WO2020209392A1 - Method for controlling stiffness of dna origami structure - Google Patents

Method for controlling stiffness of dna origami structure Download PDF

Info

Publication number
WO2020209392A1
WO2020209392A1 PCT/KR2019/004124 KR2019004124W WO2020209392A1 WO 2020209392 A1 WO2020209392 A1 WO 2020209392A1 KR 2019004124 W KR2019004124 W KR 2019004124W WO 2020209392 A1 WO2020209392 A1 WO 2020209392A1
Authority
WO
WIPO (PCT)
Prior art keywords
nogap
5gap
dna
gap
stiffness
Prior art date
Application number
PCT/KR2019/004124
Other languages
French (fr)
Korean (ko)
Inventor
김도년
이찬석
김경수
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2020209392A1 publication Critical patent/WO2020209392A1/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • G16B30/20Sequence assembly
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • G16B30/10Sequence alignment; Homology search

Definitions

  • the present invention relates to a method capable of controlling only the rigidity of the structure without being accompanied by a change in the cross-sectional shape of the DNA origami structure.
  • the DNA origami technology is a technology to create a desired structure by folding and fixing a long DNA strand having about 7,000 to 8,000 bases into tens to hundreds of short single-stranded DNA (ssDNA) strands.
  • DNA strands of a specific nucleotide sequence that have been programmed in advance are synthesized using the Watson-Crick binding law to create a structure of a desired shape.
  • the DNA is self-assembled with other DNA that has a base sequence that is complementary to itself to form a double-stranded DNA.
  • two double-stranded strands are formed through a bonding site (folded area) called a holiday junction or crossover.
  • DNA can be connected in parallel.
  • a DNA nanostructure having a specific shape can be produced on a two-dimensional plane, and if the same principle is extended in space, a three-dimensional structure having a specific lattice structure is made.
  • a long single-stranded DNA composed of about 7,000 to 8,000 bases is used as a basic skeleton for constructing a structure, and this is called a scaffold.
  • about 200 short single-stranded DNAs composed of about 20 to 50 bases are chemically synthesized and used to form nanostructures by connecting specific parts of the scaffold, and such DNA is called a staple. Staples must be accurately designed in number and base sequence so that they can only be bonded to a specific part of the scaffold according to the shape of the structure to be made.
  • the scaffold and staples are mutually bonded in an aqueous solution, and salt ions (MgCl 2 or NaCl) are added therein to mitigate the electrostatic repulsion between the buffer buffer and the DNA.
  • salt ions MgCl 2 or NaCl
  • the staples in the aqueous solution are complementarily bonded to the designated positions of the scaffold. As a result, a DNA nanostructure is formed.
  • This DNA origami technology can produce 2D/3D nanostructures with complex shapes that cannot be made with conventional top-down manufacturing techniques with high precision within a few nanometers (nm). Through this, applications such as precisely arranging various nanomaterials at a desired location are possible, and since biomolecules are used, the biocompatibility of the fabricated nanostructures is very excellent.
  • An object of the present invention is to provide an excellent DNA origami structure stiffness control method capable of controlling the stiffness of the entire or partial structure without being accompanied by a change in the cross-sectional shape of the DNA origami structure.
  • a method of controlling the stiffness of a DNA origami structure that forms a gap between both ends of at least a portion of adjacent staple DNA in the site to be stiffness control of the structure.
  • the method for controlling the rigidity of the DNA origami structure of the present invention is excellent in its effect since it is possible to control only the rigidity of the structure without changing the cross-sectional shape of the DNA origami structure.
  • 1 is a typical DNA origami structure composed of a long circular scaffold and hundreds of staple strands, and several nicks (DNA single-stranded breaks) where two adjacent staple ends meet can be identified.
  • FIG. 2 is an enlarged view of the designed defect area and a general nick.
  • a short staple can be used to design the defect at the nick location (arrowheads indicate the 3'end of the staple).
  • 3 and 4 are schematic diagrams of two design parameters for the designed gap, atomic force microscope (AFM) images of sample monomers (monomers), and contours of 120 representative monomers for each design case.
  • the tangent is horizontal (Scale bar and ticks: 100 nm).
  • 5 is a measurement result of the bending duration of the 4HB and 6HB structures systematically designed with various gap lengths and gap densities
  • the solid line represents the spline alignment curve of the calculated value
  • the gray dotted line represents the 2 nt and 4 nt length gaps. It corresponds to the design, and the error bars indicate the standard deviation of the experimental results.
  • FIG. 7 shows the mean-square end-to-end distance of representative 4HB-Ref (left) and 6HB-Ref (right) contours.
  • FIG. 8 is a schematic diagram of a finite element (FE) model, in which inter-helix crossovers are indicated in gray and ssDNA gaps are indicated by blue cylinders. Normal dsDNA elements and ssDNA gap elements are modeled as beam elements with different mechanical stiffness values, as indicated in the orange box.
  • FE finite element
  • FIG. 9 shows the relative stiffness coefficient of the gap element for the general dsDNA element, determined by performing the FE parameter optimization to fit the experimental values of the 1 nt, 3 nt, 5 nt gap design with full gap density, 2
  • the stiffness of the nt and 4 nt gap elements are adjacent values derived from the quadratic interpolation method. The duration of bending of the bundle is strongly influenced by the axial stiffness of the gap element.
  • Fig. 10 is a schematic diagram of the first bending mode obtained in normal mode analysis (NMA), the length of the bundle has been reduced to a scale of 1/3 for clear visualization.
  • FIG. 12 is a molecular dynamics (MD) simulation snapshot showing the equilibrium configuration of an 84 nt long 6HB structure with a 5 nt gap, where the boxed portion represents the gap region.
  • MD molecular dynamics
  • RMSD root-mean-square deviation
  • FIG. 14 is a schematic diagram of 6HB used in the MD simulation, and the locus of 6 bases in the blue region was analyzed by projecting the position on a 2D plane for each section.
  • 15 is a time-average cross-sectional shape of five representative planes of a 6HB structure with or without gaps, where the blue area represents the base pair coordinates at each vertex, and the angle is the time average for the six inner angles. It represents the standard deviation (tick and scale bar: 20 nm).
  • Figure 19 shows the RMSF (Root-mean-square fluctuation) of all individual bases present on the scaffold strand of the 6HB structure with or without gaps, the dotted box is the nicked area, the solid box is the gap. Indicate part.
  • the gray bars represent the achievable bending stiffness range for each cross section estimated by the FE simulation.
  • the crosshairs on the bars represent experimentally measured values for different gap designs.
  • the solid black line shows the theoretical N 2 (N, number of constituent dsDNA helices) scaling tendency, which is known to be valid when all helices are tightly bonded.
  • the yellow and red dotted lines correspond to 50% and 70% reductions of the theoretical value, respectively.
  • the bending duration of a single strand of DNA double helix is assumed to be 50 nm.
  • 21 is a schematic diagram of various cross-sectional designs with full defect density.
  • FIG. 23 is a schematic diagram of a bent DNA bundle design that can be angled, and red indicates a hinge region whose stiffness is modulated through a defect design, and a 12HB structure at three different angles is designed so that the defect is designed or not.
  • the middle figure shows the gel electrophoresis results of the normal and defective design designs, and the lower figure shows the structural assembly yield, with a significant increase observed in all cases.
  • FIG. 24 is a representative AFM image of FIG. 23 (Scale bar: 300 nm).
  • 25 to 27 are reference views for cross-sectional analysis (bottom example) of the 6HB design.
  • the color box is a schematic diagram showing the location where the nick at the corresponding index is changed to the ssDNA gap of the programmed length.
  • 29 is a repeating scaffold and staple pathway constituting 6HB with (a) honeycomb-lattice packing of a 6HB gap design, where triangles and squares represent the 5'and 3'ends of the staple DNA, respectively.
  • (b) The color box is a schematic diagram showing the location where the nick at the corresponding index has changed to the ssDNA gap of the programmed length, since the 11 nicks located at both ends of the bundle did not change to the ssDNA gap over the gap density change. Was omitted from.
  • 30 to 32 show the ordered contour distributions of each of 120 representative monomers of 4HB-Ref, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
  • Figures 33 to 35 show the ordered contour distribution of 120 representative monomers each of 4HB-1 nt-25% (cross-sectional design-gap length-gap density), average bending duration calculated by fitting all measurement data, and extracted with AFM images. It shows the outline of the monomer.
  • Figures 36 to 38 show the ordered contour distribution of 120 representative monomers each of 4HB-1nt-50%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
  • 39 to 41 show the ordered contour distribution of each of 120 representative monomers of 4HB-1 nt-75%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
  • Figures 42 to 44 show the ordered contour distribution of 120 representative monomers each of 4HB-1 nt-100%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
  • Figures 45 to 47 show the ordered contour distribution of 120 representative monomers each of 4HB-3nt-25%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
  • 48-50 show the ordered contour distribution of each 120 representative monomers of 4HB-3nt-50%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
  • 51 to 53 show the ordered contour distributions of 120 representative monomers each of 4HB-3nt-75%, the average bending duration calculated by fitting all measurement data, and the AFM image and contours of the extracted monomers.
  • Figures 54 to 56 show the ordered contour distribution of 120 representative monomers each of 4HB-3nt-100%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
  • 57 to 59 show the ordered contour distribution of 120 representative monomers each of 4HB-5nt-25%, the average bending duration calculated by fitting all measurement data, and the AFM image and contours of the extracted monomers.
  • Figures 60 to 62 show the ordered contour distribution of 120 representative monomers each of 4HB-5nt-50%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
  • Figures 63 to 65 show the ordered contour distributions of 120 representative monomers each of 4HB-5nt-75%, the average bending duration calculated by fitting all measurement data, and the contours of the extracted monomers with the AFM image.
  • Figures 66 to 68 show the ordered contour distribution of 120 representative monomers each of 4HB-5nt-100%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
  • 69 to 71 show the ordered contour distribution of each of 120 representative monomers of 6HB-Ref, the average bending duration calculated by fitting all measurement data, and the AFM image and contours of the extracted monomers.
  • 72 to 74 show the ordered contour distribution of each of 120 representative monomers of 6HB-1 nt-17%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
  • Figures 75 to 77 show the ordered contour distribution of 120 representative monomers each of 6HB-1 nt-33%, the average bending duration calculated by fitting all measurement data, and the contours of the extracted monomers with the AFM image.
  • Figures 78 to 80 show the ordered contour distribution of each of 120 representative monomers of 6HB-1 nt-50%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
  • 87 to 89 show the ordered contour distribution of 120 representative monomers each of 6HB-1 nt-100%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
  • 90 to 92 show the ordered contour distribution of each of 120 representative monomers of 6HB-2nt-100%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
  • Figures 93-95 show the ordered contour distributions of 120 representative monomers each of 6HB-3nt-17%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
  • 96 to 98 show the ordered contour distribution of each of 120 representative monomers of 6HB-3nt-33%, the average bending duration calculated by fitting all measurement data, and the AFM image and contours of the extracted monomers.
  • 99 to 101 show the ordered contour distribution of each of 120 representative monomers of 6HB-3nt-50%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
  • 102 to 104 show the ordered contour distribution of each of 120 representative monomers of 6HB-3nt-67%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
  • 105 to 107 show the aligned contour distribution of each of 120 representative monomers of 6HB-3nt-83%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
  • Figures 108 to 110 show the ordered contour distribution of 120 representative monomers each of 6HB-3nt-100%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
  • 111 to 113 show the ordered contour distribution of 120 representative monomers each of 6HB-4nt-100%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
  • Figures 114 to 116 show the ordered contour distribution of 120 representative monomers each of 6HB-5nt-17%, the average bending duration calculated by fitting all measurement data, and the contours of the extracted monomers and the AFM image.
  • Figures 117 to 119 show the ordered contour distribution of 120 representative monomers each of 6HB-5nt-33%, the average bending duration calculated by fitting all measurement data, and the contours of the extracted monomers with the AFM image.
  • 120 to 122 show the ordered contour distribution of each of 120 representative monomers of 6HB-5nt-50%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
  • Figures 123 to 125 show the ordered contour distribution of each of 120 representative monomers of 6HB-5nt-67%, the average bending duration calculated by fitting all measurement data, and the AFM image and contours of the extracted monomers.
  • Figures 126 to 128 show the ordered contour distributions of 120 representative monomers each of 6HB-5nt-83%, the average bending duration calculated by fitting all measurement data, and the contours of the extracted monomers with the AFM image.
  • Figures 129 to 131 show the aligned contour distributions of 120 representative monomers each of 6HB-5nt-100%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
  • the folding duration lengths of the 4HB-Ref and 6HB-Ref designs show the folding duration lengths of the 4HB-Ref and 6HB-Ref designs, respectively, the length of the unit segment is proportional to the pixel value per segment, and the resolution of the pixel is about 4.9 nm/px.
  • 134 and 135 show kurtosis analysis and end-to-end distance fitting curves of 4HB-Ref, respectively, and the number of pixels per segment was selected as 4.
  • 136 and 137 show kurtosis analysis and end-to-end distance fitting curves of 6HB-Ref, respectively, and the number of pixels per segment was selected as 5.
  • Figures 138 and 139 are the calculation results of the bending duration length while changing the contour length range
  • Figure 138 is the definition of the cutoff length
  • the data in the cutoff contour length was used to calculate the bending duration length
  • Figure 139 It is a graph showing that the calculated values of the bending duration length converge within the monomer length range in the 4HB-Ref and 6HB-Ref designs.
  • 140 and 141 are the calculated bending duration lengths while changing the resolution of the image, respectively, showing the results for the 4HB-Ref design using 100 monomers and the 6HB-Ref design using 140 monomers, analysis results 1024 px resolution was used in all cases.
  • anisotropic gap distribution results are anisotropic gap distribution results, respectively, schematically illustrating an anisotropic gap distribution in a longitudinal direction and an experimental measurement value of a bending duration.
  • the blue dotted line represents the spline-fitted FE simulation result, and the error bar represents the standard deviation of the experimental result.
  • Figures 144 to 146 show the ordered contour distribution of 120 representative monomers of the 6HB-5nt-25%-Axial design, respectively, the average bending duration calculated by fitting all measurement data, and the contours of the extracted monomers with the AFM image. .
  • Figures 147 to 149 show the ordered contour distribution of 120 representative monomers of 6HB-5nt-50%-Axial design, respectively, the average bending duration calculated by fitting all measurement data, and the contours of the extracted monomers and the AFM image. .
  • Figures 150 to 152 show the ordered contour distribution of 120 representative monomers of the 6HB-5nt-75%-Axial design, respectively, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers. .
  • Figures 153 and 154 show the gel electrophoresis results of the 4HB design.
  • Figures 155 to 157 show the results of gel electrophoresis of the 6HB design.
  • Figures 158 and 159 show structure folding yield analysis
  • Figure 158 is an AFM image of 4HB-Ref design showing the structure folding yield calculation process.After the automated monomer selection process, well-folded or incorrectly folded monomer structures were manually classified. , The results of all design modifications are summarized in Table 2 (Scale bar: 500 nm), and Figure 159 is a representative monomer image of a well-folded and misfolded monomer structure (Scale bar: 200 nm).
  • FIG. 160 to 162 are 6HB bundles that modify crossovers (intersections) at 42 nt intervals in half of the entire design area
  • FIG. 160 is a schematic diagram showing a deformed area and staple design
  • FIG. 161 is a folding continuity when modified Time shows similarity to the reference design
  • FIG. 162 shows representative AFM images of the reference and 42 nt length crossover designs (Scale bar: 300 nm).
  • Figures 163 to 165 show the ordered contour distribution of 120 representative monomers each of the 6HB-50%-42nt-cross design, the average bending duration calculated by fitting all measurement data, and the contours of the extracted monomers with the AFM image. .
  • FIG. 166 and 167 are diagrams showing 6HB bundles in which staples are omitted in half of the entire design area
  • FIG. 166 is a schematic explanatory diagram showing the modified areas and representative positions of the omitted staples, and staples omitted for distributing defect locations The position of was changed along the area, and within the unit design area consisting of 12 staples, two thin chain staples were removed from the 8.2% omitted design, and the other two thick chain line staples were additionally removed from the 16.4% omitted design.
  • 167 shows the AFM images in two cases (Scale bar: 1 ⁇ m).
  • Figures 168 to 173 are the results of sensitivity analysis of the crossover center (HJcore) element
  • Figures 168 to 170 are the calculated bending duration length of the 4HB-Ref design bundle
  • Figures 171 to 173 are the calculated bending of the 6HB-Ref design bundle Is the lasting length. While varying the axial, bending or torsional stiffness of the HJcore element, the other two standardized parameters were fixed at 1.
  • Figures 174 to 179 are the results of sensitivity analysis for 5 nt ssDNA gap elements
  • Figures 174 to 176 are the calculated bending duration length of the 4HB-5nt-100% design bundle
  • Figures 177 to 179 are the 6HB-5nt-100% design
  • the calculated bending duration length of the bundle The stiffness modulus of the HJcore element used here is shown in Table 3, while the other two standardized parameters were fixed to 1 while changing the axial direction, bending or torsional stiffness of the 5 nt long ssDNA gap element.
  • FIG. 180 is a scaffold for DNA sequences used in MD simulations, respectively, from a to d, when there is no gap, when there is a gap of 1 nt length, when there is a gap of 3 nt length, and when there is a gap of 5 nt length. It shows the sequence of the strand.
  • 182 is a result of MD simulation of a bundle structure with a 6HB-1nt gap (box), showing (a) initial and (b) final (320 ns simulation time) three-dimensional structures.
  • 183 is a result of MD simulation of a bundle structure with a 6HB-3nt gap (box), showing (a) initial and (b) final (320 ns simulation time) three-dimensional structures.
  • FIG. 184 is an MD simulation result of a bundle structure with a 6HB-5nt gap (box), showing (a) initial and (b) final (320 ns simulation time) three-dimensional structures.
  • 185 and 186 show the average area of each plane and the average distance between planes during the MD simulation.
  • Mode 7 was the first bending mode in the design when there was no gap, 3 nt gap, and 5 nt gap, and Mode 9 was the 1 nt gap. It was the first bending mode in the design of the case.
  • Figures 188 and 189 are detailed drawings of the ssDNA gap and the broken dsDNA region of the 5 nt length gap design, and Figure 188 shows the time-average rate of hydrogen bond breakdown of all bases in a bundle with no gap and gap, A, B and C are representative regions each representing a partially broken base, an SSDNA gap, and a well-paired base, and FIG. 189 is a snapshot of a 5 nt long gap design in equilibrium and a detailed view of the region shown in FIG. 188.
  • Figures 190 and 191 are 4HB-hex
  • Figures 192 and 193 are 8HB-hex
  • Figures 194 and 195 are 8HB-sq
  • Figures 196 and 197 are 10HB-hex
  • Figures 198 and 199 are 12HB-hex
  • Figures 202 and 203 show the gap layout of 13HB-hex
  • Figures 204 and 205 show the measured bending duration length of 16HB-sq
  • the red box shows the gap location of 5 nt length.
  • the bold and thin dashed lines in the graph are the spline-fitted curves of the bending duration calculated in the two first bending modes of NMA.
  • the blank box is the harmonic mean of the two values
  • the solid line is the spline-fit curve.
  • Figures 206 to 208 show the ordered contour distribution of 120 representative monomers of the design of 10HB-Ref, respectively, the average bending duration calculated by fitting all measurement data, and the AFM image and contours of the extracted monomers.
  • Figures 209 to 211 show the ordered contour distribution of 120 representative monomers of a design of 10HB-5nt-20%, respectively, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
  • Figures 212 to 214 show the ordered contour distribution of 120 representative monomers of a design of 10HB-5nt-40%, respectively, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
  • Figures 215 to 217 show the ordered contour distribution of 120 representative monomers of the design of 10HB-5nt-60%, respectively, the average bending duration calculated by fitting all measurement data, and the contours of the extracted monomers with the AFM image.
  • Figures 218 to 220 show the ordered contour distribution of 120 representative monomers of the design of 10HB-5nt-80%, respectively, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
  • Figures 221 to 223 show the ordered contour distribution of 120 representative monomers of the design of 10HB-5nt-100%, respectively, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
  • Figure 224 shows the gel electrophoresis results of the 10HB design.
  • 225 shows a representative AFM image of a 12HB structure with different hinge stiffness and inner angle.
  • the present invention includes the step of forming a DNA origami structure by binding a plurality of staple DNAs to the scaffold DNA, and a single-stranded DNA gap between both ends of at least a portion of the adjacent staple DNA in the site to be stiffness control of the structure.
  • DNA origami structure provides a method of controlling the rigidity of.
  • the method may be a method of forming one or more gaps or increasing the length of the gap to lower the stiffness of the region to be adjusted for stiffness.
  • the method may be a method further comprising the step of designing the staple DNA to form a predetermined number of gaps of a predetermined length.
  • the stiffness control target site may be variably set according to the practitioner's free will, and since there is no particular limitation on the size or area of the site, it may specifically correspond to a part or all of the DNA origami structure.
  • the DNA origami construct is that staple DNA binds to a specific position of the scaffold DNA and the staple DNA is folded at a specific position to form a specific structure, and the staple DNA is designed so that the scaffold DNA has such a specific structure.
  • the staple DNA may be designed to form a gap of a specific length at a specific location.
  • a gap can be formed by designing that both opposite ends of the adjacent staple DNA complement the scaffold DNA at a position separated by a nucleotide length of a predetermined length, and as described above, a gap equal to the nucleotide length of a predetermined length.
  • the region exists as an ssDNA region of only the scaffold DNA.
  • Design of the staple DNA may be performed according to a conventional method, for example, a design program such as cadnano may be used, but is not limited thereto.
  • DNA origami constructs can be prepared using conventional thermal annealing techniques.
  • DNA strands have a melting temperature depending on their base sequence, and above this temperature, they are mainly single-stranded, and below this temperature, they are mainly double-stranded.
  • the DNA strands start to exist as double strands as they complementarily bind, and in DNA origami, about 200 staple DNAs are cooperatively bound and bound to the designed position. A shaped structure is created.
  • the binding time is slightly different, but the normal unwinding technique gradually lowers the temperature over a sufficient period of time (over several hours), so it is a sufficient condition for all the staple DNA to bind. Therefore, the base of the constituting staple DNA It can be manufactured to have a desired shape regardless of the sequence.
  • the scaffold DNA is a single-stranded DNA, and its length can be appropriately selected according to the length, size, shape, etc. of the structure to be formed, and generally, a type having a length of about 7000 to 8000 bases can be used. .
  • M13mp18 DNA having a length of 7,249 bases was used, but the present invention is not limited thereto.
  • the length of the staple DNA may be appropriately selected according to the length, size, shape, etc. of the structure to be formed, and may be, for example, 20 to 50 nucleotides, but is not limited thereto.
  • the DNA origami structure may be to form a DNA origami structure through complementary bonds such as AT and GC between the scaffold DNA and the staple DNA, in this case, through a self-assembly process between the two. Is formed, it may be a step of forming a double helix structure (DNA duplex).
  • the gap refers to an ssDNA region formed between both ends of an adjacent staple DNA, and may refer to a single-stranded region of a scaffold DNA that cannot be complementarily bound to the staple DNA, and a specific schematic is shown in FIG. 2 , 8, etc.
  • the target region including the gap results in weakening, and macroscopically, the rigidity of the entire DNA origami structure Can be controlled in the downward direction.
  • the length of the gap can be represented by the number of nucleotide bases in the ssDNA region, which is 1 to 20, 1 to 19, 1 to 18, 1 to 17, 1 to 16, 1 to 15, 1 to 14, 1 to 13, 1 to 12, 1 to 11, 1 to 10, 1 to 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5 nucleotides in length, and more specifically 1 to 10 nucleotides in length However, it may be preferably 1 to 5 nucleotides in length in terms of maintaining the shape of the entire DNA origami structure by maintaining a gap of an appropriate length and the completeness of the self-assembly process.
  • the number of gaps refers to the number of ssDNA regions in the stiffness control target region, with (number of staple DNA -2) as the maximum number of gaps, the target region including the gap and the DNA origami structure
  • the overall rigidity can be controlled.
  • the gap may be formed to be a holiday junction and a gap of 10 nucleotides or more, 9 nucleotides or more, 8 nucleotides or more, 7 nucleotides or more, 6 nucleotides or more, 5 nucleotides or more, 4 nucleotides or more, or 3 nucleotides or more.
  • it in terms of forming a DNA origami structure through a complete self-assembly process between the scaffold DNA and the staple DNA, it may be preferably formed to be 3 nucleotides or more.
  • the structure may be a bundle structure including a plurality of helixes, and the number of helixes in the structure bundle structure is 2 to 50, 2 to 45, 2 to 40, 2 to 35, 2 to 30, 2 to 25 Or it may be 2 to 20, specifically it may be 2 to 20.
  • the plurality of ssDNA helixes present in the scaffold DNA bundle may be set to have different shapes located within the bundle, and in this case, specifically, the step of setting the cross-sectional shape of the scaffold DNA bundle may be further included.
  • stiffness to be controlled it may be stretching stiffness, torsional stiffness, shearing stiffness, coupling stiffness, or bending stiffness, but preferably bending It may be rigid, and in this case, it may be measured and controlled by a value of a bending stiffness length.
  • M13mp18 ssDNA (7,249 nucleotides) was purchased from New England Biolabs (N4040s). Staple DNA oligonucleotides were provided by Bioneer Corporation (www.bioneer.co.kr) using a synthetic scale of 50 nM and a BioRP purification method. The molecular weight of all staples was confirmed by the theoretical value by the supplier's MALDI-TOF. Details are shown in Table 4 below.
  • thermocycler T100, Bio-Rad
  • the folded DNA agarose gel to origami structures to 1.5% agar containing 0.5 x TBE (45 mM Tris- borate and 1 mM EDTA, Sigma-Aldrich) , 12 mM MgCl 2, 0.5 mM concentration of EtBr (Noble Bioscience Inc.) Using electrophoresis.
  • the sample contained in the agarose gel was moved in an ice-water cooling chamber (i-Myrun, Cosmo Bio CO. LTD.) at 75V bias voltage ( ⁇ 3.7 V/cm) for 1.5 hours.
  • Gel imaging was performed using the GelDoc XR+ device and the Image Lab v5.1 program (Bio-Rad).
  • the annealed DNA origami samples were diluted with folding buffer (1 x TAE, 20 mM MgCl 2 ) to a sample concentration of 0.05x (6HB and 10HB) or 0.03x (4HB), the value of which is the optimal sample density on the substrate. I chose to have it. 20 ⁇ l of the diluted sample was placed on a well-cut mica substrate (highest grade V1 AFM Mica, Ted-Pella Inc.), and incubated for 3 to 5 minutes at atmospheric conditions ( ⁇ 25°C). The substrate was washed with deionized water and gently dried with an N2 gun ( ⁇ 0.1 Kgf/cm 2 ). Any water droplets left on the substrate were removed by a Kimtech Science Wiper.
  • AFM images were taken by NX10 (Park Systems) using a PPP-NCHR probe with a spring constant (Nanosensors) of 42 N/m.
  • Non-contact mode with a natural frequency of about 290 to 300 kHz was used to measure 5 ⁇ m x 5 ⁇ m of the sample area, typically at 1024 x 1024 pixel resolution using SmartScan software. All measurement images were flattened in linear and quadratic order using the XEI 4.1.0 program (Park Systems) before further analysis.
  • Persistence length measurements and structural folding analysis of DNA origami monomer structures in AFM images were performed with a user-defined script using MATLAB R2017b software (MathWorks Inc.).
  • the monomer structure was filtered from the aggregated structure and sediment particles according to the size, and the well-folded monomer structure was manually selected.
  • Individual well-folded monomer structures were converted into binary images to be thin and skeletal to obtain contours.
  • Parametric spline was used to outline each structure.
  • the kurtosis analysis was performed to obtain the optimal unit section length, and the smallest value that satisfies the theoretical kurtosis value 3 was selected for each cross-sectional design. Detailed results are shown in Figures 134 to 137.
  • the duration length was measured for feature points of fitting splines from all well-folded structures using a modified version of the open source software tool Easyworm.
  • the mean squared end-to-end distance ( ⁇ R 2 >) in two dimensions can be expressed as a function of the distance along the contour (l c ) as shown in Equation 1 below (L p is the duration length):
  • the correlation coefficient for data fitting is 0.99 in each case.
  • the standard deviation of the duration length was calculated by the bootstrap method with a subset of 500 randomly selected contours, using substitution and 10,000 iterations.
  • the SF was determined by optimizing to obtain the same L p values as measured experimentally for 4HB of square grid and 6HB of honeycomb grid in SF. After optimization of the HJcore element, this was determined by optimizing the SF for the ssDNA gap element to obtain similar L p values for both the measured values experimentally and for both the Gap-4HB with the square grid and the 6HB with the honeycomb grid. As the softening behavior according to the length of the ssDNA gap was observed in the experimental results, different SFs were calculated for each of the gaps of 1, 3 and 5 nt lengths.
  • the SF for the gaps of length 2 and 4 nt was derived from the quadratic interpolation method with gaps SF of lengths 1, 3 and 5 nt.
  • the'fmincon' function in Matlab R2016b was used to solve the optimization problem as shown in Fig.226.
  • the detailed SF values of each element obtained in the optimization process are summarized in Table 3 below.
  • NMA Normal mode analysis
  • K is the stiffness matrix
  • M is the mass matrix
  • Equation 3 a free oscillation equation such as Equation 3 below can be obtained:
  • Equation 4 the natural frequency of the first bending vibration
  • L is the length of the beam
  • Equation 5 Equation 5
  • m is the total mass of the DNA nanostructure, and l B is the eigenvalue of the first bending mode).
  • L p of the DNA nanostructure is derived as in Equation 6:
  • the starting atomic structure of the gapped, ungap 6HB design was created using caDNAno and CanDo.
  • Each atomic structure was clearly solvated using the TIP3P water model with a distance of 15 ⁇ or more from the structure and boundary. It produces a cubic water box of about 100 ⁇ x 100 ⁇ x 320 ⁇ , neutralized with an ionic concentration of 20 mM MgCl 2 .
  • MD simulation was performed using NAMD with CHARMM36 force field, periodic boundary conditions, integration time step of 2fs, and short-range electrostatic potential of 12 ⁇ cut-off. Long-distance electrostatic interactions were calculated using the PME (Particle-Mesh-Ewald) technique with a grid size of 1 ⁇ . The potential energy of each system was minimized using the conjugate gradient method.
  • Each structure was simulated for 320 ns under an isobaric-isothermal (NPT) ensemble and a final 200 ns trajectory was used for further analysis.
  • NPT isobaric-
  • the inner angle of the hexagon ( ⁇ i ) was calculated using two consecutive vertex vectors:
  • ⁇ i cos -1 [(v i ⁇ v i+1 )/(
  • c i is a hexagonal center vector, which means a vector from a vertex to a hexagonal center point).
  • Equation 12 The square root-mass-weight matrix ( ⁇ ) is obtained from Equation 12 below:
  • M is a diagonal matrix having the atomic weight of phosphorus atoms.
  • Equation 13 the pseudo-harmonic natural frequency ( ⁇ n ) provided by diagonalizing the square root-mass-weight matrix:
  • k B and T mean Boltzmann's constant and absolute temperature, respectively).
  • the dynamic Euler-Berneuil beam model with the boundary condition of the free-free end means that the elastic bending stiffness (EI n ) is roughly calculated using the natural frequency for the nth mode:
  • M and L mean the mass and axial length of the 6HB structure, respectively).
  • ß n L is predefined as 4.733.
  • Base pair analysis of the MD locus in the 6HB structure was performed using the hydrogen bonding tool of VMD.
  • the base pair was determined whether a hydrogen bond was formed between the N1 atom of the purine base (A,G) and the N3 atom of the pyrimidine base (T,C), and the cutoff values of the distance and angle were 4.0 ⁇ and 40°.
  • each MD snapshot of the base pair provides a value of 0 (broken) or 1 (coupled), giving the time-averaged hydrogen bond ratio for the last 200 ns long MD trajectory.
  • ssDNA is much more flexible than dsDNA, it can significantly reduce the stiffness of the insertion site and the overall structural stiffness of the DNA structure. Creating defects of varying lengths in nick sites does not affect the order of adjacent staples. Thus, completely modularizing and locally controlling the mechanical stiffness of DNA nanostructures is possible with base-pair precision.
  • the short ssDNA was used to partially mitigate some distortion at the vertices of polyhedral structures, but it has not yet been utilized as a mechanical design element to control the stiffness of DNA nanostructures.
  • the gap length (the number of ssDNA bases) and the gap density (the ratio of the number of inserted gaps to the total number of nicks) were used (FIGS. 3 to 11). It has a sufficiently long contour length (578 nm for 4HB and 391 nm for 6HB) for the analysis of the bending stiffness of the monomer scale, and has experimentally confirmed stiffness values, 4 and 6 DNA helices, 4HB, respectively. 6HB) two cross-section designs were selected. First, the effects of two design parameters were demonstrated using a 4HB design in which the gap length is variable while maintaining the maximum gap density and a 6HB design in which the gap density of 5 nt length is variable (Figs. 3, 28, 29). In both cases, the higher fluctuations in the monomer contour were clearly visible for longer gap lengths and higher gap densities.
  • Structural folding yields defined as the ratio of the number of well-folded monomers to the number of total monomers, ranged from 75.7% to 94.5% for all 4HB and 6HB designs with designed deficiencies ( Figures 158, 159, Table 2).
  • Intentional staple omission can be an alternative technique to soften DNA nanostructures, and has been shown to be effective when local areas of the structure need to be adjusted. However, this method has been found to be problematic when reducing the overall stiffness of the overall structure. Although this effect with a thick cross-section can be withstand relatively well, the 6HB structure from which 8.2% and 16.4% of staples were removed could not be properly constructed (Figs. 166, 167).
  • the average area of the plane and the inter-plane distance of the defective design structure differed only by 1.7 to 14.1% and less than 0.2%, respectively (Figs. 16, 17, 185, 186).
  • PCA principal component analysis
  • RMSF root-mean-square fluctuation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Biology (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medical Informatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The present invention relates to a method for controlling only stiffness of a DNA origami structure with no cross-sectional shape variations occurring in the structure. The present invention enjoys the advantage of finely overcoming the shortcoming of the conventional technique that most of staple DNA sets should be changed or an entirety of staple DNA sets should be reconstituted in a structure fabricated by the conventional DNA origami technique when cross-section shapes or arrangement patterns of DNA strands are modified in order to change stiffness in a part or the entirety of the structure.

