WO2020209147A1 - Surface-coated fluorescent particles, production method for surface-coated fluorescent particles, and light-emitting device - Google Patents

Surface-coated fluorescent particles, production method for surface-coated fluorescent particles, and light-emitting device Download PDF

Info

Publication number
WO2020209147A1
WO2020209147A1 PCT/JP2020/014910 JP2020014910W WO2020209147A1 WO 2020209147 A1 WO2020209147 A1 WO 2020209147A1 JP 2020014910 W JP2020014910 W JP 2020014910W WO 2020209147 A1 WO2020209147 A1 WO 2020209147A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor particles
fluorine
coated phosphor
particles
coated
Prior art date
Application number
PCT/JP2020/014910
Other languages
French (fr)
Japanese (ja)
Inventor
雅斗 赤羽
秀幸 江本
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to KR1020217036081A priority Critical patent/KR20210150474A/en
Priority to JP2021513590A priority patent/JPWO2020209147A1/ja
Priority to CN202080027709.4A priority patent/CN113785030B/en
Publication of WO2020209147A1 publication Critical patent/WO2020209147A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • C09K11/644Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder

Definitions

  • the present invention relates to surface-coated phosphor particles, a method for producing surface-coated phosphor particles, and a light emitting device.
  • Light emitting devices formed by combining light emitting diodes (LEDs) and phosphors are widely used in lighting devices, backlights of liquid crystal display devices, and the like.
  • LEDs light emitting diodes
  • phosphors having a narrow full width at half maximum (hereinafter, simply referred to as "full width at half maximum") of the fluorescence spectrum. ..
  • a nitride phosphor or an oxynitride phosphor activated by Eu 2+ is known.
  • Typical pure nitride phosphors include Sr 2 Si 5 N 8 : Eu 2+ , CaAlSiN 3 : Eu 2+ (abbreviated as CASN), (Ca, Sr) AlSiN 3 : Eu 2+ (abbreviated as SCANSN). )and so on.
  • the CASN phosphor and the SCASN phosphor have a peak wavelength in the range of 610 to 680 nm, and the half width thereof is relatively narrow as 75 nm or more and 90 nm or less.
  • these phosphors are used as a light emitting device for a liquid crystal display, further expansion of the color reproduction range is desired, and a phosphor having a narrower half-value width is desired.
  • an SrLiAl 3 N 4 : Eu 2+ (abbreviated as SLAN) phosphor has been known as a narrow band red phosphor having a half-value width of 70 nm or less, and a light emitting device applying this phosphor has excellent color rendering properties. And color reproducibility can be expected.
  • Patent Document 1 discloses an SLAN phosphor having a specific composition.
  • the SLAN phosphor has the property of being easily decomposed when it comes into contact with water. This property causes the emission intensity to decrease with the passage of time. In recent years, further improvement in reliability of a light emitting device using an SLAN phosphor has been required, and further improvement in moisture resistance of the SLAN phosphor has also been required.
  • the particle surface is composed of at least a fluorine-containing compound and the particle surface is composed of at least a fluorine-containing compound. It has been found that the decrease in fluorescence intensity in a water-exposed environment can be suppressed, that is, the moisture resistance can be improved by setting the content of the fluorine element with respect to the entire particles to a predetermined value or more.
  • the surface-coated phosphor particles include particles containing a phosphor and a coating portion that covers the surface of the particles, and the phosphor is a general formula M 1 a M 2 b M 3 c Al 3 N 4-d Od (where M 1 is one or more elements selected from Sr, Mg, Ca and Ba, and M 2 is one or more elements selected from Li and Na. , M 3 is one or more elements selected from Eu and Ce), and the a, b, c, and d satisfy the following formulas.
  • the coating portion comprises at least a part of the outermost surface of the particles and contains a fluorine-containing compound containing a fluorine element and an aluminum element.
  • a fluorine-containing compound containing a fluorine element and an aluminum element.
  • surface-coated phosphor particles having a fluorine element content of 15% by mass or more and 30% by mass or less with respect to the entire surface-coated phosphor particles.
  • a mixing step of mixing raw materials, a firing step of firing the mixture obtained by the mixing step, and a firing step of firing the mixture obtained by the mixing step are obtained.
  • Al includes an acid treatment step of mixing the fired product and an acidic solution, and a fluorine treatment step of mixing the fired product that has undergone the acid treatment step with a compound containing a fluorine element.
  • a light emitting device having the above-mentioned surface-coated phosphor particles and a light emitting element is provided.
  • the surface-coated phosphor particles according to the embodiment include particles containing a phosphor and a coating portion that covers the surface of the particles. The details of the surface-coated phosphor particles will be described below.
  • the phosphor constituting the particles of the present embodiment is represented by the general formula M 1 a M 2 b M 3 c Al 3 N 4-d Od . a, b, c, 4-d, and d indicate the molar ratio of each element.
  • M 1 is one or more elements selected from Sr, Mg, Ca and Ba.
  • M 1 comprises at least Sr.
  • the lower limit of the molar ratio a of M 1 is preferably 0.850 or more, more preferably 0.950 or more.
  • the upper limit of the molar ratio a of M 1 is preferably 1.150 or less, more preferably 1.100 or less, and even more preferably 1.050 or less.
