中,距离信息指示了坐标距障碍物的最近距离、与坐标距探测区域的指定边界的最近距离中的一个;
    将确定了坐标的距离信息的第二地图作为所述距离场描述地图。
  35. 如权利要求34所述的电子设备,其特征在于,所述处理器依据各个超声波传感器的目标距离确定第二地图中各探测区域内坐标的距离信息时,具体用于:
    遍历各个超声波传感器的目标距离;
    如果遍历到的超声波传感器的目标距离为探测到障碍物时的距离,在第二地图的该超声波传感器的探测区域中确定与目标距离对应的至少一障碍物坐标,以所有障碍物坐标为参考位置确定探测区域中需确定距离信息的第五区域Z5;
    针对第五区域Z5中的每一坐标,依据该坐标的历史距离信息、及该坐标与所有障碍物坐标之间的位置关系确定该坐标的当前距离信息。
  36. 如权利要求35所述的电子设备,其特征在于,所述处理器依据该坐标的历史距离信息、及该坐标与所有障碍物坐标之间的位置关系确定该坐标的当前距离信息时,具体用于:
    如果该历史距离信息等于表征未知距离的第一设定值,依据该坐标与所有障碍物坐标之间的最近距离确定目标距离信息,并将目标距离信息确定为该坐标的当前距离信息;
    如果该历史距离信息大于第一设定值且小于等于第二设定值,依据该坐标与所有障碍物坐标之间的最近距离确定目标距离信息,选择目标距离信息与历史距离信息中的最优距离信息S1,并将最优距离信息S1确定为该坐标的当前距离信息;
    如果该历史距离信息大于所述第二设定值,将该历史距离信息确定为该坐标的当前距离信息。
  37. 如权利要求36所述的电子设备,其特征在于,所述处理器依据该坐标与所有障碍物坐标之间的最近距离确定目标距离信息时,具体用于:
    计算该坐标与第二坐标之间的距离;所述第二坐标是该超声波传感器在第二地图中的坐标;
    遍历到的目标距离与计算出的距离之间的第一差值;所述第一差值为该 坐标与所有障碍物坐标的最近距离;
    依据所述第一差值确定所述目标距离信息,其中,第一差值越小,所述目标距离信息越小;
    所述最优距离信息S1为目标距离信息与历史距离信息中的较小距离信息。
  38. 如权利要求34所述的电子设备,其特征在于,所述处理器依据各个超声波传感器的目标距离确定第二地图中各探测区域内坐标的距离信息时,进一步用于:
    如果遍历到的超声波传感器的目标距离为未探测到障碍物时的距离,针对第二地图的该超声波传感器的探测区域中的每一坐标,依据该坐标的历史距离信息、及该坐标与该探测区域的指定边界之间的位置关系确定该坐标的当前距离信息。
  39. 如权利要求38所述的电子设备,其特征在于,
    所述处理器依据该坐标的历史距离信息、及该坐标与该探测区域的指定边界之间的位置关系确定该坐标的当前距离信息时,具体用于:
    如果该历史距离信息小于等于所述第二设定值,依据该坐标与该探测区域的指定边界的最近距离确定目标距离信息,并将目标距离信息确定为该坐标的当前距离信息;
    如果该历史距离信息大于所述第二设定值,依据该坐标与该探测区域的指定边界的最近距离确定目标距离信息,并选择目标距离信息与历史距离信息中的最优距离信息S2,并将最优距离信息S2确定为该坐标的当前距离信息。
  40. 如权利要求39所述的电子设备,其特征在于,所述指定边界为所述探测区域中与第二坐标之间的最近距离为该超声波传感器的最大量程的边界;所述第二坐标是该超声波传感器在第二地图中的坐标;
    所述处理器依据该坐标与该探测区域的指定边界的最近距离确定大于所述第二设定值的目标距离信息时,具体用于:
    计算该坐标与所述第二坐标之间的距离;
    计算所述最大量程与计算出的距离之间的第二差值,所述第二差值为该坐标与该探测区域的指定边界的最近距离;
    依据所述第二差值确定所述目标距离信息,其中,所述第二差值越小,则所述目标距离信息越小,并且所述目标距离信息大于所述第二设定值;
    所述最优距离信息S2为目标距离信息与历史距离信息中的较小距离信息。
  41. 如权利要求34所述的电子设备,其特征在于,所述处理器依据所述探测区域描述地图确定所述可移动平台在所述场景中的行驶路线时,具体用于:
    在所述距离场描述地图中确定一距离信息最大的坐标作为目标坐标;
    在所述距离场描述地图的所述目标坐标周围的坐标中查找距离信息大于第二设定值且小于目标坐标的距离信息的坐标;
    如果查找到,将查找出的坐标确定为目标坐标,并返回在所述距离场描述地图的所述目标坐标周围的坐标中查找距离信息大于第二设定值且小于目标坐标的距离信息的坐标的操作;
    如果未查找到,利用已确定出的目标坐标确定所述可移动平台的行驶路线。
  42. 如权利要求24所述的电子设备,其特征在于,所述处理器依据该超声波传感器的探测数据确定与该超声波传感器的探测区域内的场景相关的目标距离时,具体用于:
    获取该超声波传感器在所述探测数据之前探测的M个历史探测数据,M大于等于1;
    计算所述探测数据和所述M个历史探测数据的中位值;
    将中位值确定为所述目标距离。
  43. 如权利要求24所述的电子设备,其特征在于,所述处理器依据该超声波传感器的探测数据确定与该超声波传感器的探测区域内的场景相关的目 标距离时具体用于:
    获取该超声波传感器在所述探测数据之前探测的M个历史探测数据,M大于等于1;
    计算所述探测数据和所述M个历史探测数据的中位值;
    如果所述中位值为探测到障碍物时的距离,对所述中位值进行平滑滤波处理;
    将平滑滤波处理结果确定为所述目标距离。
  44. 如权利要求43所述的电子设备,其特征在于,所述处理器对所述中位值进行平滑滤波处理时,具体用于:
    获取在所述中位值之前确定的该超声波传感器的N个历史中位值,N大于等于1;
    计算所述中位值与N个历史中位值的均值;
    将平滑滤波处理结果确定为所述目标距离,包括:
    将所述均值确定为所述目标距离。
  45. 一种计算机可读存储介质,其特征在于,
    所述计算机可读存储介质上存储有计算机指令,所述计算机指令被执行时,实现权利要求1-22任一项所述的可移动平台的导航方法。
PCT/CN2019/083300 2019-04-18 2019-04-18 可移动平台的导航方法、设备、计算机可读存储介质 WO2020211055A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/083300 WO2020211055A1 (zh) 2019-04-18 2019-04-18 可移动平台的导航方法、设备、计算机可读存储介质
CN201980008889.9A CN111656137A (zh) 2019-04-18 2019-04-18 可移动平台的导航方法、设备、计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/083300 WO2020211055A1 (zh) 2019-04-18 2019-04-18 可移动平台的导航方法、设备、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2020211055A1 true WO2020211055A1 (zh) 2020-10-22

