WO2020209223A1 - Powder dispersion, production method for powder dispersion, and production method for resin-including substrate - Google Patents

Powder dispersion, production method for powder dispersion, and production method for resin-including substrate Download PDF

Info

Publication number
WO2020209223A1
WO2020209223A1 PCT/JP2020/015541 JP2020015541W WO2020209223A1 WO 2020209223 A1 WO2020209223 A1 WO 2020209223A1 JP 2020015541 W JP2020015541 W JP 2020015541W WO 2020209223 A1 WO2020209223 A1 WO 2020209223A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder dispersion
polymer
powder
liquid compound
liquid
Prior art date
Application number
PCT/JP2020/015541
Other languages
French (fr)
Japanese (ja)
Inventor
敦美 山邊
細田 朋也
渉 笠井
達也 寺田
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN202080026421.5A priority Critical patent/CN113747980A/en
Priority to JP2021513624A priority patent/JP7452534B2/en
Publication of WO2020209223A1 publication Critical patent/WO2020209223A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents

Abstract

Provided are: a powder dispersion having excellent defoaming properties and film-forming properties; a production method for the powder dispersion; and a production method for a resin-including substrate comprising a polymer layer having high surface flatness. The powder dispersion according to the present invention contains a tetrafluoroethylene polymer powder, a first liquid compound having a boiling point of 80-260°C, and a second liquid compound that is different from the first liquid compound, and that has a boiling point of 140-260°C and an evaporation rate of 0.01-0.3 when the evaporation rate of butyl acetate is defined as 1. In addition, in this production method for the powder dispersion according to the present invention, the powder, and the liquid composition including the first and second compounds, are mixed together.