  • M 2 is one or more elements selected from Li and Na.
  • M 2 contains at least Li.
  • Molar ratio lower limit of b of M 2 is preferably not less than 0.850, more preferably not less than 0.950.
  • the upper limit of the molar ratio b of M 2 is preferably 1.150 or less, more preferably 1.100 or less, more preferably 1.050 or less.
  • the molar ratio a of M 2 is in the above range, it is possible to improve the crystal structure stability.
  • M 3 is an activator added to the mother crystal, that is, an element constituting the emission center ion of the phosphor, and is one or more elements selected from Eu and Ce.
  • M 3 can be selected according to the required emission wavelength, and preferably contains at least Eu.
  • the lower limit of the molar ratio c of M 3 is preferably 0.001 or more, and more preferably 0.005 or more.
  • the upper limit of the molar ratio c of M 3 is preferably 0.015 or less, more preferably 0.010 or less.
  • the lower limit of the molar ratio d of oxygen is preferably 0 or more, more preferably 0.05 or more.
  • the upper limit of the molar ratio d of oxygen is preferably 0.40 or less, more preferably 0.35 or less.
  • the lower limit of the molar ratio of M 1 and oxygen that is, the value of d / (a + d) calculated from a and d is preferably 0 or more, and more preferably 0.05 or more.
  • the upper limit of the value of d / (a + d) is preferably less than 0.30, more preferably 0.25 or less.
  • the covering portion constitutes at least a part of the outermost surface of the particles containing the above-mentioned phosphor.
  • the coating contains a fluorine-containing compound containing a fluorine element and an aluminum element.
  • the fluorine-containing compound it is preferable that the fluorine element and the aluminum element are directly covalently bonded, and more specifically, the fluorine-containing compound is one or both of (NH 4 ) 3 AlF 6 and AlF 3. Is preferably included.
  • the fluorine-containing compound may be composed of a single compound containing a fluorine element and an aluminum element.
  • the moisture resistance of the phosphor constituting the particles can be improved. From the viewpoint of further improving the moisture resistance of the phosphor, it is more preferable that the coating portion contains AlF 3 .
  • the mode of the covering portion is not particularly limited, but the covering portion may be configured to cover at least a part of the particle surface, and may be configured to cover the entire particle surface.
  • Examples of the mode of the coating portion include a mode in which a large number of particulate fluorine-containing compounds are distributed on the surface of the particles containing the phosphor, and a mode in which the fluorine-containing compound continuously covers the surface of the particles containing the phosphor. Can be mentioned.
  • the content of the fluorine element with respect to the entire surface-coated phosphor particles is 15% by mass or more and 30% by mass or less.
  • Moisture resistance can be enhanced by setting the content of the fluorine element to the entire surface-coated phosphor particles to be 15% by mass or more.
  • the lower limit of the content of the fluorine element with respect to the entire surface-coated phosphor particles is more preferably 18% by mass or more, further preferably 20% by mass or more.
  • the upper limit of the content of the fluorine element with respect to the entire surface-coated phosphor particles is more preferably 27% by mass or less, further preferably 25% by mass or less.
  • the moisture resistance can be further enhanced.
  • the upper limit of the content of the fluorine element in the above range it is possible to further improve the moisture resistance and maintain the emission intensity at a sufficient value.
  • the fluorine element is derived from the fluoride of the metal element used as a raw material, which will be described later, or is added by the fluorine treatment step described later, and does not constitute the crystal structure of the phosphor.
  • the fluorescence intensity in a water exposure environment can be suppressed, the decrease in the fluorescence intensity in a high humidity environment such as 90% RH or more can be suppressed, and more preferably the high temperature and high temperature. It is possible to suppress a decrease in fluorescence intensity in a humid environment.
  • the diffuse reflectance of the surface-coated phosphor particles of the present embodiment with respect to light irradiation at a wavelength of 300 nm is, for example, 56% or more, more preferably 58% or more, and more preferably 60% or more. Further, the diffuse reflectance of the surface-coated phosphor particles with respect to light irradiation at the peak wavelength of the fluorescence spectrum is, for example, 85% or more, preferably 86% or more. By providing such characteristics, the luminous efficiency is further increased and the luminous intensity is improved.
  • An example of the surface-coated phosphor particles of the present embodiment preferably has a peak wavelength in the range of 640 nm or more and 670 nm or less and a half width of 45 nm or more and 60 nm or less when excited by blue light having a wavelength of 455 nm. By providing such characteristics, excellent color rendering and color reproducibility can be expected.
  • An example of the surface-coated phosphor particles of the present embodiment has a color purity of emission color of 0.680 ⁇ x ⁇ 0.735 in the CIE-xy chromaticity diagram when excited by blue light having a wavelength of 455 nm. It is preferable to meet. By providing such characteristics, excellent color rendering and color reproducibility can be expected. If the x value is 0.680 or more, red light emission with good color purity can be further expected, and if the x value is 0.735 or more, it exceeds the maximum value in the CIE-xy chromaticity diagram, so the above range is satisfied. Is preferable.
  • the type of acid and solvent in the acid treatment step, the concentration of the acid, the concentration of hydrofluoric acid in the hydrofluoric acid treatment step, the time of the hydrofluoric acid treatment, the heating temperature and the heating time in the heating step performed after the hydrofluoric acid treatment By appropriately adjusting the above, a fluorine-containing compound containing a fluorine element and an aluminum element can be formed on the surface of the particles containing a phosphor, and the content of the fluorine element in the particles can be controlled within a desired range. Can be done.
