WO2020210948A1 - 获取冠脉血流量及血流速度的方法和装置 - Google Patents

获取冠脉血流量及血流速度的方法和装置 Download PDF

Info

Publication number
WO2020210948A1
WO2020210948A1 PCT/CN2019/082715 CN2019082715W WO2020210948A1 WO 2020210948 A1 WO2020210948 A1 WO 2020210948A1 CN 2019082715 W CN2019082715 W CN 2019082715W WO 2020210948 A1 WO2020210948 A1 WO 2020210948A1
Authority
WO
WIPO (PCT)
Prior art keywords
coronary
vessel
blood flow
nucleus
bifurcated
Prior art date
Application number
PCT/CN2019/082715
Other languages
English (en)
French (fr)
Inventor
涂圣贤
李泽杭
韩静峰
李冠宇
Original Assignee
博动医学影像科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博动医学影像科技(上海)有限公司 filed Critical 博动医学影像科技(上海)有限公司
Priority to US17/601,520 priority Critical patent/US11308621B2/en
Priority to PCT/CN2019/082715 priority patent/WO2020210948A1/zh
Priority to EP19924646.3A priority patent/EP3949860A4/en
Priority to JP2021560922A priority patent/JP7227400B2/ja
Publication of WO2020210948A1 publication Critical patent/WO2020210948A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/504Clinical applications involving diagnosis of blood vessels, e.g. by angiography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/507Clinical applications involving determination of haemodynamic parameters, e.g. perfusion CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5217Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/25Determination of region of interest [ROI] or a volume of interest [VOI]
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30048Heart; Cardiac
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • G06T2207/30104Vascular flow; Blood flow; Perfusion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/03Recognition of patterns in medical or anatomical images

