WO2020210986A1 - 应用于agv的导航方法、系统、计算设备、介质以及产品 - Google Patents

应用于agv的导航方法、系统、计算设备、介质以及产品 Download PDF

Info

Publication number
WO2020210986A1
WO2020210986A1 PCT/CN2019/082892 CN2019082892W WO2020210986A1 WO 2020210986 A1 WO2020210986 A1 WO 2020210986A1 CN 2019082892 W CN2019082892 W CN 2019082892W WO 2020210986 A1 WO2020210986 A1 WO 2020210986A1
Authority
WO
WIPO (PCT)
Prior art keywords
agv
candidate
list
path
check
Prior art date
Application number
PCT/CN2019/082892
Other languages
English (en)
French (fr)
Inventor
马万里
张洁
王力
Original Assignee
西门子股份公司
西门子(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子股份公司, 西门子(中国)有限公司 filed Critical 西门子股份公司
Priority to PCT/CN2019/082892 priority Critical patent/WO2020210986A1/zh
Publication of WO2020210986A1 publication Critical patent/WO2020210986A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network

Definitions

  • the present disclosure generally relates to the field of wireless communication technology, and more specifically, to navigation methods, systems, computing devices, computer media, and products applied to AGVs.
  • AGV Automated Guided Vehicle
  • the AGV has its built-in navigation system.
  • the AGV wants to move from point A to point B, it can have multiple path options, and then it needs to make real-time judgments based on certain algorithms, such as the shortest distance first algorithm.
  • Wireless network is the basic facility of AGV and an important way for data communication.
  • the navigation system of AGV is independent of the wireless network. First, the AGV plans the path in real time through the internal navigation system. If there is an unexpected obstacle ahead, it will plan the path again.
  • the AGV After the driving path is fixed, the AGV always tries to connect to the wireless network with the best signal strength while moving. However, there are many factors that may affect the quality of the wireless network, such as metal, reflection, data traffic, and so on. When the AGV moves on the so-called “best path", the wireless network may deteriorate. The question is how to ensure stable wireless communication quality when the AGV is moving?
  • the AGV has its own navigation system and independently plans the path regardless of the quality of the wireless network.
  • the AGV When the AGV loses the wireless connection, it will perform a background scan and connect to the AP with the highest signal strength during the movement.
  • the AGV may be connected to the AP with the largest traffic load, or it may be the AP in the opposite direction of movement. In this case, the connection may be lost after a short time.
  • the present disclosure proposes a technical solution that combines the navigation system of the AGV with the wireless network.
  • the navigation method and system according to the embodiments of the present disclosure can ensure that the AGV has good wireless communication quality during driving.
  • a navigation method applied to an AGV including: a candidate path determination step: receiving at least one candidate path determined by a navigation device of the AGV; an average distance calculation step: executing for each determined candidate path The following calculation: Determine the first candidate AP list for the candidate path based on the positional relationship between the candidate path and the related AP, and calculate the distance between all APs in the first candidate AP list and the candidate path Average distance; and a driving path determination step: selecting a candidate path with the shortest average distance as the driving path of the AGV.
  • the candidate path with the shortest average distance is determined as the driving path of the AGV, so that the AGV can have good wireless communication network quality on this path.
  • the average distance calculation step further includes: the traffic load of at least one AP in the first candidate AP list of a candidate path exceeds a first predetermined load threshold and/or at least When the number of clients connected to an AP exceeds the first predetermined number, the average distance of the candidate path is not calculated.
  • the method further includes: during the driving of the AGV, when the wireless communication quality between the AGV and the currently connected AP deteriorates, performing the following steps: The AGV switches to another AP:
  • Step of determining the second candidate AP list performing background scanning to obtain all APs within a predetermined distance from the AGV, and sorting all APs in order of signal strength of each AP from strong to weak to obtain a second candidate AP list;
  • Check direction step check whether the position of the AP is consistent with the moving direction of the AGV, if they are consistent, execute the next step; if they are inconsistent, perform the check again for the next AP in the second candidate AP list
  • Check direction step check whether the position of the AP is consistent with the moving direction of the AGV, if they are consistent, execute the next step; if they are inconsistent, perform the check again for the next AP in the second candidate AP list
  • Check the service status step check the AP’s service load and the number of connected clients.
  • the service load is lower than the second predetermined load threshold and the number of connected clients is lower than the second predetermined number, execute the following One step; otherwise, select the next AP in the second candidate AP list to re-execute the direction check step; and
  • the step of determining the AP determining the AP as the AP to be switched to by the AGV.
  • the AGV can be switched to another AP with good communication quality in time.
  • the wireless communication quality is evaluated based on at least one of the following parameters of the AP: the wireless signal strength of the AP, the business load of the AP, the number of clients connected to the AP, and The relationship between the position of the AP and the moving direction of the AGV.
  • the wireless communication quality can be evaluated based on a variety of different state parameters of the AP.
  • the method is executed again from the candidate path determination step:
  • the AGV encounters obstacles during driving
  • the connected AP is malfunctioning.
  • a navigation system applied to an AGV including: a position monitoring device configured to monitor the current position of the AGV and store the position information of the AP; a navigation device, so The navigation device is configured to determine at least one candidate path of the AGV based on the current position of the AGV; and a control device that performs the following calculation for each candidate path determined: based on the candidate path and the correlation To determine the first candidate AP list for the candidate path, calculate the average distance between all APs in the first candidate AP list and the candidate path, and select the candidate with the shortest average distance The path is used as the driving path of the AGV.
  • the candidate path with the shortest average distance is determined as the driving path of the AGV, so that the AGV can have good wireless communication network quality on this path.
  • the navigation system further includes: an AP controller configured to obtain at least one of the following information: the number of clients connected to the AP and the AP Business load.
  • AP status information can be obtained at any time.
  • the control device (406) is further configured to not calculate the average distance of the candidate path.
  • control device (406) is further It is configured to switch the AGV to another AP through the following processing:
  • Second candidate AP list determination processing performing background scanning to obtain all APs within a predetermined distance from the AGV, and sorting all APs in order of signal strength of each AP from strong to weak to obtain a second candidate AP list;
  • Check direction processing check whether the position of the AP is consistent with the moving direction of the AGV, if they are consistent, execute the next process; if they are inconsistent, perform the check again for the next AP in the second candidate AP list Direction processing
  • Check service status processing check the AP’s service load and the number of connected clients, and execute if the service load is lower than the second predetermined load threshold and the number of connected clients is lower than the second predetermined number Next processing; otherwise, select the next AP in the second candidate AP list to re-execute the direction check processing; and