Description

パウダー分散液、パウダー分散液の製造方法及び樹脂付基板の製造方法Powder dispersion, powder dispersion manufacturing method, and resin-attached substrate manufacturing method
 本発明は、パウダーが少なくとも2種の液体化合物に分散したパウダー分散液及びその製造方法、並びに、かかるパウダー分散液を使用した樹脂付基板の製造方法に関する。 The present invention relates to a powder dispersion in which powder is dispersed in at least two liquid compounds and a method for producing the same, and a method for producing a resin-coated substrate using such a powder dispersion.
 ポリテトラフルオロエチレン(PTFE)等のテトラフルオロエチレン系ポリマーは、耐薬品性、撥水撥油性、耐熱性、電気特性等の物性に優れており、その物性を活用して、種々の産業用途に利用されている。
 中でも、テトラフルオロエチレン系ポリマーのパウダーを含むパウダー分散液は、各種基材の表面に塗布すれば、その表面にフルオロオレフィン系ポリマーの物性を付与できるため、コーティング剤として有用である(特許文献1、2参照)。
Tetrafluoroethylene-based polymers such as polytetrafluoroethylene (PTFE) have excellent physical properties such as chemical resistance, water and oil repellency, heat resistance, and electrical properties, and can be used in various industrial applications by utilizing these physical properties. It's being used.
Among them, a powder dispersion containing a powder of a tetrafluoroethylene polymer is useful as a coating agent because it can impart physical properties of a fluoroolefin polymer to the surface of various substrates by applying it to the surface of various substrates (Patent Document 1). , 2).
国際公開2016/159102号パンフレットInternational Publication 2016/159102 Pamphlet 国際公開2018/016644号パンフレットInternational Publication 2018/016644 Pamphlet
 このようなパウダー分散液には、調製時の効率性を高める観点からより優れた消泡性が求められる他、塗膜を形成する際の成膜性の更なる向上も求められている。
 本発明者らは、鋭意検討した結果、蒸発速度が比較的低い液体化合物(溶媒)を使用したパウダー分散液は、消泡性及び成膜性に優れることを知見した。
Such a powder dispersion is required to have more excellent defoaming property from the viewpoint of improving efficiency at the time of preparation, and is also required to further improve the film forming property when forming a coating film.
As a result of diligent studies, the present inventors have found that a powder dispersion using a liquid compound (solvent) having a relatively low evaporation rate is excellent in defoaming property and film forming property.
 本発明は、下記の態様を有する。
 <1>テトラフルオロエチレン系ポリマーのパウダーと、沸点が80~260℃の第1液体化合物と、前記第1液体化合物と異なり、酢酸ブチルの蒸発速度を1とした場合の蒸発速度が0.01~0.3、かつ沸点が140~260℃の第2液体化合物とを含む、パウダー分散液。
 <2>前記パウダー分散液に含まれる前記第1液体化合物の質量に対する前記第2液体化合物の質量の比が1未満である、<1>のパウダー分散液。
 <3>前記第1液体化合物が、ケトン、エステル、アミド又は芳香族炭化水素である、<1>又は<2>のパウダー分散液。
 <4>前記第2液体化合物が、ジイソブチルケトン、4-ヒドロキシ-4-メチル-2-ペンタノン、イソホロン、エチレングリコールモノ-n-ブチルエーテル、エチレングリコールモノ-t-ブチルエーテル、酢酸-2-エトキシエチル、3-メトキシ-3-メチルブタノール、3-メトキシ-3-メチルブチルアセテート、プロピレングリコールモノプロピルエーテル、3-メトキシブチルアセテート、プロピレングリコールモノメチルエーテルプロピネート又はジエチレングリコールモノブチルエーテルである、<1>~<3>のいずれかのパウダー分散液。
 <5>前記第2液体化合物が、4-ヒドロキシ-4-メチル-2-ペンタノン、イソホロン、3-メトキシ-3-メチルブタノール、3-メトキシ-3-メチルブチルアセテート又は3-メトキシブチルアセテートである、<1>~<4>のいずれかのパウダー分散液。
The present invention has the following aspects.
<1> Unlike the tetrafluoroethylene polymer powder, the first liquid compound having a boiling point of 80 to 260 ° C., and the first liquid compound, the evaporation rate is 0.01 when the evaporation rate of butyl acetate is 1. A powder dispersion containing a second liquid compound having a boiling point of ~ 0.3 and a boiling point of 140 to 260 ° C.
<2> The powder dispersion liquid of <1>, wherein the ratio of the mass of the second liquid compound to the mass of the first liquid compound contained in the powder dispersion liquid is less than 1.
<3> A powder dispersion of <1> or <2>, wherein the first liquid compound is a ketone, an ester, an amide, or an aromatic hydrocarbon.
<4> The second liquid compound is diisobutyl ketone, 4-hydroxy-4-methyl-2-pentanone, isophorone, ethylene glycol mono-n-butyl ether, ethylene glycol mono-t-butyl ether, -2-ethoxyethyl acetate, 3-Methoxy-3-methylbutanol, 3-methoxy-3-methylbutyl acetate, propylene glycol monopropyl ether, 3-methoxybutyl acetate, propylene glycol monomethyl ether propinate or diethylene glycol monobutyl ether, <1> to <3. > Any powder dispersion.
<5> The second liquid compound is 4-hydroxy-4-methyl-2-pentanone, isophorone, 3-methoxy-3-methylbutanol, 3-methoxy-3-methylbutyl acetate or 3-methoxybutyl acetate. , <1> to <4> powder dispersion.
 <6>前記パウダーの平均粒子径が、40μm以下である、<1>~<5>のいずれかのパウダー分散液。
 <7>前記パウダー分散液に含まれる前記パウダーの量が、10質量%以上である、<1>~<6>のいずれかのパウダー分散液。
 <8>前記テトラフルオロエチレン系ポリマーが、溶融温度が140~320℃の熱溶融性ポリマーである、<1>~<7>のいずれかのパウダー分散液。
 <9>前記テトラフルオロエチレン系ポリマーが、テトラフルオロエチレンに基づく単位及び官能基を有するポリマーである、<1>~<8>のいずれかのパウダー分散液。
 <10>前記ポリマーが、テトラフルオロエチレンに基づく単位及び官能基を有するモノマーに基づく単位を有するポリマーである、<9>のパウダー分散液。
<6> The powder dispersion liquid according to any one of <1> to <5>, wherein the average particle size of the powder is 40 μm or less.
<7> The powder dispersion liquid according to any one of <1> to <6>, wherein the amount of the powder contained in the powder dispersion liquid is 10% by mass or more.
<8> The powder dispersion liquid according to any one of <1> to <7>, wherein the tetrafluoroethylene polymer is a heat-meltable polymer having a melting temperature of 140 to 320 ° C.
<9> The powder dispersion liquid according to any one of <1> to <8>, wherein the tetrafluoroethylene-based polymer is a polymer having a unit and a functional group based on tetrafluoroethylene.
<10> The powder dispersion of <9>, wherein the polymer is a polymer having a unit based on tetrafluoroethylene and a unit based on a monomer having a functional group.
 <11>さらに、ポリオキシアルキレン基又は水酸基を有する親水性基と、ペルフルオロアルキル基、エーテル性酸素原子を有するペルフルオロアルキル基又はペルフルオロアルケニル基を有する疎水性基とを有する分散剤を含む、<1>~<10>のいずれかに記載のパウダー分散液。
 <12>前記パウダー分散液の25℃における粘度が、1000mPa・s以下である、<1>~<11>のいずれかのパウダー分散液。
 <13>上記<1>~<12>のいずれかのパウダー分散液を製造する方法であって、前記パウダーと、前記第1液体化合物及び前記第2液体化合物を含む液状組成物とを混合して、パウダー分散液を得る、パウダー分散液の製造方法。
 <14>上記<1>~<12>のいずれかのパウダー分散液を、基板の表面に塗布し、加熱して前記第1液体化合物及び前記第2液体化合物を除去するとともに、前記テトラフルオロエチレン系ポリマーを焼成して、前記テトラフルオロエチレン系ポリマーを含むポリマー層を形成し、前記基板と前記ポリマー層とを備える樹脂付基板を得る、樹脂付基板の製造方法。
 <15>前記ポリマー層の厚さが、20μm未満である、<14>の製造方法。
<11> Further, a dispersant having a hydrophilic group having a polyoxyalkylene group or a hydroxyl group and a perfluoroalkyl group, a perfluoroalkyl group having an etheric oxygen atom, or a hydrophobic group having a perfluoroalkenyl group is included, <1. > The powder dispersion according to any one of <10>.
<12> The powder dispersion liquid according to any one of <1> to <11>, wherein the powder dispersion liquid has a viscosity at 25 ° C. of 1000 mPa · s or less.
<13> A method for producing a powder dispersion according to any one of <1> to <12>, wherein the powder is mixed with a liquid composition containing the first liquid compound and the second liquid compound. A method for producing a powder dispersion to obtain a powder dispersion.
<14> The powder dispersion liquid according to any one of <1> to <12> is applied to the surface of the substrate and heated to remove the first liquid compound and the second liquid compound, and the tetrafluoroethylene. A method for producing a resin-based substrate, which comprises firing a system polymer to form a polymer layer containing the tetrafluoroethylene-based polymer to obtain a resin-coated substrate including the substrate and the polymer layer.
<15> The production method of <14>, wherein the thickness of the polymer layer is less than 20 μm.
 本発明のパウダー分散液は消泡性及び成膜性に優れる。本発明のパウダー分散液の製造方法によれば、そのようなパウダー分散液を製造できる。本発明の樹脂付基板の製造方法によれば、表面平坦性が高いポリマー層を備える樹脂付基板が得られる。 The powder dispersion of the present invention is excellent in defoaming property and film forming property. According to the method for producing a powder dispersion of the present invention, such a powder dispersion can be produced. According to the method for producing a resin-coated substrate of the present invention, a resin-coated substrate having a polymer layer having high surface flatness can be obtained.
 以下の用語は、以下の意味を有する。
 「ポリマーの溶融粘度」は、ASTM D1238に準拠し、フローテスター及び2Φ-8Lのダイを用い、予め測定温度にて5分間加熱しておいたポリマーの試料(2g)を、0.7MPaの荷重をかけて測定温度に保持して測定した値である。
 「ポリマーの溶融温度」は、示差走査熱量測定(DSC)法で測定した融解ピークの最大値に対応する温度である。
 「パウダーの平均粒子径(D50)」は、レーザー回折・散乱法によって求められる体積基準累積50%径である。すなわち、レーザー回折・散乱法によって粒度分布を測定し、粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。
 「パウダーのD90」は、レーザー回折・散乱法によって求められる体積基準累積90%径である。すなわち、レーザー回折・散乱法によって粒度分布を測定し、粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が90%となる点の粒子径である。
 粒子のD50及びD90は、粒子を水中に分散させ、レーザー回折・散乱式の粒度分布測定装置(堀場製作所社製、LA-920測定器)を用いたレーザー回折・散乱法により分析して求められる。
 「パウダー分散液の粘度」は、B型粘度計を用いて、室温下(25℃)で回転数が30rpmの条件下で測定される値である。測定を3回繰り返し、3回分の測定値の平均値とする。
 「パウダー分散液のチキソ比」とは、回転数が30rpmの条件で測定される粘度ηを回転数が60rpmの条件で測定される粘度ηで除して算出される値である。それぞれの粘度の測定は、3回繰り返し、3回分の測定値の平均値とする。
 「(メタ)アクリレート」は、アクリレートとメタクリレートの総称である。
 ポリマーを構成する「単位」とは、モノマーの重合により直接形成された、上記モノマー1分子に基づく原子団と、上記原子団の一部を化学変換して得られる原子団との総称である。特定のモノマーに基づく単位は、そのモノマー名に「単位」を付して表すことがある。
The following terms have the following meanings.
"Polymer melt viscosity" is based on ASTM D1238, and a polymer sample (2 g) that has been preheated at the measurement temperature for 5 minutes using a flow tester and a 2Φ-8L die is loaded with 0.7 MPa. It is a value measured by holding it at the measurement temperature.
The “polymer melting temperature” is the temperature corresponding to the maximum value of the melting peak measured by the differential scanning calorimetry (DSC) method.
The "average particle size of powder (D50)" is a volume-based cumulative 50% diameter obtained by a laser diffraction / scattering method. That is, the particle size distribution is measured by a laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the particle population as 100%, and the particle diameter is the point at which the cumulative volume is 50% on the cumulative curve.
"Powder D90" is a volume-based cumulative 90% diameter determined by a laser diffraction / scattering method. That is, the particle size distribution is measured by a laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the particle population as 100%, and the particle diameter is the point at which the cumulative volume is 90% on the cumulative curve.
The particles D50 and D90 are obtained by dispersing the particles in water and analyzing them by a laser diffraction / scattering method using a laser diffraction / scattering type particle size distribution measuring device (LA-920 measuring device manufactured by HORIBA, Ltd.). ..
The "viscosity of the powder dispersion" is a value measured using a B-type viscometer at room temperature (25 ° C.) under the condition of a rotation speed of 30 rpm. The measurement is repeated 3 times, and the average value of the measured values for 3 times is used.
The "thixotropy of the powder dispersion" is a value calculated by dividing the viscosity η 1 measured under the condition of a rotation speed of 30 rpm by the viscosity η 2 measured under the condition of a rotation speed of 60 rpm. Each viscosity measurement is repeated 3 times, and the average value of the measured values for 3 times is used.
"(Meta) acrylate" is a general term for acrylate and methacrylate.
The "unit" constituting a polymer is a general term for an atomic group based on one molecule of the monomer directly formed by polymerization of a monomer and an atomic group obtained by chemically converting a part of the atomic group. Units based on a particular monomer may be represented by adding a "unit" to the monomer name.
 本発明のパウダー分散液は、テトラフルオロエチレン系ポリマー(以下、「Fポリマー」とも記す。)のパウダーと、沸点が80~260℃の第1液体化合物と、この第1液体化合物と異なり、酢酸ブチルの蒸発速度を1とした場合の蒸発速度が0.01~0.3、かつ沸点が140~260℃の第2液体化合物とを含む。
 なお、以下、酢酸ブチルの蒸発速度を1とした場合の液体化合物の蒸発速度を、単に「蒸発速度」という。
 かかるパウダー分散液は、消泡性及び成膜性に優れる。この理由は必ずしも明確ではないが、次のように考えられる。
The powder dispersion of the present invention is different from a tetrafluoroethylene polymer (hereinafter, also referred to as “F polymer”) powder, a first liquid compound having a boiling point of 80 to 260 ° C., and acetic acid, unlike the first liquid compound. It contains a second liquid compound having an evaporation rate of 0.01 to 0.3 and a boiling point of 140 to 260 ° C. when the evaporation rate of butyl is 1.
Hereinafter, the evaporation rate of the liquid compound when the evaporation rate of butyl acetate is 1, is simply referred to as "evaporation rate".
Such a powder dispersion is excellent in defoaming property and film forming property. The reason for this is not always clear, but it can be considered as follows.
 第2液体化合物は、蒸発速度が低く、かつ沸点が比較的高い化合物であり、概して、疎水部と極性部とを有する分子量の大きい化合物である。かかる第2液体化合物は、Fポリマー及び第1液体化合物の両方と相互作用が生じうる。このため、第2液体化合物は、それ自体がパウダーの分散剤として機能すると考えられる。また、パウダー分散液が別途の分散剤を含む場合には、前記分散剤によるパウダーの分散作用を高めるように機能すると考えられる。その結果、パウダー分散液全体としての表面張力を効果的に低下させるので、パウダーの分散を促進し、パウダー分散液の泡立ちを抑制(良好な消泡性を発現)したと推察される。 The second liquid compound is a compound having a low evaporation rate and a relatively high boiling point, and generally has a hydrophobic portion and a polar portion and has a large molecular weight. Such a second liquid compound can interact with both the F polymer and the first liquid compound. Therefore, the second liquid compound is considered to function as a powder dispersant by itself. Further, when the powder dispersion liquid contains a separate dispersant, it is considered to function to enhance the dispersion action of the powder by the dispersant. As a result, since the surface tension of the powder dispersion as a whole is effectively reduced, it is presumed that the dispersion of the powder is promoted and the foaming of the powder dispersion is suppressed (good defoaming property is exhibited).
 また、第2液体化合物は、蒸発速度が低く、遅乾性溶媒とも言える。第1液体化合物は、パウダー分散液に良好な流動性を付与し、塗膜(液状被膜)形成時に均一な厚さの塗膜の形成を促すと考えられる。一方、遅乾性溶媒である第2液体化合物は、徐々に揮発するため、揮発に伴う急激な気泡の発生等による塗膜の表面荒れを防止し、塗膜の表面平坦性を高めると考えられる。また、第2液体化合物は、レベリング剤としても機能して、塗膜乾燥時に塗膜の平坦性を高める(丸みを帯びた角部の形成を防止する)とも考えられる。これらの相乗効果により、パウダー分散液は優れた成膜性を発揮したと推察される。