Definitions

  • the invention relates to the field of medical technology, in particular to a method and device for obtaining coronary blood flow and blood flow velocity.
  • coronary blood flow and blood flow velocity are important parameters for hemodynamic calculations.
  • the current methods for calculating coronary blood flow and blood flow velocity are mainly divided into invasive methods and non-invasive methods.
  • Invasive methods include the TIMI frame method of coronary angiography. Since coronary angiography can see the information of blood flow changes over time, the current can be calculated by the length of the blood vessel segment and the time of blood flow through the blood vessel segment Blood flow velocity of blood vessels;
  • Non-invasive methods include segmenting the size of the myocardium using CT images, and estimating the size of the blood flow at the opening of the coronary artery based on the relationship between the size of the organ in the organism and the blood flow found in existing studies.
  • the existing method needs to segment the myocardium based on the CT image, and then estimate the blood flow based on the size of the myocardium. The method steps are more complicated.
  • the technical problem to be solved by the present invention is to provide a simpler method and device for obtaining coronary blood flow and blood flow velocity.
  • the present invention provides a method for obtaining coronary blood flow, including:
  • the value range of K is 5 to 9.5, preferably 6.5 to 8, and most preferably 7.
  • the total volume V of the coronary reference lumen is obtained by the following steps:
  • the geometric feature data of the coronary arteries include the length of the coronary arteries and the reference lumen area of the arteries;
  • the total volume V of the coronary reference lumen is obtained by the following steps:
  • the coronary artery includes multiple bifurcated nuclei and multi-segment vascular segments divided by the bifurcated nuclei.
  • the total volume V of the coronary reference lumen is obtained by adding the volumes of the multiple bifurcated nuclei and the multi-segment vascular segments.
  • calculate the volume of the bifurcated nucleus by simplifying it to a truncated cone.
  • the area of one bottom surface of the truncated cone is the reference lumen area at the proximal end of the bifurcated nucleus, and the area of the other bottom surface of the truncated cone is the reference tube at the two distal ends of the bifurcated nucleus.
  • the total area of the cavity, the height of the truncated cone is the distance from the proximal center of the bifurcation nucleus to the bifurcation crest.
  • the volume of the multi-segment blood vessel segment is simplified as a truncated cone to calculate its volume.
  • the area of the upper and lower bottom surfaces of the truncated cone is the reference lumen area at the proximal end of the blood vessel segment and the reference lumen area at the distal end, respectively.
  • the height of the truncated cone is the center of the vascular segment. The length of the line.
  • the multi-segment blood vessel segment includes the most distal blood vessel segment and other blood vessel segments except the most distal blood vessel segment, wherein:
  • each cylinder is the reference lumen area at any place of the vascular segment, and the height of the cylinder is the blood vessel.
  • the geometric feature data includes the bifurcation angle ⁇ 1 between the proximal main branch vessel and the distal main branch vessel of any bifurcation nucleus, the total length L 1 of the distal main branch vessel, and the proximal main branch vessel The bifurcation angle between and the branch blood vessel ⁇ 2 , the full length of the branch blood vessel L 2 ;
  • the reference lumen area of the proximal main branch vessel of the first bifurcated nucleus as the reference lumen area of any unaffected part of the proximal main branch vessel of the first bifurcated nucleus;
  • the reference lumen area and branch vessels of the proximal main branch vessel passing through any bifurcated nucleus one by one from near to far calculates the reference lumen area of the proximal end of the distal main branch vessel connected to any bifurcation nucleus.
  • proximal main branch of the first bifurcated nucleus closest to the coronary vessel opening does not have an undisturbed lumen
  • the proximal end connected to any bifurcated nucleus through the reference lumen of the proximal end of the main branch vessel and the proximal end of the branch vessel from far to near.
  • the reference lumen area of the main branch vessel is the reference lumen area of the main branch vessel.
  • the reference lumen area of the region of interest in the coronary artery is obtained by the following method:
  • the geometric feature data of the coronary arteries includes the medial medial area S'of the region of interest in the coronary arteries,
  • the reference lumen area of the corresponding region S A*S', where 0.7 ⁇ A ⁇ 1.
  • the coronary imaging information is obtained through non-invasive coronary CT angiography.
  • the present invention also provides a method for obtaining coronary blood flow velocity.
  • the blood flow at the coronary artery opening obtained according to any of the foregoing methods is divided by the reference lumen area there to obtain the coronary blood flow velocity. Blood flow rate.
  • ⁇ 0 is the blood flow velocity of the main branch vessel proximal to the bifurcated nucleus
  • ⁇ 1 is the blood flow velocity of the main branch vessel distal to the bifurcated nucleus
  • ⁇ 2 is the blood flow velocity of the branch vessels of the bifurcated nucleus.
  • the present invention also provides a device for obtaining coronary blood flow, including:
  • the coronary artery geometric feature analysis module is used to obtain coronary imaging information and obtain the geometric feature data of the coronary artery;
  • a volume calculation module for obtaining the total volume V of the coronary reference lumen according to the coronary geometric feature data
  • the blood flow calculation module is used to calculate the blood flow Q at the coronary ostium according to formula 1:
  • the value range of K is 5 to 9.5, preferably 6.5 to 8, and most preferably 7.
  • the coronary artery geometric feature analysis module is used to obtain the length of the coronary artery and the reference lumen area of the coronary artery;
  • the volume calculation module is used to cut the coronary blood vessel into a plurality of slices perpendicular to the blood vessel center line along the center line of the blood vessel, define the bottom area of the slice as the corresponding reference lumen area, and combine the coronary blood vessel
  • the total volume V of the coronary reference lumen is obtained by summing the volumes of a plurality of the slices.
  • volume calculation module is used for:
  • the coronary artery includes a plurality of bifurcated nuclei and multi-segmented vascular segments divided by the bifurcated nuclei, and the volume of the multiple bifurcated nuclei and the multi-segmented vascular segment is added to obtain the reference lumen of the coronary artery The total volume V.
  • the volume calculation module is used to simplify the bifurcated nucleus into a truncated cone to calculate its volume
  • the area of one bottom surface of the truncated cone is the reference lumen area at the proximal end of the bifurcated nucleus
  • the other bottom surface of the truncated cone The area is the sum of the reference lumen areas of the two distal ends of the bifurcated nucleus
  • the height of the truncated cone is the distance from the center of the proximal end of the bifurcated nucleus to the bifurcation crest.
  • the volume calculation module is used to simplify the multi-segment blood vessel segment into a truncated cone to calculate its volume
  • the area of the upper and lower bottom surfaces of the truncated cone is the reference lumen area of the proximal end of the blood vessel segment and the reference of the distal end, respectively
  • the lumen area and the height of the truncated cone are the length of the center line of the blood vessel segment.
  • the multi-segment blood vessel segment includes the most distal blood vessel segment and other blood vessel segments except the most distal blood vessel segment, wherein:
  • the volume calculation module is used to simplify the vascular segments other than the most distal vascular segment into cylinders to calculate their volume, and the bottom area of each cylinder is a reference tube at any position of the vascular segment
  • the cavity area, the height of the cylinder is the length of the centerline of the blood vessel segment;
  • coronary artery geometric feature analysis module is used for:
  • coronary artery geometric feature analysis module is used for:
  • the reference lumen area of the proximal main branch vessel of the first bifurcated nucleus as the reference lumen area of any non-diseased part of the proximal main branch vessel of the first bifurcated nucleus;
  • the reference lumen area of the proximal main branch vessel passing through any bifurcated nucleus and the The reference lumen area of the proximal end of the branch vessel calculates the reference lumen area of the proximal end of the distal main branch vessel connected to any bifurcation nucleus, and,
  • proximal main branch of the first bifurcated nucleus closest to the coronary vessel opening does not have an undiseased lumen
  • the proximal end connected to any bifurcated nucleus through the reference lumen of the proximal end of the main branch vessel and the proximal end of the branch vessel from far to near.
  • the reference lumen area of the main branch vessel is the reference lumen area of the main branch vessel.
  • the coronary artery geometric feature analysis module is used to obtain the reference lumen area of the region of interest in the coronary blood vessel, including:
  • the reference lumen area of the corresponding region S A*S', where 0.7 ⁇ A ⁇ 1.
  • the coronary artery geometric feature analysis module obtains coronary artery image information through non-invasive coronary CT angiography.
  • the present invention provides a device for obtaining coronary blood flow velocity, including:
  • the blood flow velocity calculation module is used to obtain the blood flow velocity at the coronary artery opening by dividing the blood flow rate at the coronary artery opening by the reference lumen area there.
  • the blood flow velocity calculation module is used to calculate any vascular node in the coronary artery except the coronary artery opening step by step through the following formula 3 or formula 4 after obtaining the blood flow velocity at the coronary artery opening Blood flow rate of segment:
  • ⁇ 0 is the blood flow velocity of the main branch vessel proximal to the bifurcation nucleus
  • ⁇ 1 is the blood flow velocity of the main branch vessel distal to the bifurcation nucleus
  • ⁇ 2 is the blood flow velocity of branch vessels of the bifurcated nucleus.
  • the present invention also provides another device for obtaining coronary blood flow, including:
  • the processor, the storage and the computer executable instructions stored in the storage when the processor executes the computer executable instructions, implement any of the aforementioned methods for obtaining coronary blood flow.
  • the present invention provides a device for obtaining coronary blood flow velocity, including:
  • the processor, the storage and the computer-executable instructions stored in the storage when the processor executes the computer-executable instructions, realize any of the aforementioned methods for obtaining coronary blood flow velocity.
  • the present invention provides a new method for obtaining coronary blood flow and blood flow velocity.
  • the coronary blood flow and blood flow velocity can be obtained through coronary imaging information.
  • it is simpler, and compared to not using the patient’s personalized blood flow for hemodynamic calculations, the accuracy of hemodynamic results can be improved.
  • the image information in the present invention can be directly obtained by non-invasive methods without causing trauma to the human body.
  • Figure 1 is a schematic flow chart of the method for obtaining coronary blood flow in the present invention
  • Figure 2 is a schematic diagram of the structure of the bifurcated core of the present invention.
  • FIG. 3 is a schematic flow chart of a method for obtaining the entire coronary reference lumen area in an embodiment of the present invention
  • Fig. 4 is a schematic diagram of the simplified structure of part of the coronary vessels in the present invention.
  • the inventor of the present invention discovered the relationship between the volume of the coronary artery and the blood flow at the opening of the coronary artery based on the "allometric growth law". Based on this, a large number of coronary artery samples were selected. Based on the experimental data of a large number of samples, the specific relationship between the blood flow at the opening of the coronary artery and the total volume of the coronary artery was determined, and finally a method of obtaining coronary blood flow was provided. , As shown in Figure 1, including:
  • the geometric feature data of the coronary artery may include the original geometric feature data of the coronary artery directly obtained through the coronary imaging information, and may also include the coronary artery reference lumen obtained by reconstructing the disease-free state of the coronary artery through the original geometric feature data of the coronary artery Geometric feature data;
  • K is a coefficient determined after experiments with a large number of samples, and the value range of K is 5 to 9.5, preferably 6.5 to 8, and most preferably 7.
  • the reference lumen used in the present invention can better reflect the blood flow in the hyperemic state, because the blood flow required to perfuse the myocardium will not be reduced due to coronary stenosis. Volume will cause an underestimation of blood flow.
  • the coronary artery reference lumen volume is used to calculate the flow rate, which can provide more accurate boundary conditions for hemodynamic calculation.
  • proximal end in the present invention refers to the end closer to the coronary artery opening, and the distal end corresponds to the end further away from the coronary artery opening;
  • the proximal main branch vessel, the distal main branch vessel, and the branch vessel are relative concepts.
  • the main branch vessel at the end closer to the coronary opening is the proximal main branch vessel, which is closer to the coronary opening.
  • the main branch vessel at the far end is the distal main branch vessel, and the other is a branch vessel; when the aforementioned branch vessel undergoes a secondary bifurcation to branch out a secondary branch, for this secondary bifurcation, the branch vessel is the main branch vessel.
  • Branch blood vessels, the secondary branch is the branch blood vessel.
  • the total volume V of the coronary reference lumen in the present invention can be obtained by any known method in the prior art.
  • the coronary reference lumen volume V can be obtained through the following steps:
  • ST1' Obtain coronary imaging information, and obtain the geometric feature data of the coronary artery, including the length of the coronary artery and the reference lumen area of the coronary artery;
  • ST2' Cut the coronary blood vessel into multiple slices perpendicular to the blood vessel centerline along the centerline of the blood vessel, define the bottom area of the slice as the corresponding reference lumen area, and combine the length of the coronary blood vessel to calculate the volume of the multiple slices And get the total volume V of the coronary reference lumen. That is, by simplifying the coronary reference lumen into the superposition of N very thin slices, the total volume V of the coronary reference lumen can be obtained by the sum formula of the coronary cross-sectional area and the blood vessel length, as described in the following formula :
  • S i and ⁇ h i represent the area and thickness of the i-th slice of the coronary reference lumen
  • N is the total number of simplified slices. It is understandable that the larger the number of N, the more accurate the obtained coronary reference lumen volume V, and the appropriate number of N can be selected in the calculation according to the needs of the situation.
  • the coronary reference lumen volume V can be obtained through the following steps:
  • the bifurcation nucleus can be determined by any method of identifying the bifurcation nucleus in the art, as long as the calculation error is within an acceptable range.
  • the bifurcated nucleus is the first section D 0 where the proximal main branch vessel 20 of the bifurcation begins to enlarge, and the distal main branch vessel 30 is in the branch.
  • the coronary artery can be divided into multiple vascular segments through the bifurcated nucleus, that is, the coronary artery includes multiple bifurcated nuclei and multiple vascular segments divided by the bifurcated nucleus, and multiple bifurcated nuclei and multiple vascular segments The volume of the segments is added to obtain the total volume V of the coronary reference lumen.
  • the bifurcated nucleus is simplified as a truncated cone to calculate its volume.
  • the area of one bottom surface of the truncated cone is the reference lumen area of the proximal end of the bifurcated nucleus, that is, the area of the first section D 0
  • the area of the other bottom surface of the truncated cone is the bifurcation reference luminal area of the core and two distal ends, i.e., the second and third cross-sectional.