  • Determine AP processing determine the AP as the AP to which the AGV is to be switched.
  • the AGV can be switched to another AP with good communication quality in time.
  • the wireless communication quality is evaluated based on at least one of the following parameters of the AP: the wireless signal strength of the AP, the business load of the AP, the number of clients connected to the AP, and The relationship between the position of the AP and the moving direction of the AGV.
  • the wireless communication quality can be evaluated based on a variety of different state parameters of the AP.
  • the control device when at least one of the following situations occurs, notifies the navigation device to re-determine at least one candidate route of the AGV, and based on the re-determined at least A candidate path performs the calculation:
  • the AGV encounters obstacles during driving
  • the connected AP is malfunctioning.
  • the position monitoring device, the navigation device and the control device are integrated in the AGV.
  • the AP controller is integrated in the control device.
  • the navigation system can be implemented in different ways.
  • a computing device includes: at least one processor; and a memory coupled with the at least one processor, the memory is used to store instructions, when the instructions are used by the at least one processor When executed, the processor is caused to execute the navigation method as described above.
  • a non-transitory machine-readable storage medium that stores executable instructions that, when executed, cause the machine to perform the navigation method as described above.
  • a computer program including computer-executable instructions that, when executed, cause at least one processor to perform the navigation method as described above.
  • a computer program product that is tangibly stored on a computer-readable medium and includes computer-executable instructions that, when executed, cause at least A processor executes the navigation method as described above.
  • FIG 1 schematically shows three alternative driving paths of the AGV
  • FIG. 2 is a flowchart showing an exemplary process of a navigation method applied to AGV according to an embodiment of the present disclosure
  • Fig. 3 is a flowchart showing an exemplary process of step S28;
  • FIG. 4 is a block diagram showing an exemplary configuration of a navigation system applied to AGV according to an embodiment of the present disclosure.
  • FIG. 5 shows a block diagram of a computing device applied to navigation of an AGV according to an embodiment of the present disclosure.
  • Control device 408 AP controller
  • the term “including” and its variants means open terms, meaning “including but not limited to.”
  • the term “based on” means “based at least in part on.”
  • the terms “one embodiment” and “an embodiment” mean “at least one embodiment.”
  • the term “another embodiment” means “at least one other embodiment.”
  • the terms “first”, “second”, etc. may refer to different or the same objects. Other definitions can be included below, either explicit or implicit. Unless clearly indicated in the context, the definition of a term is consistent throughout the specification.
  • AGV Automatic Guided Vehicle
  • the present disclosure proposes a solution that combines the navigation system of the AGV with the wireless network.
  • the wireless network becomes the driving path of the AGV. Key factor.
  • FIG. 2 is a flowchart showing an exemplary process of a navigation method 200 applied to an AGV according to an embodiment of the present disclosure.
  • the candidate route determination step S22 is first performed, and at least one candidate route determined by the navigation device of the AGV is received.
  • the navigation device of the AGV may determine three candidate routes 102, 104, and 106 as shown in FIG.
  • perform the average distance calculation step S24 perform the following calculation for each determined candidate path: determine the first candidate AP list for the candidate path based on the positional relationship between the candidate path and the related AP, and calculate the The average distance between all APs in the first candidate AP list and the candidate path.
  • all APs whose distance from a candidate path is not greater than a certain predetermined distance may be determined as the first candidate AP list of the candidate path.
  • the average distance between all APs in the first candidate AP list and the candidate path can be calculated. In this way, for each candidate path, the average distance between it and the related AP can be calculated. Then sort the candidate paths in the ascending order of the average distance. Generally speaking, the shorter the average distance, the stronger the strength of the AP's wireless signal received by the AGV.
  • the driving route determination step S26 is executed: the AGV selects the candidate route with the shortest average distance as its driving route. By selecting the candidate path with the shortest average distance as the driving path of the AGV, the AGV can have a good wireless communication network quality on this path.
  • the service load of at least one AP in the first candidate AP list of a candidate path is too high, for example, exceeds a predetermined first load threshold, or the number of clients connected to at least one AP exceeds a predetermined number .
  • the average distance of the candidate path is not calculated, that is, the path is not regarded as one of the candidate paths.
  • the candidate path can be placed in the alternate path list.
  • the AGV After determining the driving path of the AGV, the AGV will travel according to the driving path.
  • the method 20 may further include step S28 to switch the AGV to another AP.
  • Fig. 3 is a flowchart showing an exemplary process of step S28. As shown in FIG. 3, step S28 may include the following sub-steps to make the AGV switch to another AP.
  • perform the second candidate AP list determination step S282 perform a background scan to obtain all APs near the AGV, for example, all APs within a predetermined distance from the AGV, and compare all APs in the order of signal strength from strong to weak. Sort to obtain the second candidate AP list.
  • Check direction step S284 Check whether the position of the AP is consistent with the moving direction of the AGV, if they are consistent (Y), proceed to the next step; if they are not consistent (N), then for the next step in the second candidate AP list An AP re-executes the checking direction step S284;
  • Check the service load step S286 Check whether the AP's service load is lower than the second predetermined load threshold and the number of connected clients is lower than the second predetermined number, if it is (Y), that is, the AP's service load is low At the second predetermined load threshold and the number of connected clients is lower than the second predetermined number, proceed to the next step; if not (N), that is, the AP’s service load is greater than or equal to the second predetermined load threshold or the number of connected clients If the number of clients is greater than or equal to the second predetermined number, the next AP in the second candidate AP list is selected to re-execute the direction checking step S284.
  • Step S288 determining the AP as the AP to which the AGV is to be switched.
  • first predetermined load threshold and the second predetermined load threshold may or may not be equal
  • first predetermined load threshold, the second predetermined load threshold, the first predetermined The number and the second predetermined number can be set according to the performance of the AP and the experience of the technician, and will not be repeated here.
  • the wireless communication quality between the AGV and the currently connected AP can be evaluated by at least one of the following parameters of the AP: the wireless signal strength of the AP, the business load of the AP, the number of clients connected to the AP, and The relationship between the position of the AP and the moving direction of the AGV.
  • the wireless signal strength refers to the transmit power received by the reference antenna at a certain distance from the transmitting antenna.
  • Service load refers to the sum of the service loads of all clients currently connected to an AP.
  • each AP allows a limited number of clients to be connected.