Description

DNA 오리가미 구조체의 강성 제어 방법Stiffness control method of DNA origami structure
본 발명은 DNA 오리가미 구조체의 단면 형상 변화를 동반하지 않으면서, 구조체의 강성만을 제어할 수 있는 방법에 관한 것이다.The present invention relates to a method capable of controlling only the rigidity of the structure without being accompanied by a change in the cross-sectional shape of the DNA origami structure.
DNA 오리가미 기술은 통상 7,000∼8,000개 정도의 염기를 지닌 긴 DNA 가닥(strand)을 수십에서 수백 개의 짧은 단일가닥 DNA(ssDNA) 가닥들로 접고 고정하여 원하는 구조물을 만드는 기술이다.The DNA origami technology is a technology to create a desired structure by folding and fixing a long DNA strand having about 7,000 to 8,000 bases into tens to hundreds of short single-stranded DNA (ssDNA) strands.
DNA 나노기술에서는 원하는 형상의 구조물을 만들기 위해 왓슨-크릭 결합법칙을 이용하여 미리 프로그래밍된 특정한 염기서열의 DNA 가닥들을 합성한다. 해당 DNA는 자신과 상보적인 염기서열을 갖는 다른 DNA와 자가조립되어 이중나선 DNA를 이루며, 같은 원리를 이용하면 홀리데이 정션(Holliday junction 또는 crossover)이라 불리는 결합부위(접힌 부위)를 통해 두 개의 이중나선 DNA를 평행하게 연결할 수 있다. 이와 같은 방법으로 다수의 이중나선 DNA를 연결하면 2차원 평면상에서 특정한 형상을 갖는 DNA 나노구조물을 제작할 수 있으며, 같은 원리를 공간상으로 확장하면 특정한 격자구조를 갖는 3차원 형태의 구조물이 만들어진다.In DNA nanotechnology, DNA strands of a specific nucleotide sequence that have been programmed in advance are synthesized using the Watson-Crick binding law to create a structure of a desired shape. The DNA is self-assembled with other DNA that has a base sequence that is complementary to itself to form a double-stranded DNA. Using the same principle, two double-stranded strands are formed through a bonding site (folded area) called a holiday junction or crossover. DNA can be connected in parallel. When multiple double-stranded DNAs are connected in this way, a DNA nanostructure having a specific shape can be produced on a two-dimensional plane, and if the same principle is extended in space, a three-dimensional structure having a specific lattice structure is made.
DNA 오리가미에서는 구조물을 만들기 위한 기본 뼈대로 7,000∼8,000개 정도의 염기로 구성된 긴 단일가닥 DNA를 사용하며, 이를 스캐폴드(scaffold)라 부른다. 또한, 스캐폴드의 특정한 부분들을 연결하여 나노구조물 만들기 위해 20∼50개 정도의 염기로 구성된 짧은 단일가닥 DNA를 약 200개 정도 화학적으로 합성해 사용하며, 이러한 DNA를 스테이플(staple)이라 한다. 스테이플은 만들고자 하는 구조물의 형상에 따라 스캐폴드의 특정한 부분에만 결합될 수 있도록 그 개수 및 염기서열이 정확하게 설계되어야 한다.In DNA origami, a long single-stranded DNA composed of about 7,000 to 8,000 bases is used as a basic skeleton for constructing a structure, and this is called a scaffold. In addition, about 200 short single-stranded DNAs composed of about 20 to 50 bases are chemically synthesized and used to form nanostructures by connecting specific parts of the scaffold, and such DNA is called a staple. Staples must be accurately designed in number and base sequence so that they can only be bonded to a specific part of the scaffold according to the shape of the structure to be made.
스캐폴드 및 스테이플의 상호결합은 수용액 상에서 이루어지며, 그 안에는 완충용액 버퍼와 DNA 사이의 정전기적 반발력을 완화시키기 위한 염이온(MgCl 2 또는 NaCl)이 첨가된다. 모든 반응물이 포함된 용액을 80℃정도의 온도로 가열시킨 후 수 시간에서 수십 시간 동안 천천히 온도를 낮추는 열풀림(thermal annealing) 기법을 이용하면 수용액 속 스테이플들이 스캐폴드의 지정된 위치에 상보적으로 결합하면서 DNA 나노구조물을 이루게 된다.The scaffold and staples are mutually bonded in an aqueous solution, and salt ions (MgCl 2 or NaCl) are added therein to mitigate the electrostatic repulsion between the buffer buffer and the DNA. By heating the solution containing all reactants to a temperature of about 80℃ and then slowly lowering the temperature for several to tens of hours, the staples in the aqueous solution are complementarily bonded to the designated positions of the scaffold. As a result, a DNA nanostructure is formed.
이러한 DNA 오리가미 기술은 수 나노미터(nm) 이내의 높은 정밀도로 기존의 하향식 제작기법으로 만들 수 없는 복잡한 형상의 2차원/3차원 나노구조물을 제작할 수 있다. 이를 통해 다양한 나노재료들을 원하는 위치에 정밀하게 배열하는 등의 응용이 가능하며, 또한 생체분자를 이용하므로 제작된 나노구조물의 생체적합성이 매우 우수하다.This DNA origami technology can produce 2D/3D nanostructures with complex shapes that cannot be made with conventional top-down manufacturing techniques with high precision within a few nanometers (nm). Through this, applications such as precisely arranging various nanomaterials at a desired location are possible, and since biomolecules are used, the biocompatibility of the fabricated nanostructures is very excellent.
그러나, DNA 오리가미 기술로 제조된 구조체에서 일부분, 또는 구조 전체의 강성을 변화시키기 위해 단면의 형상, 또는 DNA 가닥들의 배열 패턴을 변화시키고자 하는 경우에는 대부분의 스테이플 DNA 세트를 교체하거나, 전체 스테이플 DNA 세트를 새로 구성해야 하는 문제가 있다.However, in the case of changing the shape of the cross section or the arrangement pattern of DNA strands in order to change the stiffness of a part or the entire structure of a structure manufactured by DNA origami technology, most of the staple DNA sets are replaced, or the entire staple DNA There is a problem with rebuilding the set.
본 발명은 DNA 오리가미 구조체의 단면 형상 변화를 동반하지 않으면서, 구조체 전체, 또는 일부분의 강성만을 제어할 수 있는 우수한 DNA 오리가미 구조체 강성 제어 방법을 제공하는 것에 그 목적이 있다.An object of the present invention is to provide an excellent DNA origami structure stiffness control method capable of controlling the stiffness of the entire or partial structure without being accompanied by a change in the cross-sectional shape of the DNA origami structure.
1. 스캐폴드 DNA에 복수개의 스테이플 DNA를 결합시켜 DNA 오리가미 구조체를 형성하는 단계를 포함하고,1. Including the step of forming a DNA origami structure by binding a plurality of staple DNA to the scaffold DNA,
상기 구조체의 강성 조절 대상 부위 내 적어도 일부의 인접한 스테이플 DNA의 양 말단 사이에 갭(gap)을 형성하는 DNA 오리가미 구조체(DNA origami structure)의 강성을 제어하는 방법.A method of controlling the stiffness of a DNA origami structure that forms a gap between both ends of at least a portion of adjacent staple DNA in the site to be stiffness control of the structure.
2. 위 1에 있어서, 상기 갭을 1개 이상 형성하거나, 갭의 길이를 늘려 상기 강성 조절 대상 부위의 강성을 낮추는 방법.2. In the above 1, the method of forming one or more gaps or increasing the length of the gap to lower the stiffness of the stiffness-adjusted portion.
3. 위 1에 있어서, 상기 갭의 길이를 1 내지 10 뉴클레오티드(nucleotide)로 형성하는 방법.3. The method of 1 above, wherein the length of the gap is 1 to 10 nucleotides.
4. 위 1에 있어서, 상기 갭의 길이를 1 내지 5 뉴클레오티드로 형성하는 방법.4. The method of 1 above, wherein the length of the gap is 1 to 5 nucleotides.
5. 위 1에 있어서, 상기 갭과 홀리데이 교차점 간 간격을 3 뉴클레오티드 이상으로 형성하는 방법.5. The method of 1 above, wherein the gap between the gap and the holiday intersection is 3 nucleotides or more.
6. 위 1에 있어서, 기결정된 길이의 갭을 기결정된 개수로 형성하도록 스테이플 DNA를 설계하는 단계를 더 포함하는 방법.6. The method of 1 above, further comprising designing the staple DNA to form a predetermined number of gaps of a predetermined length.
7. 위 1에 있어서, 상기 구조체는 2 내지 20개의 헬릭스를 포함하는 것인 방법.7. The method of 1 above, wherein the structure includes 2 to 20 helixes.
8. 위 1에 있어서, 상기 강성은 굽힘 강성(bending stiffness)인 방법.8. The method of 1 above, wherein the stiffness is bending stiffness.
본 발명의 DNA 오리가미 구조체 강성 제어 방법은 DNA 오리가미 구조체의 단면 형상 변화를 동반하지 않으면서, 구조체의 강성만을 제어할 수 있어 그 효과가 우수하다.The method for controlling the rigidity of the DNA origami structure of the present invention is excellent in its effect since it is possible to control only the rigidity of the structure without changing the cross-sectional shape of the DNA origami structure.
도 1은 긴 원형 스캐폴드와 수백개의 스테이플 가닥으로 구성된 전형적인 DNA 오리가미 구조로서, 인접한 스테이플 두 끝이 만나는 여러 닉(nick, DNA single-stranded break)을 확인할 수 있다.1 is a typical DNA origami structure composed of a long circular scaffold and hundreds of staple strands, and several nicks (DNA single-stranded breaks) where two adjacent staple ends meet can be identified.
도 2는 설계된 결손부위 및 일반 닉의 확대 도면으로서, 자가조립 공정에서 일반 스테이플보다 짧은 스테이플을 사용하여 닉 위치에서 결손을 설계할 수 있다(화살촉은 스테이플의 3' 말단을 나타냄).FIG. 2 is an enlarged view of the designed defect area and a general nick. In the self-assembly process, a short staple can be used to design the defect at the nick location (arrowheads indicate the 3'end of the staple).
도 3, 4는 설계된 갭에 대한 2개의 디자인 파라미터의 모식도, 샘플 모노머(단량체)의 원자힘현미경(Atomic force microscope, AFM) 이미지 및 각 설계 케이스에 대한 120개의 대표적인 모노머의 윤곽선에 관한 것으로서, 초기 접선은 수평이다(Scale bar 및 ticks: 100 nm).3 and 4 are schematic diagrams of two design parameters for the designed gap, atomic force microscope (AFM) images of sample monomers (monomers), and contours of 120 representative monomers for each design case. The tangent is horizontal (Scale bar and ticks: 100 nm).
도 5는 체계적으로 다양한 갭 길이와 갭 밀도로 설계된 4HB와 6HB 구조의 굽힘 지속 길이의 측정결과로서, 실선은 계산으로 추정된 값의 스플라인 맟춤 곡선을 나타내고, 회색 점선은 2 nt 및 4 nt 길이 갭 설계에 해당하며, 오차 막대는 실험결과의 표준편차를 나타낸다.5 is a measurement result of the bending duration of the 4HB and 6HB structures systematically designed with various gap lengths and gap densities, the solid line represents the spline alignment curve of the calculated value, and the gray dotted line represents the 2 nt and 4 nt length gaps. It corresponds to the design, and the error bars indicate the standard deviation of the experimental results.
도 6은 4HB-Ref 및 6HB-Ref 윤곽선의 첨도 변화를 나타낸 것으로서, 두 구조 모두 단량체의 길이 구간에서 이론적 2D 평형 상태에 해당하는 값인 3으로 수렴했다.6 shows changes in the kurtosis of the contours of 4HB-Ref and 6HB-Ref, and both structures converged to 3, which is a value corresponding to the theoretical 2D equilibrium state in the length section of the monomer.
도 7은 대표적인 4HB-Ref(왼쪽) 및 6HB-Ref(오른쪽) 윤곽의 평균 제곱근 종단 거리(Mean-square end-to-end distance)를 나타낸 것이다.FIG. 7 shows the mean-square end-to-end distance of representative 4HB-Ref (left) and 6HB-Ref (right) contours.
도 8은 유한요소(Finite element, FE) 모델의 개략도로서, inter-helix 크로스오버는 회색으로 표시되고, ssDNA 갭은 파란색 실린더로 표시되었다. 일반 dsDNA 요소 및 ssDNA 갭 요소는 주황색 상자에 표시된 것과 같이, 기계적 강성 값이 서로 다른 빔 요소로 모델링된다.FIG. 8 is a schematic diagram of a finite element (FE) model, in which inter-helix crossovers are indicated in gray and ssDNA gaps are indicated by blue cylinders. Normal dsDNA elements and ssDNA gap elements are modeled as beam elements with different mechanical stiffness values, as indicated in the orange box.
도 9는 풀(full) 갭 밀도를 갖는 1 nt, 3 nt, 5 nt 갭 디자인의 실험값에 적합하도록 FE 파라미터 최적화를 수행함으로써 결정된, 일반 dsDNA 요소에 대한 갭 요소의 상대 강성 계수를 나타낸 것으로서, 2 nt 및 4 nt 갭 요소의 강성은 인접한 값은 2차 보간법에서 파생되었다. 번들의 굽힘 지속 길이는 갭 요소의 축 방향 강성에 크게 영향을 받는다.9 shows the relative stiffness coefficient of the gap element for the general dsDNA element, determined by performing the FE parameter optimization to fit the experimental values of the 1 nt, 3 nt, 5 nt gap design with full gap density, 2 The stiffness of the nt and 4 nt gap elements are adjacent values derived from the quadratic interpolation method. The duration of bending of the bundle is strongly influenced by the axial stiffness of the gap element.
도 10은 정상 모드 분석(Normal mode analysis, NMA)에서 얻은 첫번째 굽힘 모드의 개략도로서, 번들의 길이는 명확한 시각화를 위해 1/3의 축척으로 축소되었다.Fig. 10 is a schematic diagram of the first bending mode obtained in normal mode analysis (NMA), the length of the bundle has been reduced to a scale of 1/3 for clear visualization.
도 11은 실험적으로 측정되고 FE 모델을 통해 예측된 굽힘 지속 길이와의 비교결과로서, 점선은 계산된 값의 스플라인 맞춤 곡선을 나타낸다. 오차막대는 실험결과의 표준편차를 나타낸다(P.L: 지속길이(Persistence length)).11 is a result of comparison with the bending duration length experimentally measured and predicted through the FE model, and the dotted line represents the spline fit curve of the calculated value. The error bar represents the standard deviation of the experimental result (P.L: Persistence length).
도 12는 5 nt 갭을 갖는 84 nt 길이의 6HB 구조물의 평형 구성을 보여주는 분자 동역학(Molecular dynamics, MD) 시뮬레이션 스냅샷으로서, 박스처리 된 부분은 갭 부위를 나타낸다.12 is a molecular dynamics (MD) simulation snapshot showing the equilibrium configuration of an 84 nt long 6HB structure with a 5 nt gap, where the boxed portion represents the gap region.
도 13은 시뮬레이션 시간 전체에 대한 MD 궤적의 평균평방근편차(Root-mean-square deviation, RMSD)을 나타낸 것으로서, 최종 200나노초(ns) 시간 범위의 결과가 분석 전반에 걸쳐 사용되었다.13 shows the root-mean-square deviation (RMSD) of the MD trajectory for the entire simulation time, and the results in the final 200 nanosecond (ns) time range were used throughout the analysis.
도 14는 MD 시뮬레이션에 사용된 6HB의 개략도로서, 청색 영역에 존재하는 6개 염기의 궤적은 각 단면별로 2D 평면에 위치를 투영하여 분석하였다.14 is a schematic diagram of 6HB used in the MD simulation, and the locus of 6 bases in the blue region was analyzed by projecting the position on a 2D plane for each section.
도 15는 갭이 있거나 없는 6HB 구조의 5개의 대표 평면의 시간 평균 횡단면 형상(time-average cross-sectional shape)으로서, 파란색 영역은 각 꼭지점에서 염기쌍 좌표를 나타내고, 각도는 6개의 내각에 대한 시간 평균 표준편차를 나타낸다(tick 및 scale bar: 20 nm). 15 is a time-average cross-sectional shape of five representative planes of a 6HB structure with or without gaps, where the blue area represents the base pair coordinates at each vertex, and the angle is the time average for the six inner angles. It represents the standard deviation (tick and scale bar: 20 nm).
도 16은 각 디자인에 대한 5개의 육각 평면의 평균면적을 나타낸 것이다.16 shows the average area of five hexagonal planes for each design.
도 17은 각 디자인의 평균 평면간 거리를 나타낸 것이다.17 shows the average interplanar distance of each design.
도 18은 시뮬레이션 결과 검증을 위해 실험 측정값, FE 시뮬레이션의 NMA, MD 시뮬레이션 궤적의 PCA 데이터 각각에 대하여 갭이 없는 기준(레퍼런스) 구조체 대비 결손 설계 6HB 구조체의 상대 굽힘 지속 길이를 나타낸 것이다.18 shows the relative bending duration length of the defective design 6HB structure compared to the reference (reference) structure without a gap for each of the experimental measurement values, the NMA of the FE simulation, and the PCA data of the MD simulation trajectory for verifying the simulation result.
도 19는 갭이 있거나 없는 6HB 구조체의 스캐폴드 가닥 상에 존재하는 모든 개별 염기들의 RMSF(Root-mean-square fluctuation)를 나타낸 것이고, 점선의 상자는 닉이 있는 부분, 실선의 상자는 갭이 있는 부분을 나타낸다.Figure 19 shows the RMSF (Root-mean-square fluctuation) of all individual bases present on the scaffold strand of the 6HB structure with or without gaps, the dotted box is the nicked area, the solid box is the gap. Indicate part.
도 20은 결손 설계된 다양한 횡단면 형상을 가진 번들의 굽힘 지속 길이를 나타낸 것이다. 회색 막대는 FE 시뮬레이션에 의해 추정된 각 횡단면에 대한 달성할 수 있는 굽힘 강성 범위를 나타낸다. 막대의 십자 표시는 서로 다른 갭 설계에 대해 실험적으로 측정된 값을 나타낸다. 흑색 실선은 모든 나선이 단단히 결합되어있을 때 유효한 것으로 알려진 이론적인 N 2(N, 구성 dsDNA 나선의 수) 스케일링 경향을 보여준다. 노란색 및 빨간색 점선은 각각 이론값의 50% 및 70% 감소치에 해당한다. DNA 이중나선 한 가닥의 굽힘 지속 길이는 50 nm로 가정된다. 20 shows the bending duration of bundles having various cross-sectional shapes designed to be defective. The gray bars represent the achievable bending stiffness range for each cross section estimated by the FE simulation. The crosshairs on the bars represent experimentally measured values for different gap designs. The solid black line shows the theoretical N 2 (N, number of constituent dsDNA helices) scaling tendency, which is known to be valid when all helices are tightly bonded. The yellow and red dotted lines correspond to 50% and 70% reductions of the theoretical value, respectively. The bending duration of a single strand of DNA double helix is assumed to be 50 nm.
도 21은 풀 결손 밀도를 갖는 다양한 횡단면 디자인의 개략도이다.21 is a schematic diagram of various cross-sectional designs with full defect density.
도 22는 시뮬레이션 결과의 검증을 위한 갭 밀도 변이가 있는 10HB의 결과로서, 오차막대는 실험결과의 표준편차를 나타낸다.22 is a result of 10HB with a gap density variation for verifying the simulation result, and an error bar represents the standard deviation of the experimental result.
도 23의 상부 도면은 각도조절이 가능한 구부러진 DNA 번들 디자인의 개략도로서, 빨간색은 결손 설계를 통해 강성이 변조된 힌지 영역을 나타내고, 3가지 다른 각도의 12HB 구조는 결손이 설계되거나 그러하지 않도록 디자인되었다. 중간부 도면은 일반 및 결손 설계 디자인의 겔 전기영동 결과를 나타낸 것이고, 하부 도면은 구조적 조립 수율로서, 모든 경우에서 현저한 상승이 관찰된다.The upper drawing of FIG. 23 is a schematic diagram of a bent DNA bundle design that can be angled, and red indicates a hinge region whose stiffness is modulated through a defect design, and a 12HB structure at three different angles is designed so that the defect is designed or not. The middle figure shows the gel electrophoresis results of the normal and defective design designs, and the lower figure shows the structural assembly yield, with a significant increase observed in all cases.
도 24는 상기 도 23의 대표적인 AFM 이미지이다(Scale bar: 300 nm).24 is a representative AFM image of FIG. 23 (Scale bar: 300 nm).
도 25 내지 27은 6HB 디자인의 횡단면 분석(하단 실시예)을 위한 참조도면이다.25 to 27 are reference views for cross-sectional analysis (bottom example) of the 6HB design.
도 28은 4HB 갭 디자인의 (a) 사각-격자 패킹(square-lattice packing)된 4HB를 구성하는 반복 스캐폴드 및 스테이플 경로로서, 삼각형과 사각형은 각각 스테이플 DNA의 5' 및 3' 말단을 나타내고, (b) 색 상자가 해당 색인에 있는 닉이 프로그램된 길이의 ssDNA 갭으로 변경된 위치를 보여주는 개략도이다.28 is a repeating scaffold and staple pathway constituting (a) a square-lattice packed 4HB of a 4HB gap design, where triangles and squares represent the 5'and 3'ends of the staple DNA, respectively, (b) The color box is a schematic diagram showing the location where the nick at the corresponding index is changed to the ssDNA gap of the programmed length.
도 29는 6HB 갭 디자인의 (a) 벌집-격자 패킹(honeycomb-lattice packing) 을 가진 6HB를 구성하는 반복 스캐폴드 및 스테이플 경로로서, 삼각형과 사각형은 각각 스테이플 DNA의 5' 및 3' 말단을 나타내고, (b) 색 상자가 해당 색인에 있는 닉이 프로그램된 길이의 ssDNA 갭으로 변경된 위치를 보여주는 개략도로서, 다발의 양 말단에 위치한 11개의 닉은 갭 밀도 변화에 걸쳐 ssDNA 갭으로 변경되지 않았기 때문에 도면에서 생략되었다.29 is a repeating scaffold and staple pathway constituting 6HB with (a) honeycomb-lattice packing of a 6HB gap design, where triangles and squares represent the 5'and 3'ends of the staple DNA, respectively. , (b) The color box is a schematic diagram showing the location where the nick at the corresponding index has changed to the ssDNA gap of the programmed length, since the 11 nicks located at both ends of the bundle did not change to the ssDNA gap over the gap density change. Was omitted from.
도 30 내지 32는 4HB-Ref의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.30 to 32 show the ordered contour distributions of each of 120 representative monomers of 4HB-Ref, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
도 33 내지 35는 4HB-1nt-25%(단면 디자인-갭 길이-갭 밀도)의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 33 to 35 show the ordered contour distribution of 120 representative monomers each of 4HB-1 nt-25% (cross-sectional design-gap length-gap density), average bending duration calculated by fitting all measurement data, and extracted with AFM images. It shows the outline of the monomer.
도 36 내지 38은 4HB-1nt-50%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 36 to 38 show the ordered contour distribution of 120 representative monomers each of 4HB-1nt-50%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
도 39 내지 41은 4HB-1nt-75%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.39 to 41 show the ordered contour distribution of each of 120 representative monomers of 4HB-1 nt-75%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
도 42 내지 44는 4HB-1nt-100%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 42 to 44 show the ordered contour distribution of 120 representative monomers each of 4HB-1 nt-100%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
도 45 내지 47는 4HB-3nt-25%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 45 to 47 show the ordered contour distribution of 120 representative monomers each of 4HB-3nt-25%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
도 48 내지 50는 4HB-3nt-50%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.48-50 show the ordered contour distribution of each 120 representative monomers of 4HB-3nt-50%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
도 51 내지 53는 4HB-3nt-75%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.51 to 53 show the ordered contour distributions of 120 representative monomers each of 4HB-3nt-75%, the average bending duration calculated by fitting all measurement data, and the AFM image and contours of the extracted monomers.
도 54 내지 56는 4HB-3nt-100%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 54 to 56 show the ordered contour distribution of 120 representative monomers each of 4HB-3nt-100%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
도 57 내지 59는 4HB-5nt-25%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.57 to 59 show the ordered contour distribution of 120 representative monomers each of 4HB-5nt-25%, the average bending duration calculated by fitting all measurement data, and the AFM image and contours of the extracted monomers.
도 60 내지 62는 4HB-5nt-50%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 60 to 62 show the ordered contour distribution of 120 representative monomers each of 4HB-5nt-50%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
도 63 내지 65는 4HB-5nt-75%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 63 to 65 show the ordered contour distributions of 120 representative monomers each of 4HB-5nt-75%, the average bending duration calculated by fitting all measurement data, and the contours of the extracted monomers with the AFM image.
도 66 내지 68은 4HB-5nt-100%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 66 to 68 show the ordered contour distribution of 120 representative monomers each of 4HB-5nt-100%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
도 69 내지 71은 6HB-Ref의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.69 to 71 show the ordered contour distribution of each of 120 representative monomers of 6HB-Ref, the average bending duration calculated by fitting all measurement data, and the AFM image and contours of the extracted monomers.
도 72 내지 74는 6HB-1nt-17%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.72 to 74 show the ordered contour distribution of each of 120 representative monomers of 6HB-1 nt-17%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
도 75 내지 77은 6HB-1nt-33%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 75 to 77 show the ordered contour distribution of 120 representative monomers each of 6HB-1 nt-33%, the average bending duration calculated by fitting all measurement data, and the contours of the extracted monomers with the AFM image.
도 78 내지 80은 6HB-1nt-50%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 78 to 80 show the ordered contour distribution of each of 120 representative monomers of 6HB-1 nt-50%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
도 81 내지 83은 6HB-1nt-67%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.81 to 83 show the ordered contour distribution of each of 120 representative monomers of 6HB-1 nt-67%, the average bending duration calculated by fitting all measurement data, and the AFM image and contours of the extracted monomers.
도 84 내지 86은 6HB-1nt-83%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.84 to 86 show the ordered contour distribution of each of 120 representative monomers of 6HB-1 nt-83%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
도 87 내지 89는 6HB-1nt-100%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.87 to 89 show the ordered contour distribution of 120 representative monomers each of 6HB-1 nt-100%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
도 90 내지 92는 6HB-2nt-100%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.90 to 92 show the ordered contour distribution of each of 120 representative monomers of 6HB-2nt-100%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
도 93 내지 95는 6HB-3nt-17%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 93-95 show the ordered contour distributions of 120 representative monomers each of 6HB-3nt-17%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
도 96 내지 98은 6HB-3nt-33%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.96 to 98 show the ordered contour distribution of each of 120 representative monomers of 6HB-3nt-33%, the average bending duration calculated by fitting all measurement data, and the AFM image and contours of the extracted monomers.
도 99 내지 101은 6HB-3nt-50%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.99 to 101 show the ordered contour distribution of each of 120 representative monomers of 6HB-3nt-50%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
도 102 내지 104는 6HB-3nt-67%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.102 to 104 show the ordered contour distribution of each of 120 representative monomers of 6HB-3nt-67%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
도 105 내지 107은 6HB-3nt-83%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.105 to 107 show the aligned contour distribution of each of 120 representative monomers of 6HB-3nt-83%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
도 108 내지 110은 6HB-3nt-100%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 108 to 110 show the ordered contour distribution of 120 representative monomers each of 6HB-3nt-100%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
도 111 내지 113는 6HB-4nt-100%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.111 to 113 show the ordered contour distribution of 120 representative monomers each of 6HB-4nt-100%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
도 114 내지 116은 6HB-5nt-17%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 114 to 116 show the ordered contour distribution of 120 representative monomers each of 6HB-5nt-17%, the average bending duration calculated by fitting all measurement data, and the contours of the extracted monomers and the AFM image.
도 117 내지 119는 6HB-5nt-33%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 117 to 119 show the ordered contour distribution of 120 representative monomers each of 6HB-5nt-33%, the average bending duration calculated by fitting all measurement data, and the contours of the extracted monomers with the AFM image.
도 120 내지 122는 6HB-5nt-50%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.120 to 122 show the ordered contour distribution of each of 120 representative monomers of 6HB-5nt-50%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
도 123 내지 125는 6HB-5nt-67%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 123 to 125 show the ordered contour distribution of each of 120 representative monomers of 6HB-5nt-67%, the average bending duration calculated by fitting all measurement data, and the AFM image and contours of the extracted monomers.
도 126 내지 128은 6HB-5nt-83%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 126 to 128 show the ordered contour distributions of 120 representative monomers each of 6HB-5nt-83%, the average bending duration calculated by fitting all measurement data, and the contours of the extracted monomers with the AFM image.
도 129 내지 131는 6HB-5nt-100%의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 129 to 131 show the aligned contour distributions of 120 representative monomers each of 6HB-5nt-100%, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
도 132, 133은 각각 4HB-Ref 및 6HB-Ref 디자인의 접힘 지속 길이로서, 단위 세그먼트의 길이는 세그먼트 당 픽셀 값에 비례하고, 픽셀의 해상도는 약 4.9 nm/px이다.132 and 133 show the folding duration lengths of the 4HB-Ref and 6HB-Ref designs, respectively, the length of the unit segment is proportional to the pixel value per segment, and the resolution of the pixel is about 4.9 nm/px.
도 134, 135는 각각 4HB-Ref의 첨도 분석 및 종단 간 거리 피팅 곡선을 나타낸 것으로서, 세그먼트 당 픽셀수는 4로 선택되었다.134 and 135 show kurtosis analysis and end-to-end distance fitting curves of 4HB-Ref, respectively, and the number of pixels per segment was selected as 4.
도 136, 137은 각각 6HB-Ref의 첨도 분석 및 종단 간 거리 피팅 곡선을 나타낸 것으로서, 세그먼트 당 픽셀수는 5로 선택되었다.136 and 137 show kurtosis analysis and end-to-end distance fitting curves of 6HB-Ref, respectively, and the number of pixels per segment was selected as 5.
도 138, 139는 윤곽 길이 범위를 변화시키는 동안의 굽힘 지속 길이의 계산결과로서, 도 138은 컷오프 길이의 정의로서, 컷오프 윤곽 길이 내의 데이터는 굽힘 지속 길이를 계산하는 데에 사용되었고, 도 139는 굽힘 지속 길이의 계산 값이 4HB-Ref 및 6HB-Ref 디자인에서 단량체 길이 범위 내에서 수렴되었음을 보여주는 그래프이다.Figures 138 and 139 are the calculation results of the bending duration length while changing the contour length range, Figure 138 is the definition of the cutoff length, the data in the cutoff contour length was used to calculate the bending duration length, Figure 139 It is a graph showing that the calculated values of the bending duration length converge within the monomer length range in the 4HB-Ref and 6HB-Ref designs.
도 140, 141은 이미지의 해상도를 변화시키는 동안 계산된 굽힘 지속 길이로서, 각각 100 단량체를 사용한 4HB-Ref 디자인에 대한 결과와, 140 단량체를 사용한 6HB-Ref 디자인에 대한 결과를 나타낸 것으로, 분석 결과 1024 px 해상도가 모든 경우에 사용되었다.140 and 141 are the calculated bending duration lengths while changing the resolution of the image, respectively, showing the results for the 4HB-Ref design using 100 monomers and the 6HB-Ref design using 140 monomers, analysis results 1024 px resolution was used in all cases.
도 142, 143은 이방성 갭 분포 결과로서, 각각 길이 방향에서의 이방성 갭 분포의 도식적 설명과 굽힘 지속 길이의 실험적 측정값을 나타낸 것이다. 파란색 점선은 스플라인 피팅된 FE 시뮬레이션 결과를 나타낸 것이고, 오차 막대는 실험결과의 표준편차를 나타낸다.142 and 143 are anisotropic gap distribution results, respectively, schematically illustrating an anisotropic gap distribution in a longitudinal direction and an experimental measurement value of a bending duration. The blue dotted line represents the spline-fitted FE simulation result, and the error bar represents the standard deviation of the experimental result.
도 144 내지 146은 각각 6HB-5nt-25%-Axial 디자인의 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 144 to 146 show the ordered contour distribution of 120 representative monomers of the 6HB-5nt-25%-Axial design, respectively, the average bending duration calculated by fitting all measurement data, and the contours of the extracted monomers with the AFM image. .
도 147 내지 149는 각각 6HB-5nt-50%-Axial 디자인의 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 147 to 149 show the ordered contour distribution of 120 representative monomers of 6HB-5nt-50%-Axial design, respectively, the average bending duration calculated by fitting all measurement data, and the contours of the extracted monomers and the AFM image. .
도 150 내지 152는 각각 6HB-5nt-75%-Axial 디자인의 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 150 to 152 show the ordered contour distribution of 120 representative monomers of the 6HB-5nt-75%-Axial design, respectively, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers. .
도 153, 154는 4HB 디자인의 겔 전기영동 결과를 나타낸 것이다.Figures 153 and 154 show the gel electrophoresis results of the 4HB design.
도 155 내지 157은 6HB 디자인의 겔 전기영동 결과를 나타낸 것이다.Figures 155 to 157 show the results of gel electrophoresis of the 6HB design.
도 158, 159는 구조 접힘 수율 분석을 나타낸 것으로서, 도 158은 구조 접힘 수율 계산 과정을 보여주는 4HB-Ref 디자인의 AFM 이미지로서, 자동화된 단량체 선택과정 후 잘 접히거나 잘못 접힌 단량체 구조를 수동으로 분류하였고, 모든 디자인 변형의 결과는 표 2에 요약되어 있으며(Scale bar: 500 nm), 도 159는 잘 접히고 잘못 접힌 단량체 구조의 대표적인 단량체 이미지이다(Scale bar: 200 nm).Figures 158 and 159 show structure folding yield analysis, and Figure 158 is an AFM image of 4HB-Ref design showing the structure folding yield calculation process.After the automated monomer selection process, well-folded or incorrectly folded monomer structures were manually classified. , The results of all design modifications are summarized in Table 2 (Scale bar: 500 nm), and Figure 159 is a representative monomer image of a well-folded and misfolded monomer structure (Scale bar: 200 nm).
도 160 내지 162는 전체 설계영역의 절반에서 42 nt 간격의 크로스오버(교차점) 수정을 하는 6HB 번들로서, 도 160은 변형된 영역 및 스테이플 디자인을 나타내는 개략도이고, 도 161은 수정된 경우의 접힘 지속 시간은 레퍼런스 디자인과 유사함을 나타낸 것이며, 도 162는 레퍼런스 및 42 nt 길이의 크로스오버 설계의 대표적인 AFM 이미지를 나타낸 것이다(Scale bar: 300 nm).160 to 162 are 6HB bundles that modify crossovers (intersections) at 42 nt intervals in half of the entire design area, and FIG. 160 is a schematic diagram showing a deformed area and staple design, and FIG. 161 is a folding continuity when modified Time shows similarity to the reference design, and FIG. 162 shows representative AFM images of the reference and 42 nt length crossover designs (Scale bar: 300 nm).
도 163 내지 165는 6HB-50%-42nt-교차 디자인의 각각 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 163 to 165 show the ordered contour distribution of 120 representative monomers each of the 6HB-50%-42nt-cross design, the average bending duration calculated by fitting all measurement data, and the contours of the extracted monomers with the AFM image. .
도 166, 167은 전체 설계영역의 절반에서 스테이플이 생략되는 6HB 번들을 나타낸 것으로서, 도 166은 생략된 스테이플의 개질 영역 및 대표 위치를 나타내는 개략적인 설명도로서, 결손 위치를 분배하기 위해 생략된 스테이플의 위치가 영역을 따라 변경되었고, 12개 스테이플로 구성된 단위 설계영역 내에서 2개의 얇은 쇄선 스테이플이 8.2% 생략 디자인에서 제거되었으며, 다른 두 개의 굵은 쇄선 스테이플이 16.4% 생략 디자인에서 추가로 제거되었고, 도 167은 두 경우의 AFM 이미지를 나타낸 것이다(Scale bar: 1 μm).166 and 167 are diagrams showing 6HB bundles in which staples are omitted in half of the entire design area, and FIG. 166 is a schematic explanatory diagram showing the modified areas and representative positions of the omitted staples, and staples omitted for distributing defect locations The position of was changed along the area, and within the unit design area consisting of 12 staples, two thin chain staples were removed from the 8.2% omitted design, and the other two thick chain line staples were additionally removed from the 16.4% omitted design. 167 shows the AFM images in two cases (Scale bar: 1 μm).
도 168 내지 173은 크로스오버 중심부(HJcore) 요소의 민감도 분석 결과로서, 도 168 내지 170은 4HB-Ref 디자인 번들의 계산된 굽힘 지속 길이이고, 도 171 내지 173은 6HB-Ref 디자인 번들의 계산된 굽힘 지속 길이이다. HJcore 요소의 축 방향, 굽힘 또는 비틀림 강성을 변화시키면서, 다른 두 표준화된 매개 변수는 1로 고정되었다.Figures 168 to 173 are the results of sensitivity analysis of the crossover center (HJcore) element, Figures 168 to 170 are the calculated bending duration length of the 4HB-Ref design bundle, Figures 171 to 173 are the calculated bending of the 6HB-Ref design bundle Is the lasting length. While varying the axial, bending or torsional stiffness of the HJcore element, the other two standardized parameters were fixed at 1.
도 174 내지 179는 5 nt ssDNA 갭 요소에 대한 민감도 분석 결과로서, 도 174 내지 176은 4HB-5nt-100% 디자인 번들의 계산된 굽힘 지속 길이이고, 도 177 내지 179는 6HB-5nt-100% 디자인 번들의 계산된 굽힘 지속 길이이다. 여기서 사용된 HJcore 요소의 강성 계수는 표 3에 나타내었고, 5 nt 길이의 ssDNA 갭 요소의 축 방향, 굽힘 또는 비틀림 강성을 변화시키면서, 다른 두 표준화된 매개 변수는 1로 고정되었다.Figures 174 to 179 are the results of sensitivity analysis for 5 nt ssDNA gap elements, Figures 174 to 176 are the calculated bending duration length of the 4HB-5nt-100% design bundle, and Figures 177 to 179 are the 6HB-5nt-100% design The calculated bending duration length of the bundle. The stiffness modulus of the HJcore element used here is shown in Table 3, while the other two standardized parameters were fixed to 1 while changing the axial direction, bending or torsional stiffness of the 5 nt long ssDNA gap element.
도 180은 MD 시뮬레이션에 사용된 DNA 서열로서, a 부터 d까지 각각, 갭이 없는 경우, 1nt 길이의 갭이 있는 경우, 3nt 길이의 갭이 있는 경우, 5nt 길이의 갭이 있는 경우에 대한 스캐폴드 가닥의 서열을 나타낸 것이다.FIG. 180 is a scaffold for DNA sequences used in MD simulations, respectively, from a to d, when there is no gap, when there is a gap of 1 nt length, when there is a gap of 3 nt length, and when there is a gap of 5 nt length. It shows the sequence of the strand.
도 181은 갭이 없는 6HB 번들 구조의 MD 시뮬레이션 결과로서, (a) 초기 및 (b) 최종(320 ns 시뮬레이션 시간) 입체구조를 나타낸 것이다.181 shows MD simulation results of a 6HB bundle structure without a gap, showing (a) initial and (b) final (320 ns simulation time) three-dimensional structures.
도 182은 6HB-1nt 갭(박스)이 있는 번들 구조의 MD 시뮬레이션 결과로서, (a) 초기 및 (b) 최종(320 ns 시뮬레이션 시간) 입체구조를 나타낸 것이다.182 is a result of MD simulation of a bundle structure with a 6HB-1nt gap (box), showing (a) initial and (b) final (320 ns simulation time) three-dimensional structures.
도 183은 6HB-3nt 갭(박스)이 있는 번들 구조의 MD 시뮬레이션 결과로서, (a) 초기 및 (b) 최종(320 ns 시뮬레이션 시간) 입체구조를 나타낸 것이다.183 is a result of MD simulation of a bundle structure with a 6HB-3nt gap (box), showing (a) initial and (b) final (320 ns simulation time) three-dimensional structures.
도 184는 6HB-5nt 갭(박스)이 있는 번들 구조의 MD 시뮬레이션 결과로서, (a) 초기 및 (b) 최종(320 ns 시뮬레이션 시간) 입체구조를 나타낸 것이다.FIG. 184 is an MD simulation result of a bundle structure with a 6HB-5nt gap (box), showing (a) initial and (b) final (320 ns simulation time) three-dimensional structures.
도 185, 186은 MD 시뮬레이션 동안의 각각 평면의 평균 면적, 평면 간 평균 거리를 나타낸 것이다.185 and 186 show the average area of each plane and the average distance between planes during the MD simulation.
도 187은 최종 최종 200ns 길이의 MD 궤적의 주성분 분석결과로서, Mode 7은 갭이 없는 경우, 3nt 갭이 있는 경우, 5nt 갭이 있는 경우의 디자인에서 첫번째 굽힘 모드였고, Mode 9는 1nt 갭이 있는 경우의 디자인에서 첫번째 굽힘 모드였다.187 is a result of principal component analysis of the final 200 ns long MD trajectory.Mode 7 was the first bending mode in the design when there was no gap, 3 nt gap, and 5 nt gap, and Mode 9 was the 1 nt gap. It was the first bending mode in the design of the case.
도 188, 189는 5nt 길이 갭 디자인의 ssDNA 갭과 끊어진 dsDNA 영역의 상세도면으로서, 도 188은 갭이 없고, 갭이 있는 번들 내의 모든 염기의 시간-평균 수소결합 파괴의 비율을 나타낸 것으로서, A, B 및 C는 부분적으로 끊어진 염기, SSDNA 갭 및 잘 짝지어진 염기를 각각 나타내는 대표적인 영역이고, 도 189는 평형 상태에서 5 nt 길이의 갭 디자인의 스냅샷과 도 188에 표시된 영역의 상세도면이다.Figures 188 and 189 are detailed drawings of the ssDNA gap and the broken dsDNA region of the 5 nt length gap design, and Figure 188 shows the time-average rate of hydrogen bond breakdown of all bases in a bundle with no gap and gap, A, B and C are representative regions each representing a partially broken base, an SSDNA gap, and a well-paired base, and FIG. 189 is a snapshot of a 5 nt long gap design in equilibrium and a detailed view of the region shown in FIG. 188.
도 190, 191은 4HB-hex, 도 192, 193은 8HB-hex, 도 194, 195는 8HB-sq, 도 196, 197은 10HB-hex, 도 198, 199는 12HB-hex, 도 200, 201은 12HB-sq, 도 202, 203은 13HB-hex, 도 204, 205는 16HB-sq의 갭 레이아웃 및 측정된 굽힘 지속 길이를 나타낸 것으로서, 빨간색 상자는 5nt 길이의 갭 위치를 나타낸다. 그래프의 굵은 쇄선과 얇은 쇄선은 NMA의 2가지 첫번째 굽힘 모드에서 계산된 굽힘 지속 길이의 스플라인 피팅된 곡선이다. 빈 상자는 두 값의 조화 평균이고, 실선은 스플라인 피팅된 곡선이다.Figures 190 and 191 are 4HB-hex, Figures 192 and 193 are 8HB-hex, Figures 194 and 195 are 8HB-sq, Figures 196 and 197 are 10HB-hex, Figures 198 and 199 are 12HB-hex, Figures 200, 201 12HB-sq, Figures 202 and 203 show the gap layout of 13HB-hex, Figures 204 and 205 show the measured bending duration length of 16HB-sq, and the red box shows the gap location of 5 nt length. The bold and thin dashed lines in the graph are the spline-fitted curves of the bending duration calculated in the two first bending modes of NMA. The blank box is the harmonic mean of the two values, and the solid line is the spline-fit curve.
도 206 내지 208은 각각 10HB-Ref의 디자인의 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 206 to 208 show the ordered contour distribution of 120 representative monomers of the design of 10HB-Ref, respectively, the average bending duration calculated by fitting all measurement data, and the AFM image and contours of the extracted monomers.
도 209 내지 211은 각각 10HB-5nt-20%의 디자인의 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 209 to 211 show the ordered contour distribution of 120 representative monomers of a design of 10HB-5nt-20%, respectively, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
도 212 내지 214는 각각 10HB-5nt-40%의 디자인의 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 212 to 214 show the ordered contour distribution of 120 representative monomers of a design of 10HB-5nt-40%, respectively, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
도 215 내지 217은 각각 10HB-5nt-60%의 디자인의 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 215 to 217 show the ordered contour distribution of 120 representative monomers of the design of 10HB-5nt-60%, respectively, the average bending duration calculated by fitting all measurement data, and the contours of the extracted monomers with the AFM image.
도 218 내지 220은 각각 10HB-5nt-80%의 디자인의 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 218 to 220 show the ordered contour distribution of 120 representative monomers of the design of 10HB-5nt-80%, respectively, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
도 221 내지 223는 각각 10HB-5nt-100%의 디자인의 120개의 대표적인 단량체의 정렬된 윤곽 분포, 모든 측정 데이터를 피팅하여 계산된 평균 굽힘 지속 길이 및 AFM 이미지와 추출된 단량체의 윤곽을 나타낸 것이다.Figures 221 to 223 show the ordered contour distribution of 120 representative monomers of the design of 10HB-5nt-100%, respectively, the average bending duration calculated by fitting all measurement data, and the AFM image and the contours of the extracted monomers.
도 224는 10HB 디자인의 겔 전기영동 결과를 나타낸 것이다.Figure 224 shows the gel electrophoresis results of the 10HB design.
도 225는 다른 힌지 강도(stiffness)와 내각을 갖는 12HB 구조의 대표 AFM 이미지를 나타낸 것이다.225 shows a representative AFM image of a 12HB structure with different hinge stiffness and inner angle.
도 226은 다양한 구조 모티프의 스케일 요소(scale factor)의 결정에 있어서의 최적화 문제를 나타낸 것이다.226 shows an optimization problem in determining the scale factors of various structural motifs.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 스캐폴드 DNA에 복수개의 스테이플 DNA를 결합시켜 DNA 오리가미 구조체를 형성하는 단계를 포함하고, 상기 구조체의 강성 조절 대상 부위 내 적어도 일부의 인접한 스테이플 DNA의 양 말단 사이에 단일 가닥 DNA 갭(gap)을 형성하는 DNA 오리가미 구조체(DNA origami structure)의 강성을 제어하는 방법을 제공한다.The present invention includes the step of forming a DNA origami structure by binding a plurality of staple DNAs to the scaffold DNA, and a single-stranded DNA gap between both ends of at least a portion of the adjacent staple DNA in the site to be stiffness control of the structure. ) To form a DNA origami structure (DNA origami structure) provides a method of controlling the rigidity of.
상기 방법은 보다 구체적으로, 상기 갭을 1개 이상 형성하거나, 갭의 길이를 늘려 상기 강성 조절 대상 부위의 강성을 낮추는 방법일 수 있다.More specifically, the method may be a method of forming one or more gaps or increasing the length of the gap to lower the stiffness of the region to be adjusted for stiffness.
상기 방법은 기결정된 길이의 갭을 기결정된 개수로 형성하도록 스테이플 DNA를 설계하는 단계를 더 포함하는 방법일 수 있다.The method may be a method further comprising the step of designing the staple DNA to form a predetermined number of gaps of a predetermined length.
상기 강성 조절 대상 부위는 실시자의 자유의사에 따라 가변적으로 설정될 수 있는 것으로서, 그 부위의 크기나 면적에 특별한 제한이 없으므로, 구체적으로 DNA 오리가미 구조체의 일부분 또는 전체 부위에 해당할 수 있다.The stiffness control target site may be variably set according to the practitioner's free will, and since there is no particular limitation on the size or area of the site, it may specifically correspond to a part or all of the DNA origami structure.
DNA 오리가미 구조체는 스테이플 DNA가 스캐폴드 DNA의 특정 위치에 결합하여 스테이플 DNA가 특정 위치에서 접혀 특정의 구조체를 형성하는 것으로서, 스테이플 DNA는 스캐폴드 DNA가 그러한 특정 구조체를 갖도록 설계된다.The DNA origami construct is that staple DNA binds to a specific position of the scaffold DNA and the staple DNA is folded at a specific position to form a specific structure, and the staple DNA is designed so that the scaffold DNA has such a specific structure.
본 발명에서 스테이플 DNA는 특정 위치에서 특정 길이의 갭이 형성되도록 설계될 수 있다.In the present invention, the staple DNA may be designed to form a gap of a specific length at a specific location.
인접한 스테이플 DNA의 마주보는 양 말단이 기결정된 길이의 뉴클레오티드 길이만큼 떨어진 위치에서 스캐폴드 DNA와 상보적으로 결합하도록 설계함으로써 갭을 형성할 수 있으며, 상술한 바대로 기결정된 길이의 뉴클레오티드 길이만큼의 갭 영역은 스캐폴드 DNA 만의 ssDNA 영역으로 존재하게 된다.A gap can be formed by designing that both opposite ends of the adjacent staple DNA complement the scaffold DNA at a position separated by a nucleotide length of a predetermined length, and as described above, a gap equal to the nucleotide length of a predetermined length. The region exists as an ssDNA region of only the scaffold DNA.
스테이플 DNA의 설계는 통상적인 방법에 따라 수행될 수 있으며, 예를 들면 cadnano 등의 디자인 프로그램을 사용할 수 있으나, 이에 제한되는 것은 아니다.Design of the staple DNA may be performed according to a conventional method, for example, a design program such as cadnano may be used, but is not limited thereto.
DNA 오리가미 구조물은 통상의 열풀림(thermal annealing) 기법을 사용하여 제조될 수 있다.DNA origami constructs can be prepared using conventional thermal annealing techniques.
이는 원재료인 스캐폴드와 스테이플 DNA를 고온(예를 들어 65~95℃)으로 가열하여 모든 DNA 가닥이 단일가닥(ssDNA) 상태로 있도록 만들어 주는 것으로 시작한다. DNA 가닥은 염기서열에 따라 녹는점(melting temperature)이 존재하며 이 온도 이상이면 주로 단일가닥, 이하일 경우 주로 이중가닥으로 존재한다. 이후 반응 용액의 온도를 천천히 낮춰주게 되면, DNA 가닥이 상보적으로 결합하면서 이중가닥으로 존재하기 시작하며, DNA 오리가미에서는 평균 200개 정도의 스테이플 DNA가 협력적으로 결합하면서 설계했던 위치에 결합, 원하는 형상의 구조물이 생성된다.This starts by heating the raw material scaffold and staple DNA to a high temperature (for example, 65~95℃) so that all DNA strands are in a single-stranded (ssDNA) state. DNA strands have a melting temperature depending on their base sequence, and above this temperature, they are mainly single-stranded, and below this temperature, they are mainly double-stranded. After that, when the temperature of the reaction solution is slowly lowered, the DNA strands start to exist as double strands as they complementarily bind, and in DNA origami, about 200 staple DNAs are cooperatively bound and bound to the designed position. A shaped structure is created.
스테이플 DNA마다 염기서열이 다르므로 결합 시점은 조금씩 다르지만 통상의 열풀림 기법은 충분한 시간(수 시간 이상)에 걸쳐 서서히 온도를 낮추기 때문에 모든 스테이플 DNA가 결합하기 충분한 조건이며, 따라서 구성하는 스테이플 DNA의 염기서열과 무관하게 원하는 형상을 갖도록 제작할 수 있다.Since the nucleotide sequence of each staple DNA is different, the binding time is slightly different, but the normal unwinding technique gradually lowers the temperature over a sufficient period of time (over several hours), so it is a sufficient condition for all the staple DNA to bind. Therefore, the base of the constituting staple DNA It can be manufactured to have a desired shape regardless of the sequence.
상기 스캐폴드 DNA는 단일가닥의 DNA로서 그 길이는 형성하고자 하는 구조체의 길이, 크기, 모양 등에 따라 적절히 선택될 수 있으며, 통상적으로 7000 내지 8000 염기(base) 정도의 길이를 가진 종류를 사용할 수 있다. 본 발명의 구체적인 실시예에서는 7,249 염기 길이의 M13mp18 DNA를 사용하였으나, 이에 제한되는 것은 아니다.The scaffold DNA is a single-stranded DNA, and its length can be appropriately selected according to the length, size, shape, etc. of the structure to be formed, and generally, a type having a length of about 7000 to 8000 bases can be used. . In a specific example of the present invention, M13mp18 DNA having a length of 7,249 bases was used, but the present invention is not limited thereto.
상기 스테이플 DNA는 그 길이는 형성하고자 하는 구조체의 길이, 크기, 모양 등에 따라 적절히 선택될 수 있으며, 예를 들면 20 내지 50 뉴클레오티드일 수 있으나, 이에 제한되는 것은 아니다.The length of the staple DNA may be appropriately selected according to the length, size, shape, etc. of the structure to be formed, and may be, for example, 20 to 50 nucleotides, but is not limited thereto.
상기 DNA 오리가미 구조체를 형성함에 있어, 스캐폴드 DNA와 스테이플 DNA 간 A-T, G-C와 같은 상보적인 결합을 통해 DNA 오리가미 구조체를 형성하는 것일 수 있는데, 이러한 경우 양자간 자가조립(self-assembly) 과정을 통해 형성되어, 이중나선 구조(DNA duplex)를 형성하는 단계일 수 있다.In forming the DNA origami structure, it may be to form a DNA origami structure through complementary bonds such as AT and GC between the scaffold DNA and the staple DNA, in this case, through a self-assembly process between the two. Is formed, it may be a step of forming a double helix structure (DNA duplex).
상기 갭(gap)은 인접한 스테이플 DNA의 양 말단 사이에 형성된 ssDNA 영역을 의미하는 것으로서, 스테이플 DNA와 상보적으로 결합하지 못한 스캐폴드 DNA 단일가닥 영역을 의미하는 것일 수 있으며, 그 구체적인 도식은 도 2, 8 등에서 확인할 수 있다.The gap refers to an ssDNA region formed between both ends of an adjacent staple DNA, and may refer to a single-stranded region of a scaffold DNA that cannot be complementarily bound to the staple DNA, and a specific schematic is shown in FIG. 2 , 8, etc.
상기 갭(gap)은 스테이플 DNA와 상보적으로 결합하지 못하여 이중나선 구조를 형성하지 못함에 따라, 해당 갭을 포함하는 대상 부위는 강성이 약해지는 결과를 낳고, 거시적으로는 DNA 오리가미 구조체 전체의 강성이 하향되는 방향으로 제어될 수 있다.As the gap cannot complementaryly bind to the staple DNA and thus does not form a double helix structure, the target region including the gap results in weakening, and macroscopically, the rigidity of the entire DNA origami structure Can be controlled in the downward direction.
상기 갭(gap)의 길이는 상기 ssDNA 영역의 뉴클레오티드 염기 수로 나타낼 수 있고, 이는 1 내지 20, 1 내지 19, 1 내지 18, 1 내지 17, 1 내지 16, 1 내지 15, 1 내지 14, 1 내지 13, 1 내지 12, 1 내지 11, 1 내지 10, 1 내지 9, 1 내지 8, 1 내지 7, 1 내지 6, 1 내지 5 뉴클레오티드 길이로 형성될 수 있으며, 보다 구체적으로는 1 내지 10 뉴클레오티드 길이일 수 있으나, 적절한 길이의 갭을 유지하여 DNA 오리가미 구조체 전체의 형상 유지와 자가조립 과정의 완전성을 고려한다는 측면에서 바람직하게는 1 내지 5 뉴클레오티드 길이일 수 있다.The length of the gap can be represented by the number of nucleotide bases in the ssDNA region, which is 1 to 20, 1 to 19, 1 to 18, 1 to 17, 1 to 16, 1 to 15, 1 to 14, 1 to 13, 1 to 12, 1 to 11, 1 to 10, 1 to 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5 nucleotides in length, and more specifically 1 to 10 nucleotides in length However, it may be preferably 1 to 5 nucleotides in length in terms of maintaining the shape of the entire DNA origami structure by maintaining a gap of an appropriate length and the completeness of the self-assembly process.
상기 갭(gap)의 개수는 강성 조절 대상 부위 내 상기 ssDNA 영역의 수를 의미하는 것으로서, (스테이플 DNA의 개수 -2)을 갭의 최대 개수로 하여, 해당 갭을 포함하는 대상 부위 및 DNA 오리가미 구조체 전체의 강성을 제어할 수 있다.The number of gaps refers to the number of ssDNA regions in the stiffness control target region, with (number of staple DNA -2) as the maximum number of gaps, the target region including the gap and the DNA origami structure The overall rigidity can be controlled.
상기 갭(gap)은 홀리데이 교차점(holliday junction)과 10 뉴클레오티드 이상, 9 뉴클레오티드 이상, 8 뉴클레오티드 이상, 7 뉴클레오티드 이상, 6 뉴클레오티드 이상, 5 뉴클레오티드 이상, 4 뉴클레오티드 이상 또는 3 뉴클레오티드 이상의 간격이 되도록 형성될 수 있고, 스캐폴드 DNA와 스테이플 DNA 간 완전한 자가조립 과정을 통해 DNA 오리가미 구조체를 형성한다는 측면에서 바람직하게는 3 뉴클레오티드 이상이 되도록 형성할 수 있다.The gap may be formed to be a holiday junction and a gap of 10 nucleotides or more, 9 nucleotides or more, 8 nucleotides or more, 7 nucleotides or more, 6 nucleotides or more, 5 nucleotides or more, 4 nucleotides or more, or 3 nucleotides or more. And, in terms of forming a DNA origami structure through a complete self-assembly process between the scaffold DNA and the staple DNA, it may be preferably formed to be 3 nucleotides or more.
상기 구조체는 복수개의 헬릭스를 포함하는 번들(bundle) 구조일 수 있고, 상기 구조체 번들 구조 내 헬릭스의 수는 2 내지 50, 2 내지 45, 2 내지 40, 2 내지 35, 2 내지 30, 2 내지 25 또는 2 내지 20개일 수 있고, 구체적으로는 2 내지 20개일 수 있다.The structure may be a bundle structure including a plurality of helixes, and the number of helixes in the structure bundle structure is 2 to 50, 2 to 45, 2 to 40, 2 to 35, 2 to 30, 2 to 25 Or it may be 2 to 20, specifically it may be 2 to 20.
상기 스캐폴드 DNA 번들 내 존재하는 복수개의 ssDNA 헬릭스는 번들 내 위치하는 형태가 상이하도록 설정할 수 있고, 이러한 경우, 구체적으로, 상기 스캐폴드 DNA 번들의 횡단면 형태를 설정하는 단계를 더 포함할 수 있다. The plurality of ssDNA helixes present in the scaffold DNA bundle may be set to have different shapes located within the bundle, and in this case, specifically, the step of setting the cross-sectional shape of the scaffold DNA bundle may be further included.
상기 제어 대상인 강성에 있어서, 신장 강성(stretching stiffness), 비틀림 강성(torsional stiffness), 전단 강성(shearing stiffness), 커플링 강성(coupling stiffness) 또는 굽힘 강성(bending stiffness)일 수 있으나, 바람직하게는 굽힘 강성일 수 있고, 이러한 경우 굽힘 지속 길이(Bending stiffness length)의 값에 의해 계측되어 제어되는 것일 수 있다.For the stiffness to be controlled, it may be stretching stiffness, torsional stiffness, shearing stiffness, coupling stiffness, or bending stiffness, but preferably bending It may be rigid, and in this case, it may be measured and controlled by a value of a bending stiffness length.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. Hereinafter, examples will be described in detail to illustrate the present invention in detail.
기본적인 실험방법Basic experiment method
1. DNA 재료1. DNA material
M13mp18 ssDNA(7,249 뉴클레오티드)는 New England Biolabs(N4040s)에서 구입하였다. 스테이플 DNA(Staple DNA) 올리고뉴클레오티드는 50 nM의 합성 스케일 및 BioRP 정제방법을 사용하는 Bioneer Corporation(www.bioneer.co.kr)에서 제공받았다. 모든 스테이플의 분자량은 공급업체의 MALDI-TOF에 의한 이론값으로 확인했다. 구체적인 내용은 하기 표 4에 나타내었다.M13mp18 ssDNA (7,249 nucleotides) was purchased from New England Biolabs (N4040s). Staple DNA oligonucleotides were provided by Bioneer Corporation (www.bioneer.co.kr) using a synthetic scale of 50 nM and a BioRP purification method. The molecular weight of all staples was confirmed by the theoretical value by the supplier's MALDI-TOF. Details are shown in Table 4 below.
2. 자가조립 과정2. Self-assembly process