  • the moisture resistance of the nitride phosphor can be enhanced by coating the surface of the phosphor particles with a coating portion containing a fluorine-containing compound containing a fluorine element and an aluminum element. As a result, the emission intensity can be maintained for a long period of time.
  • the surface-coated phosphor particles of the present embodiment are a mixing step of mixing raw materials, a firing step of firing the mixture obtained by the mixing step, and an acid treatment step of mixing the fired product obtained by the firing step and an acidic solution. It can be produced by a fluorine treatment step of mixing a fired product that has undergone the acid treatment step and a compound containing a fluorine element. In addition to the above steps, it is preferable to add a heating step of applying a heat treatment to the result product obtained by the fluorine treatment step.
  • the mixing step is a step of mixing each of the raw materials weighed so as to obtain the desired surface-coated phosphor particles to obtain a powdered raw material mixture.
  • the method of mixing the raw materials is not particularly limited, but for example, there is a method of sufficiently mixing using a mixing device such as a mortar, a ball mill, a V-type mixer, and a planetary mill.
  • a mixing device such as a mortar, a ball mill, a V-type mixer, and a planetary mill.
  • Strontium nitride, lithium nitride, etc. which react violently with moisture and oxygen in the air, should be handled in a glove box in which the inside is replaced with an inert atmosphere or by using a mixing device.
  • the amount of M 1 charged when the molar ratio of Al is 3 is 1.10 or more in terms of molar ratio.
  • the amount of M 1 charged it is possible to prevent the shortage of M 1 in the phosphor due to volatilization of M 1 during the firing process, and it is difficult for defects to occur in M 1. , The crystallinity of the crystal structure is kept good. As a result, a narrow-band fluorescence spectrum can be obtained, and it is presumed that the emission intensity can be increased.
  • the amount of M 1 charged when the molar ratio of Al is 3 is 1.20 or less in terms of molar ratio.
  • Each raw material used in the mixing step can include one or more selected from the group consisting of a simple substance of a metal element contained in the composition of a phosphor and a metal compound containing the metal element.
  • the metal compound include nitrides, hydrides, fluorides, oxides, carbonates, chlorides and the like. Of these, nitrides are preferably used as the metal compound containing M 1 and M 2 from the viewpoint of improving the emission intensity of the phosphor.
  • a metal compound containing M 1, Sr 3 N 2, SrN 2, etc. SrN the like.
  • the metal compound containing M 2 include Li 3 N and Li N 3 .
  • the metal compound containing M 3 include Eu 2 O 3 , Eu N, and Eu F 3 .
  • Examples of the metal compound containing Al include AlN, AlH 3 , AlF 3 , LiAlH 4 and the like. If necessary, flux may be added. Examples of the flux include LiF, SrF 2 , BaF 2 , AlF 3, and the like.
  • the firing container preferably has a structure capable of enhancing airtightness, and the inside of the firing container is preferably filled with an atmospheric gas of a non-oxidizing gas such as argon, helium, hydrogen, or nitrogen.
  • the firing vessel is preferably made of a material that is stable under high temperature atmospheric gas and does not easily react with the mixture of raw materials and the reaction product thereof.
  • the lower limit of the firing temperature in the firing step is preferably 900 ° C. or higher, more preferably 1000 ° C. or higher, and even more preferably 1100 ° C. or higher.
  • the upper limit of the firing temperature is preferably 1500 ° C. or lower, more preferably 1400 ° C. or lower, and even more preferably 1300 ° C. or lower.
  • Type of firing atmosphere gas As the type of firing atmosphere gas in the firing step, for example, a gas containing nitrogen as an element can be preferably used. Specific examples include nitrogen and / or ammonia, with nitrogen being particularly preferred. Similarly, an inert gas such as argon or helium can also be preferably used.
  • the firing atmosphere gas may be composed of one type of gas or a mixed gas of a plurality of types of gases.
  • the pressure of the firing atmosphere gas is selected according to the firing temperature, but is usually in a pressurized state in the range of 0.1 MPa ⁇ G or more and 10 MPa ⁇ G or less.
  • the firing time in the firing step a time range is selected in which a large amount of unreacted substances are not present, the phosphor particles are insufficiently grown, or the productivity is not lowered.
  • the lower limit of the firing time is preferably 0.5 hours or more, more preferably 1 hour or more, still more preferably 2 hours or more.
  • the upper limit of the firing time is preferably 48 hours or less, more preferably 36 hours or less, and even more preferably 24 hours or less.
  • the state of the fired product obtained by the firing process varies from powdery to lumpy depending on the raw material composition and firing conditions.
  • a crushing / crushing step and / or a classification operation step of converting the obtained fired product into a powder having a predetermined size may be provided in preparation for actual use as surface-coated phosphor particles.
  • the average particle size of the surface-coated fluorophore particles is the same as that of the surface-coated phosphor particles when used as the surface-coated phosphor particles for LEDs, from the viewpoint of obtaining excitation light absorption efficiency and sufficient emission efficiency. It is preferable to adjust so that the average particle size is 5 ⁇ m or more and 30 ⁇ m or less.