  • the quality of wireless communication between the AGV and the currently connected AP may decrease.
  • the excessive business load of the AP may be due to the excessive number of connected clients, which makes the total service load too large, or it may be that only one client is connected, and the client sends a large amount of data to make the AP’s business load If the amount is too large, in both cases, the quality of wireless communication will decrease, so consider switching to other APs.
  • the relationship between the position of the AP and the moving direction of the AGV means that the AGV can scan the AP and obtain a lot of signals from multiple APs. It should be checked and confirmed whether the AGV is moving in the direction toward the AP position. If so, the signal strength will become stronger when approaching the AP. In this case, it can be said that the position of the AP is consistent with the moving direction of the AGV. Otherwise, the AGV may temporarily approach the AP, and soon move away from the AP, thereby losing the connection with the AP again, and having to switch to another AP.
  • the method 20 can be re-executed from step S22, that is, the navigation device of the AGV determines the candidate route again, and the subsequent steps are performed based on the candidate route re-determined by the navigation device:
  • the AGV encounters obstacles during driving
  • the connected AP is malfunctioning.
  • the quality of the wireless network is an important factor for the navigation of the AGV.
  • the AGV can always be connected to the wireless network with the best communication quality.
  • the navigation method applied to the AGV according to an embodiment of the present disclosure can significantly enhance the usability of the wireless network, so that the AGV is sufficiently flexible and mobile to meet the needs of different jobs, and can support many AGVs to share the same wireless network and balance Business load.
  • FIG. 4 is a block diagram showing an exemplary configuration of a navigation system 400 applied to an AGV according to an embodiment of the present disclosure.
  • the navigation system 400 applied to the AGV includes: a position monitoring device 402, a navigation device 404, and a control device 406.
  • the location monitoring device 402 is configured to monitor the current location of the AGV and store the location information of the AP.
  • the navigation device 404 is configured to determine at least one candidate route of the AGV based on the current position of the AGV.
  • the control device 406 performs the following calculation for each determined candidate path: based on the positional relationship between the candidate path and the related AP, determines the first candidate AP list for the candidate path, and calculates the first candidate AP list The average distance between all APs and the candidate path, and the candidate path with the shortest average distance is selected as the driving path of the AGV.
  • the navigation system 400 may further include an AP controller 408 configured to obtain at least one of the following information: the number of clients connected to the AP, and the business load of the AP.
  • the AP controller 408 may be integrated in the control device 406, in this case, the AP may report its status information to the control device 406.
  • the control device 406 is further configured to not calculate the average distance of the candidate path, that is, not to use the path as one of the candidate paths.
  • control device 406 when the quality of wireless communication between the AGV and the currently connected AP deteriorates during the AGV driving process, the control device 406 is further configured to switch the AGV to another through the following processing AP:
  • Second candidate AP list determination processing performing background scanning to obtain all APs within a predetermined distance from the AGV, and sorting all APs in order of signal strength of each AP from strong to weak to obtain a second candidate AP list;
  • Check direction processing check whether the position of the AP is consistent with the moving direction of the AGV, if they are consistent, execute the next process; if they are inconsistent, perform the check again for the next AP in the second candidate AP list Direction processing
  • Check the service load processing check the AP’s service load and the number of connected clients, if the service load is lower than the second predetermined load threshold and the number of connected clients is lower than the second predetermined number, execute the next processing ; Otherwise, select the next AP in the second candidate AP list to re-execute the direction checking process; and
  • Determine AP processing determine the AP as the AP to which the AGV is to be switched.
  • the wireless communication quality is evaluated based on at least one of the following parameters of the AP: the wireless signal strength of the AP, the business load of the AP, the number of clients connected to the AP, the location of the AP and the moving direction of the AGV Relationship.
  • control device may notify the navigation device to re-determine at least one candidate route of the AGV, and respectively calculate the average distance of the at least one candidate route based on the re-determined at least one candidate route:
  • the AGV encounters obstacles during driving
  • the connected AP is malfunctioning.
  • the position monitoring device, the navigation device and the control device may all be integrated in the AGV.
  • the AGV can move anywhere, and the control device selects the driving path with the best wireless communication quality for the AGV according to the position of the AGV and the optional path.
  • the navigation system will monitor the AP's service load status and provide support for the decision of the AGV path.
  • the details of the operations and functions of the various parts of the navigation system 400 applied to the AGV may, for example, be the same or similar to the relevant parts of the embodiment of the navigation method 200 applied to the AGV of the present disclosure described with reference to FIGS. Detailed Description.
  • FIGS. 1 to 4 the embodiments of the navigation method and navigation system applied to the AGV according to the embodiments of the present disclosure are described.
  • the above navigation method and system applied to the AGV can be implemented by hardware, or by software or a combination of hardware and software.
  • FIG. 5 shows a block diagram of a computing device 500 applied to navigation of an AGV according to an embodiment of the present disclosure.
  • the computing device 500 may include at least one processor 502, which executes at least one computer-readable instruction stored or encoded in a computer-readable storage medium (ie, the memory 504) (ie, the above-mentioned in the form of software) Implementation elements).
  • computer-executable instructions are stored in the memory 504, which when executed cause at least one processor 502 to complete the following actions: candidate path determination step: receiving at least one candidate path determined by the navigation device of the AGV; average distance Calculation step: Perform the following calculation for each determined candidate path: determine the first candidate AP list for the candidate path based on the positional relationship between the candidate path and the related AP, and calculate the first candidate AP list The average distance between all APs and the candidate path; and the driving path determination step: selecting the candidate path with the shortest average distance as the driving path of the AGV.
  • a non-transitory machine-readable medium may have machine-executable instructions (that is, the above-mentioned elements implemented in the form of software), which when executed by a machine, cause the machine to execute the various embodiments of the present disclosure in conjunction with FIGS. 1-4 Various operations and functions described.
  • a computer program including computer-executable instructions, which, when executed, cause at least one processor to execute the various embodiments described above in conjunction with FIGS. 1-4 in the various embodiments of the present disclosure.
  • a computer program product including computer-executable instructions, which when executed, cause at least one processor to execute the above described in conjunction with FIGS. 1-4 in the various embodiments of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