10nM의 스캐폴드 DNA(Scaffold DNA), 100nM의 각 스테이플 가닥, 1 x TAE 완충액(40mM Tris-아세테이트 및 1mM EDTA, Sigma-Aldrich) 및 20mM MgCl 2를 함유하는 접힘 혼합물(folding mixture) 50μL를 제조하였다. 그 후, 혼합물을 thermocycler(T100, Bio-Rad)를 사용하여 다음의 온도 구배로 처리하였다: 1℃/초로 80℃까지 가열; 1시간에 80℃에서 65℃로 냉각(-0.5℃당 2분); 40시간에 65℃에서 25℃로 냉각(-0.5℃당 30분); 냉각시키고 4℃에서 유지.50 μL of a folding mixture containing 10 nM of scaffold DNA, 100 nM of each staple strand, 1 x TAE buffer (40 mM Tris-acetate and 1 mM EDTA, Sigma-Aldrich) and 20 mM MgCl 2 was prepared. . The mixture was then treated with the following temperature gradient using a thermocycler (T100, Bio-Rad): heating to 80° C. at 1° C./sec; Cooling from 80° C. to 65° C. in 1 hour (2 minutes per -0.5° C.); Cooling from 65° C. to 25° C. in 40 hours (30 minutes per -0.5° C.); Cool and hold at 4°C.
3. 아가로오스 겔 전기영동3. Agarose gel electrophoresis
접힌 DNA 오리가미 구조체를 0.5 x TBE (45 mM Tris-borate와 1 mM EDTA, Sigma-Aldrich), 12 mM MgCl 2, 0.5 mM 농도의 EtBr(Noble Bioscience Inc.)을 함유하는 1.5% 아가로오스 겔을 이용하여 전기영동하였다. 아가로오스 겔에 담긴 샘플을 빙수 냉각 챔버(i-Myrun, Cosmo Bio CO. LTD.)에서, 75V 바이어스 전압(~3.7 V/cm)에서 1.5시간 동안 이동시켰다. GelDoc XR+ 장치 및 Image Lab v5.1 프로그램(Bio-Rad)을 사용하여 겔 이미징을 수행했다.The folded DNA agarose gel to origami structures to 1.5% agar containing 0.5 x TBE (45 mM Tris- borate and 1 mM EDTA, Sigma-Aldrich) , 12 mM MgCl 2, 0.5 mM concentration of EtBr (Noble Bioscience Inc.) Using electrophoresis. The sample contained in the agarose gel was moved in an ice-water cooling chamber (i-Myrun, Cosmo Bio CO. LTD.) at 75V bias voltage (~3.7 V/cm) for 1.5 hours. Gel imaging was performed using the GelDoc XR+ device and the Image Lab v5.1 program (Bio-Rad).
4. AFM 측정4. AFM measurement
어닐링된 DNA 오리가미 샘플을 0.05x(6HB 및 10HB) 또는 0.03x(4HB)의 샘플 농도로 접힘 완충액(1 x TAE, 20 mM MgCl 2)으로 희석하였는데, 그 값은 기질상에 최적의 샘플 밀도를 갖도록 선택한 것이다. 희석된 시료 20μl를 잘 절단된 운모(mica) 기질(최고 등급 V1 AFM Mica, Ted-Pella Inc.)에 놓고, 대기조건(~25℃)에서 3 내지 5분간 인큐베이션하였다. 기질을 탈이온수로 세척하고 N2 건(<0.1 Kgf/cm 2)으로 부드럽게 건조시켰다. 기질에 물방울이 남아 있으면 Kimtech Science Wiper에 의해 제거되었다. AFM 이미지는 42 N/m의 스프링 상수(Nanosensors)를 갖는 PPP-NCHR 프로브를 사용하여 NX10(Park Systems)에 의해 촬영되었다. SmartScan 소프트웨어를 사용하여 1024 x 1024 픽셀 해상도에서 일반적으로 샘플 영역의 5μm x 5 μm를 측정하기 위해 약 290 ~ 300 kHz의 고유 주파수를 갖는 비접촉 모드가 사용되었다. 모든 측정 이미지는 추가 분석하기 전에 XEI 4.1.0 프로그램(Park Systems)을 사용하여 선형 및 2차 순서로 평탄화되었다.The annealed DNA origami samples were diluted with folding buffer (1 x TAE, 20 mM MgCl 2 ) to a sample concentration of 0.05x (6HB and 10HB) or 0.03x (4HB), the value of which is the optimal sample density on the substrate. I chose to have it. 20 μl of the diluted sample was placed on a well-cut mica substrate (highest grade V1 AFM Mica, Ted-Pella Inc.), and incubated for 3 to 5 minutes at atmospheric conditions (~25°C). The substrate was washed with deionized water and gently dried with an N2 gun (<0.1 Kgf/cm 2 ). Any water droplets left on the substrate were removed by a Kimtech Science Wiper. AFM images were taken by NX10 (Park Systems) using a PPP-NCHR probe with a spring constant (Nanosensors) of 42 N/m. Non-contact mode with a natural frequency of about 290 to 300 kHz was used to measure 5 μm x 5 μm of the sample area, typically at 1024 x 1024 pixel resolution using SmartScan software. All measurement images were flattened in linear and quadratic order using the XEI 4.1.0 program (Park Systems) before further analysis.
5. AFM 이미지의 분석5. Analysis of AFM images
AFM 이미지에서 DNA 오리가미 단량체 구조의 지속 길이(Persistence length) 측정 및 구조적 접힘 분석은 MATLAB R2017b 소프트웨어 (MathWorks Inc.)를 사용하여 사용자 정의 스크립트로 수행되었다. 단량체 구조는 크기에 따라 응집 구조 및 침전물 입자로부터 여과되었고, 잘 접힌 단량체 구조는 수동으로 선택되었다. 개개의 잘 접힌 단량체 구조는 윤곽선을 얻기 위해 얇고 골격화되도록 이진(binary) 영상으로 변환되었다. 파라메트릭 스플라인(Parametric spline)은 각 구조의 윤곽을 맞추는 데 사용되었다. 최적의 단위구간 길이를 얻기 위해 첨도분석이 수행되었고, 각 횡단면 설계에 대해 이론 첨도 값 3을 만족하는 가장 작은 값이 선택되었다. 도 134 내지 137에 상세한 결과를 나타내었다. 지속 길이는 오픈 소스 소프트웨어 툴인 Easyworm의 수정된 버전을 사용하여 모든 잘 접힌 구조로부터 피팅 스플라인의 특징점을 측정했다. WLC 모델을 사용하여, 2차원에서의 평균 제곱 종단간 거리(<R 2>)는 윤곽선(l c)을 따르는 거리의 함수로서 하기 수학식 1과 같이 나타낼 수 있다(L p는 지속 길이):Persistence length measurements and structural folding analysis of DNA origami monomer structures in AFM images were performed with a user-defined script using MATLAB R2017b software (MathWorks Inc.). The monomer structure was filtered from the aggregated structure and sediment particles according to the size, and the well-folded monomer structure was manually selected. Individual well-folded monomer structures were converted into binary images to be thin and skeletal to obtain contours. Parametric spline was used to outline each structure. The kurtosis analysis was performed to obtain the optimal unit section length, and the smallest value that satisfies the theoretical kurtosis value 3 was selected for each cross-sectional design. Detailed results are shown in Figures 134 to 137. The duration length was measured for feature points of fitting splines from all well-folded structures using a modified version of the open source software tool Easyworm. Using the WLC model, the mean squared end-to-end distance (<R 2 >) in two dimensions can be expressed as a function of the distance along the contour (l c ) as shown in Equation 1 below (L p is the duration length):
[수학식 1][Equation 1]
Figure PCTKR2019004124-appb-img-000001
.
Figure PCTKR2019004124-appb-img-000001
.
일반적으로, 데이터 피팅의 상관계수는 각 경우 0.99이다. 지속 길이의 표준편차는 대체와 10,000회 반복과정을 사용하여, 500개의 무작위 선택된 윤곽의 하위집합이 있는 부트스트랩 방법으로 계산되었다.In general, the correlation coefficient for data fitting is 0.99 in each case. The standard deviation of the duration length was calculated by the bootstrap method with a subset of 500 randomly selected contours, using substitution and 10,000 iterations.
유한요소(Finite element, FE) 모델링 및 시뮬레이션Finite element (FE) modeling and simulation
1. DNA 나노구조를 위한 FE 모델1. FE model for DNA nanostructure
결손 설계 DNA 나노구조의 굽힘 지속 길이(L p)를 예측하기 위해 FE 모델을 만들었다. caDNAno 디자인 파일에서 모든 기반의 연결성 정보를 얻었다. 베이스 쌍(base pair, BP) 또는 베이스는 노드로서 정의되며, 그 질량밀도는 각각 평균 0.8 g/cm 3 및 0.4 g/cm 3 인 것으로 가정된다. 나선을 따라 2개의 연속적인 노드는 빔 요소에 의해 연결되었고, 네 가지 구조적 모티프 중 하나를 나타낸다: 정상적인 DNA 이중가닥, 닉이 존재하는 DNA 이중가닥, 홀리데이 교차점에서의 DNA 이중가닥(HJ core), ssDNA 갭. 여기서 모든 요소는 B형 DNA의 규칙적인 기하구조를 갖고있다(벌집격자에서 직경 2.25nm, 정사각형 격자 패킹에서 2.5nm, 축 방향 상승 0.34nm, 헬리시티 10.5 BP/turn). 그러나, 정상 및 닉이 존재하는 DNA 이중가닥 만이 규칙적인 값(신축성 계수 1100 pN, 굽힘 강성 230 pNnm 2 및 비틀림 강성 460 pNnm 2)을 갖는다. HJ core 및 ssDNA 갭 요소는 정상적인 DNA 이중 가닥에 스케일 팩터 (SF)를 채택함으로써 정상 DNA 이중가닥보다 더 유연한 기계적 특성을 갖는다. ssDNA 갭 요소의 경우, 기계적 특성의 갭 길이에 대한 의존성을 추가로 고려했다. 인접한 두 나선을 연결하는 크로스 오버는 다른 빔 요소에 의해 모델링되었으며, SF는 공개하지 않은 작업에서 결정되었다.An FE model was created to predict the bending duration (L p ) of the defective design DNA nanostructure. All base connectivity information was obtained from caDNAno design files. The base pair (BP) or base is defined as a node, and its mass density is assumed to be 0.8 g/cm 3 and 0.4 g/cm 3 on average, respectively. Two consecutive nodes along the helix are connected by beam elements and represent one of four structural motifs: normal DNA double strands, DNA double strands with nicks, DNA double strands at Holiday junctions (HJ core), ssDNA gap. Here, all elements have the regular geometry of B-type DNA (2.25 nm in diameter in a honeycomb grid, 2.5 nm in a square grid packing, 0.34 nm in axial rise, 10.5 BP/turn in helicity). However, only normal and nicked DNA double strands have regular values (stretch coefficient 1100 pN, bending stiffness 230 pNnm 2 and torsional stiffness 460 pNnm 2 ). HJ core and ssDNA gap elements have more flexible mechanical properties than normal DNA double strands by adopting a scale factor (SF) for normal DNA double strands. For the ssDNA gap element, the dependence of the mechanical properties on the gap length was further considered. The crossover connecting two adjacent spirals was modeled by different beam elements, and the SF was determined in an unpublished work.
2. 다양한 구조 모티프의 스케일 요소(scale factor)의 결정2. Determination of the scale factor of various structural motifs
HJcore 요소의 경우, SF에서 정사각형 격자의 4HB와 벌집격자의 6HB에 대해 실험을 통해 측정된 것과 동일한 L p값을 얻을 수 있도록, 최적화하여 SF를 결정했다. HJcore 요소의 최적화 후, ssDNA 갭 요소에 대한 SF를 실험을 통해 측정된 값과 정사각형 격자를 갖는 갭-4HB 및 벌집 격자를 갖는 6HB 모두에 대해 유사한 L p 값을 얻도록 최적화함으로써 이를 결정했다. 실험 결과에서 ssDNA 갭의 길이에 따른 연화 거동(softening behavior)이 관찰됨에 따라, 1, 3, 5 nt 길이의 갭 각각에 대해 상이한 SF를 계산했다. 그 다음, 2, 4 nt 길이의 갭에 대한 SF는 1, 3, 5 nt 길이의 갭 SF를 갖는 2차 보간법으로부터 유래되었다. HJcore 및 ssDNA 갭 요소에 대한 SF를 결정하기 위해, Matlab R2016b (MathWorks Inc.)에서 'fmincon' 함수를 사용하여 도 226과 같은 최적화 문제를 해결했다. 최적화 과정에서 얻은 각 요소의 세부 SF 값을 하기 표 3에 요약하였다.In the case of the HJcore element, the SF was determined by optimizing to obtain the same L p values as measured experimentally for 4HB of square grid and 6HB of honeycomb grid in SF. After optimization of the HJcore element, this was determined by optimizing the SF for the ssDNA gap element to obtain similar L p values for both the measured values experimentally and for both the Gap-4HB with the square grid and the 6HB with the honeycomb grid. As the softening behavior according to the length of the ssDNA gap was observed in the experimental results, different SFs were calculated for each of the gaps of 1, 3 and 5 nt lengths. Then, the SF for the gaps of length 2 and 4 nt was derived from the quadratic interpolation method with gaps SF of lengths 1, 3 and 5 nt. In order to determine the SF for the HJcore and ssDNA gap elements, the'fmincon' function in Matlab R2016b (MathWorks Inc.) was used to solve the optimization problem as shown in Fig.226. The detailed SF values of each element obtained in the optimization process are summarized in Table 3 below.
3. DNA 나노구조를 위한 굽힘 강도의 굽힘 지속 길이 계산3. Calculation of bending duration length of bending strength for DNA nanostructures
정상 모드 분석(NMA)은 DNA 나노구조의 가장 낮은 20가지 정상 모드를 계산하기 위해 직선 구성에서 수행되었다. 정사각형 격자 구조의 내재적인 글로벌 꼬임은 고려되지 않았다. 자유 경계 조건 하에서, NDA 나노구조에 대한 FE 모델이 주어진다면, 하기 수학식 2의 일반화된 고유치 문제가 주어진다:Normal mode analysis (NMA) was performed in a straight line configuration to calculate the lowest 20 normal modes of DNA nanostructures. The inherent global twist of the square lattice structure is not considered. Given the FE model for NDA nanostructures under free boundary conditions, the generalized eigenvalue problem of Equation 2 below is given:
[수학식 2][Equation 2]
Ku = lMuKu = lMu
(식 중, K는 강성행렬이고, M은 질량행렬이며, 고유치 λ=ω 2).(In the formula, K is the stiffness matrix, M is the mass matrix, and the eigenvalue λ=ω 2 ).
부분공간 반복절차는 2Nm 반복 벡터를 사용하여 고유값 문제를 푸는데에 사용되고, 여기서 Nm은 계산될 고유모드의 수를 나타낸다. 얻어진 고유치들 중, 첫번째 굽힘 모드에 대한 두개의 고유치만이 DNA 나노구조의 굽힘 강성(EI)을 계산하기 위해 선택되었다. 효과적으로 DNA 나노구조를 나타내는 광선의 Euler-Lagrange 방정식으로부터 하기 수학식 3과 같은 자유 진동 방정식을 얻을 수 있다:The subspace iteration procedure is used to solve the eigenvalue problem using 2Nm iterative vectors, where Nm represents the number of eigenmodes to be calculated. Of the obtained eigenvalues, only two eigenvalues for the first bending mode were selected to calculate the bending stiffness (EI) of the DNA nanostructure. From the Euler-Lagrange equation of light rays effectively representing DNA nanostructures, a free oscillation equation such as Equation 3 below can be obtained:
[수학식 3][Equation 3]
Figure PCTKR2019004124-appb-img-000002
Figure PCTKR2019004124-appb-img-000002
(식 중, w는 빔의 측면 편향, x는 축 방향 위치, μ는 빔의 단위 길이당 질량).(Wherein, w is the lateral deflection of the beam, x is the axial position, and μ is the mass per unit length of the beam).
상기 수학식 3을 수치적으로 풀면, 하기 수학식 4에서 첫번째 굽힘 진동의 고유 진동수를 얻을 수 있다:When Equation 3 is solved numerically, the natural frequency of the first bending vibration can be obtained in Equation 4 below:
[수학식 4][Equation 4]
Figure PCTKR2019004124-appb-img-000003
Figure PCTKR2019004124-appb-img-000003
(식 중, L은 빔의 길이).(Wherein, L is the length of the beam).
그 다음, 빔의 EI는 하기 수학식 5에서 얻을 수 있다:Then, the EI of the beam can be obtained from Equation 5 below:
[수학식 5][Equation 5]
Figure PCTKR2019004124-appb-img-000004
Figure PCTKR2019004124-appb-img-000004
(식 중, m은 DNA 나노구조의 총질량, l B는 첫번째 굽힘 모드의 고유값).(Wherein, m is the total mass of the DNA nanostructure, and l B is the eigenvalue of the first bending mode).
L p는 EI/k bT로 정의되므로(k b는 볼츠만 상수, T는 절대온도), DNA 나노구조의 L p는 하기 수학식 6과 같이 도출된다:Since L p is defined as EI/k b T (k b is Boltzmann's constant, T is the absolute temperature), L p of the DNA nanostructure is derived as in Equation 6:
[수학식 6][Equation 6]
Figure PCTKR2019004124-appb-img-000005
.
Figure PCTKR2019004124-appb-img-000005
.
3차원 구조에서 항상 2가지 첫번째 굽힘 모드가 있다. 그러므로, 메이저 굽힘모드로서 더 작은 고유치를 갖는 첫번째 굽힘모드(L p,1)와 마이너 굽힘모드로서 더 큰 고유치를 갖는 다른 굽힘모드(L p,2)를 정의했고, 두가지 굽힘모드를 사용하여 실험적으로 측정된 L p와 비교한 유효 굽힘 지속길이(L p,e)를 정의했다:There are always two first bending modes in a three-dimensional structure. Therefore, we defined the first bending mode (L p,1 ) with a smaller eigenvalue as the major bending mode and another bending mode (L p,2 ) with a larger eigenvalue as the minor bending mode, and experimentally using the two bending modes. We defined the effective bending duration (L p,e ) compared to the measured L p :
[수학식 7][Equation 7]
Figure PCTKR2019004124-appb-img-000006
.
Figure PCTKR2019004124-appb-img-000006
.
분자역학(Molecular dynamics, MD) 시뮬레이션Molecular dynamics (MD) simulation
1. 일반적인 프로토콜1. General Protocol
갭이 있는, 갭이 없는 6HB 디자인의 시작 원자 구조는 caDNAno와 CanDo를 사용하여 생성되었다. 각각의 원자 구조는 구조와 경계로부터 15Å 이상의 거리를 갖는 TIP3P water 모델을 사용하여 명쾌하게 용매화되었다. 그것은 약 100Å x 100Å x 320Å의 큐빅 워터 박스를 생성하고, 20mM MgCl 2의 이온 농도로 중화된다. 그 다음, CHARMM36 force field, 주기적인 경계 조건, 2fs의 적분 시간 단계, 12Å cut-off의 단거리 정전 전위와 함께 NAMD을 사용하여 MD 시뮬레이션을 수행하였다. 장거리 정전기적 상호작용은 1Å의 그리드 크기를 갖는 PME (Particle-Mesh-Ewald) 기법을 사용하여 계산되었다. 각 시스템의 포텐셜 에너지는 conjugate gradient 방법을 사용하여 최소화되었다. 각각의 구조는 isobaric-isothermal (NPT) 앙상블 아래에서 320 ns에 대해 시뮬레이션 되었으며 최종 200 ns의 궤도가 추후 분석에 사용되었다.The starting atomic structure of the gapped, ungap 6HB design was created using caDNAno and CanDo. Each atomic structure was clearly solvated using the TIP3P water model with a distance of 15 Å or more from the structure and boundary. It produces a cubic water box of about 100 Å x 100 Å x 320 Å, neutralized with an ionic concentration of 20 mM MgCl 2 . Then, MD simulation was performed using NAMD with CHARMM36 force field, periodic boundary conditions, integration time step of 2fs, and short-range electrostatic potential of 12Å cut-off. Long-distance electrostatic interactions were calculated using the PME (Particle-Mesh-Ewald) technique with a grid size of 1 Å. The potential energy of each system was minimized using the conjugate gradient method. Each structure was simulated for 320 ns under an isobaric-isothermal (NPT) ensemble and a final 200 ns trajectory was used for further analysis.
2. 6HB 디자인의 크로스섹션(횡단면) 분석(도 25 내지 27)2. Cross-section (cross section) analysis of 6HB design (Figures 25 to 27)
단면 형상 6-나선 다발구조의 변동을 얻기 위해, 처음에 등거리 간격 (도 25의 녹색)을 갖는 다섯개의 단면을 선택했다. 횡단면의 두개의 염기쌍에 관하여, 그것들의 기원은 3DNA 정의에 따라 계산되어, 평균을 통해 중심점을 제공한다. 6개의 중심점의 3차원 역학은, 평면으로부터 6개의 중심점까지의 거리를 최소화하는 6개의 꼭지점(도 26의 주황색 점)이 있는 투영된 육각형 평면을 도입함으로써 2차원 평면 모션으로 축소된다. 그 다음, 각 꼭지점의 위치를 나타내는 꼭지점 벡터(n i)를 얻었고, 연결된 두개의 꼭지점을 사용하여 엣지 벡터(v i)를 결정했다:In order to obtain the variation of the cross-sectional shape 6-helix bundle structure, initially five cross sections with equidistant spacing (green in Fig. 25) were selected. With respect to the two base pairs of the cross section, their origins are calculated according to the 3DNA definition, giving the center point through the mean. The three-dimensional dynamics of the six centroids are reduced to a two-dimensional plane motion by introducing a projected hexagonal plane with six vertices (orange points in Fig. 26) that minimizes the distance from the plane to the six centroids. Next, we obtained a vertex vector (n i ) representing the location of each vertex, and determined the edge vector (v i ) using the two connected vertices:
[수학식 8][Equation 8]
v i = n i+1 - n i. v i = n i+1 -n i.
6각형의 내부 각도(θ i)는 2개의 연속된 꼭지점 백터를 이용하여 계산되었다:The inner angle of the hexagon (θ i ) was calculated using two consecutive vertex vectors:
[수학식 9][Equation 9]
θ i = cos -1[(v i·v i+1)/(|v i||v i+1|)].θ i = cos -1 [(v i ·v i+1 )/(|v i ||v i+1 |)].
이는, 각도의 평균은 120°이어야 하고, 표준편차는 단면의 각도 변동을 의미한다. 육각형의 단면적(A i)은 하기 수학식 10과 같이 얻어진다:This means that the average of the angles should be 120°, and the standard deviation means the angular variation of the cross section. The cross-sectional area (A i ) of the hexagon is obtained as in Equation 10 below:
[수학식 10][Equation 10]
A i = |c i x v i|/2A i = |c i xv i |/2
(식 중, c i는 육각형 중심 벡터로서, 꼭지점에서 육각형 중심점까지의 벡터를 의미함).(In the formula, c i is a hexagonal center vector, which means a vector from a vertex to a hexagonal center point).
이는 6개 단면 영역의 합계로서, 육각형 평면의 면적을 얻는다. 육각형 평면 사이의 거리(d n)는 육각형 중심점 사이의 거리(C)로 정의된다. 위에서 설명한 이 단면 분석은 최종 200 ns 길이의 MD 궤적의 모든 스냅샷에 대해 수행되었으므로, 도 16, 17에 제시된 단면상의 기하학적 변수의 확률밀도 함수 또는 표준편차를 제공한다. 완전한 시뮬레이션 시간결과는 도 185, 186에서 확인할 수 있다.This is the sum of the six cross-sectional areas, obtaining the area of the hexagonal plane. The distance between the hexagonal planes (d n ) is defined as the distance between the hexagonal center points (C). Since this cross-sectional analysis described above was performed for all snapshots of the final 200 ns long MD trajectory, it provides the probability density function or standard deviation of the geometric variable on the cross-section shown in Figs. 16 and 17. Complete simulation time results can be found in FIGS. 185 and 186.
3. 주요 구성요소 분석3. Analysis of major components
주요 구성요소 분석(The principal component analysis, PCA)은 평형상태에서 최종 200ns 길이의 MD 궤적을 사용하여 수행되었다. 6-나선 다발구조의 인 원자 좌표를 x(t)로 표시하면, 공분산 행렬(σ)는 하기 수학식 11로 결정된다:The principal component analysis (PCA) was performed using a final 200 ns long MD trajectory in equilibrium. When the coordinates of the phosphorus atoms of the 6-helix bundle structure are expressed as x(t), the covariance matrix (σ) is determined by the following equation (11):
[수학식 11][Equation 11]
σ = <(x(t)-|x(t)|)ⓧ|x(t)|)>σ = <(x(t)-|x(t)|)ⓧ|x(t)|)>
(식 중, ⓧ는 텐서 산물, 꺽쇠 괄호는 벡터의 평균을 의미함).(In the formula, ⓧ is a tensor product, and square brackets mean the mean of the vector).
제곱근-질량-무게 행렬(∑)은 하기 수학식 12로부터 얻어진다:The square root-mass-weight matrix (∑) is obtained from Equation 12 below:
[수학식 12][Equation 12]
Figure PCTKR2019004124-appb-img-000007
Figure PCTKR2019004124-appb-img-000007
(식 중, M은 인 원자의 원자량을 갖는 대각행렬임).(Wherein, M is a diagonal matrix having the atomic weight of phosphorus atoms).
그러하면, n차 모드의 고유치(l n)은 제곱근-질량-무게 행렬을 대각선화하여 제공하는 유사 고조파 고유 주파수(ω n)을 하기 수학식 13에서 얻는다:Then, the eigenvalue (l n ) of the n-order mode is obtained from Equation 13 below to obtain the pseudo-harmonic natural frequency (ω n ) provided by diagonalizing the square root-mass-weight matrix:
[수학식 13][Equation 13]
Figure PCTKR2019004124-appb-img-000008
Figure PCTKR2019004124-appb-img-000008
(식 중, k B 및 T는 볼츠만 상수 및 절대온도를 각각 의미함).(In the formula, k B and T mean Boltzmann's constant and absolute temperature, respectively).
free-free 말단의 경계 조건을 갖는 동적 오일러-베르누이 빔 모델은 탄성 굽힘 강성(EI n)이 n번째 모드에 대한 고유 진동수를 사용하여 대략 계산됨을 의미한다:The dynamic Euler-Berneuil beam model with the boundary condition of the free-free end means that the elastic bending stiffness (EI n ) is roughly calculated using the natural frequency for the nth mode:
[수학식 14][Equation 14]
EI n = (ML 3ω n 2)/(ß nL) 4 EI n = (ML 3 ω n 2 )/(ß n L) 4
(식 중, M과 L은 각각 6HB 구조의 질량과 축방향 길이를 의미함).(Wherein, M and L mean the mass and axial length of the 6HB structure, respectively).
ß nL은 4.733으로 사전 정의 되었다.ß n L is predefined as 4.733.
4. 염기쌍 비율 분석4. Base pair ratio analysis
6HB 구조에서의 MD 궤적의 염기쌍 분석은 VMD의 수소 결합 도구를 사용하여 수행하였다. 염기쌍은 퓨린 염기(A,G)의 N1 원자와 피리미딘 염기(T,C)의 N3 원자 사이에 수소결합이 형성되었는지 여부를 측정하였고, 거리 및 각도의 컷오프 값은 4.0Å와 40°였다. 도 188, 189에서 확인할 수 있듯, 염기쌍의 각 MD 스냅샷은 0(끊어짐) 또는 1(짝지음) 값을 제공하여, 마지막 200ns 길이의 MD 궤적에 대한 시간 평균 수소결합 비율을 제공한다.Base pair analysis of the MD locus in the 6HB structure was performed using the hydrogen bonding tool of VMD. The base pair was determined whether a hydrogen bond was formed between the N1 atom of the purine base (A,G) and the N3 atom of the pyrimidine base (T,C), and the cutoff values of the distance and angle were 4.0Å and 40°. As can be seen in Figures 188 and 189, each MD snapshot of the base pair provides a value of 0 (broken) or 1 (coupled), giving the time-averaged hydrogen bond ratio for the last 200 ns long MD trajectory.
실험결과Experiment result
일반적인 M13mp18 기반 스캐폴드 DNA 오리가미에서는 이웃하는 올리오뉴클레오티드(스테이플 DNA)의 두 끝이 만나는 구조에 150 내지 250개의 DNA 단일가닥 끊어짐(nick)이 자연스럽게 존재한다(도 1). 우리는 기하학적 특성을 바꾸지 않고 DNA 오리가미 나노구조의 강성을 제어하기 위한, 기계적으로 약한 디자인 모티프로서 이에 주목했다. 그러나, 그들의 연화 효과(softening effect)는 비틀림을 제외하고는 현저히 높지 않은 것으로 나타났고, 이는 광범위한 기계적 제어에 충분하지 않은 것으로 보인다. 그러므로, 우리는 1 내지 5개의 염기(약 0.3 내지 1.7 nm 길이)로 이루어진 짧은 ssDNA 갭으로 정의된 결손 설계의 개념을 개발하였다. 레퍼런스 디자인의 닉(nick) 사이트의 스테이플을 자체 조립 전에 짧은 스테이플로 교체하면 쉽게 형성할 수 있다(도 2). ssDNA는 dsDNA보다 훨씬 유연하기 때문에, 결손 삽입 부위의 강성과 DNA 구조의 전반적인 구조적 강성을 현저히 감소시킬 수 있다. 닉 사이트에서 다양한 길이의 결손을 생성해도 인접 스테이플의 순서에는 영향을 미치지 않는다. 따라서, DNA 나노구조의 기계적 강성을 완전히 모듈화하고 국부적으로 제어하는 것은 염기쌍 수준의 정밀도로 가능하다. 짧은 ssDNA는 부분적으로 다면체 구조물의 꼭지점에서 약간의 왜곡을 완화시키는데 사용되었지만, 아직 DNA 나노구조의 강성을 조절하는 기계적 디자인 요소로 활용되지 못했다.In a general M13mp18-based scaffold DNA origami, 150 to 250 single-stranded DNA nicks naturally exist in the structure where the two ends of neighboring oligonucleotides (staple DNA) meet (FIG. 1). We noted this as a mechanically weak design motif to control the stiffness of the DNA origami nanostructure without changing its geometric properties. However, their softening effect has been found to be not significantly high except for torsion, which does not appear to be sufficient for extensive mechanical control. Therefore, we developed the concept of a defect design defined by a short ssDNA gap consisting of 1 to 5 bases (about 0.3 to 1.7 nm long). It can be easily formed by replacing the staples of the reference design's nick sites with short staples before self-assembly (Fig. 2). Since ssDNA is much more flexible than dsDNA, it can significantly reduce the stiffness of the insertion site and the overall structural stiffness of the DNA structure. Creating defects of varying lengths in nick sites does not affect the order of adjacent staples. Thus, completely modularizing and locally controlling the mechanical stiffness of DNA nanostructures is possible with base-pair precision. The short ssDNA was used to partially mitigate some distortion at the vertices of polyhedral structures, but it has not yet been utilized as a mechanical design element to control the stiffness of DNA nanostructures.
DNA 나노구조의 기계적 강성을 체계적으로 제어하기 위해, 간격 길이(ssDNA 염기의 수)와 갭 밀도(총 nick 개수에 대한 삽입된 갭의 개수의 비율)를 사용했다(도 3 내지 11). 단량체 스케일의 굽힘 강성 분석을 위해 충분하게 긴 윤곽 길이(4HB는 578 nm, 6HB는 391 nm)를 가지고 있고, 실험적으로 강성 값이 확인된, 4개 및 6개 DNA 헬리스(helices, 각각 4HB, 6HB)의 2개의 크로스섹션 디자인이 선택되었다. 우선, 최대 갭 밀도를 유지하면서 갭 길이가 가변되는 4HB 디자인 및 5 nt 길이의 갭 밀도가 가변되는 6HB 디자인을 이용하여 2개의 디자인 파라미터의 효과를 증명하였다(도 3, 28, 29). 두 경우 모두, 단량체 윤곽의 더 높은 변동은 더 긴 갭 길이 및 더 높은 갭 밀도에 대해 선명하게 가시적이었다.In order to systematically control the mechanical stiffness of the DNA nanostructure, the gap length (the number of ssDNA bases) and the gap density (the ratio of the number of inserted gaps to the total number of nicks) were used (FIGS. 3 to 11). It has a sufficiently long contour length (578 nm for 4HB and 391 nm for 6HB) for the analysis of the bending stiffness of the monomer scale, and has experimentally confirmed stiffness values, 4 and 6 DNA helices, 4HB, respectively. 6HB) two cross-section designs were selected. First, the effects of two design parameters were demonstrated using a 4HB design in which the gap length is variable while maintaining the maximum gap density and a 6HB design in which the gap density of 5 nt length is variable (Figs. 3, 28, 29). In both cases, the higher fluctuations in the monomer contour were clearly visible for longer gap lengths and higher gap densities.
강성 제어 범위를 더 정량화하기 위해, 2개의 디자인 파라미터의 포괄적인 세트를 4HB 및 6HB 설계(도 5, 30 내지 131, 표 1)에 대해 테스트했다. 우리는 AFM(atomic force microscope)에 의해 측정된, 열역학적으로 평형된 2차원 윤곽으로부터 개별 단량체의 지속 길이를 계산하여, DNA 번들의 굽힘 강성을 분석했다. 굽힘 강성에 대한 광범위한 제어는 결손 설계를 사용하여, 제안된 설계 방법으로 달성할 수 있다(도 5). 5 nt 길이의 갭을 사용한 최대 밀도(full density)를 사용했을 때, 굽힘에 대한 최대 연화 효과는 4HB에서 70.3%, 6HB에서 67.2%로 나타났다. To further quantify the stiffness control range, a comprehensive set of two design parameters were tested for the 4HB and 6HB designs (Figures 5, 30-131, Table 1). We analyzed the bending stiffness of the DNA bundle by calculating the duration of individual monomers from the thermodynamically balanced two-dimensional contour, measured by an atomic force microscope (AFM). Extensive control over the flexural stiffness can be achieved with the proposed design method, using a defect design (Fig. 5). When using the full density with a gap of 5 nt length, the maximum softening effect on bending was found to be 70.3% in 4HB and 67.2% in 6HB.
평균 스퀘어(mean-square) 종단 간 거리 곡선의 피팅에서의 부정확성을 피하기 위해, 개별 스플라인 세그먼트의 길이를 신중하게 결정해야 했다(도 132 내지 137). 우리는 측정된 등고선이 첨도를 계산함으로써 2D 평형상태에 있는지 여부를 검증하고(도 6), 단량체 길이와 영상 해상도가 굽힘 지속 길이 계산에 적합한지 평가했다(도 138 내지 141). 개질되지 않은(non-modified) 4HB(4HB-Ref) 및 6HB(6HB-Ref) 디자인의 계산된 굽힘 지속 길이는 각각 998.7 nm 및 2020.8 nm이다(도 7). 굽힘 지속 길이의 예상 값은 동일한 방법으로도 측정방법에 따라 달라질 수 있는데, 각 방법은 서로 다른 시료 준비 절차와, 분해능 한계를 가지고 있기 때문이다. 자가조립(Self-assembly) 과정에서 불완전한 스테이플 결합을 피하기 위해, 우리 설계의 모든 결손(4HB에서 150, 6HB에서 169)은 인접한 Holiday 교차점(크로스오버)에서 적어도 6 염기정도 떨어져 있으며, 닉이 ssDNA 갭으로 변환되었을 때 갭과 크로스오버 간 최소한 3개의 염기쌍을 유지하도록 하였다. 또한, 나선 당 갭 수와 갭 간격은 번들의 방사 방향 및 길이 방향 모두 강성 이방성(stiffness anisotropy)을 방지하기 위해 적절하게 유지되었다(도 28, 29). 6HB 디자인에서 갭이 길이 방향을 따라 이방성으로 분포될 때, 휨 강도는 갭 밀도에 따라 불규칙적으로 감소하였다(도 142 내지 152). In order to avoid inaccuracies in the fitting of the mean-square end-to-end distance curve, the length of the individual spline segments had to be carefully determined (Figures 132-137). We verified whether the measured contour lines were in 2D equilibrium by calculating the kurtosis (FIG. 6), and evaluated whether the monomer length and image resolution were suitable for calculating the bending duration (FIGS. 138-141). The calculated bending duration lengths of the non-modified 4HB (4HB-Ref) and 6HB (6HB-Ref) designs are 998.7 nm and 2020.8 nm, respectively (Figure 7). The expected value of the bending duration may vary depending on the measurement method using the same method, because each method has different sample preparation procedures and resolution limits. To avoid incomplete staple bonding during the self-assembly process, all deficiencies in our design (150 in 4HB, 169 in 6HB) are at least 6 bases away from the adjacent Holiday intersection (crossover), and the nick is ssDNA gap. When converted to, at least 3 base pairs were maintained between the gap and the crossover. In addition, the number of gaps per helix and the gap spacing were appropriately maintained to prevent stiffness anisotropy in both the radial direction and the length direction of the bundle (FIGS. 28 and 29 ). When the gaps in the 6HB design were anisotropically distributed along the length direction, the flexural strength decreased randomly with the gap density (Figs. 142 to 152).
접힘 수율의 관점에서, 결손 설계의 변이는 겔 전기영동에서 명확한 모노머 밴드를 유지하는 경향이 있었지만, 5 nt 길이의 갭의 고밀도(>75%)가 사용되었을 때, 밴드의 강도는 감소되었다(도 153 내지 157). 잘 접힌 단량체의 수와 전체 단량체의 수의 비율로 정의된 구조적 접힘 수율은 설계된 결손을 가진 모든 4HB 및 6HB 디자인에 대해 75.7% 내지 94.5% 범위에 있었다(도 158, 159, 표 2). In terms of folding yield, the variation of the defect design tended to maintain a clear monomer band in gel electrophoresis, but when a high density (>75%) of a 5 nt long gap was used, the strength of the band decreased (Fig. 153-157). Structural folding yields, defined as the ratio of the number of well-folded monomers to the number of total monomers, ranged from 75.7% to 94.5% for all 4HB and 6HB designs with designed deficiencies (Figures 158, 159, Table 2).
인접한 dsDNA 나선을 연결하는 교차(크로스오버)의 밀도를 줄이는 것이 DNA 나노구조의 강성을 낮추는 또 다른 방법일 수 있다. 그러나, inter-helix 크로스오버 사이의 간격을 증가시키면 구조물의 열 변동이 더 커져서, 구조물의 단면 형상(cross-sectional shape)을 유지하는 측면에서 안정성이 떨어지는 바, 우리는 이 영역의 절반이 42 nt 간격의 교차(전형적인 교차 연결보다 2배 긴)로 채워진 6HB를 디자인함으로써 이 현상을 시험했고, 횡단면의 주목할만한 붕괴가 있음을 발견했다(도 160 내지 162). 또한, 이 디자인의 굽힘 강성은 2095.6 nm로 계산되었는데, 이는 6HB-Ref 디자인(도 160 내지 165)의 굽힘 강성보다 약간 높다. 이것은 크로스오버 밀도를 변화시키는 것이, 실제로 DNA 번들의 유연성 제어를 위해 결손을 설계하는 것만큼 효과적이지 않다는 것을 의미한다.Reducing the density of crossovers (crossovers) connecting adjacent dsDNA helices may be another way to lower the stiffness of DNA nanostructures. However, increasing the spacing between inter-helix crossovers increases the thermal fluctuation of the structure, resulting in poor stability in terms of maintaining the cross-sectional shape of the structure. We found that half of this area is 42 nt. This phenomenon was tested by designing a 6HB filled with intersecting gaps (twice longer than typical cross-links) and found that there was a notable collapse of the cross section (FIGS. 160-162 ). In addition, the bending stiffness of this design was calculated to be 2095.6 nm, which is slightly higher than that of the 6HB-Ref design (Figs. 160-165). This means that changing the crossover density is actually not as effective as designing a defect to control the flexibility of the DNA bundle.
의도적인 스테이플 생략은 DNA 나노구조를 부드럽게 하는 대체기술이 될 수 있는데, 구조의 국부적인 영역을 조정해야 하는 경우 효과적인 것으로 나타났다. 그러나, 이 방법은 전체 구조의 전체 강성을 감소시키는 경우 문제가 되는 것으로 밝혀졌다. 두꺼운 단면을 가진 이 효과를 비교적 잘 견뎌낼 수 있지만, 스테이플을 구성하는 8.2%와 16.4%가 제거된 6HB 구조물은 적절히 구성할 수 없었다(도 166, 167).Intentional staple omission can be an alternative technique to soften DNA nanostructures, and has been shown to be effective when local areas of the structure need to be adjusted. However, this method has been found to be problematic when reducing the overall stiffness of the overall structure. Although this effect with a thick cross-section can be withstand relatively well, the 6HB structure from which 8.2% and 16.4% of staples were removed could not be properly constructed (Figs. 166, 167).
설계된 결손을 통한 강성 제어가 4HB 및 6HB 디자인에서 매우 효과적임이 밝혀짐에 따라, 우리는 DNA 오리가미 구조체에 대한 유한 요소(FE) 모델링 접근법을 기반으로, 결손 설계 DNA 나노구조의 굽힘 강성ㅇ르 예측하는 계산 모델을 개발했다(도 8). 오리지널 CanDo의 단단한 크로스오버 모델이 다중 나선 DNA 나노구조의 강성을 적절하게 예측할 수 없었기 때문에, 크로스오버 모델을 유연하게 수정했다(도 168 내지 173). 굽힘 지속 길이는 NMA(Normal Mode Analysis)를 수행하여 첫번째 굽힘 모드의 빈도를 찾고, 오일러-베르누이 빔 이론을 채택하여 계산했다(도 10). 이 기계적 모델로 추정된 지속 길이는 전체 설계 범위에서 실험값과 매우 잘 일치한다(도 5, 11의 점선).As it turns out that stiffness control through designed defects is very effective in 4HB and 6HB designs, we predict the bending stiffness of defect-designed DNA nanostructures based on a finite element (FE) modeling approach for DNA origami structures. A calculation model was developed (Fig. 8). Since the original CanDo's rigid crossover model could not properly predict the stiffness of the multi-helical DNA nanostructure, the crossover model was flexibly modified (Figs. 168 to 173). The bending duration was calculated by performing NMA (Normal Mode Analysis) to find the frequency of the first bending mode, and adopting the Euler-Bernoulli beam theory (FIG. 10). The duration estimated by this mechanical model agrees very well with the experimental values over the entire design range (dotted lines in Figs. 5 and 11).
설계된 결손을 가진 DNA 나노구조의 계산된 모델을 검증하고, ssDNA 간격이 개별 염기수준에 미치는 영향을 분석하기 위해, 우리는 1 nt, 3 nt, 5 nt 길이의 갭을 이용하여 강성이 감소된 84 nt 길이의 6HB 디자인에 대한 MD 시뮬레이션을 수행했다(도 12, 180 내지 184). 우리는 평형상태에 도달한 후의 각 경우에 대해 최종 200 ns의 분자궤도를 추출하고(도 13), 갭이 없는 기준 디자인(reference design, 12개의 닉만 존재)에 대한 결과와 비교했다. 첫째, 각 디자인의 5개 횡단면 평면의 시간-평균 변동은 갭 설계에 관계없이 내각의 편차가 비슷한 수준으로 유지된다는 것을 확인했다(도 14, 15). 기준 디자인과 관련하여, 평면의 평균 면적과 결손 설계 구조의 면간(inter-plane) 거리는 각각 1.7 내지 14.1% 및 0.2% 미만만 차이가 났다(도 16, 17, 185, 186). 또한, 주성분 분석(Principal component analysis, PCA)을 수행하여 MD 궤적으로부터 굽힘 지속 길이를 계산했다. 기준 디자인과 갭을 생성한 구조 사이의 상대적 굽힘 지속 길이 비율은 본 연구에서 개발한 FE 기계적 모델의 타당성을 뒷받침하는 실험데이터뿐만 아니라, FE 분석 결과와도 잘 일치함을 보였다(도 18, 187). 마지막으로, 우리는 갭 주위 염기의 동적 구조특성을 확인하기 위해, 스캐폴드 가닥의 모든 염기의 제곱 평균 변동(root-mean-square fluctuation, RMSF)을 계산하였다(도 19). 예상대로, 전반적인 RMSF는 갭 길이에 따라 자연스럽게 증가했다. 우리는 갭과 인접한 염기쌍 근처에 국소적으로 일어나는 비정상적인 열적 변동을 관찰할 수 없었고, 전체적인 연화 효과뿐만 아니라, 결손 설계의 구조 안정성을 입증했다. 시간이 지남에 따라, 평균화된 수소결합에 대한 분석은 또한 염기쌍 형성 안정성을 확인하는 한편, 갭 근처에서 연속적으로 인접한 서열에서 부분적인 약간의 파괴가 관찰되었다(도 188, 189). To verify the calculated model of the DNA nanostructure with the designed defect and to analyze the effect of the ssDNA spacing on individual base levels, we used gaps of 1 nt, 3 nt, and 5 nt lengths to reduce stiffness. MD simulations for the nt length 6HB design were performed (Fig. 12, 180-184). We extracted the final 200 ns molecular trajectory for each case after reaching the equilibrium state (Fig. 13) and compared the results for the reference design (with only 12 nicks) without gaps. First, it was confirmed that the time-average fluctuation of the five cross-sectional planes of each design maintains a similar level of deviation of the interior angle regardless of the gap design (Figs. 14 and 15). With respect to the reference design, the average area of the plane and the inter-plane distance of the defective design structure differed only by 1.7 to 14.1% and less than 0.2%, respectively (Figs. 16, 17, 185, 186). In addition, a principal component analysis (PCA) was performed to calculate the bending duration length from the MD trajectory. It was shown that the ratio of the relative bending duration between the reference design and the structure that generated the gap was in good agreement with the results of FE analysis as well as experimental data supporting the validity of the FE mechanical model developed in this study (Figs. 18, 187). . Finally, we calculated the root-mean-square fluctuation (RMSF) of all bases of the scaffold strand to confirm the dynamic structural characteristics of the bases around the gap (Fig. 19). As expected, the overall RMSF naturally increased with the gap length. We were unable to observe any abnormal thermal fluctuations occurring locally near the gap and adjacent base pairs, demonstrating the overall softening effect as well as the structural stability of the defect design. Over time, analysis of the averaged hydrogen bonds also confirmed base pairing stability, while some partial breakdown was observed in consecutively adjacent sequences near the gap (Figs. 188, 189).
제안된 디자인 전략과 예측 계산 모델이 확장 가능하기 때문에, 다른 횡단면 형상을 가진 DNA 나노구조의 기계적 강성을 조절하기 위해 적용되었다(도 20 내지 22). 우리는 4 내지 16개의 나선으로 구성된 10개의 횡단면 모양(4HB 및 6HB 포함)을 분석했다(도 20). 일반적인 DNA 번들의 굽힘 강성은 일반적으로 N 2 스케일링 경향(N, 나선수)을 따른다. 결손 설계 공정을 도입함으로써, 굽힘 강성의 최대 감소는 57 내지 78%가 FE 시뮬레이션에 의해 예측되었고, 최대값과 최소값 사이의 강성은 갭 파라미터의 적절한 선택으로, 결손 설계에 의해 실현될 수 있었다(도 21, 190 내지 205). 여기서 제시되는 굽힘 강성의 범위는 많은 가능한 설계 사례 중 하나에 해당한다는 점에 유의해야 한다. 스캐폴드의 레이아웃과 간격 사이트의 수와 배치를 결정하는 스테이플 경로에 따라 달라질 수 있다.Since the proposed design strategy and predictive computational model are extensible, they were applied to control the mechanical stiffness of DNA nanostructures with different cross-sectional shapes (Figs. 20 to 22). We analyzed 10 cross-sectional shapes (including 4HB and 6HB) consisting of 4 to 16 helices (Figure 20). The bending stiffness of a typical DNA bundle generally follows the N 2 scaling tendency (N, bare). By introducing the defect design process, the maximum reduction in bending stiffness was predicted by the FE simulation by 57 to 78%, and the stiffness between the maximum and minimum values could be realized by the defect design with an appropriate selection of the gap parameter (Fig. 21, 190 to 205). It should be noted that the range of flexural stiffness presented here is one of many possible design cases. The layout of the scaffold and the number of spacing sites can vary depending on the staple path that determines the placement.
우리의 계산 모델을 교차 검증하기 위해, 우리는 갭 밀도에 5가지 변이를 갖는 10개의 헬릭스 번들(10HB) 구조를 추가로 구성했다. 대부분 구조 전체에 5 nt 길이의 간격이 사용되었다. 그러나 인접한 inter-helix 크로스오버 사이의 거리가 7 nt 길이인 지역에서는 4 nt 길이의 갭이 대신 사용되었다. 최대 및 최소 굽힘 지속 길이는 예상값과 잘 일치하게도, 각각 5426 nm 및 2179 nm 로 측정되어, 강성 설계에서 개발된 계산 모델의 유용성을 입증하였다(도 22, 206 내지 224). 횡단면 레이아웃의 이방성 때문에, FE 시뮬레이션에서 첫번째 2개의 굽힘 모드의 조화 평균값을 계산하여 횡단면의 대칭성을 활용한 실험결과(도 22)와 비교했다.To cross-validate our computational model, we further constructed 10 helix bundles (10HB) structures with 5 variations in the gap density. In most cases, 5 nt length spacing was used throughout the structure. However, in the region where the distance between adjacent inter-helix crossovers is 7 nt, a gap of 4 nt was used instead. The maximum and minimum bending duration lengths were measured to be 5426 nm and 2179 nm, respectively, in good agreement with the expected values, demonstrating the usefulness of the calculated models developed in the stiffness design (Figs. 22, 206 to 224). Because of the anisotropy of the cross-sectional layout, the harmonic average value of the first two bending modes was calculated in the FE simulation and compared with the experimental result (Fig. 22) utilizing the symmetry of the cross-section.
마지막으로, 우리는 강성 제어를 위한 결손 설계 방법을 적용하여 기계적으로 유연한 힌지(hinge)를 설계했다. 이 힌지의 각도는 외부 dsDNA 조정자 가닥(external dsDNA adjuster strand)에 의해 제어되었다(도 23, 24). 다발이 유연한 영역이 없는 상태에서 윤곽선 길이보다 짧은 조정자를 가지면, 직선 응집체를 형성하는 것이 구부러진 단량체로 접혀지는 것보다 에너지적으로 더 유리할 것이므로, 딱딱한 번들을 위해 구부러진 단량체 대신 직선 응집체를 형성하는 경향이 있다. 힌지에서 dsDNA 나선의 수를 줄임으로써 굽힘 강성을 감소시켜 응집을 방지할 수 있으나, 우리는 횡단면을 수정하지 않고 힌지에 설계된 결손을 삽입하면 비슷한 연화 효과를 얻을 수 있음을 발견했다. 결손 설계 방법을 채택함으로써, 구조적 접힘 수율에 대한 상당한 개선이 겔 전기영동과 AFM 측정에 의해 확인되었다(도 23, 24, 225). 이 결과는 제안된 방법이 국소 및 모듈러(modular) 강성 변조가 고도로 활용되는 구조 형상 설계에도 쉽게 적용될 수 있음을 보여준다.Finally, we designed a mechanically flexible hinge by applying the defect design method for stiffness control. The angle of this hinge was controlled by an external dsDNA adjuster strand (FIGS. 23, 24). If the bundle has a modulator shorter than the length of the contour in the absence of flexible regions, it will be more energetically advantageous to form a straight agglomerate than to be folded into a bent monomer, so it tends to form a straight agglomerate instead of a bent monomer for a rigid bundle. have. By reducing the number of dsDNA helices in the hinge, agglomeration can be prevented by reducing the bending stiffness, but we have found that similar softening effects can be obtained by inserting the designed defect in the hinge without modifying the cross section. By adopting the defect design method, a significant improvement in the structural fold yield was confirmed by gel electrophoresis and AFM measurements (Figs. 23, 24, 225). This result shows that the proposed method can be easily applied to structural shape design in which local and modular stiffness modulation is highly utilized.
DesignDesign Average bending persistence length (nm)Average bending persistence length (nm) Std. deviation of bending persistence length (nm)Std. deviation of bending persistence length (nm) Number of Number of samples (N)samples (N)
4HB-Ref4HB-Ref 998.7998.7 47.247.2 634634
4HB-1nt-25%4HB-1nt-25% 901.8901.8 37.437.4 396396
4HB-1nt-50%4HB-1nt-50% 843.2843.2 36.636.6 453453
4HB-1nt-75%4HB-1nt-75% 795.4795.4 39.739.7 619619
4HB-1nt-100%4HB-1nt-100% 762.6762.6 39.139.1 399399
4HB-3nt-25%4HB-3nt-25% 735.7735.7 35.035.0 506506
4HB-3nt-50%4HB-3nt-50% 650.3650.3 31.931.9 563563
4HB-3nt-75%4HB-3nt-75% 466.7466.7 18.618.6 589589
4HB-3nt-100%4HB-3nt-100% 398.8398.8 16.316.3 365365
4HB-5nt-25%4HB-5nt-25% 659.2659.2 27.327.3 231231
4HB-5nt-50%4HB-5nt-50% 507.9507.9 20.920.9 338338
4HB-5nt-75%4HB-5nt-75% 344.6344.6 13.013.0 375375
4HB-5nt-100%4HB-5nt-100% 296.2296.2 11.711.7 660660
6HB-Ref6HB-Ref 2026.22026.2 77.377.3 682682
6HB-1nt-17%6HB-1nt-17% 1827.01827.0 71.171.1 702702
6HB-1nt-33%6HB-1nt-33% 1753.51753.5 72.472.4 504504
6HB-1nt-50%6HB-1nt-50% 1614.61614.6 62.962.9 384384
6HB-1nt-67%6HB-1nt-67% 1541.71541.7 62.862.8 647647
6HB-1nt-83%6HB-1nt-83% 1489.61489.6 61.961.9 643643
6HB-1nt-100%6HB-1nt-100% 1451.91451.9 85.785.7 672672
6HB-2nt-100%6HB-2nt-100% 1036.31036.3 41.941.9 627627
6HB-3nt-17%6HB-3nt-17% 1775.51775.5 68.668.6 442442
6HB-3nt-33%6HB-3nt-33% 1485.21485.2 78.678.6 473473
6HB-3nt-50%6HB-3nt-50% 1304.51304.5 51.351.3 502502
6HB-3nt-67%6HB-3nt-67% 1166.51166.5 60.160.1 553553
6HB-3nt-83%6HB-3nt-83% 1046.21046.2 40.240.2 401401
6HB-3nt-100%6HB-3nt-100% 872.5872.5 34.634.6 438438
6HB-4nt-100%6HB-4nt-100% 747.7747.7 26.226.2 418418
6HB-5nt-17%6HB-5nt-17% 1733.51733.5 76.076.0 750750
6HB-5nt-33%6HB-5nt-33% 1420.21420.2 60.960.9 394394
6HB-5nt-50%6HB-5nt-50% 1185.41185.4 52.152.1 665665
6HB-5nt-67%6HB-5nt-67% 934.5934.5 37.737.7 806806
6HB-5nt-83%6HB-5nt-83% 824.8824.8 42.642.6 10731073
6HB-5nt-100%6HB-5nt-100% 662.1662.1 27.427.4 779779
6HB-5nt-25%-Axial6HB-5nt-25%-Axial 1191.51191.5 42.942.9 233233
6HB-5nt-50%-Axial6HB-5nt-50%-Axial 1017.81017.8 52.652.6 574574
6HB-5nt-75%-Axial6HB-5nt-75%-Axial 900.2900.2 44.444.4 600600
10HB-Ref10HB-Ref 5425.55425.5 278.9278.9 929929
10HB-5nt-20%10HB-5nt-20% 4658.84658.8 223.9223.9 904904
10HB-5nt-40%10HB-5nt-40% 3716.33716.3 167.8167.8 712712
10HB-5nt-60%10HB-5nt-60% 3283.83283.8 154.9154.9 520520
10HB-5nt-80%10HB-5nt-80% 2466.22466.2 126.9126.9 872872
10HB-5nt-100%10HB-5nt-100% 2082.72082.7 106.5106.5 988988
DesignDesign Number of total monomersNumber of total monomers Number of well-folded structuresNumber of well-folded structures Structural folding yield (%)Structural folding yield (%)
4HB-Ref4HB-Ref 698698 760760 91.891.8
4HB-1nt-25%4HB-1nt-25% 420420 397397 94.594.5
4HB-1nt-50%4HB-1nt-50% 514514 470470 91.491.4
4HB-1nt-75%4HB-1nt-75% 730730 668668 91.591.5
4HB-1nt-100%4HB-1nt-100% 494494 444444 89.989.9
4HB-3nt-25%4HB-3nt-25% 607607 541541 89.189.1
4HB-3nt-50%4HB-3nt-50% 695695 594594 85.585.5
4HB-3nt-75%4HB-3nt-75% 694694 616616 88.888.8
4HB-3nt-100%4HB-3nt-100% 415415 379379 91.391.3
4HB-5nt-25%4HB-5nt-25% 333333 304304 91.391.3
4HB-5nt-50%4HB-5nt-50% 418418 362362 86.686.6
4HB-5nt-75%4HB-5nt-75% 449449 398398 88.688.6
4HB-5nt-100%4HB-5nt-100% 798798 720720 90.290.2
6HB-Ref6HB-Ref 718718 627627 87.387.3
6HB-1nt-17%6HB-1nt-17% 531531 474474 89.389.3
6HB-1nt-33%6HB-1nt-33% 510510 454454 89.089.0
6HB-1nt-50%6HB-1nt-50% 525525 452452 86.186.1
6HB-1nt-67%6HB-1nt-67% 611611 531531 86.986.9
6HB-1nt-83%6HB-1nt-83% 543543 490490 90.290.2
6HB-1nt-100%6HB-1nt-100% 565565 520520 92.092.0
6HB-1nt-200%6HB-1nt-200% 483483 428428 88.688.6
6HB-3nt-17%6HB-3nt-17% 459459 392392 85.485.4
6HB-3nt-33%6HB-3nt-33% 566566 486486 85.985.9
6HB-3nt-50%6HB-3nt-50% 601601 536536 89.289.2
6HB-3nt-67%6HB-3nt-67% 616616 522522 84.784.7
6HB-3nt-83%6HB-3nt-83% 731731 633633 86.686.6
6HB-3nt-100%6HB-3nt-100% 647647 531531 82.182.1
6HB-4nt-100%6HB-4nt-100% 570570 485485 85.185.1
6HB-5nt-17%6HB-5nt-17% 541541 496496 91.791.7
6HB-5nt-33%6HB-5nt-33% 584584 508508 87.087.0
6HB-5nt-50%6HB-5nt-50% 609609 538538 88.388.3
6HB-5nt-67%6HB-5nt-67% 489489 370370 75.775.7
6HB-5nt-83%6HB-5nt-83% 600600 515515 85.885.8
6HB-5nt-100%6HB-5nt-100% 494494 406406 82.282.2
6HB-5nt-25%-Axial6HB-5nt-25%-Axial 606606 491491 81.081.0
6HB-5nt-50%-Axial6HB-5nt-50%-Axial 645645 542542 84.084.0
6HB-5nt-75%-Axial6HB-5nt-75%-Axial 592592 504504 85.185.1
10HB-Ref10HB-Ref 999999 939939 94.094.0
10HB-5nt-20%10HB-5nt-20% 11091109 976976 88.088.0
10HB-5nt-40%10HB-5nt-40% 873873 748748 85.785.7
10HB-5nt-60%10HB-5nt-60% 708708 577577 81.581.5
10HB-5nt-80%10HB-5nt-80% 11011101 883883 80.280.2
10HB-5nt-100%10HB-5nt-100% 852852 617617 72.472.4
Interhelix distance (nm)Interhelix distance (nm)
Honeycomb latticeHoneycomb lattice 2.252.25 Square latticeSquare lattice 2.52.5
Mechanical propertiesMechanical properties
EA (pN)EA (pN) EI (pN·㎚ 2)EI (pN·nm 2 ) GJ (pN·㎚ 2)GJ (pN·nm 2 )
dsDNA elementdsDNA element 11001100 230230 460460
Normalized rigidity factor (with respect to dsDNA element)Normalized rigidity factor (with respect to dsDNA element)
Crossover elementCrossover element 1.01.0 0.20.2 0.10.1
HJ core elementHJ core element 0.0690.069 0.1170.117 1.01.0
Nick elementNick element 1.01.0 1.01.0 1.01.0
1-nt ssDNA gap element1-nt ssDNA gap element 0.0540.054 0.010.01 0.010.01
2-nt ssDNA gap element2-nt ssDNA gap element 0.0350.035 0.0090.009 0.010.01
3-nt ssDNA gap element3-nt ssDNA gap element 0.0170.017 0.0090.009 0.010.01
4-nt ssDNA gap element4-nt ssDNA gap element 0.0140.014 0.0090.009 0.010.01
5-nt ssDNA gap element5-nt ssDNA gap element 0.0110.011 0.0090.009 0.010.01
NameName BaseBase countcount Molecular weightMolecular weight (theoretical)(theoretical) [Da][Da] MolecularMolecular weightweight (MALDI-TOF)(MALDI-TOF) [Da][Da] DifferenceDifference NameName BaseBase countcount Molecular weightMolecular weight (theoretical)(theoretical) [Da][Da] MolecularMolecular weightweight (MALDI-TOF)(MALDI-TOF) [Da][Da] DifferenceDifference
4hb_nogap_A014hb_nogap_A01   4848 14768.6414768.64 14789.014789.0 0.14%0.14% 4hb_5gap_A014hb_5gap_A01   3838 11768.711768.7 11788.011788.0 0.16%0.16%
4hb_nogap_A024hb_nogap_A02   4848 14784.714784.7 14821.014821.0 0.25%0.25% 4hb_5gap_A024hb_5gap_A02   3838 11729.7111729.71 11744.011744.0 0.12%0.12%
4hb_nogap_A034hb_nogap_A03   4848 14654.6314654.63 14699.014699.0 0.30%0.30% 4hb_5gap_A034hb_5gap_A03   3838 11566.611566.6 11571.011571.0 0.04%0.04%
4hb_nogap_A044hb_nogap_A04   4848 14829.7614829.76 14877.014877.0 0.32%0.32% 4hb_5gap_A044hb_5gap_A04   3838 11682.711682.7 11719.011719.0 0.31%0.31%
4hb_nogap_A054hb_nogap_A05   4848 14950.8314950.83 15002.015002.0 0.34%0.34% 4hb_5gap_A054hb_5gap_A05   3838 11764.7811764.78 11783.011783.0 0.15%0.15%
4hb_nogap_A064hb_nogap_A06   4848 14661.5514661.55 14697.014697.0 0.24%0.24% 4hb_5gap_A064hb_5gap_A06   3838 11612.5711612.57 11646.011646.0 0.29%0.29%
4hb_nogap_A074hb_nogap_A07   4848 14744.6114744.61 14797.014797.0 0.36%0.36% 4hb_5gap_A074hb_5gap_A07   3838 11694.6511694.65 11714.011714.0 0.17%0.17%
4hb_nogap_A084hb_nogap_A08   4848 14698.5714698.57 14742.014742.0 0.30%0.30% 4hb_5gap_A084hb_5gap_A08   3838 11593.5611593.56 11611.011611.0 0.15%0.15%
4hb_nogap_A094hb_nogap_A09   4848 14804.5614804.56 14848.014848.0 0.29%0.29% 4hb_5gap_A094hb_5gap_A09   3838 11760.6111760.61 11785.011785.0 0.21%0.21%
4hb_nogap_A104hb_nogap_A10   4848 14840.6714840.67 14878.014878.0 0.25%0.25% 4hb_5gap_A104hb_5gap_A10   3838 11729.6511729.65 11756.011756.0 0.22%0.22%
4hb_nogap_A114hb_nogap_A11   4848 14523.3814523.38 14541.014541.0 0.12%0.12% 4hb_5gap_A114hb_5gap_A11   3838 11467.4111467.41 11482.011482.0 0.13%0.13%
4hb_nogap_A124hb_nogap_A12   4848 14818.614818.6 14829.014829.0 0.07%0.07% 4hb_5gap_A124hb_5gap_A12   3838 11688.5811688.58 11701.011701.0 0.11%0.11%
4hb_nogap_A134hb_nogap_A13   4848 14548.4414548.44 14577.014577.0 0.20%0.20% 4hb_5gap_A134hb_5gap_A13   3838 11553.5311553.53 11579.011579.0 0.22%0.22%
4hb_nogap_A144hb_nogap_A14   4848 14844.6614844.66 14872.014872.0 0.18%0.18% 4hb_5gap_A144hb_5gap_A14   3838 11729.6611729.66 11738.011738.0 0.07%0.07%
4hb_nogap_A154hb_nogap_A15   4848 14685.6414685.64 14710.014710.0 0.17%0.17% 4hb_5gap_A154hb_5gap_A15   3838 11588.611588.6 11612.011612.0 0.20%0.20%
4hb_nogap_A164hb_nogap_A16   4848 14754.6714754.67 14774.014774.0 0.13%0.13% 4hb_5gap_A164hb_5gap_A16   3838 11665.6611665.66 11698.011698.0 0.28%0.28%
4hb_nogap_A174hb_nogap_A17   4848 14875.7414875.74 14915.014915.0 0.26%0.26% 4hb_5gap_A174hb_5gap_A17   3838 11744.6811744.68 11748.011748.0 0.03%0.03%
4hb_nogap_A184hb_nogap_A18   4848 14784.6514784.65 14816.014816.0 0.21%0.21% 4hb_5gap_A184hb_5gap_A18   3838 11632.6211632.62 11671.011671.0 0.33%0.33%
4hb_nogap_A194hb_nogap_A19   3636 11001.1711001.17 11018.011018.0 0.15%0.15% 4hb_5gap_A194hb_5gap_A19   3131 9445.179445.17 9461.09461.0 0.17%0.17%
4hb_nogap_B014hb_nogap_B01   3636 11022.1911022.19 11039.011039.0 0.15%0.15% 4hb_5gap_B014hb_5gap_B01   3131 9482.199482.19 9512.09512.0 0.31%0.31%
4hb_nogap_B024hb_nogap_B02   4848 14657.5714657.57 14687.014687.0 0.20%0.20% 4hb_5gap_B024hb_5gap_B02   3838 11617.611617.6 11641.011641.0 0.20%0.20%
4hb_nogap_B034hb_nogap_B03   4848 14690.6114690.61 14709.014709.0 0.13%0.13% 4hb_5gap_B034hb_5gap_B03   3838 11603.5611603.56 11603.011603.0 0.00%0.00%
4hb_nogap_B044hb_nogap_B04   4848 14962.8514962.85 14990.014990.0 0.18%0.18% 4hb_5gap_B044hb_5gap_B04   3838 11849.8111849.81 11873.011873.0 0.20%0.20%
4hb_nogap_B054hb_nogap_B05   4848 14928.8214928.82 14980.014980.0 0.34%0.34% 4hb_5gap_B054hb_5gap_B05   3838 11886.8311886.83 11894.011894.0 0.06%0.06%
4hb_nogap_B064hb_nogap_B06   4848 14771.714771.7 14820.014820.0 0.33%0.33% 4hb_5gap_B064hb_5gap_B06   3838 11680.6711680.67 11707.011707.0 0.23%0.23%
4hb_nogap_B074hb_nogap_B07   4848 14625.514625.5 14653.014653.0 0.19%0.19% 4hb_5gap_B074hb_5gap_B07   3838 11543.4811543.48 11562.011562.0 0.16%0.16%
4hb_nogap_B084hb_nogap_B08   4848 14622.514622.5 14640.014640.0 0.12%0.12% 4hb_5gap_B084hb_5gap_B08   3838 11579.5311579.53 11611.011611.0 0.27%0.27%
4hb_nogap_B094hb_nogap_B09   4848 14910.6714910.67 14950.014950.0 0.26%0.26% 4hb_5gap_B094hb_5gap_B09   3838 11746.6311746.63 11767.011767.0 0.17%0.17%
4hb_nogap_B104hb_nogap_B10   4848 14856.6114856.61 14896.014896.0 0.27%0.27% 4hb_5gap_B104hb_5gap_B10   3838 11772.6311772.63 11802.011802.0 0.25%0.25%
4hb_nogap_B114hb_nogap_B11   4848 14801.6314801.63 14828.014828.0 0.18%0.18% 4hb_5gap_B114hb_5gap_B11   3838 11771.6511771.65 11801.011801.0 0.25%0.25%
4hb_nogap_B124hb_nogap_B12   4848 14628.4514628.45 14675.014675.0 0.32%0.32% 4hb_5gap_B124hb_5gap_B12   3838 11587.511587.5 11585.011585.0 -0.02%-0.02%
4hb_nogap_B134hb_nogap_B13   4848 14851.7114851.71 14901.014901.0 0.33%0.33% 4hb_5gap_B134hb_5gap_B13   3838 11715.6811715.68 11739.011739.0 0.20%0.20%
4hb_nogap_B144hb_nogap_B14   4848 15001.8915001.89 15055.015055.0 0.35%0.35% 4hb_5gap_B144hb_5gap_B14   3838 11861.8211861.82 11870.011870.0 0.07%0.07%
4hb_nogap_B154hb_nogap_B15   4848 14813.714813.7 14862.014862.0 0.33%0.33% 4hb_5gap_B154hb_5gap_B15   3838 11739.7111739.71 11741.011741.0 0.01%0.01%
4hb_nogap_B164hb_nogap_B16   4848 14919.8114919.81 14959.014959.0 0.26%0.26% 4hb_5gap_B164hb_5gap_B16   3838 11774.7711774.77 11798.011798.0 0.20%0.20%
4hb_nogap_B174hb_nogap_B17   4848 14667.6214667.62 14714.014714.0 0.32%0.32% 4hb_5gap_B174hb_5gap_B17   3838 11594.6111594.61 11604.011604.0 0.08%0.08%
4hb_nogap_B184hb_nogap_B18   4848 14815.6614815.66 14867.014867.0 0.35%0.35% 4hb_5gap_B184hb_5gap_B18   3838 11757.6711757.67 11759.011759.0 0.01%0.01%
4hb_nogap_B194hb_nogap_B19   3636 11030.2211030.22 11054.011054.0 0.22%0.22% 4hb_5gap_B194hb_5gap_B19   3131 9432.179432.17 9434.09434.0 0.02%0.02%
4hb_nogap_B204hb_nogap_B20   4040 12285.0212285.02 12307.012307.0 0.18%0.18% 4hb_5gap_B204hb_5gap_B20   3535 10735.0310735.03 10753.010753.0 0.17%0.17%
4hb_nogap_C014hb_nogap_C01   4040 12247.0212247.02 12276.012276.0 0.24%0.24% 4hb_5gap_C014hb_5gap_C01   3535 10698.0110698.01 10719.010719.0 0.20%0.20%
4hb_nogap_C024hb_nogap_C02   4848 14851.7714851.77 14905.014905.0 0.36%0.36% 4hb_5gap_C024hb_5gap_C02   3838 11778.7611778.76 11802.011802.0 0.20%0.20%