  • the member of the device in contact with the fired product is made of high toughness ceramics such as silicon nitride, alumina, and sialon.
  • the acidic solution used in the acid treatment step is preferably an aqueous solution, and the contact with the acidic solution is described above in an acidic aqueous solution containing one or more of nitric acid, hydrochloric acid, acetic acid, sulfuric acid, formic acid and phosphoric acid, for example.
  • a general method is to disperse the calcined product and stir for several minutes to several hours.
  • the above-mentioned fired product can be dispersed in a mixed solution of an organic solvent and an acidic solution, stirred for several minutes to several hours, and then washed with an organic solvent.
  • impurity elements contained in the raw material, impurity elements derived from the firing container, different phases generated in the firing step, and impurity elements mixed in the crushing step can be dissolved and removed. Since it is possible to remove fine powder at the same time, light scattering can be suppressed and the light absorption rate of the phosphor can be improved.
  • the organic solvent alcohols such as methanol, ethanol and 2-propanol and ketones such as acetone can be used.
  • the acidic solution is one or more of nitric acid, hydrochloric acid, acetic acid, sulfuric acid, formic acid, and phosphoric acid. The mixing ratio of these solutions is, for example, adjusted so that the acidic solution has a concentration of 0.1% by volume or more and 3% by volume or less with respect to the organic solvent.
  • a hydrofluoric acid aqueous solution is preferably used as a compound containing a fluorine element to be mixed with the fired product that has undergone the acid treatment step.
  • the lower limit of the concentration of the hydrofluoric acid aqueous solution is preferably 25% or more, more preferably 27% or more, still more preferably 30% or more.
  • the upper limit of the concentration of the hydrofluoric acid aqueous solution is preferably 38% or less, more preferably 36% or less, still more preferably 34% or less.
  • a coating portion containing (NH 4 ) 3 AlF 6 can be formed on at least a part of the outermost surface of the particles containing the phosphor.
  • concentration of the hydrofluoric acid aqueous solution can be set to 38% or less, it is possible to prevent the reaction between the particles and hydrofluoric acid from becoming too violent.
  • the fired product that has undergone the acid treatment step and the hydrofluoric acid aqueous solution can be mixed by a stirring means such as a stirrer.
  • the lower limit of the mixing time of the fired product and the aqueous solution of hydrofluoric acid is preferably 5 minutes or more, more preferably 10 minutes or more, and even more preferably 15 minutes or more.
  • the upper limit of the mixing time of the fired product and the aqueous solution of hydrofluoric acid is preferably 30 minutes or less, more preferably 25 minutes or less, still more preferably 20 minutes or less.
  • a heating step may be carried out after the above steps.
  • the lower limit of the heating temperature in the heating step is preferably 220 ° C. or higher, more preferably 250 ° C. or higher.
  • the upper limit of the heating temperature is preferably 500 ° C. or lower, more preferably 450 ° C. or lower, and even more preferably 400 ° C. or lower.
  • the heating temperature is set to 500 ° C. or lower, the crystal structure of the phosphor can be maintained well and the emission intensity can be increased.
  • the lower limit of the heating time is preferably 1 hour or more, more preferably 1.5 hours or more, still more preferably 2 hours or more.
  • the upper limit of the heating time is preferably 6 hours or less, more preferably 5.5 hours or less, and even more preferably 5 hours or less.
  • the heating step is preferably carried out in the air or in a nitrogen atmosphere. According to this, the target substance can be produced without the substance itself in the heating atmosphere hindering the above reaction formula (1).
  • the light emitting device includes the surface-coated phosphor particles of the above-described embodiment and a light emitting element.
  • a light emitting element an ultraviolet LED, a blue LED, a fluorescent lamp alone, or a combination thereof can be used.
  • the light emitting element is preferably one that emits light having a wavelength of 250 nm or more and 550 nm or less, and particularly preferably a blue LED light emitting element of 420 nm or more and 500 nm or less.
  • fluorescent particles having other emission colors can be used in combination.
  • the phosphor particles having other emission colors include blue emission phosphor particles, green emission phosphor particles, yellow emission phosphor particles, orange emission phosphor particles, and red phosphor.
  • blue emission phosphor particles green emission phosphor particles
  • yellow emission phosphor particles yellow emission phosphor particles
  • orange emission phosphor particles and red phosphor.
  • Ca 3 Sc 2 Si 3 O For example, Ca 3 Sc 2 Si 3 O.
  • the phosphor particles that can be used in combination with the surface-coated phosphor particles of the above-described embodiment are not particularly limited, and can be appropriately selected depending on the brightness, color rendering property, and the like required for the light emitting device.
  • Light emitting devices include a lighting device, a backlight device, an image display device, and a signal device.
  • the light emitting device of this embodiment can improve reliability while realizing high light emitting intensity.
  • Sr 3 N 2 manufactured by Pacific Cement
  • Li 3 N manufactured by Matterion
  • AlN manufactured by Tokuyama
  • Eu 2 O 3 manufactured by Shin-Etsu Chemical Industries
  • LiF Japanese Wako
  • the container filled with the raw material mixture of the phosphor After taking out the container filled with the raw material mixture of the phosphor from the glove box, it was set in an electric furnace (manufactured by Fuji Denpa Kogyo Co., Ltd.) equipped with a graphite heat insulating material and equipped with a carbon heater, and a firing step was carried out.