应用于AGV的导航方法(200)、系统(400)、计算设备(500)、介质以及产品。应用于AGV的导航方法(200),包括:候选路径(102,104,106)确定步骤(S22):接收由AGV的导航装置(404)确定的至少一条候选路径(102,104,106);平均距离计算步骤(S24):对于所确定的每一条候选路径(102,104,106)执行以下计算:基于该候选路径(102,104,106)与相关的AP之间的位置关系来确定针对该候选路径(102,104,106)的第一候选AP列表,计算第一候选AP列表中的所有AP与该候选路径(102,104,106)之间的距离的平均距离;以及行驶路径确定步骤(S26):选择平均距离最短的一条候选路径(102,104,106)作为AGV的行驶路径。

Description

应用于AGV的导航方法、系统、计算设备、介质以及产品 技术领域
本公开通常涉及无线通信技术领域,更具体地,涉及应用于AGV的导航方法、系统、计算设备、计算机介质和产品。
背景技术
AGV(Automated Guided Vehicle,自动导引运输车)在数字工厂扮演着越来越重要的角色,例如,可以帮助人们运输一些材料、存货检查和其它工作。AGV具有其内置的导航系统,一般来说,如果AGV想要从A点移动到B点,可以具有多条路径选项,然后需要根据某些算法,例如最短距离优先算法,来实时做出判断选择最佳路径。无线网络是AGV的基本设施,并且是用于数据通信的重要方式。一般来说,AGV的导航系统独立于无线网络。首先,AGV通过内部导航系统实时规划路径,如果前方存在未预料的障碍物,将再次规划路径。在行驶路径固定之后,AGV在移动中总是尝试连接具有最佳信号强度的无线网络。然而,存在可能影响无线网络的质量的许多因素,例如金属、反射、数据通信量等。当AGV在所谓的“最佳路径”上移动时,无线网络可能变差。问题是如何在AGV移动时确保稳定的无线通信质量?
首先,工程师会根据多年的经验部署足够的接入点(Access Point,AP)。AGV具有其自己的导航系统,并且在不考虑无线网络的质量的情况下独立规划路径。当AGV丢失无线连接时,它将进行背景扫描,在移动的过程中连接具有最高信号强度的AP。然而,AGV连接的有可能是具有最大业务负载的AP,也有可能是相反的移动方向上的AP。在这种情况下,可能在短时间之后丢失连接。
发明内容
在下文中给出关于本发明的简要概述,以便提供关于本发明的某些方 面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
鉴于上述,本公开提出了一种将AGV的导航系统与无线网络结合的技术方案,利用根据本公开的实施例的导航方法和系统,可以保证AGV在行驶过程中具有良好的无线通信质量。
根据本公开的一个方面,提供了应用于AGV的导航方法,包括:候选路径确定步骤:接收由AGV的导航装置确定的至少一条候选路径;平均距离计算步骤:对于所确定的每一条候选路径执行以下计算:基于该候选路径与相关的AP之间的位置关系来确定针对该候选路径的第一候选AP列表,计算所述第一候选AP列表中的所有AP与该候选路径之间的距离的平均距离;以及行驶路径确定步骤:选择平均距离最短的一条候选路径作为所述AGV的行驶路径。
通过这样的方式来将平均距离最短的一条候选路径确定为AGV的行驶路径,可以使得AGV在这条路径上具有良好的无线通信网络质量。
可选地,在上述方面的一个示例中,所述平均距离计算步骤还包括:在一条候选路径的第一候选AP列表中的至少一个AP的业务载荷量超过第一预定载荷阈值和/或至少一个AP所连接的客户端的数目超过第一预定数目的情况下,不计算该候选路径的平均距离。
以这样的方式,可以预先将有可能包括无线通信质量不好的AP的路径从候选路径中移除。
可选地,在上述方面的一个示例中,所述方法还包括:在所述AGV行驶过程中,当所述AGV与当前连接的AP之间的无线通信质量变差时,通过以下步骤使所述AGV切换到另一个AP:
第二候选AP列表确定步骤:进行背景扫描,得到距离所述AGV预定距离内的所有AP,并按照每一个AP的信号强度从强到弱的顺序对所有AP进行排序得到第二候选AP列表;
对于所述第二候选AP列表中的每一个AP,从第一个AP开始执行以下步骤:
检查方向步骤:检查该AP的位置与所述AGV的移动方向是否一致,如果一致,则执行下一个步骤;如果不一致,则对于所述第二候选AP列表中的下一个AP重新执行所述检查方向步骤;
检查业务状态步骤:检查该AP的业务载荷量和所连接的客户端的数目,在业务载荷量低于第二预定载荷阈值且所连接的客户端的数目低于第二预定数目的情况下,执行下一个步骤;否则,选择所述第二候选AP列表中的下一个AP重新执行检查方向步骤;以及
确定AP步骤:确定该AP作为所述AGV要切换至的AP。
以这样的方式,当AGV与当前连接的AP之间的无线通信质量变差时,可以及时使AGV切换到另一个通信质量良好的AP。
可选地,在上述方面的一个示例中,所述无线通信质量基于AP的以下参数中的至少一项来评价:AP的无线信号强度、AP的业务载荷量、AP所连接的客户端的数目以及AP的位置与所述AGV的移动方向的关系。
以这样的方式,可以基于AP的多种不同的状态参数来评价无线通信质量。
可选地,在上述方面的一个示例中,在出现以下情况中的至少一种情况时,重新从所述候选路径确定步骤开始执行所述方法:
在进行背景扫描时,没有找到可用的AP;
所述AGV在行驶过程中遇到障碍物;
所述AGV所连接的AP的业务载荷量突然增加;以及
所连接的AP出现故障。
以这样的方式,在突然发生意外事件而导致AGV的无线通信质量下降的情况下,可以及时为AGV重新规划新的行驶路径,以确保AGV具有良好的无线通信质量。
根据本公开的另一方面,提供了应用于AGV的导航系统,包括:一个位置监控装置,所述位置监控装置被配置为监控AGV的当前位置,以及存储AP的位置信息;一个导航装置,所述导航装置被配置为基于所述AGV的当前位置确定所述AGV的至少一条候选路径;以及一个控制装置,所述控制装置对于所确定的每一条候选路径执行以下计算:基于该候选路径与相关的AP之间的位置关系来确定针对该候选路径的第一候选AP列表,计 算所述第一候选AP列表中的所有AP与该候选路径之间的距离的平均距离,选择平均距离最短的候选路径作为所述AGV的行驶路径。
通过这样的方式将平均距离最短的一条候选路径确定为AGV的行驶路径,可以使得AGV在这条路径上具有良好的无线通信网络质量。
可选地,在上述方面的一个示例中,所述导航系统还包括:一个AP控制器,所述AP控制器被配置为获取以下信息中的至少一项:AP所连接的客户端的数目和AP的业务载荷量。
以这样的方式,可以随时获取AP的状态信息。
可选地,在上述方面的一个示例中,在一条候选路径的第一候选AP列表中的至少一个AP的业务载荷量超过第一预定载荷阈值和/或至少一个AP所连接的客户端的数目超过第一预定数目的情况下,所述控制装置(406)进一步被配置为:不计算该候选路径的平均距离。
以这样的方式,可以预先将有可能包括无线通信质量不好的AP的路径从候选路径中移除。
可选地,在上述方面的一个示例中,其中,在所述AGV行驶过程中,当所述AGV与当前连接的AP之间的无线通信质量变差时,所述控制装置(406)进一步被配置为通过以下处理将所述AGV切换到另一个AP:
第二候选AP列表确定处理:进行背景扫描,得到距离所述AGV预定距离内的所有AP,并按照每一个AP的信号强度从强到弱的顺序对所有AP进行排序得到第二候选AP列表;
对于所述第二候选AP列表中的每一个AP,从第一个AP开始执行以下处理:
检查方向处理:检查该AP的位置与所述AGV的移动方向是否一致,如果一致,则执行下一个处理;如果不一致,则对于所述第二候选AP列表中的下一个AP重新执行所述检查方向处理;
检查业务状态处理:检查该AP的业务载荷量和所连接的客户端的数目,在业务载荷量低于第二预定载荷阈值且所连接的客户端的数目低于第二预定数目的情况下,则执行下一个处理;否则,选择所述第二候选AP列表中的下一个AP重新执行检查方向处理;以及
确定AP处理:确定该AP作为所述AGV要切换至的AP。
以这样的方式,当AGV与当前连接的AP之间的无线通信质量变差时,可以及时使AGV切换到另一个通信质量良好的AP。