4hb_nogap_C034hb_nogap_C03   4848 14803.7314803.73 14852.014852.0 0.33%0.33% 4hb_5gap_C034hb_5gap_C03   3838 11789.7911789.79 11832.011832.0 0.36%0.36%
4hb_nogap_C044hb_nogap_C04   4848 14855.7514855.75 14891.014891.0 0.24%0.24% 4hb_5gap_C044hb_5gap_C04   3838 11793.7711793.77 11809.011809.0 0.13%0.13%
4hb_nogap_C054hb_nogap_C05   4848 14850.7914850.79 14872.014872.0 0.14%0.14% 4hb_5gap_C054hb_5gap_C05   3838 11728.7411728.74 11733.011733.0 0.04%0.04%
4hb_nogap_C064hb_nogap_C06   4848 14647.5714647.57 14667.014667.0 0.13%0.13% 4hb_5gap_C064hb_5gap_C06   3838 11597.6111597.61 11616.011616.0 0.16%0.16%
4hb_nogap_C074hb_nogap_C07   4848 14819.7114819.71 14847.014847.0 0.18%0.18% 4hb_5gap_C074hb_5gap_C07   3838 11697.6611697.66 11716.011716.0 0.16%0.16%
4hb_nogap_C084hb_nogap_C08   4848 14694.5914694.59 14733.014733.0 0.26%0.26% 4hb_5gap_C084hb_5gap_C08   3838 11547.5311547.53 11572.011572.0 0.21%0.21%
4hb_nogap_C094hb_nogap_C09   4848 14824.6614824.66 14860.014860.0 0.24%0.24% 4hb_5gap_C094hb_5gap_C09   3838 11668.5911668.59 11678.011678.0 0.08%0.08%
4hb_nogap_C104hb_nogap_C10   4848 14854.6514854.65 14878.014878.0 0.16%0.16% 4hb_5gap_C104hb_5gap_C10   3838 11699.6211699.62 11722.011722.0 0.19%0.19%
4hb_nogap_C114hb_nogap_C11   4848 14787.5814787.58 14823.014823.0 0.24%0.24% 4hb_5gap_C114hb_5gap_C11   3838 11712.6111712.61 11732.011732.0 0.17%0.17%
4hb_nogap_C124hb_nogap_C12   4848 14663.5114663.51 14686.014686.0 0.15%0.15% 4hb_5gap_C124hb_5gap_C12   3838 11548.5111548.51 11563.011563.0 0.13%0.13%
4hb_nogap_C134hb_nogap_C13   4848 14900.6914900.69 14956.014956.0 0.37%0.37% 4hb_5gap_C134hb_5gap_C13   3838 11804.6911804.69 11803.011803.0 -0.01%-0.01%
4hb_nogap_C144hb_nogap_C14   4848 14844.6514844.65 14885.014885.0 0.27%0.27% 4hb_5gap_C144hb_5gap_C14   3838 11760.6711760.67 11787.011787.0 0.22%0.22%
4hb_nogap_C154hb_nogap_C15   4848 14683.6214683.62 14723.014723.0 0.27%0.27% 4hb_5gap_C154hb_5gap_C15   3838 11613.6111613.61 11616.011616.0 0.02%0.02%
4hb_nogap_C164hb_nogap_C16   4848 14834.7314834.73 14870.014870.0 0.24%0.24% 4hb_5gap_C164hb_5gap_C16   3838 11746.711746.7 11778.011778.0 0.27%0.27%
4hb_nogap_C174hb_nogap_C17   4848 14695.6314695.63 14738.014738.0 0.29%0.29% 4hb_5gap_C174hb_5gap_C17   3838 11581.6111581.61 11613.011613.0 0.27%0.27%
4hb_nogap_C184hb_nogap_C18   4848 14862.7414862.74 14908.014908.0 0.30%0.30% 4hb_5gap_C184hb_5gap_C18   3838 11814.7411814.74 11814.011814.0 -0.01%-0.01%
4hb_nogap_C194hb_nogap_C19   4848 14706.5414706.54 14738.014738.0 0.21%0.21% 4hb_5gap_C194hb_5gap_C19   3838 11618.5111618.51 11629.011629.0 0.09%0.09%
4hb_nogap_D014hb_nogap_D01   3636 11089.3211089.32 11088.011088.0 -0.01%-0.01% 4hb_5gap_D014hb_5gap_D01   3131 9574.339574.33 9579.09579.0 0.05%0.05%
4hb_nogap_D024hb_nogap_D02   4848 14842.7514842.75 14895.014895.0 0.35%0.35% 4hb_5gap_D024hb_5gap_D02   3838 11830.811830.8 11828.011828.0 -0.02%-0.02%
4hb_nogap_D034hb_nogap_D03   4848 14900.814900.8 14952.014952.0 0.34%0.34% 4hb_5gap_D034hb_5gap_D03   3838 11747.7311747.73 11756.011756.0 0.07%0.07%
4hb_nogap_D044hb_nogap_D04   4848 14767.6614767.66 14801.014801.0 0.23%0.23% 4hb_5gap_D044hb_5gap_D04   3838 11669.6411669.64 11678.011678.0 0.07%0.07%
4hb_nogap_D054hb_nogap_D05   4848 14902.7614902.76 14950.014950.0 0.32%0.32% 4hb_5gap_D054hb_5gap_D05   3838 11827.7911827.79 11857.011857.0 0.25%0.25%
4hb_nogap_D064hb_nogap_D06   4848 14833.7514833.75 14886.014886.0 0.35%0.35% 4hb_5gap_D064hb_5gap_D06   3838 11778.7611778.76 11804.011804.0 0.21%0.21%
4hb_nogap_D074hb_nogap_D07   4848 14650.5714650.57 14686.014686.0 0.24%0.24% 4hb_5gap_D074hb_5gap_D07   3838 11592.5811592.58 11594.011594.0 0.01%0.01%
4hb_nogap_D084hb_nogap_D08   4848 14682.5814682.58 14739.014739.0 0.38%0.38% 4hb_5gap_D084hb_5gap_D08   3838 11602.5811602.58 11636.011636.0 0.29%0.29%
4hb_nogap_D094hb_nogap_D09   4848 14739.5214739.52 14758.014758.0 0.13%0.13% 4hb_5gap_D094hb_5gap_D09   3838 11744.6111744.61 11764.011764.0 0.17%0.17%
4hb_nogap_D104hb_nogap_D10   4848 14647.6314647.63 14680.014680.0 0.22%0.22% 4hb_5gap_D104hb_5gap_D10   3838 11619.6811619.68 11619.011619.0 -0.01%-0.01%
4hb_nogap_D114hb_nogap_D11   4848 14876.7214876.72 14898.014898.0 0.14%0.14% 4hb_5gap_D114hb_5gap_D11   3838 11747.6811747.68 11770.011770.0 0.19%0.19%
4hb_nogap_D124hb_nogap_D12   4848 15002.8115002.81 15039.015039.0 0.24%0.24% 4hb_5gap_D124hb_5gap_D12   3838 11864.7611864.76 11878.011878.0 0.11%0.11%
4hb_nogap_D134hb_nogap_D13   4848 14776.6714776.67 14808.014808.0 0.21%0.21% 4hb_5gap_D134hb_5gap_D13   3838 11656.6411656.64 11666.011666.0 0.08%0.08%
4hb_nogap_D144hb_nogap_D14   4848 14670.5614670.56 14688.014688.0 0.12%0.12% 4hb_5gap_D144hb_5gap_D14   3838 11606.5611606.56 11629.011629.0 0.19%0.19%
4hb_nogap_D154hb_nogap_D15   4848 14843.6714843.67 14861.014861.0 0.12%0.12% 4hb_5gap_D154hb_5gap_D15   3838 11763.6711763.67 11788.011788.0 0.21%0.21%
4hb_nogap_D164hb_nogap_D16   4848 14748.6514748.65 14787.014787.0 0.26%0.26% 4hb_5gap_D164hb_5gap_D16   3838 11681.6511681.65 11707.011707.0 0.22%0.22%
4hb_nogap_D174hb_nogap_D17   4848 14912.8114912.81 14958.014958.0 0.30%0.30% 4hb_5gap_D174hb_5gap_D17   3838 11773.7211773.72 11801.011801.0 0.23%0.23%
4hb_nogap_D184hb_nogap_D18   4848 14718.6114718.61 14747.014747.0 0.19%0.19% 4hb_5gap_D184hb_5gap_D18   3838 11565.5411565.54 11594.011594.0 0.25%0.25%
4hb_nogap_D194hb_nogap_D19   4848 14939.7914939.79 14988.014988.0 0.32%0.32% 4hb_5gap_D194hb_5gap_D19   3838 11810.7511810.75 11834.011834.0 0.20%0.20%
4HB design4HB design
NameName Sequence (5'→3')Sequence (5'→3')
4hb_0014hb_001 ACAAACAATGAATACCGCGCCCAATAGCAAGCAAATCATCCTAATCCTACAAACAATGAATACCGCGCCCAATAGCAAGCAAATCATCCTAATCCT
4hb_0024hb_002 AGAGATAATAACGTTTGAAATACCGACCGTGTGATATCATAATTGTACAGAGATAATAACGTTTGAAATACCGACCGTGTGATATCATAATTGTAC
4hb_0034hb_003 CCTTATATAAAATAAATGCTGATGCAAATCCAATCGCCCTTAGAAAATCCTTATATAAAATAAATGCTGATGCAAATCCAATCGCCCTTAGAAAAT
4hb_0044hb_004 ACATACATTCAATACCATATCAAAATTATTTGCACGCAGGTTTACAAAACATACATTCAATACCATATCAAAATTATTTGCACGCAGGTTTACAAA
4hb_0054hb_005 CAACAGAGCCAGATTATCATCATATTCCTGATTATCTTGAGGATTAGACAACAGAGCCAGATTATCATCATATTCCTGATTATCTTGAGGATTAGA
4hb_0064hb_006 CAAAAGAATCAAAAGAATACGTGGCACAGACAATATCTGATAGCCCTCCAAAAGAATCAAAAGAATACGTGGCACAGACAATATCTGATAGCCCTC
4hb_0074hb_007 AATTAAAATCACTGGATTATTTACATTGGCAGATTCTAACATCATAGCAATTAAAATCACTGGATTATTTACATTGGCAGATTCTAACATCATAGC
4hb_0084hb_008 TTAAACCAGAACGGAAAGCCGGCGAACGTGGCGAGATAGGGCGCTAGATTAAACCAGAACGGAAAGCCGGCGAACGTGGCGAGATAGGGCGCTAGA
4hb_0094hb_009 GAAAAAAGCCAGCGTGAACCATCACCCAAATCAAGTAATCCCTTTGATGAAAAAAGCCAGCGTGAACCATCACCCAAATCAAGTAATCCCTTTGAT
4hb_0104hb_010 TTTTAACGGGGTAATTGTTATCCGCTCACAATTCCAAGCCTGGGAGACTTTTAACGGGGTAATTGTTATCCGCTCACAATTCCAAGCCTGGGAGAC
4hb_0114hb_011 GCCGAGGCTGAGCCAGTGCCAAGCTTGCATGCCTGCCTGCGCAAGCAAGCCGAGGCTGAGCCAGTGCCAAGCTTGCATGCCTGCCTGCGCAAGCAA
4hb_0124hb_012 GCATCGGAATAGGTTAATATTTTGTTAAAATTCGCACCAATAGGTGCAGCATCGGAATAGGTTAATATTTTGTTAAAATTCGCACCAATAGGTGCA
4hb_0134hb_013 TTCATTCAGGGACGTAAAACTAGCATGTCAATCATAACCATCAAAGAATTCATTCAGGGACGTAAAACTAGCATGTCAATCATAACCATCAAAGAA
4hb_0144hb_014 TTTTCTCATAGTTTAGATACATTTCGCAAATGGTCAGCGAGCTGAGCCTTTTCTCATAGTTTAGATACATTTCGCAAATGGTCAGCGAGCTGAGCC
4hb_0154hb_015 CCCGTTCAGCGGTGTTTTAAATATGCAACTAAAGTATTCAAAGCCAAACCCGTTCAGCGGTGTTTTAAATATGCAACTAAAGTATTCAAAGCCAAA
4hb_0164hb_016 AGAACTTTAATTTAACGCCAAAAGGAATTACGAGGCTACCAGACTGACAGAACTTTAATTTAACGCCAAAAGGAATTACGAGGCTACCAGACTGAC
4hb_0174hb_017 CGTAACGCATAAACGTTAATAAAACGAACTAACGGACCTGACGAGCTCCGTAACGCATAAACGTTAATAAAACGAACTAACGGACCTGACGAGCTC
4hb_0184hb_018 AGGACGAGGGTAAGGCAAAAGAATACACTAAAACACCGAAACAACGGTAGGACGAGGGTAAGGCAAAAGAATACACTAAAACACCGAAACAACGGT
4hb_0194hb_019 CCAACGGGAGGTCCCTGAACAAAGTCAGAGGGTAATACGTCAAAAGCGCCAACGGGAGGTCCCTGAACAAAGTCAGAGGGTAATACGTCAAAAGCG
4hb_0204hb_020 AATCGGAATCATATAGCAATAGCTATCTTACCGAAGAGCTAATGGCTGAATCGGAATCATATAGCAATAGCTATCTTACCGAAGAGCTAATGGCTG
4hb_0214hb_021 TATCATTTAATGGGAATACCCAAAAGAACTGGCATGAGGCAGAGTATATATCATTTAATGGGAATACCCAAAAGAACTGGCATGAGGCAGAGTATA
4hb_0224hb_022 AGCTACTATATGGAAACGCAAAGACACCACGGAATAACATAAATGACGAGCTACTATATGGAAACGCAAAGACACCACGGAATAACATAAATGACG
4hb_0234hb_023 AACATTAGAACCCCGATTGAGGGAGGGAAGGTAAATACCTGAGCTACAAACATTAGAACCCCGATTGAGGGAGGGAAGGTAAATACCTGAGCTACA
4hb_0244hb_024 AAACGGAGCGGACAAAATCACCAGTAGCACCATTACTTATCTAAAACTAAACGGAGCGGACAAAATCACCAGTAGCACCATTACTTATCTAAAACT
4hb_0254hb_025 AATAGAAAGCGTGTTTGCCTTTAGCGTCAGACTGTAAAATCTAAACCAAATAGAAAGCGTGTTTGCCTTTAGCGTCAGACTGTAAAATCTAAACCA
4hb_0264hb_026 CAAAGTCTGAAACGGAACCAGAGCCACCACCGGAACCCGAGTAACTTGCAAAGTCTGAAACGGAACCAGAGCCACCACCGGAACCCGAGTAACTTG
4hb_0274hb_027 CTGCCTTGACGGCACCACCAGAGCCGCCGCCAGCATTCAGAGCGACCACTGCCTTGACGGCACCACCAGAGCCGCCGCCAGCATTCAGAGCGACCA
4hb_0284hb_028 GAGAGCCCACTAAATGGAAAGCGCAGTCTCTGAATTCGGTCCACAGTGGAGAGCCCACTAAATGGAAAGCGCAGTCTCTGAATTCGGTCCACAGTG
4hb_0294hb_029 CTCACTGTGTGACAGTGCCTTGAGTAACAGTGCCCGTGCGTATTGCGTCTCACTGTGTGACAGTGCCTTGAGTAACAGTGCCCGTGCGTATTGCGT
4hb_0304hb_030 TGCGAACGACGGACTCCTCAAGAGAAGGATTAGGATCAGCCAGCCGCTTGCGAACGACGGACTCCTCAAGAGAAGGATTAGGATCAGCCAGCCGCT
4hb_0314hb_031 GCGTTTGTAAACGTGTATCACCGTACTCAGGAGGTTGGGATAGGCCTGGCGTTTGTAAACGTGTATCACCGTACTCAGGAGGTTGGGATAGGCCTG
4hb_0324hb_032 GCTGACGGTAATTAGCAAGCCCAATAGGAACCCATGCAATGCCTATGCGCTGACGGTAATTAGCAAGCCCAATAGGAACCCATGCAATGCCTATGC
4hb_0334hb_033 CTAATTTGACCATAGCGTAACGATCTAAAGTTTTGTTACCAAAAGCATCTAATTTGACCATAGCGTAACGATCTAAAGTTTTGTTACCAAAAGCAT
4hb_0344hb_034 TCCAGCTCAACAAGTGAGAATAGAAAGGAACAACTAGGATTGCAGGATTCCAGCTCAACAAGTGAGAATAGAAAGGAACAACTAGGATTGCAGGAT
4hb_0354hb_035 CGAGCAGATACAGTATCGGTTTATCAGCTTGCTTTCAATCCCCCGCAACGAGCAGATACAGTATCGGTTTATCAGCTTGCTTTCAATCCCCCGCAA
4hb_0364hb_036 AAATAAAAATCTCCGATATATTCGGTCGCTGAGGCTAGAACCGGAGATAAATAAAAATCTCCGATATATTCGGTCGCTGAGGCTAGAACCGGAGAT
4hb_0374hb_037 CATCAACGAAAGGCAACGGCTACAGAGGCTTTGAGGAGGGAACCAATTCATCAACGAAAGGCAACGGCTACAGAGGCTTTGAGGAGGGAACCAATT
4hb_0384hb_038 AAGACCAGTTACAAATAAGAAACGATTTTTTGTTTATGAGCGCTCGTTAAGACCAGTTACAAATAAGAAACGATTTTTTGTTTATGAGCGCTCGTT
4hb_0394hb_039 ATCGAACGGGTAACGACGACAATAAACAACATGTTCCCCTTTTTCAAGATCGAACGGGTAACGACGACAATAAACAACATGTTCCCCTTTTTCAAG
4hb_0404hb_040 CAAAGCCAACGCTTTAACAACGCCAACATGTAATTTATTAAGACAGTTCAAAGCCAACGCTTTAACAACGCCAACATGTAATTTATTAAGACAGTT
4hb_0414hb_041 TACCATTTATCAATTACCTTTTTTAATGGAAACAGTAGTTTATTCTCCTACCATTTATCAATTACCTTTTTTAATGGAAACAGTAGTTTATTCTCC
4hb_0424hb_042 TGATTTCGCCTGAGAGGCGAATTATTCATTTCAATTATTGACGGTTATTGATTTCGCCTGAGAGGCGAATTATTCATTTCAATTATTGACGGTTAT
4hb_0434hb_043 ACATAACGTTATACAGTTGAAAGGAATTGAGGAAGGCATTAGCATGCGACATAACGTTATACAGTTGAAAGGAATTGAGGAAGGCATTAGCATGCG
4hb_0444hb_044 ACATGGTGAGGCCGCTGAGAGCCAGCAGCAAATGAAGCGCGTTTACAGACATGGTGAGGCCGCTGAGAGCCAGCAGCAAATGAAGCGCGTTTACAG
4hb_0454hb_045 ACGCATTACCGCGTGTTTTTATAATCAGTGAGGCCACGCCTCCCATACACGCATTACCGCGTGTTTTTATAATCAGTGAGGCCACGCCTCCCATAC
4hb_0464hb_046 TAAACCGCTACATATAACGTGCTTTCCTCGTTAGAATGACAGGACTAATAAACCGCTACATATAACGTGCTTTCCTCGTTAGAATGACAGGACTAA
4hb_0474hb_047 ACGTAGTCCACTTGGCCCTGAGAGAGTTGCAGCAAGTACCGTTCGAAAACGTAGTCCACTTGGCCCTGAGAGAGTTGCAGCAAGTACCGTTCGAAA
4hb_0484hb_048 CGAGCAGTCGGGGCCAACGCGCGGGGAGAGGCGGTTTATAAACACGTACGAGCAGTCGGGGCCAACGCGCGGGGAGAGGCGGTTTATAAACACGTA
4hb_0494hb_049 GGTAGGGGATGTATCGGCCTCAGGAAGATCGCACTCTAGCGGGGGTTTGGTAGGGGATGTATCGGCCTCAGGAAGATCGCACTCTAGCGGGGGTTT
4hb_0504hb_050 CCAATAAATGTGAACAAACGGCGGATTGACCGTAATTAGTACCGAGATCCAATAAATGTGAACAAACGGCGGATTGACCGTAATTAGTACCGAGAT
4hb_0514hb_051 TGCCGAGAGATCTAGAACCCTCATATATTTTAAATGTACCGTAATGGATGCCGAGAGATCTAGAACCCTCATATATTTTAAATGTACCGTAATGGA
4hb_0524hb_052 CAGTAGGCAAGGCAGAGCATAAAGCTAAATCGGTTGCGTCTTTCAATTCAGTAGGCAAGGCAGAGCATAAAGCTAAATCGGTTGCGTCTTTCAATT
4hb_0534hb_053 ATGGTCCTTTTGGACTATTATAGTCAGAAGCAAAGCAAGGAATTTTAAATGGTCCTTTTGGACTATTATAGTCAGAAGCAAAGCAAGGAATTTTAA
4hb_0544hb_054 TCAGGTAATAGTCGGAATCGTCATAAATATTCATTGGAGGTGAATAGGTCAGGTAATAGTCGGAATCGTCATAAATATTCATTGGAGGTGAATAGG
4hb_0554hb_055 GAACCATTGTGACCTTCATCAAGAGTAATCTTGACATGCAGGGATATAGAACCATTGTGACCTTCATCAAGAGTAATCTTGACATGCAGGGATATA
4hb_0564hb_056 CAAGCCCAATCCAAAATAAACAGCCATATAATATCCCAGATATATAAGCAAGCCCAATCCAAAATAAACAGCCATATAATATCCCAGATATATAAG
4hb_0574hb_057 CGAACTGTCCAGTTAAACCAAGAATAAACACCGGAAAATAAGGCCCAGCGAACTGTCCAGTTAAACCAAGAATAAACACCGGAAAATAAGGCCCAG
4hb_0584hb_058 AGCATCGCCATATCAACAGTAGGGCTTATTAATTTTCAAGACAAAAATAGCATCGCCATATCAACAGTAGGGCTTATTAATTTTCAAGACAAAAAT
4hb_0594hb_059 TTCATCATTTGAAAATCATAAAATTGCGTAGATTTTTAAAACAGACCATTCATCATTTGAAAATCATAAAATTGCGTAGATTTTTAAAACAGACCA
4hb_0604hb_060 ATTAAATCGCGCATTGCTTTGAATACCATAATACATAGATGATGACCGATTAAATCGCGCATTGCTTTGAATACCATAATACATAGATGATGACCG
4hb_0614hb_061 GAAAGCAAATCATAATTTTAGTCTTTAATGCGCGAATTTTGAATAGCAGAAAGCAAATCATAATTTTAGTCTTTAATGCGCGAATTTTGAATAGCA
4hb_0624hb_062 AGCCCAGTGCCAGGTCAGTATTAACACCATTAGTAAACCAGTCAAGCGAGCCCAGTGCCAGGTCAGTATTAACACCATTAGTAAACCAGTCAAGCG
4hb_0634hb_063 ACCGCCTGAGAACAGCCATTCGAAAGGAGCGGGCGCAAGGAAGGAGAGACCGCCTGAGAACAGCCATTCGAAAGGAGCGGGCGCAAGGAAGGAGAG
4hb_0644hb_064 TTGGCGAGCACGGGGCGCGTACTATGGTATCGGCAATTTTTGGGTTCATTGGCGAGCACGGGGCGCGTACTATGGTATCGGCAATTTTTGGGTTCA
4hb_0654hb_065 TTTTTCACCGCCATTAAAGAGAAGCATAAAGTGTAACACAACATAGGATTTTTCACCGCCATTAAAGAGAAGCATAAAGTGTAACACAACATAGGA
4hb_0664hb_066 TCGGATGAATCGAAACCTGTCGTGCCAGCATTCAGGAGGTCGACATTCTCGGATGAATCGAAACCTGTCGTGCCAGCATTCAGGAGGTCGACATTC
4hb_0674hb_067 ATAAACGACAGTGCTGCAAGTCAGCTCATTTTTTAATTAAATTTGAGAATAAACGACAGTGCTGCAAGTCAGCTCATTTTTTAATTAAATTTGAGA
4hb_0684hb_068 CTCATCCGTGGGAGCGAGTAACAACCCGGTCAAATCTGTACCCCACCCCTCATCCGTGGGAGCGAGTAACAACCCGGTCAAATCTGTACCCCACCC
4hb_0694hb_069 ACAAAAAATTTTTACAAAGGTATTTTCATTTGGGGCATAACCTGGCCTACAAAAAATTTTTACAAAGGTATTTTCATTTGGGGCATAACCTGGCCT
4hb_0704hb_070 TTCTTAAAGCCTCAAAGAATTAGCAAAAATTCGAGCCGGTGTCTTTTTTTCTTAAAGCCTCAAAGAATTAGCAAAAATTCGAGCCGGTGTCTTTTT
4hb_0714hb_071 GTTGTTTACCCTATAAGAGGTATCATAACCCTCGTTATAGTAAGCAAAGTTGTTTACCCTATAAGAGGTATCATAACCCTCGTTATAGTAAGCAAA
4hb_0724hb_072 CGATCAATACTGAAAATGTTTAGACTGGAGGCTTGCACAACATTCGACCGATCAATACTGAAAATGTTTAGACTGGAGGCTTGCACAACATTCGAC
4hb_0734hb_073 GATCCTGGCTGAATTACCTTGCGATTATACCAAGCGTCATCTTTCAGCGATCCTGGCTGAATTACCTTGCGATTATACCAAGCGTCATCTTTCAGC
4hb_nogap_A014hb_nogap_A01 TCTTTCCAGAGCCTAATTTGACGCGAGGAATATCAGAGAGATAACCCATCTTTCCAGAGCCTAATTTGACGCGAGGAATATCAGAGAGATAACCCA
4hb_nogap_A024hb_nogap_A02 TCTTTCCTTATCATTCCAAGAGAACAAGAAGAAAAGTAAGCAGATAGCTCTTTCCTTATCATTCCAAGAGAACAAGAAGAAAAGTAAGCAGATAGC
4hb_nogap_A034hb_nogap_A03 CAAATTCTTACCAGTATAAATATATTTTTCCTTATTACGCAGTATGTTCAAATTCTTACCAGTATAAATATATTTTTCCTTATTACGCAGTATGTT
4hb_nogap_A044hb_nogap_A04 CTGAGAAGAGTCAATAGTGATTTTTAACTTGTCACAATCAATAGAAAACTGAGAAGAGTCAATAGTGATTTTTAACTTGTCACAATCAATAGAAAA
4hb_nogap_A054hb_nogap_A05 TCGGGAGAAACAATAACGGATGTTTGGAAAATTATTCATTAAAGGTGATCGGGAGAAACAATAACGGATGTTTGGAAAATTATTCATTAAAGGTGA
4hb_nogap_A064hb_nogap_A06 CGTATTAAATCCTTTGCCCGTATCATTTAGGCCGGAAACGTCACCAATCGTATTAAATCCTTTGCCCGTATCATTTAGGCCGGAAACGTCACCAAT
4hb_nogap_A074hb_nogap_A07 CCAGCAGAAGATAAAACAGATCTGGCCATCATCGGCATTTTCGGTCATCCAGCAGAAGATAAAACAGATCTGGCCATCATCGGCATTTTCGGTCAT
4hb_nogap_A084hb_nogap_A08 CTGGTAATATCCAGAACAATTCATGGAATCAGAGCCGCCACCCTCAGACTGGTAATATCCAGAACAATTCATGGAATCAGAGCCGCCACCCTCAGA
4hb_nogap_A094hb_nogap_A09 CACCCGCCGCGCTTAATGCGTCGGAACCGGTTGAGGCAGGTCAGACGACACCCGCCGCGCTTAATGCGTCGGAACCGGTTGAGGCAGGTCAGACGA
4hb_nogap_A104hb_nogap_A10 TTGTTCCAGTTTGGAACAAGCAAAGGGCCAGTAAGCGTCATACATGGCTTGTTCCAGTTTGGAACAAGCAAAGGGCCAGTAAGCGTCATACATGGC
4hb_nogap_A114hb_nogap_A11 TGCGCTCACTGCCCGCTTTCCTCGAATTGTTAATGCCCCCTGCCTATTTGCGCTCACTGCCCGCTTTCCTCGAATTGTTAATGCCCCCTGCCTATT
4hb_nogap_A124hb_nogap_A12 ATTACGCCAGCTGGCGAAAGACGCCAGGTTTTGCTCAGTACCAGGCGGATTACGCCAGCTGGCGAAAGACGCCAGGTTTTGCTCAGTACCAGGCGG
4hb_nogap_A134hb_nogap_A13 TAGCCAGCTTTCATCAACATAAACAGGACCACCCTCAGAACCGCCACCTAGCCAGCTTTCATCAACATAAACAGGACCACCCTCAGAACCGCCACC
4hb_nogap_A144hb_nogap_A14 CGGAGAGGGTAGCTATTTTTTGAGAGTCCACTGAGTTTCGTCACCAGTCGGAGAGGGTAGCTATTTTTTGAGAGTCCACTGAGTTTCGTCACCAGT
4hb_nogap_A154hb_nogap_A15 TAACATCCAATAAATCATACTGATTCCCCAGACGTTAGTAAATGAATTTAACATCCAATAAATCATACTGATTCCCCAGACGTTAGTAAATGAATT
4hb_nogap_A164hb_nogap_A16 TAGAGAGTACCTTTAATTGCCTTAGAGCGCGAATAATAATTTTTTCACTAGAGAGTACCTTTAATTGCCTTAGAGCGCGAATAATAATTTTTTCAC
4hb_nogap_A174hb_nogap_A17 AAGAAGTTTTGCCAGAGGGGTTGAGATTTTTCTTAAACAGCTTGATACAAGAAGTTTTGCCAGAGGGGTTGAGATTTTTCTTAAACAGCTTGATAC
4hb_nogap_A184hb_nogap_A18 GGTTTAATTTCAACTTTAATTGGCTCATGTTAAAGGCCGCTTTTGCGGGGTTTAATTTCAACTTTAATTGGCTCATGTTAAAGGCCGCTTTTGCGG
4hb_nogap_A194hb_nogap_A19 GTGTCGAAATCCGCGACCTGTACGTAATCTTTTTCAGTGTCGAAATCCGCGACCTGTACGTAATCTTTTTCA
4hb_nogap_B014hb_nogap_B01 TTAGCGAACCTCCCGACTTGCGCTAACGAATGAAAATTAGCGAACCTCCCGACTTGCGCTAACGAATGAAAA
4hb_nogap_B024hb_nogap_B02 CCGTTTTTATTTTCATCGTAAATAATCGCAGAACGCGCCTGTTTATCACCGTTTTTATTTTCATCGTAAATAATCGCAGAACGCGCCTGTTTATCA
4hb_nogap_B034hb_nogap_B03 AATTTCATCTTCTGACCTAAATATGCGTGCATTTTCGAGCCAGTAATAAATTTCATCTTCTGACCTAAATATGCGTGCATTTTCGAGCCAGTAATA
4hb_nogap_B044hb_nogap_B04 GGCTTAGGTTGGGTTATATATAGATTAACAATATATGTGAGTGAATAAGGCTTAGGTTGGGTTATATATAGATTAACAATATATGTGAGTGAATAA
4hb_nogap_B054hb_nogap_B05 ACTTCTGAATAATGGAAGGGGTACCTTTAAAAGAAGATGATGAAACAAACTTCTGAATAATGGAAGGGGTACCTTTAAAAGAAGATGATGAAACAA
4hb_nogap_B064hb_nogap_B06 GAACAAAGAAACCACCAGAAAATTCGACAATATCTTTAGGAGCACTAAGAACAAAGAAACCACCAGAAAATTCGACAATATCTTTAGGAGCACTAA
4hb_nogap_B074hb_nogap_B07 AGATAGAACCCTTCTGACCTCCGAACGAAGCATCACCTTGCTGAACCTAGATAGAACCCTTCTGACCTCCGAACGAAGCATCACCTTGCTGAACCT
4hb_nogap_B084hb_nogap_B08 CTACATTTTGACGCTCAATCCTATCGGCAAGAGTCTGTCCATCACGCACTACATTTTGACGCTCAATCCTATCGGCAAGAGTCTGTCCATCACGCA
4hb_nogap_B094hb_nogap_B09 AGGGAGCCCCCGATTTAGAGGCGTAACCGGAGCTAAACAGGAGGCCGAAGGGAGCCCCCGATTTAGAGGCGTAACCGGAGCTAAACAGGAGGCCGA
4hb_nogap_B104hb_nogap_B10 AACCGTCTATCAGGGCGATGTAGGGTTGGCTGGTTTGCCCCAGCAGGCAACCGTCTATCAGGGCGATGTAGGGTTGGCTGGTTTGCCCCAGCAGGC
4hb_nogap_B114hb_nogap_B11 ATCATGGTCATAGCTGTTTCCATTAATTGGGCGCCAGGGTGGTTTTTCATCATGGTCATAGCTGTTTCCATTAATTGGGCGCCAGGGTGGTTTTTC
4hb_nogap_B124hb_nogap_B12 TCCCAGTCACGACGTTGTAAGGCCTCTTTTTCCGGCACCGCTTCTGGTTCCCAGTCACGACGTTGTAAGGCCTCTTTTTCCGGCACCGCTTCTGGT
4hb_nogap_B134hb_nogap_B13 TGTATAAGCAAATATTTAAACTGGCCTTTCACGTTGGTGTAGATGGGCTGTATAAGCAAATATTTAAACTGGCCTTTCACGTTGGTGTAGATGGGC
4hb_nogap_B144hb_nogap_B14 GCAAACAAGAGAATCGATGAATAAATTAGAGTAATGTGTAGGTAAAGAGCAAACAAGAGAATCGATGAATAAATTAGAGTAATGTGTAGGTAAAGA
4hb_nogap_B154hb_nogap_B15 CTGCGAACGAGTAGATTTAGTAGTAGTAACATTATGACCCTGTAATACCTGCGAACGAGTAGATTTAGTAGTAGTAACATTATGACCCTGTAATAC
4hb_nogap_B164hb_nogap_B16 TTGCTGAATATAATGCTGTAACAGGTCATCAAAAAGATTAAGAGGAAGTTGCTGAATATAATGCTGTAACAGGTCATCAAAAAGATTAAGAGGAAG
4hb_nogap_B174hb_nogap_B17 AATACCACATTCAACTAATGAGGCTTTTTCAAATGCTTTAAACAGTTCAATACCACATTCAACTAATGAGGCTTTTTCAAATGCTTTAAACAGTTC
4hb_nogap_B184hb_nogap_B18 CCAGTCAGGACGTTGGGAAGTGGGCTTGATATTCATTACCCAAATCAACCAGTCAGGACGTTGGGAAGTGGGCTTGATATTCATTACCCAAATCAA
4hb_nogap_B194hb_nogap_B19 CAACCTAAGCCTGATAGAACTGACCAACTTTGAAAGCAACCTAAGCCTGATAGAACTGACCAACTTTGAAAG
4hb_nogap_B204hb_nogap_B20 CAGACGGTCAATCATAACTAAAGAGCCACTACGAAGGCACCAGACGGTCAATCATAACTAAAGAGCCACTACGAAGGCAC
4hb_nogap_C014hb_nogap_C01 TAGCAGCCTTTACAGAACTGAACATTTGAAGCCTTAAATCTAGCAGCCTTTACAGAACTGAACATTTGAAGCCTTAAATC
4hb_nogap_C024hb_nogap_C02 GAACAAGAAAAATTATTTATAATTGAGTGAAGGCTTATCCGGTATTCTGAACAAGAAAAATTATTTATAATTGAGTGAAGGCTTATCCGGTATTCT
4hb_nogap_C034hb_nogap_C03 CGACAAAAGGTAAAGTAATTCAAAGTTAGTTAAATAAGTACCGCACTCCGACAAAAGGTAAAGTAATTCAAAGTTAGTTAAATAAGTACCGCACTC
4hb_nogap_C044hb_nogap_C04 CGTCGCTATTAAATTGAGAAAACGTAGAAGAACGCGAGAAAACTTTTTCGTCGCTATTAAATTGAGAAAACGTAGAAGAACGCGAGAAAACTTTTT
4hb_nogap_C054hb_nogap_C05 ATTAATTACATTTAACAATTTATGGTTTAAATAAAGGGTCTGAGAGACATTAATTACATTTAACAATTTATGGTTTAAATAAAGGGTCTGAGAGAC
4hb_nogap_C064hb_nogap_C06 GCCGTCAATAGAAGTTACAATCACCGTCGCAATTCATCAATATAATCCGCCGTCAATAGAAGTTACAATCACCGTCGCAATTCATCAATATAATCC
4hb_nogap_C074hb_nogap_C07 AATCAATATCTGGTCAGTTGCCATCGATGGCTATTAAAAGTTTGAGTAAATCAATATCTGGTCAGTTGCCATCGATGGCTATTAAAAGTTTGAGTA
4hb_nogap_C084hb_nogap_C08 AATACTTCTTTGGCCTGCAACCCTTATTCACGACCAGTAATAAAAGGGAATACTTCTTTGGCCTGCAACCCTTATTCACGACCAGTAATAAAAGGG
4hb_nogap_C094hb_nogap_C09 CAGGAACGGTACGCCAGAATCCACCCTCGAAGAAAGGCAACAGGAAAACAGGAACGGTACGCCAGAATCCACCCTCGAAGAAAGGCAACAGGAAAA
4hb_nogap_C104hb_nogap_C10 GGTGGTTCCGAATGCTTTGACCTTGATAGTCGAGGTGCCGTAAAGCACGGTGGTTCCGAATGCTTTGACCTTGATAGTCGAGGTGCCGTAAAGCAC
4hb_nogap_C114hb_nogap_C11 GGGCAACAGCTGATTGCCCTGATGATACACGAGCCGACGTGGACTCCAGGGCAACAGCTGATTGCCCTGATGATACACGAGCCGACGTGGACTCCA
4hb_nogap_C124hb_nogap_C12 AGCGCCATTCGCCTGCATTAAACCTATTTCTAGAGGATCCCCGGGTACAGCGCCATTCGCCTGCATTAAACCTATTTCTAGAGGATCCCCGGGTAC
4hb_nogap_C134hb_nogap_C13 TCTGCCAGTTTGAGGGGACGGTGCCGTCTTGTTAAAGCGATTAAGTTGTCTGCCAGTTTGAGGGGACGGTGCCGTCTTGTTAAAGCGATTAAGTTG
4hb_nogap_C144hb_nogap_C14 AGGCCGGAGACATCGGATTCGAACCGCCGGTTGATAATCAGAAAAGCCAGGCCGGAGACATCGGATTCGAACCGCCGGTTGATAATCAGAAAAGCC
4hb_nogap_C154hb_nogap_C15 TTTATTTCAACGCAAGGATAACTACAACTTTAGCTACTATCAGGTCATTTTATTTCAACGCAAGGATAACTACAACTTTAGCTACTATCAGGTCAT
4hb_nogap_C164hb_nogap_C16 TATCGCGTTTTATTAAGCAAGTATGGGAGGAAGTTTCATTCCATATAATATCGCGTTTTATTAAGCAAGTATGGGAGGAAGTTTCATTCCATATAA
4hb_nogap_C174hb_nogap_C17 CATAAATCAAAAATCAGGTCAAAATCTCAGCAACACTCATTTTTGCGGCATAAATCAAAAATCAGGTCAAAATCTCAGCAACACTCATTTTTGCGG
4hb_nogap_C184hb_nogap_C18 ATTCAGTGAATAATAGCGTCAGTTGCGCATTACAGGTAGAAAGATTCAATTCAGTGAATAATAGCGTCAGTTGCGCATTACAGGTAGAAAGATTCA
4hb_nogap_C194hb_nogap_C19 GTACAGACCAGGCGCATAGGGTCACCCTGACCCCCAATGCGATTTTAAGTACAGACCAGGCGCATAGGGTCACCCTGACCCCCAATGCGATTTTAA
4hb_nogap_D014hb_nogap_D01 GAGAATTAGAGAATAACAATTTTATCCTGAATCTTAGAGAATTAGAGAATAACAATTTTATCCTGAATCTTA
4hb_nogap_D024hb_nogap_D02 CCCAATAATAAGAGCAAGAATAGATAAGTTTACGAGCATGTAGAAACCCCCAATAATAAGAGCAAGAATAGATAAGTTTACGAGCATGTAGAAACC
4hb_nogap_D034hb_nogap_D03 AAGGAAACCGAGGAAACGCAAATATAAAACTAGAAAAAGCCTGTTTAGAAGGAAACCGAGGAAACGCAAATATAAAACTAGAAAAAGCCTGTTTAG
4hb_nogap_D044hb_nogap_D04 ACATACATAAAGGTGGCAACGCTTCTGTATCCTTGAAAACATAGCGATACATACATAAAGGTGGCAACGCTTCTGTATCCTTGAAAACATAGCGAT
4hb_nogap_D054hb_nogap_D05 GCGCCAAAGACAAAAGGGCGCAAGAAAAACGTCAGATGAATATACAGTGCGCCAAAGACAAAAGGGCGCAAGAAAAACGTCAGATGAATATACAGT
4hb_nogap_D064hb_nogap_D06 ACTTGAGCCATTTGGGAATTTAATAGATTTAGAAGTATTAGACTTTACACTTGAGCCATTTGGGAATTTAATAGATTTAGAAGTATTAGACTTTAC
4hb_nogap_D074hb_nogap_D07 GCACCGTAATCAGTAGCGACTATCAAACCCTAAAACATCGCCATTAAAGCACCGTAATCAGTAGCGACTATCAAACCCTAAAACATCGCCATTAAA
4hb_nogap_D084hb_nogap_D08 TTTGCCATCTTTTCATAATCAACCGTTGCTTGCCTGAGTAGAAGAACTTTTGCCATCTTTTCATAATCAACCGTTGCTTGCCTGAGTAGAAGAACT
4hb_nogap_D094hb_nogap_D09 CCACCACCCTCAGAGCCGCCAGGGATTTTGGCAAGTGTAGCGGTCACGCCACCACCCTCAGAGCCGCCAGGGATTTTGGCAAGTGTAGCGGTCACG
4hb_nogap_D104hb_nogap_D10 CAAACAAATAAATCCTCATTATCCTGTTATAAATCAAAAGAATAGCCCCAAACAAATAAATCCTCATTATCCTGTTATAAATCAAAAGAATAGCCC
4hb_nogap_D114hb_nogap_D11 GTGTACTGGTAATAAGTTTTCACCAGTGGTGCCTAATGAGTGAGCTAAGTGTACTGGTAATAAGTTTTCACCAGTGGTGCCTAATGAGTGAGCTAA
4hb_nogap_D124hb_nogap_D12 TGAAACATGAAAGTATTAAGGAAACCAGCTGTTGGGAAGGGCGATCGGTGAAACATGAAAGTATTAAGGAAACCAGCTGTTGGGAAGGGCGATCGG
4hb_nogap_D134hb_nogap_D13 GGGTTGATATAAGTATAGCCCGTAACCGAACGCCATCAAAAATAATTCGGGTTGATATAAGTATAGCCCGTAACCGAACGCCATCAAAAATAATTC
4hb_nogap_D144hb_nogap_D14 TCAGAGCCACCACCCTCATTAAAGGGTGTATGATATTCAACCGTTCTATCAGAGCCACCACCCTCATTAAAGGGTGTATGATATTCAACCGTTCTA
4hb_nogap_D154hb_nogap_D15 GTAGCATTCCACAGACAGCCGCGGGAGAAAAAGGTGGCATCAATTCTAGTAGCATTCCACAGACAGCCGCGGGAGAAAAAGGTGGCATCAATTCTA
4hb_nogap_D164hb_nogap_D16 GCTAAACAACTTTCAACAGTAAAGACTTGAACCAGACCGGAAGCAAACGCTAAACAACTTTCAACAGTAAAGACTTGAACCAGACCGGAAGCAAAC
4hb_nogap_D174hb_nogap_D17 AAAAAGGCTCCAAAAGGAGCAACGAGAAGACGATAAAAACCAAAATAGAAAAAGGCTCCAAAAGGAGCAACGAGAAGACGATAAAAACCAAAATAG
4hb_nogap_D184hb_nogap_D18 AATGACAACAACCATCGCCCACAAAGCTGAAACACCAGAACGAGTAGTAATGACAACAACCATCGCCCACAAAGCTGAAACACCAGAACGAGTAGT
4hb_nogap_D194hb_nogap_D19 AGCGAAAGACAGCATCGGAACAGATGAAAGTACAACGGAGATTTGTATAGCGAAAGACAGCATCGGAACAGATGAAAGTACAACGGAGATTTGTAT
4hb_1gap_A014hb_1gap_A01 CTTTCCAGAGCCTAATTTGACGCGAGGAATATCAGAGAGATAACCCCTTTCCAGAGCCTAATTTGACGCGAGGAATATCAGAGAGATAACCC
4hb_1gap_A024hb_1gap_A02 CTTTCCTTATCATTCCAAGAGAACAAGAAGAAAAGTAAGCAGATAGCTTTCCTTATCATTCCAAGAGAACAAGAAGAAAAGTAAGCAGATAG
4hb_1gap_A034hb_1gap_A03 AAATTCTTACCAGTATAAATATATTTTTCCTTATTACGCAGTATGTAAATTCTTACCAGTATAAATATATTTTTCCTTATTACGCAGTATGT
4hb_1gap_A044hb_1gap_A04 TGAGAAGAGTCAATAGTGATTTTTAACTTGTCACAATCAATAGAAATGAGAAGAGTCAATAGTGATTTTTAACTTGTCACAATCAATAGAAA
4hb_1gap_A054hb_1gap_A05 CGGGAGAAACAATAACGGATGTTTGGAAAATTATTCATTAAAGGTGCGGGAGAAACAATAACGGATGTTTGGAAAATTATTCATTAAAGGTG
4hb_1gap_A064hb_1gap_A06 GTATTAAATCCTTTGCCCGTATCATTTAGGCCGGAAACGTCACCAAGTATTAAATCCTTTGCCCGTATCATTTAGGCCGGAAACGTCACCAA
4hb_1gap_A074hb_1gap_A07 CAGCAGAAGATAAAACAGATCTGGCCATCATCGGCATTTTCGGTCACAGCAGAAGATAAAACAGATCTGGCCATCATCGGCATTTTCGGTCA
4hb_1gap_A084hb_1gap_A08 TGGTAATATCCAGAACAATTCATGGAATCAGAGCCGCCACCCTCAGTGGTAATATCCAGAACAATTCATGGAATCAGAGCCGCCACCCTCAG
4hb_1gap_A094hb_1gap_A09 ACCCGCCGCGCTTAATGCGTCGGAACCGGTTGAGGCAGGTCAGACGACCCGCCGCGCTTAATGCGTCGGAACCGGTTGAGGCAGGTCAGACG
4hb_1gap_A104hb_1gap_A10 TGTTCCAGTTTGGAACAAGCAAAGGGCCAGTAAGCGTCATACATGGTGTTCCAGTTTGGAACAAGCAAAGGGCCAGTAAGCGTCATACATGG
4hb_1gap_A114hb_1gap_A11 GCGCTCACTGCCCGCTTTCCTCGAATTGTTAATGCCCCCTGCCTATGCGCTCACTGCCCGCTTTCCTCGAATTGTTAATGCCCCCTGCCTAT
4hb_1gap_A124hb_1gap_A12 TTACGCCAGCTGGCGAAAGACGCCAGGTTTTGCTCAGTACCAGGCGTTACGCCAGCTGGCGAAAGACGCCAGGTTTTGCTCAGTACCAGGCG
4hb_1gap_A134hb_1gap_A13 AGCCAGCTTTCATCAACATAAACAGGACCACCCTCAGAACCGCCACAGCCAGCTTTCATCAACATAAACAGGACCACCCTCAGAACCGCCAC
4hb_1gap_A144hb_1gap_A14 GGAGAGGGTAGCTATTTTTTGAGAGTCCACTGAGTTTCGTCACCAGGGAGAGGGTAGCTATTTTTTGAGAGTCCACTGAGTTTCGTCACCAG
4hb_1gap_A154hb_1gap_A15 AACATCCAATAAATCATACTGATTCCCCAGACGTTAGTAAATGAATAACATCCAATAAATCATACTGATTCCCCAGACGTTAGTAAATGAAT
4hb_1gap_A164hb_1gap_A16 AGAGAGTACCTTTAATTGCCTTAGAGCGCGAATAATAATTTTTTCAAGAGAGTACCTTTAATTGCCTTAGAGCGCGAATAATAATTTTTTCA
4hb_1gap_A174hb_1gap_A17 AGAAGTTTTGCCAGAGGGGTTGAGATTTTTCTTAAACAGCTTGATAAGAAGTTTTGCCAGAGGGGTTGAGATTTTTCTTAAACAGCTTGATA
4hb_1gap_A184hb_1gap_A18 GTTTAATTTCAACTTTAATTGGCTCATGTTAAAGGCCGCTTTTGCGGTTTAATTTCAACTTTAATTGGCTCATGTTAAAGGCCGCTTTTGCG
4hb_1gap_A194hb_1gap_A19 TGTCGAAATCCGCGACCTGTACGTAATCTTTTTCATGTCGAAATCCGCGACCTGTACGTAATCTTTTTCA
4hb_1gap_B014hb_1gap_B01 TAGCGAACCTCCCGACTTGCGCTAACGAATGAAAATAGCGAACCTCCCGACTTGCGCTAACGAATGAAAA
4hb_1gap_B024hb_1gap_B02 CGTTTTTATTTTCATCGTAAATAATCGCAGAACGCGCCTGTTTATCCGTTTTTATTTTCATCGTAAATAATCGCAGAACGCGCCTGTTTATC
4hb_1gap_B034hb_1gap_B03 ATTTCATCTTCTGACCTAAATATGCGTGCATTTTCGAGCCAGTAATATTTCATCTTCTGACCTAAATATGCGTGCATTTTCGAGCCAGTAAT
4hb_1gap_B044hb_1gap_B04 GCTTAGGTTGGGTTATATATAGATTAACAATATATGTGAGTGAATAGCTTAGGTTGGGTTATATATAGATTAACAATATATGTGAGTGAATA
4hb_1gap_B054hb_1gap_B05 CTTCTGAATAATGGAAGGGGTACCTTTAAAAGAAGATGATGAAACACTTCTGAATAATGGAAGGGGTACCTTTAAAAGAAGATGATGAAACA
4hb_1gap_B064hb_1gap_B06 AACAAAGAAACCACCAGAAAATTCGACAATATCTTTAGGAGCACTAAACAAAGAAACCACCAGAAAATTCGACAATATCTTTAGGAGCACTA
4hb_1gap_B074hb_1gap_B07 GATAGAACCCTTCTGACCTCCGAACGAAGCATCACCTTGCTGAACCGATAGAACCCTTCTGACCTCCGAACGAAGCATCACCTTGCTGAACC
4hb_1gap_B084hb_1gap_B08 TACATTTTGACGCTCAATCCTATCGGCAAGAGTCTGTCCATCACGCTACATTTTGACGCTCAATCCTATCGGCAAGAGTCTGTCCATCACGC
4hb_1gap_B094hb_1gap_B09 GGGAGCCCCCGATTTAGAGGCGTAACCGGAGCTAAACAGGAGGCCGGGGAGCCCCCGATTTAGAGGCGTAACCGGAGCTAAACAGGAGGCCG
4hb_1gap_B104hb_1gap_B10 ACCGTCTATCAGGGCGATGTAGGGTTGGCTGGTTTGCCCCAGCAGGACCGTCTATCAGGGCGATGTAGGGTTGGCTGGTTTGCCCCAGCAGG
4hb_1gap_B114hb_1gap_B11 TCATGGTCATAGCTGTTTCCATTAATTGGGCGCCAGGGTGGTTTTTTCATGGTCATAGCTGTTTCCATTAATTGGGCGCCAGGGTGGTTTTT
4hb_1gap_B124hb_1gap_B12 CCCAGTCACGACGTTGTAAGGCCTCTTTTTCCGGCACCGCTTCTGGCCCAGTCACGACGTTGTAAGGCCTCTTTTTCCGGCACCGCTTCTGG
4hb_1gap_B134hb_1gap_B13 GTATAAGCAAATATTTAAACTGGCCTTTCACGTTGGTGTAGATGGGGTATAAGCAAATATTTAAACTGGCCTTTCACGTTGGTGTAGATGGG
4hb_1gap_B144hb_1gap_B14 CAAACAAGAGAATCGATGAATAAATTAGAGTAATGTGTAGGTAAAGCAAACAAGAGAATCGATGAATAAATTAGAGTAATGTGTAGGTAAAG
4hb_1gap_B154hb_1gap_B15 TGCGAACGAGTAGATTTAGTAGTAGTAACATTATGACCCTGTAATATGCGAACGAGTAGATTTAGTAGTAGTAACATTATGACCCTGTAATA
4hb_1gap_B164hb_1gap_B16 TGCTGAATATAATGCTGTAACAGGTCATCAAAAAGATTAAGAGGAATGCTGAATATAATGCTGTAACAGGTCATCAAAAAGATTAAGAGGAA
4hb_1gap_B174hb_1gap_B17 ATACCACATTCAACTAATGAGGCTTTTTCAAATGCTTTAAACAGTTATACCACATTCAACTAATGAGGCTTTTTCAAATGCTTTAAACAGTT
4hb_1gap_B184hb_1gap_B18 CAGTCAGGACGTTGGGAAGTGGGCTTGATATTCATTACCCAAATCACAGTCAGGACGTTGGGAAGTGGGCTTGATATTCATTACCCAAATCA
4hb_1gap_B194hb_1gap_B19 CAACCTAAGCCTGATAGAACTGACCAACTTTGAAACAACCTAAGCCTGATAGAACTGACCAACTTTGAAA
4hb_1gap_B204hb_1gap_B20 CAGACGGTCAATCATAACTAAAGAGCCACTACGAAGGCACAGACGGTCAATCATAACTAAAGAGCCACTACGAAGGCA
4hb_1gap_C014hb_1gap_C01 AGCAGCCTTTACAGAACTGAACATTTGAAGCCTTAAATCAGCAGCCTTTACAGAACTGAACATTTGAAGCCTTAAATC
4hb_1gap_C024hb_1gap_C02 AACAAGAAAAATTATTTATAATTGAGTGAAGGCTTATCCGGTATTCAACAAGAAAAATTATTTATAATTGAGTGAAGGCTTATCCGGTATTC
4hb_1gap_C034hb_1gap_C03 GACAAAAGGTAAAGTAATTCAAAGTTAGTTAAATAAGTACCGCACTGACAAAAGGTAAAGTAATTCAAAGTTAGTTAAATAAGTACCGCACT
4hb_1gap_C044hb_1gap_C04 GTCGCTATTAAATTGAGAAAACGTAGAAGAACGCGAGAAAACTTTTGTCGCTATTAAATTGAGAAAACGTAGAAGAACGCGAGAAAACTTTT
4hb_1gap_C054hb_1gap_C05 TTAATTACATTTAACAATTTATGGTTTAAATAAAGGGTCTGAGAGATTAATTACATTTAACAATTTATGGTTTAAATAAAGGGTCTGAGAGA
4hb_1gap_C064hb_1gap_C06 CCGTCAATAGAAGTTACAATCACCGTCGCAATTCATCAATATAATCCCGTCAATAGAAGTTACAATCACCGTCGCAATTCATCAATATAATC
4hb_1gap_C074hb_1gap_C07 ATCAATATCTGGTCAGTTGCCATCGATGGCTATTAAAAGTTTGAGTATCAATATCTGGTCAGTTGCCATCGATGGCTATTAAAAGTTTGAGT
4hb_1gap_C084hb_1gap_C08 ATACTTCTTTGGCCTGCAACCCTTATTCACGACCAGTAATAAAAGGATACTTCTTTGGCCTGCAACCCTTATTCACGACCAGTAATAAAAGG
4hb_1gap_C094hb_1gap_C09 AGGAACGGTACGCCAGAATCCACCCTCGAAGAAAGGCAACAGGAAAAGGAACGGTACGCCAGAATCCACCCTCGAAGAAAGGCAACAGGAAA
4hb_1gap_C104hb_1gap_C10 GTGGTTCCGAATGCTTTGACCTTGATAGTCGAGGTGCCGTAAAGCAGTGGTTCCGAATGCTTTGACCTTGATAGTCGAGGTGCCGTAAAGCA
4hb_1gap_C114hb_1gap_C11 GGCAACAGCTGATTGCCCTGATGATACACGAGCCGACGTGGACTCCGGCAACAGCTGATTGCCCTGATGATACACGAGCCGACGTGGACTCC
4hb_1gap_C124hb_1gap_C12 GCGCCATTCGCCTGCATTAAACCTATTTCTAGAGGATCCCCGGGTAGCGCCATTCGCCTGCATTAAACCTATTTCTAGAGGATCCCCGGGTA
4hb_1gap_C134hb_1gap_C13 CTGCCAGTTTGAGGGGACGGTGCCGTCTTGTTAAAGCGATTAAGTTCTGCCAGTTTGAGGGGACGGTGCCGTCTTGTTAAAGCGATTAAGTT
4hb_1gap_C144hb_1gap_C14 GGCCGGAGACATCGGATTCGAACCGCCGGTTGATAATCAGAAAAGCGGCCGGAGACATCGGATTCGAACCGCCGGTTGATAATCAGAAAAGC
4hb_1gap_C154hb_1gap_C15 TTATTTCAACGCAAGGATAACTACAACTTTAGCTACTATCAGGTCATTATTTCAACGCAAGGATAACTACAACTTTAGCTACTATCAGGTCA
4hb_1gap_C164hb_1gap_C16 ATCGCGTTTTATTAAGCAAGTATGGGAGGAAGTTTCATTCCATATAATCGCGTTTTATTAAGCAAGTATGGGAGGAAGTTTCATTCCATATA
4hb_1gap_C174hb_1gap_C17 ATAAATCAAAAATCAGGTCAAAATCTCAGCAACACTCATTTTTGCGATAAATCAAAAATCAGGTCAAAATCTCAGCAACACTCATTTTTGCG
4hb_1gap_C184hb_1gap_C18 TTCAGTGAATAATAGCGTCAGTTGCGCATTACAGGTAGAAAGATTCTTCAGTGAATAATAGCGTCAGTTGCGCATTACAGGTAGAAAGATTC
4hb_1gap_C194hb_1gap_C19 TACAGACCAGGCGCATAGGGTCACCCTGACCCCCAATGCGATTTTATACAGACCAGGCGCATAGGGTCACCCTGACCCCCAATGCGATTTTA
4hb_1gap_D014hb_1gap_D01 GAGAATTAGAGAATAACAATTTTATCCTGAATCTTGAGAATTAGAGAATAACAATTTTATCCTGAATCTT
4hb_1gap_D024hb_1gap_D02 CCAATAATAAGAGCAAGAATAGATAAGTTTACGAGCATGTAGAAACCCAATAATAAGAGCAAGAATAGATAAGTTTACGAGCATGTAGAAAC
4hb_1gap_D034hb_1gap_D03 AGGAAACCGAGGAAACGCAAATATAAAACTAGAAAAAGCCTGTTTAAGGAAACCGAGGAAACGCAAATATAAAACTAGAAAAAGCCTGTTTA
4hb_1gap_D044hb_1gap_D04 CATACATAAAGGTGGCAACGCTTCTGTATCCTTGAAAACATAGCGACATACATAAAGGTGGCAACGCTTCTGTATCCTTGAAAACATAGCGA
4hb_1gap_D054hb_1gap_D05 CGCCAAAGACAAAAGGGCGCAAGAAAAACGTCAGATGAATATACAGCGCCAAAGACAAAAGGGCGCAAGAAAAACGTCAGATGAATATACAG
4hb_1gap_D064hb_1gap_D06 CTTGAGCCATTTGGGAATTTAATAGATTTAGAAGTATTAGACTTTACTTGAGCCATTTGGGAATTTAATAGATTTAGAAGTATTAGACTTTA
4hb_1gap_D074hb_1gap_D07 CACCGTAATCAGTAGCGACTATCAAACCCTAAAACATCGCCATTAACACCGTAATCAGTAGCGACTATCAAACCCTAAAACATCGCCATTAA
4hb_1gap_D084hb_1gap_D08 TTGCCATCTTTTCATAATCAACCGTTGCTTGCCTGAGTAGAAGAACTTGCCATCTTTTCATAATCAACCGTTGCTTGCCTGAGTAGAAGAAC
4hb_1gap_D094hb_1gap_D09 CACCACCCTCAGAGCCGCCAGGGATTTTGGCAAGTGTAGCGGTCACCACCACCCTCAGAGCCGCCAGGGATTTTGGCAAGTGTAGCGGTCAC
4hb_1gap_D104hb_1gap_D10 AAACAAATAAATCCTCATTATCCTGTTATAAATCAAAAGAATAGCCAAACAAATAAATCCTCATTATCCTGTTATAAATCAAAAGAATAGCC
4hb_1gap_D114hb_1gap_D11 TGTACTGGTAATAAGTTTTCACCAGTGGTGCCTAATGAGTGAGCTATGTACTGGTAATAAGTTTTCACCAGTGGTGCCTAATGAGTGAGCTA
4hb_1gap_D124hb_1gap_D12 GAAACATGAAAGTATTAAGGAAACCAGCTGTTGGGAAGGGCGATCGGAAACATGAAAGTATTAAGGAAACCAGCTGTTGGGAAGGGCGATCG
4hb_1gap_D134hb_1gap_D13 GGTTGATATAAGTATAGCCCGTAACCGAACGCCATCAAAAATAATTGGTTGATATAAGTATAGCCCGTAACCGAACGCCATCAAAAATAATT
4hb_1gap_D144hb_1gap_D14 CAGAGCCACCACCCTCATTAAAGGGTGTATGATATTCAACCGTTCTCAGAGCCACCACCCTCATTAAAGGGTGTATGATATTCAACCGTTCT
4hb_1gap_D154hb_1gap_D15 TAGCATTCCACAGACAGCCGCGGGAGAAAAAGGTGGCATCAATTCTTAGCATTCCACAGACAGCCGCGGGAGAAAAAGGTGGCATCAATTCT
4hb_1gap_D164hb_1gap_D16 CTAAACAACTTTCAACAGTAAAGACTTGAACCAGACCGGAAGCAAACTAAACAACTTTCAACAGTAAAGACTTGAACCAGACCGGAAGCAAA
4hb_1gap_D174hb_1gap_D17 AAAAGGCTCCAAAAGGAGCAACGAGAAGACGATAAAAACCAAAATAAAAAGGCTCCAAAAGGAGCAACGAGAAGACGATAAAAACCAAAATA
4hb_1gap_D184hb_1gap_D18 ATGACAACAACCATCGCCCACAAAGCTGAAACACCAGAACGAGTAGATGACAACAACCATCGCCCACAAAGCTGAAACACCAGAACGAGTAG
4hb_1gap_D194hb_1gap_D19 GCGAAAGACAGCATCGGAACAGATGAAAGTACAACGGAGATTTGTAGCGAAAGACAGCATCGGAACAGATGAAAGTACAACGGAGATTTGTA
4hb_3gap_A014hb_3gap_A01 TTCCAGAGCCTAATTTGACGCGAGGAATATCAGAGAGATAACTTCCAGAGCCTAATTTGACGCGAGGAATATCAGAGAGATAAC
4hb_3gap_A024hb_3gap_A02 TTCCTTATCATTCCAAGAGAACAAGAAGAAAAGTAAGCAGATTTCCTTATCATTCCAAGAGAACAAGAAGAAAAGTAAGCAGAT
4hb_3gap_A034hb_3gap_A03 ATTCTTACCAGTATAAATATATTTTTCCTTATTACGCAGTATATTCTTACCAGTATAAATATATTTTTCCTTATTACGCAGTAT
4hb_3gap_A044hb_3gap_A04 AGAAGAGTCAATAGTGATTTTTAACTTGTCACAATCAATAGAAGAAGAGTCAATAGTGATTTTTAACTTGTCACAATCAATAGA
4hb_3gap_A054hb_3gap_A05 GGAGAAACAATAACGGATGTTTGGAAAATTATTCATTAAAGGGGAGAAACAATAACGGATGTTTGGAAAATTATTCATTAAAGG
4hb_3gap_A064hb_3gap_A06 ATTAAATCCTTTGCCCGTATCATTTAGGCCGGAAACGTCACCATTAAATCCTTTGCCCGTATCATTTAGGCCGGAAACGTCACC
4hb_3gap_A074hb_3gap_A07 GCAGAAGATAAAACAGATCTGGCCATCATCGGCATTTTCGGTGCAGAAGATAAAACAGATCTGGCCATCATCGGCATTTTCGGT
4hb_3gap_A084hb_3gap_A08 GTAATATCCAGAACAATTCATGGAATCAGAGCCGCCACCCTCGTAATATCCAGAACAATTCATGGAATCAGAGCCGCCACCCTC
4hb_3gap_A094hb_3gap_A09 CCGCCGCGCTTAATGCGTCGGAACCGGTTGAGGCAGGTCAGACCGCCGCGCTTAATGCGTCGGAACCGGTTGAGGCAGGTCAGA
4hb_3gap_A104hb_3gap_A10 TTCCAGTTTGGAACAAGCAAAGGGCCAGTAAGCGTCATACATTTCCAGTTTGGAACAAGCAAAGGGCCAGTAAGCGTCATACAT
4hb_3gap_A114hb_3gap_A11 GCTCACTGCCCGCTTTCCTCGAATTGTTAATGCCCCCTGCCTGCTCACTGCCCGCTTTCCTCGAATTGTTAATGCCCCCTGCCT
4hb_3gap_A124hb_3gap_A12 ACGCCAGCTGGCGAAAGACGCCAGGTTTTGCTCAGTACCAGGACGCCAGCTGGCGAAAGACGCCAGGTTTTGCTCAGTACCAGG
4hb_3gap_A134hb_3gap_A13 CCAGCTTTCATCAACATAAACAGGACCACCCTCAGAACCGCCCCAGCTTTCATCAACATAAACAGGACCACCCTCAGAACCGCC
4hb_3gap_A144hb_3gap_A14 AGAGGGTAGCTATTTTTTGAGAGTCCACTGAGTTTCGTCACCAGAGGGTAGCTATTTTTTGAGAGTCCACTGAGTTTCGTCACC
4hb_3gap_A154hb_3gap_A15 CATCCAATAAATCATACTGATTCCCCAGACGTTAGTAAATGACATCCAATAAATCATACTGATTCCCCAGACGTTAGTAAATGA
4hb_3gap_A164hb_3gap_A16 AGAGTACCTTTAATTGCCTTAGAGCGCGAATAATAATTTTTTAGAGTACCTTTAATTGCCTTAGAGCGCGAATAATAATTTTTT
4hb_3gap_A174hb_3gap_A17 AAGTTTTGCCAGAGGGGTTGAGATTTTTCTTAAACAGCTTGAAAGTTTTGCCAGAGGGGTTGAGATTTTTCTTAAACAGCTTGA
4hb_3gap_A184hb_3gap_A18 TTAATTTCAACTTTAATTGGCTCATGTTAAAGGCCGCTTTTGTTAATTTCAACTTTAATTGGCTCATGTTAAAGGCCGCTTTTG
4hb_3gap_A194hb_3gap_A19 TCGAAATCCGCGACCTGTACGTAATCTTTTTCATCGAAATCCGCGACCTGTACGTAATCTTTTTCA
4hb_3gap_B014hb_3gap_B01 GCGAACCTCCCGACTTGCGCTAACGAATGAAAAGCGAACCTCCCGACTTGCGCTAACGAATGAAAA
4hb_3gap_B024hb_3gap_B02 TTTTTATTTTCATCGTAAATAATCGCAGAACGCGCCTGTTTATTTTTATTTTCATCGTAAATAATCGCAGAACGCGCCTGTTTA
4hb_3gap_B034hb_3gap_B03 TTCATCTTCTGACCTAAATATGCGTGCATTTTCGAGCCAGTATTCATCTTCTGACCTAAATATGCGTGCATTTTCGAGCCAGTA
4hb_3gap_B044hb_3gap_B04 TTAGGTTGGGTTATATATAGATTAACAATATATGTGAGTGAATTAGGTTGGGTTATATATAGATTAACAATATATGTGAGTGAA
4hb_3gap_B054hb_3gap_B05 TCTGAATAATGGAAGGGGTACCTTTAAAAGAAGATGATGAAATCTGAATAATGGAAGGGGTACCTTTAAAAGAAGATGATGAAA
4hb_3gap_B064hb_3gap_B06 CAAAGAAACCACCAGAAAATTCGACAATATCTTTAGGAGCACCAAAGAAACCACCAGAAAATTCGACAATATCTTTAGGAGCAC
4hb_3gap_B074hb_3gap_B07 TAGAACCCTTCTGACCTCCGAACGAAGCATCACCTTGCTGAATAGAACCCTTCTGACCTCCGAACGAAGCATCACCTTGCTGAA
4hb_3gap_B084hb_3gap_B08 CATTTTGACGCTCAATCCTATCGGCAAGAGTCTGTCCATCACCATTTTGACGCTCAATCCTATCGGCAAGAGTCTGTCCATCAC
4hb_3gap_B094hb_3gap_B09 GAGCCCCCGATTTAGAGGCGTAACCGGAGCTAAACAGGAGGCGAGCCCCCGATTTAGAGGCGTAACCGGAGCTAAACAGGAGGC
4hb_3gap_B104hb_3gap_B10 CGTCTATCAGGGCGATGTAGGGTTGGCTGGTTTGCCCCAGCACGTCTATCAGGGCGATGTAGGGTTGGCTGGTTTGCCCCAGCA
4hb_3gap_B114hb_3gap_B11 ATGGTCATAGCTGTTTCCATTAATTGGGCGCCAGGGTGGTTTATGGTCATAGCTGTTTCCATTAATTGGGCGCCAGGGTGGTTT
4hb_3gap_B124hb_3gap_B12 CAGTCACGACGTTGTAAGGCCTCTTTTTCCGGCACCGCTTCTCAGTCACGACGTTGTAAGGCCTCTTTTTCCGGCACCGCTTCT
4hb_3gap_B134hb_3gap_B13 ATAAGCAAATATTTAAACTGGCCTTTCACGTTGGTGTAGATGATAAGCAAATATTTAAACTGGCCTTTCACGTTGGTGTAGATG
4hb_3gap_B144hb_3gap_B14 AACAAGAGAATCGATGAATAAATTAGAGTAATGTGTAGGTAAAACAAGAGAATCGATGAATAAATTAGAGTAATGTGTAGGTAA
4hb_3gap_B154hb_3gap_B15 CGAACGAGTAGATTTAGTAGTAGTAACATTATGACCCTGTAACGAACGAGTAGATTTAGTAGTAGTAACATTATGACCCTGTAA
4hb_3gap_B164hb_3gap_B16 CTGAATATAATGCTGTAACAGGTCATCAAAAAGATTAAGAGGCTGAATATAATGCTGTAACAGGTCATCAAAAAGATTAAGAGG
4hb_3gap_B174hb_3gap_B17 ACCACATTCAACTAATGAGGCTTTTTCAAATGCTTTAAACAGACCACATTCAACTAATGAGGCTTTTTCAAATGCTTTAAACAG
4hb_3gap_B184hb_3gap_B18 GTCAGGACGTTGGGAAGTGGGCTTGATATTCATTACCCAAATGTCAGGACGTTGGGAAGTGGGCTTGATATTCATTACCCAAAT
4hb_3gap_B194hb_3gap_B19 CAACCTAAGCCTGATAGAACTGACCAACTTTGACAACCTAAGCCTGATAGAACTGACCAACTTTGA
4hb_3gap_B204hb_3gap_B20 CAGACGGTCAATCATAACTAAAGAGCCACTACGAAGGCAGACGGTCAATCATAACTAAAGAGCCACTACGAAGG
4hb_3gap_C014hb_3gap_C01 CAGCCTTTACAGAACTGAACATTTGAAGCCTTAAATCCAGCCTTTACAGAACTGAACATTTGAAGCCTTAAATC
4hb_3gap_C024hb_3gap_C02 CAAGAAAAATTATTTATAATTGAGTGAAGGCTTATCCGGTATCAAGAAAAATTATTTATAATTGAGTGAAGGCTTATCCGGTAT
4hb_3gap_C034hb_3gap_C03 CAAAAGGTAAAGTAATTCAAAGTTAGTTAAATAAGTACCGCACAAAAGGTAAAGTAATTCAAAGTTAGTTAAATAAGTACCGCA
4hb_3gap_C044hb_3gap_C04 CGCTATTAAATTGAGAAAACGTAGAAGAACGCGAGAAAACTTCGCTATTAAATTGAGAAAACGTAGAAGAACGCGAGAAAACTT
4hb_3gap_C054hb_3gap_C05 AATTACATTTAACAATTTATGGTTTAAATAAAGGGTCTGAGAAATTACATTTAACAATTTATGGTTTAAATAAAGGGTCTGAGA
4hb_3gap_C064hb_3gap_C06 GTCAATAGAAGTTACAATCACCGTCGCAATTCATCAATATAAGTCAATAGAAGTTACAATCACCGTCGCAATTCATCAATATAA
4hb_3gap_C074hb_3gap_C07 CAATATCTGGTCAGTTGCCATCGATGGCTATTAAAAGTTTGACAATATCTGGTCAGTTGCCATCGATGGCTATTAAAAGTTTGA
4hb_3gap_C084hb_3gap_C08 ACTTCTTTGGCCTGCAACCCTTATTCACGACCAGTAATAAAAACTTCTTTGGCCTGCAACCCTTATTCACGACCAGTAATAAAA
4hb_3gap_C094hb_3gap_C09 GAACGGTACGCCAGAATCCACCCTCGAAGAAAGGCAACAGGAGAACGGTACGCCAGAATCCACCCTCGAAGAAAGGCAACAGGA
4hb_3gap_C104hb_3gap_C10 GGTTCCGAATGCTTTGACCTTGATAGTCGAGGTGCCGTAAAGGGTTCCGAATGCTTTGACCTTGATAGTCGAGGTGCCGTAAAG
4hb_3gap_C114hb_3gap_C11 CAACAGCTGATTGCCCTGATGATACACGAGCCGACGTGGACTCAACAGCTGATTGCCCTGATGATACACGAGCCGACGTGGACT
4hb_3gap_C124hb_3gap_C12 GCCATTCGCCTGCATTAAACCTATTTCTAGAGGATCCCCGGGGCCATTCGCCTGCATTAAACCTATTTCTAGAGGATCCCCGGG
4hb_3gap_C134hb_3gap_C13 GCCAGTTTGAGGGGACGGTGCCGTCTTGTTAAAGCGATTAAGGCCAGTTTGAGGGGACGGTGCCGTCTTGTTAAAGCGATTAAG
4hb_3gap_C144hb_3gap_C14 CCGGAGACATCGGATTCGAACCGCCGGTTGATAATCAGAAAACCGGAGACATCGGATTCGAACCGCCGGTTGATAATCAGAAAA
4hb_3gap_C154hb_3gap_C15 ATTTCAACGCAAGGATAACTACAACTTTAGCTACTATCAGGTATTTCAACGCAAGGATAACTACAACTTTAGCTACTATCAGGT
4hb_3gap_C164hb_3gap_C16 CGCGTTTTATTAAGCAAGTATGGGAGGAAGTTTCATTCCATACGCGTTTTATTAAGCAAGTATGGGAGGAAGTTTCATTCCATA
4hb_3gap_C174hb_3gap_C17 AAATCAAAAATCAGGTCAAAATCTCAGCAACACTCATTTTTGAAATCAAAAATCAGGTCAAAATCTCAGCAACACTCATTTTTG
4hb_3gap_C184hb_3gap_C18 CAGTGAATAATAGCGTCAGTTGCGCATTACAGGTAGAAAGATCAGTGAATAATAGCGTCAGTTGCGCATTACAGGTAGAAAGAT
4hb_3gap_C194hb_3gap_C19 CAGACCAGGCGCATAGGGTCACCCTGACCCCCAATGCGATTTCAGACCAGGCGCATAGGGTCACCCTGACCCCCAATGCGATTT
4hb_3gap_D014hb_3gap_D01 GAGAATTAGAGAATAACAATTTTATCCTGAATCGAGAATTAGAGAATAACAATTTTATCCTGAATC
4hb_3gap_D024hb_3gap_D02 AATAATAAGAGCAAGAATAGATAAGTTTACGAGCATGTAGAAAATAATAAGAGCAAGAATAGATAAGTTTACGAGCATGTAGAA
4hb_3gap_D034hb_3gap_D03 GAAACCGAGGAAACGCAAATATAAAACTAGAAAAAGCCTGTTGAAACCGAGGAAACGCAAATATAAAACTAGAAAAAGCCTGTT
4hb_3gap_D044hb_3gap_D04 TACATAAAGGTGGCAACGCTTCTGTATCCTTGAAAACATAGCTACATAAAGGTGGCAACGCTTCTGTATCCTTGAAAACATAGC
4hb_3gap_D054hb_3gap_D05 CCAAAGACAAAAGGGCGCAAGAAAAACGTCAGATGAATATACCCAAAGACAAAAGGGCGCAAGAAAAACGTCAGATGAATATAC
4hb_3gap_D064hb_3gap_D06 TGAGCCATTTGGGAATTTAATAGATTTAGAAGTATTAGACTTTGAGCCATTTGGGAATTTAATAGATTTAGAAGTATTAGACTT
4hb_3gap_D074hb_3gap_D07 CCGTAATCAGTAGCGACTATCAAACCCTAAAACATCGCCATTCCGTAATCAGTAGCGACTATCAAACCCTAAAACATCGCCATT
4hb_3gap_D084hb_3gap_D08 GCCATCTTTTCATAATCAACCGTTGCTTGCCTGAGTAGAAGAGCCATCTTTTCATAATCAACCGTTGCTTGCCTGAGTAGAAGA
4hb_3gap_D094hb_3gap_D09 CCACCCTCAGAGCCGCCAGGGATTTTGGCAAGTGTAGCGGTCCCACCCTCAGAGCCGCCAGGGATTTTGGCAAGTGTAGCGGTC
4hb_3gap_D104hb_3gap_D10 ACAAATAAATCCTCATTATCCTGTTATAAATCAAAAGAATAGACAAATAAATCCTCATTATCCTGTTATAAATCAAAAGAATAG
4hb_3gap_D114hb_3gap_D11 TACTGGTAATAAGTTTTCACCAGTGGTGCCTAATGAGTGAGCTACTGGTAATAAGTTTTCACCAGTGGTGCCTAATGAGTGAGC
4hb_3gap_D124hb_3gap_D12 AACATGAAAGTATTAAGGAAACCAGCTGTTGGGAAGGGCGATAACATGAAAGTATTAAGGAAACCAGCTGTTGGGAAGGGCGAT
4hb_3gap_D134hb_3gap_D13 TTGATATAAGTATAGCCCGTAACCGAACGCCATCAAAAATAATTGATATAAGTATAGCCCGTAACCGAACGCCATCAAAAATAA
4hb_3gap_D144hb_3gap_D14 GAGCCACCACCCTCATTAAAGGGTGTATGATATTCAACCGTTGAGCCACCACCCTCATTAAAGGGTGTATGATATTCAACCGTT
4hb_3gap_D154hb_3gap_D15 GCATTCCACAGACAGCCGCGGGAGAAAAAGGTGGCATCAATTGCATTCCACAGACAGCCGCGGGAGAAAAAGGTGGCATCAATT
4hb_3gap_D164hb_3gap_D16 AAACAACTTTCAACAGTAAAGACTTGAACCAGACCGGAAGCAAAACAACTTTCAACAGTAAAGACTTGAACCAGACCGGAAGCA
4hb_3gap_D174hb_3gap_D17 AAGGCTCCAAAAGGAGCAACGAGAAGACGATAAAAACCAAAAAAGGCTCCAAAAGGAGCAACGAGAAGACGATAAAAACCAAAA
4hb_3gap_D184hb_3gap_D18 GACAACAACCATCGCCCACAAAGCTGAAACACCAGAACGAGTGACAACAACCATCGCCCACAAAGCTGAAACACCAGAACGAGT
4hb_3gap_D194hb_3gap_D19 GAAAGACAGCATCGGAACAGATGAAAGTACAACGGAGATTTGGAAAGACAGCATCGGAACAGATGAAAGTACAACGGAGATTTG
4hb_5gap_A014hb_5gap_A01 CCAGAGCCTAATTTGACGCGAGGAATATCAGAGAGATACCAGAGCCTAATTTGACGCGAGGAATATCAGAGAGATA
4hb_5gap_A024hb_5gap_A02 CCTTATCATTCCAAGAGAACAAGAAGAAAAGTAAGCAGCCTTATCATTCCAAGAGAACAAGAAGAAAAGTAAGCAG
4hb_5gap_A034hb_5gap_A03 TCTTACCAGTATAAATATATTTTTCCTTATTACGCAGTTCTTACCAGTATAAATATATTTTTCCTTATTACGCAGT
4hb_5gap_A044hb_5gap_A04 AAGAGTCAATAGTGATTTTTAACTTGTCACAATCAATAAAGAGTCAATAGTGATTTTTAACTTGTCACAATCAATA
4hb_5gap_A054hb_5gap_A05 AGAAACAATAACGGATGTTTGGAAAATTATTCATTAAAAGAAACAATAACGGATGTTTGGAAAATTATTCATTAAA
4hb_5gap_A064hb_5gap_A06 TAAATCCTTTGCCCGTATCATTTAGGCCGGAAACGTCATAAATCCTTTGCCCGTATCATTTAGGCCGGAAACGTCA
4hb_5gap_A074hb_5gap_A07 AGAAGATAAAACAGATCTGGCCATCATCGGCATTTTCGAGAAGATAAAACAGATCTGGCCATCATCGGCATTTTCG
4hb_5gap_A084hb_5gap_A08 AATATCCAGAACAATTCATGGAATCAGAGCCGCCACCCAATATCCAGAACAATTCATGGAATCAGAGCCGCCACCC
4hb_5gap_A094hb_5gap_A09 GCCGCGCTTAATGCGTCGGAACCGGTTGAGGCAGGTCAGCCGCGCTTAATGCGTCGGAACCGGTTGAGGCAGGTCA
4hb_5gap_A104hb_5gap_A10 CCAGTTTGGAACAAGCAAAGGGCCAGTAAGCGTCATACCCAGTTTGGAACAAGCAAAGGGCCAGTAAGCGTCATAC
4hb_5gap_A114hb_5gap_A11 TCACTGCCCGCTTTCCTCGAATTGTTAATGCCCCCTGCTCACTGCCCGCTTTCCTCGAATTGTTAATGCCCCCTGC
4hb_5gap_A124hb_5gap_A12 GCCAGCTGGCGAAAGACGCCAGGTTTTGCTCAGTACCAGCCAGCTGGCGAAAGACGCCAGGTTTTGCTCAGTACCA
4hb_5gap_A134hb_5gap_A13 AGCTTTCATCAACATAAACAGGACCACCCTCAGAACCGAGCTTTCATCAACATAAACAGGACCACCCTCAGAACCG
4hb_5gap_A144hb_5gap_A14 AGGGTAGCTATTTTTTGAGAGTCCACTGAGTTTCGTCAAGGGTAGCTATTTTTTGAGAGTCCACTGAGTTTCGTCA
4hb_5gap_A154hb_5gap_A15 TCCAATAAATCATACTGATTCCCCAGACGTTAGTAAATTCCAATAAATCATACTGATTCCCCAGACGTTAGTAAAT
4hb_5gap_A164hb_5gap_A16 AGTACCTTTAATTGCCTTAGAGCGCGAATAATAATTTTAGTACCTTTAATTGCCTTAGAGCGCGAATAATAATTTT
4hb_5gap_A174hb_5gap_A17 GTTTTGCCAGAGGGGTTGAGATTTTTCTTAAACAGCTTGTTTTGCCAGAGGGGTTGAGATTTTTCTTAAACAGCTT
4hb_5gap_A184hb_5gap_A18 AATTTCAACTTTAATTGGCTCATGTTAAAGGCCGCTTTAATTTCAACTTTAATTGGCTCATGTTAAAGGCCGCTTT
4hb_5gap_A194hb_5gap_A19 GAAATCCGCGACCTGTACGTAATCTTTTTCAGAAATCCGCGACCTGTACGTAATCTTTTTCA
4hb_5gap_B014hb_5gap_B01 GAACCTCCCGACTTGCGCTAACGAATGAAAAGAACCTCCCGACTTGCGCTAACGAATGAAAA
4hb_5gap_B024hb_5gap_B02 TTTATTTTCATCGTAAATAATCGCAGAACGCGCCTGTTTTTATTTTCATCGTAAATAATCGCAGAACGCGCCTGTT
4hb_5gap_B034hb_5gap_B03 CATCTTCTGACCTAAATATGCGTGCATTTTCGAGCCAGCATCTTCTGACCTAAATATGCGTGCATTTTCGAGCCAG
4hb_5gap_B044hb_5gap_B04 AGGTTGGGTTATATATAGATTAACAATATATGTGAGTGAGGTTGGGTTATATATAGATTAACAATATATGTGAGTG
4hb_5gap_B054hb_5gap_B05 TGAATAATGGAAGGGGTACCTTTAAAAGAAGATGATGATGAATAATGGAAGGGGTACCTTTAAAAGAAGATGATGA
4hb_5gap_B064hb_5gap_B06 AAGAAACCACCAGAAAATTCGACAATATCTTTAGGAGCAAGAAACCACCAGAAAATTCGACAATATCTTTAGGAGC
4hb_5gap_B074hb_5gap_B07 GAACCCTTCTGACCTCCGAACGAAGCATCACCTTGCTGGAACCCTTCTGACCTCCGAACGAAGCATCACCTTGCTG
4hb_5gap_B084hb_5gap_B08 TTTTGACGCTCAATCCTATCGGCAAGAGTCTGTCCATCTTTTGACGCTCAATCCTATCGGCAAGAGTCTGTCCATC
4hb_5gap_B094hb_5gap_B09 GCCCCCGATTTAGAGGCGTAACCGGAGCTAAACAGGAGGCCCCCGATTTAGAGGCGTAACCGGAGCTAAACAGGAG
4hb_5gap_B104hb_5gap_B10 TCTATCAGGGCGATGTAGGGTTGGCTGGTTTGCCCCAGTCTATCAGGGCGATGTAGGGTTGGCTGGTTTGCCCCAG
4hb_5gap_B114hb_5gap_B11 GGTCATAGCTGTTTCCATTAATTGGGCGCCAGGGTGGTGGTCATAGCTGTTTCCATTAATTGGGCGCCAGGGTGGT
4hb_5gap_B124hb_5gap_B12 GTCACGACGTTGTAAGGCCTCTTTTTCCGGCACCGCTTGTCACGACGTTGTAAGGCCTCTTTTTCCGGCACCGCTT
4hb_5gap_B134hb_5gap_B13 AAGCAAATATTTAAACTGGCCTTTCACGTTGGTGTAGAAAGCAAATATTTAAACTGGCCTTTCACGTTGGTGTAGA
4hb_5gap_B144hb_5gap_B14 CAAGAGAATCGATGAATAAATTAGAGTAATGTGTAGGTCAAGAGAATCGATGAATAAATTAGAGTAATGTGTAGGT
4hb_5gap_B154hb_5gap_B15 AACGAGTAGATTTAGTAGTAGTAACATTATGACCCTGTAACGAGTAGATTTAGTAGTAGTAACATTATGACCCTGT
4hb_5gap_B164hb_5gap_B16 GAATATAATGCTGTAACAGGTCATCAAAAAGATTAAGAGAATATAATGCTGTAACAGGTCATCAAAAAGATTAAGA
4hb_5gap_B174hb_5gap_B17 CACATTCAACTAATGAGGCTTTTTCAAATGCTTTAAACCACATTCAACTAATGAGGCTTTTTCAAATGCTTTAAAC
4hb_5gap_B184hb_5gap_B18 CAGGACGTTGGGAAGTGGGCTTGATATTCATTACCCAACAGGACGTTGGGAAGTGGGCTTGATATTCATTACCCAA
4hb_5gap_B194hb_5gap_B19 CAACCTAAGCCTGATAGAACTGACCAACTTTCAACCTAAGCCTGATAGAACTGACCAACTTT
4hb_5gap_B204hb_5gap_B20 CAGACGGTCAATCATAACTAAAGAGCCACTACGAACAGACGGTCAATCATAACTAAAGAGCCACTACGAA
4hb_5gap_C014hb_5gap_C01 GCCTTTACAGAACTGAACATTTGAAGCCTTAAATCGCCTTTACAGAACTGAACATTTGAAGCCTTAAATC
4hb_5gap_C024hb_5gap_C02 AGAAAAATTATTTATAATTGAGTGAAGGCTTATCCGGTAGAAAAATTATTTATAATTGAGTGAAGGCTTATCCGGT
4hb_5gap_C034hb_5gap_C03 AAAGGTAAAGTAATTCAAAGTTAGTTAAATAAGTACCGAAAGGTAAAGTAATTCAAAGTTAGTTAAATAAGTACCG
4hb_5gap_C044hb_5gap_C04 CTATTAAATTGAGAAAACGTAGAAGAACGCGAGAAAACCTATTAAATTGAGAAAACGTAGAAGAACGCGAGAAAAC
4hb_5gap_C054hb_5gap_C05 TTACATTTAACAATTTATGGTTTAAATAAAGGGTCTGATTACATTTAACAATTTATGGTTTAAATAAAGGGTCTGA
4hb_5gap_C064hb_5gap_C06 CAATAGAAGTTACAATCACCGTCGCAATTCATCAATATCAATAGAAGTTACAATCACCGTCGCAATTCATCAATAT
4hb_5gap_C074hb_5gap_C07 ATATCTGGTCAGTTGCCATCGATGGCTATTAAAAGTTTATATCTGGTCAGTTGCCATCGATGGCTATTAAAAGTTT
4hb_5gap_C084hb_5gap_C08 TTCTTTGGCCTGCAACCCTTATTCACGACCAGTAATAATTCTTTGGCCTGCAACCCTTATTCACGACCAGTAATAA
4hb_5gap_C094hb_5gap_C09 ACGGTACGCCAGAATCCACCCTCGAAGAAAGGCAACAGACGGTACGCCAGAATCCACCCTCGAAGAAAGGCAACAG
4hb_5gap_C104hb_5gap_C10 TTCCGAATGCTTTGACCTTGATAGTCGAGGTGCCGTAATTCCGAATGCTTTGACCTTGATAGTCGAGGTGCCGTAA
4hb_5gap_C114hb_5gap_C11 ACAGCTGATTGCCCTGATGATACACGAGCCGACGTGGAACAGCTGATTGCCCTGATGATACACGAGCCGACGTGGA
4hb_5gap_C124hb_5gap_C12 CATTCGCCTGCATTAAACCTATTTCTAGAGGATCCCCGCATTCGCCTGCATTAAACCTATTTCTAGAGGATCCCCG
4hb_5gap_C134hb_5gap_C13 CAGTTTGAGGGGACGGTGCCGTCTTGTTAAAGCGATTACAGTTTGAGGGGACGGTGCCGTCTTGTTAAAGCGATTA
4hb_5gap_C144hb_5gap_C14 GGAGACATCGGATTCGAACCGCCGGTTGATAATCAGAAGGAGACATCGGATTCGAACCGCCGGTTGATAATCAGAA
4hb_5gap_C154hb_5gap_C15 TTCAACGCAAGGATAACTACAACTTTAGCTACTATCAGTTCAACGCAAGGATAACTACAACTTTAGCTACTATCAG
4hb_5gap_C164hb_5gap_C16 CGTTTTATTAAGCAAGTATGGGAGGAAGTTTCATTCCACGTTTTATTAAGCAAGTATGGGAGGAAGTTTCATTCCA
4hb_5gap_C174hb_5gap_C17 ATCAAAAATCAGGTCAAAATCTCAGCAACACTCATTTTATCAAAAATCAGGTCAAAATCTCAGCAACACTCATTTT
4hb_5gap_C184hb_5gap_C18 GTGAATAATAGCGTCAGTTGCGCATTACAGGTAGAAAGGTGAATAATAGCGTCAGTTGCGCATTACAGGTAGAAAG
4hb_5gap_C194hb_5gap_C19 GACCAGGCGCATAGGGTCACCCTGACCCCCAATGCGATGACCAGGCGCATAGGGTCACCCTGACCCCCAATGCGAT
4hb_5gap_D014hb_5gap_D01 GAGAATTAGAGAATAACAATTTTATCCTGAAGAGAATTAGAGAATAACAATTTTATCCTGAA
4hb_5gap_D024hb_5gap_D02 TAATAAGAGCAAGAATAGATAAGTTTACGAGCATGTAGTAATAAGAGCAAGAATAGATAAGTTTACGAGCATGTAG
4hb_5gap_D034hb_5gap_D03 AACCGAGGAAACGCAAATATAAAACTAGAAAAAGCCTGAACCGAGGAAACGCAAATATAAAACTAGAAAAAGCCTG
4hb_5gap_D044hb_5gap_D04 CATAAAGGTGGCAACGCTTCTGTATCCTTGAAAACATACATAAAGGTGGCAACGCTTCTGTATCCTTGAAAACATA
4hb_5gap_D054hb_5gap_D05 AAAGACAAAAGGGCGCAAGAAAAACGTCAGATGAATATAAAGACAAAAGGGCGCAAGAAAAACGTCAGATGAATAT
4hb_5gap_D064hb_5gap_D06 AGCCATTTGGGAATTTAATAGATTTAGAAGTATTAGACAGCCATTTGGGAATTTAATAGATTTAGAAGTATTAGAC
4hb_5gap_D074hb_5gap_D07 GTAATCAGTAGCGACTATCAAACCCTAAAACATCGCCAGTAATCAGTAGCGACTATCAAACCCTAAAACATCGCCA
4hb_5gap_D084hb_5gap_D08 CATCTTTTCATAATCAACCGTTGCTTGCCTGAGTAGAACATCTTTTCATAATCAACCGTTGCTTGCCTGAGTAGAA
4hb_5gap_D094hb_5gap_D09 ACCCTCAGAGCCGCCAGGGATTTTGGCAAGTGTAGCGGACCCTCAGAGCCGCCAGGGATTTTGGCAAGTGTAGCGG
4hb_5gap_D104hb_5gap_D10 AAATAAATCCTCATTATCCTGTTATAAATCAAAAGAATAAATAAATCCTCATTATCCTGTTATAAATCAAAAGAAT
4hb_5gap_D114hb_5gap_D11 CTGGTAATAAGTTTTCACCAGTGGTGCCTAATGAGTGACTGGTAATAAGTTTTCACCAGTGGTGCCTAATGAGTGA
4hb_5gap_D124hb_5gap_D12 CATGAAAGTATTAAGGAAACCAGCTGTTGGGAAGGGCGCATGAAAGTATTAAGGAAACCAGCTGTTGGGAAGGGCG
4hb_5gap_D134hb_5gap_D13 GATATAAGTATAGCCCGTAACCGAACGCCATCAAAAATGATATAAGTATAGCCCGTAACCGAACGCCATCAAAAAT
4hb_5gap_D144hb_5gap_D14 GCCACCACCCTCATTAAAGGGTGTATGATATTCAACCGGCCACCACCCTCATTAAAGGGTGTATGATATTCAACCG
4hb_5gap_D154hb_5gap_D15 ATTCCACAGACAGCCGCGGGAGAAAAAGGTGGCATCAAATTCCACAGACAGCCGCGGGAGAAAAAGGTGGCATCAA
4hb_5gap_D164hb_5gap_D16 ACAACTTTCAACAGTAAAGACTTGAACCAGACCGGAAGACAACTTTCAACAGTAAAGACTTGAACCAGACCGGAAG
4hb_5gap_D174hb_5gap_D17 GGCTCCAAAAGGAGCAACGAGAAGACGATAAAAACCAAGGCTCCAAAAGGAGCAACGAGAAGACGATAAAAACCAA
4hb_5gap_D184hb_5gap_D18 CAACAACCATCGCCCACAAAGCTGAAACACCAGAACGACAACAACCATCGCCCACAAAGCTGAAACACCAGAACGA
4hb_5gap_D194hb_5gap_D19 AAGACAGCATCGGAACAGATGAAAGTACAACGGAGATTAAGACAGCATCGGAACAGATGAAAGTACAACGGAGATT
6HB design6HB design
NameName Sequence (5'→3')Sequence (5'→3')
6hb_0016hb_001 GCTTGACTCACCGCCGAAAATCCTGTTTAGTTTGGCCGTCTAGCTTGACTCACCGCCGAAAATCCTGTTTAGTTTGGCCGTCTA
6hb_0026hb_002 AACGAGTATATATTCAGAAGCAAAAAAACATTATGTTTTTAGAACGAGTATATATTCAGAAGCAAAAAAACATTATGTTTTTAG
6hb_0036hb_003 GTGAAGTTTCAAAAACCATAAATCAAAAAGACTTCCCAACAGGTGAAGTTTCAAAAACCATAAATCAAAAAGACTTCCCAACAG
6hb_0046hb_004 GCTGAACTCACCACCAGCAGAAGATAAATAAAGCAGCAAATCGCTGAACTCACCACCAGCAGAAGATAAATAAAGCAGCAAATC
6hb_0056hb_005 GAGTAGACGAGAAGTGTTTTTATAATCAAACATCACAATATTGAGTAGACGAGAAGTGTTTTTATAATCAAACATCACAATATT
6hb_0066hb_006 CAACACTATAACAACATTATTACAGGTAAGGCATAAATAGCGCAACACTATAACAACATTATTACAGGTAAGGCATAAATAGCG
6hb_0076hb_007 GGGGCGCTAAATCAAAGCTAAATCGGTTGTACCAGGCATTAAGGGGCGCTAAATCAAAGCTAAATCGGTTGTACCAGGCATTAA
6hb_0086hb_008 CCGAACTCAAAGTACAACGGAGATTTGTCAATCATCCAGGCGCCGAACTCAAAGTACAACGGAGATTTGTCAATCATCCAGGCG
6hb_0096hb_009 ACCGATAAAATAATTTTTTCACGTTGAATTAAACAACCGATAACCGATAAAATAATTTTTTCACGTTGAATTAAACAACCGATA
6hb_0106hb_010 TCAGGAGACCCTCAAGAGAAGGATTAGGGTGTATCCCGCCACTCAGGAGACCCTCAAGAGAAGGATTAGGGTGTATCCCGCCAC
6hb_0116hb_011 CCCTCAGATTAGCGTTTGCCATCTTTTCCCTCAGATTGACAGCCCTCAGATTAGCGTTTGCCATCTTTTCCCTCAGATTGACAG
6hb_0126hb_012 CAATCAACCAAGACTCCTTATTACGCAGAGTTTATGGGCGACCAATCAACCAAGACTCCTTATTACGCAGAGTTTATGGGCGAC
6hb_0136hb_013 TTTGATATTAGAGAAGAGGAAGCCCGAAATCAGGTTGTGTAGTTTGATATTAGAGAAGAGGAAGCCCGAAATCAGGTTGTGTAG
6hb_0146hb_014 TTTTTGTGTTTTTATCCTGAATCTTACCAAATAAGAATAACATTTTTGTGTTTTTATCCTGAATCTTACCAAATAAGAATAACA
6hb_0156hb_015 ATAGATATACAGTAATAAGAGAATATAACCTGTTTCGAGCATATAGATATACAGTAATAAGAGAATATAACCTGTTTCGAGCAT
6hb_0166hb_016 ATATAACGCAAACATAGCGATAGCTTAGGCTTAGGAGAACGCATATAACGCAAACATAGCGATAGCTTAGGCTTAGGAGAACGC
6hb_0176hb_017 GTAGATTGATTCATCAATATAATCCTGAAATAAAGCTTTTACGTAGATTGATTCATCAATATAATCCTGAAATAAAGCTTTTAC
6hb_0186hb_018 GTCAGTAGCCAGCAATTGAGGAAGGTTACTGGGGTGCGTAAGGTCAGTAGCCAGCAATTGAGGAAGGTTACTGGGGTGCGTAAG
6hb_0196hb_019 GGCAGATCTCAAATATCAAACGCTCAATCGTCTAAAAATACCGGCAGATCTCAAATATCAAACGCTCAATCGTCTAAAAATACC
6hb_0206hb_020 TAAAAGAAATACTTCAACAGGAAAAACGGCTGCATCGAGCACTAAAAGAAATACTTCAACAGGAAAAACGGCTGCATCGAGCAC
6hb_0216hb_021 GCGGTCAAGAACTCAAACTAAAGGAGCGGGCGCAAGGAAGGGGCGGTCAAGAACTCAAACTAAAGGAGCGGGCGCAAGGAAGGG
6hb_0226hb_022 TCAGGGCAAGTTTTGCCGGCGAACGTGGCGGGCAAGTTCCGATCAGGGCAAGTTTTGCCGGCGAACGTGGCGGGCAAGTTCCGA