  • the inside of the electric furnace was once degassed to a vacuum state, and then firing was started in a pressurized nitrogen atmosphere of 0.8 MPa ⁇ G from room temperature. After the temperature in the electric furnace reached 1100 ° C., firing was continued while maintaining the temperature for 8 hours, and then cooled to room temperature.
  • the obtained calcined product was pulverized in a mortar, classified with a nylon sieve having an opening of 75 ⁇ m, and recovered.
  • As an acid treatment step after adding the powder of the calcined product to a mixed solution of MeOH (99%) (manufactured by Kokusan Kagaku Co., Ltd.) and HNO 3 (60%) (manufactured by Wako Pure Chemical Industries, Ltd.) and stirring for 3 hours. , Classified to obtain a phosphor powder.
  • the obtained fluorescent powder was added to a 30% aqueous hydrofluoric acid solution, and the mixture was stirred for 15 minutes to carry out a fluorine treatment step.
  • the solution is washed by decantation with MeOH until the solution becomes neutral, solid-liquid separation is performed by filtration, the solid content is dried, and the solid content is passed through a sieve having a mesh size of 45 ⁇ m. , The agglomeration was released to obtain the surface-coated phosphor particles of Example 1.
  • Example 2 The fluorescent powder, which had been subjected to fluorine treatment and then disaggregated by passing through a sieve having a mesh size of 45 ⁇ m, was heat-treated at 250 ° C. for 4 hours in an air atmosphere, except that it was heat-treated.
  • the surface-coated phosphor particles of Example 2 were obtained by the same raw material charge amount and procedure as in Example 1.
  • Example 3 After being treated with fluorine, the fluorescent powder that had been disaggregated by passing through a sieve with a mesh size of 45 ⁇ m was heat-treated at 300 ° C. for 4 hours in an air atmosphere.
  • the surface-coated phosphor particles of Example 3 were obtained by the same amount and procedure of charging raw materials as in Example 1.
  • Example 4 After being treated with fluorine, the fluorescent powder that had been disaggregated by passing through a sieve with a mesh size of 45 ⁇ m was heat-treated at 350 ° C. for 4 hours in an air atmosphere.
  • the surface-coated phosphor particles of Example 4 were obtained by the same amount and procedure of charging raw materials as in Example 1.
  • Example 5 After being treated with fluorine, the fluorescent powder that had been disaggregated by passing through a sieve with a mesh size of 45 ⁇ m was heat-treated at 400 ° C. for 4 hours in an air atmosphere. , The surface-coated phosphor particles of Example 5 were obtained by the same raw material charge amount and procedure as in Example 1.
  • Comparative Example 1 The phosphor particles of Comparative Example 1 were obtained by the same raw material charge amount and procedure as in Example 1 except that the fluorine treatment was not performed.
  • Comparative Example 2 Fluorescent particles of Comparative Example 2 were obtained by the same raw material charge amount and procedure as in Example 1 except that a 10% hydrofluoric acid aqueous solution was used for the fluorine treatment.
  • Comparative Example 3 Fluorescent particles of Comparative Example 3 were obtained by the same raw material charge amount and procedure as in Example 1 except that a 20% hydrofluoric acid aqueous solution was used for the fluorine treatment.
  • the total chemical composition of all crystal phases that is, general formula: M 1 a M 2 b M 3 c Al 3 N 4-d Od ).
  • the subscripts a to d of each element were obtained.
  • the obtained phosphor particles were analyzed by the following method. That is, analysis using an ICP emission spectroscopic analyzer (Spectro, CIROS-120) for Sr, Li, Al and Eu, and an oxygen-nitrogen analyzer (EMGA-920, HORIBA, Ltd.) for O and N. Calculated using the results.
  • Table 1 shows the numerical values a to d for the phosphors of Examples and Comparative Examples.
  • Example 1 (Analysis by X-ray diffraction method) The crystal structures of the surface-coated fluorescent particles of each example and the fluorescent particles of each comparative example were confirmed by a powder X-ray diffraction pattern using CuK ⁇ rays using an X-ray diffractometer (Ultima IV manufactured by Rigaku Co., Ltd.). ..
  • a peak corresponding to (NH 4 ) 3 AlF 6 was confirmed in the range where 2 ⁇ was 16.5 ° or more and 17.5 ° or less.
  • Examples 2 to 5 a peak corresponding to AlF 3 was confirmed in the range where 2 ⁇ was 14 ° or more and 15 ° or less.
  • the surface-coated phosphor particles of Example 1 at least a part of the outermost surface of the phosphor particles is composed of (NH 4 ) 3 AlF 6 .
  • AlF 3 constitutes at least a part of the outermost surface of the phosphor particles.
  • Comparative Examples 1 and 2 (NH 4 ) 3 AlF 6 and AlF 3 were not present on the outermost surface of the phosphor particles, and in Comparative Example 3, AlF 3 was not present and was slightly present. (NH 4 ) 3 AlF 6 is considered to be present.