可选地,在上述方面的一个示例中,所述无线通信质量基于AP的以下参数中的至少一项来评价:AP的无线信号强度、AP的业务载荷量、AP所连接的客户端的数目以及AP的位置与所述AGV的移动方向的关系。
以这样的方式,可以基于AP的多种不同的状态参数来评价无线通信质量。
可选地,在上述方面的一个示例中,在出现以下情况中的至少一种情况时,所述控制装置通知所述导航装置重新确定所述AGV的至少一条候选路径,并基于重新确定的至少一条候选路径执行所述计算:
在进行背景扫描时,没有找到可用的AP;
所述AGV在行驶过程中遇到障碍物;
所连接的AP的业务载荷突然增加;以及
所连接的AP出现故障。
以这样的方式,在突然发生意外事件而导致AGV的无线通信质量下降的情况下,可以及时为AGV重新规划新的行驶路径,以确保AGV具有良好的无线通信质量。
可选地,在上述方面的一个示例中,所述位置监控装置、所述导航装置和所述控制装置集成在所述AGV中。
可选地,在上述方面的一个示例中,所述AP控制器集成在所述控制装置中。
以这样的方式,可以以不同的方式来实现导航系统。
根据本公开的另一方面,计算设备,包括:至少一个处理器;以及与所述至少一个处理器耦合的一个存储器,所述存储器用于存储指令,当所述指令被所述至少一个处理器执行时,使得所述处理器执行如上所述的导航方法。
根据本公开的另一方面,提供了一种非暂时性机器可读存储介质,其存储有可执行指令,所述指令当被执行时使得所述机器执行如上所述的导航方法。
根据本公开的另一方面,提供了一种计算机程序,包括计算机可执行 指令,所述计算机可执行指令在被执行时使至少一个处理器执行如上所述的导航方法。
根据本公开的另一方面,提供了一种计算机程序产品,所述计算机程序产品被有形地存储在计算机可读介质上并且包括计算机可执行指令,所述计算机可执行指令在被执行时使至少一个处理器执行如上所述的导航方法。
附图说明
参照下面结合附图对本发明实施例的说明,会更加容易地理解本发明的以上和其它目的、特点和优点。附图中的部件只是为了示出本发明的原理。在附图中,相同的或类似的技术特征或部件将采用相同或类似的附图标记来表示。
图1示意性地示出了AGV的三条可选行驶路径;
图2是示出了根据本公开的实施例的应用于AGV的导航方法的示例性过程的流程图;
图3是示出步骤S28的一种示例性过程的流程图;
图4是示出了根据本公开的实施例的应用于AGV的导航系统的示例性配置的框图;以及
图5示出了根据本公开的实施例的应用于AGV的导航的计算设备的方框图。
附图标记
102、104和106:AGV的可选路径    200:应用于AGV的导航方法
S22、S24、S26、S28、S282、S284、400:应用于AGV的导航系统
S286、S288:步骤
402:位置监控装置               404:导航装置
406:控制装置                   408:AP控制器
500:计算设备                   502:处理器
504:存储器
具体实施方式
现在将参考示例实施方式讨论本文描述的主题。应该理解,讨论这些实施方式只是为了使得本领域技术人员能够更好地理解从而实现本文描述的主题,并非是对权利要求书中所阐述的保护范围、适用性或者示例的限制。可以在不脱离本公开内容的保护范围的情况下,对所讨论的元素的功能和排列进行改变。各个示例可以根据需要,省略、替代或者添加各种过程或组件。例如,所描述的方法可以按照与所描述的顺序不同的顺序来执行,以及各个步骤可以被添加、省略或者组合。另外,相对一些示例所描述的特征在其它例子中也可以进行组合。
如本文中使用的,术语“包括”及其变型表示开放的术语,含义是“包括但不限于”。术语“基于”表示“至少部分地基于”。术语“一个实施例”和“一实施例”表示“至少一个实施例”。术语“另一个实施例”表示“至少一个其他实施例”。术语“第一”、“第二”等可以指代不同的或相同的对象。下面可以包括其他的定义,无论是明确的还是隐含的。除非上下文中明确地指明,否则一个术语的定义在整个说明书中是一致的。
假设在一个工厂中部署有大量的AP(Access Point,接入点),AGV(Automated Guided Vehicle,自动导引运输车)想要从A移动至B具有三条可选路径来选择,如图1所示的路径102、104和106。为了保证AGV在行驶过程中具有良好的无线通信质量,本公开提出了一种解决方案,将AGV的导航系统与无线网络结合,当AGV实时规划行驶路线时,无线网络成为决定AGV的行驶路径的重要因素。
现在结合附图来描述根据本公开的实施例的一种能够确保AGV在行驶过程中的无线通信质量的导航方法。
图2是示出了根据本公开的一个实施例的应用于AGV的导航方法200的示例性过程的流程图。
在图2中,首先执行候选路径确定步骤S22,接收由AGV的导航装置确定的至少一条候选路径。
例如,AGV的导航装置可能确定如图1所示的102、104和106三条候选路径。
接着,执行平均距离计算步骤S24,对于所确定的每一条候选路径执行以下计算:基于该候选路径与相关的AP之间的位置关系来确定针对该候选路径的第一候选AP列表,计算所述第一候选AP列表中的所有AP与该候选路径之间的距离的平均距离。
例如可以将距离一条候选路径的距离不大于某个预定距离内的所有AP确定为该候选路径的第一候选AP列表。对于一条候选路径,可以计算其第一候选AP列表中的所有AP与该候选路径之间的距离的平均距离。这样,对于每一条候选路径都可以计算其与相关的AP之间的距离的平均距离。再按照平均距离升序的顺序对候选路径进行排序。一般来说,这个平均距离越短,AGV接收到的AP的无线信号的强度越强。
因此,执行行驶路径确定步骤S26:所述AGV选择平均距离最短的候选路径作为其行驶路径。通过选择平均距离最短的候选路径作为AGV的行驶路径,可以使得AGV在这条路径上具有良好的无线通信网络质量。
优选地,如果一条候选路径的第一候选AP列表中的至少一个AP的业务载荷过高,例如超过预先确定的第一载荷阈值,或者至少一个AP所连接的客户端的数目超过预第一定数目,则不计算该候选路径的平均距离,也就是说,不将该路径作为候选路径之一。例如,当与一条候选路径相关的一个AP(即该候选路径的第一候选AP列表中的某一个AP)连接了过多的客户端,如果AGV在该路径上行驶可能难以保持良好的无线通信质量,因此,将该路径从候选路径中移除。在一个示例中,可以将该候选路径放在备用路径列表中。
在确定AGV的行驶路径之后,AGV将按照该行驶路径来行驶。在AGV行驶过程中,当AGV与当前连接的AP之间的无线通信质量变差时,方法20还可以包括步骤S28,使AGV切换到另一个AP。
图3是示出步骤S28的一种示例性过程的流程图。如图3所示,步骤S28可以包括以下子步骤,来使得AGV切换至另一个AP。
首先,执行第二候选AP列表确定步骤S282:进行背景扫描,得到AGV附近的所有AP,例如距离AGV预定距离内的所有AP,并按照每一个AP的信号强度从强到弱的顺序对所有AP进行排序得到第二候选AP列表。
对于第二候选AP列表中的每一个AP,从第一个AP开始执行以下步 骤:
检查方向步骤S284:检查该AP的位置与所述AGV的移动方向是否一致,如果一致(Y),则进行下一个步骤;如果不一致(N),则对于所述第二候选AP列表中的下一个AP重新执行所述检查方向步骤S284;
检查业务载荷步骤S286:检查该AP的业务载荷量是否低于第二预定载荷阈值以及所连接的客户端的数目是否低于第二预定数目,如果是(Y),也即AP的业务载荷量低于第二预定载荷阈值且所连接的客户端的数目低于第二预定数目,则进行到下一个步骤;如果否(N),即,AP的业务载荷量大于等于第二预定载荷阈值或者所连接的客户端的数目大于等于第二预定数目,则选择所述第二候选AP列表中的下一个AP重新执行检查方向步骤S284。
确定AP步骤S288:确定该AP作为所述AGV要切换至的AP。
本领域技术人员可以理解,第一预定载荷阈值与第二预定载荷阈值、第一预定数目与第二预定数目可以相等也可以不相等,第一预定载荷阈值、第二预定载荷阈值、第一预定数目、第二预定数目可以根据AP的性能以及技术人员的经验进行设定,在此不再赘述。
其中,可以通过AP的以下参数中的至少一项来评价所述AGV与当前连接的AP之间的无线通信质量:AP的无线信号强度、AP的业务载荷量、AP所连接的客户端的数目以及AP的位置与所述AGV的移动方向的关系。