 特に、Fポリマーのパウダーは、その粒子同士の相互作用が弱く、それらの間に第2液体化合物が介在した状態が形成されやすいため、本発明のパウダー分散液を使用すれば、上記効果がより顕著に発揮されると考えられる。
Further, the second liquid compound has a low evaporation rate and can be said to be a slow-drying solvent. It is considered that the first liquid compound imparts good fluidity to the powder dispersion liquid and promotes the formation of a coating film having a uniform thickness when the coating film (liquid film) is formed. On the other hand, since the second liquid compound, which is a slow-drying solvent, gradually volatilizes, it is considered that the surface roughness of the coating film due to the sudden generation of bubbles due to volatilization is prevented and the surface flatness of the coating film is improved. It is also considered that the second liquid compound also functions as a leveling agent to enhance the flatness of the coating film when the coating film is dried (prevents the formation of rounded corners). Due to these synergistic effects, it is presumed that the powder dispersion exhibited excellent film forming properties.
In particular, the F polymer powder has a weak interaction between the particles, and a state in which a second liquid compound is interposed between them is likely to be formed. Therefore, if the powder dispersion of the present invention is used, the above effect can be further improved. It is thought that it will be exhibited prominently.
 本発明の樹脂付基板の製造方法では、上記パウダー分散液を、基板の表面に塗布し、加熱して第1液体化合物及び第2液体化合物を除去するとともに、Fポリマーを焼成して、Fポリマーを含むポリマー層を形成し、基板とポリマー層とを備える樹脂付基板を得る。
 本発明により得られる樹脂付基板のポリマー層は、本発明のパウダー分散液を使用して形成されるので、表面平坦性に優れる。
 以上のような効果は、後述する本発明の好ましい態様において、より顕著に発現する。
In the method for producing a resin-attached substrate of the present invention, the powder dispersion liquid is applied to the surface of the substrate and heated to remove the first liquid compound and the second liquid compound, and the F polymer is fired to obtain the F polymer. A polymer layer containing the above is formed to obtain a resin-coated substrate including the substrate and the polymer layer.
Since the polymer layer of the resin-coated substrate obtained by the present invention is formed by using the powder dispersion liquid of the present invention, it is excellent in surface flatness.
The above effects are more prominently exhibited in the preferred embodiments of the present invention described later.
 本発明におけるパウダーのD50は、40μm以下が好ましく、20μm以下がより好ましく、8μm以下が特に好ましい。パウダーのD50は、0.01μm以上が好ましく、0.1μm以上がより好ましく、1μm以上が特に好ましい。また、パウダーのD90は、80μm以下が好ましく、50μm以下がさらに好ましい。この範囲のD50及びD90において、パウダーの流動性と分散性とが良好となり、ポリマー層の電気特性(低誘電率等)や耐熱性が最も発現し易い。また、パウダー分散液の消泡性及び成膜性がより向上する。
 パウダーの疎充填嵩密度は、0.08~0.5g/mLがより好ましい。パウダーの密充填嵩密度は、0.1~0.8g/mLがより好ましい。疎充填嵩密度又は密充填嵩密度が上記範囲にある場合、パウダーのハンドリング性が優れる。
The D50 of the powder in the present invention is preferably 40 μm or less, more preferably 20 μm or less, and particularly preferably 8 μm or less. The D50 of the powder is preferably 0.01 μm or more, more preferably 0.1 μm or more, and particularly preferably 1 μm or more. The D90 of the powder is preferably 80 μm or less, more preferably 50 μm or less. In D50 and D90 in this range, the fluidity and dispersibility of the powder are good, and the electrical characteristics (low dielectric constant, etc.) and heat resistance of the polymer layer are most likely to be exhibited. In addition, the defoaming property and film forming property of the powder dispersion are further improved.
The sparse filling bulk density of the powder is more preferably 0.08 to 0.5 g / mL. The densely packed bulk density of the powder is more preferably 0.1 to 0.8 g / mL. When the sparsely packed bulk density or the densely packed bulk density is within the above range, the handleability of the powder is excellent.
 本発明におけるパウダーはFポリマー以外の樹脂を含んでいてもよいが、本発明におけるパウダーとしては、Fポリマーを主成分とするパウダーが好ましい。パウダーにおけるFポリマーの含有量は、80質量%以上が好ましく、100質量%がより好ましい。
 上記樹脂としては、芳香族ポリエステル、ポリアミドイミド、熱可塑性ポリイミド、ポリフェニレンエーテル、ポリフェニレンオキシドが挙げられる。
The powder in the present invention may contain a resin other than the F polymer, but the powder in the present invention is preferably a powder containing the F polymer as a main component. The content of the F polymer in the powder is preferably 80% by mass or more, more preferably 100% by mass.
Examples of the resin include aromatic polyester, polyamide-imide, thermoplastic polyimide, polyphenylene ether, and polyphenylene oxide.
 本発明におけるFポリマーは、テトラフルオロエチレン(以下、「TFE」とも記す。)に基づく単位を含むポリマーである。Fポリマーは、TFEのホモポリマーであってもよく、TFEと、TFEと共重合可能なコモノマーとのコポリマーであってもよい。
 Fポリマーとしては、ポリマーを構成する全単位に対して、TFE単位を90~100モル%含むFポリマーが好ましい。また、Fポリマーのフッ素含有量は、70~76質量%が好ましく、72~76質量%がより好ましい。
The F polymer in the present invention is a polymer containing a unit based on tetrafluoroethylene (hereinafter, also referred to as “TFE”). The F polymer may be a homopolymer of TFE, or may be a copolymer of TFE and a comonomer copolymerizable with TFE.
As the F polymer, an F polymer containing 90 to 100 mol% of TFE units with respect to all the units constituting the polymer is preferable. The fluorine content of the F polymer is preferably 70 to 76% by mass, more preferably 72 to 76% by mass.
 Fポリマーとしては、ポリテトラフルオロエチレン(PTFE)、TFEとエチレンとのコポリマー(ETFE)、TFEとプロピレンとのコポリマー、TFEとペルフルオロ(アルキルビニルエーテル)(以下、「PAVE」とも記す。)とのコポリマー(PFA)、TFEとヘキサフルオロプロピレン(以下、「HFP」とも記す。)とのコポリマー(FEP)、TFEとフルオロアルキルエチレン(以下、「FAE」とも記す。)とのコポリマー、TFEとクロロトリフルオロエチレンとのコポリマーが挙げられる。コポリマーは、さらに他のコモノマーに基づく単位を含んでいてもよい。
 なお、PTFEとしては、フィブリル性を有する高分子量PTFE、低分子量PTFE、変性PTFEが挙げられる。また、低分子量PTFE又は変性PTFEには、TFEと極微量のコモノマー(HFP、PAVE、FAE等)のコポリマーも包含されるものとする。
Examples of the F polymer include polytetrafluoroethylene (PTFE), a copolymer of TFE and ethylene (ETFE), a copolymer of TFE and propylene, and a copolymer of TFE and perfluoro (alkyl vinyl ether) (hereinafter, also referred to as "PAVE"). (PFA), a copolymer of TFE and hexafluoropropylene (hereinafter, also referred to as "HFP") (FEP), a copolymer of TFE and fluoroalkylethylene (hereinafter, also referred to as "FAE"), TFE and chlorotrifluoro. Examples include copolymers with ethylene. The copolymer may further contain units based on other comonomeres.
Examples of PTFE include high molecular weight PTFE, low molecular weight PTFE, and modified PTFE having fibril properties. In addition, low molecular weight PTFE or modified PTFE shall also include copolymers of TFE and trace amounts of comonomer (HFP, PAVE, FAE, etc.).
 Fポリマーとしては、TFE単位及び官能基を有するFポリマーが好ましい。官能基としては、カルボニル基含有基、ヒドロキシ基、エポキシ基、アミド基、アミノ基及びイソシアネート基が好ましい。
 官能基は、Fポリマー中の単位に含まれていてもよく、ポリマーの主鎖の末端基に含まれていてもよい。また、Fポリマーを、プラズマ処理や電離線処理して得られる、官能基を有するFポリマーも使用できる。
 官能基を有するFポリマーとしては、パウダー分散液中におけるパウダーの分散性の観点から、TFE単位及び官能基を有する単位を有するFポリマーが好ましい。官能基を有する単位としては、上述した官能基を有する単位が好ましい。
 官能基を有するモノマーとしては、酸無水物残基を有するモノマーが好ましく、無水イタコン酸、無水シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸無水物(別称:無水ハイミック酸。以下、「NAH」とも記す。)及び無水マレイン酸がより好ましい。
As the F polymer, an F polymer having a TFE unit and a functional group is preferable. As the functional group, a carbonyl group-containing group, a hydroxy group, an epoxy group, an amide group, an amino group and an isocyanate group are preferable.
The functional group may be contained in a unit in the F polymer, or may be contained in the terminal group of the main chain of the polymer. Further, an F polymer having a functional group obtained by plasma-treating or ionizing the F-polymer can also be used.
As the F polymer having a functional group, a TFE unit and an F polymer having a unit having a functional group are preferable from the viewpoint of dispersibility of the powder in the powder dispersion liquid. As the unit having a functional group, the above-mentioned unit having a functional group is preferable.
As the monomer having a functional group, a monomer having an acid anhydride residue is preferable, and itaconic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic acid anhydride (also known as hymic anhydride. Hereinafter, "NAH" ”) And maleic anhydride are more preferable.
 官能基を有するFポリマーの好適な具体例としては、TFE単位と、HFP単位、PAVE単位又はFAE単位と、官能基を有する単位とを有するFポリマーが挙げられる。
 PAVEとしては、CF=CFOCF、CF=CFOCFCF、CF=CFOCFCFCF(以下、「PPVE」とも記す。)、CF=CFOCFCFCFCF、CF=CFO(CFFが挙げられる。
 FAEとしては、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CF(CFH、CH=CF(CFHが挙げられる。
 かかるポリマーFの具体例としては、ポリマーを構成する全単位に対して、TFE単位を90~99モル%、HFP単位、PAVE単位又はFAE単位を0.5~9.97モル%、官能基を有する単位を0.01~3モル%、それぞれ含有するFポリマーが挙げられる。かかるポリマーFの具体例としては、国際公開第2018/16644号に記載されるポリマーが挙げられる。
Preferable specific examples of the F polymer having a functional group include an F polymer having a TFE unit, an HFP unit, a PAVE unit or a FAE unit, and a unit having a functional group.
As PAVE, CF 2 = CFOCF 3 , CF 2 = CFOCF 2 CF 3 , CF 2 = CFOCF 2 CF 2 CF 3 (hereinafter, also referred to as “PPVE”), CF 2 = CFOCF 2 CF 2 CF 2 CF 3 , CF 2 = CFO (CF 2 ) 8 F.
As FAE, CH 2 = CH (CF 2 ) 2 F, CH 2 = CH (CF 2 ) 3 F, CH 2 = CH (CF 2 ) 4 F, CH 2 = CF (CF 2 ) 3 H, CH 2 = CF (CF 2 ) 4 H can be mentioned.
Specific examples of such polymer F include 90 to 99 mol% of TFE units, 0.5 to 9.97 mol% of HFP units, PAVE units or FAE units, and functional groups with respect to all the units constituting the polymer. Examples thereof include F polymers containing 0.01 to 3 mol% of the units having each. Specific examples of such a polymer F include the polymers described in International Publication No. 2018/16644.
 Fポリマーの380℃における溶融粘度は、1×10~1×10Pa・sが好ましく、1×10~1×10Pa・sがより好ましい。
 Fポリマーとしては、熱溶融性ポリマーが好ましく、溶融温度が第1液体化合物の沸点及び第2液体化合物の沸点のいずれよりも高い溶融温度を有する熱溶融性ポリマーがより好ましい。熱溶融性ポリマーの溶融温度としては、140~320℃が好ましく、200~320℃がより好ましく、260~320℃がさらに好ましい。かかるFポリマーを使用すれば、表面平坦性により優れるポリマー層が形成されやすい。
The melt viscosity of the F polymer at 380 ° C. is preferably 1 × 10 2 to 1 × 10 6 Pa · s, more preferably 1 × 10 3 to 1 × 10 6 Pa · s.
As the F polymer, a heat-meltable polymer is preferable, and a heat-meltable polymer having a melting temperature higher than both the boiling point of the first liquid compound and the boiling point of the second liquid compound is more preferable. The melting temperature of the heat-meltable polymer is preferably 140 to 320 ° C., more preferably 200 to 320 ° C., and even more preferably 260 to 320 ° C. When such an F polymer is used, a polymer layer having better surface flatness is likely to be formed.
 本発明における第1液体化合物及び第2液体化合物は、いずれも25℃で液体の化合物であり、水性溶媒であってもよく、非水性溶媒であってもよい。
 第1液状化合物としては、蒸発速度が比較的高い一方で、瞬間的に揮発しない化合物が好ましい。第1液体化合物の蒸発速度は、第2液体化合物の蒸発速度より高いのが好ましい。言い換えれば、第1液体化合物は0.3を超える蒸発速度を有するのが好ましい。第1液状化合物の沸点は、80~260℃であり、100~250℃が好ましく、120~240℃がより好ましい。この範囲において、パウダー分散液を基板の表面に塗布する際には、パウダー分散液に良好な流動性が付与され、パウダー分散液から液性成分(溶媒等)を加熱留去する際には、第1液状化合物の揮発が効果的に進行する。
 また、パウダーの流動性とパウダー分散液の粘度とを良好にバランスさせる観点から、第1液状化合物の20~25℃における粘度は、5.0mPa・s以下が好ましく、4.0mPa・s以下がより好ましい。前記粘度の下限は、通常、0.1mPa・sである。
The first liquid compound and the second liquid compound in the present invention are both liquid compounds at 25 ° C., and may be an aqueous solvent or a non-aqueous solvent.
As the first liquid compound, a compound which has a relatively high evaporation rate but does not volatilize instantaneously is preferable. The evaporation rate of the first liquid compound is preferably higher than the evaporation rate of the second liquid compound. In other words, the first liquid compound preferably has an evaporation rate greater than 0.3. The boiling point of the first liquid compound is 80 to 260 ° C., preferably 100 to 250 ° C., more preferably 120 to 240 ° C. In this range, when the powder dispersion is applied to the surface of the substrate, good fluidity is imparted to the powder dispersion, and when the liquid component (solvent, etc.) is evaporated from the powder dispersion by heating, the powder dispersion is given good fluidity. Volatilization of the first liquid compound proceeds effectively.
Further, from the viewpoint of well balancing the fluidity of the powder and the viscosity of the powder dispersion, the viscosity of the first liquid compound at 20 to 25 ° C. is preferably 5.0 mPa · s or less, preferably 4.0 mPa · s or less. More preferred. The lower limit of the viscosity is usually 0.1 mPa · s.
 第1液状化合物としては、ケトン、エステル、アミド、アルコール、スルホキシド、グリコールエーテル及び芳香族炭化水素が好ましく、ケトン、エステル、アミド及び芳香族炭化水素がより好ましい。かかる第1液状化合物を使用すれば、パウダー分散液の成膜性が向上しやすい。なお、第1液状化合物は、2種以上を併用してもよい。
 第1液状化合物の好適な具体例としては、メチルエチルケトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N-メチル-2-ピロリドン、γ-ブチロラクトン、シクロヘキサノン、シクロペンタノン、トルエン、キシレン、1,2,4-トリメチルベンゼン及び1,2,3-トリメチルベンゼンが挙げられ、メチルエチルケトン、3-メトキシ-N,N-ジメチルプロパンアミド、N-メチル-2-ピロリドン及びシクロヘキサノンがより好ましい。なお、これら化合物は、その蒸発速度の具体的数値が不明のものもあるが、後述の第2液状化合物よりも高い蒸発速度を有することは、定性的に明らかである。
As the first liquid compound, ketones, esters, amides, alcohols, sulfoxides, glycol ethers and aromatic hydrocarbons are preferable, and ketones, esters, amides and aromatic hydrocarbons are more preferable. If such a first liquid compound is used, the film forming property of the powder dispersion is likely to be improved. Two or more kinds of first liquid compounds may be used in combination.
Preferable specific examples of the first liquid compound include methyl ethyl ketone, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, N-methyl-2-pyrrolidone, γ-butyrolactone, and the like. Cyclohexanone, cyclopentanone, toluene, xylene, 1,2,4-trimethylbenzene and 1,2,3-trimethylbenzene include methyl ethyl ketone, 3-methoxy-N, N-dimethylpropanamide, N-methyl-2. -Pyrrolidone and cyclohexanone are more preferred. It is qualitatively clear that these compounds have a higher evaporation rate than the second liquid compound described later, although the specific numerical value of the evaporation rate is unknown.