  • proximal center of the fork nucleus refers to the center of the first section D 0 .
  • the area of the upper and lower bottom surfaces of the truncated cone is the reference lumen area of the proximal end of the blood vessel segment and the reference lumen area of the distal end, respectively.
  • the height of the truncated cone is the length of the center line of the blood vessel segment. .
  • the multi-segment vascular segments are further divided into the most distal vascular segment and other vascular segments except the most distal vascular segment.
  • the reference lumen area of the most distal vascular segment will gradually decrease with the direction of the extension of the vessel length, and any other vascular segment except the most distal vascular segment will be in the same vascular segment Inside, the reference lumen area is the same.
  • the vascular segments other than the most distal vascular segment are simplified as cylinders to calculate their volume.
  • the bottom area of each cylinder is the reference lumen area at any point of the vascular segment, and the height of the cylinder is The length of the center line of the blood vessel segment; the most distal blood vessel segment is simplified as a truncated cone, and the upper and lower bottom areas of the truncated cone are the reference lumen area of the proximal end and the distal reference lumen area of the distal most blood vessel segment, respectively.
  • the height of is the length of the centerline of the vascular segment.
  • the original geometric feature data of the coronary arteries can be directly obtained according to the coronary image information, including the length of the coronary arteries, the bifurcation angle and the original lumen area.
  • the lumen area needs to be corrected to obtain the lumen area under normal conditions and the reference lumen area; for the lumen that has no disease, the actual lumen area at that place is the reference lumen area .
  • the calculation of the reference lumen area is mostly to select the normal lumen position before and after the lesion, and take the average value of its area as the reference lumen size for the lesion location.
  • the distribution area of the disease in the coronary artery is longer, and it is difficult to find a normal lumen near the diseased vessel segment. Therefore, the traditional method is not applicable to patients with the entire segment of diffuse disease, and it is easy to underestimate Refer to the size of the lumen.
  • the inventors of the present application discovered in research that the coronary bifurcation structure shown in Figure 2, the blood flow velocity of the proximal main branch vessel of any bifurcated nucleus, the blood flow velocity of the proximal end of the distal main branch vessel and the branch vessels
  • the blood flow velocity at the proximal end has the following relationship:
  • ⁇ 0 is the blood flow velocity of the main branch vessel proximal to the bifurcated nucleus
  • ⁇ 1 is the blood flow velocity of the main branch vessel distal to the bifurcated nucleus
  • ⁇ 2 is the blood flow velocity of the branch vessels of the bifurcated nucleus.
  • e is the natural constant
  • ⁇ 1 is the bifurcation angle between the proximal main branch vessel and the distal main branch vessel;
  • L 1 is the full length of the distal main branch vessel;
  • ⁇ 2 is the bifurcation between the proximal main branch vessel and the branch vessel Angle;
  • L 2 is the full length of the branch vessel;
  • the bifurcation angle ⁇ 1 is the normal line R 0 of the section D 0 of the proximal main branch vessel at the beginning of the vessel enlargement and the distal main branch vessel
  • the bifurcation angle ⁇ 2 is the angle between R 0 and the normal line R 2 of the branch vessel at the section D 2 at the bifurcation ridge
  • the full length L 1 is the full length from the center of the bifurcation to the distal end of the distal main branch blood vessel segment (not the length of the distal main branch blood vessel segment).
  • the full length L 2 of the blood vessel is the full length from the bifurcation center to the distal end of the most distal blood vessel segment of the branch blood vessel (not the length of the branch blood vessel as the blood vessel segment).
  • the bifurcation center is the center of gravity of the bifurcation nucleus, but in the present invention, the error caused by selecting any point in the bifurcation nucleus as the bifurcation center to calculate the blood vessel length is within an acceptable range.
  • any bifurcated nucleus based on the principle of conservation of flow, the reference lumen area S 0 at the proximal end of the bifurcated nucleus, and the reference lumen area S 1 at the proximal end of the bifurcated nucleus and the distal main branch vessel
  • ⁇ 0 *S 0 ⁇ 1 *S 1 + ⁇ 2 *S 2
  • any bifurcated nucleus can be obtained There is the relationship of the following formula 2:
  • S 0 is the reference lumen area of the proximal end of the bifurcated nucleus.
  • S 0 is also the reference lumen area of the main branch vessel proximal to the bifurcation nucleus;
  • S 1 is the reference lumen area between the bifurcation nucleus and the distal main branch vessel.
  • S 1 is also the reference lumen area of the proximal main branch vessel at the distal end of the bifurcation nucleus.
  • S 2 is the reference lumen area between the bifurcated nucleus and the branch vessel.
  • S 2 is also the reference lumen area at the proximal end of the branch vessel of the bifurcation nucleus.
  • the reference lumen area at any location on the branch blood vessel is equal to the reference lumen area at the proximal end of the branch blood vessel.
  • the present invention proposes a method for calculating the reference lumen based on the anatomical structure of the coronary artery bifurcation, which can provide a more accurate method for calculating the reference lumen for patients with coronary artery disease. Provide more accurate boundary conditions for hemodynamic calculations.
  • the coronary artery geometric feature data is obtained from the coronary imaging information, the geometric feature data includes the bifurcation angle ⁇ 1 between the proximal main branch vessel and the distal main branch vessel of any bifurcation nucleus, and the distal main branch vessel
  • the full length L 1 , the bifurcation angle between the proximal main branch vessel and the branch vessel ⁇ 2 , the full length length L 2 of the branch vessel; and the reference lumen area S of the proximal main branch vessel of any bifurcation nucleus 0 after any two of the reference lumen area S 1 of the proximal end of the distal main branch vessel of the bifurcated nucleus, and the reference lumen area S 2 of the proximal end of the branch vessel of the bifurcation nucleus, formula 2 Obtain the remaining reference lumen area.
  • the reference lumen of the diseased blood vessel can be calculated one by one according to the actual condition of the coronary artery disease.
  • the present invention also provides a method for calculating the coronary reference lumen area from far to near and from near to far one by one.
  • the reference lumen area of the entire coronary artery is calculated by the method from near to far, and the specific steps are as follows:
  • ST141 Firstly calculate the distal main branch vessel 31 of the first bifurcation nucleus 11 by calculating the reference lumen area of the proximal main branch vessel 21 of the first bifurcation nucleus 11 and the reference lumen area of the proximal end of the first branch vessel 41 The proximal reference lumen area;
  • the distal main branch vessel 31 of the first bifurcation nucleus 11 is the proximal main branch vessel 22 of the second bifurcation nucleus 12, and the proximal end of the distal main branch vessel 31 of the first bifurcation nucleus 11 is a reference
  • the lumen area is the reference lumen area of the proximal main branch vessel 22 of the second bifurcation 12;
  • the distal main branch vessel of the second bifurcated nucleus 12 is calculated by calculating the reference lumen area of the proximal main branch vessel 22 of the second bifurcation nucleus 12 and the reference lumen area of the proximal end of the second branch vessel 42 32 The proximal reference lumen area;
  • ST143 By analogy, calculate the reference lumen area of the distal main branch vessel from the third bifurcated nucleus 13 to the most distal bifurcated nucleus one by one from proximal to distal, and finally obtain the vascular segments of this main branch Refer to the lumen area.
  • the reference lumen area of all blood vessel segments can also be calculated step by step from far to near.
  • ST13 Determine whether there is an undisrupted lumen in the proximal main branch of the first bifurcated nucleus closest to the opening of the coronary artery;
  • the present invention also provides another calculation The method of coronary reference lumen.
  • the intima is the innermost layer of the tube wall and is the area where the diseased plaque grows.
  • the inner peripheral area of the intima is the actual lumen area; the media is located between the intima and the adventitia and closely adheres to the outside of the intima.
  • the inner circumference area of the membrane is the outer circumference area of the inner membrane. Therefore, the reference lumen area of the region of interest in the coronary artery can also be calculated by the following method:
  • the geometric characteristic data of the coronary artery include the medial area S'of the region of interest in the coronary blood vessels,
  • the reference lumen area of the corresponding region S A*S', where 0.7 ⁇ A ⁇ 1.
  • the coronary imaging information may be obtained through non-invasive coronary CT angiography.
  • the coronary blood flow information can be obtained without additional trauma, which greatly reduces the suffering of patients.
  • the present invention also provides a method for obtaining coronary blood flow velocity.
  • the blood flow at the coronary artery opening obtained according to any of the foregoing methods is divided by the reference lumen area there to obtain the coronary blood flow velocity. Blood flow rate.
  • ⁇ 0 is the blood flow velocity of the main branch vessel proximal to the bifurcation
  • ⁇ 1 is the blood flow velocity of the main branch vessel distal to the bifurcation
  • ⁇ 2 is the blood flow velocity of the branched blood vessel.
  • ⁇ 1 , ⁇ 1 , L 1 , L 2 and r are the same as the previous definitions.
  • the present invention also provides a device for obtaining coronary blood flow, including:
  • the coronary artery geometric feature analysis module is used to obtain coronary imaging information and obtain the geometric feature data of the coronary artery;
  • a volume calculation module for obtaining the total volume V of the coronary reference lumen according to the coronary geometric feature data
  • the blood flow calculation module is used to calculate the blood flow Q at the coronary ostium according to formula 1:
  • the value range of K is 5 to 9.5, preferably 6.5 to 8, and most preferably 7.
  • the coronary artery geometric feature analysis module is used to obtain the length of the coronary artery and the reference lumen area of the coronary artery;
  • the volume calculation module is used to cut the coronary blood vessel into a plurality of slices perpendicular to the blood vessel center line along the center line of the blood vessel, define the bottom area of the slice as the corresponding reference lumen area, and combine the coronary blood vessel
  • the total volume V of the coronary reference lumen is obtained by summing the volumes of a plurality of the slices.
  • volume calculation module is used for:
  • the coronary artery includes a plurality of bifurcated nuclei and multi-segmented vascular segments divided by the bifurcated nuclei, and the volume of the multiple bifurcated nuclei and the multi-segmented vascular segment is added to obtain the reference lumen of the coronary artery The total volume V.
  • the volume calculation module is used to simplify the bifurcated nucleus into a truncated cone to calculate its volume
  • the area of one bottom surface of the truncated cone is the reference lumen area at the proximal end of the bifurcated nucleus
  • the other bottom surface of the truncated cone The area is the sum of the reference lumen areas of the two distal ends of the bifurcated nucleus
  • the height of the truncated cone is the distance from the center of the proximal end of the bifurcated nucleus to the bifurcation crest.
  • the volume calculation module is used to simplify the multi-segment blood vessel segment into a truncated cone to calculate its volume
  • the area of the upper and lower bottom surfaces of the truncated cone is the reference lumen area of the proximal end of the blood vessel segment and the reference of the distal end, respectively
  • the lumen area and the height of the truncated cone are the length of the center line of the blood vessel segment.
  • the multi-segment blood vessel segment includes the most distal blood vessel segment and other blood vessel segments except the most distal blood vessel segment, wherein:
  • the volume calculation module is used to simplify the vascular segments other than the most distal vascular segment into cylinders to calculate their volume, and the bottom area of each cylinder is a reference tube at any position of the vascular segment
  • the cavity area, the height of the cylinder is the length of the centerline of the blood vessel segment;
  • coronary artery geometric feature analysis module is used for:
  • coronary artery geometric feature analysis module is used for:
  • the reference lumen area of the proximal main branch vessel of the first bifurcated nucleus as the reference lumen area of any non-diseased part of the proximal main branch vessel of the first bifurcated nucleus;
  • the reference lumen area of the proximal main branch vessel passing through any bifurcated nucleus and the The reference lumen area of the proximal end of the branch vessel calculates the reference lumen area of the proximal end of the distal main branch vessel connected to any bifurcation nucleus, and,
  • proximal main branch of the first bifurcated nucleus closest to the coronary vessel opening does not have an undiseased lumen
  • the proximal end connected to any bifurcated nucleus through the reference lumen of the proximal end of the main branch vessel and the proximal end of the branch vessel from far to near.
  • the reference lumen area of the main branch vessel is the reference lumen area of the main branch vessel.
  • the coronary artery geometric feature analysis module is used to obtain the reference lumen area of the region of interest in the coronary blood vessel, including:
  • the reference lumen area of the corresponding region S A*S', where 0.7 ⁇ A ⁇ 1.
  • the coronary artery geometric feature analysis module obtains coronary artery image information through non-invasive coronary CT angiography.
  • the present invention provides a device for obtaining coronary blood flow velocity, including:
  • the blood flow velocity calculation module is used to obtain the blood flow velocity at the coronary artery opening by dividing the blood flow rate at the coronary artery opening by the reference lumen area there.
  • the blood flow velocity calculation module is used to calculate any vascular node in the coronary artery except the coronary artery opening step by step through the following formula 3 or formula 4 after obtaining the blood flow velocity at the coronary artery opening Blood flow rate of segment:
  • ⁇ 0 is the blood flow velocity of the main branch vessel proximal to the bifurcation nucleus
  • ⁇ 1 is the blood flow velocity of the main branch vessel distal to the bifurcation nucleus
  • ⁇ 2 is the blood flow velocity of the branch vessels of the bifurcated nucleus.
  • the present invention also provides another device for obtaining coronary blood flow, including:
  • the processor, the storage and the computer executable instructions stored in the storage when the processor executes the computer executable instructions, implement any of the aforementioned methods for obtaining coronary blood flow.
  • the present invention provides a device for obtaining coronary blood flow velocity, including:
  • the processor, the storage and the computer-executable instructions stored in the storage when the processor executes the computer-executable instructions, realize any of the aforementioned methods for obtaining coronary blood flow velocity.
  • the reference lumen volume of the left coronary artery tree is calculated to be 1100mm 3 ;
  • the measured area of the left coronary artery opening is 11.5 mm 2
  • Example 1 5 955.02 0.08 -33%
  • Example 2 6 1146.03 0.10 -17%
  • Example 3 6.5 1241.53 0.11 -8%
  • Example 4 7 1337.03 0.12 0%
  • Example 5 1528.04 0.13 8%
  • Example 6 9 1719.04 0.15 25%
  • Comparative example 1 10 1910.05 0.17 42%
  • Comparative example 2 4.5 859.52 0.07 -42% Comparative example 3 — — 0.12 —
  • the contrast agent needs 10 frames from the proximal end to the distal end of the blood vessel segment.
  • the coronary angiography shooting frame rate is 15 frames per second, and the calculated time is 0.67 seconds;
  • the method for obtaining coronary blood flow provided by the present invention directly estimates the blood flow from the structural size of the coronary artery, and does not need to segment the myocardium according to the CT image first, because the existing calculation based on imaging hemodynamics The segmentation of the coronary artery is a necessary condition, so the estimation of the blood flow by the size of the coronary artery will not increase the workload of image processing. Compared with the prior art, the estimation of the coronary blood flow by the patient's myocardium is simpler and more accurate.