  • the content of fluorine element in the entire surface-coated phosphor particles of each example and the content of fluorine element in the entire phosphor particles of each comparative example are determined by a sample combustion device (manufactured by Mitsubishi Chemical Analytech Co., Ltd., AQF-2100H) and ions. It was calculated using the analysis result using a chromatograph (ICS1500 manufactured by Nippon Dionex Co., Ltd.).
  • the diffuse reflectance was measured by attaching an integrating sphere device (ISV-469) to an ultraviolet-visible spectrophotometer (V-550) manufactured by JASCO Corporation. Baseline correction is performed with a standard reflector (Spectralon), and a solid sample holder filled with the surface-coated phosphor particles of each example or the phosphor particles of each comparative example is attached, and the diffuse reflectance for light having a wavelength of 300 nm is determined. And the diffuse reflectance for light of peak wavelength was measured.
  • the chromaticity x was measured by a spectrophotometer (MCPD-7000 manufactured by Otsuka Electronics Co., Ltd.) and calculated by the following procedure.
  • the surface-coated fluorescent particles of each example or the fluorescent particles of each comparative example were filled so that the surface of the concave cell was smooth, and an integrating sphere was attached.
  • Blue monochromatic light dispersed at a wavelength of 455 nm from a light source (Xe lamp) was introduced into the integrating sphere using an optical fiber. Using this monochromatic light as an excitation source, a phosphor sample was irradiated, and the fluorescence spectrum of the sample was measured. The peak wavelength and the half width of the peak were obtained from the obtained fluorescence spectrum data.
  • the chromaticity x is the CIE chromaticity coordinate x value in the XYZ color system defined by JIS Z 8781-3: 2016 according to JIS Z 8724: 2015 from the wavelength range data in the range of 465 nm to 780 nm of the fluorescence spectrum data. (Saturation x) was calculated.
  • the emission intensity I 0 was measured before starting the high temperature and high humidity test. Subsequently, using a thermo-hygrostat (manufactured by Yamato Scientific Co., Ltd., IW-222), the emission intensity I 1 after the high-temperature and high-humidity test of placing in an environment of 60 ° C. and 90% RH for 50 hours was measured. The emission intensity ratio I 1 / I 0 (%) was calculated from the obtained measured values. Further, it was placed in an environment of 60 ° C.
  • the emission intensity ratio I 2 / I 0 (%) was calculated from the obtained measured values.
  • Table 1 shows the results obtained for the emission intensity ratios I 1 / I 0 and I 2 / I 0 .
  • the emission intensity was measured using a spectrofluorometer (F-7000, manufactured by Hitachi High-Technologies Corporation) corrected by Rhodamine B and a sub-standard light source. That is, the fluorescence spectrum at an excitation wavelength of 455 nm was measured using the solid sample holder attached to the photometer.
  • the peak wavelength of the fluorescence spectrum of the surface-coated phosphor particles of each example and the phosphor particles of Comparative Example 3 was 656 nm.
  • the peak wavelength of the fluorescence spectrum of the phosphor particles of Comparative Examples 1 and 2 was 657 nm.
  • the intensity value at the peak wavelength of the fluorescence spectrum was defined as the emission intensity of the surface-coated phosphor particles or the phosphor particles.
  • the luminescence intensity ratio I 2 /I 0 after passing through the high temperature and high humidity test for 100 hours is almost the same as the luminescence intensity ratio I 1 / I 0 after passing through the high temperature and high humidity test for 50 hours. It was confirmed that there was no decrease and the moisture resistance was particularly excellent.
  • Comparative Example 3 it is considered that sufficient moisture resistance could not be obtained because the amount of (NH 4 ) 3 AlF 6 produced was insufficient.

Abstract

A surface-coated fluorescent particle according to the present invention is composed of a particle that includes a fluorophore, and a coating part that coats the surface of the particle, wherein: the fluorophore has a composition expressed by the general formula M1 aM2 bM3 cAl3N4-dOd (therein, M1 is one or more elements selected from among Sr, Mg, Ca and Ba, M2 is one or more elements selected from among Li and Na, and M3 is one or more elements selected from among Eu and Ce); a, b, c and d satisfy the formulae 0.850≤a≤1.150, 0.850≤b≤1.150, 0.001≤c≤0.015, 0≤d≤0.40 and 0≤d/(a+d)<0.30; the coating part constitutes at least a part of the outermost surface of the particle, and includes a fluorinated compound that contains elemental fluorine and elemental aluminum; and the elemental fluorine constitutes 15-30 mass%, inclusive, of the entire surface-coated fluorescent particle.

Description

表面被覆蛍光体粒子、表面被覆蛍光体粒子の製造方法および発光装置Surface-coated phosphor particles, method for producing surface-coated phosphor particles, and light emitting device
 本発明は、表面被覆蛍光体粒子、表面被覆蛍光体粒子の製造方法および発光装置に関する。 The present invention relates to surface-coated phosphor particles, a method for producing surface-coated phosphor particles, and a light emitting device.
 発光ダイオード(LED)と蛍光体を組み合わせて形成した発光装置は、照明装置や液晶表示装置のバックライト等に盛んに使用されている。特に、液晶表示装置に発光装置を使用する場合は、高い色再現性が求められるため、蛍光スペクトルの半値全幅(以下、単に「半値幅」と称する)の狭い蛍光体の使用が望まれている。 Light emitting devices formed by combining light emitting diodes (LEDs) and phosphors are widely used in lighting devices, backlights of liquid crystal display devices, and the like. In particular, when a light emitting device is used for a liquid crystal display device, high color reproducibility is required. Therefore, it is desired to use a phosphor having a narrow full width at half maximum (hereinafter, simply referred to as "full width at half maximum") of the fluorescence spectrum. ..