 第2液状化合物は、上記第1液状化合物と異なる化合物であり、蒸発速度が比較的低い化合物である。具体的には、第2液状化合物の蒸発速度は、酢酸ブチルの蒸発速度を1とした場合、0.01~0.3であり、0.03~0.20が好ましく、0.05~0.15がより好ましい。
 また、第2液状化合物の沸点は、140~260℃であり、160~240℃が好ましく、180~220℃がより好ましい。
 蒸発速度及び沸点が上記範囲内の第2液状化合物を使用すれば、第1液状化合物が加熱留去された後においても、充分な量の第2液状化合物が塗膜中に残存し、その後適度な速度で加熱留去される。このため、第2液状化合物は、ポリマー層の表面平坦性を向上させる効果をより好適に発揮できる。
 また、第1液状化合物の沸点と第2液状化合物の沸点との差は、±40℃以内であることが好ましく、±30℃以内であることがより好ましい。
The second liquid compound is a compound different from the first liquid compound, and has a relatively low evaporation rate. Specifically, the evaporation rate of the second liquid compound is 0.01 to 0.3, preferably 0.03 to 0.20, and 0.05 to 0, when the evaporation rate of butyl acetate is 1. .15 is more preferred.
The boiling point of the second liquid compound is 140 to 260 ° C., preferably 160 to 240 ° C., and more preferably 180 to 220 ° C.
If a second liquid compound having an evaporation rate and a boiling point within the above ranges is used, a sufficient amount of the second liquid compound remains in the coating film even after the first liquid compound is heated and distilled off, and then appropriately. It is heated and distilled off at a high speed. Therefore, the second liquid compound can more preferably exert the effect of improving the surface flatness of the polymer layer.
The difference between the boiling point of the first liquid compound and the boiling point of the second liquid compound is preferably within ± 40 ° C, more preferably within ± 30 ° C.
 かかる第2液状化合物としては、ジイソブチルケトン(蒸発速度:0.2、沸点:168℃)、4-ヒドロキシ-4-メチル-2-ペンタノン(蒸発速度:0.15、沸点:168℃)、イソホロン(蒸発速度:0.026、沸点:215℃)、エチレングリコールモノn-ブチルエーテル(蒸発速度:0.08、沸点:170℃)、エチレングリコールモノt-ブチルエーテル(蒸発速度:0.19、沸点:153℃)、酢酸2-エトキシエチル(蒸発速度:0.21、沸点:156℃)、3-メトキシ-3-メチルブタノール(蒸発速度:0.07、沸点:174℃)、3-メトキシ-3-メチルブチルアセテート(蒸発速度:0.10、沸点:188℃)、プロピレングリコールモノプロピルエーテル(蒸発速度:0.22、沸点:150℃)、3-メトキシブチルアセテート(蒸発速度:0.14、沸点:171℃)、プロピレングリコールモノメチルエーテルプロピネート(蒸発速度:0.19、沸点:160℃)、及び、ジエチレングリコールモノブチルエーテル(蒸発速度:0.004、沸点:230℃)が挙げられる。なお、これらの化合物は、2種以上を併用してもよい。
 中でも、第2液体化合物としては、4-ヒドロキシ-4-メチル-2-ペンタノン、イソホロン、3-メトキシ-3-メチルブタノール、3-メトキシ-3-メチルブチルアセテート及び3-メトキシブチルアセテートが好ましい。
 これらの化合物は、界面活性剤(パウダーの分散剤)、可塑剤として機能できる化合物であるとも言え、ポリマー層の平坦性をさらに向上させやすい。
Examples of the second liquid compound include diisobutylketone (evaporation rate: 0.2, boiling point: 168 ° C.), 4-hydroxy-4-methyl-2-pentanone (evaporation rate: 0.15, boiling point: 168 ° C.), and isophorone. (Evaporation rate: 0.026, boiling point: 215 ° C.), ethylene glycol mono-n-butyl ether (evaporation rate: 0.08, boiling point: 170 ° C.), ethylene glycol mono-t-butyl ether (evaporation rate: 0.19, boiling point: 153 ° C), 2-ethoxyethyl acetate (evaporation rate: 0.21, boiling point: 156 ° C), 3-methoxy-3-methylbutanol (evaporation rate: 0.07, boiling point: 174 ° C), 3-methoxy-3 -Methylbutyl acetate (evaporation rate: 0.10, boiling point: 188 ° C), propylene glycol monopropyl ether (evaporation rate: 0.22, boiling point: 150 ° C), 3-methoxybutyl acetate (evaporation rate: 0.14, Boiling point: 171 ° C.), propylene glycol monomethyl ether propinate (evaporation rate: 0.19, boiling point: 160 ° C.), and diethylene glycol monobutyl ether (evaporation rate: 0.004, boiling point: 230 ° C.). Two or more of these compounds may be used in combination.
Among them, as the second liquid compound, 4-hydroxy-4-methyl-2-pentanone, isophorone, 3-methoxy-3-methylbutanol, 3-methoxy-3-methylbutyl acetate and 3-methoxybutyl acetate are preferable.
These compounds can be said to be compounds that can function as surfactants (powder dispersants) and plasticizers, and can easily further improve the flatness of the polymer layer.
 パウダー分散液に含まれる第1液体化合物の質量に対する第2液体化合物の質量の比(第2液体化合物の含有量/第1液体化合物の含有量)は、1未満が好ましく、0.1~0.9がより好ましく、0.2~0.8がさらに好ましい。このように第1液体化合物と第2液体化合物とを適度な量比で含む場合、パウダー分散液は、良好な消泡性と優れた成膜性とをバランスよく発揮できる。 The ratio of the mass of the second liquid compound to the mass of the first liquid compound contained in the powder dispersion (content of the second liquid compound / content of the first liquid compound) is preferably less than 1, preferably 0.1 to 0. .9 is more preferable, and 0.2 to 0.8 is even more preferable. When the first liquid compound and the second liquid compound are contained in an appropriate amount ratio as described above, the powder dispersion liquid can exhibit good defoaming property and excellent film forming property in a well-balanced manner.
 本発明のパウダー分散液は、パウダーの分散性をより向上させる観点から、さらに分散剤を含有するのが好ましい。分散剤は親水性基と疎水性基を有する化合物であり、分散剤としては、フッ素系分散剤、シリコーン系分散剤及びアセチレン系分散剤が好ましく、フッ素系分散剤がより好ましい。また、分散剤としては、ノニオン性の分散剤が好ましい。
 上記親水性基としては、ポリオキシアルキレン基及び水酸基が好ましい。ポリオキシアルキレン基としては、ポリオキシエチレン基、及び、オキシエチレン基と炭素数3以上のポリオキシアルキレン基とを有するポリオキシアルキレン基、が好ましい。一方、疎水性基は、分散剤の種類に応じて適宜選択される。フッ素系分散剤の場合、疎水性基としては、ペルフルオロアルキル基、エーテル性酸素原子を有するペルフルオロアルキル基及びペルフルオロアルケニル基が好ましい。
 この場合、各成分に対する分散剤の親和性がバランスして、パウダー分散液中におけるパウダーの分散性に加えて、その成膜性がさらに向上しやすい。
The powder dispersion of the present invention preferably further contains a dispersant from the viewpoint of further improving the dispersibility of the powder. The dispersant is a compound having a hydrophilic group and a hydrophobic group, and as the dispersant, a fluorine-based dispersant, a silicone-based dispersant and an acetylene-based dispersant are preferable, and a fluorine-based dispersant is more preferable. Further, as the dispersant, a nonionic dispersant is preferable.
As the hydrophilic group, a polyoxyalkylene group and a hydroxyl group are preferable. As the polyoxyalkylene group, a polyoxyethylene group and a polyoxyalkylene group having an oxyethylene group and a polyoxyalkylene group having 3 or more carbon atoms are preferable. On the other hand, the hydrophobic group is appropriately selected depending on the type of dispersant. In the case of a fluorine-based dispersant, the hydrophobic group is preferably a perfluoroalkyl group, a perfluoroalkyl group having an etheric oxygen atom, and a perfluoroalkenyl group.
In this case, the affinity of the dispersant for each component is balanced, and in addition to the dispersibility of the powder in the powder dispersion, the film-forming property is likely to be further improved.
 フッ素系分散剤としては、フルオロモノオール及びフルオロポリオールが好ましく、フッ素含有量が10~50質量%かつ水酸基価が40~100mgKOH/gのフルオロモノオールであるか、フッ素含有量が10~50質量%かつ水酸基価が10~35mgKOH/gのフルオロポリオールであることがより好ましい。
 フルオロモノオールとしては、F(CFCH(OCHCH-(OCHCH(CH))OH、F(CFCH(OCHCH12-(OCHCH(CH))OH、F(CFCHCH(OCHCH-(OCHCH(CH))OH、F(CFCHCH(OCHCH12-(OCHCH(CH))OH、F(CFCHCH(OCHCH-(OCHCH(CH))OH、F(CFCHCH(OCHCH12-(OCHCH(CH))OHが挙げられる。
As the fluorine-based dispersant, fluoromonool and fluoropolyol are preferable, and the fluorine content is 10 to 50% by mass and the hydroxyl value is 40 to 100 mgKOH / g, or the fluorine content is 10 to 50% by mass. More preferably, it is a fluoropolypoly having a hydroxyl value of 10 to 35 mgKOH / g.
The fluoro monool, F (CF 2) 6 CH 2 (OCH 2 CH 2) 7 - (OCH 2 CH (CH 3)) OH, F (CF 2) 6 CH 2 (OCH 2 CH 2) 12 - ( OCH 2 CH (CH 3)) OH, F (CF 2) 6 CH 2 CH 2 (OCH 2 CH 2) 7 - (OCH 2 CH (CH 3)) OH, F (CF 2) 6 CH 2 CH 2 ( OCH 2 CH 2) 12 - ( OCH 2 CH (CH 3)) OH, F (CF 2) 4 CH 2 CH 2 (OCH 2 CH 2) 7 - (OCH 2 CH (CH 3)) OH, F (CF 2) 4 CH 2 CH 2 ( OCH 2 CH 2) 12 - (OCH 2 CH (CH 3)) OH and the like.
 フルオロポリオールとしては、フルオロ(メタ)アクリレートに基づく単位とポリオキシアルキレングリコールモノ(メタ)アクリレートに基づく単位とを含むポリマーが挙げられる。なお、このポリマーは、Fポリマー以外のポリマーである。 Examples of the fluoropolyol include polymers containing a unit based on fluoro (meth) acrylate and a unit based on polyoxyalkylene glycol mono (meth) acrylate. This polymer is a polymer other than the F polymer.
 前者の(メタ)アクリレートの具体例としては、CH=C(CH)C(O)OCHCH(CFF、CH=CHC(O)OCHCH(CFF、CH=C(CH)C(O)OCHCH(CFF、CH=CClC(O)OCHCH(CFF、CH=C(CH)C(O)OCHCHCHCHOCF(CF)C(=C(CF)(CF(CF)、CH=CHC(O)OCHCHCHCHOCF(CF)C(=C(CF)(CF(CF)が挙げられる。 Specific examples of the former (meth) acrylate include CH 2 = C (CH 3 ) C (O) OCH 2 CH 2 (CF 2 ) 6 F, CH 2 = CHC (O) OCH 2 CH 2 (CF 2 ). 6 F, CH 2 = C (CH 3 ) C (O) OCH 2 CH 2 (CF 2 ) 4 F, CH 2 = CClC (O) OCH 2 CH 2 (CF 2 ) 4 F, CH 2 = C (CH) 3 ) C (O) OCH 2 CH 2 CH 2 CH 2 OCF (CF 3 ) C (= C (CF 3 ) 2 ) (CF (CF 3 ) 2 ), CH 2 = CH 3 C (O) OCH 2 CH 2 CH 2 CH 2 OCF (CF 3 ) C (= C (CF 3 ) 2 ) (CF (CF 3 ) 2 ) can be mentioned.
 後者の(メタ)アクリレートの具体例としては、CH=C(CH)C(O)(OCHCHOH、CH=C(CH)C(O)(OCHCHOH、CH=C(CH)C(O)(OCHCH23OH、CH=C(CH)C(O)(OCHCH66OH、CH=C(CH)C(O)(OCHCH90OH、CH=C(CH)C(O)(OCHCH120OH、CH=CHC(O)(OCHCHOH、CH=CHC(O)(OCHCHOH、CH=C(CH)C(O)(OCHCH(CH))OH、CH=C(CH)C(O)(OCHCH(CH))OH、CH=C(CH)C(O)(OCHCH(CH))OH、CH=C(CH)C(O)(OCHCH(CH))13OH、CH=C(CH)C(O)(OCHCH・(OCHCH(CH))OH、CH=C(CH)C(O)(OCHCH10・(OCHCHCHCHOHが挙げられる。 Specific examples of the latter (meth) acrylate include CH 2 = C (CH 3 ) C (O) (OCH 2 CH 2 ) 4 OH, CH 2 = C (CH 3 ) C (O) (OCH 2 CH 2 ). ) 9 OH, CH 2 = C (CH 3 ) C (O) (OCH 2 CH 2 ) 23 OH, CH 2 = C (CH 3 ) C (O) (OCH 2 CH 2 ) 66 OH, CH 2 = C (CH 3 ) C (O) (OCH 2 CH 2 ) 90 OH, CH 2 = C (CH 3 ) C (O) (OCH 2 CH 2 ) 120 OH, CH 2 = CHC (O) (OCH 2 CH 2 ) ) 4 OH, CH 2 = CHC (O) (OCH 2 CH 2 ) 8 OH, CH 2 = C (CH 3 ) C (O) (OCH 2 CH (CH 3 )) 4 OH, CH 2 = C (CH) 3 ) C (O) (OCH 2 CH (CH 3 )) 8 OH, CH 2 = C (CH 3 ) C (O) (OCH 2 CH (CH 3 )) 9 OH, CH 2 = C (CH 3 ) C (O) (OCH 2 CH (CH 3 )) 13 OH, CH 2 = C (CH 3 ) C (O) (OCH 2 CH 2 ) 4 · (OCH 2 CH (CH 3 )) 3 OH, CH 2 = C (CH 3 ) C (O) (OCH 2 CH 2 ) 10 · (OCH 2 CH 2 CH 2 CH 2 ) 5 OH can be mentioned.
 パウダー分散液に対するパウダーの割合は、10質量%以上が好ましく、20~50質量%がより好ましい。この場合、物性(特に、電気特性)に優れたポリマー層を形成しやすい。
 パウダー分散液に対する第1液状化合物と第2液状化合物との合計での割合(溶媒の割合)は、15~55質量%が好ましく、25~50質量%がより好ましい。この場合、パウダー分散液の塗布性が優れ、かつ成膜性も向上しやすい。
 また、パウダー分散液が分散剤を含む場合、そのパウダー分散液に対する割合は、0.1~10質量%が好ましく、0.5~5質量%がより好ましい。この場合、パウダー分散液中におけるパウダーの分散性がより高まり、ポリマー層の物性がより向上しやすい。
The ratio of the powder to the powder dispersion is preferably 10% by mass or more, more preferably 20 to 50% by mass. In this case, it is easy to form a polymer layer having excellent physical properties (particularly, electrical properties).
The total ratio (the ratio of the solvent) of the first liquid compound and the second liquid compound to the powder dispersion is preferably 15 to 55% by mass, more preferably 25 to 50% by mass. In this case, the coatability of the powder dispersion is excellent, and the film-forming property is likely to be improved.
When the powder dispersion contains a dispersant, the ratio of the powder dispersion to the powder dispersion is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass. In this case, the dispersibility of the powder in the powder dispersion is further enhanced, and the physical properties of the polymer layer are more likely to be improved.
 さらに、パウダー分散液は、本発明の効果を損なわない範囲で、他の材料を含んでいてもよい。他の材料は、パウダー分散液に溶解してもよく、溶解しなくてもよい。
 かかる他の材料は、非硬化性樹脂であってもよく、硬化性樹脂であってもよい。
 非硬化性樹脂としては、熱溶融性樹脂、非溶融性樹脂が挙げられる。熱溶融性樹脂としては、熱可塑性ポリイミドが挙げられる。非溶融性樹脂としては、硬化性樹脂の硬化物が挙げられる。
Further, the powder dispersion may contain other materials as long as the effects of the present invention are not impaired. Other materials may or may not be dissolved in the powder dispersion.
The other material may be a non-curable resin or a curable resin.
Examples of the non-curable resin include thermosetting resins and non-meltable resins. Examples of the thermosetting resin include thermoplastic polyimide. Examples of the non-meltable resin include a cured product of a curable resin.
 硬化性樹脂としては、反応性基を有するポリマー、反応性基を有するオリゴマー、低分子化合物、反応性基を有する低分子化合物が挙げられる。反応性基としては、カルボニル基含有基、ヒドロキシ基、アミノ基、エポキシ基が挙げられる。
 硬化性樹脂としては、エポキシ樹脂、熱硬化性ポリイミド、ポリイミド前駆体であるポリアミック酸、硬化性アクリル樹脂、フェノール樹脂、硬化性ポリエステル樹脂、硬化性ポリオレフィン樹脂、変性ポリフェニレンエーテル樹脂、多官能シアン酸エステル樹脂、多官能マレイミド-シアン酸エステル樹脂、多官能性マレイミド樹脂、ビニルエステル樹脂、尿素樹脂、ジアリルフタレート樹脂、メラニン樹脂、グアナミン樹脂、メラミン-尿素共縮合樹脂が挙げられる。
Examples of the curable resin include polymers having a reactive group, oligomers having a reactive group, low molecular weight compounds, and low molecular weight compounds having a reactive group. Examples of the reactive group include a carbonyl group-containing group, a hydroxy group, an amino group and an epoxy group.
Examples of the curable resin include epoxy resin, thermosetting polyimide, polyamic acid which is a polyimide precursor, curable acrylic resin, phenol resin, curable polyester resin, curable polyolefin resin, modified polyphenylene ether resin, and polyfunctional cyanate ester. Examples thereof include resins, polyfunctional maleimide-cyanic acid ester resins, polyfunctional maleimide resins, vinyl ester resins, urea resins, diallyl phthalate resins, melanin resins, guanamine resins, and melamine-urea cocondensation resins.
 エポキシ樹脂の具体例としては、ナフタレン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、アラルキル型エポキシ樹脂、ビフェノール型エポキシ樹脂が挙げられる。
 ビスマレイミド樹脂としては、特開平7-70315号公報に記載される樹脂組成物(BTレジン)、国際公開第2013/008667号に記載される樹脂が挙げられる。
 ポリアミック酸は、通常、Fポリマーが有する上記官能基と反応し得る反応性基を有している。
 ポリアミック酸を形成するジアミン、多価カルボン酸二無水物としては、特許第5766125号公報の[0020]、特許第5766125号公報の[0019]、特開2012-145676号公報の[0055]、[0057]等に記載の化合物が挙げられる。
Specific examples of the epoxy resin include naphthalene type epoxy resin, cresol novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alicyclic epoxy resin, and aliphatic chain epoxy resin. Examples thereof include cresol novolac type epoxy resin, phenol novolac type epoxy resin, alkylphenol novolac type epoxy resin, aralkyl type epoxy resin, and biphenol type epoxy resin.
Examples of the bismaleimide resin include the resin composition (BT resin) described in JP-A-7-70315 and the resin described in International Publication No. 2013/0083667.