Abstract

一种获取冠脉血流量及血流速度的方法,包括:获取冠脉影像信息,得到冠脉几何特征数据;根据冠脉几何特征数据获得冠脉参考管腔的总体积V;根据以下公式计算冠脉开口处的血流量Q:Q=K* V ¾,其中,Q的单位是mm 3/s,V的单位为mm 3时,K的取值范围为5-9.5。通过冠脉的影像信息获得冠脉的血流量和血流速度,相较于现有技术中通过心肌大小估计冠脉血流量的方法更简单,能够为基于影像的血流动力学计算提供更加准确的边界条件。

Description

获取冠脉血流量及血流速度的方法和装置 技术领域
本发明涉及医疗技术领域,具体涉及一种获取冠脉血流量及血流速度的方法和装置。
背景技术
世界卫生组织报告表明,心血管疾病已经成为人类健康第一威胁。为了更好地了解心血管疾病的生理和病理行为,深入研究动脉血液流动就成为血流动力学的主要任务。
其中,冠脉血流量和血流速度是血流动力学计算的重要参数,目前计算冠脉血流量和血流速度的方法主要分为有创方法和无创方法。
有创方法包括冠状动脉造影的TIMI数帧法,由于冠脉造影可以看到血流随时间变化的信息,因此可以通过血管段的长度和血流流过该血管段的时间,来计算得到当前血管的血流速度;
无创方法包括利用CT图像分割出心肌的大小,并基于现有研究发现的生物体中器官大小和血流量之间的关系估计出冠脉开口处血流量的大小。基于无创的CT造影影像计算冠脉树的血流量,现有的方法需要先基于CT影像分割出心肌,再根据心肌大小来估计血流量,该方法步骤较为复杂。
因此,如何提供一种方法更简单、准确率更高的获取冠脉血流量及血流速度的方法和装置成为本领域亟待解决的技术问题。
发明内容
本发明要解决的技术问题是提供一种更简单的获取冠脉血流量及血流速度的方法和装置。
为了解决上述问题,本发明提供了一种获取冠脉血流量的方法,包括:
获取冠脉影像信息,得到冠脉几何特征数据;
根据冠脉几何特征数据获得冠脉参考管腔的总体积V;
根据公式1计算冠脉开口处的血流量Q:
Figure PCTCN2019082715-appb-000001
Q的单位为mm 3/s,V的单位为mm 3时,K的取值范围为5~9.5,优选为6.5~8,最优选为7。
进一步地,冠脉参考管腔的总体积V通过以下步骤获得:
冠脉几何特征数据包括冠脉血管长度和冠脉血管的参考管腔面积;
将冠脉血管沿血管中心线切分成多个垂直于血管中心线的片,定义片的底面积为相应处的参考管腔面积,结合冠脉血管长度,将多个片的体积求和得到冠脉的参考管腔的总体积V。
进一步地,冠脉参考管腔的总体积V通过以下步骤获得:
根据冠脉几何特征数据,识别冠脉的分叉核;
冠脉包括多个分叉核和由分叉核分割成的多段血管节段,将多个分叉核和多段血管节段的体积相加得出冠脉参考管腔的总体积V。
进一步地,将分叉核简化为圆台计算其体积,圆台的一个底面的面积为分叉核近端的参考管腔面积,圆台的另一个底面的面积为分叉核两个远端的参考管腔面积之和,圆台高为分叉核近端中心到分叉嵴的距离。
进一步地,将多段血管节段简化为圆台计算其体积,圆台的上下底面的面积分别为血管节段近端的参考管腔面积和远端的参考管腔面积,圆台的高为血管节段中心线的长度。
进一步地,多段血管节段包括最远端血管节段和除最远端血管节段以外的其他血管节段,其中:
将除最远端血管节段以外的其他血管节段简化为圆柱体计算其体积,每个圆柱体的底面积为该血管节段任一处的参考管腔面积,圆柱体的高为该血管节段中心线的长度;
进一步地,几何特征数据包括任一分叉核的近端主支血管和远端主支血管之间的分叉角度α 1,远端主支血管的全长长度L 1,近端主支血管和分支血管之间的分叉角度α 2,分支血管的全长长度L 2
以及任一分叉核的近端主支血管的参考管腔面积S 0,该分叉核的远端主支血管近端的参考管腔面积S 1,该分叉核的分支血管的近端的参考管腔面积S 2中的任意两个,
再通过下述公式2获得剩余一个参考管腔面积:
Figure PCTCN2019082715-appb-000002
其中,e为自然常数;-∞≤r<-0.6,优选-2≤r<-0.7.5,更优选r=-1。
进一步地,判断距离冠脉血管开口最近的第一分叉核的近端主支血管是否存在未病变的管腔;
若存在,则定义第一分叉核的近端主支血管的参考管腔面积为第一分叉核的近端主支血管任一未病变处的参考管腔面积;
并默认第一分叉核所在的主支血管上所有分支血管都未发生病变,根据影像信息直接获取第一分叉核所在的主支血管上的全部分叉的分支血管近端的参考管腔面积;
再根据第一分叉核所在的主支血管上任一分叉核距离冠脉血管开口的距离,从近到远逐个通过任一分叉核的近端主支血管的参考管腔面积和分支血管近端的参考管腔面积计算与任一分叉核相连的远端主支血管近端的参考管腔面积。
进一步地,若距离冠脉血管开口最近的第一分叉核的近端主支不存在未病变的管腔;
则判断最远端血管的近端是否病变;
若不存在病变,根据影像信息直接获取最远端血管近端的参考管腔面积;
根据分叉核距离冠脉血管开口的距离,从远到近逐个通过任一分叉核远端主支血管近端和分支血管近端的参考管腔计算与任一分叉核相连的近端主支血管的参考管腔面积。
进一步地,冠脉血管中感兴趣区域的参考管腔面积由以下方法获得:
冠脉几何特征数据包括冠脉血管中感兴趣区域的中膜内周面积S',
相应区域的参考管腔面积S=A*S',其中,0.7≤A<1。
进一步地,通过无创冠脉CT造影获取冠脉影像信息。
进一步地的,本发明还提供了一种获取冠脉血流速度的方法,根据前述任一方法获得的冠脉开口处的血流量除以该处的参考管腔面积,获得冠脉开口处的血流速度。
进一步地,在获得冠脉开口处的血流速度后,通过下述公式3或公式4逐级计算冠脉中除冠脉开口外任一血管节段的血流速度:
Figure PCTCN2019082715-appb-000003
ν 0为分叉核近端主支血管的血流速度;ν 1为分叉核远端主支血管的血流速度;
Figure PCTCN2019082715-appb-000004
ν 2为分叉核的分支血管的血流速度。
进一步地,本发明还提供了一种获取冠脉血流量的装置,包括:
冠脉几何特征分析模块,用于获取冠脉影像信息,得到冠脉的几何特征数据;
体积计算模块,用于根据所述冠脉几何特征数据获得冠脉参考管腔的总体积V;以及,
血流量计算模块,用于根据公式1计算冠脉开口处的血流量Q:
Figure PCTCN2019082715-appb-000005
Q的单位为mm 3/s,V的单位为mm 3时,K的取值范围为5~9.5,优选为6.5~8,最优选为7。
进一步地,所述冠脉几何特征分析模块用于获取冠脉血管长度和冠脉血管的参考管腔面积;
所述体积计算模块用于,将冠脉血管沿血管中心线切分成多个垂直于血管中心线的片,定义所述片的底面积为相应处的参考管腔面积,结合所述冠脉血管长度,将多个所述片的体积求和得到所述冠脉参考管腔的总体积V。
进一步地,所述体积计算模块用于,
根据所述冠脉几何特征数据,识别冠脉的分叉核;
所述冠脉包括多个分叉核和由分叉核分割成的多段血管节段,将所述多个分叉核和所述多段血管节段的体积相加得出冠脉参考管腔的总体积V。
进一步地,所述体积计算模块用于,将所述分叉核简化为圆台计算其体积,圆台的一个底面的面积为所述分叉核近端的参考管腔面积,圆台的另一个底面的面积为所述分叉核 两个远端的参考管腔面积之和,圆台高为分叉核近端中心到分叉嵴的距离。
进一步地,所述体积计算模块用于,将所述多段血管节段简化为圆台计算其体积,圆台的上下底面的面积分别为所述血管节段近端的参考管腔面积和远端的参考管腔面积,圆台的高为所述血管节段中心线的长度。
进一步地,所述多段血管节段包括最远端血管节段和除最远端血管节段以外的其他血管节段,其中:
所述体积计算模块用于,将所述除最远端血管节段以外的其他血管节段简化为圆柱体计算其体积,每个圆柱体的底面积为该血管节段任一处的参考管腔面积,圆柱体的高为该血管节段中心线的长度;
进一步地,所述冠脉几何特征分析模块用于,
获取任一分叉核的近端主支血管和远端主支血管之间的分叉角度α 1,远端主支血管的全长长度L 1,近端主支血管和分支血管之间的分叉角度α 2,分支血管的全长长度L 2
以及所述任一分叉核的近端主支血管的参考管腔面积S 0,该分叉核的远端主支血管近端的参考管腔面积S 1,该分叉核的分支血管的近端的参考管腔面积S 2中的任意两个,
再通过下述公式2获得剩余一个参考管腔面积:
Figure PCTCN2019082715-appb-000006
其中,e为自然常数;-∞≤r<-0.6;优选地,-2≤r<-0.7.5;最优选地,r=-1。
进一步地,所述冠脉几何特征分析模块用于,
判断距离冠脉血管开口最近的第一分叉核的近端主支血管是否存在未病变的管腔;
若存在,则定义所述第一分叉核的近端主支血管的参考管腔面积为所述第一分叉核的近端主支血管任一未病变处的参考管腔面积;
并默认所述第一分叉核所在的主支血管上所有分支血管都未发生病变,根据所述影像信息直接获取所述第一分叉核所在的主支血管上的全部分叉的分支血管近端的参考管腔面积;
再根据所述第一分叉核所在的主支血管上任一分叉核距离冠脉血管开口的距离,从近 到远逐个通过任一分叉核的近端主支血管的参考管腔面积和分支血管近端的参考管腔面积计算与任一分叉核相连的远端主支血管近端的参考管腔面积,以及,
若距离冠脉血管开口最近的第一分叉核的近端主支不存在未病变的管腔;
则判断最远端血管的近端是否病变;
若不存在病变,根据影像信息直接获取最远端血管近端的参考管腔面积;
根据分叉核距离冠脉血管开口的距离,从远到近逐个通过任一分叉核远端主支血管近端和分支血管近端的参考管腔计算与任一分叉核相连的近端主支血管的参考管腔面积。
进一步地,所述冠脉几何特征分析模块用于获取冠脉血管中感兴趣区域的参考管腔面积,包括:
获取所述冠脉血管中感兴趣区域的中膜内周面积S',
相应区域的参考管腔面积S=A*S',其中,0.7≤A<1。
进一步地,所述冠脉几何特征分析模块通过无创冠脉CT造影获取冠脉影像信息。
进一步地,本发明提供了一种获取冠脉血流速度的装置,包括:
前述任一种获取冠脉血流量的装置,用于获取冠脉开口处血流量;以及,
血流速度计算模块,用于根据冠脉开口处的血流量除以该处的参考管腔面积,获得冠脉开口处的血流速度。
进一步地,所述血流速度计算模块用于,在获得冠脉开口处的血流速度后,通过下述公式3或公式4逐级计算所述冠脉中除冠脉开口外任一血管节段的血流速度:
Figure PCTCN2019082715-appb-000007
所述ν 0为分叉核近端主支血管的血流速度;ν 1为分叉核远端主支血管的血流速度;
Figure PCTCN2019082715-appb-000008
ν 2为分叉核的分支血管的血流速度。
进一步地,本发明提供还提供了另一种用于获取冠脉血流量的装置,包括:
处理器、储存器及储存在储存器中的计算机可执行指令,处理器执行计算机可执行指令时,实现前述任一种获取冠脉血流量的方法。
进一步地,本发明提供了一种获取冠脉血流速度的装置,包括:
处理器、储存器及储存在储存器中的计算机可执行指令,处理器执行计算机可执行指令时,实现前述任一种获取冠脉血流速度的方法。