无线信号强度指的是参考天线在距离发送天线一定距离处接收到的发送功率。
业务载荷量,是指一个AP当前连接的所有客户端的业务载荷的总和。
关于AP所连接的客户端的数目,由于太多的客户端同时工作可能会影响AP的性能,因此每个AP允许连接有限数量的客户端。
在AP的业务载荷量过大的情况下,AGV与当前连接的AP之间的无线通信质量可能会下降。AP的业务载荷量过大可能是由于所连接的客户端的数目过多而使得业务载荷的总和过大,也有可能是只连接一个客户端,而该客户端发送大量的数据而使得AP的业务载荷量过大,在这两种情况下,都会引起无线通信质量的下降,因此要考虑切换至其它AP。
AP的位置与所述AGV的移动方向的关系是指,AGV可以扫描AP并 且从多个AP得到很多信号,应该检查并且确认AGV是否在朝向AP位置的方向上移动。如果是,当接近该AP的时候,信号强度将变得更强。在这种情况下,可以称AP的位置与AGV的移动方向一致。否则,AGV可能暂时接近AP,很快又远离AP,从而再次丢失与该AP的连接,而不得不再切换到另一个AP。
其中,在出现以下情况中的至少一种情况时,可以从步骤S22开始重新执行方法20,即重新由AGV的导航装置确定候选路径,并基于导航装置重新确定的候选路径执行后续步骤:
在进行背景扫描时,没有找到可用的AP;
AGV在行驶过程中遇到障碍物;
AGV所连接的AP的业务载荷量突然增加;以及
所连接的AP出现故障。
在根据本公开的一个实施例的应用于AGV的导航方法中,无线网络质量是对AGV进行导航的一个重要因素。利用该方法,可以使得AGV总是连接至具有最佳通信质量的无线网络。
根据本公开的一个实施例的应用于AGV的导航方法可以显著增强无线网络的可用性,使得AGV充分具有灵活性和移动性,以便满足不同工作的需要,而且可以支持许多AGV共享同一无线网络并且平衡业务载荷。
图4是示出了根据本公开的一个实施例的应用于AGV的导航系统400的示例性配置的框图。
应用于AGV的导航系统400包括:一个位置监控装置402、一个导航装置404和一个控制装置406。
其中,位置监控装置402被配置为监控AGV的当前位置,以及存储AP的位置信息。
导航装置404被配置为基于AGV的当前位置确定AGV的至少一条候选路径。
控制装置406针对所确定的每一条候选路径执行以下计算:基于该候选路径与相关的AP之间的位置关系来确定针对该候选路径的第一候选AP列表,计算所述第一候选AP列表中的所有AP与该候选路径之间的距离的 平均距离,选择平均距离最短的候选路径作为所述AGV的行驶路径。
在一个示例中,导航系统400还可以包括一个AP控制器408,所述AP控制器被配置为获取以下信息中的至少一项:AP所连接的客户端的数量、AP的业务载荷量。
在一个示例中,AP控制器408可以集成在控制装置406中,在这种情况下,AP可以向控制装置406报告其状态信息。
优选地,如果一条候选路径的第一候选AP列表中的至少一个AP的业务载荷过高,例如超过预先确定的第一预定载荷阈值,和/或至少一个AP所连接的客户端的数目超过第一预定数目,则控制装置406进一步被配置为:不计算该候选路径的平均距离,也就是说,不将该路径作为候选路径之一。
在一个示例中,在AGV行驶过程中,当所述AGV与当前连接的AP之间的无线通信质量变差时,所述控制装置406进一步被配置为通过以下处理将所述AGV切换到另一个AP:
第二候选AP列表确定处理:进行背景扫描,得到距离所述AGV预定距离内的所有AP,并按照每一个AP的信号强度从强到弱的顺序对所有AP进行排序得到第二候选AP列表;
对于所述第二候选AP列表中的每一个AP,从第一个AP开始执行以下处理:
检查方向处理:检查该AP的位置与所述AGV的移动方向是否一致,如果一致,则执行下一个处理;如果不一致,则对于所述第二候选AP列表中的下一个AP重新执行所述检查方向处理;
检查业务载荷处理:检查该AP的业务载荷量和所连接的客户端的数目,如果业务载荷量低于第二预定载荷阈值且所连接的客户端的数目低于第二预定数目,则执行下一个处理;否则,选择所述第二候选AP列表中的下一个AP重新执行检查方向处理;以及
确定AP处理:确定该AP作为所述AGV要切换至的AP。
其中,所述无线通信质量基于AP的以下参数中的至少一项来评价:AP的无线信号强度、AP的业务载荷量、AP所连接的客户端的数目以及AP的位置与所述AGV的移动方向的关系。
其中,在出现以下情况中的至少一种情况时,控制装置可以通知所述导航装置重新确定所述AGV的至少一条候选路径,并基于重新确定的至少一条候选路径分别计算其平均距离:
在进行背景扫描时,没有找到可用的AP;
所述AGV在行驶过程中遇到障碍物;
所连接的AP的业务载荷突然增加;以及
所连接的AP出现故障。
在一个示例中,所述位置监控装置、所述导航装置和所述控制装置可以都集成在所述AGV中。
利用根据本公开的一个实施例的应用于AGV的导航系统,AGV可以在任何地方移动,控制装置根据AGV的位置和可选的路径,为AGV选择无线通信质量最佳的行驶路径。导航系统将监控AP的业务载荷状态,对于AGV路径决定提供支持。
应用于AGV的导航系统400的各个部分的操作和功能的细节例如可以与参照结合图1-3描述的本公开的应用于AGV的导航方法200的实施例的相关部分相同或类似,这里不再详细描述。
在此需要说明的是,图4所示的应用于AGV的导航系统400及其组成单元的结构仅仅是示例性的,本领域技术人员可以根据需要对图4所示的结构框图进行修改。
如上参照图1到图4,对根据本公开的实施例的应用于AGV的导航方法和导航系统的实施例进行了描述。上面的应用于AGV的导航方法和系统可以采用硬件实现,也可以采用软件或者硬件和软件的组合来实现。
图5示出了根据本公开的实施例的应用于AGV的导航的计算设备500的方框图。根据一个实施例,计算设备500可以包括至少一个处理器502,处理器502执行在计算机可读存储介质(即,存储器504)中存储或编码的至少一个计算机可读指令(即,上述以软件形式实现的元素)。
在一个实施例中,在存储器504中存储计算机可执行指令,其当执行时使得至少一个处理器502完成以下动作:候选路径确定步骤:接收由AGV的导航装置确定的至少一条候选路径;平均距离计算步骤:对于所确定的 每一条候选路径执行以下计算:基于该候选路径与相关的AP之间的位置关系来确定针对该候选路径的第一候选AP列表,计算所述第一候选AP列表中的所有AP与该候选路径之间的距离的平均距离;以及行驶路径确定步骤:选择平均距离最短的候选路径作为所述AGV的行驶路径。
应该理解,在存储器504中存储的计算机可执行指令当执行时使得至少一个处理器502进行本公开的各个实施例中以上结合图1-4描述的各种操作和功能。
根据一个实施例,提供了一种非暂时性机器可读介质。该非暂时性机器可读介质可以具有机器可执行指令(即,上述以软件形式实现的元素),该指令当被机器执行时,使得机器执行本公开的各个实施例中以上结合图1-4描述的各种操作和功能。
根据一个实施例,提供了一种计算机程序,包括计算机可执行指令,所述计算机可执行指令在被执行时使至少一个处理器执行本公开的各个实施例中以上结合图1-4描述的各种操作和功能。
根据一个实施例,提供了一种计算机程序产品,包括计算机可执行指令,所述计算机可执行指令在被执行时使至少一个处理器执行本公开的各个实施例中以上结合图1-4描述的各种操作和功能。
上面结合附图阐述的具体实施方式描述了示例性实施例,但并不表示可以实现的或者落入权利要求书的保护范围的所有实施例。在整个本说明书中使用的术语“示例性”意味着“用作示例、实例或例示”,并不意味着比其它实施例“优选”或“具有优势”。出于提供对所描述技术的理解的目的,具体实施方式包括具体细节。然而,可以在没有这些具体细节的情况下实施这些技术。在一些实例中,为了避免对所描述的实施例的概念造成难以理解,公知的结构和装置以框图形式示出。
本公开内容的上述描述被提供来使得本领域任何普通技术人员能够实现或者使用本公开内容。对于本领域普通技术人员来说,对本公开内容进行的各种修改是显而易见的,并且,也可以在不脱离本公开内容的保护范围的情况下,将本文所定义的一般性原理应用于其它变型。因此,本公开内容并不限于本文所描述的示例和设计,而是与符合本文公开的原理和新颖性特征的最广范围相一致。