The polyamic acid usually has a reactive group capable of reacting with the functional group of the F polymer.
Examples of the diamine and polyvalent carboxylic acid dianhydride forming the polyamic acid include [0020] of Japanese Patent No. 5766125, [0019] of Japanese Patent No. 5766125, and [0055] and [0055] of Japanese Patent Application Laid-Open No. 2012-145676. 0057] and the like.
 熱溶融性樹脂としては、熱可塑性ポリイミド等の熱可塑性樹脂、硬化性樹脂の熱溶融性の硬化物が挙げられる。
 熱可塑性樹脂としては、ポリエステル樹脂、ポリオレフィン樹脂、スチレン樹脂、ポリカーボネート、熱可塑性ポリイミド、ポリアリレート、ポリスルホン、ポリアリルスルホン、芳香族ポリアミド、芳香族ポリエーテルアミド、ポリフェニレンスルファイド、ポリアリルエーテルケトン、ポリアミドイミド、液晶性ポリエステル、ポリフェニレンエーテルが挙げられ、熱可塑性ポリイミド、液晶性ポリエステル及びポリフェニレンエーテルが好ましい。
 また、かかる他の材料としては、チキソ性付与剤、消泡剤、無機フィラー、反応性アルコキシシラン、脱水剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、表面処理剤、粘度調節剤、難燃剤も挙げられる。
Examples of the thermosetting resin include thermoplastic resins such as thermoplastic polyimide and thermosetting cured products of curable resins.
Examples of the thermoplastic resin include polyester resin, polyolefin resin, styrene resin, polycarbonate, thermoplastic polyimide, polyarylate, polysulfone, polyallylsulfone, aromatic polyamide, aromatic polyetheramide, polyphenylensulfide, polyallyl etherketone, and polyamide. Examples thereof include imide, liquid crystal polyester and polyphenylene ether, and thermoplastic polyimide, liquid crystal polyester and polyphenylene ether are preferable.
In addition, such other materials include thixo-imparting agents, defoaming agents, inorganic fillers, reactive alkoxysilanes, dehydrating agents, plasticizers, weathering agents, antioxidants, heat stabilizers, lubricants, antistatic agents, and more. Examples include whitening agents, colorants, conductive agents, mold release agents, surface treatment agents, viscosity modifiers, and flame retardants.
 パウダー分散液の25℃における粘度は、1000mPa・s以下が好ましく、50~1000mPa・sがより好ましく、100~500mPa・sがさらに好ましい。この場合、パウダー分散液が分散性に優れるだけでなく、塗工性や異種の樹脂材料のワニスとの相溶性にも優れる。また、本発明によれば、このように比較的低い粘度のパウダー分散液を調製(製造)しやすい。
 また、パウダー分散液のチキソ比(η/η)は、1~2.5が好ましく、1.2~2がより好ましい。この場合、パウダー分散液が分散性に優れるだけでなく、ポリマー層の均質性が向上しやすい。
The viscosity of the powder dispersion at 25 ° C. is preferably 1000 mPa · s or less, more preferably 50 to 1000 mPa · s, and even more preferably 100 to 500 mPa · s. In this case, the powder dispersion is not only excellent in dispersibility, but also excellent in coatability and compatibility with varnishes of different resin materials. Further, according to the present invention, it is easy to prepare (manufacture) a powder dispersion having such a relatively low viscosity.
The thixotropy (η 1 / η 2 ) of the powder dispersion is preferably 1 to 2.5, more preferably 1.2 to 2. In this case, not only the powder dispersion is excellent in dispersibility, but also the homogeneity of the polymer layer is likely to be improved.
 本発明のパウダー分散液は、前記パウダーと第1液体化合物と第2液体化合物とを混合して製造できる。パウダーと第1液体化合物と第2液体化合物とを一括して混合してもよく、それらを任意の組み合わせで順に混合してもよい。本発明のパウダー分散液は、予め、第1液体化合物と第2液体化合物とを混合して、それらを含む液状組成物を得た後、この液状組成物にパウダーを混合して調製するのが好ましい。すなわち、本発明のパウダー分散液の製造方法としては、パウダーと、第1液体化合物及び第2液体化合物を含む液状組成物とを混合する方法が好ましい。この順で、パウダーと第1液体化合物と第2液体化合物とを混合すれば、パウダー分散液に泡立ちが生じにくい。 The powder dispersion of the present invention can be produced by mixing the powder, the first liquid compound, and the second liquid compound. The powder, the first liquid compound, and the second liquid compound may be mixed together, or they may be mixed in any combination in order. The powder dispersion of the present invention is prepared by mixing a first liquid compound and a second liquid compound in advance to obtain a liquid composition containing them, and then mixing the powder with the liquid composition. preferable. That is, as a method for producing the powder dispersion liquid of the present invention, a method of mixing the powder and the liquid composition containing the first liquid compound and the second liquid compound is preferable. If the powder, the first liquid compound, and the second liquid compound are mixed in this order, foaming is less likely to occur in the powder dispersion.
 本発明の樹脂付基板の製造方法における基板としては、金属箔が好ましく、圧延銅箔、電解銅箔等の銅箔がより好ましい。金属箔の表面には、防錆層(クロメート等の酸化物皮膜等)、耐熱層、粗化処理層、シランカップリング剤処理層が設けられていてもよい。
 金属箔の表面の十点平均粗さは、0.2~2.5μmが好ましい。この場合、金属箔とポリマー層との剥離強度(密着性)が向上しやすい。
 パウダー分散液の基板表面への塗布は、スプレー法、ロールコート法、スピンコート法、グラビアコート法、マイクログラビアコート法、グラビアオフセット法、ナイフコート法、キスコート法、バーコート法、ダイコート法、ファウンテンメイヤーバー法、スロットダイコート法等の方法によって実施できる。
As the substrate in the method for producing a substrate with resin of the present invention, a metal foil is preferable, and a copper foil such as a rolled copper foil or an electrolytic copper foil is more preferable. A rust preventive layer (oxide film such as chromate), a heat resistant layer, a roughening treatment layer, and a silane coupling agent treatment layer may be provided on the surface of the metal foil.
The ten-point average roughness of the surface of the metal foil is preferably 0.2 to 2.5 μm. In this case, the peel strength (adhesion) between the metal foil and the polymer layer is likely to be improved.
The powder dispersion can be applied to the substrate surface by spray method, roll coating method, spin coating method, gravure coating method, micro gravure coating method, gravure offset method, knife coating method, kiss coating method, bar coating method, die coating method, fountain. It can be carried out by a method such as the Mayer bar method or the slot die coat method.
 パウダー分散液を基板表面に塗布することにより、基板表面にパウダー分散液の膜が形成される。次いで第1液体化合物及び第2液体化合物の沸点以上に加熱することにより、パウダー分散液の膜から第1液体化合物及び第2液体化合物が除去され、さらにFポリマーの焼成温度に加熱することにより、焼成されたFポリマーを含むポリマー層が形成される。
 液体化合物を揮発除去するための温度はFポリマーの溶融温度未満であることが好ましく、Fポリマーの焼成温度はFポリマーの溶融温度以上であることが好ましい。液体化合物の沸点とFポリマーの溶融温度は通常異なることより、加熱は少なくとも2段階の温度で行われることが好ましい。なお、Fポリマーの焼成温度は、Fポリマーの溶融温度によるが、400℃以下が好ましい。
 加熱の方法としては、オーブンを用いる方法、通風乾燥炉を用いる方法、赤外線等の熱線を照射する方法が挙げられる。
 加熱は、常圧下および減圧下のいずれの状態で行ってもよい。
 また、加熱雰囲気としては、酸化性ガス雰囲気(酸素ガス等)、還元性ガス雰囲気(水素ガス等)、不活性ガス雰囲気(ヘリウムガス、ネオンガス、アルゴンガス、窒素ガス等)のいずれであってもよい。
By applying the powder dispersion liquid to the surface of the substrate, a film of the powder dispersion liquid is formed on the surface of the substrate. Next, the first liquid compound and the second liquid compound are removed from the film of the powder dispersion liquid by heating above the boiling points of the first liquid compound and the second liquid compound, and further heating to the firing temperature of the F polymer is performed. A polymer layer containing the calcined F polymer is formed.
The temperature for volatilizing and removing the liquid compound is preferably lower than the melting temperature of the F polymer, and the firing temperature of the F polymer is preferably equal to or higher than the melting temperature of the F polymer. Since the boiling point of the liquid compound and the melting temperature of the F polymer are usually different, it is preferable that the heating is performed at a temperature of at least two steps. The firing temperature of the F polymer depends on the melting temperature of the F polymer, but is preferably 400 ° C. or lower.
Examples of the heating method include a method using an oven, a method using a ventilation drying furnace, and a method of irradiating heat rays such as infrared rays.
The heating may be carried out under either normal pressure or reduced pressure.
The heating atmosphere may be any of an oxidizing gas atmosphere (oxygen gas, etc.), a reducing gas atmosphere (hydrogen gas, etc.), and an inert gas atmosphere (helium gas, neon gas, argon gas, nitrogen gas, etc.). Good.
 本発明の樹脂付基板の製造方法により、基板と基板の一方の表面に接するポリマー層とを有する2層構成の樹脂付基板が得られる。また、得られた2層構成の樹脂付基板を用いて本発明の製造方法を繰り返すことにより、基板の両表面にポリマー層を有する3層構成の樹脂付基板を得ることもできる。
 本発明により得られる樹脂付基板において、ポリマー層の厚さは、20μm未満が好ましく、10μm未満がより好ましく、0.1~8μmが特に好ましい。本発明によれば、かかる薄いポリマー層であっても、高い表面平坦性で形成できる。
 本発明により得られる樹脂付基板は、ポリマー層と基板との剥離強度も高い。この剥離強度は、7N/cm以上が好ましく、10N/cm以上がより好ましく、13N/cm以上がさらに好ましい。
According to the method for manufacturing a resin-coated substrate of the present invention, a resin-coated substrate having a two-layer structure having a substrate and a polymer layer in contact with one surface of the substrate can be obtained. Further, by repeating the production method of the present invention using the obtained two-layer resin-attached substrate, a three-layer resin-attached substrate having polymer layers on both surfaces of the substrate can also be obtained.
In the resin-coated substrate obtained by the present invention, the thickness of the polymer layer is preferably less than 20 μm, more preferably less than 10 μm, and particularly preferably 0.1 to 8 μm. According to the present invention, even such a thin polymer layer can be formed with high surface flatness.
The resin-coated substrate obtained by the present invention also has high peel strength between the polymer layer and the substrate. The peel strength is preferably 7 N / cm or more, more preferably 10 N / cm or more, and further preferably 13 N / cm or more.
 また、本発明により得られる樹脂付基板は、そのポリマー層表面を積層面として他の基板と積層し、3層以上の層構成を有する積層体とすることができる。そのような積層体としては、例えば、基板/ポリマー層/他の基板なる層構成を有する積層体、基板/ポリマー層/他の基板/ポリマー層/基板なる層構成を有する積層体、が挙げられる。他の基板としては、金属箔や樹脂板等が挙げられる。 Further, the resin-coated substrate obtained by the present invention can be laminated with another substrate by using the polymer layer surface as a laminated surface to form a laminated body having a layer structure of three or more layers. Examples of such a laminate include a laminate having a layer structure of a substrate / polymer layer / another substrate, and a laminate having a layer structure of a substrate / polymer layer / another substrate / polymer layer / substrate. .. Examples of other substrates include metal foils and resin plates.
 本発明により得られる樹脂付基板や前記積層体は、Fポリマーのパウダーから形成されたポリマー層を備えるため、耐熱性、電気特性、耐薬品性(エッチング耐性)等の物性に優れ、フレキシブルプリント配線基板、リジッドプリント配線基板等のプリント配線基板材料として有用である。
 例えば、樹脂付基板の基板や前記積層体の他の基板が金属箔であれば、その金属箔をエッチング処理して所定パターンの金属導体配線(伝送回路)に加工する方法や、金属箔を電解めっき法(セミアディティブ法、モディファイドセミアディティブ法等)で金属導体配線に加工する方法によって、プリント配線基板を製造できる。
Since the resin-attached substrate and the laminate obtained by the present invention include a polymer layer formed from F polymer powder, they are excellent in physical properties such as heat resistance, electrical properties, and chemical resistance (etching resistance), and are flexible printed wiring boards. It is useful as a material for printed wiring boards such as substrates and rigid printed wiring boards.
For example, if the substrate of the resin-attached substrate or the other substrate of the laminate is a metal foil, a method of etching the metal foil to process it into a metal conductor wiring (transmission circuit) having a predetermined pattern, or electrolyzing the metal foil. A printed wiring board can be manufactured by a method of processing into a metal conductor wiring by a plating method (semi-additive method, modified semi-additive method, etc.).
 かかるプリント配線基板は、金属導体配線とポリマー層とをこの順に有する。その構成としては、金属導体配線/ポリマー層、金属導体配線/ポリマー層/金属導体配線が挙げられる。
 プリント配線基板においては、金属導体配線上に層間絶縁膜を形成し、層間絶縁膜上にさらに金属導体配線を形成してもよい。層間絶縁膜は、上記パウダー分散液によっても形成してもよい。また、金属導体配線上にソルダーレジストやカバーレイフィルムを積層してもよい。ソルダーレジストやカバーレイフィルムも、上記パウダー分散液によって形成してもよい。
Such a printed wiring board has a metal conductor wiring and a polymer layer in this order. Examples of the configuration include metal conductor wiring / polymer layer and metal conductor wiring / polymer layer / metal conductor wiring.
In the printed wiring board, an interlayer insulating film may be formed on the metal conductor wiring, and a metal conductor wiring may be further formed on the interlayer insulating film. The interlayer insulating film may also be formed by the powder dispersion liquid. Further, a solder resist or a coverlay film may be laminated on the metal conductor wiring. The solder resist and coverlay film may also be formed by the above powder dispersion.
 プリント配線基板の具体的な態様としては、上述した層構成を多層化した多層プリント配線基板が挙げられる。
 多層プリント配線基板の好適な態様としては、多層プリント配線基板の最外層がポリマー層であり、金属導体配線/ポリマー層の層構成を1以上有する態様が挙げられる。
 かかる態様の多層プリント配線基板は、最外層の耐熱性に優れており、加工時の加熱、例えば、はんだリフロー工程における300℃の加熱によっても、不具合が発生しにくい。
As a specific embodiment of the printed wiring board, a multi-layer printed wiring board in which the above-mentioned layer structure is multi-layered can be mentioned.
A preferred embodiment of the multilayer printed wiring board is an embodiment in which the outermost layer of the multilayer printed wiring board is a polymer layer and has one or more layer configurations of metal conductor wiring / polymer layer.
The multilayer printed wiring board of this aspect has excellent heat resistance of the outermost layer, and defects are less likely to occur even when heated during processing, for example, heating at 300 ° C. in a solder reflow process.
 本発明のポリマー分散液を織布に含浸し、さらに織布を加熱してパウダーを焼成すれば、パウダーの焼成物で被覆された被覆織布が得られる。
 織布は、加熱に耐える耐熱性織布であり、織布としては、ガラス繊維織布、カーボン繊維織布、アラミド繊維織布及び金属繊維織布が好ましく、ガラス繊維織布及びカーボン繊維織布がより好ましく、電気絶縁性の観点から、JIS R 3410:2006で定められる電気絶縁用Eガラスヤーンより構成される平織のガラス繊維織布がさらに好ましい。織布は、焼成物との密着接着性を高める観点から、シランカップリング剤で処理されていてもよい。
By impregnating the woven fabric with the polymer dispersion of the present invention and further heating the woven fabric to fire the powder, a coated woven fabric coated with the fired product of the powder can be obtained.