Family

ID=72346386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083300 WO2020211055A1 (zh) 2019-04-18 2019-04-18 可移动平台的导航方法、设备、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN111656137A (zh)
WO (1) WO2020211055A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105043396A (zh) * 2015-08-14 2015-11-11 北京进化者机器人科技有限公司 一种移动机器人室内自建地图的方法和系统
CN105629970A (zh) * 2014-11-03 2016-06-01 贵州亿丰升华科技机器人有限公司 一种基于超声波的机器人定位避障方法
CN107966702A (zh) * 2017-11-21 2018-04-27 北京进化者机器人科技有限公司 环境地图的构建方法及装置
US20180170327A1 (en) * 2016-12-21 2018-06-21 Hyundai Motor Company Vehicle and method for controlling the same
US20180194344A1 (en) * 2016-07-29 2018-07-12 Faraday&Future Inc. System and method for autonomous vehicle navigation
CN109579869A (zh) * 2017-09-29 2019-04-05 维布络有限公司 用于校正无人驾驶汽车的预先生成导航路径的方法和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105629970A (zh) * 2014-11-03 2016-06-01 贵州亿丰升华科技机器人有限公司 一种基于超声波的机器人定位避障方法
CN105043396A (zh) * 2015-08-14 2015-11-11 北京进化者机器人科技有限公司 一种移动机器人室内自建地图的方法和系统
US20180194344A1 (en) * 2016-07-29 2018-07-12 Faraday&Future Inc. System and method for autonomous vehicle navigation
US20180170327A1 (en) * 2016-12-21 2018-06-21 Hyundai Motor Company Vehicle and method for controlling the same
CN109579869A (zh) * 2017-09-29 2019-04-05 维布络有限公司 用于校正无人驾驶汽车的预先生成导航路径的方法和系统
CN107966702A (zh) * 2017-11-21 2018-04-27 北京进化者机器人科技有限公司 环境地图的构建方法及装置

Also Published As

Publication number Publication date
CN111656137A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
JP6830139B2 (ja) 3次元データの生成方法、3次元データの生成装置、コンピュータ機器及びコンピュータ読み取り可能な記憶媒体
CN108983777B (zh) 一种基于自适应前沿探索目标点选取的自主探索与避障方法
US9563808B2 (en) Target grouping techniques for object fusion
CN109829351B (zh) 车道信息的检测方法、装置及计算机可读存储介质
US10705528B2 (en) Autonomous visual navigation
EP3339806B1 (en) Navigation for vehicle based on parallel processing to determine collision-free paths
CN110687539A (zh) 一种车位检测方法、装置、介质和设备
US11536833B2 (en) Information processing device, information processing method, and vehicle
CN111026131A (zh) 一种膨胀区域的确定方法、确定装置、机器人和存储介质
EP3605137A1 (en) Object detection based on lidar intensity
CN112394726B (zh) 一种基于证据理论的无人船障碍物融合检测方法
US11200434B2 (en) System and method for tracking objects using multi-edge bounding box factors
WO2023130766A1 (zh) 机器人的路径规划方法、电子设备及计算机可读存储介质
CN114543815A (zh) 基于基因调控网络的多智能体导航控制方法、设备及介质
CN111045433B (zh) 一种机器人的避障方法、机器人及计算机可读存储介质
WO2019144299A1 (zh) 移动平台速度限制方法及设备、装置及记录介质
JP2018206038A (ja) 点群データ処理装置、移動ロボット、移動ロボットシステム、および点群データ処理方法
CN112964263B (zh) 自动建图方法、装置、移动机器人及可读存储介质
WO2021246169A1 (ja) 情報処理装置、情報処理システム、および方法、並びにプログラム
WO2019171491A1 (ja) 移動体制御装置、移動体、移動体制御システム、移動体制御方法および記録媒体
WO2020211055A1 (zh) 可移动平台的导航方法、设备、计算机可读存储介质
CN115993830B (zh) 一种基于障碍物躲避的路径规划方法、装置以及机器人
CN114750782A (zh) 路径规划方法、装置、设备及车辆控制方法、装置、设备
EP2836853B1 (en) Apparatus and method for determining reference elements of an environment
JP2018120482A (ja) ロボットおよびその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925376

Country of ref document: EP

Kind code of ref document: A1