Claims (17)

  1. 应用于AGV的导航方法,包括:
    候选路径确定步骤:接收由AGV的导航装置确定的至少一条候选路径;
    平均距离计算步骤:对于所确定的每一条候选路径执行以下计算:基于该候选路径与相关的AP之间的位置关系来确定针对该候选路径的第一候选AP列表,计算所述第一候选AP列表中的所有AP与该候选路径之间的距离的平均距离;以及
    行驶路径确定步骤:选择平均距离最短的一条候选路径作为所述AGV的行驶路径。
  2. 如权利要求1所述的方法,其中,所述平均距离计算步骤还包括:在一条候选路径的第一候选AP列表中的至少一个AP的业务载荷量超过第一预定载荷阈值和/或至少一个AP所连接的客户端的数目超过第一预定数目的情况下,不计算该候选路径的平均距离。
  3. 如权利要求1或2所述的方法,还包括:在所述AGV行驶过程中,当所述AGV与当前连接的AP之间的无线通信质量变差时,通过以下步骤使所述AGV切换到另一个AP:
    第二候选AP列表确定步骤:进行背景扫描,得到距离所述AGV预定距离内的所有AP,并按照每一个AP的信号强度从强到弱的顺序对所有AP进行排序得到第二候选AP列表;
    对于所述第二候选AP列表中的每一个AP,从第一个AP开始执行以下步骤:
    检查方向步骤:检查该AP的位置与所述AGV的移动方向是否一致,如果一致,则执行下一个步骤;如果不一致,则对于所述第二候选AP列表中的下一个AP重新执行所述检查方向步骤;
    检查业务状态步骤:检查该AP的业务载荷量和所连接的客户端的数目,在业务载荷量低于第二预定载荷阈值且所连接的客户端的数目低于第 二预定数目的情况下,执行下一个步骤;否则,选择所述第二候选AP列表中的下一个AP重新执行检查方向步骤;以及
    确定AP步骤:确定该AP作为所述AGV要切换至的AP。
  4. 如权利要求3所述的方法,其中,基于AP的以下参数中的至少一项来评价所述无线通信质量:AP的无线信号强度、AP的业务载荷量、AP所连接的客户端的数目以及AP的位置与所述AGV的移动方向的关系。
  5. 如权利要求3所述的方法,其中,在出现以下情况中的至少一种情况时,重新从所述候选路径确定步骤开始执行所述方法:
    在进行背景扫描时,没有找到可用的AP;
    所述AGV在行驶过程中遇到障碍物;
    所述AGV所连接的AP的业务载荷量突然增加;以及
    所连接的AP出现故障。
  6. 应用于AGV的导航系统(400),包括:
    一个位置监控装置(402),所述位置监控装置(402)被配置为监控AGV的当前位置,以及存储AP的位置信息;
    一个导航装置(404),所述导航装置(404)被配置为基于所述AGV的当前位置确定所述AGV的至少一条候选路径;以及
    一个控制装置(406),所述控制装置(406)针对所确定的每一条候选路径执行以下计算:基于该候选路径与相关的AP之间的位置关系来确定针对该候选路径的第一候选AP列表,计算所述第一候选AP列表中的所有AP与该候选路径之间的距离的平均距离,选择平均距离最短的候选路径作为所述AGV的行驶路径。
  7. 如权利要求6所述的导航系统(400),还包括:一个AP控制器(408),所述AP控制器(408)被配置为获取以下信息中的至少一项:AP所连接的客户端的数目和AP的业务载荷量。
  8. 如权利要求6或7所述的导航系统(400),其中,在一条候选路径的第一候选AP列表中的至少一个AP的业务载荷量超过第一预定载荷阈值和/或至少一个AP所连接的客户端的数目超过第一预定数目的情况下,所述控制装置(406)进一步被配置为:不计算该候选路径的平均距离。
  9. 如权利要求8所述的导航系统(400),其中,在所述AGV行驶过程中,当所述AGV与当前连接的AP之间的无线通信质量变差时,所述控制装置(406)进一步被配置为通过以下处理将所述AGV切换到另一个AP:
    第二候选AP列表确定处理:进行背景扫描,得到距离所述AGV预定距离内的所有AP,并按照每一个AP的信号强度从强到弱的顺序对所有AP进行排序得到第二候选AP列表;
    对于所述第二候选AP列表中的每一个AP,从第一个AP开始执行以下处理:
    检查方向处理:检查该AP的位置与所述AGV的移动方向是否一致,如果一致,则执行下一个处理;如果不一致,则对于所述第二候选AP列表中的下一个AP重新执行所述检查方向处理;
    检查业务状态处理:检查该AP的业务载荷量和所连接的客户端的数目,在业务载荷量低于第二预定载荷阈值且所连接的客户端的数目低于第二预定数目的情况下,执行下一个处理;否则,选择所述第二候选AP列表中的下一个AP重新执行检查方向处理;以及
    确定AP处理:确定该AP作为所述AGV要切换至的AP。
  10. 如权利要求9所述的导航系统(400),其中,所述无线通信质量基于AP的以下参数中的至少一项来评价:AP的无线信号强度、AP的业务载荷量、AP所连接的客户端的数目以及AP的位置与所述AGV的移动方向的关系。
  11. 如权利要求8所述的导航系统(400),其中,在出现以下情况中的至少一种情况时,所述控制装置(406)通知所述导航装置(404)重新确定所述AGV的至少一条候选路径,并基于重新确定的至少一条候选路径 执行所述计算:
    在进行背景扫描时,没有找到可用的AP;
    所述AGV在行驶过程中遇到障碍物;
    所连接的AP的业务载荷突然增加;以及
    所连接的AP出现故障。
  12. 如权利要求6所述的导航系统(400),其中,所述位置监控装置(402)、所述导航装置(404)和所述控制装置(406)集成在所述AGV中。
  13. 如权利要求7所述的导航系统(400),其中,所述AP控制器(104)集成在所述控制装置(406)中。
  14. 计算设备(500),包括:
    至少一个处理器(502);以及
    与所述至少一个处理器(502)耦合的一个存储器(504),所述存储器用于存储指令,当所述指令被所述至少一个处理器(502)执行时,使得所述处理器(502)执行如权利要求1到5中任意一项所述的方法。
  15. 一种非暂时性机器可读存储介质,其存储有可执行指令,所述指令当被执行时使得所述机器执行如权利要求1到5中任意一项所述的方法。
  16. 一种计算机程序,包括计算机可执行指令,所述计算机可执行指令在被执行时使至少一个处理器执行根据权利要求1至5中任意一项所述的方法。
  17. 一种计算机程序产品,所述计算机程序产品被有形地存储在计算机可读介质上并且包括计算机可执行指令,所述计算机可执行指令在被执行时使至少一个处理器执行根据权利要求1至5中任意一项所述的方法。
PCT/CN2019/082892 2019-04-16 2019-04-16 应用于agv的导航方法、系统、计算设备、介质以及产品 WO2020210986A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/082892 WO2020210986A1 (zh) 2019-04-16 2019-04-16 应用于agv的导航方法、系统、计算设备、介质以及产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/082892 WO2020210986A1 (zh) 2019-04-16 2019-04-16 应用于agv的导航方法、系统、计算设备、介质以及产品