The woven fabric is a heat-resistant woven fabric that can withstand heating, and the woven fabric is preferably glass fiber woven fabric, carbon fiber woven fabric, aramid fiber woven fabric, and metal fiber woven fabric, and glass fiber woven fabric and carbon fiber woven fabric. Is more preferable, and from the viewpoint of electrical insulation, a plain woven glass fiber woven fabric composed of E glass yarn for electrical insulation defined in JIS R 3410: 2006 is further preferable. The woven fabric may be treated with a silane coupling agent from the viewpoint of enhancing the adhesion to the fired product.
 本発明のパウダー分散液を織布に含浸させる方法としては、パウダー分散液中に織布を浸漬する方法や、パウダー分散液を織布に塗布する方法が挙げられる。本発明のパウダー分散液は、他の材料との接着性に優れるFポリマーを含むため、浸漬回数又は塗布回数が少なくとも、織布とFポリマーとが強固に接着した、ポリマー含有量が高い被覆織布が得られる。
 織布を加熱させる方法は、パウダー分散液に含まれる液性成分の種類によって適宜決定でき、80~260℃の雰囲気にて乾燥させ、さらに300~400℃の雰囲気にてパウダーを焼成させる方法が通常は採用される。
Examples of the method of impregnating the woven fabric with the powder dispersion of the present invention include a method of immersing the woven fabric in the powder dispersion and a method of applying the powder dispersion to the woven fabric. Since the powder dispersion of the present invention contains an F polymer having excellent adhesiveness to other materials, a coated weave having a high polymer content, in which the woven fabric and the F polymer are firmly adhered at least by the number of times of immersion or application. A cloth is obtained.
The method of heating the woven fabric can be appropriately determined depending on the type of the liquid component contained in the powder dispersion, and the method of drying in an atmosphere of 80 to 260 ° C. and further firing the powder in an atmosphere of 300 to 400 ° C. Usually adopted.
 得られる被覆織布は、焼成物がFポリマーを含むため、焼成物と織布との密着接着性が高い、表面平坦性が高い、歪が少ない等の特性に優れている。かかる織布と金属箔とを熱圧着させて得られる積層体は、剥離強度が高く、反りにくいため、プリント基板材料として好適に使用できる。
 また、織布を含む本発明のパウダー分散液を、基材の表面に塗布し加熱すれば、パウダーの焼成物と織布とを含む被覆織布層を形成でき、基材と被覆織布層とが、この順に積層された積層体も製造できる。
Since the fired product contains the F polymer, the obtained coated woven fabric is excellent in characteristics such as high adhesion between the fired product and the woven fabric, high surface flatness, and little distortion. The laminate obtained by thermocompression bonding the woven fabric and the metal foil has high peel strength and is hard to warp, so that it can be suitably used as a printed circuit board material.
Further, by applying the powder dispersion liquid of the present invention containing a woven fabric to the surface of the base material and heating it, a coated woven fabric layer containing the baked product of the powder and the woven fabric can be formed, and the base material and the coated woven fabric layer can be formed. However, a laminated body laminated in this order can also be manufactured.
 以上、本発明のパウダー分散液、パウダー分散液の製造方法及び樹脂付基板の製造方法について説明したが、本発明は、上述した実施形態の構成に限定されない。
 例えば、本発明のパウダー分散液は、上記実施形態の構成において、他の任意の構成を追加で有してもよいし、同様の作用を生じる任意の構成と置換されていてよい。
 また、本発明のパウダー分散液の製造方法及び樹脂付基板の製造方法は、それぞれ上記実施形態の構成において、他の任意の工程を追加で有してもよいし、同様の作用を生じる任意の工程と置換されていてよい。
Although the powder dispersion liquid, the method for producing the powder dispersion liquid, and the method for producing the resin-coated substrate of the present invention have been described above, the present invention is not limited to the configuration of the above-described embodiment.
For example, the powder dispersion of the present invention may additionally have any other configuration in the configuration of the above embodiment, or may be replaced with any configuration that produces the same effect.
Further, the method for producing the powder dispersion liquid and the method for producing the resin-coated substrate of the present invention may additionally have any other optional steps in the configuration of the above-described embodiment, and any other method that produces the same action may be additionally provided. It may be replaced with the process.
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。
 1.各成分の準備
 [Fポリマー]
 Fポリマー1:TFE単位、NAH単位及びPPVE単位を、この順に98.0モル%、0.1モル%、1.9モル%含むコポリマー(溶融温度:300℃、380℃の溶融粘度:3×10Pa・s)
 Fポリマー2:TFE単位及びPPVE単位を、この順に97.5モル%、2.5モル%含むコポリマー(溶融温度305℃、380℃の溶融粘度:3×10Pa・s)
 [パウダー]
 パウダー1:D50が1.8μm、D90が5.2μmである、Fポリマー1からなるパウダー
 パウダー2:D50が18.8μm、D90が52.3μmである、Fポリマー2からなるパウダー
 [分散剤]
 フッ素系分散剤1:CH=C(CH)C(O)OCHCH(CFFに基づく単位とCH=C(CH)C(O)(OCHCH23OHに基づく単位とを、この順に81モル%、19モル%含み、フッ素含有量が35質量%かつ水酸基価が19mgKOH/gのポリマー
Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.
1. 1. Preparation of each component [F polymer]
F polymer 1: Copolymer containing 98.0 mol%, 0.1 mol% and 1.9 mol% of TFE unit, NAH unit and PPVE unit in this order (melting temperature: 300 ° C., melt viscosity at 380 ° C.: 3 × 10 5 Pa · s)
F polymer 2: Copolymer containing 97.5 mol% and 2.5 mol% of TFE units and PPVE units in this order (melt viscosity at melting temperature 305 ° C and 380 ° C: 3 × 10 5 Pa · s)
[powder]
Powder 1: Powder made of F polymer 1 having D50 of 1.8 μm and D90 of 5.2 μm Powder 2: Powder made of F polymer 2 having D50 of 18.8 μm and D90 of 52.3 μm [Dispersant]
Fluorine-based dispersant 1: CH 2 = C (CH 3 ) C (O) OCH 2 CH 2 (CF 2 ) 6 F-based units and CH 2 = C (CH 3 ) C (O) (OCH 2 CH 2 ) A polymer containing 81 mol% and 19 mol% of units based on 23 OH in this order, having a fluorine content of 35% by mass and a hydroxyl value of 19 mgKOH / g.
 2.パウダー分散液の製造
 (例1)
 まず、フッ素系分散剤1と3-メトキシ-3-メチルブチルアセテート(蒸発速度:0.10、沸点:188℃)とを含む分散剤溶液を準備した。なお、分散剤溶液中に含まれるフッ素系分散剤1の量を33質量%とした。
 次に、この分散剤溶液とN-メチル-2-ピロリドン(NMP。沸点:202℃、粘度(20℃):1.89mPa・s)とを混合して、液状組成物を調製した。
 次に、この液状組成物とパウダー1とをポットに投入した後、ポット内にジルコニアボールを投入した。その後、150rpmにて1時間、ポットをころがし、パウダー1を液状組成物に分散させてパウダー分散液1(粘度:120mPa・s)を得た。
 なお、パウダー分散液1中に含まれるパウダー1の量を40質量%、フッ素系分散剤1の量を5質量%、3-メトキシ-3-メチルブチルアセテートの量を10質量%、NMPの量を45質量%とした。
2. Production of powder dispersion (Example 1)
First, a dispersant solution containing a fluorine-based dispersant 1 and 3-methoxy-3-methylbutyl acetate (evaporation rate: 0.10, boiling point: 188 ° C.) was prepared. The amount of the fluorine-based dispersant 1 contained in the dispersant solution was 33% by mass.
Next, this dispersant solution and N-methyl-2-pyrrolidone (NMP. Boiling point: 202 ° C., viscosity (20 ° C.): 1.89 mPa · s) were mixed to prepare a liquid composition.
Next, after putting this liquid composition and powder 1 into a pot, zirconia balls were put into the pot. Then, the pot was rolled at 150 rpm for 1 hour, and the powder 1 was dispersed in the liquid composition to obtain a powder dispersion 1 (viscosity: 120 mPa · s).
The amount of powder 1 contained in the powder dispersion 1 is 40% by mass, the amount of fluorine-based dispersant 1 is 5% by mass, the amount of 3-methoxy-3-methylbutyl acetate is 10% by mass, and the amount of NMP. Was 45% by mass.
 (例2(比較例))
 3-メトキシ-3-メチルブチルアセテートに代えて、NMPを使用した以外は、例1と同様にしてパウダー分散液2(粘度:100mPa・s)を得た。
 なお、パウダー分散液2中に含まれるパウダー1の量を40質量%、フッ素系分散剤1の量を5質量%、NMPの量を55質量%とした。
(Example 2 (Comparative example))
Powder dispersion 2 (viscosity: 100 mPa · s) was obtained in the same manner as in Example 1 except that NMP was used instead of 3-methoxy-3-methylbutyl acetate.
The amount of powder 1 contained in the powder dispersion 2 was 40% by mass, the amount of fluorine-based dispersant 1 was 5% by mass, and the amount of NMP was 55% by mass.
 (例3)
 パウダー1に代えて、パウダー2を使用した以外は、例1と同様にしてパウダー分散液3(粘度:180mPa・s)を得た。
(Example 3)
A powder dispersion 3 (viscosity: 180 mPa · s) was obtained in the same manner as in Example 1 except that powder 2 was used instead of powder 1.
 (例4(比較例))
 3-メトキシ-3-メチルブチルアセテートに代えて、トリエチレングリコールモノブチルエーテル(蒸発速度:0.01未満、沸点:271℃)を使用した以外は、例3と同様にしてパウダー分散液4(粘度:1500mPa・s)を得た。
(Example 4 (Comparative example))
Powder dispersion 4 (viscosity) in the same manner as in Example 3 except that triethylene glycol monobutyl ether (evaporation rate: less than 0.01, boiling point: 271 ° C.) was used instead of 3-methoxy-3-methylbutyl acetate. : 1500 mPa · s) was obtained.
 (例5(比較例))
 3-メトキシ-3-メチルブチルアセテートに代えて、エチレングリコールモノエチルエーテル(蒸発速度:0.38、沸点:136℃)を使用した以外は、例3と同様にしてパウダー分散液5(粘度:800mPa・s)を得た。
(Example 5 (Comparative example))
Powder dispersion 5 (viscosity:) in the same manner as in Example 3 except that ethylene glycol monoethyl ether (evaporation rate: 0.38, boiling point: 136 ° C.) was used instead of 3-methoxy-3-methylbutyl acetate. 800 mPa · s) was obtained.
 (例6(比較例))
 3-メトキシ-3-メチルブチルアセテートに代えて、NMPを使用した以外は、例3と同様にしてパウダー分散液6(粘度:80mPa・s)を得た。
 なお、パウダー分散液6中に含まれるパウダー2の量を40質量%、フッ素系分散剤1の量を5質量%、NMPの量を55質量%とした。
(Example 6 (Comparative example))
A powder dispersion 6 (viscosity: 80 mPa · s) was obtained in the same manner as in Example 3 except that NMP was used instead of 3-methoxy-3-methylbutyl acetate.
The amount of powder 2 contained in the powder dispersion 6 was 40% by mass, the amount of fluorine-based dispersant 1 was 5% by mass, and the amount of NMP was 55% by mass.
 3.評価
 3-1.消泡性の評価
 パウダー分散液を調製(製造)する際に、泡立ちが消失するまでの時間を確認し、以下の基準に従って評価した。
 [評価基準]
 ○:3時間未満
 △:3時間以上、6時間未満
 ×:6時間以上
3. 3. Evaluation 3-1. Evaluation of defoaming property When preparing (manufacturing) a powder dispersion, the time until foaming disappeared was confirmed and evaluated according to the following criteria.
[Evaluation criteria]
◯: Less than 3 hours Δ: 3 hours or more, less than 6 hours ×: 6 hours or more
 3-2.成膜性の評価
 まず、厚さが18μmの銅箔(基板)の表面に、パウダー分散液をグラビアリバース法によりロールツーロールで塗工して、液状被膜を形成した。
 次いで、この液状被膜が形成された銅箔を、120℃の乾燥炉にて5分間、通し、加熱により乾燥させた。その後、窒素雰囲気下の遠赤外線オーブン中で、乾燥被膜を380℃にて3分間、加熱した。
 これにより、銅箔の表面にポリマー層が形成された樹脂付銅箔を製造した。なお、ポリマー層の厚さは4μmであった。
3-2. Evaluation of film-forming property First, a powder dispersion was applied on the surface of a copper foil (substrate) having a thickness of 18 μm by a gravure reverse method in a roll-to-roll manner to form a liquid film.
Next, the copper foil on which the liquid film was formed was passed through a drying oven at 120 ° C. for 5 minutes and dried by heating. Then, the dry film was heated at 380 ° C. for 3 minutes in a far-infrared oven under a nitrogen atmosphere.
As a result, a copper foil with a resin having a polymer layer formed on the surface of the copper foil was produced. The thickness of the polymer layer was 4 μm.
 次に、得られた樹脂付銅箔から銅箔の全てを酸溶液で除去して、ポリマー層単体を得た。
 そして、このポリマー層の中央部を蛍光灯下において目視で観察するとともに、ポリマー層表面の中央部と端部とを光干渉顕微鏡で観察し、厚さのムラ(平坦性の良否)について、以下の基準に従って評価した。
 [評価基準]
 ○:蛍光灯下においてポリマー層の厚さにムラが観察されず、光干渉顕微鏡で観察したポリマー層表面の中央部と端部の膜厚差が10%以下である。
 △:蛍光灯下においてポリマー層の厚さにムラが観察されず、光干渉顕微鏡で観察したポリマー層表面の中央部と端部の膜厚差が10%超である。
 ×:蛍光灯下においてポリマー層の厚さにムラが観察され、光干渉顕微鏡で観察したポリマー層表面の中央部と端部の膜厚差が10%超である。
Next, all of the copper foil was removed from the obtained copper foil with resin with an acid solution to obtain a single polymer layer.
Then, the central portion of the polymer layer is visually observed under a fluorescent lamp, and the central portion and the end portion of the surface of the polymer layer are observed with an optical interference microscope. The thickness unevenness (good or bad flatness) is described below. It was evaluated according to the criteria of.
[Evaluation criteria]
◯: No unevenness was observed in the thickness of the polymer layer under a fluorescent lamp, and the difference in film thickness between the central portion and the edge portion of the surface of the polymer layer observed by an optical interference microscope was 10% or less.
Δ: No unevenness was observed in the thickness of the polymer layer under a fluorescent lamp, and the difference in film thickness between the central portion and the edge portion of the surface of the polymer layer observed by a light interference microscope was more than 10%.
X: Unevenness is observed in the thickness of the polymer layer under a fluorescent lamp, and the difference in film thickness between the central portion and the edge portion of the surface of the polymer layer observed by a light interference microscope is more than 10%.
 以上の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 例1及び例3のパウダー分散液は、消泡性及び成膜性の双方が良好であった。これに対して、例2及び例4~例6のパウダー分散液は、消泡性及び成膜性の少なくとも一方が不良であった。また、例4のパウダー分散液を使用して「3-2.成膜性の評価」の条件にて形成した塗膜は乾燥が不充分であり、評価不能であった。
The above results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
The powder dispersions of Examples 1 and 3 had good defoaming property and film forming property. On the other hand, the powder dispersions of Examples 2 and 4 to 6 were poor in at least one of defoaming property and film forming property. Further, the coating film formed under the condition of "3-2. Evaluation of film forming property" using the powder dispersion of Example 4 was insufficiently dried and could not be evaluated.
 本発明のパウダー分散液は、フィルム、含浸物(プリプレグ等)、積層体(樹脂付銅箔等の樹脂付基板)等の製造に使用でき、離型性、電気特性、撥水撥油性、耐薬品性、耐候性、耐熱性、滑り性、耐摩耗性等が要求される用途に使用できる。また、樹脂付基板は、アンテナ部品、プリント配線板、パワー半導体の絶縁層、航空機用部品、自動車用部品等に加工して使用できる。
 なお、2019年04月11日に出願された日本特許出願2019-075499号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The powder dispersion of the present invention can be used in the production of films, impregnated materials (prepregs, etc.), laminates (resin-attached substrates such as resin-attached copper foil), etc. It can be used in applications that require chemical resistance, weather resistance, heat resistance, slipperiness, abrasion resistance, etc. Further, the resin-attached substrate can be processed and used as an antenna component, a printed wiring board, an insulating layer of a power semiconductor, an aircraft component, an automobile component, or the like.
The entire contents of the specification, claims and abstract of Japanese Patent Application No. 2019-075499 filed on April 11, 2019 are cited here and incorporated as disclosure of the specification of the present invention. Is.