综上,本发明提供一种新的获取冠脉血流量、血流速度的方法,通过冠脉的影像信息,即可获得冠脉的血流量和血流速度。相较于现有技术中通过病人的心肌大小估计冠脉血流量方法更简单,相比于没有使用病人的个性化血流来进行血流动力学计算,可以提高血流动力学结果的准确度,能够为基于影像的血流动力学计算提供更加准确的边界条件。并且本发明中的影像信息可以直接是通过无创方法获得的,无需对人体造成创伤。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细地说明:
图1是本发明中获取冠脉血流量的方法流程示意图;
图2是本发明中分叉核的结构示意图;
图3是本发明中实施例中获取整个冠脉参考管腔面积的方法流程示意图;
图4是本发明中部分冠脉血管简化结构示意图。
具体实施方式
现在结合附图,详细介绍本发明的较佳实施方式。虽然本发明的描述将结合各个实施方式一起介绍,但这并不代表此发明的特征仅限于该几种实施方式。恰恰相反,结合实施方式作发明介绍的目的是为了覆盖基于本发明的权利要求而有可能延伸出的其它选择或改造。为了提供对本发明的深度了解,以下描述中将包含许多具体的细节。本发明也可以不使用这些细节实施。此外,为了避免混乱或模糊本发明的重点,有些具体细节将在描述中被省略。
本发明的发明人基于“异速生长定律”,发现了冠脉体积和冠脉开口处血流量的关系。以此为基础,选取了大量冠脉样本,根据大量样本的实验数据,确定了冠脉开口处血流量和冠脉总体积之间的具体关系,最终提供了一种获取冠脉血流量的方法,如图1所示,包括:
ST1:获取冠脉影像信息,得到冠脉几何特征数据。其中,冠脉的几何特征数据可以包括通过冠脉影像信息直接获得的冠脉的原始几何特征数据,还可以包括通过冠脉原始几 何特征数据重建冠脉无病变状态,得到的冠脉参考管腔的几何特征数据;
ST2:根据冠脉几何特征数据获得冠脉参考管腔的总体积V;
ST3:根据公式1计算冠脉开口处的血流量Q:
Figure PCTCN2019082715-appb-000009
Q的单位为mm 3/s,V的单位为mm 3时,K为通过大量样本实验后确定的系数,K的取值范围为5~9.5,优选为6.5~8,最优选为7。
需要注意的是,如果冠脉开口处的血流量Q和冠脉参考管腔的总体积V的单位发生变化,K的取值范围也应当相应的发生数量级的变化。
现有技术中,有人采用冠脉实际管腔的体积来估计血流量的方法。相比于实际管腔的体积,本发明中采用的参考管腔更能反应充血状态下的血流量,因为灌注心肌所需的血流量并不会因为冠脉狭窄而减少,用实际管腔的体积则会造成血流量的低估。
本发明中采用冠脉参考管腔体积计算流速,可以为血流动力学计算提供更加准确的边界条件。
需要注意的是,本发明中的近端是指更靠近冠脉开口处的一端,远端对应为更远离冠脉开口的一端;
近端主支血管、远端主支血管及分支血管是相对的概念,对于任意一个分叉,距离冠脉开口更近的一端的主支血管即为近端主支血管,距离冠脉开口更远的一端的主支血管为远端主支血管,另一个为分支血管;当前述分支血管进行二级分叉,分出二级分支时,对于这个二级分叉,该分支血管即为主支血管,该二级分支即为分支血管。
本发明中的冠脉参考管腔的总体积V可以通过现有技术中任何已知的方法获得。
在本发明的一个实施例中,冠脉参考管腔体积V可以通过以下步骤获得:
ST1':获取冠脉影像信息,得到冠脉的几何特征数据,包括冠脉血管长度和冠脉血管的参考管腔面积;
ST2':将冠脉血管沿血管中心线切分成多个垂直于血管中心线的片,定义片的底面积为相应处的参考管腔面积,结合冠脉血管长度,将多个片的体积求和得到冠脉参考管腔的总体积V。即是通过将冠脉参考管腔简化为N个很薄的片的叠加,即可通过冠脉横截面积 与血管长度的求和公式得到冠脉参考管腔的总体积V,如下式所述:
Figure PCTCN2019082715-appb-000010
其中,S i和△h i代表冠脉参考管腔的第i个薄片的面积和厚度,N为简化薄片的总数量。可以理解的是,N的数量越大,所得到的冠脉参考管腔的体积V就越准确,计算中可以根据情况的需要选择合适的N的数量。
在本发明的另一个实施例中,为了便于计算,冠脉参考管腔体积V可以通过以下步骤获得:
ST1”:获取冠脉影像信息,得到冠脉几何特征数据,包括冠脉的长度,参考管腔面积;
ST21”:根据冠脉几何特征数据,识别冠脉的分叉核;
其中,分叉核可以通过本领域中任意的认定分叉核的方法所确定,只要计算误差在可以接受的范围内。
在本发明的一个优选实施例中,如图2所示,分叉核是由该分叉的近端主支血管20开始变大处的第一截面D 0,远端主支血管30在分叉嵴50处的第二截面D 1,分支血管40在分叉嵴50处的第三截面D 2,和血管壁共同围成的区域;其中,主支血管与分支血管的远端分界点为分叉嵴。
ST22':通过分叉核可以将冠脉分割成多段血管节段,即冠脉包括多个分叉核和由分叉核分割成的多段血管节段,将多个分叉核和多段血管节段的体积相加得出冠脉参考管腔的总体积V。
其中,将分叉核简化为圆台计算其体积,圆台的一个底面的面积为分叉核近端的参考管腔面积,即第一截面D 0的面积,圆台的另一个底面的面积为分叉核两个远端的参考管腔面积之和,即第二截面D 1和第三截面D 2的面积之和,圆台的高为分叉核近端中心到分叉嵴的距离,这里的分叉核近端中心指第一截面D 0的中心。
将多段血管节段简化为圆台计算其体积,圆台的上下底面的面积分别为血管节段近端的参考管腔面积和远端的参考管腔面积,圆台的高为血管节段中心线的长度。
进一步地,根据冠脉血管的结构特征,多段血管节段又分为最远端血管节段和除最远 端血管节段以外的其他血管节段。在冠脉血管中,最远端血管节段的参考管腔面积会随着血管长度延伸的方向逐渐减少,而除最远端血管节段外的任一其他血管节段,在同一血管节段内,参考管腔面积相同。
因此,将除最远端血管节段以外的其他血管节段简化为圆柱体计算其体积,每个圆柱体的底面积为该血管节段任一处的参考管腔面积,圆柱体的高为该血管节段中心线的长度;最远端血管节段简化为圆台,圆台的上下底面的面积分别为最远端血管节段近端的参考管腔面积和远端的参考管腔面积,圆台的高为血管节段中心线的长度。
进一步地,在ST1中,根据冠脉影像信息可以直接得到冠脉原始几何特征数据,包括冠脉血管长度、分叉角度以及原始的管腔面积。对于病变的管腔,需要对管腔面积进行修正,得到正常状态时的管腔面积,及参考管腔面积;对于未发生病变的管腔,该处实际的管腔面积即为参考管腔面积。
在现有冠脉评估的方法中,参考管腔面积的计算大多是选取病变前后的正常管腔位置,并取其面积的均值作为病变位置的参考管腔大小。但在冠脉发生弥漫病变的情况下,冠脉中病变分布区域较长,病变血管段附近较难找到正常管腔,因此传统的方法在具有整段弥漫病变的患者中并不适用,容易低估参考管腔的大小。
本申请发明人在研究中发现,如图2所示冠脉分叉结构,任一个分叉核的近端主支血管的血流速度、远端主支血管近端的血流速度和分支血管近端的血流速度具有以下关系:
Figure PCTCN2019082715-appb-000011
ν 0为分叉核近端主支血管的血流速度;ν 1为分叉核远端主支血管的血流速度;
Figure PCTCN2019082715-appb-000012
ν 2为分叉核的分支血管的血流速度。
其中,e为自然常数;r为通过大量样本实验后确定的e的指数的系数,-∞≤r<-0.6,为了使计算结果更精确,优选-2≤r<-0.7.5,更优选r=-1;
α 1为近端主支血管和远端主支血管之间的分叉角度;L 1为远端主支血管的全长长度;α 2为近端主支血管和分支血管之间的分叉角度;L 2为分支血管的全长长度;
需要理解的是,在本领域的一般定义中,如图2所示,分叉角度α 1是近端主支血管在血管开始变大处截面D 0的法线R 0和远端主支血管在分叉嵴处截面D 1的法线R 1的夹角;分叉角度α 2为R 0和分支血管在分叉嵴处截面D 2的法线R 2的夹角;远端主支血管的全长长度L 1是从分叉中心到该远端主支血管最远端血管节段的远端的全长长度(并不是该远端主支血管这一血管节段的长度),分支血管的全长长度L 2是从分叉中心到分支血管最远端血管段的远端的全长长度(并不是该分支血管这一血管节段的长度)。分叉中心一般来说都是分叉核的重心,但是在本发明中选择分叉核内任意一点做为分叉中心计算血管长度所造成的误差都在可以接受的范围内。
进一步地,对于任意一个分叉核,基于流量守恒的原理,该分叉核近端的参考管腔面积S 0、该分叉核与远端主支血管相邻处的参考管腔面积S 1和该分叉核与分支血管相邻处的参考管腔面积S 2,存在以下关系ν 0*S 0=ν 1*S 12*S 2,由此,可以得到任一个分叉核上存在下述公式2的关系:
Figure PCTCN2019082715-appb-000013
其中,S 0为该分叉核的近端的参考管腔面积,同时,由于一个分叉核的近端主支血管不可能是最远端的血管节段,近端主支血管上任一处的参考管腔面积都应当相同,即S 0同时也为该分叉核近端主支血管的参考管腔面积;
S 1为分叉核与远端主支血管相邻处的参考管腔面积,S 1同时也为该分叉核远端主支血管近端的参考管腔面积,当该远端主支血管是除最远端血管节段以外的其他血管节段,那么该远端主支血管上任一处的参考管腔面积都等于该远端主支血管近端的参考管腔面积;
S 2为分叉核与分支血管相邻处的参考管腔面积,S 2同时也为该分叉核分支血管近端的参考管腔面积,当该分支血管是除最远端血管节段以外的其他血管节段,那么该分支血管上任一处的参考管腔面积都等于该分支血管近端的参考管腔面积。
在此基础上,本发明提出了一种可以根据冠脉分叉的解剖结构来计算参考管腔的方法,能够为冠脉患有弥漫病变的病人提供更加准确的参考管腔计算方法,进而能够为血流动力学计算提供更加准确的边界条件。
通过冠脉影像信息获得冠脉几何特征数据,所述几何特征数据包括任一分叉核的近端主支血管和远端主支血管之间的分叉角度α 1,远端主支血管的全长长度L 1,近端主支血 管和分支血管之间的分叉角度α 2,分支血管的全长长度L 2;以及任一分叉核的近端主支血管的参考管腔面积S 0,该分叉核的远端主支血管的近端的参考管腔面积S 1,该分叉核的分支血管的近端的参考管腔面积S 2中的任意两个后,通过公式2获得剩余一个参考管腔面积。
在实际计算血流量的过程中,可以根据冠脉实际病变情况,逐个计算病变血管的参考管腔。
进一步地,为了便于自动化计算整个冠脉血管的参考管腔,如图3所示,本发明还提供了从远到近以及从近到远逐个计算冠脉参考管腔面积的方法。
在本发明的一个实施例中,结合图4所示,通过从近到远的方法计算整个冠脉血管的参考管腔面积,具体步骤如下:
ST11:获取冠脉影像信息,得到冠脉原始几何特征数据;
ST12:识别冠脉分叉核;
ST13:判断距离冠脉血管开口最近的第一分叉核的近端主支血管是否存在未病变的管腔,只要所述第一分叉核的近端主支血管上有任一处具有正常的管腔面积,即认为存在未病变的管腔;
ST14:若存在,则定义第一分叉核的近端主支血管的参考管腔面积为第一分叉核的近端主支血管任一未病变处的参考管腔面积;
并默认第一分叉核所在的主支血管上所有分支血管都未发生病变,根据冠脉影像信息直接获取第一分叉核所在的主支血管上的全部分叉核的分支血管近端的参考管腔面积;
ST15:再根据第一分叉核所在的主支血管上任一分叉核距离冠脉血管开口的距离,从近到远逐个通过任一分叉核的近端主支血管的参考管腔面积和分支血管近端的参考管腔面积计算与任一分叉核相连的远端主支血管近端的参考管腔面积。
具体来说,结合附图4,整个冠脉从近到远的计算方法如下:
ST141:首选通过第一分叉核11的近端主支血管21的参考管腔面积和第一分支血管41近端的参考管腔面积计算得到第一分叉核11的远端主支血管31近端的参考管腔面积;
进一步地,第一分叉核11的远端主支血管31即为第二分叉核12的近端主支血管22,第一分叉核11的远端主支血管31的近端的参考管腔面积即为第二分叉12的近端主支血管 22的参考管腔面积;
ST142:再通过第二分叉核12的近端主支血管22的参考管腔面积和第二分支血管42的近端的参考管腔面积计算得到第二分叉核12的远端主支血管32近端的参考管腔面积;
ST143:以此类推,从近到远逐个计算第三个分叉核13至最远端分叉核的远端主支血管的参考管腔面积,最终得到这一个主支上所有血管节段的参考管腔面积。
在本发明的另一个实施例中,还可以采用从远到近的方式逐级计算所有血管节段的参考管腔面积。例如,
ST11:获取冠脉影像信息,得到冠脉原始几何特征数据;
ST12:识别冠脉分叉核;
ST13:判断距离冠脉血管开口最近的第一分叉核的近端主支血管是否存在未病变的管腔;
ST14':若距离冠脉血管开口最近的第一分叉核的近端主支不存在未病变的管腔,则进一步判断最远端血管的近端是否病变;
ST15':若不存在病变,根据影像信息直接获取最远端血管近端的参考管腔面积;
ST16':根据分叉核距离冠脉血管开口的距离,从远到近逐个通过任一分叉核远端主支血管近端和分支血管近端的参考管腔面积计算与任一分叉核相连的近端主支血管的参考管腔面积。
除了前述通过同一分叉核上的近端主支血管、远端主支血管和分支血管参考管腔面积之间的关系计算整个冠脉的参考管腔外,本发明还提供了另一种计算冠脉参考管腔的方法。由于血管壁从管腔面向外一般依次为内膜、中膜和外膜。内膜是管壁的最内层,为病变斑块生长的区域,内膜内周面积即为实际管腔面积;中膜位于内膜和外膜之间,与内膜外侧紧密贴合,中膜内周面积即为内膜外周面积,因此还可以通过以下方法计算冠脉血管中感兴趣区域的参考管腔面积:
根据冠脉影像信息获取冠脉几何特征参数,冠脉几何特征数据包括冠脉血管中感兴趣区域的中膜内周面积S',
相应区域的参考管腔面积S=A*S',其中,0.7≤A<1。
进一步地,本发明中可以是通过无创冠脉CT造影获取冠脉影像信息。不需要增加额外的创伤即可得到冠脉的血流信息,极大的减轻了病患的痛苦。
进一步地的,本发明还提供了一种获取冠脉血流速度的方法,根据前述任一方法获得的冠脉开口处的血流量除以该处的参考管腔面积,获得冠脉开口处的血流速度。
进一步地,在获得冠脉开口处的血流速度后,通过下述公式3或公式4逐级计算冠脉中除冠脉开口外任一血管节段的血流速度:
Figure PCTCN2019082715-appb-000014
ν 0为分叉近端主支血管的血流速度;ν 1为分叉远端主支血管的血流速度;
Figure PCTCN2019082715-appb-000015
ν 2为分叉的分支血管的血流速度。
其中,α 1、α 1、L 1、L 2和r与在先的定义相同。
现有计算分叉血流速度的方法大多是基于分支开口的管腔大小来计算血流速度比例,本方法提出的分叉模型中加入了分叉角度和分支长度的信息,进一步提高了计算分叉血流速度比例的准确度。
进一步地,本发明还提供了一种获取冠脉血流量的装置,包括:
冠脉几何特征分析模块,用于获取冠脉影像信息,得到冠脉的几何特征数据;
体积计算模块,用于根据所述冠脉几何特征数据获得冠脉参考管腔的总体积V;以及,
血流量计算模块,用于根据公式1计算冠脉开口处的血流量Q:
Figure PCTCN2019082715-appb-000016
Q的单位为mm 3/s,V的单位为mm 3时,K的取值范围为5~9.5,优选为6.5~8,最优选为7。
进一步地,所述冠脉几何特征分析模块用于获取冠脉血管长度和冠脉血管的参考管腔面积;
所述体积计算模块用于,将冠脉血管沿血管中心线切分成多个垂直于血管中心线的片,定义所述片的底面积为相应处的参考管腔面积,结合所述冠脉血管长度,将多个所述 片的体积求和得到所述冠脉参考管腔的总体积V。
进一步地,所述体积计算模块用于,
根据所述冠脉几何特征数据,识别冠脉的分叉核;
所述冠脉包括多个分叉核和由分叉核分割成的多段血管节段,将所述多个分叉核和所述多段血管节段的体积相加得出冠脉参考管腔的总体积V。
进一步地,所述体积计算模块用于,将所述分叉核简化为圆台计算其体积,圆台的一个底面的面积为所述分叉核近端的参考管腔面积,圆台的另一个底面的面积为所述分叉核两个远端的参考管腔面积之和,圆台高为分叉核近端中心到分叉嵴的距离。
进一步地,所述体积计算模块用于,将所述多段血管节段简化为圆台计算其体积,圆台的上下底面的面积分别为所述血管节段近端的参考管腔面积和远端的参考管腔面积,圆台的高为所述血管节段中心线的长度。
进一步地,所述多段血管节段包括最远端血管节段和除最远端血管节段以外的其他血管节段,其中:
所述体积计算模块用于,将所述除最远端血管节段以外的其他血管节段简化为圆柱体计算其体积,每个圆柱体的底面积为该血管节段任一处的参考管腔面积,圆柱体的高为该血管节段中心线的长度;
进一步地,所述冠脉几何特征分析模块用于,
获取任一分叉核的近端主支血管和远端主支血管之间的分叉角度α 1,远端主支血管的全长长度L 1,近端主支血管和分支血管之间的分叉角度α 2,分支血管的全长长度L 2
以及所述任一分叉核的近端主支血管的参考管腔面积S 0,该分叉核的远端主支血管近端的参考管腔面积S 1,该分叉核的分支血管的近端的参考管腔面积S 2中的任意两个,
再通过下述公式2获得剩余一个参考管腔面积:
Figure PCTCN2019082715-appb-000017
其中,e为自然常数;-∞≤r<-0.6;优选地,-2≤r<-0.7.5;最优选地,r=-1。
进一步地,所述冠脉几何特征分析模块用于,
判断距离冠脉血管开口最近的第一分叉核的近端主支血管是否存在未病变的管腔;
若存在,则定义所述第一分叉核的近端主支血管的参考管腔面积为所述第一分叉核的近端主支血管任一未病变处的参考管腔面积;
并默认所述第一分叉核所在的主支血管上所有分支血管都未发生病变,根据所述影像信息直接获取所述第一分叉核所在的主支血管上的全部分叉的分支血管近端的参考管腔面积;
再根据所述第一分叉核所在的主支血管上任一分叉核距离冠脉血管开口的距离,从近到远逐个通过任一分叉核的近端主支血管的参考管腔面积和分支血管近端的参考管腔面积计算与任一分叉核相连的远端主支血管近端的参考管腔面积,以及,
若距离冠脉血管开口最近的第一分叉核的近端主支不存在未病变的管腔;
则判断最远端血管的近端是否病变;
若不存在病变,根据影像信息直接获取最远端血管近端的参考管腔面积;
根据分叉核距离冠脉血管开口的距离,从远到近逐个通过任一分叉核远端主支血管近端和分支血管近端的参考管腔计算与任一分叉核相连的近端主支血管的参考管腔面积。
进一步地,所述冠脉几何特征分析模块用于获取冠脉血管中感兴趣区域的参考管腔面积,包括:
获取所述冠脉血管中感兴趣区域的中膜内周面积S',
相应区域的参考管腔面积S=A*S',其中,0.7≤A<1。
进一步地,所述冠脉几何特征分析模块通过无创冠脉CT造影获取冠脉影像信息。
进一步地,本发明提供了一种获取冠脉血流速度的装置,包括:
前述任一种获取冠脉血流量的装置,用于获取冠脉开口处血流量;以及,
血流速度计算模块,用于根据冠脉开口处的血流量除以该处的参考管腔面积,获得冠脉开口处的血流速度。
进一步地,所述血流速度计算模块用于,在获得冠脉开口处的血流速度后,通过下述公式3或公式4逐级计算所述冠脉中除冠脉开口外任一血管节段的血流速度:
Figure PCTCN2019082715-appb-000018
所述ν 0为分叉核近端主支血管的血流速度;ν 1为分叉核远端主支血管的血流速度;
Figure PCTCN2019082715-appb-000019
ν 2为分叉核的分支血管的血流速度。进一步地,本发明还提供了另一种用于获取冠脉血流量的装置,包括:
处理器、储存器及储存在储存器中的计算机可执行指令,处理器执行计算机可执行指令时,实现前述任一种用于获取冠脉血流量的方法。
进一步地,本发明提供了一种获取冠脉血流速度的装置,包括:
处理器、储存器及储存在储存器中的计算机可执行指令,处理器执行计算机可执行指令时,实现前述任一种获取冠脉血流速度的方法。
综上所述,我们提出了一种计算血流量的新方法,在没有额外创伤的条件下,首先基于冠脉分叉模型计算出冠脉没有狭窄时的正常参考管腔,其次,基于冠脉参考管腔的尺寸计算得到冠脉开口处的总血流量,最后基于分叉模型的血流分配比例计算得到整个冠脉树的血流分布。直接从冠脉的结构尺寸估计出血流量,得到的是整个冠脉树中各个血管段的血流分布,能够为基于影像的血流动力学计算提供更加准确的边界条件。
具体实施例
实施例1-7及对比例1-2
选取冠脉开口处未发生病变的冠脉样本;
根据CT冠脉造影影像分割出左侧的冠脉树,得到冠脉原始几何特征数据,通过从近到远的方法重建得到无病变状态下的冠脉参考管腔几何特征数据,其中r=-1;
计算得到左冠脉树的参考管腔体积为1100mm 3
根据公式1:
Figure PCTCN2019082715-appb-000020
计算冠脉开口处血流量,K的取值见表2。
测量所得左冠脉开口处的面积为11.5mm 2,根据公式:血流速度=血流量/管腔面积,计算得到血流速度。
表1
  K Q(mm 3/s) ν(m/s) 误差
实施例1 5 955.02 0.08 -33%
实施例2 6 1146.03 0.10 -17%
实施例3 6.5 1241.53 0.11 -8%
实施例4 7 1337.03 0.12 0%
实施例5 8 1528.04 0.13 8%
实施例6 9 1719.04 0.15 25%
实施例7 9.5 1814.55 0.16 33%
对比例1 10 1910.05 0.17 42%
对比例2 4.5 859.52 0.07 -42%
对比例3 0.12
*误差为(各实施例或对比例所得到的血流速度ν-对比例3中得到的血流速度ν)/对比例3中得到的血流速度ν。
对比例3(基于冠脉造影的TIMI数帧法计算.血流速度)
在冠脉造影图像中选取目标血管段,测量其长度为80.26mm;
根据造影TIMI数帧法,造影剂从血管段的近端到远端需要10帧,冠脉造影拍摄帧频为15帧/秒,可计算出时间为0.67秒;
因此,通过冠脉造影计算得到得血流速度为:80.26mm/0.67s=119.8mm/s=0.12m/s。
从表1中可以看出,采用本发明提供的方法得到的冠脉血流量和血流速,与对比例3中TIMI数帧法(行业内的金标准)计算得到的血流速度相比较,结果接近,误差较小;特别是在实施例4中,当K=7时,根据无创CT冠脉造影计算得到的冠脉血流速度与冠脉造影TIMI数帧法测量得到的结果一致。在对比例1或2中,当K值大于9.5或小于5时,误差较大。
由此可见,本发明提供的获得冠脉血流量的方法,直接从冠脉的结构尺寸来估计血流,不需要先根据CT图像分割出心肌,由于在现有基于影像学血流动力学计算中,冠脉的分割是必须条件,所以通过冠脉尺寸来估计血流不会增加图像处理的工作量,相较于现有技术中通过病人的心肌大小估计冠脉血流量更简单、精确。
综上所述,本发明提供的上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (26)