6hb_0236hb_023 ATAAATAATAATGCTGTAGAGACTGGATAGCGTCATAATAGTATAAATAATAATGCTGTAGAGACTGGATAGCGTCATAATAGT
6hb_0246hb_024 AGAATTAGCAATAAAGCCTCATTGCGGGATTTCAAAGAATTAGCAATAAAGCCTCATTGCGGGATTTCAA
6hb_0256hb_025 TTGAGATATAACGCAAGAAGTTTTGCCAAGCTGATTTAATCATTGAGATATAACGCAAGAAGTTTTGCCAAGCTGATTTAATCA
6hb_0266hb_026 TCAGTGAATCATAACCCTCCATTACCCAAATCAGCACAAGAATCAGTGAATCATAACCCTCCATTACCCAAATCAGCACAAGAA
6hb_0276hb_027 AATTGTGCCGGAACCCTTCATCAAGAGTAACAAGAGTAATGCAATTGTGCCGGAACCCTTCATCAAGAGTAACAAGAGTAATGC
6hb_0286hb_028 AGGGTAGGACCAACTTTGATCACCCTCAGCAGCTGCGCTTTTAGGGTAGGACCAACTTTGATCACCCTCAGCAGCTGCGCTTTT
6hb_0296hb_029 AGGCTCCCTTGCTTGGCTTGCAGGGAGTCAGGAAGACGTTAGAGGCTCCCTTGCTTGGCTTGCAGGGAGTCAGGAAGACGTTAG
6hb_0306hb_030 AAACTACGTTGCGCCGACAATGTACCGTAACACCCAGCCCAAAAACTACGTTGCGCCGACAATGTACCGTAACACCCAGCCCAA
6hb_0316hb_031 CATCCAAGAGCTGAGTTTGACCATTAGAATAAAAAACCCTGTCATCCAAGAGCTGAGTTTGACCATTAGAATAAAAAACCCTGT
6hb_0326hb_032 GCTCAGTTATAAGTCCCTCATTTTCAGGATTTTTTTCAGTGCGCTCAGTTATAAGTCCCTCATTTTCAGGATTTTTTTCAGTGC
6hb_0336hb_033 TGAATTTGTTTAGTACCGCCCTCATTAAAGCCACCTCACAAATGAATTTGTTTAGTACCGCCCTCATTAAAGCCACCTCACAAA
6hb_0346hb_034 CGGAACCCGCCACCTCAGACGATTGGCCGAGTAACTCGATAGCGGAACCCGCCACCTCAGACGATTGGCCGAGTAACTCGATAG
6hb_0356hb_035 TTTGGGAAGCCGCCACCAGAAGGTGAATTATCAGCCGGAAATTTTGGGAAGCCGCCACCAGAAGGTGAATTATCAGCCGGAAAT
6hb_0366hb_036 TAGAAAAACGCAAAGGGAGGGAAGGTAATCGTAACGCCCTTTTAGAAAAACGCAAAGGGAGGGAAGGTAATCGTAACGCCCTTT
6hb_0376hb_037 AGATAACTAGAAAATTCATAAGTCAGAGGGTAAGTCTGAACAAGATAACTAGAAAATTCATAAGTCAGAGGGTAAGTCTGAACA
6hb_0386hb_038 TCTTTCCCCATATTCGCATTAGACGGGAGCTTCTGGGTATTCTCTTTCCCCATATTCGCATTAGACGGGAGCTTCTGGGTATTC
6hb_0396hb_039 GCAAGCCTTAACGTCAAAATATTAAACCAAGTACGTCATTCCGCAAGCCTTAACGTCAAAATATTAAACCAAGTACGTCATTCC
6hb_0406hb_040 GTAAAGTGTTCAGCATAATCGGCTGTCTTCGCTATTTCTTACGTAAAGTGTTCAGCATAATCGGCTGTCTTCGCTATTTCTTAC
6hb_0416hb_041 AAGGCGTAGTCCTGAACAATTAATGGTTTGAAAAAATCTTCTAAGGCGTAGTCCTGAACAATTAATGGTTTGAAAAAATCTTCT
6hb_0426hb_042 AAGAGTCAGACTACAAATATATTTTAGTTGTAAAACCTTTTTAAGAGTCAGACTACAAATATATTTTAGTTGTAAAACCTTTTT
6hb_0436hb_043 TACCTGATATATGTAAATGAAAATCGCGCAGAGAATTGAATATACCTGATATATGTAAATGAAAATCGCGCAGAGAATTGAATA
6hb_0446hb_044 CTTCTGAATTATTTTAACGGATTCGCCTATGGTCATAATTTTCTTCTGAATTATTTTAACGGATTCGCCTATGGTCATAATTTT
6hb_0456hb_045 TACATTTTTCAGGTTTAACAACAACTAATAGATCATATCTTTTACATTTTTCAGGTTTAACAACAACTAATAGATCATATCTTT
6hb_0466hb_046 GGGAGCTGTGCTTTAACCTGTCGTGCCACTCATGGTTAACCGGGGAGCTGTGCTTTAACCTGTCGTGCCACTCATGGTTAACCG
6hb_0476hb_047 AGCCCGAAAAATCCTTTCACCAGTGAGACGAGAAACCATCACAGCCCGAAAAATCCTTTCACCAGTGAGACGAGAAACCATCAC
6hb_0486hb_048 GTCCACTCAGCAGGCTGGCCCTGAGAGAGCCCCCGGCACTAAGTCCACTCAGCAGGCTGGCCCTGAGAGAGCCCCCGGCACTAA
6hb_0496hb_049 GCTCATTTTACCTTTATTCAACCGTTCTGAGGGGGACTAATGGCTCATTTTACCTTTATTCAACCGTTCTGAGGGGGACTAATG
6hb_0506hb_050 GCAAAAGAAGGCACGAGAGTCTGGAGCAAATCTTGTCCATGTGCAAAAGAAGGCACGAGAGTCTGGAGCAAATCTTGTCCATGT
6hb_0516hb_051 CAACTTTATTTTCTAAAAGCCCCAAAAATAAAGGCTATCGGTCAACTTTATTTTCTAAAAGCCCCAAAAATAAAGGCTATCGGT
6hb_0526hb_052 GCCCCCTAACAGTGTGTTAAATCAGCTCGATAGCAGTCGAGAGCCCCCTAACAGTGTGTTAAATCAGCTCGATAGCAGTCGAGA
6hb_0536hb_053 TTGCCTTGTAATCACATTAAATGTGAGCTTGATATGCCTCCCTTGCCTTGTAATCACATTAAATGTGAGCTTGATATGCCTCCC
6hb_0546hb_054 TACCAGAAAGTAAGTGTAGATGGGCGCAATATTGAAACATATTACCAGAAAGTAAGTGTAGATGGGCGCAATATTGAAACATAT
6hb_0556hb_055 ACTTGCGGCGAGGCAGCTTTCCGGCACCGAATTAATACAAAAACTTGCGGCGAGGCAGCTTTCCGGCACCGAATTAATACAAAA
6hb_0566hb_056 AATTGAGAAGCCAACGGTGCGGGCCTCTTTCCTTAACAATAAAATTGAGAAGCCAACGGTGCGGGCCTCTTTCCTTAACAATAA
6hb_0576hb_057 AGTGAATAACAGTACCCAGTCACGACGTTAATTTCATCATAGAGTGAATAACAGTACCCAGTCACGACGTTAATTTCATCATAG
6hb_0586hb_058 CAAAGAATGAGTAATCGAATTCGTAATCGATTGCTCCTACCACAAAGAATGAGTAATCGAATTCGTAATCGATTGCTCCTACCA
6hb_0596hb_059 GCGTTTTGAGAATGGGGTGAGAAAGGCCGCAACTACTTAATTGCGTTTTGAGAATGGGGTGAGAAAGGCCGCAACTACTTAATT
6hb_0606hb_060 TATTAGTGGCACAGATAAAGTGTAAAGCTCTAAAAGTGCCACTATTAGTGGCACAGATAAAGTGTAAAGCTCTAAAAGTGCCAC
6hb_0616hb_061 TTTGCCCATTAAAGCCAACGTCAAAGGGCCGTAAAATTTAGATTTGCCCATTAAAGCCAACGTCAAAGGGCCGTAAAATTTAGA
6hb_0626hb_062 AATACTTGAGCATATACAGGCAAGGCAACTATATTCGCAAATAATACTTGAGCATATACAGGCAAGGCAACTATATTCGCAAAT
6hb_0636hb_063 CTGACTAAAGATTAGTACCTTTACTAATAGTAGTACGGATTGCTGACTAAAGATTAGTACCTTTACTAATAGTAGTACGGATTG
6hb_0646hb_064 GAGTGAGGAAAGGAGCAAATGAAAAATCACAGAGGACATCGCGAGTGAGGAAAGGAGCAAATGAAAAATCACAGAGGACATCGC
6hb_0656hb_065 CTTTCCATGACCCTCAATCAATATCTGGGCGCTCAGGACATTCTTTCCATGACCCTCAATCAATATCTGGGCGCTCAGGACATT
6hb_0666hb_066 TCGGCCAGCCATTGCTTTGATTAGTAATGTGAGGCGACAGGATCGGCCAGCCATTGCTTTGATTAGTAATGTGAGGCGACAGGA
6hb_0676hb_067 AGGGTGGCGATCGGCCTTGCTGGTAATAGCGTATTGCTTAATAGGGTGGCGATCGGCCTTGCTGGTAATAGCGTATTGCTTAAT
6hb_0686hb_068 TTGCCCTGGGGAAATTGGGGTCGAGGTGCGAAAAAAACAAGATTGCCCTGGGGAAATTGGGGTCGAGGTGCGAAAAAAACAAGA
6hb_0696hb_069 CACCATCTTCTCAACATGTTTTAAATATGGAGACAACAGTTCCACCATCTTCTCAACATGTTTTAAATATGGAGACAACAGTTC
6hb_0706hb_070 TGCCGGATTTGCAACAAAAGGAATTACGGAAAGATTCTACGTTGCCGGATTTGCAACAAAAGGAATTACGGAAAGATTCTACGT
6hb_0716hb_071 CGCAAGGTACATTTTTCATTTCGCAAGGTACATTTTTCATTT
6hb_0726hb_072 TCAGGTCTTGTTTACCAGACGACGATAAATCTACAGAACGAGTCAGGTCTTGTTTACCAGACGACGATAAATCTACAGAACGAG
6hb_0736hb_073 TGAACGGTGGCTGAGAGGCGCAGACGGTATCATCGCCAGCGATGAACGGTGGCTGAGAGGCGCAGACGGTATCATCGCCAGCGA
6hb_0746hb_074 CGGTTGACGAAGAGGACAGATGAACGGTAATCATAAGACTTTCGGTTGACGAAGAGGACAGATGAACGGTAATCATAAGACTTT
6hb_0756hb_075 AAGCAAATCGCTGATCGAGGTGAATTTCAATCTCCAGGAACAAAGCAAATCGCTGATCGAGGTGAATTTCAATCTCCAGGAACA
6hb_0766hb_076 TCGCATTCCATGACAACAACCATCGCCCTATTTTGTCATAGTTCGCATTCCATGACAACAACCATCGCCCTATTTTGTCATAGT
6hb_0776hb_077 AGGAACGGCCACCAATAGCCCGGAATAGATTAGCGCATGAAAAGGAACGGCCACCAATAGCCCGGAATAGATTAGCGCATGAAA
6hb_0786hb_078 CCAGCTTATCACCCTCAGAACCGCCACCTGGCCTTTTTGATGCCAGCTTATCACCCTCAGAACCGCCACCTGGCCTTTTTGATG
6hb_0796hb_079 CGGATTCAGGCAGGCTCAGAACCGCCACATAATCAGGCATTTCGGATTCAGGCAGGCTCAGAACCGCCACATAATCAGGCATTT
6hb_0806hb_080 ATAGGTCTAAACCACCACCAGAGCCGCCTTGACCGCCATTACATAGGTCTAAACCACCACCAGAGCCGCCTTGACCGCCATTAC
6hb_0816hb_081 CTGCCAGCGATTGAGACACCACGGAATATATGTTAGAATACCCTGCCAGCGATTGAGACACCACGGAATATATGTTAGAATACC
6hb_0826hb_082 ATCGCACCAATGGTTTACCAGCGCCAAATCGGCCTAAGAGCAATCGCACCAATGGTTTACCAGCGCCAAATCGGCCTAAGAGCA
6hb_0836hb_083 AAACCAGAGGGAAGATTTATCCCAATCCAACGCTAAGTTGCTAAACCAGAGGGAAGATTTATCCCAATCCAACGCTAAGTTGCT
6hb_0846hb_084 TTGGGAAGGATGAAAATAGCAGCCTTTAAGGCTGCCCGCGCCTTGGGAAGGATGAAAATAGCAGCCTTTAAGGCTGCCCGCGCC
6hb_0856hb_085 GCTGGCGCCAATCATAATGCAGAACGCGAGTACCGTAATTTAGCTGGCGCCAATCATAATGCAGAACGCGAGTACCGTAATTTA
6hb_0866hb_086 AACGCCAATGAAAAATAATATCCCATCCCGATTAATTACTAGAACGCCAATGAAAAATAATATCCCATCCCGATTAATTACTAG
6hb_0876hb_087 CAGTGCCCTTTTTCCTTTTTAACCTCCGATTAAGAAATTAATCAGTGCCCTTTTTCCTTTTTAACCTCCGATTAAGAAATTAAT
6hb_0886hb_088 CCCGGGTACCTGATGCAAATCCAATCGCGACTCTAAGAAAACCCCGGGTACCTGATGCAAATCCAATCGCGACTCTAAGAAAAC
6hb_0896hb_089 TTCCTGTGAAACAAGCACGTAAAACAGATTGTTTGTATTCCTTTCCTGTGAAACAAGCACGTAAAACAGATTGTTTGTATTCCT
6hb_0906hb_090 TACGAGCCTGTCAGATGAATATACAGTAAATTCCAACAATTCTACGAGCCTGTCAGATGAATATACAGTAAATTCCAACAATTC
6hb_nogap_A016hb_nogap_A01 CCGGATAATTGCCTCAACCTAAACGAGAAACACCAAAGGCTACCGGATAATTGCCTCAACCTAAACGAGAAACACCAAAGGCTA
6hb_nogap_A026hb_nogap_A02 CAAATAATCATCAAGTAGCGACATCATACATGGCTCCTGTAGCAAATAATCATCAAGTAGCGACATCATACATGGCTCCTGTAG
6hb_nogap_A036hb_nogap_A03 AAGAACGGGGCGATCGCTCAACATAGGAATCATTAGCAACTGAAGAACGGGGCGATCGCTCAACATAGGAATCATTAGCAACTG
6hb_nogap_A046hb_nogap_A04 AGGAGCACGGAAGCACAATATTTTAGACTTTACAACACAACAAGGAGCACGGAAGCACAATATTTTAGACTTTACAACACAACA
6hb_nogap_A056hb_nogap_A05 CATTAAAACAGAGAACATTAATTGCGTTTCAGTTGTCACCTTCATTAAAACAGAGAACATTAATTGCGTTTCAGTTGTCACCTT
6hb_nogap_A066hb_nogap_A06 TTATACCGGAAGTTAAAACTAGCATGTCGTACAGAAAGGGAATTATACCGGAAGTTAAAACTAGCATGTCGTACAGAAAGGGAA
6hb_nogap_A076hb_nogap_A07 TCGGTCAAAGGCCGGAACAAACGGCGGAGCCAGCAGCCACCATCGGTCAAAGGCCGGAACAAACGGCGGAGCCAGCAGCCACCA
6hb_nogap_A086hb_nogap_A08 GGCAGAGCTGTTTAGATGTGCTGCAAGGTAATTTAATCAACAGGCAGAGCTGTTTAGATGTGCTGCAAGGTAATTTAATCAACA
6hb_nogap_A096hb_nogap_A09 AGAAAACAATTCGAGCTTCCATTGAATCCCCCTTAAATCGTCAGAAAACAATTCGAGCTTCCATTGAATCCCCCTTAAATCGTC
6hb_nogap_A106hb_nogap_A10 GCGCCGCGCCAGAATCCTGCTGCGCGTAACCACCAAAGTGTAGCGCCGCGCCAGAATCCTGCTGCGCGTAACCACCAAAGTGTA
6hb_nogap_A116hb_nogap_A11 TAGCGTAGAATTGCGAATACGCCTGTAGCATTCACCCAGTACTAGCGTAGAATTGCGAATACGCCTGTAGCATTCACCCAGTAC
6hb_nogap_A126hb_nogap_A12 AGAAACAACTGGCATGATTACAAGAATTGAGTTAAATCAGAGAGAAACAACTGGCATGATTACAAGAATTGAGTTAAATCAGAG
6hb_nogap_A136hb_nogap_A13 AAAATTATAGAATCCTTGAAAAAGAAGATGATGTTTTTCAATAAAATTATAGAATCCTTGAAAAAGAAGATGATGTTTTTCAAT
6hb_nogap_B016hb_nogap_B01 AAGAAAGTTTTTCTCTTATAAATCACACCCGCCGCGGGCGCCAAGAAAGTTTTTCTCTTATAAATCACACCCGCCGCGGGCGCC
6hb_nogap_B026hb_nogap_B02 TATTCGGTATTTAAAAAGTTTTGTCGTCAATAGAAAAAAAAATATTCGGTATTTAAAAAGTTTTGTCGTCAATAGAAAAAAAAA
6hb_nogap_B036hb_nogap_B03 CCCTGAATCCAGCCGTTTTAGCGAAGCCCAATAATCAGGAAGCCCTGAATCCAGCCGTTTTAGCGAAGCCCAATAATCAGGAAG
6hb_nogap_B046hb_nogap_B04 GAGAAAAAAGCTTGTTAACAATTTCATTCGCTATTCGCTGAGGAGAAAAAAGCTTGTTAACAATTTCATTCGCTATTCGCTGAG
6hb_nogap_B056hb_nogap_B05 CCAAATCGATGGCCTTGAGTGTTGTTCCGATGGTGCAGCTGACCAAATCGATGGCCTTGAGTGTTGTTCCGATGGTGCAGCTGA
6hb_nogap_B066hb_nogap_B06 TATCAAAATAATGGGAAGGAGCGGAATTACGTTATTAGCTGTTATCAAAATAATGGGAAGGAGCGGAATTACGTTATTAGCTGT
6hb_nogap_B076hb_nogap_B07 GTATAACAAACAGGCATCACGCAGAAATGGATTATTCAGAGCGTATAACAAACAGGCATCACGCAGAAATGGATTATTCAGAGC
6hb_nogap_B086hb_nogap_B08 TAGTAAAACGAACTAACGGAAGGCTTGCCCTGAACTGCTCATTAGTAAAACGAACTAACGGAAGGCTTGCCCTGAACTGCTCAT
6hb_nogap_B096hb_nogap_B09 TAAATGACAACAGTGCCTTTAATGAAAGACAGCATTGCTAAATAAATGACAACAGTGCCTTTAATGAAAGACAGCATTGCTAAA
6hb_nogap_B106hb_nogap_B10 ATACAGGGAGGCTGAGACTCGTTCCAGTAAGCGGACAGTCTCATACAGGGAGGCTGAGACTCGTTCCAGTAAGCGGACAGTCTC
6hb_nogap_B116hb_nogap_B11 TTAAGAAAGGAAACATAAAGGTGCCGTCACCGACTACAAAGTTTAAGAAAGGAAACATAAAGGTGCCGTCACCGACTACAAAGT
6hb_nogap_B126hb_nogap_B12 CAATAGCACCCAGCTACAATTTTATTTTCATCGGTAGAACAACAATAGCACCCAGCTACAATTTTATTTTCATCGGTAGAACAA
6hb_nogap_B136hb_nogap_B13 TAATGGAAACCTTGAATTTATCATACCGACCGTGTATATGTGTAATGGAAACCTTGAATTTATCATACCGACCGTGTATATGTG
6hb_nogap_B146hb_nogap_B14 GTAAAGATTCATTCATTTTTGCGGATGGGCAAACTAAATATCGTAAAGATTCATTCATTTTTGCGGATGGGCAAACTAAATATC
6hb_nogap_C016hb_nogap_C01 CCTCAGACCATCAATGGTAATAAGTTTTTCTGAAAGGGTTTTCCTCAGACCATCAATGGTAATAAGTTTTTCTGAAAGGGTTTT
6hb_nogap_C026hb_nogap_C02 ATTCAACTTTGAGGAGCAATAGCTATCTAATAACGGCAAACGATTCAACTTTGAGGAGCAATAGCTATCTAATAACGGCAAACG
6hb_nogap_C036hb_nogap_C03 TAAAAACGCAAAGCTCAGATATAGAAGGCAAGATTACGAGCGTAAAAACGCAAAGCTCAGATATAGAAGGCAAGATTACGAGCG
6hb_nogap_C046hb_nogap_C04 GTAGAAAAAAGGGGGTATCATATGCGTTCAACATGACAAAAGGTAGAAAAAAGGGGGTATCATATGCGTTCAACATGACAAAAG
6hb_nogap_C056hb_nogap_C05 GCTGAATTTAAAGCGAACCAGACCGGAACTTAGAGAAGTACGGCTGAATTTAAAGCGAACCAGACCGGAACTTAGAGAAGTACG
6hb_nogap_C066hb_nogap_C06 CAGATACTTAGGAATCAGGACGTTGGGATTCAACTAAATTAACAGATACTTAGGAATCAGGACGTTGGGATTCAACTAAATTAA
6hb_nogap_C076hb_nogap_C07 TACTTAGTCGAAATTAAAACACTCATCTAAAATACGAATCGATACTTAGTCGAAATTAAAACACTCATCTAAAATACGAATCGA
6hb_nogap_C086hb_nogap_C08 TCAGAGCAGAGCCAAGACTGTAGCGCGTGAAACCAAACCCGTTCAGAGCAGAGCCAAGACTGTAGCGCGTGAAACCAAACCCGT
6hb_nogap_C096hb_nogap_C09 GTCTGAGAATAGTGCTTCTGTAAATCGTTGAATTACGACGGCGTCTGAGAATAGTGCTTCTGTAAATCGTTGAATTACGACGGC
6hb_nogap_C106hb_nogap_C10 GCTGAGATTAACACGCGCGAACTGATAGCCTGAAAGCCTAATGCTGAGATTAACACGCGCGAACTGATAGCCTGAAAGCCTAAT
6hb_nogap_C116hb_nogap_C11 CATCAAATTATAGTTTAAATGCAATGCCTTCCCAATGCTCCTCATCAAATTATAGTTTAAATGCAATGCCTTCCCAATGCTCCT
6hb_nogap_C126hb_nogap_C12 AATCGGCGATAGGGCACTACGTGTAGGGCGCTGGCAAAGAATAATCGGCGATAGGGCACTACGTGTAGGGCGCTGGCAAAGAAT
6hb_nogap_C136hb_nogap_C13 CTTGAGTGCCTATTGGATAAGTGTGAGTTTCGTCAAGTTAATCTTGAGTGCCTATTGGATAAGTGTGAGTTTCGTCAAGTTAAT
6hb_nogap_C146hb_nogap_C14 AATACGTCTTTAATCGCCTGCAATAGAGCCGTCAAGAATGGCAATACGTCTTTAATCGCCTGCAATAGAGCCGTCAAGAATGGC
6hb_nogap_C156hb_nogap_C15 AACCCTCAGATTTAAAAGGTGGCATCAATTCTAATTTCTGCGAACCCTCAGATTTAAAAGGTGGCATCAATTCTAATTTCTGCG
6hb_nogap_D016hb_nogap_D01 GAGGTTGTCCGTGGGAAACGTCACCAATTTTCATCAAATCACGAGGTTGTCCGTGGGAAACGTCACCAATTTTCATCAAATCAC
6hb_nogap_D026hb_nogap_D02 ATCGGGAGTGAAATAATCCTTTGCCCGAATCATCAGATTATAATCGGGAGTGAAATAATCCTTTGCCCGAATCATCAGATTATA
6hb_nogap_D036hb_nogap_D03 TTGTAGCGTCTGTCAGGCCGATTAAAGGGCTTTGATAATGAATTGTAGCGTCTGTCAGGCCGATTAAAGGGCTTTGATAATGAA
6hb_nogap_D046hb_nogap_D04 TTATCAGAAAAGGATTCAGCGGAGTGAGTTTCCAGATTGTATTTATCAGAAAAGGATTCAGCGGAGTGAGTTTCCAGATTGTAT
6hb_nogap_D056hb_nogap_D05 CTGGCCAAATACCGAACGAACCAGTCACACGACAATTACATTCTGGCCAAATACCGAACGAACCAGTCACACGACAATTACATT
6hb_nogap_D066hb_nogap_D06 TTGTGAAATACCAGTACCACATTCCAATACTGCGGAGAACTGTTGTGAAATACCAGTACCACATTCCAATACTGCGGAGAACTG
6hb_nogap_D076hb_nogap_D07 CACTACGAATACACCCGCGACCTACGTAACAAAGCGAAAGAGCACTACGAATACACCCGCGACCTACGTAACAAAGCGAAAGAG
6hb_nogap_D086hb_nogap_D08 TTCATGAAAGCGCGAAACAACGGCTACAGAGGCTTCGGAACGTTCATGAAAGCGCGAAACAACGGCTACAGAGGCTTCGGAACG
6hb_nogap_D096hb_nogap_D09 CAGCACCTAGCGTCCCACCGGAAGAATGGAAAGCGATCAAGTCAGCACCTAGCGTCCCACCGGAAGAATGGAAAGCGATCAAGT
6hb_nogap_D106hb_nogap_D10 TAAGAACGGAGGTTAATTTGCCATTGAGCGCTAATCCTCCCGTAAGAACGGAGGTTAATTTGCCATTGAGCGCTAATCCTCCCG
6hb_nogap_D116hb_nogap_D11 CAGTATAAATCGCCTCCAGACGACCGCACTCATCGAGGGCTTCAGTATAAATCGCCTCCAGACGACCGCACTCATCGAGGGCTT
6hb_nogap_D126hb_nogap_D12 AAAAAGCGCATTTTCGAGCAATAAGAATAAACAATGATAAATAAAAAGCGCATTTTCGAGCAATAAGAATAAACAATGATAAAT
6hb_nogap_D136hb_nogap_D13 AAAAGTTACCACCAAAGGGTTAGGCGAATTATTCATGCGGAAAAAAGTTACCACCAAAGGGTTAGGCGAATTATTCATGCGGAA
6hb_nogap_E016hb_nogap_E01 AACAGTTCTAACTCTAGAACCCTTCTGACCCTAAATGAGGCGAACAGTTCTAACTCTAGAACCCTTCTGACCCTAAATGAGGCG
6hb_nogap_E026hb_nogap_E02 ACCGCCAACGCGCGCGCGTACTATGGTTGATTTTACACCGAGACCGCCAACGCGCGCGCGTACTATGGTTGATTTTACACCGAG
6hb_nogap_E036hb_nogap_E03 AGAGGCTGAGGGTATGAGATGGTTTAATAGAAAAATCATCAGAGAGGCTGAGGGTATGAGATGGTTTAATAGAAAAATCATCAG
6hb_nogap_E046hb_nogap_E04 CATAGGCTAATCGTTCCATTAAACGGGTTTGACCCCCTGATACATAGGCTAATCGTTCCATTAAACGGGTTTGACCCCCTGATA
6hb_nogap_E056hb_nogap_E05 TAGGAACAAATTTTCCCGTATAACACAGACAGCCCTTAAAATTAGGAACAAATTTTCCCGTATAACACAGACAGCCCTTAAAAT
6hb_nogap_E066hb_nogap_E06 CCAAGTTACCGAGCCATTATCATAAACAAACATCAGAGGATCCCAAGTTACCGAGCCATTATCATAAACAAACATCAGAGGATC
6hb_nogap_E076hb_nogap_E07 TAAACAGAGAGCCTTTGAAGCCTTAAATCTTATCCGTGCCGGTAAACAGAGAGCCTTTGAAGCCTTAAATCTTATCCGTGCCGG
6hb_nogap_E086hb_nogap_E08 ACAACATAATTCTGATATTTAACAACGCATACAAATACGCCAACAACATAATTCTGATATTTAACAACGCATACAAATACGCCA
6hb_nogap_E096hb_nogap_E09 GTCAGGAAGAGGTCCATATAACAGTTGATGAGTAACTTTACCGTCAGGAAGAGGTCCATATAACAGTTGATGAGTAACTTTACC
6hb_nogap_E106hb_nogap_E10 GTATTAAAGTGTACAAATAATTCGCGTCCTCAGAAACCGTACGTATTAAAGTGTACAAATAATTCGCGTCCTCAGAAACCGTAC
6hb_nogap_E116hb_nogap_E11 CAAAAGAATGAAATGGACGACGACAGTAGACAAAATTTGTCACAAAAGAATGAAATGGACGACGACAGTAGACAAAATTTGTCA
6hb_nogap_E126hb_nogap_E12 CATTAGCTAGCCCCCTTATTAGAGCCAGCAAAAGATGAGCCACATTAGCTAGCCCCCTTATTAGAGCCAGCAAAAGATGAGCCA
6hb_nogap_E136hb_nogap_E13 GACAACTAGATGATGGCAAGGATTTAGAAGTATTTTAGATAAGACAACTAGATGATGGCAAGGATTTAGAAGTATTTTAGATAA
6hb_nogap_F016hb_nogap_F01 TACATTTGTCGGGACCTCGTTAGCAGTAATAAAAGCTGCCCGTACATTTGTCGGGACCTCGTTAGCAGTAATAAAAGCTGCCCG
6hb_nogap_F026hb_nogap_F02 AAAATGTAATATGAATGCGATTTCAAATGCTTTAAGTCAAATAAAATGTAATATGAATGCGATTTCAAATGCTTTAAGTCAAAT
6hb_nogap_F036hb_nogap_F03 GCGGGATTAATCAGGTATGGGATTTTGAGGACTAATGTACCCGCGGGATTAATCAGGTATGGGATTTTGAGGACTAATGTACCC
6hb_nogap_F046hb_nogap_F04 TATTCATACGTTGGCAGATAGCCTCACCAGTAGCATAATGGGTATTCATACGTTGGCAGATAGCCTCACCAGTAGCATAATGGG
6hb_nogap_F056hb_nogap_F05 GACCTAAGGGTTTTCATAAATCACCGGAATCATAAGTTGGGTGACCTAAGGGTTTTCATAAATCACCGGAATCATAAGTTGGGT
6hb_nogap_F066hb_nogap_F06 GGGTTGAACCAGGCTCGGAACCTATTATAACGGGGAACCAATGGGTTGAACCAGGCTCGGAACCTATTATAACGGGGAACCAAT
6hb_nogap_F076hb_nogap_F07 AAAAGAATACATACCGAGGAAACGCAATTACCGAACGTGCATAAAAGAATACATACCGAGGAAACGCAATTACCGAACGTGCAT
6hb_nogap_F086hb_nogap_F08 ACGGTACTACAGGGGGGAGAGGCGGTTTTCCAGAACTTGCCTACGGTACTACAGGGGGGAGAGGCGGTTTTCCAGAACTTGCCT
6hb_nogap_F096hb_nogap_F09 TAATAAATTGGGCTGCTATTTTTGAGAGAAACCAAGTAAGAGTAATAAATTGGGCTGCTATTTTTGAGAGAAACCAAGTAAGAG
6hb_nogap_F106hb_nogap_F10 ACTAAAGACGATCTATTGTAAACGTTAAACGCATAGCTTGATACTAAAGACGATCTATTGTAAACGTTAAACGCATAGCTTGAT
6hb_nogap_F116hb_nogap_F11 ATTTTGCAAGCAAAGCCATTCGCCATTCCAGAGAGAAACGATATTTTGCAAGCAAAGCCATTCGCCATTCCAGAGAGAAACGAT
6hb_nogap_F126hb_nogap_F12 TTTCCCTATTACATCATGCCTGCAGGTCAAGACAATTGGGTTTTTCCCTATTACATCATGCCTGCAGGTCAAGACAATTGGGTT
6hb_nogap_F136hb_nogap_F13 GATTATCCGTATTATGTTATCCGCTCACACAGTACAAATTGCGATTATCCGTATTATGTTATCCGCTCACACAGTACAAATTGC
6hb_1gap_A016hb_1gap_A01 CGGATAATTGCCTCAACCTAAACGAGAAACACCAAAGGCTCGGATAATTGCCTCAACCTAAACGAGAAACACCAAAGGCT
6hb_1gap_A026hb_1gap_A02 AAATAATCATCAAGTAGCGACATCATACATGGCTCCTGTAAAATAATCATCAAGTAGCGACATCATACATGGCTCCTGTA
6hb_1gap_A036hb_1gap_A03 AGAACGGGGCGATCGCTCAACATAGGAATCATTAGCAACTAGAACGGGGCGATCGCTCAACATAGGAATCATTAGCAACT
6hb_1gap_A046hb_1gap_A04 GGAGCACGGAAGCACAATATTTTAGACTTTACAACACAACGGAGCACGGAAGCACAATATTTTAGACTTTACAACACAAC
6hb_1gap_A056hb_1gap_A05 ATTAAAACAGAGAACATTAATTGCGTTTCAGTTGTCACCTATTAAAACAGAGAACATTAATTGCGTTTCAGTTGTCACCT
6hb_1gap_A066hb_1gap_A06 TATACCGGAAGTTAAAACTAGCATGTCGTACAGAAAGGGATATACCGGAAGTTAAAACTAGCATGTCGTACAGAAAGGGA
6hb_1gap_A076hb_1gap_A07 CGGTCAAAGGCCGGAACAAACGGCGGAGCCAGCAGCCACCCGGTCAAAGGCCGGAACAAACGGCGGAGCCAGCAGCCACC
6hb_1gap_A086hb_1gap_A08 GCAGAGCTGTTTAGATGTGCTGCAAGGTAATTTAATCAACGCAGAGCTGTTTAGATGTGCTGCAAGGTAATTTAATCAAC
6hb_1gap_A096hb_1gap_A09 GAAAACAATTCGAGCTTCCATTGAATCCCCCTTAAATCGTGAAAACAATTCGAGCTTCCATTGAATCCCCCTTAAATCGT
6hb_1gap_A106hb_1gap_A10 CGCCGCGCCAGAATCCTGCTGCGCGTAACCACCAAAGTGTCGCCGCGCCAGAATCCTGCTGCGCGTAACCACCAAAGTGT
6hb_1gap_A116hb_1gap_A11 AGCGTAGAATTGCGAATACGCCTGTAGCATTCACCCAGTAAGCGTAGAATTGCGAATACGCCTGTAGCATTCACCCAGTA
6hb_1gap_A126hb_1gap_A12 GAAACAACTGGCATGATTACAAGAATTGAGTTAAATCAGAGAAACAACTGGCATGATTACAAGAATTGAGTTAAATCAGA
6hb_1gap_A136hb_1gap_A13 AAATTATAGAATCCTTGAAAAAGAAGATGATGTTTTTCAAAAATTATAGAATCCTTGAAAAAGAAGATGATGTTTTTCAA
6hb_1gap2_A016hb_1gap2_A01 TTGATATTAGAGAAGAGGAAGCCCGAAATCAGGTTGTGTATTGATATTAGAGAAGAGGAAGCCCGAAATCAGGTTGTGTA
6hb_1gap2_A026hb_1gap2_A02 AGTAGACGAGAAGTGTTTTTATAATCAAACATCACAATATAGTAGACGAGAAGTGTTTTTATAATCAAACATCACAATAT
6hb_1gap2_A036hb_1gap2_A03 CGAACTCAAAGTACAACGGAGATTTGTCAATCATCCAGGCCGAACTCAAAGTACAACGGAGATTTGTCAATCATCCAGGC
6hb_1gap2_A046hb_1gap2_A04 TAGATATACAGTAATAAGAGAATATAACCTGTTTCGAGCATAGATATACAGTAATAAGAGAATATAACCTGTTTCGAGCA
6hb_1gap2_A056hb_1gap2_A05 TAGATTGATTCATCAATATAATCCTGAAATAAAGCTTTTATAGATTGATTCATCAATATAATCCTGAAATAAAGCTTTTA
6hb_1gap2_A066hb_1gap2_A06 GCAGATCTCAAATATCAAACGCTCAATCGTCTAAAAATACGCAGATCTCAAATATCAAACGCTCAATCGTCTAAAAATAC
6hb_1gap2_A076hb_1gap2_A07 AACTACGTTGCGCCGACAATGTACCGTAACACCCAGCCCAAACTACGTTGCGCCGACAATGTACCGTAACACCCAGCCCA
6hb_1gap2_A086hb_1gap2_A08 TTGGGAAGCCGCCACCAGAAGGTGAATTATCAGCCGGAAATTGGGAAGCCGCCACCAGAAGGTGAATTATCAGCCGGAAA
6hb_1gap2_A096hb_1gap2_A09 CTTTCCCCATATTCGCATTAGACGGGAGCTTCTGGGTATTCTTTCCCCATATTCGCATTAGACGGGAGCTTCTGGGTATT
6hb_1gap2_A106hb_1gap2_A10 CAAAAGAAGGCACGAGAGTCTGGAGCAAATCTTGTCCATGCAAAAGAAGGCACGAGAGTCTGGAGCAAATCTTGTCCATG
6hb_1gap2_A116hb_1gap2_A11 GGAACGGCCACCAATAGCCCGGAATAGATTAGCGCATGAAGGAACGGCCACCAATAGCCCGGAATAGATTAGCGCATGAA
6hb_1gap2_A126hb_1gap2_A12 TCGCACCAATGGTTTACCAGCGCCAAATCGGCCTAAGAGCTCGCACCAATGGTTTACCAGCGCCAAATCGGCCTAAGAGC
6hb_1gap2_A136hb_1gap2_A13 AGTGCCCTTTTTCCTTTTTAACCTCCGATTAAGAAATTAAAGTGCCCTTTTTCCTTTTTAACCTCCGATTAAGAAATTAA
6hb_1gap_B016hb_1gap_B01 AGAAAGTTTTTCTCTTATAAATCACACCCGCCGCGGGCGCAGAAAGTTTTTCTCTTATAAATCACACCCGCCGCGGGCGC
6hb_1gap_B026hb_1gap_B02 ATTCGGTATTTAAAAAGTTTTGTCGTCAATAGAAAAAAAAATTCGGTATTTAAAAAGTTTTGTCGTCAATAGAAAAAAAA
6hb_1gap_B036hb_1gap_B03 CCTGAATCCAGCCGTTTTAGCGAAGCCCAATAATCAGGAACCTGAATCCAGCCGTTTTAGCGAAGCCCAATAATCAGGAA
6hb_1gap_B046hb_1gap_B04 AGAAAAAAGCTTGTTAACAATTTCATTCGCTATTCGCTGAAGAAAAAAGCTTGTTAACAATTTCATTCGCTATTCGCTGA
6hb_1gap_B056hb_1gap_B05 CAAATCGATGGCCTTGAGTGTTGTTCCGATGGTGCAGCTGCAAATCGATGGCCTTGAGTGTTGTTCCGATGGTGCAGCTG
6hb_1gap_B066hb_1gap_B06 ATCAAAATAATGGGAAGGAGCGGAATTACGTTATTAGCTGATCAAAATAATGGGAAGGAGCGGAATTACGTTATTAGCTG
6hb_1gap_B076hb_1gap_B07 TATAACAAACAGGCATCACGCAGAAATGGATTATTCAGAGTATAACAAACAGGCATCACGCAGAAATGGATTATTCAGAG
6hb_1gap_B086hb_1gap_B08 AGTAAAACGAACTAACGGAAGGCTTGCCCTGAACTGCTCAAGTAAAACGAACTAACGGAAGGCTTGCCCTGAACTGCTCA
6hb_1gap_B096hb_1gap_B09 AAATGACAACAGTGCCTTTAATGAAAGACAGCATTGCTAAAAATGACAACAGTGCCTTTAATGAAAGACAGCATTGCTAA
6hb_1gap_B106hb_1gap_B10 TACAGGGAGGCTGAGACTCGTTCCAGTAAGCGGACAGTCTTACAGGGAGGCTGAGACTCGTTCCAGTAAGCGGACAGTCT
6hb_1gap_B116hb_1gap_B11 TAAGAAAGGAAACATAAAGGTGCCGTCACCGACTACAAAGTAAGAAAGGAAACATAAAGGTGCCGTCACCGACTACAAAG
6hb_1gap_B126hb_1gap_B12 AATAGCACCCAGCTACAATTTTATTTTCATCGGTAGAACAAATAGCACCCAGCTACAATTTTATTTTCATCGGTAGAACA
6hb_1gap_B136hb_1gap_B13 AATGGAAACCTTGAATTTATCATACCGACCGTGTATATGTAATGGAAACCTTGAATTTATCATACCGACCGTGTATATGT
6hb_1gap_B146hb_1gap_B14 TAAAGATTCATTCATTTTTGCGGATGGGCAAACTAAATATTAAAGATTCATTCATTTTTGCGGATGGGCAAACTAAATAT
6hb_1gap2_B016hb_1gap2_B01 AACACTATAACAACATTATTACAGGTAAGGCATAAATAGCAACACTATAACAACATTATTACAGGTAAGGCATAAATAGC
6hb_1gap2_B026hb_1gap2_B02 TCAGTAGCCAGCAATTGAGGAAGGTTACTGGGGTGCGTAATCAGTAGCCAGCAATTGAGGAAGGTTACTGGGGTGCGTAA
6hb_1gap2_B036hb_1gap2_B03 GGCTCCCTTGCTTGGCTTGCAGGGAGTCAGGAAGACGTTAGGCTCCCTTGCTTGGCTTGCAGGGAGTCAGGAAGACGTTA
6hb_1gap2_B046hb_1gap2_B04 AGAAAAACGCAAAGGGAGGGAAGGTAATCGTAACGCCCTTAGAAAAACGCAAAGGGAGGGAAGGTAATCGTAACGCCCTT
6hb_1gap2_B056hb_1gap2_B05 CAAGCCTTAACGTCAAAATATTAAACCAAGTACGTCATTCCAAGCCTTAACGTCAAAATATTAAACCAAGTACGTCATTC
6hb_1gap2_B066hb_1gap2_B06 AGGCGTAGTCCTGAACAATTAATGGTTTGAAAAAATCTTCAGGCGTAGTCCTGAACAATTAATGGTTTGAAAAAATCTTC
6hb_1gap2_B076hb_1gap2_B07 GCCCGAAAAATCCTTTCACCAGTGAGACGAGAAACCATCAGCCCGAAAAATCCTTTCACCAGTGAGACGAGAAACCATCA
6hb_1gap2_B086hb_1gap2_B08 TGCCTTGTAATCACATTAAATGTGAGCTTGATATGCCTCCTGCCTTGTAATCACATTAAATGTGAGCTTGATATGCCTCC
6hb_1gap2_B096hb_1gap2_B09 CGTTTTGAGAATGGGGTGAGAAAGGCCGCAACTACTTAATCGTTTTGAGAATGGGGTGAGAAAGGCCGCAACTACTTAAT
6hb_1gap2_B106hb_1gap2_B10 TGCCCTGGGGAAATTGGGGTCGAGGTGCGAAAAAAACAAGATGCCCTGGGGAAATTGGGGTCGAGGTGCGAAAAAAACAAGA
6hb_1gap2_B116hb_1gap2_B11 GGTTGACGAAGAGGACAGATGAACGGTAATCATAAGACTTGGTTGACGAAGAGGACAGATGAACGGTAATCATAAGACTT
6hb_1gap2_B126hb_1gap2_B12 TAGGTCTAAACCACCACCAGAGCCGCCTTGACCGCCATTATAGGTCTAAACCACCACCAGAGCCGCCTTGACCGCCATTA
6hb_1gap2_B136hb_1gap2_B13 CCGGGTACCTGATGCAAATCCAATCGCGACTCTAAGAAAACCGGGTACCTGATGCAAATCCAATCGCGACTCTAAGAAAA
6hb_1gap2_B146hb_1gap2_B14 ACGAGCCTGTCAGATGAATATACAGTAAATTCCAACAATTACGAGCCTGTCAGATGAATATACAGTAAATTCCAACAATT
6hb_1gap_C016hb_1gap_C01 CTCAGACCATCAATGGTAATAAGTTTTTCTGAAAGGGTTTCTCAGACCATCAATGGTAATAAGTTTTTCTGAAAGGGTTT
6hb_1gap_C026hb_1gap_C02 TTCAACTTTGAGGAGCAATAGCTATCTAATAACGGCAAACTTCAACTTTGAGGAGCAATAGCTATCTAATAACGGCAAAC
6hb_1gap_C036hb_1gap_C03 AAAAACGCAAAGCTCAGATATAGAAGGCAAGATTACGAGCAAAAACGCAAAGCTCAGATATAGAAGGCAAGATTACGAGC
6hb_1gap_C046hb_1gap_C04 TAGAAAAAAGGGGGTATCATATGCGTTCAACATGACAAAATAGAAAAAAGGGGGTATCATATGCGTTCAACATGACAAAA
6hb_1gap_C056hb_1gap_C05 CTGAATTTAAAGCGAACCAGACCGGAACTTAGAGAAGTACCTGAATTTAAAGCGAACCAGACCGGAACTTAGAGAAGTAC
6hb_1gap_C066hb_1gap_C06 AGATACTTAGGAATCAGGACGTTGGGATTCAACTAAATTAAGATACTTAGGAATCAGGACGTTGGGATTCAACTAAATTA
6hb_1gap_C076hb_1gap_C07 ACTTAGTCGAAATTAAAACACTCATCTAAAATACGAATCGACTTAGTCGAAATTAAAACACTCATCTAAAATACGAATCG
6hb_1gap_C086hb_1gap_C08 CAGAGCAGAGCCAAGACTGTAGCGCGTGAAACCAAACCCGCAGAGCAGAGCCAAGACTGTAGCGCGTGAAACCAAACCCG
6hb_1gap_C096hb_1gap_C09 TCTGAGAATAGTGCTTCTGTAAATCGTTGAATTACGACGGTCTGAGAATAGTGCTTCTGTAAATCGTTGAATTACGACGG
6hb_1gap_C106hb_1gap_C10 CTGAGATTAACACGCGCGAACTGATAGCCTGAAAGCCTAACTGAGATTAACACGCGCGAACTGATAGCCTGAAAGCCTAA
6hb_1gap_C116hb_1gap_C11 ATCAAATTATAGTTTAAATGCAATGCCTTCCCAATGCTCCATCAAATTATAGTTTAAATGCAATGCCTTCCCAATGCTCC
6hb_1gap_C126hb_1gap_C12 ATCGGCGATAGGGCACTACGTGTAGGGCGCTGGCAAAGAAATCGGCGATAGGGCACTACGTGTAGGGCGCTGGCAAAGAA
6hb_1gap_C136hb_1gap_C13 TTGAGTGCCTATTGGATAAGTGTGAGTTTCGTCAAGTTAATTGAGTGCCTATTGGATAAGTGTGAGTTTCGTCAAGTTAA
6hb_1gap_C146hb_1gap_C14 ATACGTCTTTAATCGCCTGCAATAGAGCCGTCAAGAATGGATACGTCTTTAATCGCCTGCAATAGAGCCGTCAAGAATGG
6hb_1gap_C156hb_1gap_C15 ACCCTCAGATTTAAAAGGTGGCATCAATTCTAATTTCTGCACCCTCAGATTTAAAAGGTGGCATCAATTCTAATTTCTGC
6hb_1gap2_C016hb_1gap2_C01 TGAAGTTTCAAAAACCATAAATCAAAAAGACTTCCCAACATGAAGTTTCAAAAACCATAAATCAAAAAGACTTCCCAACA
6hb_1gap2_C026hb_1gap2_C02 CCGATAAAATAATTTTTTCACGTTGAATTAAACAACCGATCCGATAAAATAATTTTTTCACGTTGAATTAAACAACCGAT
6hb_1gap2_C036hb_1gap2_C03 TTTTGTGTTTTTATCCTGAATCTTACCAAATAAGAATAACTTTTGTGTTTTTATCCTGAATCTTACCAAATAAGAATAAC
6hb_1gap2_C046hb_1gap2_C04 TATAACGCAAACATAGCGATAGCTTAGGCTTAGGAGAACGTATAACGCAAACATAGCGATAGCTTAGGCTTAGGAGAACG
6hb_1gap2_C056hb_1gap2_C05 TCAGGGCAAGTTTTGCCGGCGAACGTGGCGGGCAAGTTCCGTCAGGGCAAGTTTTGCCGGCGAACGTGGCGGGCAAGTTCCG
6hb_1gap2_C066hb_1gap2_C06 GAATTTGTTTAGTACCGCCCTCATTAAAGCCACCTCACAAGAATTTGTTTAGTACCGCCCTCATTAAAGCCACCTCACAA
6hb_1gap2_C076hb_1gap2_C07 GATAACTAGAAAATTCATAAGTCAGAGGGTAAGTCTGAACGATAACTAGAAAATTCATAAGTCAGAGGGTAAGTCTGAAC
6hb_1gap2_C086hb_1gap2_C08 GTGAATAACAGTACCCAGTCACGACGTTAATTTCATCATAGTGAATAACAGTACCCAGTCACGACGTTAATTTCATCATA
6hb_1gap2_C096hb_1gap2_C09 ATTAGTGGCACAGATAAAGTGTAAAGCTCTAAAAGTGCCAATTAGTGGCACAGATAAAGTGTAAAGCTCTAAAAGTGCCA
6hb_1gap2_C106hb_1gap2_C10 TTTCCATGACCCTCAATCAATATCTGGGCGCTCAGGACATTTTCCATGACCCTCAATCAATATCTGGGCGCTCAGGACAT
6hb_1gap2_C116hb_1gap2_C11 CGGCCAGCCATTGCTTTGATTAGTAATGTGAGGCGACAGGCGGCCAGCCATTGCTTTGATTAGTAATGTGAGGCGACAGG
6hb_1gap2_C126hb_1gap2_C12 CAGGTCTTGTTTACCAGACGACGATAAATCTACAGAACGACAGGTCTTGTTTACCAGACGACGATAAATCTACAGAACGA
6hb_1gap2_C136hb_1gap2_C13 GAACGGTGGCTGAGAGGCGCAGACGGTATCATCGCCAGCGGAACGGTGGCTGAGAGGCGCAGACGGTATCATCGCCAGCG
6hb_1gap2_C146hb_1gap2_C14 GGATTCAGGCAGGCTCAGAACCGCCACATAATCAGGCATTGGATTCAGGCAGGCTCAGAACCGCCACATAATCAGGCATT
6hb_1gap_D016hb_1gap_D01 AGGTTGTCCGTGGGAAACGTCACCAATTTTCATCAAATCAAGGTTGTCCGTGGGAAACGTCACCAATTTTCATCAAATCA
6hb_1gap_D026hb_1gap_D02 TCGGGAGTGAAATAATCCTTTGCCCGAATCATCAGATTATTCGGGAGTGAAATAATCCTTTGCCCGAATCATCAGATTAT
6hb_1gap_D036hb_1gap_D03 TGTAGCGTCTGTCAGGCCGATTAAAGGGCTTTGATAATGATGTAGCGTCTGTCAGGCCGATTAAAGGGCTTTGATAATGA
6hb_1gap_D046hb_1gap_D04 TATCAGAAAAGGATTCAGCGGAGTGAGTTTCCAGATTGTATATCAGAAAAGGATTCAGCGGAGTGAGTTTCCAGATTGTA
6hb_1gap_D056hb_1gap_D05 TGGCCAAATACCGAACGAACCAGTCACACGACAATTACATTGGCCAAATACCGAACGAACCAGTCACACGACAATTACAT
6hb_1gap_D066hb_1gap_D06 TGTGAAATACCAGTACCACATTCCAATACTGCGGAGAACTTGTGAAATACCAGTACCACATTCCAATACTGCGGAGAACT
6hb_1gap_D076hb_1gap_D07 ACTACGAATACACCCGCGACCTACGTAACAAAGCGAAAGAACTACGAATACACCCGCGACCTACGTAACAAAGCGAAAGA
6hb_1gap_D086hb_1gap_D08 TCATGAAAGCGCGAAACAACGGCTACAGAGGCTTCGGAACTCATGAAAGCGCGAAACAACGGCTACAGAGGCTTCGGAAC
6hb_1gap_D096hb_1gap_D09 AGCACCTAGCGTCCCACCGGAAGAATGGAAAGCGATCAAGAGCACCTAGCGTCCCACCGGAAGAATGGAAAGCGATCAAG
6hb_1gap_D106hb_1gap_D10 AAGAACGGAGGTTAATTTGCCATTGAGCGCTAATCCTCCCAAGAACGGAGGTTAATTTGCCATTGAGCGCTAATCCTCCC
6hb_1gap_D116hb_1gap_D11 AGTATAAATCGCCTCCAGACGACCGCACTCATCGAGGGCTAGTATAAATCGCCTCCAGACGACCGCACTCATCGAGGGCT
6hb_1gap_D126hb_1gap_D12 AAAAGCGCATTTTCGAGCAATAAGAATAAACAATGATAAAAAAAGCGCATTTTCGAGCAATAAGAATAAACAATGATAAA
6hb_1gap_D136hb_1gap_D13 AAAGTTACCACCAAAGGGTTAGGCGAATTATTCATGCGGAAAAGTTACCACCAAAGGGTTAGGCGAATTATTCATGCGGA
6hb_1gap2_D016hb_1gap2_D01 CTGAACTCACCACCAGCAGAAGATAAATAAAGCAGCAAATCTGAACTCACCACCAGCAGAAGATAAATAAAGCAGCAAAT
6hb_1gap2_D026hb_1gap2_D02 AATCAACCAAGACTCCTTATTACGCAGAGTTTATGGGCGAAATCAACCAAGACTCCTTATTACGCAGAGTTTATGGGCGA
6hb_1gap2_D036hb_1gap2_D03 CGGTCAAGAACTCAAACTAAAGGAGCGGGCGCAAGGAAGGCGGTCAAGAACTCAAACTAAAGGAGCGGGCGCAAGGAAGG
6hb_1gap2_D046hb_1gap2_D04 TGAGATATAACGCAAGAAGTTTTGCCAAGCTGATTTAATCTGAGATATAACGCAAGAAGTTTTGCCAAGCTGATTTAATC
6hb_1gap2_D056hb_1gap2_D05 GGGTAGGACCAACTTTGATCACCCTCAGCAGCTGCGCTTTGGGTAGGACCAACTTTGATCACCCTCAGCAGCTGCGCTTT
6hb_1gap2_D066hb_1gap2_D06 GGAACCCGCCACCTCAGACGATTGGCCGAGTAACTCGATAGGAACCCGCCACCTCAGACGATTGGCCGAGTAACTCGATA
6hb_1gap2_D076hb_1gap2_D07 AGAGTCAGACTACAAATATATTTTAGTTGTAAAACCTTTTAGAGTCAGACTACAAATATATTTTAGTTGTAAAACCTTTT
6hb_1gap2_D086hb_1gap2_D08 ACATTTTTCAGGTTTAACAACAACTAATAGATCATATCTTACATTTTTCAGGTTTAACAACAACTAATAGATCATATCTT
6hb_1gap2_D096hb_1gap2_D09 CTCATTTTACCTTTATTCAACCGTTCTGAGGGGGACTAATCTCATTTTACCTTTATTCAACCGTTCTGAGGGGGACTAAT
6hb_1gap2_D106hb_1gap2_D10 CCCCCTAACAGTGTGTTAAATCAGCTCGATAGCAGTCGAGCCCCCTAACAGTGTGTTAAATCAGCTCGATAGCAGTCGAG
6hb_1gap2_D116hb_1gap2_D11 ATTGAGAAGCCAACGGTGCGGGCCTCTTTCCTTAACAATAATTGAGAAGCCAACGGTGCGGGCCTCTTTCCTTAACAATA
6hb_1gap2_D126hb_1gap2_D12 TGACTAAAGATTAGTACCTTTACTAATAGTAGTACGGATTTGACTAAAGATTAGTACCTTTACTAATAGTAGTACGGATT
6hb_1gap2_D136hb_1gap2_D13 CAGCTTATCACCCTCAGAACCGCCACCTGGCCTTTTTGATCAGCTTATCACCCTCAGAACCGCCACCTGGCCTTTTTGAT
6hb_1gap2_D146hb_1gap2_D14 CTGGCGCCAATCATAATGCAGAACGCGAGTACCGTAATTTCTGGCGCCAATCATAATGCAGAACGCGAGTACCGTAATTT
6hb_1gap_E016hb_1gap_E01 ACAGTTCTAACTCTAGAACCCTTCTGACCCTAAATGAGGCACAGTTCTAACTCTAGAACCCTTCTGACCCTAAATGAGGC
6hb_1gap_E026hb_1gap_E02 CCGCCAACGCGCGCGCGTACTATGGTTGATTTTACACCGACCGCCAACGCGCGCGCGTACTATGGTTGATTTTACACCGA
6hb_1gap_E036hb_1gap_E03 GAGGCTGAGGGTATGAGATGGTTTAATAGAAAAATCATCAGAGGCTGAGGGTATGAGATGGTTTAATAGAAAAATCATCA
6hb_1gap_E046hb_1gap_E04 ATAGGCTAATCGTTCCATTAAACGGGTTTGACCCCCTGATATAGGCTAATCGTTCCATTAAACGGGTTTGACCCCCTGAT
6hb_1gap_E056hb_1gap_E05 AGGAACAAATTTTCCCGTATAACACAGACAGCCCTTAAAAAGGAACAAATTTTCCCGTATAACACAGACAGCCCTTAAAA
6hb_1gap_E066hb_1gap_E06 CAAGTTACCGAGCCATTATCATAAACAAACATCAGAGGATCAAGTTACCGAGCCATTATCATAAACAAACATCAGAGGAT
6hb_1gap_E076hb_1gap_E07 AAACAGAGAGCCTTTGAAGCCTTAAATCTTATCCGTGCCGAAACAGAGAGCCTTTGAAGCCTTAAATCTTATCCGTGCCG
6hb_1gap_E086hb_1gap_E08 CAACATAATTCTGATATTTAACAACGCATACAAATACGCCCAACATAATTCTGATATTTAACAACGCATACAAATACGCC
6hb_1gap_E096hb_1gap_E09 TCAGGAAGAGGTCCATATAACAGTTGATGAGTAACTTTACTCAGGAAGAGGTCCATATAACAGTTGATGAGTAACTTTAC
6hb_1gap_E106hb_1gap_E10 TATTAAAGTGTACAAATAATTCGCGTCCTCAGAAACCGTATATTAAAGTGTACAAATAATTCGCGTCCTCAGAAACCGTA
6hb_1gap_E116hb_1gap_E11 AAAAGAATGAAATGGACGACGACAGTAGACAAAATTTGTCAAAAGAATGAAATGGACGACGACAGTAGACAAAATTTGTC
6hb_1gap_E126hb_1gap_E12 ATTAGCTAGCCCCCTTATTAGAGCCAGCAAAAGATGAGCCATTAGCTAGCCCCCTTATTAGAGCCAGCAAAAGATGAGCC
6hb_1gap_E136hb_1gap_E13 ACAACTAGATGATGGCAAGGATTTAGAAGTATTTTAGATAACAACTAGATGATGGCAAGGATTTAGAAGTATTTTAGATA
6hb_1gap2_E016hb_1gap2_E01 CAGGAGACCCTCAAGAGAAGGATTAGGGTGTATCCCGCCACAGGAGACCCTCAAGAGAAGGATTAGGGTGTATCCCGCCA
6hb_1gap2_E026hb_1gap2_E02 CAGTGAATCATAACCCTCCATTACCCAAATCAGCACAAGACAGTGAATCATAACCCTCCATTACCCAAATCAGCACAAGA
6hb_1gap2_E036hb_1gap2_E03 ATTGTGCCGGAACCCTTCATCAAGAGTAACAAGAGTAATGATTGTGCCGGAACCCTTCATCAAGAGTAACAAGAGTAATG
6hb_1gap2_E046hb_1gap2_E04 ACCTGATATATGTAAATGAAAATCGCGCAGAGAATTGAATACCTGATATATGTAAATGAAAATCGCGCAGAGAATTGAAT
6hb_1gap2_E056hb_1gap2_E05 GGAGCTGTGCTTTAACCTGTCGTGCCACTCATGGTTAACCGGAGCTGTGCTTTAACCTGTCGTGCCACTCATGGTTAACC
6hb_1gap2_E066hb_1gap2_E06 ACCAGAAAGTAAGTGTAGATGGGCGCAATATTGAAACATAACCAGAAAGTAAGTGTAGATGGGCGCAATATTGAAACATA
6hb_1gap2_E076hb_1gap2_E07 GGGTGGCGATCGGCCTTGCTGGTAATAGCGTATTGCTTAAGGGTGGCGATCGGCCTTGCTGGTAATAGCGTATTGCTTAA
6hb_1gap2_E086hb_1gap2_E08 ACCATCTTCTCAACATGTTTTAAATATGGAGACAACAGTTACCATCTTCTCAACATGTTTTAAATATGGAGACAACAGTT
6hb_1gap2_E096hb_1gap2_E09 CGCATTCCATGACAACAACCATCGCCCTATTTTGTCATAGCGCATTCCATGACAACAACCATCGCCCTATTTTGTCATAG
6hb_1gap2_E106hb_1gap2_E10 TGCCAGCGATTGAGACACCACGGAATATATGTTAGAATACTGCCAGCGATTGAGACACCACGGAATATATGTTAGAATAC
6hb_1gap2_E116hb_1gap2_E11 AACCAGAGGGAAGATTTATCCCAATCCAACGCTAAGTTGCAACCAGAGGGAAGATTTATCCCAATCCAACGCTAAGTTGC
6hb_1gap2_E126hb_1gap2_E12 ACGCCAATGAAAAATAATATCCCATCCCGATTAATTACTAACGCCAATGAAAAATAATATCCCATCCCGATTAATTACTA
6hb_1gap2_E136hb_1gap2_E13 TCCTGTGAAACAAGCACGTAAAACAGATTGTTTGTATTCCTCCTGTGAAACAAGCACGTAAAACAGATTGTTTGTATTCC
6hb_1gap_F016hb_1gap_F01 ACATTTGTCGGGACCTCGTTAGCAGTAATAAAAGCTGCCCACATTTGTCGGGACCTCGTTAGCAGTAATAAAAGCTGCCC
6hb_1gap_F026hb_1gap_F02 AAATGTAATATGAATGCGATTTCAAATGCTTTAAGTCAAAAAATGTAATATGAATGCGATTTCAAATGCTTTAAGTCAAA
6hb_1gap_F036hb_1gap_F03 CGGGATTAATCAGGTATGGGATTTTGAGGACTAATGTACCCGGGATTAATCAGGTATGGGATTTTGAGGACTAATGTACC
6hb_1gap_F046hb_1gap_F04 ATTCATACGTTGGCAGATAGCCTCACCAGTAGCATAATGGATTCATACGTTGGCAGATAGCCTCACCAGTAGCATAATGG
6hb_1gap_F056hb_1gap_F05 ACCTAAGGGTTTTCATAAATCACCGGAATCATAAGTTGGGACCTAAGGGTTTTCATAAATCACCGGAATCATAAGTTGGG
6hb_1gap_F066hb_1gap_F06 GGTTGAACCAGGCTCGGAACCTATTATAACGGGGAACCAAGGTTGAACCAGGCTCGGAACCTATTATAACGGGGAACCAA
6hb_1gap_F076hb_1gap_F07 AAAGAATACATACCGAGGAAACGCAATTACCGAACGTGCAAAAGAATACATACCGAGGAAACGCAATTACCGAACGTGCA
6hb_1gap_F086hb_1gap_F08 CGGTACTACAGGGGGGAGAGGCGGTTTTCCAGAACTTGCCCGGTACTACAGGGGGGAGAGGCGGTTTTCCAGAACTTGCC
6hb_1gap_F096hb_1gap_F09 AATAAATTGGGCTGCTATTTTTGAGAGAAACCAAGTAAGAAATAAATTGGGCTGCTATTTTTGAGAGAAACCAAGTAAGA
6hb_1gap_F106hb_1gap_F10 CTAAAGACGATCTATTGTAAACGTTAAACGCATAGCTTGACTAAAGACGATCTATTGTAAACGTTAAACGCATAGCTTGA
6hb_1gap_F116hb_1gap_F11 TTTTGCAAGCAAAGCCATTCGCCATTCCAGAGAGAAACGATTTTGCAAGCAAAGCCATTCGCCATTCCAGAGAGAAACGA
6hb_1gap_F126hb_1gap_F12 TTCCCTATTACATCATGCCTGCAGGTCAAGACAATTGGGTTTCCCTATTACATCATGCCTGCAGGTCAAGACAATTGGGT
6hb_1gap_F136hb_1gap_F13 ATTATCCGTATTATGTTATCCGCTCACACAGTACAAATTGATTATCCGTATTATGTTATCCGCTCACACAGTACAAATTG
6hb_1gap2_F016hb_1gap2_F01 ACGAGTATATATTCAGAAGCAAAAAAACATTATGTTTTTAACGAGTATATATTCAGAAGCAAAAAAACATTATGTTTTTA
6hb_1gap2_F026hb_1gap2_F02 CCTCAGATTAGCGTTTGCCATCTTTTCCCTCAGATTGACACCTCAGATTAGCGTTTGCCATCTTTTCCCTCAGATTGACA
6hb_1gap2_F036hb_1gap2_F03 AAAAGAAATACTTCAACAGGAAAAACGGCTGCATCGAGCAAAAAGAAATACTTCAACAGGAAAAACGGCTGCATCGAGCA
6hb_1gap2_F046hb_1gap2_F04 TAAATAATAATGCTGTAGAGACTGGATAGCGTCATAATAGTAAATAATAATGCTGTAGAGACTGGATAGCGTCATAATAG
6hb_1gap2_F056hb_1gap2_F05 CTCAGTTATAAGTCCCTCATTTTCAGGATTTTTTTCAGTGCTCAGTTATAAGTCCCTCATTTTCAGGATTTTTTTCAGTG
6hb_1gap2_F066hb_1gap2_F06 TAAAGTGTTCAGCATAATCGGCTGTCTTCGCTATTTCTTATAAAGTGTTCAGCATAATCGGCTGTCTTCGCTATTTCTTA
6hb_1gap2_F076hb_1gap2_F07 TTCTGAATTATTTTAACGGATTCGCCTATGGTCATAATTTTTCTGAATTATTTTAACGGATTCGCCTATGGTCATAATTT
6hb_1gap2_F086hb_1gap2_F08 AACTTTATTTTCTAAAAGCCCCAAAAATAAAGGCTATCGGAACTTTATTTTCTAAAAGCCCCAAAAATAAAGGCTATCGG
6hb_1gap2_F096hb_1gap2_F09 CTTGCGGCGAGGCAGCTTTCCGGCACCGAATTAATACAAACTTGCGGCGAGGCAGCTTTCCGGCACCGAATTAATACAAA
6hb_1gap2_F106hb_1gap2_F10 AAAGAATGAGTAATCGAATTCGTAATCGATTGCTCCTACCAAAGAATGAGTAATCGAATTCGTAATCGATTGCTCCTACC
6hb_1gap2_F116hb_1gap2_F11 AGTGAGGAAAGGAGCAAATGAAAAATCACAGAGGACATCGAGTGAGGAAAGGAGCAAATGAAAAATCACAGAGGACATCG
6hb_1gap2_F126hb_1gap2_F12 GCCGGATTTGCAACAAAAGGAATTACGGAAAGATTCTACGGCCGGATTTGCAACAAAAGGAATTACGGAAAGATTCTACG
6hb_1gap2_F136hb_1gap2_F13 AGCAAATCGCTGATCGAGGTGAATTTCAATCTCCAGGAACAGCAAATCGCTGATCGAGGTGAATTTCAATCTCCAGGAAC
6hb_1gap2_F146hb_1gap2_F14 TGGGAAGGATGAAAATAGCAGCCTTTAAGGCTGCCCGCGCTGGGAAGGATGAAAATAGCAGCCTTTAAGGCTGCCCGCGC
6hb_2gap_A016hb_2gap_A01 GGATAATTGCCTCAACCTAAACGAGAAACACCAAAGGCGGATAATTGCCTCAACCTAAACGAGAAACACCAAAGGC
6hb_2gap_A026hb_2gap_A02 AATAATCATCAAGTAGCGACATCATACATGGCTCCTGTAATAATCATCAAGTAGCGACATCATACATGGCTCCTGT
6hb_2gap_A036hb_2gap_A03 GAACGGGGCGATCGCTCAACATAGGAATCATTAGCAACGAACGGGGCGATCGCTCAACATAGGAATCATTAGCAAC
6hb_2gap_A046hb_2gap_A04 GAGCACGGAAGCACAATATTTTAGACTTTACAACACAAGAGCACGGAAGCACAATATTTTAGACTTTACAACACAA
6hb_2gap_A056hb_2gap_A05 TTAAAACAGAGAACATTAATTGCGTTTCAGTTGTCACCTTAAAACAGAGAACATTAATTGCGTTTCAGTTGTCACC
6hb_2gap_A066hb_2gap_A06 ATACCGGAAGTTAAAACTAGCATGTCGTACAGAAAGGGATACCGGAAGTTAAAACTAGCATGTCGTACAGAAAGGG
6hb_2gap_A076hb_2gap_A07 GGTCAAAGGCCGGAACAAACGGCGGAGCCAGCAGCCACGGTCAAAGGCCGGAACAAACGGCGGAGCCAGCAGCCAC
6hb_2gap_A086hb_2gap_A08 CAGAGCTGTTTAGATGTGCTGCAAGGTAATTTAATCAACAGAGCTGTTTAGATGTGCTGCAAGGTAATTTAATCAA
6hb_2gap_A096hb_2gap_A09 AAAACAATTCGAGCTTCCATTGAATCCCCCTTAAATCGAAAACAATTCGAGCTTCCATTGAATCCCCCTTAAATCG
6hb_2gap_A106hb_2gap_A10 GCCGCGCCAGAATCCTGCTGCGCGTAACCACCAAAGTGGCCGCGCCAGAATCCTGCTGCGCGTAACCACCAAAGTG
6hb_2gap_A116hb_2gap_A11 GCGTAGAATTGCGAATACGCCTGTAGCATTCACCCAGTGCGTAGAATTGCGAATACGCCTGTAGCATTCACCCAGT
6hb_2gap_A126hb_2gap_A12 AAACAACTGGCATGATTACAAGAATTGAGTTAAATCAGAAACAACTGGCATGATTACAAGAATTGAGTTAAATCAG
6hb_2gap_A136hb_2gap_A13 AATTATAGAATCCTTGAAAAAGAAGATGATGTTTTTCAAATTATAGAATCCTTGAAAAAGAAGATGATGTTTTTCA
6hb_2gap2_A016hb_2gap2_A01 TGAACTCACCACCAGCAGAAGATAAATAAAGCAGCAAATCTGAACTCACCACCAGCAGAAGATAAATAAAGCAGCAAATC
6hb_2gap2_A026hb_2gap2_A02 GAACTCAAAGTACAACGGAGATTTGTCAATCATCCAGGCGGAACTCAAAGTACAACGGAGATTTGTCAATCATCCAGGCG
6hb_2gap2_A036hb_2gap2_A03 ACCGATAAAATAATTTTTTCACGTTGAATTAAACAACCGAACCGATAAAATAATTTTTTCACGTTGAATTAAACAACCGA
6hb_2gap2_A046hb_2gap2_A04 CTCAGATTAGCGTTTGCCATCTTTTCCCTCAGATTGACAGCTCAGATTAGCGTTTGCCATCTTTTCCCTCAGATTGACAG
6hb_2gap2_A056hb_2gap2_A05 AGATATACAGTAATAAGAGAATATAACCTGTTTCGAGCATAGATATACAGTAATAAGAGAATATAACCTGTTTCGAGCAT
6hb_2gap2_A066hb_2gap2_A06 GGTCAAGAACTCAAACTAAAGGAGCGGGCGCAAGGAAGGGGGTCAAGAACTCAAACTAAAGGAGCGGGCGCAAGGAAGGG
6hb_2gap2_A076hb_2gap2_A07 AAATAATAATGCTGTAGAGACTGGATAGCGTCATAATAGTAAATAATAATGCTGTAGAGACTGGATAGCGTCATAATAGT
6hb_2gap2_A086hb_2gap2_A08 TGCCGGATTTGCAACAAAAGGAATTACGGAAAGATTCTACTGCCGGATTTGCAACAAAAGGAATTACGGAAAGATTCTAC
6hb_2gap2_A096hb_2gap2_A09 ACTACGTTGCGCCGACAATGTACCGTAACACCCAGCCCAAACTACGTTGCGCCGACAATGTACCGTAACACCCAGCCCAA
6hb_2gap2_A106hb_2gap2_A10 TGAATTTGTTTAGTACCGCCCTCATTAAAGCCACCTCACATGAATTTGTTTAGTACCGCCCTCATTAAAGCCACCTCACA
6hb_2gap2_A116hb_2gap2_A11 ATAACTAGAAAATTCATAAGTCAGAGGGTAAGTCTGAACAATAACTAGAAAATTCATAAGTCAGAGGGTAAGTCTGAACA
6hb_2gap2_A126hb_2gap2_A12 GCAAGCCTTAACGTCAAAATATTAAACCAAGTACGTCATTGCAAGCCTTAACGTCAAAATATTAAACCAAGTACGTCATT
6hb_2gap2_A136hb_2gap2_A13 CCTGATATATGTAAATGAAAATCGCGCAGAGAATTGAATACCTGATATATGTAAATGAAAATCGCGCAGAGAATTGAATA
6hb_2gap2_A146hb_2gap2_A14 TACATTTTTCAGGTTTAACAACAACTAATAGATCATATCTTACATTTTTCAGGTTTAACAACAACTAATAGATCATATCT
6hb_2gap2_A156hb_2gap2_A15 GAGTGAGGAAAGGAGCAAATGAAAAATCACAGAGGACATCGAGTGAGGAAAGGAGCAAATGAAAAATCACAGAGGACATC
6hb_2gap2_A166hb_2gap2_A16 AGGGTGGCGATCGGCCTTGCTGGTAATAGCGTATTGCTTAAGGGTGGCGATCGGCCTTGCTGGTAATAGCGTATTGCTTA
6hb_2gap2_A176hb_2gap2_A17 CACCATCTTCTCAACATGTTTTAAATATGGAGACAACAGTCACCATCTTCTCAACATGTTTTAAATATGGAGACAACAGT
6hb_2gap2_A186hb_2gap2_A18 AGGTCTTGTTTACCAGACGACGATAAATCTACAGAACGAGAGGTCTTGTTTACCAGACGACGATAAATCTACAGAACGAG
6hb_2gap2_A196hb_2gap2_A19 TGAACGGTGGCTGAGAGGCGCAGACGGTATCATCGCCAGCTGAACGGTGGCTGAGAGGCGCAGACGGTATCATCGCCAGC
6hb_2gap2_A206hb_2gap2_A20 AGCTTATCACCCTCAGAACCGCCACCTGGCCTTTTTGATGAGCTTATCACCCTCAGAACCGCCACCTGGCCTTTTTGATG
6hb_2gap2_A216hb_2gap2_A21 CGGATTCAGGCAGGCTCAGAACCGCCACATAATCAGGCATCGGATTCAGGCAGGCTCAGAACCGCCACATAATCAGGCAT
6hb_2gap2_A226hb_2gap2_A22 ATCGCACCAATGGTTTACCAGCGCCAAATCGGCCTAAGAGATCGCACCAATGGTTTACCAGCGCCAAATCGGCCTAAGAG
6hb_2gap2_A236hb_2gap2_A23 ACCAGAGGGAAGATTTATCCCAATCCAACGCTAAGTTGCTACCAGAGGGAAGATTTATCCCAATCCAACGCTAAGTTGCT
6hb_2gap2_A246hb_2gap2_A24 GCTGGCGCCAATCATAATGCAGAACGCGAGTACCGTAATTGCTGGCGCCAATCATAATGCAGAACGCGAGTACCGTAATT
6hb_2gap2_A256hb_2gap2_A25 CCCGGGTACCTGATGCAAATCCAATCGCGACTCTAAGAAACCCGGGTACCTGATGCAAATCCAATCGCGACTCTAAGAAA
6hb_2gap2_A266hb_2gap2_A26 CGAGCCTGTCAGATGAATATACAGTAAATTCCAACAATTCCGAGCCTGTCAGATGAATATACAGTAAATTCCAACAATTC
6hb_2gap_B016hb_2gap_B01 GAAAGTTTTTCTCTTATAAATCACACCCGCCGCGGGCGGAAAGTTTTTCTCTTATAAATCACACCCGCCGCGGGCG
6hb_2gap_B026hb_2gap_B02 TTCGGTATTTAAAAAGTTTTGTCGTCAATAGAAAAAAATTCGGTATTTAAAAAGTTTTGTCGTCAATAGAAAAAAA
6hb_2gap_B036hb_2gap_B03 CTGAATCCAGCCGTTTTAGCGAAGCCCAATAATCAGGACTGAATCCAGCCGTTTTAGCGAAGCCCAATAATCAGGA
6hb_2gap_B046hb_2gap_B04 GAAAAAAGCTTGTTAACAATTTCATTCGCTATTCGCTGGAAAAAAGCTTGTTAACAATTTCATTCGCTATTCGCTG
6hb_2gap_B056hb_2gap_B05 AAATCGATGGCCTTGAGTGTTGTTCCGATGGTGCAGCTAAATCGATGGCCTTGAGTGTTGTTCCGATGGTGCAGCT
6hb_2gap_B066hb_2gap_B06 TCAAAATAATGGGAAGGAGCGGAATTACGTTATTAGCTTCAAAATAATGGGAAGGAGCGGAATTACGTTATTAGCT
6hb_2gap_B076hb_2gap_B07 ATAACAAACAGGCATCACGCAGAAATGGATTATTCAGAATAACAAACAGGCATCACGCAGAAATGGATTATTCAGA
6hb_2gap_B086hb_2gap_B08 GTAAAACGAACTAACGGAAGGCTTGCCCTGAACTGCTCGTAAAACGAACTAACGGAAGGCTTGCCCTGAACTGCTC
6hb_2gap_B096hb_2gap_B09 AATGACAACAGTGCCTTTAATGAAAGACAGCATTGCTAAATGACAACAGTGCCTTTAATGAAAGACAGCATTGCTA
6hb_2gap_B106hb_2gap_B10 ACAGGGAGGCTGAGACTCGTTCCAGTAAGCGGACAGTCACAGGGAGGCTGAGACTCGTTCCAGTAAGCGGACAGTC
6hb_2gap_B116hb_2gap_B11 AAGAAAGGAAACATAAAGGTGCCGTCACCGACTACAAAAAGAAAGGAAACATAAAGGTGCCGTCACCGACTACAAA
6hb_2gap_B126hb_2gap_B12 ATAGCACCCAGCTACAATTTTATTTTCATCGGTAGAACATAGCACCCAGCTACAATTTTATTTTCATCGGTAGAAC
6hb_2gap_B136hb_2gap_B13 ATGGAAACCTTGAATTTATCATACCGACCGTGTATATGATGGAAACCTTGAATTTATCATACCGACCGTGTATATG
6hb_2gap_B146hb_2gap_B14 AAAGATTCATTCATTTTTGCGGATGGGCAAACTAAATAAAAGATTCATTCATTTTTGCGGATGGGCAAACTAAATA
6hb_2gap2_B016hb_2gap2_B01 GAGTAGACGAGAAGTGTTTTTATAATCAAACATCACAATAGAGTAGACGAGAAGTGTTTTTATAATCAAACATCACAATA
6hb_2gap2_B026hb_2gap2_B02 CAATCAACCAAGACTCCTTATTACGCAGAGTTTATGGGCGCAATCAACCAAGACTCCTTATTACGCAGAGTTTATGGGCG
6hb_2gap2_B036hb_2gap2_B03 TTTGATATTAGAGAAGAGGAAGCCCGAAATCAGGTTGTGTTTTGATATTAGAGAAGAGGAAGCCCGAAATCAGGTTGTGT
6hb_2gap2_B046hb_2gap2_B04 ATATAACGCAAACATAGCGATAGCTTAGGCTTAGGAGAACATATAACGCAAACATAGCGATAGCTTAGGCTTAGGAGAAC
6hb_2gap2_B056hb_2gap2_B05 AAAGAAATACTTCAACAGGAAAAACGGCTGCATCGAGCAAAGAAATACTTCAACAGGAAAAACGGCTGCATCGAGC
6hb_2gap2_B066hb_2gap2_B06 GCGGTCAAGAACTCAAACTAAAGGAGCGGGCGCAAGGAAGGCGGTCAAGAACTCAAACTAAAGGAGCGGGCGCAAGGAAG
6hb_2gap2_B076hb_2gap2_B07 CCGGATTTGCAACAAAAGGAATTACGGAAAGATTCTACGTCCGGATTTGCAACAAAAGGAATTACGGAAAGATTCTACGT
6hb_2gap2_B086hb_2gap2_B08 GCTCCCTTGCTTGGCTTGCAGGGAGTCAGGAAGACGTTGCTCCCTTGCTTGGCTTGCAGGGAGTCAGGAAGACGTT
6hb_2gap2_B096hb_2gap2_B09 AAACTACGTTGCGCCGACAATGTACCGTAACACCCAGCCCAAACTACGTTGCGCCGACAATGTACCGTAACACCCAGCCC
6hb_2gap2_B106hb_2gap2_B10 AATTTGTTTAGTACCGCCCTCATTAAAGCCACCTCACAAAAATTTGTTTAGTACCGCCCTCATTAAAGCCACCTCACAAA
6hb_2gap2_B116hb_2gap2_B11 GAAAAACGCAAAGGGAGGGAAGGTAATCGTAACGCCCTGAAAAACGCAAAGGGAGGGAAGGTAATCGTAACGCCCT
6hb_2gap2_B126hb_2gap2_B12 AGATAACTAGAAAATTCATAAGTCAGAGGGTAAGTCTGAAAGATAACTAGAAAATTCATAAGTCAGAGGGTAAGTCTGAA
6hb_2gap2_B136hb_2gap2_B13 AAGCCTTAACGTCAAAATATTAAACCAAGTACGTCATTCCAAGCCTTAACGTCAAAATATTAAACCAAGTACGTCATTCC
6hb_2gap2_B146hb_2gap2_B14 GAGTCAGACTACAAATATATTTTAGTTGTAAAACCTTTGAGTCAGACTACAAATATATTTTAGTTGTAAAACCTTT
6hb_2gap2_B156hb_2gap2_B15 TACCTGATATATGTAAATGAAAATCGCGCAGAGAATTGAATACCTGATATATGTAAATGAAAATCGCGCAGAGAATTGAA
6hb_2gap2_B166hb_2gap2_B16 CATTTTTCAGGTTTAACAACAACTAATAGATCATATCTTTCATTTTTCAGGTTTAACAACAACTAATAGATCATATCTTT
6hb_2gap2_B176hb_2gap2_B17 GTTTTGAGAATGGGGTGAGAAAGGCCGCAACTACTTAATTGTTTTGAGAATGGGGTGAGAAAGGCCGCAACTACTTAATT
6hb_2gap2_B186hb_2gap2_B18 GAGCTGTGCTTTAACCTGTCGTGCCACTCATGGTTAACCGGAGCTGTGCTTTAACCTGTCGTGCCACTCATGGTTAACCG
6hb_2gap2_B196hb_2gap2_B19 AGCCCGAAAAATCCTTTCACCAGTGAGACGAGAAACCATCAGCCCGAAAAATCCTTTCACCAGTGAGACGAGAAACCATC
6hb_2gap2_B206hb_2gap2_B20 GCTCATTTTACCTTTATTCAACCGTTCTGAGGGGGACTAAGCTCATTTTACCTTTATTCAACCGTTCTGAGGGGGACTAA
6hb_2gap2_B216hb_2gap2_B21 ACTTTATTTTCTAAAAGCCCCAAAAATAAAGGCTATCGGTACTTTATTTTCTAAAAGCCCCAAAAATAAAGGCTATCGGT
6hb_2gap2_B226hb_2gap2_B22 GCCCCCTAACAGTGTGTTAAATCAGCTCGATAGCAGTCGAGCCCCCTAACAGTGTGTTAAATCAGCTCGATAGCAGTCGA
6hb_2gap2_B236hb_2gap2_B23 CCAGAAAGTAAGTGTAGATGGGCGCAATATTGAAACATATCCAGAAAGTAAGTGTAGATGGGCGCAATATTGAAACATAT
6hb_2gap2_B246hb_2gap2_B24 ACTTGCGGCGAGGCAGCTTTCCGGCACCGAATTAATACAAACTTGCGGCGAGGCAGCTTTCCGGCACCGAATTAATACAA
6hb_2gap2_B256hb_2gap2_B25 TGAATAACAGTACCCAGTCACGACGTTAATTTCATCATAGTGAATAACAGTACCCAGTCACGACGTTAATTTCATCATAG
6hb_2gap2_B266hb_2gap2_B26 CAAAGAATGAGTAATCGAATTCGTAATCGATTGCTCCTACCAAAGAATGAGTAATCGAATTCGTAATCGATTGCTCCTAC
6hb_2gap2_B276hb_2gap2_B27 GGTGGCGATCGGCCTTGCTGGTAATAGCGTATTGCTTAATGGTGGCGATCGGCCTTGCTGGTAATAGCGTATTGCTTAAT
6hb_2gap2_B286hb_2gap2_B28 AGTGAATCATAACCCTCCATTACCCAAATCAGCACAAGAAAGTGAATCATAACCCTCCATTACCCAAATCAGCACAAGAA
6hb_2gap2_B296hb_2gap2_B29 TCAGGTCTTGTTTACCAGACGACGATAAATCTACAGAACGTCAGGTCTTGTTTACCAGACGACGATAAATCTACAGAACG
6hb_2gap2_B306hb_2gap2_B30 GCATTCCATGACAACAACCATCGCCCTATTTTGTCATAGTGCATTCCATGACAACAACCATCGCCCTATTTTGTCATAGT
6hb_2gap2_B316hb_2gap2_B31 GAACGGCCACCAATAGCCCGGAATAGATTAGCGCATGAAAGAACGGCCACCAATAGCCCGGAATAGATTAGCGCATGAAA
6hb_2gap2_B326hb_2gap2_B32 CCAGCTTATCACCCTCAGAACCGCCACCTGGCCTTTTTGACCAGCTTATCACCCTCAGAACCGCCACCTGGCCTTTTTGA
6hb_2gap2_B336hb_2gap2_B33 CGCACCAATGGTTTACCAGCGCCAAATCGGCCTAAGAGCACGCACCAATGGTTTACCAGCGCCAAATCGGCCTAAGAGCA
6hb_2gap2_B346hb_2gap2_B34 TTGGGAAGGATGAAAATAGCAGCCTTTAAGGCTGCCCGCGTTGGGAAGGATGAAAATAGCAGCCTTTAAGGCTGCCCGCG
6hb_2gap2_B356hb_2gap2_B35 CGGGTACCTGATGCAAATCCAATCGCGACTCTAAGAAAACCGGGTACCTGATGCAAATCCAATCGCGACTCTAAGAAAAC
6hb_2gap2_B366hb_2gap2_B36 CCTGTGAAACAAGCACGTAAAACAGATTGTTTGTATTCCTCCTGTGAAACAAGCACGTAAAACAGATTGTTTGTATTCCT
6hb_2gap2_B376hb_2gap2_B37 TACGAGCCTGTCAGATGAATATACAGTAAATTCCAACAATTACGAGCCTGTCAGATGAATATACAGTAAATTCCAACAAT
6hb_2gap2_B386hb_2gap2_B38 GCCCTGGGGAAATTGGGGTCGAGGTGCGAAAAAAACAAGAGCCCTGGGGAAATTGGGGTCGAGGTGCGAAAAAAACAAGA
6hb_2gap_C016hb_2gap_C01 TCAGACCATCAATGGTAATAAGTTTTTCTGAAAGGGTTTCAGACCATCAATGGTAATAAGTTTTTCTGAAAGGGTT
6hb_2gap_C026hb_2gap_C02 TCAACTTTGAGGAGCAATAGCTATCTAATAACGGCAAATCAACTTTGAGGAGCAATAGCTATCTAATAACGGCAAA
6hb_2gap_C036hb_2gap_C03 AAAACGCAAAGCTCAGATATAGAAGGCAAGATTACGAGAAAACGCAAAGCTCAGATATAGAAGGCAAGATTACGAG
6hb_2gap_C046hb_2gap_C04 AGAAAAAAGGGGGTATCATATGCGTTCAACATGACAAAAGAAAAAAGGGGGTATCATATGCGTTCAACATGACAAA
6hb_2gap_C056hb_2gap_C05 TGAATTTAAAGCGAACCAGACCGGAACTTAGAGAAGTATGAATTTAAAGCGAACCAGACCGGAACTTAGAGAAGTA
6hb_2gap_C066hb_2gap_C06 GATACTTAGGAATCAGGACGTTGGGATTCAACTAAATTGATACTTAGGAATCAGGACGTTGGGATTCAACTAAATT
6hb_2gap_C076hb_2gap_C07 CTTAGTCGAAATTAAAACACTCATCTAAAATACGAATCCTTAGTCGAAATTAAAACACTCATCTAAAATACGAATC
6hb_2gap_C086hb_2gap_C08 AGAGCAGAGCCAAGACTGTAGCGCGTGAAACCAAACCCAGAGCAGAGCCAAGACTGTAGCGCGTGAAACCAAACCC
6hb_2gap_C096hb_2gap_C09 CTGAGAATAGTGCTTCTGTAAATCGTTGAATTACGACGCTGAGAATAGTGCTTCTGTAAATCGTTGAATTACGACG
6hb_2gap_C106hb_2gap_C10 TGAGATTAACACGCGCGAACTGATAGCCTGAAAGCCTATGAGATTAACACGCGCGAACTGATAGCCTGAAAGCCTA
6hb_2gap_C116hb_2gap_C11 TCAAATTATAGTTTAAATGCAATGCCTTCCCAATGCTCTCAAATTATAGTTTAAATGCAATGCCTTCCCAATGCTC
6hb_2gap_C126hb_2gap_C12 TCGGCGATAGGGCACTACGTGTAGGGCGCTGGCAAAGATCGGCGATAGGGCACTACGTGTAGGGCGCTGGCAAAGA
6hb_2gap_C136hb_2gap_C13 TGAGTGCCTATTGGATAAGTGTGAGTTTCGTCAAGTTATGAGTGCCTATTGGATAAGTGTGAGTTTCGTCAAGTTA
6hb_2gap_C146hb_2gap_C14 TACGTCTTTAATCGCCTGCAATAGAGCCGTCAAGAATGTACGTCTTTAATCGCCTGCAATAGAGCCGTCAAGAATG
6hb_2gap_C156hb_2gap_C15 CCCTCAGATTTAAAAGGTGGCATCAATTCTAATTTCTGCCCTCAGATTTAAAAGGTGGCATCAATTCTAATTTCTG
6hb_2gap2_C016hb_2gap2_C01 CGAGTATATATTCAGAAGCAAAAAAACATTATGTTTTTCGAGTATATATTCAGAAGCAAAAAAACATTATGTTTTT
6hb_2gap2_C026hb_2gap2_C02 GAAGTTTCAAAAACCATAAATCAAAAAGACTTCCCAACAGGAAGTTTCAAAAACCATAAATCAAAAAGACTTCCCAACAG
6hb_2gap2_C036hb_2gap2_C03 GCTGAACTCACCACCAGCAGAAGATAAATAAAGCAGCAAAGCTGAACTCACCACCAGCAGAAGATAAATAAAGCAGCAAA
6hb_2gap2_C046hb_2gap2_C04 CAACACTATAACAACATTATTACAGGTAAGGCATAAATAGCAACACTATAACAACATTATTACAGGTAAGGCATAAATAG
6hb_2gap2_C056hb_2gap2_C05 CCGAACTCAAAGTACAACGGAGATTTGTCAATCATCCAGGCCGAACTCAAAGTACAACGGAGATTTGTCAATCATCCAGG
6hb_2gap2_C066hb_2gap2_C06 TCAGGAGACCCTCAAGAGAAGGATTAGGGTGTATCCCGCCTCAGGAGACCCTCAAGAGAAGGATTAGGGTGTATCCCGCC
6hb_2gap2_C076hb_2gap2_C07 CCCTCAGATTAGCGTTTGCCATCTTTTCCCTCAGATTGACCCCTCAGATTAGCGTTTGCCATCTTTTCCCTCAGATTGAC
6hb_2gap2_C086hb_2gap2_C08 TTTTTGTGTTTTTATCCTGAATCTTACCAAATAAGAATAATTTTTGTGTTTTTATCCTGAATCTTACCAAATAAGAATAA
6hb_2gap2_C096hb_2gap2_C09 TGATATTAGAGAAGAGGAAGCCCGAAATCAGGTTGTGTTGATATTAGAGAAGAGGAAGCCCGAAATCAGGTTGTGT
6hb_2gap2_C106hb_2gap2_C10 ATAGATATACAGTAATAAGAGAATATAACCTGTTTCGAGCATAGATATACAGTAATAAGAGAATATAACCTGTTTCGAGC
6hb_2gap2_C116hb_2gap2_C11 GTAGATTGATTCATCAATATAATCCTGAAATAAAGCTTTTGTAGATTGATTCATCAATATAATCCTGAAATAAAGCTTTT
6hb_2gap2_C126hb_2gap2_C12 CAGTAGCCAGCAATTGAGGAAGGTTACTGGGGTGCGTACAGTAGCCAGCAATTGAGGAAGGTTACTGGGGTGCGTA
6hb_2gap2_C136hb_2gap2_C13 TTGTGCCGGAACCCTTCATCAAGAGTAACAAGAGTAATTTGTGCCGGAACCCTTCATCAAGAGTAACAAGAGTAAT
6hb_2gap2_C146hb_2gap2_C14 TCAGTTATAAGTCCCTCATTTTCAGGATTTTTTTCAGTTCAGTTATAAGTCCCTCATTTTCAGGATTTTTTTCAGT
6hb_2gap2_C156hb_2gap2_C15 GAACCCGCCACCTCAGACGATTGGCCGAGTAACTCGATGAACCCGCCACCTCAGACGATTGGCCGAGTAACTCGAT
6hb_2gap2_C166hb_2gap2_C16 TTTCCCCATATTCGCATTAGACGGGAGCTTCTGGGTATTTTCCCCATATTCGCATTAGACGGGAGCTTCTGGGTAT
6hb_2gap2_C176hb_2gap2_C17 AAAGTGTTCAGCATAATCGGCTGTCTTCGCTATTTCTTAAAGTGTTCAGCATAATCGGCTGTCTTCGCTATTTCTT
6hb_2gap2_C186hb_2gap2_C18 TCTGAATTATTTTAACGGATTCGCCTATGGTCATAATTTCTGAATTATTTTAACGGATTCGCCTATGGTCATAATT
6hb_2gap2_C196hb_2gap2_C19 GTTTTGAGAATGGGGTGAGAAAGGCCGCAACTACTTAAGTTTTGAGAATGGGGTGAGAAAGGCCGCAACTACTTAA
6hb_2gap2_C206hb_2gap2_C20 GAGCTGTGCTTTAACCTGTCGTGCCACTCATGGTTAACGAGCTGTGCTTTAACCTGTCGTGCCACTCATGGTTAAC
6hb_2gap2_C216hb_2gap2_C21 CCCGAAAAATCCTTTCACCAGTGAGACGAGAAACCATCCCCGAAAAATCCTTTCACCAGTGAGACGAGAAACCATC
6hb_2gap2_C226hb_2gap2_C22 TCATTTTACCTTTATTCAACCGTTCTGAGGGGGACTAATGTCATTTTACCTTTATTCAACCGTTCTGAGGGGGACTAATG
6hb_2gap2_C236hb_2gap2_C23 AAAAGAAGGCACGAGAGTCTGGAGCAAATCTTGTCCATAAAAGAAGGCACGAGAGTCTGGAGCAAATCTTGTCCAT
6hb_2gap2_C246hb_2gap2_C24 ACTTTATTTTCTAAAAGCCCCAAAAATAAAGGCTATCGACTTTATTTTCTAAAAGCCCCAAAAATAAAGGCTATCG
6hb_2gap2_C256hb_2gap2_C25 CCCCTAACAGTGTGTTAAATCAGCTCGATAGCAGTCGACCCCTAACAGTGTGTTAAATCAGCTCGATAGCAGTCGA
6hb_2gap2_C266hb_2gap2_C26 GCCTTGTAATCACATTAAATGTGAGCTTGATATGCCTCGCCTTGTAATCACATTAAATGTGAGCTTGATATGCCTC
6hb_2gap2_C276hb_2gap2_C27 CCAGAAAGTAAGTGTAGATGGGCGCAATATTGAAACATCCAGAAAGTAAGTGTAGATGGGCGCAATATTGAAACAT
6hb_2gap2_C286hb_2gap2_C28 TTGCGGCGAGGCAGCTTTCCGGCACCGAATTAATACAATTGCGGCGAGGCAGCTTTCCGGCACCGAATTAATACAA
6hb_2gap2_C296hb_2gap2_C29 TTGAGAAGCCAACGGTGCGGGCCTCTTTCCTTAACAATTTGAGAAGCCAACGGTGCGGGCCTCTTTCCTTAACAAT
6hb_2gap2_C306hb_2gap2_C30 TGAATAACAGTACCCAGTCACGACGTTAATTTCATCATTGAATAACAGTACCCAGTCACGACGTTAATTTCATCAT
6hb_2gap2_C316hb_2gap2_C31 AAGAATGAGTAATCGAATTCGTAATCGATTGCTCCTACAAGAATGAGTAATCGAATTCGTAATCGATTGCTCCTAC
6hb_2gap2_C326hb_2gap2_C32 TTAGTGGCACAGATAAAGTGTAAAGCTCTAAAAGTGCCTTAGTGGCACAGATAAAGTGTAAAGCTCTAAAAGTGCC
6hb_2gap2_C336hb_2gap2_C33 CTGACTAAAGATTAGTACCTTTACTAATAGTAGTACGGATCTGACTAAAGATTAGTACCTTTACTAATAGTAGTACGGAT
6hb_2gap2_C346hb_2gap2_C34 GTGAGGAAAGGAGCAAATGAAAAATCACAGAGGACATCGCGTGAGGAAAGGAGCAAATGAAAAATCACAGAGGACATCGC
6hb_2gap2_C356hb_2gap2_C35 GGCCAGCCATTGCTTTGATTAGTAATGTGAGGCGACAGGAGGCCAGCCATTGCTTTGATTAGTAATGTGAGGCGACAGGA
6hb_2gap2_C366hb_2gap2_C36 AACGGTGGCTGAGAGGCGCAGACGGTATCATCGCCAGCGAAACGGTGGCTGAGAGGCGCAGACGGTATCATCGCCAGCGA
6hb_2gap2_C376hb_2gap2_C37 GCAAATCGCTGATCGAGGTGAATTTCAATCTCCAGGAACAGCAAATCGCTGATCGAGGTGAATTTCAATCTCCAGGAACA
6hb_2gap2_C386hb_2gap2_C38 GATTCAGGCAGGCTCAGAACCGCCACATAATCAGGCATTTGATTCAGGCAGGCTCAGAACCGCCACATAATCAGGCATTT
6hb_2gap2_C396hb_2gap2_C39 GCCAGCGATTGAGACACCACGGAATATATGTTAGAATACCGCCAGCGATTGAGACACCACGGAATATATGTTAGAATACC
6hb_2gap2_C406hb_2gap2_C40 TGGCGCCAATCATAATGCAGAACGCGAGTACCGTAATTTATGGCGCCAATCATAATGCAGAACGCGAGTACCGTAATTTA
6hb_2gap2_C416hb_2gap2_C41 GTGCCCTTTTTCCTTTTTAACCTCCGATTAAGAAATTAATGTGCCCTTTTTCCTTTTTAACCTCCGATTAAGAAATTAAT
6hb_2gap_D016hb_2gap_D01 GGTTGTCCGTGGGAAACGTCACCAATTTTCATCAAATCGGTTGTCCGTGGGAAACGTCACCAATTTTCATCAAATC
6hb_2gap_D026hb_2gap_D02 CGGGAGTGAAATAATCCTTTGCCCGAATCATCAGATTACGGGAGTGAAATAATCCTTTGCCCGAATCATCAGATTA
6hb_2gap_D036hb_2gap_D03 GTAGCGTCTGTCAGGCCGATTAAAGGGCTTTGATAATGGTAGCGTCTGTCAGGCCGATTAAAGGGCTTTGATAATG
6hb_2gap_D046hb_2gap_D04 ATCAGAAAAGGATTCAGCGGAGTGAGTTTCCAGATTGTATCAGAAAAGGATTCAGCGGAGTGAGTTTCCAGATTGT
6hb_2gap_D056hb_2gap_D05 GGCCAAATACCGAACGAACCAGTCACACGACAATTACAGGCCAAATACCGAACGAACCAGTCACACGACAATTACA
6hb_2gap_D066hb_2gap_D06 GTGAAATACCAGTACCACATTCCAATACTGCGGAGAACGTGAAATACCAGTACCACATTCCAATACTGCGGAGAAC
6hb_2gap_D076hb_2gap_D07 CTACGAATACACCCGCGACCTACGTAACAAAGCGAAAGCTACGAATACACCCGCGACCTACGTAACAAAGCGAAAG
6hb_2gap_D086hb_2gap_D08 CATGAAAGCGCGAAACAACGGCTACAGAGGCTTCGGAACATGAAAGCGCGAAACAACGGCTACAGAGGCTTCGGAA
6hb_2gap_D096hb_2gap_D09 GCACCTAGCGTCCCACCGGAAGAATGGAAAGCGATCAAGCACCTAGCGTCCCACCGGAAGAATGGAAAGCGATCAA
6hb_2gap_D106hb_2gap_D10 AGAACGGAGGTTAATTTGCCATTGAGCGCTAATCCTCCAGAACGGAGGTTAATTTGCCATTGAGCGCTAATCCTCC
6hb_2gap_D116hb_2gap_D11 GTATAAATCGCCTCCAGACGACCGCACTCATCGAGGGCGTATAAATCGCCTCCAGACGACCGCACTCATCGAGGGC
6hb_2gap_D126hb_2gap_D12 AAAGCGCATTTTCGAGCAATAAGAATAAACAATGATAAAAAGCGCATTTTCGAGCAATAAGAATAAACAATGATAA
6hb_2gap_D136hb_2gap_D13 AAGTTACCACCAAAGGGTTAGGCGAATTATTCATGCGGAAGTTACCACCAAAGGGTTAGGCGAATTATTCATGCGG
6hb_2gap2_D016hb_2gap2_D01 GAAGTTTCAAAAACCATAAATCAAAAAGACTTCCCAACGAAGTTTCAAAAACCATAAATCAAAAAGACTTCCCAAC
6hb_2gap2_D026hb_2gap2_D02 GTAGACGAGAAGTGTTTTTATAATCAAACATCACAATATTGTAGACGAGAAGTGTTTTTATAATCAAACATCACAATATT
6hb_2gap2_D036hb_2gap2_D03 ACACTATAACAACATTATTACAGGTAAGGCATAAATAGACACTATAACAACATTATTACAGGTAAGGCATAAATAG
6hb_2gap2_D046hb_2gap2_D04 CGATAAAATAATTTTTTCACGTTGAATTAAACAACCGATACGATAAAATAATTTTTTCACGTTGAATTAAACAACCGATA