Claims (15)

  1.  テトラフルオロエチレン系ポリマーのパウダーと、沸点が80~260℃の第1液体化合物と、前記第1液体化合物と異なり、酢酸ブチルの蒸発速度を1とした場合の蒸発速度が0.01~0.3、かつ沸点が140~260℃の第2液体化合物とを含む、パウダー分散液。 Unlike the tetrafluoroethylene polymer powder, the first liquid compound having a boiling point of 80 to 260 ° C., and the first liquid compound, the evaporation rate when the evaporation rate of butyl acetate is 1, is 0.01 to 0. 3. A powder dispersion containing a second liquid compound having a boiling point of 140 to 260 ° C.
  2.  前記パウダー分散液に含まれる前記第1液体化合物の質量に対する前記第2液体化合物の質量の比が1未満である、請求項1に記載のパウダー分散液。 The powder dispersion according to claim 1, wherein the ratio of the mass of the second liquid compound to the mass of the first liquid compound contained in the powder dispersion is less than 1.
  3.  前記第1液体化合物が、ケトン、エステル、アミド又は芳香族炭化水素である、請求項1又は2に記載のパウダー分散液。 The powder dispersion according to claim 1 or 2, wherein the first liquid compound is a ketone, an ester, an amide, or an aromatic hydrocarbon.
  4.  前記第2液体化合物が、ジイソブチルケトン、4-ヒドロキシ-4-メチル-2-ペンタノン、イソホロン、エチレングリコールモノ-n-ブチルエーテル、エチレングリコールモノ-t-ブチルエーテル、酢酸-2-エトキシエチル、3-メトキシ-3-メチルブタノール、3-メトキシ-3-メチルブチルアセテート、プロピレングリコールモノプロピルエーテル、3-メトキシブチルアセテート、プロピレングリコールモノメチルエーテルプロピネート又はジエチレングリコールモノブチルエーテルである、請求項1~3のいずれか1項に記載のパウダー分散液。 The second liquid compound is diisobutyl ketone, 4-hydroxy-4-methyl-2-pentanone, isophorone, ethylene glycol mono-n-butyl ether, ethylene glycol mono-t-butyl ether, acetic acid-2-ethoxyethyl, 3-methoxy. Any one of claims 1 to 3, which is -3-methylbutanol, 3-methoxy-3-methylbutyl acetate, propylene glycol monopropyl ether, 3-methoxybutyl acetate, propylene glycol monomethyl ether propinate or diethylene glycol monobutyl ether. The powder dispersion according to the section.
  5.  前記第2液体化合物が、4-ヒドロキシ-4-メチル-2-ペンタノン、イソホロン、3-メトキシ-3-メチルブタノール、3-メトキシ-3-メチルブチルアセテート又は3-メトキシブチルアセテートである、請求項1~4のいずれか1項に記載のパウダー分散液。 Claim that the second liquid compound is 4-hydroxy-4-methyl-2-pentanone, isophorone, 3-methoxy-3-methylbutanol, 3-methoxy-3-methylbutyl acetate or 3-methoxybutyl acetate. The powder dispersion according to any one of 1 to 4.
  6.  前記パウダーの平均粒子径が、40μm以下である、請求項1~5のいずれか1項に記載のパウダー分散液。 The powder dispersion according to any one of claims 1 to 5, wherein the average particle size of the powder is 40 μm or less.
  7.  前記パウダー分散液に含まれる前記パウダーの量が、10質量%以上である、請求項1~6のいずれか1項に記載のパウダー分散液。 The powder dispersion liquid according to any one of claims 1 to 6, wherein the amount of the powder contained in the powder dispersion liquid is 10% by mass or more.
  8.  前記テトラフルオロエチレン系ポリマーが、溶融温度が140~320℃の熱溶融性ポリマーである、請求項1~7のいずれか1項に記載のパウダー分散液。 The powder dispersion according to any one of claims 1 to 7, wherein the tetrafluoroethylene polymer is a heat-meltable polymer having a melting temperature of 140 to 320 ° C.
  9.  前記テトラフルオロエチレン系ポリマーが、テトラフルオロエチレンに基づく単位及び官能基を有するポリマーである、請求項1~8のいずれか1項に記載のパウダー分散液。 The powder dispersion according to any one of claims 1 to 8, wherein the tetrafluoroethylene-based polymer is a polymer having a unit and a functional group based on tetrafluoroethylene.
  10.  前記ポリマーが、テトラフルオロエチレンに基づく単位及び官能基を有するモノマーに基づく単位を有するポリマーである、請求項9に記載のパウダー分散液。 The powder dispersion according to claim 9, wherein the polymer is a polymer having a unit based on tetrafluoroethylene and a unit based on a monomer having a functional group.
  11.  さらに、ポリオキシアルキレン基又は水酸基を有する親水性基と、ペルフルオロアルキル基、エーテル性酸素原子を有するペルフルオロアルキル基又はペルフルオロアルケニル基を有する疎水性基とを有する分散剤を含む、請求項1~10のいずれか1項に記載のパウダー分散液。 Further, claims 1 to 10 include a dispersant having a hydrophilic group having a polyoxyalkylene group or a hydroxyl group and a hydrophobic group having a perfluoroalkyl group, a perfluoroalkyl group having an etheric oxygen atom, or a perfluoroalkenyl group. The powder dispersion liquid according to any one of the above items.
  12.  前記パウダー分散液の25℃における粘度が、1000mPa・s以下である、請求項1~11のいずれか1項に記載のパウダー分散液。 The powder dispersion according to any one of claims 1 to 11, wherein the powder dispersion has a viscosity of 1000 mPa · s or less at 25 ° C.
  13.  請求項1~12のいずれか1項に記載のパウダー分散液を製造する方法であって、前記パウダーと、前記第1液体化合物及び前記第2液体化合物を含む液状組成物とを混合して、パウダー分散液を得る、パウダー分散液の製造方法。 The method for producing a powder dispersion according to any one of claims 1 to 12, wherein the powder is mixed with a liquid composition containing the first liquid compound and the second liquid compound. A method for producing a powder dispersion to obtain a powder dispersion.
  14.  請求項1~12のいずれか1項に記載のパウダー分散液を、基板の表面に塗布し、加熱して前記第1液体化合物及び前記第2液体化合物を除去するとともに、前記テトラフルオロエチレン系ポリマーを焼成して、前記テトラフルオロエチレン系ポリマーを含むポリマー層を形成し、前記基板と前記ポリマー層とを備える樹脂付基板を得る、樹脂付基板の製造方法。 The powder dispersion liquid according to any one of claims 1 to 12 is applied to the surface of a substrate and heated to remove the first liquid compound and the second liquid compound, and the tetrafluoroethylene polymer. A method for producing a resin-coated substrate, wherein a polymer layer containing the tetrafluoroethylene-based polymer is formed, and a resin-coated substrate including the substrate and the polymer layer is obtained.
  15.  前記ポリマー層の厚さが、20μm未満である、請求項14に記載の製造方法。 The production method according to claim 14, wherein the thickness of the polymer layer is less than 20 μm.
PCT/JP2020/015541 2019-04-11 2020-04-06 Powder dispersion, production method for powder dispersion, and production method for resin-including substrate WO2020209223A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080026421.5A CN113747980A (en) 2019-04-11 2020-04-06 Powder dispersion, method for producing powder dispersion, and method for producing resin-attached substrate
JP2021513624A JP7452534B2 (en) 2019-04-11 2020-04-06 Powder dispersion liquid, method for manufacturing powder dispersion liquid, and method for manufacturing resin-coated substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-075499 2019-04-11
JP2019075499 2019-04-11