  1. 一种获取冠脉血流量的方法,其特征在于,包括:
    获取冠脉影像信息,得到冠脉的几何特征数据;
    根据所述冠脉几何特征数据获得冠脉参考管腔的总体积V;
    根据公式1计算冠脉开口处的血流量Q:
    Figure PCTCN2019082715-appb-100001
    Q的单位为mm 3/s,V的单位为mm 3时,K的取值范围为5~9.5,优选为6.5~8,最优选为7。
  2. 根据权利要求1所述的获取冠脉血流量的方法,其特征在于,
    所述冠脉参考管腔的总体积V通过以下步骤获得:
    所述冠脉几何特征数据包括冠脉血管长度和冠脉血管的参考管腔面积;
    将冠脉血管沿血管中心线切分成多个垂直于血管中心线的片,定义所述片的底面积为相应处的参考管腔面积,结合所述冠脉血管长度,将多个所述片的体积求和得到所述冠脉参考管腔的总体积V。
  3. 根据权利要求1所述的获取冠脉血流量的方法,其特征在于,
    所述冠脉参考管腔的总体积V通过以下步骤获得:
    根据所述冠脉几何特征数据,识别冠脉的分叉核;
    所述冠脉包括多个分叉核和由分叉核分割成的多段血管节段,将所述多个分叉核和所述多段血管节段的体积相加得出冠脉参考管腔的总体积V。
  4. 根据权利要求3所述的获取冠脉血流量的方法,其特征在于,
    将所述分叉核简化为圆台计算其体积,圆台的一个底面的面积为所述分叉核近端的参考管腔面积,圆台的另一个底面的面积为所述分叉核两个远端的参考管腔面积之和,圆台高为分叉核近端中心到分叉嵴的距离。
  5. 根据权利要求3所述的获取冠脉血流量的方法,其特征在于,将所述多段血管节段简化为圆台计算其体积,圆台的上下底面的面积分别为所述血管节段近端的参考管腔面 积和远端的参考管腔面积,圆台的高为所述血管节段中心线的长度。
  6. 根据权利要求3所述的获取冠脉血流量的方法,其特征在于,所述多段血管节段包括最远端血管节段和除最远端血管节段以外的其他血管节段,其中:
    将所述除最远端血管节段以外的其他血管节段简化为圆柱体计算其体积,每个圆柱体的底面积为该血管节段任一处的参考管腔面积,圆柱体的高为该血管节段中心线的长度。
  7. 根据权利要求6所述的获取冠脉血流量的方法,其特征在于,
    所述几何特征数据包括任一分叉核的近端主支血管和远端主支血管之间的分叉角度α 1,远端主支血管的全长长度L 1,近端主支血管和分支血管之间的分叉角度α 2,分支血管的全长长度L 2
    以及所述任一分叉核的近端主支血管的参考管腔面积S 0,该分叉核的远端主支血管近端的参考管腔面积S 1,该分叉核的分支血管的近端的参考管腔面积S 2中的任意两个,
    再通过下述公式2获得剩余一个参考管腔面积:
    Figure PCTCN2019082715-appb-100002
    其中,e为自然常数;-∞≤r<-0.6;优选-2≤r<-0.7.5;更优选,r=-1。
  8. 根据权利要求7所述的获取冠脉血流量的方法,其特征在于,
    判断距离冠脉血管开口最近的第一分叉核的近端主支血管是否存在未病变的管腔;
    若存在,则定义所述第一分叉核的近端主支血管的参考管腔面积为所述第一分叉核的近端主支血管任一未病变处的参考管腔面积;
    并默认所述第一分叉核所在的主支血管上所有分支血管都未发生病变,根据所述影像信息直接获取所述第一分叉核所在的主支血管上的全部分叉的分支血管近端的参考管腔面积;
    再根据所述第一分叉核所在的主支血管上任一分叉核距离冠脉血管开口的距离,从近到远逐个通过任一分叉核的近端主支血管的参考管腔面积和分支血管近端的参考管腔面积计算与任一分叉核相连的远端主支血管近端的参考管腔面积,
    若距离冠脉血管开口最近的第一分叉核的近端主支不存在未病变的管腔;
    则判断最远端血管的近端是否病变;
    若不存在病变,根据影像信息直接获取最远端血管近端的参考管腔面积;
    根据分叉核距离冠脉血管开口的距离,从远到近逐个通过任一分叉核远端主支血管近端和分支血管近端的参考管腔计算与任一分叉核相连的近端主支血管的参考管腔面积。
  9. 根据权利要求2-8中任一项所述的获取冠脉血流量的方法,其特征在于,
    冠脉血管中感兴趣区域的参考管腔面积由以下方法获得:
    所述冠脉几何特征数据包括所述冠脉血管中感兴趣区域的中膜内周面积S',
    相应区域的参考管腔面积S=A*S',其中,0.7≤A<1。
  10. 根据权利要求1-8中任一项所述的获取冠脉血流量的方法,其特征在于,通过无创冠脉CT造影获取冠脉影像信息。
  11. 一种获取冠脉血流速度的方法,其特征在于,根据权利要求1-10中任一项获得的冠脉开口处的血流量除以该处的参考管腔面积,获得冠脉开口处的血流速度。
  12. 根据权利要求11所述的获取冠脉血流速度的方法,其特征在于,在获得冠脉开口处的血流速度后,通过下述公式3或公式4逐级计算所述冠脉中除冠脉开口外任一血管节段的血流速度:
    Figure PCTCN2019082715-appb-100003
    所述ν 0为分叉核近端主支血管的血流速度;ν 1为分叉核远端主支血管的血流速度;
    Figure PCTCN2019082715-appb-100004
    ν 2为分叉核的分支血管的血流速度。
  13. 一种获取冠脉血流量的装置,其特征在于,包括:
    冠脉几何特征分析模块,用于获取冠脉影像信息,得到冠脉的几何特征数据;
    体积计算模块,用于根据所述冠脉几何特征数据获得冠脉参考管腔的总体积V;以及,
    血流量计算模块,用于根据公式1计算冠脉开口处的血流量Q:
    Figure PCTCN2019082715-appb-100005
    Q的单位为mm 3/s,V的单位为mm 3时,K的取值范围为5~9.5,优选为6.5~8,最优 选为7。
  14. 根据权利要求13所述的获取冠脉血流量的装置,其特征在于,
    所述冠脉几何特征分析模块用于获取冠脉血管长度和冠脉血管的参考管腔面积;
    所述体积计算模块用于,将冠脉血管沿血管中心线切分成多个垂直于血管中心线的片,定义所述片的底面积为相应处的参考管腔面积,结合所述冠脉血管长度,将多个所述片的体积求和得到所述冠脉参考管腔的总体积V。
  15. 根据权利要求13所述的获取冠脉血流量的装置,其特征在于,
    所述体积计算模块用于,
    根据所述冠脉几何特征数据,识别冠脉的分叉核;
    所述冠脉包括多个分叉核和由分叉核分割成的多段血管节段,将所述多个分叉核和所述多段血管节段的体积相加得出冠脉参考管腔的总体积V。
  16. 根据权利要求15所述的获取冠脉血流量的装置,其特征在于,
    所述体积计算模块用于,将所述分叉核简化为圆台计算其体积,圆台的一个底面的面积为所述分叉核近端的参考管腔面积,圆台的另一个底面的面积为所述分叉核两个远端的参考管腔面积之和,圆台高为分叉核近端中心到分叉嵴的距离。
  17. 根据权利要求15所述的获取冠脉血流量的装置,其特征在于,所述体积计算模块用于,将所述多段血管节段简化为圆台计算其体积,圆台的上下底面的面积分别为所述血管节段近端的参考管腔面积和远端的参考管腔面积,圆台的高为所述血管节段中心线的长度。
  18. 根据权利要求15所述的获取冠脉血流量的装置,其特征在于,所述多段血管节段包括最远端血管节段和除最远端血管节段以外的其他血管节段,其中:
    所述体积计算模块用于,将所述除最远端血管节段以外的其他血管节段简化为圆柱体计算其体积,每个圆柱体的底面积为该血管节段任一处的参考管腔面积,圆柱体的高为该血管节段中心线的长度。
  19. 根据权利要求18所述的获取冠脉血流量的装置,其特征在于,
    所述冠脉几何特征分析模块用于,
    获取任一分叉核的近端主支血管和远端主支血管之间的分叉角度α 1,远端主支血管的全长长度L 1,近端主支血管和分支血管之间的分叉角度α 2,分支血管的全长长度L 2
    以及所述任一分叉核的近端主支血管的参考管腔面积S 0,该分叉核的远端主支血管近端的参考管腔面积S 1,该分叉核的分支血管的近端的参考管腔面积S 2中的任意两个,
    再通过下述公式2获得剩余一个参考管腔面积:
    Figure PCTCN2019082715-appb-100006
    其中,e为自然常数;-∞≤r<-0.6;优选地,-2≤r<-0.7.5;最优选地,r=-1。
  20. 根据权利要求19所述的获取冠脉血流量的装置,其特征在于,
    所述冠脉几何特征分析模块用于,
    判断距离冠脉血管开口最近的第一分叉核的近端主支血管是否存在未病变的管腔;
    若存在,则定义所述第一分叉核的近端主支血管的参考管腔面积为所述第一分叉核的近端主支血管任一未病变处的参考管腔面积;
    并默认所述第一分叉核所在的主支血管上所有分支血管都未发生病变,根据所述影像信息直接获取所述第一分叉核所在的主支血管上的全部分叉的分支血管近端的参考管腔面积;
    再根据所述第一分叉核所在的主支血管上任一分叉核距离冠脉血管开口的距离,从近到远逐个通过任一分叉核的近端主支血管的参考管腔面积和分支血管近端的参考管腔面积计算与任一分叉核相连的远端主支血管近端的参考管腔面积,以及,
    若距离冠脉血管开口最近的第一分叉核的近端主支不存在未病变的管腔;
    则判断最远端血管的近端是否病变;
    若不存在病变,根据影像信息直接获取最远端血管近端的参考管腔面积;
    根据分叉核距离冠脉血管开口的距离,从远到近逐个通过任一分叉核远端主支血管近端和分支血管近端的参考管腔计算与任一分叉核相连的近端主支血管的参考管腔面积。
  21. 根据权利要求14-20中任一项所述的获取冠脉血流量的装置,其特征在于,
    所述冠脉几何特征分析模块用于获取冠脉血管中感兴趣区域的参考管腔面积,包括:
    获取所述冠脉血管中感兴趣区域的中膜内周面积S',
    相应区域的参考管腔面积S=A*S',其中,0.7≤A<1。
  22. 根据权利要求13-20中任一项所述的获取冠脉血流量的装置,其特征在于,所述冠脉几何特征分析模块通过无创冠脉CT造影获取冠脉影像信息。
  23. 一种获取冠脉血流速度的装置,其特征在于,包括:
    权利要求13-22中任一项所述的获取冠脉血流量的装置,用于获取冠脉开口处血流量;以及,
    血流速度计算模块,用于根据冠脉开口处的血流量除以该处的参考管腔面积,获得冠脉开口处的血流速度。
  24. 根据权利要求23所述的获取冠脉血流速度的装置,其特征在于,所述血流速度计算模块用于,在获得冠脉开口处的血流速度后,通过下述公式3或公式4逐级计算所述冠脉中除冠脉开口外任一血管节段的血流速度:
    Figure PCTCN2019082715-appb-100007
    所述ν 0为分叉核近端主支血管的血流速度;ν 1为分叉核远端主支血管的血流速度;
    Figure PCTCN2019082715-appb-100008
    ν 2为分叉核的分支血管的血流速度。
  25. 一种用于获取冠脉血流量的装置,其特征在于,包括:
    处理器、储存器及储存在所述储存器中的计算机可执行指令,所述处理器执行所述计算机可执行指令时,实现权利要求1-10中任一项所述的获取冠脉血流量的方法。
  26. 一种用于获取冠脉血流速度的装置,其特征在于,包括:
    处理器、储存器及储存在所述储存器中的计算机可执行指令,所述处理器执行所述计算机可执行指令时,实现权利要求12或13中所述的获取冠脉血流速度的方法。
PCT/CN2019/082715 2019-04-15 2019-04-15 获取冠脉血流量及血流速度的方法和装置 WO2020210948A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/601,520 US11308621B2 (en) 2019-04-15 2019-04-15 Method and apparatus for acquiring blood flow volume and blood flow velocity of coronary artery
PCT/CN2019/082715 WO2020210948A1 (zh) 2019-04-15 2019-04-15 获取冠脉血流量及血流速度的方法和装置
EP19924646.3A EP3949860A4 (en) 2019-04-15 2019-04-15 METHOD AND APPARATUS FOR ACQUIRING BLOOD FLOW VOLUME AND BLOOD FLOW VELOCITY OF A CORONARY ARTERY
JP2021560922A JP7227400B2 (ja) 2019-04-15 2019-04-15 冠血流量及び血流速度の取得方法並びに装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/082715 WO2020210948A1 (zh) 2019-04-15 2019-04-15 获取冠脉血流量及血流速度的方法和装置