6hb_2gap2_D056hb_2gap2_D05 AGGAGACCCTCAAGAGAAGGATTAGGGTGTATCCCGCCAGGAGACCCTCAAGAGAAGGATTAGGGTGTATCCCGCC
6hb_2gap2_D066hb_2gap2_D06 ATCAACCAAGACTCCTTATTACGCAGAGTTTATGGGCGACATCAACCAAGACTCCTTATTACGCAGAGTTTATGGGCGAC
6hb_2gap2_D076hb_2gap2_D07 TTTGTGTTTTTATCCTGAATCTTACCAAATAAGAATAATTTGTGTTTTTATCCTGAATCTTACCAAATAAGAATAA
6hb_2gap2_D086hb_2gap2_D08 TGATATTAGAGAAGAGGAAGCCCGAAATCAGGTTGTGTAGTGATATTAGAGAAGAGGAAGCCCGAAATCAGGTTGTGTAG
6hb_2gap2_D096hb_2gap2_D09 ATAACGCAAACATAGCGATAGCTTAGGCTTAGGAGAACGCATAACGCAAACATAGCGATAGCTTAGGCTTAGGAGAACGC
6hb_2gap2_D106hb_2gap2_D10 AGATTGATTCATCAATATAATCCTGAAATAAAGCTTTTAGATTGATTCATCAATATAATCCTGAAATAAAGCTTTT
6hb_2gap2_D116hb_2gap2_D11 CAGATCTCAAATATCAAACGCTCAATCGTCTAAAAATACAGATCTCAAATATCAAACGCTCAATCGTCTAAAAATA
6hb_2gap2_D126hb_2gap2_D12 ATAAATAATAATGCTGTAGAGACTGGATAGCGTCATAATAATAAATAATAATGCTGTAGAGACTGGATAGCGTCATAATA
6hb_2gap2_D136hb_2gap2_D13 GAGATATAACGCAAGAAGTTTTGCCAAGCTGATTTAATGAGATATAACGCAAGAAGTTTTGCCAAGCTGATTTAAT
6hb_2gap2_D146hb_2gap2_D14 GGTAGGACCAACTTTGATCACCCTCAGCAGCTGCGCTTGGTAGGACCAACTTTGATCACCCTCAGCAGCTGCGCTT
6hb_2gap2_D156hb_2gap2_D15 TGGGAAGCCGCCACCAGAAGGTGAATTATCAGCCGGAATGGGAAGCCGCCACCAGAAGGTGAATTATCAGCCGGAA
6hb_2gap2_D166hb_2gap2_D16 GGCGTAGTCCTGAACAATTAATGGTTTGAAAAAATCTTGGCGTAGTCCTGAACAATTAATGGTTTGAAAAAATCTT
6hb_2gap2_D176hb_2gap2_D17 TACATTTTTCAGGTTTAACAACAACTAATAGATCATATCTTACATTTTTCAGGTTTAACAACAACTAATAGATCATATCT
6hb_2gap2_D186hb_2gap2_D18 GCGTTTTGAGAATGGGGTGAGAAAGGCCGCAACTACTTAAGCGTTTTGAGAATGGGGTGAGAAAGGCCGCAACTACTTAA
6hb_2gap2_D196hb_2gap2_D19 GGGAGCTGTGCTTTAACCTGTCGTGCCACTCATGGTTAACGGGAGCTGTGCTTTAACCTGTCGTGCCACTCATGGTTAAC
6hb_2gap2_D206hb_2gap2_D20 CCCGAAAAATCCTTTCACCAGTGAGACGAGAAACCATCACCCCGAAAAATCCTTTCACCAGTGAGACGAGAAACCATCAC
6hb_2gap2_D216hb_2gap2_D21 CAACTTTATTTTCTAAAAGCCCCAAAAATAAAGGCTATCGCAACTTTATTTTCTAAAAGCCCCAAAAATAAAGGCTATCG
6hb_2gap2_D226hb_2gap2_D22 CCCCTAACAGTGTGTTAAATCAGCTCGATAGCAGTCGAGACCCCTAACAGTGTGTTAAATCAGCTCGATAGCAGTCGAGA
6hb_2gap2_D236hb_2gap2_D23 TACCAGAAAGTAAGTGTAGATGGGCGCAATATTGAAACATTACCAGAAAGTAAGTGTAGATGGGCGCAATATTGAAACAT
6hb_2gap2_D246hb_2gap2_D24 TTGCGGCGAGGCAGCTTTCCGGCACCGAATTAATACAAAATTGCGGCGAGGCAGCTTTCCGGCACCGAATTAATACAAAA
6hb_2gap2_D256hb_2gap2_D25 AGTGAATAACAGTACCCAGTCACGACGTTAATTTCATCATAGTGAATAACAGTACCCAGTCACGACGTTAATTTCATCAT
6hb_2gap2_D266hb_2gap2_D26 AAGAATGAGTAATCGAATTCGTAATCGATTGCTCCTACCAAAGAATGAGTAATCGAATTCGTAATCGATTGCTCCTACCA
6hb_2gap2_D276hb_2gap2_D27 GACTAAAGATTAGTACCTTTACTAATAGTAGTACGGATGACTAAAGATTAGTACCTTTACTAATAGTAGTACGGAT
6hb_2gap2_D286hb_2gap2_D28 TTCCATGACCCTCAATCAATATCTGGGCGCTCAGGACATTCCATGACCCTCAATCAATATCTGGGCGCTCAGGACA
6hb_2gap2_D296hb_2gap2_D29 GGCCAGCCATTGCTTTGATTAGTAATGTGAGGCGACAGGGCCAGCCATTGCTTTGATTAGTAATGTGAGGCGACAG
6hb_2gap2_D306hb_2gap2_D30 CCATCTTCTCAACATGTTTTAAATATGGAGACAACAGTTCCCATCTTCTCAACATGTTTTAAATATGGAGACAACAGTTC
6hb_2gap2_D316hb_2gap2_D31 TCAGTGAATCATAACCCTCCATTACCCAAATCAGCACAAGTCAGTGAATCATAACCCTCCATTACCCAAATCAGCACAAG
6hb_2gap2_D326hb_2gap2_D32 GTTGACGAAGAGGACAGATGAACGGTAATCATAAGACTGTTGACGAAGAGGACAGATGAACGGTAATCATAAGACT
6hb_2gap2_D336hb_2gap2_D33 GCAAATCGCTGATCGAGGTGAATTTCAATCTCCAGGAAGCAAATCGCTGATCGAGGTGAATTTCAATCTCCAGGAA
6hb_2gap2_D346hb_2gap2_D34 TCGCATTCCATGACAACAACCATCGCCCTATTTTGTCATATCGCATTCCATGACAACAACCATCGCCCTATTTTGTCATA
6hb_2gap2_D356hb_2gap2_D35 AGGAACGGCCACCAATAGCCCGGAATAGATTAGCGCATGAAGGAACGGCCACCAATAGCCCGGAATAGATTAGCGCATGA
6hb_2gap2_D366hb_2gap2_D36 AGGTCTAAACCACCACCAGAGCCGCCTTGACCGCCATTAGGTCTAAACCACCACCAGAGCCGCCTTGACCGCCATT
6hb_2gap2_D376hb_2gap2_D37 GCCAGCGATTGAGACACCACGGAATATATGTTAGAATAGCCAGCGATTGAGACACCACGGAATATATGTTAGAATA
6hb_2gap2_D386hb_2gap2_D38 AAACCAGAGGGAAGATTTATCCCAATCCAACGCTAAGTTGAAACCAGAGGGAAGATTTATCCCAATCCAACGCTAAGTTG
6hb_2gap2_D396hb_2gap2_D39 GGGAAGGATGAAAATAGCAGCCTTTAAGGCTGCCCGCGCCGGGAAGGATGAAAATAGCAGCCTTTAAGGCTGCCCGCGCC
6hb_2gap2_D406hb_2gap2_D40 CGCCAATGAAAAATAATATCCCATCCCGATTAATTACTCGCCAATGAAAAATAATATCCCATCCCGATTAATTACT
6hb_2gap2_D416hb_2gap2_D41 GTGCCCTTTTTCCTTTTTAACCTCCGATTAAGAAATTAGTGCCCTTTTTCCTTTTTAACCTCCGATTAAGAAATTA
6hb_2gap2_D426hb_2gap2_D42 TTCCTGTGAAACAAGCACGTAAAACAGATTGTTTGTATTCTTCCTGTGAAACAAGCACGTAAAACAGATTGTTTGTATTC
6hb_2gap_E016hb_2gap_E01 CAGTTCTAACTCTAGAACCCTTCTGACCCTAAATGAGGCAGTTCTAACTCTAGAACCCTTCTGACCCTAAATGAGG
6hb_2gap_E026hb_2gap_E02 CGCCAACGCGCGCGCGTACTATGGTTGATTTTACACCGCGCCAACGCGCGCGCGTACTATGGTTGATTTTACACCG
6hb_2gap_E036hb_2gap_E03 AGGCTGAGGGTATGAGATGGTTTAATAGAAAAATCATCAGGCTGAGGGTATGAGATGGTTTAATAGAAAAATCATC
6hb_2gap_E046hb_2gap_E04 TAGGCTAATCGTTCCATTAAACGGGTTTGACCCCCTGATAGGCTAATCGTTCCATTAAACGGGTTTGACCCCCTGA
6hb_2gap_E056hb_2gap_E05 GGAACAAATTTTCCCGTATAACACAGACAGCCCTTAAAGGAACAAATTTTCCCGTATAACACAGACAGCCCTTAAA
6hb_2gap_E066hb_2gap_E06 AAGTTACCGAGCCATTATCATAAACAAACATCAGAGGAAAGTTACCGAGCCATTATCATAAACAAACATCAGAGGA
6hb_2gap_E076hb_2gap_E07 AACAGAGAGCCTTTGAAGCCTTAAATCTTATCCGTGCCAACAGAGAGCCTTTGAAGCCTTAAATCTTATCCGTGCC
6hb_2gap_E086hb_2gap_E08 AACATAATTCTGATATTTAACAACGCATACAAATACGCAACATAATTCTGATATTTAACAACGCATACAAATACGC
6hb_2gap_E096hb_2gap_E09 CAGGAAGAGGTCCATATAACAGTTGATGAGTAACTTTACAGGAAGAGGTCCATATAACAGTTGATGAGTAACTTTA
6hb_2gap_E106hb_2gap_E10 ATTAAAGTGTACAAATAATTCGCGTCCTCAGAAACCGTATTAAAGTGTACAAATAATTCGCGTCCTCAGAAACCGT
6hb_2gap_E116hb_2gap_E11 AAAGAATGAAATGGACGACGACAGTAGACAAAATTTGTAAAGAATGAAATGGACGACGACAGTAGACAAAATTTGT
6hb_2gap_E126hb_2gap_E12 TTAGCTAGCCCCCTTATTAGAGCCAGCAAAAGATGAGCTTAGCTAGCCCCCTTATTAGAGCCAGCAAAAGATGAGC
6hb_2gap_E136hb_2gap_E13 CAACTAGATGATGGCAAGGATTTAGAAGTATTTTAGATCAACTAGATGATGGCAAGGATTTAGAAGTATTTTAGAT
6hb_2gap2_E016hb_2gap2_E01 GTAGACGAGAAGTGTTTTTATAATCAAACATCACAATAGTAGACGAGAAGTGTTTTTATAATCAAACATCACAATA
6hb_2gap2_E026hb_2gap2_E02 CGATAAAATAATTTTTTCACGTTGAATTAAACAACCGACGATAAAATAATTTTTTCACGTTGAATTAAACAACCGA
6hb_2gap2_E036hb_2gap2_E03 ATCAACCAAGACTCCTTATTACGCAGAGTTTATGGGCGATCAACCAAGACTCCTTATTACGCAGAGTTTATGGGCG
6hb_2gap2_E046hb_2gap2_E04 ATAACGCAAACATAGCGATAGCTTAGGCTTAGGAGAACATAACGCAAACATAGCGATAGCTTAGGCTTAGGAGAAC
6hb_2gap2_E056hb_2gap2_E05 TCAGGGCAAGTTTTGCCGGCGAACGTGGCGGGCAAGTTCCTCAGGGCAAGTTTTGCCGGCGAACGTGGCGGGCAAGTTCC
6hb_2gap2_E066hb_2gap2_E06 TCATTTTACCTTTATTCAACCGTTCTGAGGGGGACTAATTCATTTTACCTTTATTCAACCGTTCTGAGGGGGACTAAT
6hb_2gap2_E076hb_2gap2_E07 TTCCATGACCCTCAATCAATATCTGGGCGCTCAGGACATTCCATGACCCTCAATCAATATCTGGGCGCTCAGGACA
6hb_2gap2_E086hb_2gap2_E08 CCGGATTTGCAACAAAAGGAATTACGGAAAGATTCTACCCGGATTTGCAACAAAAGGAATTACGGAAAGATTCTAC
6hb_2gap2_E096hb_2gap2_E09 GAACGGCCACCAATAGCCCGGAATAGATTAGCGCATGAGAACGGCCACCAATAGCCCGGAATAGATTAGCGCATGA
6hb_2gap2_E106hb_2gap2_E10 ACCAGAGGGAAGATTTATCCCAATCCAACGCTAAGTTGACCAGAGGGAAGATTTATCCCAATCCAACGCTAAGTTG
6hb_2gap2_E116hb_2gap2_E11 CCTGTGAAACAAGCACGTAAAACAGATTGTTTGTATTCCCTGTGAAACAAGCACGTAAAACAGATTGTTTGTATTC
6hb_2gap_F016hb_2gap_F01 CATTTGTCGGGACCTCGTTAGCAGTAATAAAAGCTGCCCATTTGTCGGGACCTCGTTAGCAGTAATAAAAGCTGCC
6hb_2gap_F026hb_2gap_F02 AATGTAATATGAATGCGATTTCAAATGCTTTAAGTCAAAATGTAATATGAATGCGATTTCAAATGCTTTAAGTCAA
6hb_2gap_F036hb_2gap_F03 GGGATTAATCAGGTATGGGATTTTGAGGACTAATGTACGGGATTAATCAGGTATGGGATTTTGAGGACTAATGTAC
6hb_2gap_F046hb_2gap_F04 TTCATACGTTGGCAGATAGCCTCACCAGTAGCATAATGTTCATACGTTGGCAGATAGCCTCACCAGTAGCATAATG
6hb_2gap_F056hb_2gap_F05 CCTAAGGGTTTTCATAAATCACCGGAATCATAAGTTGGCCTAAGGGTTTTCATAAATCACCGGAATCATAAGTTGG
6hb_2gap_F066hb_2gap_F06 GTTGAACCAGGCTCGGAACCTATTATAACGGGGAACCAGTTGAACCAGGCTCGGAACCTATTATAACGGGGAACCA
6hb_2gap_F076hb_2gap_F07 AAGAATACATACCGAGGAAACGCAATTACCGAACGTGCAAGAATACATACCGAGGAAACGCAATTACCGAACGTGC
6hb_2gap_F086hb_2gap_F08 GGTACTACAGGGGGGAGAGGCGGTTTTCCAGAACTTGCGGTACTACAGGGGGGAGAGGCGGTTTTCCAGAACTTGC
6hb_2gap_F096hb_2gap_F09 ATAAATTGGGCTGCTATTTTTGAGAGAAACCAAGTAAGATAAATTGGGCTGCTATTTTTGAGAGAAACCAAGTAAG
6hb_2gap_F106hb_2gap_F10 TAAAGACGATCTATTGTAAACGTTAAACGCATAGCTTGTAAAGACGATCTATTGTAAACGTTAAACGCATAGCTTG
6hb_2gap_F116hb_2gap_F11 TTTGCAAGCAAAGCCATTCGCCATTCCAGAGAGAAACGTTTGCAAGCAAAGCCATTCGCCATTCCAGAGAGAAACG
6hb_2gap_F126hb_2gap_F12 TCCCTATTACATCATGCCTGCAGGTCAAGACAATTGGGTCCCTATTACATCATGCCTGCAGGTCAAGACAATTGGG
6hb_2gap_F136hb_2gap_F13 TTATCCGTATTATGTTATCCGCTCACACAGTACAAATTTTATCCGTATTATGTTATCCGCTCACACAGTACAAATT
6hb_2gap2_F016hb_2gap2_F01 TGAACTCACCACCAGCAGAAGATAAATAAAGCAGCAAATGAACTCACCACCAGCAGAAGATAAATAAAGCAGCAAA
6hb_2gap2_F026hb_2gap2_F02 GAACTCAAAGTACAACGGAGATTTGTCAATCATCCAGGGAACTCAAAGTACAACGGAGATTTGTCAATCATCCAGG
6hb_2gap2_F036hb_2gap2_F03 CTCAGATTAGCGTTTGCCATCTTTTCCCTCAGATTGACCTCAGATTAGCGTTTGCCATCTTTTCCCTCAGATTGAC
6hb_2gap2_F046hb_2gap2_F04 AGATATACAGTAATAAGAGAATATAACCTGTTTCGAGCAGATATACAGTAATAAGAGAATATAACCTGTTTCGAGC
6hb_2gap2_F056hb_2gap2_F05 GGTCAAGAACTCAAACTAAAGGAGCGGGCGCAAGGAAGGGTCAAGAACTCAAACTAAAGGAGCGGGCGCAAGGAAG
6hb_2gap2_F066hb_2gap2_F06 AGTGAATCATAACCCTCCATTACCCAAATCAGCACAAGAGTGAATCATAACCCTCCATTACCCAAATCAGCACAAG
6hb_2gap2_F076hb_2gap2_F07 ACTACGTTGCGCCGACAATGTACCGTAACACCCAGCCCACTACGTTGCGCCGACAATGTACCGTAACACCCAGCCC
6hb_2gap2_F086hb_2gap2_F08 AATTTGTTTAGTACCGCCCTCATTAAAGCCACCTCACAAATTTGTTTAGTACCGCCCTCATTAAAGCCACCTCACA
6hb_2gap2_F096hb_2gap2_F09 ATAACTAGAAAATTCATAAGTCAGAGGGTAAGTCTGAAATAACTAGAAAATTCATAAGTCAGAGGGTAAGTCTGAA
6hb_2gap2_F106hb_2gap2_F10 AAGCCTTAACGTCAAAATATTAAACCAAGTACGTCATTAAGCCTTAACGTCAAAATATTAAACCAAGTACGTCATT
6hb_2gap2_F116hb_2gap2_F11 CCTGATATATGTAAATGAAAATCGCGCAGAGAATTGAACCTGATATATGTAAATGAAAATCGCGCAGAGAATTGAA
6hb_2gap2_F126hb_2gap2_F12 CATTTTTCAGGTTTAACAACAACTAATAGATCATATCTCATTTTTCAGGTTTAACAACAACTAATAGATCATATCT
6hb_2gap2_F136hb_2gap2_F13 GTGAGGAAAGGAGCAAATGAAAAATCACAGAGGACATCGTGAGGAAAGGAGCAAATGAAAAATCACAGAGGACATC
6hb_2gap2_F146hb_2gap2_F14 GGTGGCGATCGGCCTTGCTGGTAATAGCGTATTGCTTAGGTGGCGATCGGCCTTGCTGGTAATAGCGTATTGCTTA
6hb_2gap2_F156hb_2gap2_F15 CCATCTTCTCAACATGTTTTAAATATGGAGACAACAGTCCATCTTCTCAACATGTTTTAAATATGGAGACAACAGT
6hb_2gap2_F166hb_2gap2_F16 CCGGATTTGCAACAAAAGGAATTACGGAAAGATTCTACCCGGATTTGCAACAAAAGGAATTACGGAAAGATTCTAC
6hb_2gap2_F176hb_2gap2_F17 AGGTCTTGTTTACCAGACGACGATAAATCTACAGAACGAGGTCTTGTTTACCAGACGACGATAAATCTACAGAACG
6hb_2gap2_F186hb_2gap2_F18 AACGGTGGCTGAGAGGCGCAGACGGTATCATCGCCAGCAACGGTGGCTGAGAGGCGCAGACGGTATCATCGCCAGC
6hb_2gap2_F196hb_2gap2_F19 GCATTCCATGACAACAACCATCGCCCTATTTTGTCATAGCATTCCATGACAACAACCATCGCCCTATTTTGTCATA
6hb_2gap2_F206hb_2gap2_F20 AGCTTATCACCCTCAGAACCGCCACCTGGCCTTTTTGAAGCTTATCACCCTCAGAACCGCCACCTGGCCTTTTTGA
6hb_2gap2_F216hb_2gap2_F21 GATTCAGGCAGGCTCAGAACCGCCACATAATCAGGCATGATTCAGGCAGGCTCAGAACCGCCACATAATCAGGCAT
6hb_2gap2_F226hb_2gap2_F22 CGCACCAATGGTTTACCAGCGCCAAATCGGCCTAAGAGCGCACCAATGGTTTACCAGCGCCAAATCGGCCTAAGAG
6hb_2gap2_F236hb_2gap2_F23 GGGAAGGATGAAAATAGCAGCCTTTAAGGCTGCCCGCGGGGAAGGATGAAAATAGCAGCCTTTAAGGCTGCCCGCG
6hb_2gap2_F246hb_2gap2_F24 TGGCGCCAATCATAATGCAGAACGCGAGTACCGTAATTTGGCGCCAATCATAATGCAGAACGCGAGTACCGTAATT
6hb_2gap2_F256hb_2gap2_F25 CGGGTACCTGATGCAAATCCAATCGCGACTCTAAGAAACGGGTACCTGATGCAAATCCAATCGCGACTCTAAGAAA
6hb_2gap2_F266hb_2gap2_F26 CGAGCCTGTCAGATGAATATACAGTAAATTCCAACAATCGAGCCTGTCAGATGAATATACAGTAAATTCCAACAAT
6hb_3gap_A016hb_3gap_A01 GATAATTGCCTCAACCTAAACGAGAAACACCAAAGGGATAATTGCCTCAACCTAAACGAGAAACACCAAAGG
6hb_3gap_A026hb_3gap_A02 ATAATCATCAAGTAGCGACATCATACATGGCTCCTGATAATCATCAAGTAGCGACATCATACATGGCTCCTG
6hb_3gap_A036hb_3gap_A03 AACGGGGCGATCGCTCAACATAGGAATCATTAGCAAAACGGGGCGATCGCTCAACATAGGAATCATTAGCAA
6hb_3gap_A046hb_3gap_A04 AGCACGGAAGCACAATATTTTAGACTTTACAACACAAGCACGGAAGCACAATATTTTAGACTTTACAACACA
6hb_3gap_A056hb_3gap_A05 TAAAACAGAGAACATTAATTGCGTTTCAGTTGTCACTAAAACAGAGAACATTAATTGCGTTTCAGTTGTCAC
6hb_3gap_A066hb_3gap_A06 TACCGGAAGTTAAAACTAGCATGTCGTACAGAAAGGTACCGGAAGTTAAAACTAGCATGTCGTACAGAAAGG
6hb_3gap_A076hb_3gap_A07 GTCAAAGGCCGGAACAAACGGCGGAGCCAGCAGCCAGTCAAAGGCCGGAACAAACGGCGGAGCCAGCAGCCA
6hb_3gap_A086hb_3gap_A08 AGAGCTGTTTAGATGTGCTGCAAGGTAATTTAATCAAGAGCTGTTTAGATGTGCTGCAAGGTAATTTAATCA
6hb_3gap_A096hb_3gap_A09 AAACAATTCGAGCTTCCATTGAATCCCCCTTAAATCAAACAATTCGAGCTTCCATTGAATCCCCCTTAAATC
6hb_3gap_A106hb_3gap_A10 CCGCGCCAGAATCCTGCTGCGCGTAACCACCAAAGTCCGCGCCAGAATCCTGCTGCGCGTAACCACCAAAGT
6hb_3gap_A116hb_3gap_A11 CGTAGAATTGCGAATACGCCTGTAGCATTCACCCAGCGTAGAATTGCGAATACGCCTGTAGCATTCACCCAG
6hb_3gap_A126hb_3gap_A12 AACAACTGGCATGATTACAAGAATTGAGTTAAATCAAACAACTGGCATGATTACAAGAATTGAGTTAAATCA
6hb_3gap_A136hb_3gap_A13 ATTATAGAATCCTTGAAAAAGAAGATGATGTTTTTCATTATAGAATCCTTGAAAAAGAAGATGATGTTTTTC
6hb_3gap_B016hb_3gap_B01 AAAGTTTTTCTCTTATAAATCACACCCGCCGCGGGCAAAGTTTTTCTCTTATAAATCACACCCGCCGCGGGC
6hb_3gap_B026hb_3gap_B02 TCGGTATTTAAAAAGTTTTGTCGTCAATAGAAAAAATCGGTATTTAAAAAGTTTTGTCGTCAATAGAAAAAA
6hb_3gap_B036hb_3gap_B03 TGAATCCAGCCGTTTTAGCGAAGCCCAATAATCAGGTGAATCCAGCCGTTTTAGCGAAGCCCAATAATCAGG
6hb_3gap_B046hb_3gap_B04 AAAAAAGCTTGTTAACAATTTCATTCGCTATTCGCTAAAAAAGCTTGTTAACAATTTCATTCGCTATTCGCT
6hb_3gap_B056hb_3gap_B05 AATCGATGGCCTTGAGTGTTGTTCCGATGGTGCAGCAATCGATGGCCTTGAGTGTTGTTCCGATGGTGCAGC
6hb_3gap_B066hb_3gap_B06 CAAAATAATGGGAAGGAGCGGAATTACGTTATTAGCCAAAATAATGGGAAGGAGCGGAATTACGTTATTAGC
6hb_3gap_B076hb_3gap_B07 TAACAAACAGGCATCACGCAGAAATGGATTATTCAGTAACAAACAGGCATCACGCAGAAATGGATTATTCAG
6hb_3gap_B086hb_3gap_B08 TAAAACGAACTAACGGAAGGCTTGCCCTGAACTGCTTAAAACGAACTAACGGAAGGCTTGCCCTGAACTGCT
6hb_3gap_B096hb_3gap_B09 ATGACAACAGTGCCTTTAATGAAAGACAGCATTGCTATGACAACAGTGCCTTTAATGAAAGACAGCATTGCT
6hb_3gap_B106hb_3gap_B10 CAGGGAGGCTGAGACTCGTTCCAGTAAGCGGACAGTCAGGGAGGCTGAGACTCGTTCCAGTAAGCGGACAGT
6hb_3gap_B116hb_3gap_B11 AGAAAGGAAACATAAAGGTGCCGTCACCGACTACAAAGAAAGGAAACATAAAGGTGCCGTCACCGACTACAA
6hb_3gap_B126hb_3gap_B12 TAGCACCCAGCTACAATTTTATTTTCATCGGTAGAATAGCACCCAGCTACAATTTTATTTTCATCGGTAGAA
6hb_3gap_B136hb_3gap_B13 TGGAAACCTTGAATTTATCATACCGACCGTGTATATTGGAAACCTTGAATTTATCATACCGACCGTGTATAT
6hb_3gap_B146hb_3gap_B14 AAGATTCATTCATTTTTGCGGATGGGCAAACTAAATAAGATTCATTCATTTTTGCGGATGGGCAAACTAAAT
6hb_3gap_C016hb_3gap_C01 CAGACCATCAATGGTAATAAGTTTTTCTGAAAGGGTCAGACCATCAATGGTAATAAGTTTTTCTGAAAGGGT
6hb_3gap_C026hb_3gap_C02 CAACTTTGAGGAGCAATAGCTATCTAATAACGGCAACAACTTTGAGGAGCAATAGCTATCTAATAACGGCAA
6hb_3gap_C036hb_3gap_C03 AAACGCAAAGCTCAGATATAGAAGGCAAGATTACGAAAACGCAAAGCTCAGATATAGAAGGCAAGATTACGA
6hb_3gap_C046hb_3gap_C04 GAAAAAAGGGGGTATCATATGCGTTCAACATGACAAGAAAAAAGGGGGTATCATATGCGTTCAACATGACAA
6hb_3gap_C056hb_3gap_C05 GAATTTAAAGCGAACCAGACCGGAACTTAGAGAAGTGAATTTAAAGCGAACCAGACCGGAACTTAGAGAAGT
6hb_3gap_C066hb_3gap_C06 ATACTTAGGAATCAGGACGTTGGGATTCAACTAAATATACTTAGGAATCAGGACGTTGGGATTCAACTAAAT
6hb_3gap_C076hb_3gap_C07 TTAGTCGAAATTAAAACACTCATCTAAAATACGAATTTAGTCGAAATTAAAACACTCATCTAAAATACGAAT
6hb_3gap_C086hb_3gap_C08 GAGCAGAGCCAAGACTGTAGCGCGTGAAACCAAACCGAGCAGAGCCAAGACTGTAGCGCGTGAAACCAAACC
6hb_3gap_C096hb_3gap_C09 TGAGAATAGTGCTTCTGTAAATCGTTGAATTACGACTGAGAATAGTGCTTCTGTAAATCGTTGAATTACGAC
6hb_3gap_C106hb_3gap_C10 GAGATTAACACGCGCGAACTGATAGCCTGAAAGCCTGAGATTAACACGCGCGAACTGATAGCCTGAAAGCCT
6hb_3gap_C116hb_3gap_C11 CAAATTATAGTTTAAATGCAATGCCTTCCCAATGCTCAAATTATAGTTTAAATGCAATGCCTTCCCAATGCT
6hb_3gap_C126hb_3gap_C12 CGGCGATAGGGCACTACGTGTAGGGCGCTGGCAAAGCGGCGATAGGGCACTACGTGTAGGGCGCTGGCAAAG
6hb_3gap_C136hb_3gap_C13 GAGTGCCTATTGGATAAGTGTGAGTTTCGTCAAGTTGAGTGCCTATTGGATAAGTGTGAGTTTCGTCAAGTT
6hb_3gap_C146hb_3gap_C14 ACGTCTTTAATCGCCTGCAATAGAGCCGTCAAGAATACGTCTTTAATCGCCTGCAATAGAGCCGTCAAGAAT
6hb_3gap_C156hb_3gap_C15 CCTCAGATTTAAAAGGTGGCATCAATTCTAATTTCTCCTCAGATTTAAAAGGTGGCATCAATTCTAATTTCT
6hb_3gap_D016hb_3gap_D01 GTTGTCCGTGGGAAACGTCACCAATTTTCATCAAATGTTGTCCGTGGGAAACGTCACCAATTTTCATCAAAT
6hb_3gap_D026hb_3gap_D02 GGGAGTGAAATAATCCTTTGCCCGAATCATCAGATTGGGAGTGAAATAATCCTTTGCCCGAATCATCAGATT
6hb_3gap_D036hb_3gap_D03 TAGCGTCTGTCAGGCCGATTAAAGGGCTTTGATAATTAGCGTCTGTCAGGCCGATTAAAGGGCTTTGATAAT
6hb_3gap_D046hb_3gap_D04 TCAGAAAAGGATTCAGCGGAGTGAGTTTCCAGATTGTCAGAAAAGGATTCAGCGGAGTGAGTTTCCAGATTG
6hb_3gap_D056hb_3gap_D05 GCCAAATACCGAACGAACCAGTCACACGACAATTACGCCAAATACCGAACGAACCAGTCACACGACAATTAC
6hb_3gap_D066hb_3gap_D06 TGAAATACCAGTACCACATTCCAATACTGCGGAGAATGAAATACCAGTACCACATTCCAATACTGCGGAGAA
6hb_3gap_D076hb_3gap_D07 TACGAATACACCCGCGACCTACGTAACAAAGCGAAATACGAATACACCCGCGACCTACGTAACAAAGCGAAA
6hb_3gap_D086hb_3gap_D08 ATGAAAGCGCGAAACAACGGCTACAGAGGCTTCGGAATGAAAGCGCGAAACAACGGCTACAGAGGCTTCGGA
6hb_3gap_D096hb_3gap_D09 CACCTAGCGTCCCACCGGAAGAATGGAAAGCGATCACACCTAGCGTCCCACCGGAAGAATGGAAAGCGATCA
6hb_3gap_D106hb_3gap_D10 GAACGGAGGTTAATTTGCCATTGAGCGCTAATCCTCGAACGGAGGTTAATTTGCCATTGAGCGCTAATCCTC
6hb_3gap_D116hb_3gap_D11 TATAAATCGCCTCCAGACGACCGCACTCATCGAGGGTATAAATCGCCTCCAGACGACCGCACTCATCGAGGG
6hb_3gap_D126hb_3gap_D12 AAGCGCATTTTCGAGCAATAAGAATAAACAATGATAAAGCGCATTTTCGAGCAATAAGAATAAACAATGATA
6hb_3gap_D136hb_3gap_D13 AGTTACCACCAAAGGGTTAGGCGAATTATTCATGCGAGTTACCACCAAAGGGTTAGGCGAATTATTCATGCG
6hb_3gap_E016hb_3gap_E01 AGTTCTAACTCTAGAACCCTTCTGACCCTAAATGAGAGTTCTAACTCTAGAACCCTTCTGACCCTAAATGAG
6hb_3gap_E026hb_3gap_E02 GCCAACGCGCGCGCGTACTATGGTTGATTTTACACCGCCAACGCGCGCGCGTACTATGGTTGATTTTACACC
6hb_3gap_E036hb_3gap_E03 GGCTGAGGGTATGAGATGGTTTAATAGAAAAATCATGGCTGAGGGTATGAGATGGTTTAATAGAAAAATCAT
6hb_3gap_E046hb_3gap_E04 AGGCTAATCGTTCCATTAAACGGGTTTGACCCCCTGAGGCTAATCGTTCCATTAAACGGGTTTGACCCCCTG
6hb_3gap_E056hb_3gap_E05 GAACAAATTTTCCCGTATAACACAGACAGCCCTTAAGAACAAATTTTCCCGTATAACACAGACAGCCCTTAA
6hb_3gap_E066hb_3gap_E06 AGTTACCGAGCCATTATCATAAACAAACATCAGAGGAGTTACCGAGCCATTATCATAAACAAACATCAGAGG
6hb_3gap_E076hb_3gap_E07 ACAGAGAGCCTTTGAAGCCTTAAATCTTATCCGTGCACAGAGAGCCTTTGAAGCCTTAAATCTTATCCGTGC
6hb_3gap_E086hb_3gap_E08 ACATAATTCTGATATTTAACAACGCATACAAATACGACATAATTCTGATATTTAACAACGCATACAAATACG
6hb_3gap_E096hb_3gap_E09 AGGAAGAGGTCCATATAACAGTTGATGAGTAACTTTAGGAAGAGGTCCATATAACAGTTGATGAGTAACTTT
6hb_3gap_E106hb_3gap_E10 TTAAAGTGTACAAATAATTCGCGTCCTCAGAAACCGTTAAAGTGTACAAATAATTCGCGTCCTCAGAAACCG
6hb_3gap_E116hb_3gap_E11 AAGAATGAAATGGACGACGACAGTAGACAAAATTTGAAGAATGAAATGGACGACGACAGTAGACAAAATTTG
6hb_3gap_E126hb_3gap_E12 TAGCTAGCCCCCTTATTAGAGCCAGCAAAAGATGAGTAGCTAGCCCCCTTATTAGAGCCAGCAAAAGATGAG
6hb_3gap_E136hb_3gap_E13 AACTAGATGATGGCAAGGATTTAGAAGTATTTTAGAAACTAGATGATGGCAAGGATTTAGAAGTATTTTAGA
6hb_3gap_F016hb_3gap_F01 ATTTGTCGGGACCTCGTTAGCAGTAATAAAAGCTGCATTTGTCGGGACCTCGTTAGCAGTAATAAAAGCTGC
6hb_3gap_F026hb_3gap_F02 ATGTAATATGAATGCGATTTCAAATGCTTTAAGTCAATGTAATATGAATGCGATTTCAAATGCTTTAAGTCA
6hb_3gap_F036hb_3gap_F03 GGATTAATCAGGTATGGGATTTTGAGGACTAATGTAGGATTAATCAGGTATGGGATTTTGAGGACTAATGTA
6hb_3gap_F046hb_3gap_F04 TCATACGTTGGCAGATAGCCTCACCAGTAGCATAATTCATACGTTGGCAGATAGCCTCACCAGTAGCATAAT
6hb_3gap_F056hb_3gap_F05 CTAAGGGTTTTCATAAATCACCGGAATCATAAGTTGCTAAGGGTTTTCATAAATCACCGGAATCATAAGTTG
6hb_3gap_F066hb_3gap_F06 TTGAACCAGGCTCGGAACCTATTATAACGGGGAACCTTGAACCAGGCTCGGAACCTATTATAACGGGGAACC
6hb_3gap_F076hb_3gap_F07 AGAATACATACCGAGGAAACGCAATTACCGAACGTGAGAATACATACCGAGGAAACGCAATTACCGAACGTG
6hb_3gap_F086hb_3gap_F08 GTACTACAGGGGGGAGAGGCGGTTTTCCAGAACTTGGTACTACAGGGGGGAGAGGCGGTTTTCCAGAACTTG
6hb_3gap_F096hb_3gap_F09 TAAATTGGGCTGCTATTTTTGAGAGAAACCAAGTAATAAATTGGGCTGCTATTTTTGAGAGAAACCAAGTAA
6hb_3gap_F106hb_3gap_F10 AAAGACGATCTATTGTAAACGTTAAACGCATAGCTTAAAGACGATCTATTGTAAACGTTAAACGCATAGCTT
6hb_3gap_F116hb_3gap_F11 TTGCAAGCAAAGCCATTCGCCATTCCAGAGAGAAACTTGCAAGCAAAGCCATTCGCCATTCCAGAGAGAAAC
6hb_3gap_F126hb_3gap_F12 CCCTATTACATCATGCCTGCAGGTCAAGACAATTGGCCCTATTACATCATGCCTGCAGGTCAAGACAATTGG
6hb_3gap_F136hb_3gap_F13 TATCCGTATTATGTTATCCGCTCACACAGTACAAATTATCCGTATTATGTTATCCGCTCACACAGTACAAAT
10HB design10HB design
NameName Sequence (5'→3')Sequence (5'→3')
10hb_00110hb_001 AAGCTGAGAATAGAAATATGTACCCCAATAGCGACGATAAAAAAAGCTGAGAATAGAAATATGTACCCCAATAGCGACGATAAAAA
10hb_00210hb_002 AAACCGGCGGATTGACCCAGAAGGATTTGCCAAAGGGAAAGTGAAACCGGCGGATTGACCCAGAAGGATTTGCCAAAGGGAAAGTG
10hb_00310hb_003 TTTTATTACAATAATTGAATACCAAGTTTCGCTATTAGTTTTATTACAATAATTGAATACCAAGTTTCGCTATTAG
10hb_00410hb_004 CGTCACCGCAGTTCCAGACCAGGCGGGATACCGATAGTGGCACGTCACCGCAGTTCCAGACCAGGCGGGATACCGATAGTGGCA
10hb_00510hb_005 AATATTCAATGGCAAGGTAGCTGATATGCCGGAAACCAGAATAATATTCAATGGCAAGGTAGCTGATATGCCGGAAACCAGAAT
10hb_00610hb_006 CTATGGTTAAATACCGAGATAATACAATTTAACAATTTTCCGCTATGGTTAAATACCGAGATAATACAATTTAACAATTTTCCG
10hb_00710hb_007 CATCAGACAAAAGTGCCCGAACCTATTATTCTCCCTCAGTTTCCATCAGACAAAAGTGCCCGAACCTATTATTCTCCCTCAGTTTC
10hb_00810hb_008 CACCAATATTGGTACTGGCTCCTCAAGAGAAGGGAATAGACTGCACCAATATTGGTACTGGCTCCTCAAGAGAAGGGAATAGACTG
10hb_00910hb_009 TTGGTTTAGGACGGGTAACATCGCCCACGCATGTATCGGTGTCTTGGTTTAGGACGGGTAACATCGCCCACGCATGTATCGGTGTC
10hb_01010hb_010 TTATAAAGGAATTTGAGGCAGGGAGTTAAAGGTGAAAATATTTTTATAAAGGAATTTGAGGCAGGGAGTTAAAGGTGAAAATATTT
10hb_01110hb_011 GATTAAGATTGGGCTTGCTCGTTTAAAAGACAGCATCGTGTCGATTAAGATTGGGCTTGCTCGTTTAAAAGACAGCATCGTGTC
10hb_01210hb_012 GTCATTTTGCAGTAATACCTGAGTAATGTGTAAAGAGAACAGGGTCATTTTGCAGTAATACCTGAGTAATGTGTAAAGAGAACAGG
10hb_01310hb_013 TGACTTTAGACAGCATAACGGAGACAGTCAAATACAAAGTATTTGACTTTAGACAGCATAACGGAGACAGTCAAATACAAAGTATT
10hb_01410hb_014 GGACTTTGGGGCTCTAGACAGGCTGCGCAACTGCCTCAGTGGCGGACTTTGGGGCTCTAGACAGGCTGCGCAACTGCCTCAGTGGC
10hb_01510hb_015 TGTTAGGGAGCTAAAACGTTCGCTATTACGCCTAACCGTGAGTTGTTAGGGAGCTAAAACGTTCGCTATTACGCCTAACCGTGAGT
10hb_01610hb_016 TTTTTATAGGCAAAATCCGTGGCGTCTAAGTTGGGTAATCACTTTTTATAGGCAAAATCCGTGGCGTCTAAGTTGGGTAATCAC
10hb_01710hb_017 GGAATAGGGCGCCAGCAGAAATCAACAGTTGATAAAAGTCAGAGGAATAGGGCGCCAGCAGAAATCAACAGTTGATAAAAGTCAGA
10hb_01810hb_018 AGCGCACACCCCGGTCAGTCTTTAGGAGCACTCGACAACTATAAGCGCACACCCCGGTCAGTCTTTAGGAGCACTCGACAACTATA
10hb_01910hb_019 GAACAACCAATATAGGTCTGGAAACAGTACATGCAAAAGTTTCGAACAACCAATATAGGTCTGGAAACAGTACATGCAAAAGTTTC
10hb_02010hb_020 CTGTCGGGTATATTAAGAGCTTCTGTAAATCGACACTGTCGGGTATATTAAGAGCTTCTGTAAATCGACA
10hb_02110hb_021 AAGGGCATTTTCGAGCCAAATACCGTTCTGACAAGGGCATTTTCGAGCCAAATACCGTTCTGAC
10hb_02210hb_022 GTACCGACACTCATGAAAACATAATTAAGTACCGACACTCATGAAAACATAATTAA
10hb_02310hb_023 ATCAAGTTTCCACCAGGGAGGTTGAGGCAGGAGATCAAGTTTCCACCAGGGAGGTTGAGGCAGGAG
10hb_02410hb_024 GTAGGAGCCACGATTGGCCTTGATATTTTAACAGGGAGGAAGAGTAGGAGCCACGATTGGCCTTGATATTTTAACAGGGAGGAAGA
10hb_02510hb_025 TAGCCCGCCTCCCAGAATGGAAAGCCATACATTGAATTAGAAATAGCCCGCCTCCCAGAATGGAAAGCCATACATTGAATTAGAAA
10hb_02610hb_026 AAGACAGGCGCCAAAAGAATACACTAATGCCATTCATCACATGAAGACAGGCGCCAAAAGAATACACTAATGCCATTCATCACATG
10hb_02710hb_027 AACGACTGACCTATACCAAGCGCGAACTTTTTGATACATACCGAACGACTGACCTATACCAAGCGCGAACTTTTTGATACATACCG
10hb_02810hb_028 ACGATAGCCGGCGCCTGATAAATTGGAACGAGACACTATAAGAACGATAGCCGGCGCCTGATAAATTGGAACGAGACACTATAAGA
10hb_02910hb_029 TTCACCAATTCTACATTTCGCAAATGGAGAAGAAATAGCAAACTTCACCAATTCTACATTTCGCAAATGGAGAAGAAATAGCAAAC
10hb_03010hb_030 CCGGAGTACGGATTTGGGGCGCGAGTCGGTTGGTAATAGATAACCGGAGTACGGATTTGGGGCGCGAGTCGGTTGGTAATAGATAA
10hb_03110hb_031 AATTAATATAAAGTAGTAGCATTAATTAGCAAGAATCGTCTGAAATTAATATAAAGTAGTAGCATTAATTAGCAAGAATCGTCTGA
10hb_03210hb_032 GGGCGGGTGGTGTTTCCTGTGTGAACGGGTACCCCAAATAAAAGGGCGGGTGGTGTTTCCTGTGTGAACGGGTACCCCAAATAAAA
10hb_03310hb_033 TTGCCGGCCAACATACGAGCCGGAAGTGCCAAAATCGGAGTCATTGCCGGCCAACATACGAGCCGGAAGTGCCAAAATCGGAGTCA
10hb_03410hb_034 ATCCTTTCCAGATGAGTGAGCTAACCGCCAGGGGAAAGCTTATATCCTTTCCAGATGAGTGAGCTAACCGCCAGGGGAAAGCTTAT
10hb_03510hb_035 GAGTCAGTCACCAGAGATAGAACCCAAAATCTAAAGGAGTTTCGAGTCAGTCACCAGAGATAGAACCCAAAATCTAAAGGAGTTTC
10hb_03610hb_036 AATAGCTCAATGCACAGACAATATTACCGCCTCTGCGCGGCTAAATAGCTCAATGCACAGACAATATTACCGCCTCTGCGCGGCTA
10hb_03710hb_037 AGAATTGCAACGAACTGATAGCCCTACCAGCACAGGGCGTTTTAGAATTGCAACGAACTGATAGCCCTACCAGCACAGGGCGTTTT
10hb_03810hb_038 AAGCATGCGTTCTATATGTAAATGCCTACCTTTACGAGCAGAAAAGCATGCGTTCTATATGTAAATGCCTACCTTTACGAGCAGAA
10hb_03910hb_039 TTTACACCGGAACGCGAGAAAACTTAAGAGTCTATCATTATAGTTTACACCGGAACGCGAGAAAACTTAAGAGTCTATCATTATAG
10hb_04010hb_040 CTCACGCGTTTTTAGCAAGGCCGGACCGATTGGGGGTCAGAAACTCACGCGTTTTTAGCAAGGCCGGACCGATTGGGGGTCAGAAA
10hb_04110hb_041 GGAAGTTTGCCTGGGAATTAGAGCCTTAAAGGGGCTTTTATTAGGAAGTTTGCCTGGGAATTAGAGCCTTAAAGGGGCTTTTATTA
10hb_04210hb_042 AGACGTAATCTAATCTACGTTAATAAGAAAGACTACGAATGCGAGACGTAATCTAATCTACGTTAATAAGAAAGACTACGAATGCG
10hb_04310hb_043 CCGATAACAAATAAGAACTGGCTCATAATGCACATGAGGATATCCGATAACAAATAAGAACTGGCTCATAATGCACATGAGGATAT
10hb_04410hb_044 TACTGAAACACTTAATTTCAACTTTAAGAGCAGGTAGCATGCGTACTGAAACACTTAATTTCAACTTTAAGAGCAGGTAGCATGCG
10hb_04510hb_045 ATTCAATATCGAGCGGATTGCATCAAAAACCACCTTTATCATAATTCAATATCGAGCGGATTGCATCAAAAACCACCTTTATCATA
10hb_04610hb_046 CTAAAAGCAAACAAAAATCAGGTCTAGAGGGGTACCAAAATTCCTAAAAGCAAACAAAAATCAGGTCTAGAGGGGTACCAAAATTC
10hb_04710hb_047 GCTGGCTCCTTCAAATGCTTTAAACTACTGCGAATTAAGCAATGCTGGCTCCTTCAAATGCTTTAAACTACTGCGAATTAAGCAAT
10hb_04810hb_048 GCCAAACAGCTTCAAAGGGCGAAAAACCATCACGAGCTCGGCAGCCAAACAGCTTCAAAGGGCGAAAAACCATCACGAGCTCGGCA
10hb_04910hb_049 GAATAGCAAGCTTTGGAACAAGAGTAGCACTAGCTTGCAAGGGGAATAGCAAGCTTTGGAACAAGAGTAGCACTAGCTTGCAAGGG
10hb_05010hb_050 CCGCTGTTTGAAATCAAAAGAATAGTTGACGGGTTTTCCGAAACCGCTGTTTGAAATCAAAAGAATAGTTGACGGGTTTTCCGAAA
10hb_05110hb_051 TCACAAAAGAGCCAGAATCCTGAGAGAAAGCGAAAGCATATCATCACAAAAGAGCCAGAATCCTGAGAGAAAGCGAAAGCATATCA
10hb_05210hb_052 TGACCTTCTTTAACAGGAGGCCGATGGTCACGGCAACAGTGAGTGACCTTCTTTAACAGGAGGCCGATGGTCACGGCAACAGTGAG
10hb_05310hb_053 GCCACTCAAACACGTATAACGTGCTGCCGCTAGAAGATAAATAGCCACTCAAACACGTATAACGTGCTGCCGCTAGAAGATAAATA
10hb_05410hb_054 TCATCAACGCTTTTATCAACAATAGCCTAATTTTTAACCCATTTCATCAACGCTTTTATCAACAATAGCCTAATTTTTAACCCATT
10hb_05510hb_055 TAAAACAACGCACGACAATAAACAACTTTCCTAATAGTGTATATAAAACAACGCACGACAATAAACAACTTTCCTAATAGTGTATA
10hb_05610hb_056 CCTCCAGGAGTACGGAAAGCAACATATAAAAGCCGTAACGTGTCCTCCAGGAGTACGGAAAGCAACATATAAAAGCCGTAACGTGT
10hb_05710hb_057 AAAGAGGATAGGCTGGCACCGGAACCAGCTGAATTTAAAACGAAAGAGGATAGGCTGGCACCGGAACCAGCTGAATTTAAAACG
10hb_05810hb_058 CCCCCATTAAAATACCACCGGAATACCCAAAAAAAGTTTTTTACCCCCATTAAAATACCACCGGAATACCCAAAAAAAGTTTTTTA
10hb_05910hb_059 ATTTCAGAGGCTTACGAGGAACAAAGTTACCAGTATGGGCTCCATTTCAGAGGCTTACGAGGAACAAAGTTACCAGTATGGGCTCC
10hb_06010hb_060 GCTATGACCCTAAAGAAGAAGCCCAATAATAACCAAAAATCGAGCTATGACCCTAAAGAAGAAGCCCAATAATAACCAAAAATCGA
10hb_06110hb_061 ATTCGCCTCAGTGGATAGTTGAGCGCTAATATACGTTAAGCTAATTCGCCTCAGTGGATAGTTGAGCGCTAATATACGTTAAGCTA
10hb_06210hb_062 TCATAGCTTTTTCTTTTGCGGATGGCTTATAAATCATAATGGTCATAGCTTTTTCTTTTGCGGATGGCTTATAAATCATAATGG
10hb_06310hb_063 ATTCAGGTCGATCGAGGTCTTTACAGAGAGAATCGCGTCGAAGATTCAGGTCGATCGAGGTCTTTACAGAGAGAATCGCGTCGAAG
10hb_06410hb_064 TGGGGACGTTGCCCCGATAGAAACGATTTTTTTGTGAGCGCATTGGGGACGTTGCCCCGATAGAAACGATTTTTTTGTGAGCGCAT
10hb_06510hb_065 AAGACTGAGAGCTGGCAATTACCAACGCTAACTGATTATTTGAAAGACTGAGAGCTGGCAATTACCAACGCTAACTGATTATTTGA
10hb_06610hb_066 CTTTGGTGAGGGCCGCGCTTAGTTGCTATTTTTTTGGATTCGTCTTTGGTGAGGGCCGCGCTTAGTTGCTATTTTTTTGGATTCGT
10hb_06710hb_067 TTATATAAATACAAATTATCCAGAACAATCGCCATTAATGGGTTATATAAATACAAATTATCCAGAACAATCGCCATTAATGGG
10hb_06810hb_068 CAAGCAAAATCCAATAATGAAGGCTTATCCGGCGTAGATAAGACAAGCAAAATCCAATAATGAAGGCTTATCCGGCGTAGATAAGA
10hb_06910hb_069 TTAAAGCTTAGTAAACCATAGGAATCATTACCGTACCTTCGCGTTAAAGCTTAGTAAACCATAGGAATCATTACCGTACCTTCGCG
10hb_07010hb_070 TAACAGGGCGAATTTTGTCACAATCCCCTCATAACCTAACAGGGCGAATTTTGTCACAATCCCCTCATAACC
10hb_07110hb_071 CCAACCTACCACATTATCGCAGTATGTTAGCGTAGCATAAGTCCAACCTACCACATTATCGCAGTATGTTAGCGTAGCATAAGT
10hb_07210hb_072 TCGTAATCCAGGCCCACCGGGAGAATTAACTTCAGCTCTTAATCGTAATCCAGGCCCACCGGGAGAATTAACTTCAGCTCTTAA
10hb_07310hb_073 GCTTAGGTAAAAATAATAACCTCCCGACTTGATATCAATGAGGCTTAGGTAAAAATAATAACCTCCCGACTTGATATCAATGAG
10hb_07410hb_074 GCCACCCTCATATTTCGGTATAAAATTGACAAACCACCGCCACCCTCATATTTCGGTATAAAATTGACAAACCACC
10hb_07510hb_075 AAATTTACATCGGGAGAATTCATCGAGTACCGCAAAAATTTACATCGGGAGAATTCATCGAGTACCGCAA
10hb_07610hb_076 GCCACCAAATAGAAGCGCCAAGATAGCAACAGAGCCACCAAATAGAAGCGCCAAGATAGCAACAGA
10hb_nogap_A0110hb_nogap_A01 CACCACGGAAAGCCCAAGTTTAGTACCGCCAGAAACATGTGCCACCACGGAAAGCCCAAGTTTAGTACCGCCAGAAACATGTGC
10hb_nogap_A0210hb_nogap_A02 ATACATACATCCAGTACTATAAGTATAGCCCGATTAGGGATGATACATACATCCAGTACTATAAGTATAGCCCGATTAGGGATG
10hb_nogap_A0310hb_nogap_A03 ATTAAGACTCTCATAGTTGAATTTCTTAAACAGCTTATTCCAATTAAGACTCTCATAGTTGAATTTCTTAAACAGCTTATTCCA
10hb_nogap_A0410hb_nogap_A04 AGGAAACGCAACGTTAGAGGAGCCTTTAATTAACCGATAAGTAGGAAACGCAACGTTAGAGGAGCCTTTAATTAACCGATAAGT
10hb_nogap_A0510hb_nogap_A05 AAAGTAAGCACTTTCAATAATTTTTTCACGTCCGCTTTACGAAAGTAAGCACTTTCAATAATTTTTTCACGTCCGCTTTACG
10hb_nogap_A0610hb_nogap_A06 GAAATCCGTAGTTTGACCAAGGATACCAGACTATCTTACCGGAAATCCGTAGTTTGACCAAGGATACCAGACTATCTTACCG
10hb_nogap_A0710hb_nogap_A07 AATGAAATAGCGGTTGAACTAGCATGTCAATGAACCCTTTCAAATGAAATAGCGGTTGAACTAGCATGTCAATGAACCCTTTCA
10hb_nogap_A0810hb_nogap_A08 CCCACAAGAAAAGCAAAAGTCTGGAGCAAACGGTAAAGAACCCCACAAGAAAAGCAAAAGTCTGGAGCAAACGGTAAAGAAC
10hb_nogap_A0910hb_nogap_A09 ACAAAGTCAGTCGCATTATTTTTGAGAGATCTCACCATCAAACAAAGTCAGTCGCATTATTTTTGAGAGATCTCACCATCAA
10hb_nogap_A1010hb_nogap_A10 CAGGGAAGCGAGGAACGTTTCCGGCACCGCTTCTGGAAATTTCAGGGAAGCGAGGAACGTTTCCGGCACCGCTTCTGGAAATTT
10hb_nogap_A1110hb_nogap_A11 AAAATGAAAACCAGCTTCGACGACAGTATCGGTTGGGATGCAAAATGAAAACCAGCTTCGACGACAGTATCGGTTGGGATGC
10hb_nogap_A1210hb_nogap_A12 TTATCCCAATCGGATTCAGATGGGCGCATCGAGCTGGCCAGTTATCCCAATCGGATTCAGATGGGCGCATCGAGCTGGCCAG
10hb_nogap_A1310hb_nogap_A13 ATTAATTGGGGACATTCCTGAACCAGAAAGGGTTACAAAATATTAATTGGGGACATTCCTGAACCAGAAAGGGTTACAAAAT
10hb_nogap_A1410hb_nogap_A14 CAGAGCCTAAGCGGAATCGGAACAAAGAAACACCCTCACACCCAGAGCCTAAGCGGAATCGGAACAAAGAAACACCCTCACACC
10hb_nogap_A1510hb_nogap_A15 CAATTTTATCTCATCAAAACGTTATTAATTTAAGGAATTGCCAATTTTATCTCATCAAAACGTTATTAATTTAAGGAATTGC
10hb_nogap_A1610hb_nogap_A16 GAAGCCTTAAATGGAAGCTTTACAAACAATTAACAACTAAAGAAGCCTTAAATGGAAGCTTTACAAACAATTAACAACTAAA
10hb_nogap_A1710hb_nogap_A17 CGCGAGGCGTAAAACAGAGAAAACAAAATTAATTACTTAATTCGCGAGGCGTAAAACAGAGAAAACAAAATTAATTACTTAATT
10hb_nogap_A1810hb_nogap_A18 CAAGCAAATCTCAGATGTTTCAATTACCTGAAAATCAAAATCAAGCAAATCTCAGATGTTTCAATTACCTGAAAATCAAAAT
10hb_nogap_B0110hb_nogap_B01 CTTGTCAGACCACCCTCAGAGCCGGCCTTTACCAATGAAACCTTGTCAGACCACCCTCAGAGCCGGCCTTTACCAATGAAAC
10hb_nogap_B0210hb_nogap_B02 ATAATTAAAGCCTCAGAGCCGCCAGGTCATATCACCAGTAGATAATTAAAGCCTCAGAGCCGCCAGGTCATATCACCAGTAG
10hb_nogap_B0310hb_nogap_B03 TTCCAGCGATAACTTTGAAAGAGGTATTCATAGTCAGGACGTTCCAGCGATAACTTTGAAAGAGGTATTCATAGTCAGGACG
10hb_nogap_B0410hb_nogap_B04 GCTAGTATCATAACGAGGCGCAGACGAATAAGGTGAATTACCGCTAGTATCATAACGAGGCGCAGACGAATAAGGTGAATTACC
10hb_nogap_B0510hb_nogap_B05 ATTATATTTTCTGTCTGGAAGTTTCCTTCAAAGACTATTATAATTATATTTTCTGTCTGGAAGTTTCCTTCAAAGACTATTATA
10hb_nogap_B0610hb_nogap_B06 TAAATACTAATTGCTGTAGCTCAACGATTAGAAAAACGAGAATAAATACTAATTGCTGTAGCTCAACGATTAGAAAAACGAGAA
10hb_nogap_B0710hb_nogap_B07 CTGCCACACAACGCGCGGGGAGAGGGCCTGGCTAAAGAACGTCTGCCACACAACGCGCGGGGAGAGGGCCTGGCTAAAGAACGT
10hb_nogap_B0810hb_nogap_B08 TCACGTGCCTATCGGGAAACCTGTCTGCCCCATAGGGTTGAGTCACGTGCCTATCGGGAAACCTGTCTGCCCCATAGGGTTGAG
10hb_nogap_B0910hb_nogap_B09 CACGATACGTGCGTCTGAAATGGATAAATTAAATTTTAGACACACGATACGTGCGTCTGAAATGGATAAATTAAATTTTAGACA
10hb_nogap_B1010hb_nogap_B10 CAGAAATGCGCAGGAAAAACGCTCATCACTTGTTAGAATCAGCAGAAATGCGCAGGAAAAACGCTCATCACTTGTTAGAATCAG
10hb_nogap_B1110hb_nogap_B11 TTATACAAAGAATCATAATTACTAGAATTGAGAGCTAATGCATTATACAAAGAATCATAATTACTAGAATTGAGAGCTAATGCA
10hb_nogap_B1210hb_nogap_B12 CGATTTTCATCACCGTGTGATAAATGGCAGAGTAAAGTAATTCGATTTTCATCACCGTGTGATAAATGGCAGAGTAAAGTAATT
10hb_nogap_C0110hb_nogap_C01 TTTCATAATCAAAATCTCTAACGGAAACTTGAGCCATTATCTTTTCATAATCAAAATCTCTAACGGAAACTTGAGCCATTATCT
10hb_nogap_C0210hb_nogap_C02 TAAGAGGTCATTTTTCAATCAGGGCGTTGAATCCCCCTTTGATAAGAGGTCATTTTTCAATCAGGGCGTTGAATCCCCCTTTGA
10hb_nogap_C0310hb_nogap_C03 GGCCTTGCTGGTAATCTCTGAACAAGGCTTTGACGAGCTATCGGCCTTGCTGGTAATCTCTGAACAAGGCTTTGACGAGCTATC
10hb_nogap_C0410hb_nogap_C04 ACGCATTAGATGCGAACGAGTAGAAAGGAAGCCCGAAAGACACGCATTAGATGCGAACGAGTAGAAAGGAAGCCCGAAAGAC
10hb_nogap_C0510hb_nogap_C05 TTGTGGCCAAACGACCAGTAATAATCATCAGTGAGGCCACCTTGTGGCCAAACGACCAGTAATAATCATCAGTGAGGCCACC
10hb_nogap_C0610hb_nogap_C06 AGGGATAGCATAAGTTTCATTCAAAACGTCAGCGTCAGACTAGGGATAGCATAAGTTTCATTCAAAACGTCAGCGTCAGACT
10hb_nogap_C0710hb_nogap_C07 AGTTTCGTCAAAAGGTGTTATTCAAGCAAAAGCCCCCTTATAGTTTCGTCAAAAGGTGTTATTCAAGCAAAAGCCCCCTTAT
10hb_nogap_C0810hb_nogap_C08 CAGACAGCCCCTTATTATACAGGTAAACGAAGACCTTCATCCAGACAGCCCCTTATTATACAGGTAAACGAAGACCTTCATC
10hb_nogap_C0910hb_nogap_C09 GTCTTTCCAGATAATAAATTCAACTTATACCTACCCAAATCGTCTTTCCAGATAATAAATTCAACTTATACCTACCCAAATC
10hb_nogap_C1010hb_nogap_C10 TGCTAAACAAGATAGCCGCATAGTAATCATTGCTTGCCCTGTGCTAAACAAGATAGCCGCATAGTAATCATTGCTTGCCCTG
10hb_nogap_C1110hb_nogap_C11 AAGATTGTATTTGAGTTTTTTGCCTTACCCTGCGAACCAGAAAGATTGTATTTGAGTTTTTTGCCTTACCCTGCGAACCAGA
10hb_nogap_C1210hb_nogap_C12 TTGTTAAAATAGGGTAACGTCCAAAGTTCAGGAGTACCTTTTTGTTAAAATAGGGTAACGTCCAAAGTTCAGGAGTACCTTT
10hb_nogap_C1310hb_nogap_C13 TTTAACCAATCATTAGATACGTGAACCGTCTCCAGTGAGACTTTAACCAATCATTAGATACGTGAACCGTCTCCAGTGAGAC
10hb_nogap_C1410hb_nogap_C14 CTTCCTGTAGTAGCAGCGCCGTAACCACTATCCTGAGAGAGCTTCCTGTAGTAGCAGCGCCGTAACCACTATCCTGAGAGAG
10hb_nogap_C1510hb_nogap_C15 AACAACCCGTCCAAATATTAGAGCCCCGAGAGCAGGCGAAAAACAACCCGTCCAAATATTAGAGCCCCGAGAGCAGGCGAAA
10hb_nogap_C1610hb_nogap_C16 TGATGGCAATCTGAATCGTGTAGCTAAAGGGCCGTTGTAGCTGATGGCAATCTGAATCGTGTAGCTAAAGGGCCGTTGTAGC
10hb_nogap_C1710hb_nogap_C17 CTTCTGAATAATCAAGATTAATGCTTCCTCGCCTGAGTAGACTTCTGAATAATCAAGATTAATGCTTCCTCGCCTGAGTAGA
10hb_nogap_C1810hb_nogap_C18 ATTTGCACGTTTTAGCGATCCCATATAAGTCTACCAGTATAATTTGCACGTTTTAGCGATCCCATATAAGTCTACCAGTATA
10hb_nogap_C1910hb_nogap_C19 AGGTTTAACGAGATATACGGCTGTCATGTTCAATCGCCATAAGGTTTAACGAGATATACGGCTGTCATGTTCAATCGCCATA
10hb_nogap_D0110hb_nogap_D01 AACCAGATGGTCAGAACGAGTAGTATTCGACCTGCTCCATGTAACCAGATGGTCAGAACGAGTAGTATTCGACCTGCTCCATGT
10hb_nogap_D0210hb_nogap_D02 CGAACCTTATATGGTGGTTCCGAAAAACGTTGCGCTCACTGCCGAACCTTATATGGTGGTTCCGAAAAACGTTGCGCTCACTGC
10hb_nogap_D0310hb_nogap_D03 AACTAAAGGAATTGCCTCAGCAGCGAAAATTTTTACAGGAACAACTAAAGGAATTGCCTCAGCAGCGAAAATTTTTACAGGAAC
10hb_nogap_D0410hb_nogap_D04 TGGGATAGGTCACGCTGCAAGGCGATAAATATCAACACGTAATGGGATAGGTCACGCTGCAAGGCGATAAATATCAACACGTAA
10hb_nogap_D0510hb_nogap_D05 ATCACCGTACGCTGAGATAATAAGTTCACAAAACCGCCACCATCACCGTACGCTGAGATAATAAGTTCACAAAACCGCCACC
10hb_nogap_D0610hb_nogap_D06 GCCGTCGAGAGCTCAGTTAAGCGTGCAGTCTAGCCACCACCGCCGTCGAGAGCTCAGTTAAGCGTGCAGTCTAGCCACCACC
10hb_nogap_D0710hb_nogap_D07 TCAGCTTGCTCAACAACAATACGTAAAACACAACGGTGTACTCAGCTTGCTCAACAACAATACGTAAAACACAACGGTGTAC
10hb_nogap_D0810hb_nogap_D08 AAAAAAAAGGAGGCTTGACTAAAGAACAAAGCATAAGGGAAAAAAAAAAGGAGGCTTGACTAAAGAACAAAGCATAAGGGAA
10hb_nogap_D0910hb_nogap_D09 TGAACGGTAAGCAATGCTTTTGCGGGTCAATATAACAGTTGTGAACGGTAAGCAATGCTTTTGCGGGTCAATATAACAGTTG
10hb_nogap_D1010hb_nogap_D10 TCAGGTCATTGAAAGGCAGCTAAACTGAAAAAAATATGCAATCAGGTCATTGAAAGGCAGCTAAACTGAAAAAAATATGCAA
10hb_nogap_D1110hb_nogap_D11 TGCCGGAGAGACCGTTCCAAAGAACATCCAAGAGCTTAATTTGCCGGAGAGACCGTTCCAAAGAACATCCAAGAGCTTAATT
10hb_nogap_D1210hb_nogap_D12 ATCGCACTCCCGCCATTGGATCCCATTGTTACGTATTGGGCATCGCACTCCCGCCATTGGATCCCATTGTTACGTATTGGGC
10hb_nogap_D1310hb_nogap_D13 CTGCCAGTTTGGGCCTCACGGCCAGCATAAACTGCATTAATCTGCCAGTTTGGGCCTCACGGCCAGCATAAACTGCATTAAT
10hb_nogap_D1410hb_nogap_D14 GTAACATTATAGTTGGCCAAATGATTCTGACATTGGCAGATGTAACATTATAGTTGGCCAAATGATTCTGACATTGGCAGAT
10hb_nogap_D1510hb_nogap_D15 ATTAAATCCTTAAAATATATTAACTTTGAATACCTACATTTATTAAATCCTTAAAATATATTAACTTTGAATACCTACATTT
10hb_nogap_D1610hb_nogap_D16 GATTTAGAAGGTCAATAACGAACCAAAACATATTACCGCCAGATTTAGAAGGTCAATAACGAACCAAAACATATTACCGCCA
10hb_nogap_D1710hb_nogap_D17 TGATGAAACATTTTTAATGAGAGATGATGCACTGTTTAGTATGATGAAACATTTTTAATGAGAGATGATGCACTGTTTAGTA
10hb_nogap_D1810hb_nogap_D18 CAGAGGCGAATAACCTTCGCTGAGTTTCAAATAAATAAGAACAGAGGCGAATAACCTTCGCTGAGTTTCAAATAAATAAGAA
10hb_nogap_E0110hb_nogap_E01 GGTAATTACCATCATCGGCATTTTCCCCTCAGACAAATAAATGGTAATTACCATCATCGGCATTTTCCCCTCAGACAAATAAAT
10hb_nogap_E0210hb_nogap_E02 GAGAGAAGAAATGACAAGAACCGGAACAGATGTCATCTTTGAGAGAGAAGAAATGACAAGAACCGGAACAGATGTCATCTTTGA
10hb_nogap_E0310hb_nogap_E03 GCCAGCGATTTGCTGCTCATTCAGTGGTCAATTACAACGGAGGCCAGCGATTTGCTGCTCATTCAGTGGTCAATTACAACGGAG
10hb_nogap_E0410hb_nogap_E04 AGGCGAAGCAACGTTTTAATTCGAGATTCCATAACCTGTTTAAGGCGAAGCAACGTTTTAATTCGAGATTCCATAACCTGTTTA
10hb_nogap_E0510hb_nogap_E05 AATGCATAAATCTCCAACAGGTCAGATGTTTTGGTGGCATCAAATGCATAAATCTCCAACAGGTCAGATGTTTTGGTGGCATCA
10hb_nogap_E0610hb_nogap_E06 GTTTTCCAACGGATTGCCCTTCACCCGGTTTGTCCGCTCACAGTTTTCCAACGGATTGCCCTTCACCCGGTTTGTCCGCTCACA
10hb_nogap_E0710hb_nogap_E07 CTAAGTTCCAGGGTCCACGCTGGTTGTGCCAGGTGTAAAGCCCTAAGTTCCAGGGTCCACGCTGGTTGTGCCAGGTGTAAAGCC
10hb_nogap_E0810hb_nogap_E08 GCGCCGGTACGTCTGTCCATCACGCTATTTACCTGAAAGCGTGCGCCGGTACGTCTGTCCATCACGCTATTTACCTGAAAGCGT
10hb_nogap_E0910hb_nogap_E09 CCACGGAGCTAGATTAGTAATAACATGGAAATGGCTATTAGTCCACGGAGCTAGATTAGTAATAACATGGAAATGGCTATTAGT
10hb_nogap_E1010hb_nogap_E10 TAGAGCGCCTGCAACAGTAGGGCTTAAAAAGCAATCCAATCGTAGAGCGCCTGCAACAGTAGGGCTTAAAAAGCAATCCAATCG
10hb_nogap_E1110hb_nogap_E11 AGAACCAGACGCAACATGTAATTTAAAGGCGTTATATTTTAGAGAACCAGACGCAACATGTAATTTAAAGGCGTTATATTTTAG
10hb_nogap_F0110hb_nogap_F01 GTATTAAGAGTCAGGAGTAGGAACCCATGTAAAACGCAGAAGTATTAAGAGTCAGGAGTAGGAACCCATGTAAAACGCAGAA
10hb_nogap_F0210hb_nogap_F02 GCGGGGTTTTGGGTTGAAAACTACAACGCCTAAACGTATCACGCGGGGTTTTGGGTTGAAAACTACAACGCCTAAACGTATCAC
10hb_nogap_F0310hb_nogap_F03 CCGACAATGATTCGAGGTAGCGTAACGATCTGAACTGGGTTCCGACAATGATTCGAGGTAGCGTAACGATCTGAACTGGGTT
10hb_nogap_F0410hb_nogap_F04 TCGGTCGCTGCTCCAAATAAATGAATTTTCTGAAGGAAAACTCGGTCGCTGCTCCAAATAAATGAATTTTCTGAAGGAAAAC
10hb_nogap_F0510hb_nogap_F05 GGATCGTCACCGAATAACAGTTTCAGCGGAGCCTTTTTCATGGATCGTCACCGAATAACAGTTTCAGCGGAGCCTTTTTCAT
10hb_nogap_F0610hb_nogap_F06 TATTTTAAATTCGTAAATAATCAGAAAAGCCGAGCAAGGAGTATTTTAAATTCGTAAATAATCAGAAAAGCCGAGCAAGGAG
10hb_nogap_F0710hb_nogap_F07 AAAAGGGTGAGCCTGAGTATTTAAATTGTAACAGAGAGTAAAAAAGGGTGAGCCTGAGTATTTAAATTGTAACAGAGAGTAA
10hb_nogap_F0810hb_nogap_F08 ATGATATTCAGGTAGCTAAATTTTTGTTAAAGAACACCCATAATGATATTCAGGTAGCTAAATTTTTGTTAAAGAACACCCATA
10hb_nogap_F0910hb_nogap_F09 AAGCGCCATTAGCCAGCCCATCAAAAATAATTAACATACAAAAGCGCCATTAGCCAGCCCATCAAAAATAATTAACATACAA
10hb_nogap_F1010hb_nogap_F10 CGATCGGTGCGAGGGGATCATCAACATTAAAGTTTAACACCCGATCGGTGCGAGGGGATCATCAACATTAAAGTTTAACACC
10hb_nogap_F1110hb_nogap_F11 GGGGGATGTGTTGGTGTTCCGTGGGAACAAAAGCCATACGGGGGGGATGTGTTGGTGTTCCGTGGGAACAAAAGCCATACGG
10hb_nogap_F1210hb_nogap_F12 ATATCTGGTCCATTTTGTATCATCATATTCCGAGCGTCCGGATATCTGGTCCATTTTGTATCATCATATTCCGAGCGTCCGG
10hb_nogap_F1310hb_nogap_F13 GAAGGTTATCTTGCCCGTATAATCCTGATTGGCACCCATAAGAAGGTTATCTTGCCCGTATAATCCTGATTGGCACCCATAA
10hb_nogap_F1410hb_nogap_F14 GATTAGAGCCTATTAGAGGTTAGAACCTACCCGGGAGGCGTAGATTAGAGCCTATTAGAGGTTAGAACCTACCCGGGAGGCGTA
10hb_nogap_F1510hb_nogap_F15 TGAATTACCTAACATCAAAATAAAGAAATTGTATTCTAATGTGAATTACCTAACATCAAAATAAAGAAATTGTATTCTAATG
10hb_nogap_F1610hb_nogap_F16 TGTGAGTGAATTATTCAAATATACAGTAACAGCGCCCACCATGTGAGTGAATTATTCAAATATACAGTAACAGCGCCCACCA
10hb_4gap_00410hb_4gap_004 ACCGCAGTTCCAGACCAGGCGGGATACCGATAGTGGCAACCGCAGTTCCAGACCAGGCGGGATACCGATAGTGGCA
10hb_4gap_00510hb_4gap_005 TTCAATGGCAAGGTAGCTGATATGCCGGAAACCAGAATTTCAATGGCAAGGTAGCTGATATGCCGGAAACCAGAAT
10hb_4gap_00610hb_4gap_006 GGTTAAATACCGAGATAATACAATTTAACAATTTTCCGGGTTAAATACCGAGATAATACAATTTAACAATTTTCCG
10hb_4gap_01110hb_4gap_011 AAGATTGGGCTTGCTCGTTTAAAAGACAGCATCGTGTCAAGATTGGGCTTGCTCGTTTAAAAGACAGCATCGTGTC
10hb_4gap_01610hb_4gap_016 TATAGGCAAAATCCGTGGCGTCTAAGTTGGGTAATCACTATAGGCAAAATCCGTGGCGTCTAAGTTGGGTAATCAC
10hb_4gap_02110hb_4gap_021 GCATTTTCGAGCCAAATACCGTTCTGACGCATTTTCGAGCCAAATACCGTTCTGAC
10hb_4gap_02310hb_4gap_023 AGTTTCCACCAGGGAGGTTGAGGCAGGAGAGTTTCCACCAGGGAGGTTGAGGCAGGAG
10hb_4gap_05710hb_4gap_057 GAGGATAGGCTGGCACCGGAACCAGCTGAATTTAAAACGAGGATAGGCTGGCACCGGAACCAGCTGAATTTAAAAC
10hb_4gap_06210hb_4gap_062 AGCTTTTTCTTTTGCGGATGGCTTATAAATCATAATGGAGCTTTTTCTTTTGCGGATGGCTTATAAATCATAATGG
10hb_4gap_06710hb_4gap_067 ATAAATACAAATTATCCAGAACAATCGCCATTAATGGGATAAATACAAATTATCCAGAACAATCGCCATTAATGGG
10hb_4gap_07010hb_4gap_070 AGGGCGAATTTTGTCACAATCCCCTCATAACCAGGGCGAATTTTGTCACAATCCCCTCATAACC
10hb_4gap_07110hb_4gap_071 CCTACCACATTATCGCAGTATGTTAGCGTAGCATAAGTCCTACCACATTATCGCAGTATGTTAGCGTAGCATAAGT
10hb_4gap_07210hb_4gap_072 AATCCAGGCCCACCGGGAGAATTAACTTCAGCTCTTAAAATCCAGGCCCACCGGGAGAATTAACTTCAGCTCTTAA
10hb_4gap_07310hb_4gap_073 AGGTAAAAATAATAACCTCCCGACTTGATATCAATGAGAGGTAAAAATAATAACCTCCCGACTTGATATCAATGAG
10hb_4gap_07410hb_4gap_074 CCCTCATATTTCGGTATAAAATTGACAAACCACCCCCTCATATTTCGGTATAAAATTGACAAACCACC
10hb_4gap_07510hb_4gap_075 TTACATCGGGAGAATTCATCGAGTACCGCAATTACATCGGGAGAATTCATCGAGTACCGCAA
10hb_gap_A0110hb_gap_A01 CGGAAAGCCCAAGTTTAGTACCGCCAGAAACATGTGCCGGAAAGCCCAAGTTTAGTACCGCCAGAAACATGTGC
10hb_gap_A0210hb_gap_A02 TACATCCAGTACTATAAGTATAGCCCGATTAGGGATGTACATCCAGTACTATAAGTATAGCCCGATTAGGGATG
10hb_gap_A0310hb_gap_A03 GACTCTCATAGTTGAATTTCTTAAACAGCTTATTCCAGACTCTCATAGTTGAATTTCTTAAACAGCTTATTCCA
10hb_gap_A0410hb_gap_A04 ACGCAACGTTAGAGGAGCCTTTAATTAACCGATAAGTACGCAACGTTAGAGGAGCCTTTAATTAACCGATAAGT
10hb_gap_A0510hb_gap_A05 AAGCACTTTCAATAATTTTTTCACGTCCGCTTTACGAAGCACTTTCAATAATTTTTTCACGTCCGCTTTACG
10hb_gap_A0610hb_gap_A06 GAAATCCGTAGTTTGACCAAGGATACCAGACTATCTGAAATCCGTAGTTTGACCAAGGATACCAGACTATCT
10hb_gap_A0710hb_gap_A07 AATAGCGGTTGAACTAGCATGTCAATGAACCCTTTCAAATAGCGGTTGAACTAGCATGTCAATGAACCCTTTCA
10hb_gap_A0810hb_gap_A08 AAGAAAAGCAAAAGTCTGGAGCAAACGGTAAAGAACAAGAAAAGCAAAAGTCTGGAGCAAACGGTAAAGAAC
10hb_gap_A0910hb_gap_A09 GTCAGTCGCATTATTTTTGAGAGATCTCACCATCAAGTCAGTCGCATTATTTTTGAGAGATCTCACCATCAA
10hb_gap_A1010hb_gap_A10 AAGCGAGGAACGTTTCCGGCACCGCTTCTGGAAATTTAAGCGAGGAACGTTTCCGGCACCGCTTCTGGAAATTT
10hb_gap_A1110hb_gap_A11 GAAAACCAGCTTCGACGACAGTATCGGTTGGGATGCGAAAACCAGCTTCGACGACAGTATCGGTTGGGATGC
10hb_gap_A1210hb_gap_A12 CCAATCGGATTCAGATGGGCGCATCGAGCTGGCCAGCCAATCGGATTCAGATGGGCGCATCGAGCTGGCCAG
10hb_gap_A1310hb_gap_A13 ATTAATTGGGGACATTCCTGAACCAGAAAGGGTTACATTAATTGGGGACATTCCTGAACCAGAAAGGGTTAC
10hb_gap_A1410hb_gap_A14 CCTAAGCGGAATCGGAACAAAGAAACACCCTCACACCCCTAAGCGGAATCGGAACAAAGAAACACCCTCACACC
10hb_gap_A1510hb_gap_A15 TTATCTCATCAAAACGTTATTAATTTAAGGAATTGCTTATCTCATCAAAACGTTATTAATTTAAGGAATTGC
10hb_gap_A1610hb_gap_A16 CTTAAATGGAAGCTTTACAAACAATTAACAACTAAACTTAAATGGAAGCTTTACAAACAATTAACAACTAAA
10hb_gap_A1710hb_gap_A17 GGCGTAAAACAGAGAAAACAAAATTAATTACTTAATTGGCGTAAAACAGAGAAAACAAAATTAATTACTTAATT
10hb_gap_A1810hb_gap_A18 AAATCTCAGATGTTTCAATTACCTGAAAATCAAAATAAATCTCAGATGTTTCAATTACCTGAAAATCAAAAT
10hb_gap2_A0110hb_gap2_A01 CGGAAAGCCCAAGTTTAGTACCGCCAGAAACATGTGCGGAAAGCCCAAGTTTAGTACCGCCAGAAACATGTG
10hb_gap2_A0210hb_gap2_A02 TACATCCAGTACTATAAGTATAGCCCGATTAGGGATTACATCCAGTACTATAAGTATAGCCCGATTAGGGAT
10hb_gap2_A0410hb_gap2_A04 ACGCAACGTTAGAGGAGCCTTTAATTAACCGATAAGACGCAACGTTAGAGGAGCCTTTAATTAACCGATAAG
10hb_gap2_A0610hb_gap2_A06 TCCGTAGTTTGACCAAGGATACCAGACTATCTTCCGTAGTTTGACCAAGGATACCAGACTATCT
10hb_gap2_A0710hb_gap2_A07 AATAGCGGTTGAACTAGCATGTCAATGAACCCTAATAGCGGTTGAACTAGCATGTCAATGAACCCT
10hb_gap2_A1310hb_gap2_A13 ATTGGGGACATTCCTGAACCAGAAAGGGTTACATTGGGGACATTCCTGAACCAGAAAGGGTTAC
10hb_gap2_A1410hb_gap2_A14 CCTAAGCGGAATCGGAACAAAGAAACACCCTCACCTAAGCGGAATCGGAACAAAGAAACACCCTCA
10hb_gap_B0110hb_gap_B01 CTTGTCAGACCACCCTCAGAGCCGGCCTTTACCAATCTTGTCAGACCACCCTCAGAGCCGGCCTTTACCAAT
10hb_gap_B0210hb_gap_B02 ATAATTAAAGCCTCAGAGCCGCCAGGTCATATCACCATAATTAAAGCCTCAGAGCCGCCAGGTCATATCACC
10hb_gap_B0310hb_gap_B03 TTCCAGCGATAACTTTGAAAGAGGTATTCATAGTCATTCCAGCGATAACTTTGAAAGAGGTATTCATAGTCA
10hb_gap_B0410hb_gap_B04 GCTAGTATCATAACGAGGCGCAGACGAATAAGGTGAAGCTAGTATCATAACGAGGCGCAGACGAATAAGGTGAA
10hb_gap_B0510hb_gap_B05 ATTATATTTTCTGTCTGGAAGTTTCCTTCAAAGACTAATTATATTTTCTGTCTGGAAGTTTCCTTCAAAGACTA
10hb_gap_B0610hb_gap_B06 TAAATACTAATTGCTGTAGCTCAACGATTAGAAAAACTAAATACTAATTGCTGTAGCTCAACGATTAGAAAAAC
10hb_gap_B0710hb_gap_B07 CTGCCACACAACGCGCGGGGAGAGGGCCTGGCTAAAGCTGCCACACAACGCGCGGGGAGAGGGCCTGGCTAAAG
10hb_gap_B0810hb_gap_B08 TCACGTGCCTATCGGGAAACCTGTCTGCCCCATAGGGTCACGTGCCTATCGGGAAACCTGTCTGCCCCATAGGG
10hb_gap_B0910hb_gap_B09 CACGATACGTGCGTCTGAAATGGATAAATTAAATTTTCACGATACGTGCGTCTGAAATGGATAAATTAAATTTT
10hb_gap_B1010hb_gap_B10 CAGAAATGCGCAGGAAAAACGCTCATCACTTGTTAGACAGAAATGCGCAGGAAAAACGCTCATCACTTGTTAGA
10hb_gap_B1110hb_gap_B11 TTATACAAAGAATCATAATTACTAGAATTGAGAGCTATTATACAAAGAATCATAATTACTAGAATTGAGAGCTA
10hb_gap_B1210hb_gap_B12 CGATTTTCATCACCGTGTGATAAATGGCAGAGTAAAGCGATTTTCATCACCGTGTGATAAATGGCAGAGTAAAG
10hb_gap2_B0110hb_gap2_B01 GTCAGACCACCCTCAGAGCCGGCCTTTACCAATGTCAGACCACCCTCAGAGCCGGCCTTTACCAAT
10hb_gap2_B0210hb_gap2_B02 ATTAAAGCCTCAGAGCCGCCAGGTCATATCACCATTAAAGCCTCAGAGCCGCCAGGTCATATCACC
10hb_gap2_B0310hb_gap2_B03 CAGCGATAACTTTGAAAGAGGTATTCATAGTCACAGCGATAACTTTGAAAGAGGTATTCATAGTCA
10hb_gap2_B0410hb_gap2_B04 GTATCATAACGAGGCGCAGACGAATAAGGTGAAGTATCATAACGAGGCGCAGACGAATAAGGTGAA
10hb_gap2_B0510hb_gap2_B05 TATTTTCTGTCTGGAAGTTTCCTTCAAAGACTATATTTTCTGTCTGGAAGTTTCCTTCAAAGACTA
10hb_gap2_B0610hb_gap2_B06 TACTAATTGCTGTAGCTCAACGATTAGAAAAACTACTAATTGCTGTAGCTCAACGATTAGAAAAAC
10hb_gap2_B0710hb_gap2_B07 CACACAACGCGCGGGGAGAGGGCCTGGCTAAAGCACACAACGCGCGGGGAGAGGGCCTGGCTAAAG
10hb_gap2_B0810hb_gap2_B08 GTGCCTATCGGGAAACCTGTCTGCCCCATAGGGGTGCCTATCGGGAAACCTGTCTGCCCCATAGGG
10hb_gap2_B0910hb_gap2_B09 ATACGTGCGTCTGAAATGGATAAATTAAATTTTATACGTGCGTCTGAAATGGATAAATTAAATTTT
10hb_gap2_B1010hb_gap2_B10 AATGCGCAGGAAAAACGCTCATCACTTGTTAGAAATGCGCAGGAAAAACGCTCATCACTTGTTAGA
10hb_gap2_B1110hb_gap2_B11 ACAAAGAATCATAATTACTAGAATTGAGAGCTAACAAAGAATCATAATTACTAGAATTGAGAGCTA
10hb_gap2_B1210hb_gap2_B12 TTTCATCACCGTGTGATAAATGGCAGAGTAAAGTTTCATCACCGTGTGATAAATGGCAGAGTAAAG
10hb_gap_C0110hb_gap_C01 TAATCAAAATCTCTAACGGAAACTTGAGCCATTATCTTAATCAAAATCTCTAACGGAAACTTGAGCCATTATCT
10hb_gap_C0210hb_gap_C02 GGTCATTTTTCAATCAGGGCGTTGAATCCCCCTTTGAGGTCATTTTTCAATCAGGGCGTTGAATCCCCCTTTGA
10hb_gap_C0310hb_gap_C03 TGCTGGTAATCTCTGAACAAGGCTTTGACGAGCTATCTGCTGGTAATCTCTGAACAAGGCTTTGACGAGCTATC
10hb_gap_C0410hb_gap_C04 ACGCATTAGATGCGAACGAGTAGAAAGGAAGCCCGAACGCATTAGATGCGAACGAGTAGAAAGGAAGCCCGA
10hb_gap_C0510hb_gap_C05 TTGTGGCCAAACGACCAGTAATAATCATCAGTGAGGTTGTGGCCAAACGACCAGTAATAATCATCAGTGAGG
10hb_gap_C0610hb_gap_C06 TAGCATAAGTTTCATTCAAAACGTCAGCGTCTAGCATAAGTTTCATTCAAAACGTCAGCGTC
10hb_gap_C0710hb_gap_C07 CGTCAAAAGGTGTTATTCAAGCAAAAGCCCCCGTCAAAAGGTGTTATTCAAGCAAAAGCCCC
10hb_gap_C0810hb_gap_C08 AGCCCCTTATTATACAGGTAAACGAAGACCTAGCCCCTTATTATACAGGTAAACGAAGACCT
10hb_gap_C0910hb_gap_C09 TCCAGATAATAAATTCAACTTATACCTACCCTCCAGATAATAAATTCAACTTATACCTACCC
10hb_gap_C1010hb_gap_C10 AACAAGATAGCCGCATAGTAATCATTGCTTGAACAAGATAGCCGCATAGTAATCATTGCTTG
10hb_gap_C1110hb_gap_C11 TGTATTTGAGTTTTTTGCCTTACCCTGCGAATGTATTTGAGTTTTTTGCCTTACCCTGCGAA
10hb_gap_C1210hb_gap_C12 AAAATAGGGTAACGTCCAAAGTTCAGGAGTAAAAATAGGGTAACGTCCAAAGTTCAGGAGTA
10hb_gap_C1310hb_gap_C13 CCAATCATTAGATACGTGAACCGTCTCCAGTCCAATCATTAGATACGTGAACCGTCTCCAGT
10hb_gap_C1410hb_gap_C14 TGTAGTAGCAGCGCCGTAACCACTATCCTGATGTAGTAGCAGCGCCGTAACCACTATCCTGA
10hb_gap_C1510hb_gap_C15 CCCGTCCAAATATTAGAGCCCCGAGAGCAGGCCCGTCCAAATATTAGAGCCCCGAGAGCAGG
10hb_gap_C1610hb_gap_C16 GCAATCTGAATCGTGTAGCTAAAGGGCCGTTGCAATCTGAATCGTGTAGCTAAAGGGCCGTT
10hb_gap_C1710hb_gap_C17 GAATAATCAAGATTAATGCTTCCTCGCCTGAGAATAATCAAGATTAATGCTTCCTCGCCTGA
10hb_gap_C1810hb_gap_C18 CACGTTTTAGCGATCCCATATAAGTCTACCACACGTTTTAGCGATCCCATATAAGTCTACCA
10hb_gap_C1910hb_gap_C19 TAACGAGATATACGGCTGTCATGTTCAATCGTAACGAGATATACGGCTGTCATGTTCAATCG
10hb_gap_D0110hb_gap_D01 AACCAGATGGTCAGAACGAGTAGTATTCGACCTGCTCAACCAGATGGTCAGAACGAGTAGTATTCGACCTGCTC
10hb_gap_D0210hb_gap_D02 CGAACCTTATATGGTGGTTCCGAAAAACGTTGCGCTCCGAACCTTATATGGTGGTTCCGAAAAACGTTGCGCTC
10hb_gap_D0310hb_gap_D03 AAGGAATTGCCTCAGCAGCGAAAATTTTTACAGGAACAAGGAATTGCCTCAGCAGCGAAAATTTTTACAGGAAC
10hb_gap_D0410hb_gap_D04 TAGGTCACGCTGCAAGGCGATAAATATCAACACGTAATAGGTCACGCTGCAAGGCGATAAATATCAACACGTAA
10hb_gap_D0510hb_gap_D05 CGTACGCTGAGATAATAAGTTCACAAAACCGCGTACGCTGAGATAATAAGTTCACAAAACCG
10hb_gap_D0610hb_gap_D06 CGAGAGCTCAGTTAAGCGTGCAGTCTAGCCACGAGAGCTCAGTTAAGCGTGCAGTCTAGCCA
10hb_gap_D0710hb_gap_D07 TTGCTCAACAACAATACGTAAAACACAACGGTTGCTCAACAACAATACGTAAAACACAACGG
10hb_gap_D0810hb_gap_D08 AAAGGAGGCTTGACTAAAGAACAAAGCATAAAAAGGAGGCTTGACTAAAGAACAAAGCATAA
10hb_gap_D0910hb_gap_D09 GGTAAGCAATGCTTTTGCGGGTCAATATAACGGTAAGCAATGCTTTTGCGGGTCAATATAAC
10hb_gap_D1010hb_gap_D10 TCATTGAAAGGCAGCTAAACTGAAAAAAATATCATTGAAAGGCAGCTAAACTGAAAAAAATA
10hb_gap_D1110hb_gap_D11 GAGAGACCGTTCCAAAGAACATCCAAGAGCTGAGAGACCGTTCCAAAGAACATCCAAGAGCT
10hb_gap_D1210hb_gap_D12 ACTCCCGCCATTGGATCCCATTGTTACGTATACTCCCGCCATTGGATCCCATTGTTACGTAT
10hb_gap_D1310hb_gap_D13 AGTTTGGGCCTCACGGCCAGCATAAACTGCAAGTTTGGGCCTCACGGCCAGCATAAACTGCA
10hb_gap_D1410hb_gap_D14 ATTATAGTTGGCCAAATGATTCTGACATTGGATTATAGTTGGCCAAATGATTCTGACATTGG
10hb_gap_D1510hb_gap_D15 ATCCTTAAAATATATTAACTTTGAATACCTAATCCTTAAAATATATTAACTTTGAATACCTA
10hb_gap_D1610hb_gap_D16 AGAAGGTCAATAACGAACCAAAACATATTACAGAAGGTCAATAACGAACCAAAACATATTAC
10hb_gap_D1710hb_gap_D17 AAACATTTTTAATGAGAGATGATGCACTGTTAAACATTTTTAATGAGAGATGATGCACTGTT
10hb_gap_D1810hb_gap_D18 GCGAATAACCTTCGCTGAGTTTCAAATAAATGCGAATAACCTTCGCTGAGTTTCAAATAAAT
10hb_gap2_D0110hb_gap2_D01 AGATGGTCAGAACGAGTAGTATTCGACCTGCTCAGATGGTCAGAACGAGTAGTATTCGACCTGCTC
10hb_gap2_D0210hb_gap2_D02 CCTTATATGGTGGTTCCGAAAAACGTTGCGCTCCCTTATATGGTGGTTCCGAAAAACGTTGCGCTC
10hb_gap_E0110hb_gap_E01 GGTAATTACCATCATCGGCATTTTCCCCTCAGACAAAGGTAATTACCATCATCGGCATTTTCCCCTCAGACAAA
10hb_gap_E0210hb_gap_E02 GAGAGAAGAAATGACAAGAACCGGAACAGATGTCATCGAGAGAAGAAATGACAAGAACCGGAACAGATGTCATC
10hb_gap_E0310hb_gap_E03 GCCAGCGATTTGCTGCTCATTCAGTGGTCAATTACAAGCCAGCGATTTGCTGCTCATTCAGTGGTCAATTACAA
10hb_gap_E0410hb_gap_E04 AGGCGAAGCAACGTTTTAATTCGAGATTCCATAACCTAGGCGAAGCAACGTTTTAATTCGAGATTCCATAACCT
10hb_gap_E0510hb_gap_E05 AATGCATAAATCTCCAACAGGTCAGATGTTTTGGTGGAATGCATAAATCTCCAACAGGTCAGATGTTTTGGTGG
10hb_gap_E0610hb_gap_E06 GTTTTCCAACGGATTGCCCTTCACCCGGTTTGTCCGCGTTTTCCAACGGATTGCCCTTCACCCGGTTTGTCCGC
10hb_gap_E0710hb_gap_E07 CTAAGTTCCAGGGTCCACGCTGGTTGTGCCAGGTGTACTAAGTTCCAGGGTCCACGCTGGTTGTGCCAGGTGTA
10hb_gap_E0810hb_gap_E08 GCGCCGGTACGTCTGTCCATCACGCTATTTACCTGAAGCGCCGGTACGTCTGTCCATCACGCTATTTACCTGAA
10hb_gap_E0910hb_gap_E09 CCACGGAGCTAGATTAGTAATAACATGGAAATGGCTACCACGGAGCTAGATTAGTAATAACATGGAAATGGCTA
10hb_gap_E1010hb_gap_E10 TAGAGCGCCTGCAACAGTAGGGCTTAAAAAGCAATCCTAGAGCGCCTGCAACAGTAGGGCTTAAAAAGCAATCC
10hb_gap_E1110hb_gap_E11 AGAACCAGACGCAACATGTAATTTAAAGGCGTTATATAGAACCAGACGCAACATGTAATTTAAAGGCGTTATAT
10hb_gap2_E0110hb_gap2_E01 ATTACCATCATCGGCATTTTCCCCTCAGACAAAATTACCATCATCGGCATTTTCCCCTCAGACAAA
10hb_gap2_E0210hb_gap2_E02 GAAGAAATGACAAGAACCGGAACAGATGTCATCGAAGAAATGACAAGAACCGGAACAGATGTCATC
10hb_gap2_E0310hb_gap2_E03 GCGATTTGCTGCTCATTCAGTGGTCAATTACAAGCGATTTGCTGCTCATTCAGTGGTCAATTACAA
10hb_gap2_E0410hb_gap2_E04 GAAGCAACGTTTTAATTCGAGATTCCATAACCTGAAGCAACGTTTTAATTCGAGATTCCATAACCT
10hb_gap2_E0510hb_gap2_E05 CATAAATCTCCAACAGGTCAGATGTTTTGGTGGCATAAATCTCCAACAGGTCAGATGTTTTGGTGG
10hb_gap2_E0610hb_gap2_E06 TCCAACGGATTGCCCTTCACCCGGTTTGTCCGCTCCAACGGATTGCCCTTCACCCGGTTTGTCCGC
10hb_gap2_E0710hb_gap2_E07 GTTCCAGGGTCCACGCTGGTTGTGCCAGGTGTAGTTCCAGGGTCCACGCTGGTTGTGCCAGGTGTA
10hb_gap2_E0810hb_gap2_E08 CGGTACGTCTGTCCATCACGCTATTTACCTGAACGGTACGTCTGTCCATCACGCTATTTACCTGAA
10hb_gap2_E0910hb_gap2_E09 GGAGCTAGATTAGTAATAACATGGAAATGGCTAGGAGCTAGATTAGTAATAACATGGAAATGGCTA
10hb_gap2_E1010hb_gap2_E10 GCGCCTGCAACAGTAGGGCTTAAAAAGCAATCCGCGCCTGCAACAGTAGGGCTTAAAAAGCAATCC
10hb_gap2_E1110hb_gap2_E11 CCAGACGCAACATGTAATTTAAAGGCGTTATATCCAGACGCAACATGTAATTTAAAGGCGTTATAT
10hb_gap_F0110hb_gap_F01 AAGAGTCAGGAGTAGGAACCCATGTAAAACGCAGAAAAGAGTCAGGAGTAGGAACCCATGTAAAACGCAGAA
10hb_gap_F0210hb_gap_F02 GTTTTGGGTTGAAAACTACAACGCCTAAACGTATCACGTTTTGGGTTGAAAACTACAACGCCTAAACGTATCAC
10hb_gap_F0310hb_gap_F03 AATGATTCGAGGTAGCGTAACGATCTGAACTGGGTTAATGATTCGAGGTAGCGTAACGATCTGAACTGGGTT
10hb_gap_F0410hb_gap_F04 CGCTGCTCCAAATAAATGAATTTTCTGAAGGAAAACCGCTGCTCCAAATAAATGAATTTTCTGAAGGAAAAC
10hb_gap_F0510hb_gap_F05 GTCACCGAATAACAGTTTCAGCGGAGCCTTTTTCATGTCACCGAATAACAGTTTCAGCGGAGCCTTTTTCAT
10hb_gap_F0610hb_gap_F06 TAAATTCGTAAATAATCAGAAAAGCCGAGCAAGGAGTAAATTCGTAAATAATCAGAAAAGCCGAGCAAGGAG
10hb_gap_F0710hb_gap_F07 GGTGAGCCTGAGTATTTAAATTGTAACAGAGAGTAAGGTGAGCCTGAGTATTTAAATTGTAACAGAGAGTAA
10hb_gap_F0810hb_gap_F08 ATTCAGGTAGCTAAATTTTTGTTAAAGAACACCCATAATTCAGGTAGCTAAATTTTTGTTAAAGAACACCCATA
10hb_gap_F0910hb_gap_F09 CCATTAGCCAGCCCATCAAAAATAATTAACATACAACCATTAGCCAGCCCATCAAAAATAATTAACATACAA
10hb_gap_F1010hb_gap_F10 GGTGCGAGGGGATCATCAACATTAAAGTTTAACACCGGTGCGAGGGGATCATCAACATTAAAGTTTAACACC
10hb_gap_F1110hb_gap_F11 ATGTGTTGGTGTTCCGTGGGAACAAAAGCCATACGGATGTGTTGGTGTTCCGTGGGAACAAAAGCCATACGG
10hb_gap_F1210hb_gap_F12 TGGTCCATTTTGTATCATCATATTCCGAGCGTCCGGTGGTCCATTTTGTATCATCATATTCCGAGCGTCCGG
10hb_gap_F1310hb_gap_F13 TTATCTTGCCCGTATAATCCTGATTGGCACCCATAATTATCTTGCCCGTATAATCCTGATTGGCACCCATAA
10hb_gap_F1410hb_gap_F14 GAGCCTATTAGAGGTTAGAACCTACCCGGGAGGCGTAGAGCCTATTAGAGGTTAGAACCTACCCGGGAGGCGTA
10hb_gap_F1510hb_gap_F15 TACCTAACATCAAAATAAAGAAATTGTATTCTAATGTACCTAACATCAAAATAAAGAAATTGTATTCTAATG
10hb_gap_F1610hb_gap_F16 GTGAATTATTCAAATATACAGTAACAGCGCCCACCAGTGAATTATTCAAATATACAGTAACAGCGCCCACCA