Publications (1)

Publication Number Publication Date
WO2020210986A1 true WO2020210986A1 (zh) 2020-10-22

Family

ID=72836798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082892 WO2020210986A1 (zh) 2019-04-16 2019-04-16 应用于agv的导航方法、系统、计算设备、介质以及产品

Country Status (1)

Country Link
WO (1) WO2020210986A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112764405A (zh) * 2021-01-25 2021-05-07 青岛港国际股份有限公司 基于时间预估模型的agv调度方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030060213A1 (en) * 2001-09-21 2003-03-27 Tero Heinonen Location method for mobile netwoks
CN102006652A (zh) * 2010-11-04 2011-04-06 南京大学 一种无线网络中切换次数最少的导航路径选择方法
CN104154922A (zh) * 2014-08-05 2014-11-19 华为技术有限公司 一种路径导航方法、服务器及移动终端
CN106595688A (zh) * 2016-12-08 2017-04-26 济南佰意兴网络科技有限公司 一种多agv导向和动态路径规划方法
CN108981713A (zh) * 2018-08-16 2018-12-11 佛山科学技术学院 一种混合无线自适应导航方法及装置
CN109579858A (zh) * 2017-09-28 2019-04-05 腾讯科技(深圳)有限公司 导航数据处理方法、装置、设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030060213A1 (en) * 2001-09-21 2003-03-27 Tero Heinonen Location method for mobile netwoks
CN102006652A (zh) * 2010-11-04 2011-04-06 南京大学 一种无线网络中切换次数最少的导航路径选择方法
CN104154922A (zh) * 2014-08-05 2014-11-19 华为技术有限公司 一种路径导航方法、服务器及移动终端
CN106595688A (zh) * 2016-12-08 2017-04-26 济南佰意兴网络科技有限公司 一种多agv导向和动态路径规划方法
CN109579858A (zh) * 2017-09-28 2019-04-05 腾讯科技(深圳)有限公司 导航数据处理方法、装置、设备及存储介质
CN108981713A (zh) * 2018-08-16 2018-12-11 佛山科学技术学院 一种混合无线自适应导航方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112764405A (zh) * 2021-01-25 2021-05-07 青岛港国际股份有限公司 基于时间预估模型的agv调度方法
WO2022156440A1 (zh) * 2021-01-25 2022-07-28 青岛港国际股份有限公司 基于时间预估模型的agv调度方法

Similar Documents

Publication Publication Date Title
JP4348276B2 (ja) ロボット制御装置
US11876594B2 (en) Position information assisted beamforming
US10187896B2 (en) Position information assisted network control
US10827399B2 (en) Method for switching roadside navigation unit in navigation system, and device
JP4621073B2 (ja) ロボット制御装置
WO2018081971A1 (zh) 路径规划的方法、装置、服务器及机器人
JP2019034714A5 (zh)
Bekmezci et al. Connected multi UAV task planning for flying ad hoc networks
US11275387B2 (en) Coach apparatus and cooperative operation controlling method for coach-driven multi-robot-cooperative operation system
CN110567477A (zh) 基于改进a*算法的路径规划方法、装置及机器人
CN108650634B (zh) 一种基于轨迹预测的无线传感器网络目标跟踪方法
US20220038147A1 (en) Communication control method, communication control device, and communication control program
JP2018147477A (ja) 駐車場の車両走行制御システム、および駐車場の車両走行制御システムの制御方法
US11438830B2 (en) Task execution system, radio connection method, and program
WO2020210986A1 (zh) 应用于agv的导航方法、系统、计算设备、介质以及产品
US20200143675A1 (en) Systems and methods for self-driving vehicle traffic management
KR20210089409A (ko) 차량 자원을 이용하여 서비스를 제공하는 장치 및 그의 동작 방법
EP3889718B1 (en) Control system , control method, and program
WO2019215838A1 (ja) 自律動作機の制御装置、自律動作機の制御方法、及び、自律動作機の制御プログラムが格納された記録媒体
WO2022067560A1 (zh) 协同工作方法和系统、移动机器人、计算设备和存储介质
EP4105907A1 (en) Information processing method, information processing system, and information processing device
US11203118B1 (en) Systems and methods to implement preferred pathways in mobile robots
WO2020110502A1 (ja) 搬送情報生成装置、搬送システム、制御方法、プログラムおよび記録媒体
WO2019183959A1 (zh) 航点的更新方法及可移动平台
KR101453165B1 (ko) 매체 독립 핸드오버 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924971

Country of ref document: EP

Kind code of ref document: A1