 従来使用されている半値幅の狭い赤色蛍光体としてEu2+で賦活された窒化物蛍光体又は酸窒化物蛍光体が知られている。これらの代表的な純窒化物蛍光体としては、SrSi:Eu2+、CaAlSiN:Eu2+(CASNと略記する)、(Ca,Sr)AlSiN:Eu2+(SCASNと略記する)などがある。CASN蛍光体及びSCASN蛍光体は、610~680nmの範囲にピーク波長を有しており、その半値幅は75nm以上90nm以下と比較的狭い。しかし、これらの蛍光体を液晶表示用の発光装置として用いる場合、色再現範囲の更なる拡大が望まれており、半値幅がより狭い蛍光体が望まれている。 As a red phosphor having a narrow half-value width that has been conventionally used, a nitride phosphor or an oxynitride phosphor activated by Eu 2+ is known. Typical pure nitride phosphors include Sr 2 Si 5 N 8 : Eu 2+ , CaAlSiN 3 : Eu 2+ (abbreviated as CASN), (Ca, Sr) AlSiN 3 : Eu 2+ (abbreviated as SCANSN). )and so on. The CASN phosphor and the SCASN phosphor have a peak wavelength in the range of 610 to 680 nm, and the half width thereof is relatively narrow as 75 nm or more and 90 nm or less. However, when these phosphors are used as a light emitting device for a liquid crystal display, further expansion of the color reproduction range is desired, and a phosphor having a narrower half-value width is desired.
 近年、半値幅が70nm以下を示す狭帯域赤色蛍光体として、SrLiAl:Eu2+(SLANと略記する)蛍光体が知られており、この蛍光体を応用した発光装置は優れた演色性や色再現性が期待できる。 In recent years, an SrLiAl 3 N 4 : Eu 2+ (abbreviated as SLAN) phosphor has been known as a narrow band red phosphor having a half-value width of 70 nm or less, and a light emitting device applying this phosphor has excellent color rendering properties. And color reproducibility can be expected.
 特許文献1には、特定の組成を有するSLAN蛍光体が開示されている。 Patent Document 1 discloses an SLAN phosphor having a specific composition.
特開2017-088881号公報JP-A-2017-088881
 SLAN蛍光体は、水と接触すると分解しやすいという性質を有している。この性質は、時間の経過とともに発光強度が低下する要因となっている。近年、SLAN蛍光体を用いた発光装置の信頼性についてより一層の向上が求められており、SLAN蛍光体の耐湿性についてもより一層の改善が求められている。 The SLAN phosphor has the property of being easily decomposed when it comes into contact with water. This property causes the emission intensity to decrease with the passage of time. In recent years, further improvement in reliability of a light emitting device using an SLAN phosphor has been required, and further improvement in moisture resistance of the SLAN phosphor has also been required.
 本発明者が検討した結果、SLAN蛍光体やこれに結晶構造が類似する窒化物蛍光体を含む粒子において、詳細なメカニズムは定かではないが、その粒子表面を少なくともフッ素含有化合物で構成するとともに、粒子全体に対するフッ素元素の含有量を所定値以上とすることによって、水暴露環境下における蛍光強度の低下を抑制できること、すなわち、耐湿性を向上できることが判明した。 As a result of the examination by the present inventor, in the particles containing the SLAN phosphor and the nitride phosphor having a similar crystal structure, the detailed mechanism is not clear, but the particle surface is composed of at least a fluorine-containing compound and the particle surface is composed of at least a fluorine-containing compound. It has been found that the decrease in fluorescence intensity in a water-exposed environment can be suppressed, that is, the moisture resistance can be improved by setting the content of the fluorine element with respect to the entire particles to a predetermined value or more.
 本発明によれば、蛍光体を含む粒子と、前記粒子の表面を被覆する被覆部と、を含む表面被覆蛍光体粒子であって、前記蛍光体は、一般式M Al4-d(ただし、MはSr、Mg、CaおよびBaから選ばれる1種以上の元素であり、MはLi、およびNaから選ばれる1種以上の元素であり、MはEu、およびCeから選ばれる1種以上の元素である。)で表される組成を有し、前記a、b、c、およびdが次の各式を満たすものであり、
0.850≦a≦1.150
0.850≦b≦1.150
0.001≦c≦0.015
0≦d≦0.40
0≦d/(a+d)<0.30
 前記被覆部は、前記粒子の最表面の少なくとも一部を構成するとともに、フッ素元素およびアルミニウム元素を含有するフッ素含有化合物を含み、
 前記表面被覆蛍光体粒子全体に対して、フッ素元素の含有率が15質量%以上30質量%以下である、表面被覆蛍光体粒子が提供される。
According to the present invention, the surface-coated phosphor particles include particles containing a phosphor and a coating portion that covers the surface of the particles, and the phosphor is a general formula M 1 a M 2 b M 3 c Al 3 N 4-d Od (where M 1 is one or more elements selected from Sr, Mg, Ca and Ba, and M 2 is one or more elements selected from Li and Na. , M 3 is one or more elements selected from Eu and Ce), and the a, b, c, and d satisfy the following formulas.