Claims (8)

  1. 스캐폴드 DNA에 복수개의 스테이플 DNA를 결합시켜 DNA 오리가미 구조체를 형성하는 단계를 포함하고,Including the step of forming a DNA origami structure by binding a plurality of staple DNA to the scaffold DNA,
    상기 구조체의 강성 조절 대상 부위 내 적어도 일부의 인접한 스테이플 DNA의 양 말단 사이에 갭(gap)을 형성하는 DNA 오리가미 구조체(DNA origami structure)의 강성을 제어하는 방법.A method of controlling the stiffness of a DNA origami structure that forms a gap between both ends of at least a portion of adjacent staple DNA in the site to be stiffness control of the structure.
  2. 청구항 1에 있어서, 상기 갭을 1개 이상 형성하거나, 갭의 길이를 늘려 상기 강성 조절 대상 부위의 강성을 낮추는 방법.The method of claim 1, wherein the stiffness of the portion to be adjusted for stiffness is lowered by forming one or more gaps or increasing the length of the gap.
  3. 청구항 1에 있어서, 상기 갭의 길이를 1 내지 10 뉴클레오티드(nucleotide)로 형성하는 방법.The method of claim 1, wherein the length of the gap is 1 to 10 nucleotides.
  4. 청구항 1에 있어서, 상기 갭의 길이를 1 내지 5 뉴클레오티드로 형성하는 방법.The method of claim 1, wherein the length of the gap is 1 to 5 nucleotides.
  5. 청구항 1에 있어서, 상기 갭과 홀리데이 교차점 간 간격을 3 뉴클레오티드 이상으로 형성하는 방법.The method of claim 1, wherein the gap between the gap and the Holiday intersection is 3 nucleotides or more.
  6. 청구항 1에 있어서, 기결정된 길이의 갭을 기결정된 개수로 형성하도록 스테이플 DNA를 설계하는 단계를 더 포함하는 방법.The method of claim 1, further comprising designing the staple DNA to form a predetermined number of gaps of a predetermined length.
  7. 청구항 1에 있어서, 상기 구조체는 2 내지 20개의 헬릭스를 포함하는 것인 방법.The method of claim 1, wherein the structure comprises 2 to 20 helixes.
  8. 청구항 1에 있어서, 상기 강성은 굽힘 강성(bending stiffness)인 방법.The method of claim 1, wherein the stiffness is bending stiffness.
PCT/KR2019/004124 2019-04-08 2019-04-08 Method for controlling stiffness of dna origami structure WO2020209392A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190040594A KR102202273B1 (en) 2019-04-08 2019-04-08 Stiffness Control Method of DNA Origami Structure
KR10-2019-0040594 2019-04-08