Publications (1)

Publication Number Publication Date
WO2020210948A1 true WO2020210948A1 (zh) 2020-10-22

Family

ID=72836897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082715 WO2020210948A1 (zh) 2019-04-15 2019-04-15 获取冠脉血流量及血流速度的方法和装置

Country Status (4)

Country Link
US (1) US11308621B2 (zh)
EP (1) EP3949860A4 (zh)
JP (1) JP7227400B2 (zh)
WO (1) WO2020210948A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140222354A1 (en) * 2012-12-04 2014-08-07 Isis Innovation Ltd. Computation method of relative cardiovascular pressure
US20170076467A1 (en) * 2015-09-15 2017-03-16 Wisconsin Alumni Research Foundation System and Method For Determining Dynamic Physiological Information From Four-Dimensional Angiographic Data
CN106714673A (zh) * 2014-08-29 2017-05-24 江原大学校产学协力团 按患者区分的血管信息决定方法
US20170347966A1 (en) * 2014-10-08 2017-12-07 EBM Corporation Vascular treatment evaluation system, and method therefor
CN107689032A (zh) * 2017-07-05 2018-02-13 北京工业大学 一种个性化无创计算患者最大充血状态下冠脉分支血流量的方法
CN109907772A (zh) * 2019-04-15 2019-06-21 博动医学影像科技(上海)有限公司 获取冠脉血流量及血流速度的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9858387B2 (en) 2013-01-15 2018-01-02 CathWorks, LTD. Vascular flow assessment
US10517678B2 (en) 2015-10-02 2019-12-31 Heartflow, Inc. System and method for diagnosis and assessment of cardiovascular disease by comparing arterial supply capacity to end-organ demand
CN109065170B (zh) * 2018-06-20 2021-11-19 博动医学影像科技(上海)有限公司 获取血管压力差的方法及装置
CN111227821B (zh) 2018-11-28 2022-02-11 苏州润迈德医疗科技有限公司 基于心肌血流量和ct图像的微循环阻力指数计算方法
CN111227822B (zh) 2018-11-28 2022-02-11 苏州润迈德医疗科技有限公司 基于心肌血流量和ct图像的冠状动脉血流储备分数计算方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140222354A1 (en) * 2012-12-04 2014-08-07 Isis Innovation Ltd. Computation method of relative cardiovascular pressure
CN106714673A (zh) * 2014-08-29 2017-05-24 江原大学校产学协力团 按患者区分的血管信息决定方法
US20170347966A1 (en) * 2014-10-08 2017-12-07 EBM Corporation Vascular treatment evaluation system, and method therefor
US20170076467A1 (en) * 2015-09-15 2017-03-16 Wisconsin Alumni Research Foundation System and Method For Determining Dynamic Physiological Information From Four-Dimensional Angiographic Data
CN107689032A (zh) * 2017-07-05 2018-02-13 北京工业大学 一种个性化无创计算患者最大充血状态下冠脉分支血流量的方法
CN109907772A (zh) * 2019-04-15 2019-06-21 博动医学影像科技(上海)有限公司 获取冠脉血流量及血流速度的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3949860A4 *

Also Published As

Publication number Publication date
EP3949860A4 (en) 2023-01-04
EP3949860A1 (en) 2022-02-09
US20220092784A1 (en) 2022-03-24
US11308621B2 (en) 2022-04-19
JP2022522051A (ja) 2022-04-13
JP7227400B2 (ja) 2023-02-21

Similar Documents

Publication Publication Date Title
CN109907772B (zh) 获取冠脉血流量及血流速度的方法和装置
CN108992059B (zh) 用于根据血管几何形状和生理学估计血流特性的系统和方法
WO2020107667A1 (zh) 基于心肌血流量和ct图像的冠状动脉血流储备分数计算方法
US7813785B2 (en) Cardiac imaging system and method for planning minimally invasive direct coronary artery bypass surgery
US11901081B2 (en) Method for calculating index of microcirculatory resistance based on myocardial blood flow and CT image
JP7118464B2 (ja) 血管圧差を取得する方法及び装置
Anwar et al. Assessment of pulmonary valve and right ventricular outflow tract with real-time three-dimensional echocardiography
Bleakley et al. The pivotal role of imaging in TAVR procedures
CN108742570B (zh) 基于冠脉优势类型获取血管压力差的装置
Savolainen et al. Aortic distensibility in children with the Marfan syndrome
Nguyen1A et al. A morphometric anatomical study of the right coronary artery in Vietnamese
Axler et al. Comparison of cardiac output measured with echocardiographic volumes and aortic Doppler methods during mechanical ventilation
Schaefer et al. Nuclear magnetic resonance imaging in Marfan's syndrome
Han et al. The vital role the ductus arteriosus plays in the fetal diagnosis of congenital heart disease: Evaluation by fetal echocardiography in combination with an innovative cardiovascular cast technology
Dodd et al. Cardiovascular CT and MRI in 2019: review of key articles
WO2020210948A1 (zh) 获取冠脉血流量及血流速度的方法和装置
Huang et al. Individual pulmonary vein imaging by transthoracic echocardiography: an inadequate traditional interpretation
CN110930404A (zh) 一种基于完整腔壁的空腔器官内病灶的检测方法
Naqvi et al. A new window of opportunity in echocardiography
TEIXIDO-TURA et al. QUICK FIRE ABSTRACTS-SESSION VII
Skulstad et al. Insufficient long term follow up and risk for aneurism in patients operated with Dacron patch for coarctatio aortae
Matsuzaki Pulmonary vascular input impedance in patients with atrial septal defect
Sharma et al. Chest Radiograph in Heart Disease
TW202206017A (zh) 用以評估動脈阻塞程度的方法
Park et al. Aortic Stenosis and Other Types of Left Ventricular Outflow Tract Obstruction or Anomalies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021560922

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019924646

Country of ref document: EP

Effective date: 20211027