Publications (1)

Publication Number Publication Date
WO2020209223A1 true WO2020209223A1 (en) 2020-10-15

Family

ID=72751553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015541 WO2020209223A1 (en) 2019-04-11 2020-04-06 Powder dispersion, production method for powder dispersion, and production method for resin-including substrate

Country Status (4)

Country Link
JP (1) JP7452534B2 (en)
CN (1) CN113747980A (en)
TW (1) TW202043390A (en)
WO (1) WO2020209223A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5268230A (en) * 1975-12-02 1977-06-06 Isamu Paint Surface improving agents of coating film
JPH0279391A (en) * 1988-09-14 1990-03-19 Nippon Sheet Glass Co Ltd Electroluminescence element
JP2003119426A (en) * 2001-10-05 2003-04-23 Sk Kaken Co Ltd Delustering agent for coating material and coating material composition using the same
WO2018166644A1 (en) * 2017-03-13 2018-09-20 Neoperl Gmbh Sanitary insert unit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI752062B (en) * 2016-07-22 2022-01-11 日商Agc股份有限公司 Liquid composition, and method for producing thin film and layered product using the liquid composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5268230A (en) * 1975-12-02 1977-06-06 Isamu Paint Surface improving agents of coating film
JPH0279391A (en) * 1988-09-14 1990-03-19 Nippon Sheet Glass Co Ltd Electroluminescence element
JP2003119426A (en) * 2001-10-05 2003-04-23 Sk Kaken Co Ltd Delustering agent for coating material and coating material composition using the same
WO2018166644A1 (en) * 2017-03-13 2018-09-20 Neoperl Gmbh Sanitary insert unit

Also Published As

Publication number Publication date
JPWO2020209223A1 (en) 2020-10-15
JP7452534B2 (en) 2024-03-19
TW202043390A (en) 2020-12-01
CN113747980A (en) 2021-12-03

Similar Documents

Publication Publication Date Title
CN113348208B (en) Dispersion liquid
CN113227232B (en) Powder dispersion, laminate, and printed board
CN112236473B (en) Dispersion liquid, method for producing resin-containing metal foil, and method for producing printed board
TWI826452B (en) Method for manufacturing resin-coated metal foil, resin-coated metal foil, laminate and printed circuit board
JP7283208B2 (en) Powder dispersion, method for producing laminate, method for producing laminate and printed circuit board
WO2020071382A1 (en) Dispersion and method for manufacturing resin-coated metal foil
JP7230932B2 (en) Laminate and its manufacturing method, composite laminate manufacturing method, and polymer film manufacturing method
CN113574118A (en) Liquid composition, powder, and method for producing powder
CN112703107B (en) Laminate, printed board, and method for producing same
KR20210016327A (en) Manufacturing method of metal foil with resin and metal foil with resin
WO2019142747A1 (en) Method for producing resin-equipped metal foil
JP2020070401A (en) Dispersion liquid
CN113557262A (en) Liquid composition, ferroelectric insulating sheet and method for producing the same
CN113631669B (en) Liquid composition
JP7452534B2 (en) Powder dispersion liquid, method for manufacturing powder dispersion liquid, and method for manufacturing resin-coated substrate
JP7143793B2 (en) LAMINATED PRODUCT AND METHOD FOR MANUFACTURING LAMINATED BODY
JP2020083990A (en) Manufacturing method of composite, and composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787766

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021513624

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20787766

Country of ref document: EP

Kind code of ref document: A1