Publications (1)

Publication Number Publication Date
WO2020209392A1 true WO2020209392A1 (en) 2020-10-15

Family

ID=72750720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/004124 WO2020209392A1 (en) 2019-04-08 2019-04-08 Method for controlling stiffness of dna origami structure

Country Status (2)

Country Link
KR (1) KR102202273B1 (en)
WO (1) WO2020209392A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180108125A (en) * 2017-03-24 2018-10-04 서울대학교산학협력단 Dna structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101788383B1 (en) 2014-10-21 2017-10-19 이화여자대학교 산학협력단 Method for mass production of nucleic acid nanostructure and use thereof in drug delivery systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180108125A (en) * 2017-03-24 2018-10-04 서울대학교산학협력단 Dna structure

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
KIM, DO-NYUN ET AL.: "DNA Origami Nano Technology", JOURNAL OF THE KSME, vol. 56, no. 5, May 2016 (2016-05-01), pages 39 - 42 *
KIM, GYEONGSU ET AL.: "Stiffness Control for DNA Nanotube through Motif Batch of DNA gap", 2018 THE KOREAN SOCIETY OF MECHANICAL ENGINEER (KSME) CAE AND APPLIED MECHANICS DIVISION SPRING CONFERENCE, 27 April 2018 (2018-04-27), pages 1 - 2 *
KIM, K. S. ET AL.: "Controlling the flexibility of DNA nanostructures via gap design", FNANO18, 16 April 2018 (2018-04-16) *
LEE, C. ET AL.: "Polymorphic design of DNA origami structures through mechanical control of modular components", NATURE COMMUNICATIONS, vol. 8, pages 1 - 8, XP055747849, [retrieved on 20171212] *
LEE, CHANSEOK ET AL.: "Efficient Shape Design of DNA Origami Nanostructures through Local Stiffness Control", 2017 THE KOREAN SOCIETY OF MECHANICAL ENGINEER (KSME) CONFERENCCE, November 2017 (2017-11-01), pages 1648 - 1649 *
LEE, J. Y. ET AL.: "Investigating the sequence-dependent mechanical properties of DNA nicks for applications in twisted DNA nanostructure design", NUCLEIC ACIDS RESEARCH, vol. 47, no. 1, pages 93 - 102, XP055747846, [retrieved on 20181122] *
ZHOU, L. ET AL.: "DNA origami compliant nanostructures with tunable mechanical properties", ACS NANO, vol. 8, no. 1, 2014, pages 27 - 34, XP055747851 *

Also Published As

Publication number Publication date
KR20200118552A (en) 2020-10-16
KR102202273B1 (en) 2021-01-12

Similar Documents

Publication Publication Date Title
Tiersten Perturbation theory for linear electroelastic equations for small fields superposed on a bias
WO2018062946A1 (en) Method for calculating tortuous hydraulic diameter of porous medium and method for analyzing flow in porous medium using same
Zong et al. On two-step design of microstructure with desired Poisson's ratio for AM
WO2020209392A1 (en) Method for controlling stiffness of dna origami structure
Hyun et al. Designing composite microstructures with targeted properties
WO2016056856A1 (en) Method and system for generating integrity verification data
WO2015183049A1 (en) Optical tracking system, and method for calculating posture of marker part in optical tracking system
WO2021040330A1 (en) Method and device for coding and decoding
WO2022255632A1 (en) Automatic design-creating artificial neural network device and method, using ux-bits
Nguyen et al. Voltage and evolutionary piezoelectric actuator design optimisation for static shape control of smart plate structures
WO2013159421A1 (en) Method and device for detecting anomaly in differential signal receiving terminal of liquid crystal display module
WO2015009046A1 (en) Molecular orbital library having exclusive molecular orbital distribution, molecular orbital distribution region evaluation method using same, and system using same
Kuon et al. Automated transistor sizing for FPGA architecture exploration
Fialkow Truncated multivariable moment problems with finite variety
WO2020106090A1 (en) 3d printing method, and device for performing same
e Lucato et al. Crack initiation and crack propagation in partially electroded PZT
Erhart et al. What is really measured on a d33-meter?
WO2022270703A1 (en) Metasurface fabrication apparatus using nanocomposite, fabrication method and metasurface
WO2024039047A1 (en) Method for generating semantic log for video
WO2021221200A1 (en) Gating design method and system
WO2023068520A1 (en) Device and method for predicting physical properties of multilayer material
WO2018182359A1 (en) Manufacturing method for coating layer comprising heterojunction of coating liquids, and coating layer and cover window manufactured thereby
Dyomin et al. Simulating a nonspherical surface profile
TW518666B (en) Photomask and method to prevent the photomask from charge effect and electro-static damage
Várallyay et al. Silica glass structure simulations for optical fiber application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924578

Country of ref document: EP

Kind code of ref document: A1