0.850 ≤ a ≤ 1.150
0.850 ≤ b ≤ 1.150
0.001 ≤ c ≤ 0.015
0 ≦ d ≦ 0.40
0 ≦ d / (a + d) <0.30
The coating portion comprises at least a part of the outermost surface of the particles and contains a fluorine-containing compound containing a fluorine element and an aluminum element.
Provided are surface-coated phosphor particles having a fluorine element content of 15% by mass or more and 30% by mass or less with respect to the entire surface-coated phosphor particles.
 また、本発明によれば、上述した表面被覆蛍光体粒子の製造方法であって、原料を混合する混合工程と、前記混合工程により得た混合体を焼成する焼成工程と、前記焼成工程により得た焼成物と酸性溶液とを混合する酸処理工程と、前記酸処理工程を経た前記焼成物と、フッ素元素を含む化合物とを混合するフッ素処理工程と、を含み、前記混合工程において、Alのモル比を3としたときの前記Mの仕込み量が1.10以上1.20以下である表面被覆蛍光体粒子の製造方法が提供される。 Further, according to the present invention, in the above-mentioned method for producing surface-coated phosphor particles, a mixing step of mixing raw materials, a firing step of firing the mixture obtained by the mixing step, and a firing step of firing the mixture obtained by the mixing step are obtained. In the mixing step, Al includes an acid treatment step of mixing the fired product and an acidic solution, and a fluorine treatment step of mixing the fired product that has undergone the acid treatment step with a compound containing a fluorine element. Provided is a method for producing surface-coated phosphor particles in which the amount of M 1 charged is 1.10 or more and 1.20 or less when the molar ratio is 3.
 また、本発明によれば、上述した表面被覆蛍光体粒子と、発光素子とを有する発光装置が提供される。 Further, according to the present invention, a light emitting device having the above-mentioned surface-coated phosphor particles and a light emitting element is provided.
 本発明によれば、耐湿性が向上した窒化物蛍光体粒子に関する技術を提供することができる。 According to the present invention, it is possible to provide a technique relating to nitride phosphor particles having improved moisture resistance.
 以下、本発明の実施形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 実施形態に係る表面被覆蛍光体粒子は、蛍光体を含む粒子と、当該粒子の表面を被覆する被覆部とを含む。以下、表面被覆蛍光体粒子の詳細について説明する。 The surface-coated phosphor particles according to the embodiment include particles containing a phosphor and a coating portion that covers the surface of the particles. The details of the surface-coated phosphor particles will be described below.
 本実施形態の粒子を構成する蛍光体は一般式M Al4-dで表される。a、b、c、4-d、およびdは、各元素のモル比を示す。 The phosphor constituting the particles of the present embodiment is represented by the general formula M 1 a M 2 b M 3 c Al 3 N 4-d Od . a, b, c, 4-d, and d indicate the molar ratio of each element.
 上記一般式中、MはSr、Mg、CaおよびBaから選ばれる1種以上の元素である。好ましくは、Mは、少なくともSrを含む。Mのモル比aの下限は、0.850以上が好ましく、0.950以上がより好ましい。一方、Mのモル比aの上限は、1.150以下が好ましく、1.100以下がより好ましく、1.050以下がさらに好ましい。Mのモル比aを上記範囲とすることにより、結晶構造安定性を向上させることができる。 In the above general formula, M 1 is one or more elements selected from Sr, Mg, Ca and Ba. Preferably, M 1 comprises at least Sr. The lower limit of the molar ratio a of M 1 is preferably 0.850 or more, more preferably 0.950 or more. On the other hand, the upper limit of the molar ratio a of M 1 is preferably 1.150 or less, more preferably 1.100 or less, and even more preferably 1.050 or less. By setting the molar ratio a of M 1 to the above range, the crystal structure stability can be improved.
 上記一般式中、MはLi、およびNaから選ばれる1種以上の元素である。好ましくは、Mは、少なくともLiを含む。Mのモル比bの下限は、0.850以上が好ましく、0.950以上がより好ましい。一方、Mのモル比bの上限は、1.150以下が好ましく、1.100以下がより好ましく、1.050以下がさらに好ましい。Mのモル比aを上記範囲とすることにより、結晶構造安定性を向上させることができる。 In the above general formula, M 2 is one or more elements selected from Li and Na. Preferably, M 2 contains at least Li. Molar ratio lower limit of b of M 2 is preferably not less than 0.850, more preferably not less than 0.950. On the other hand, the upper limit of the molar ratio b of M 2 is preferably 1.150 or less, more preferably 1.100 or less, more preferably 1.050 or less. The molar ratio a of M 2 is in the above range, it is possible to improve the crystal structure stability.
 上記一般式中、Mは、母体結晶に添加される賦活剤、すなわち蛍光体の発光中心イオンを構成する元素であり、Eu、およびCeから選ばれる1種以上の元素である。Mは、求められる発光波長によって選択することができ、好ましくは少なくともEuを含む。
 Mのモル比cの下限は0.001以上が好ましく、0.005以上がより好ましい。一方、Mのモル比cの上限は0.015以下が好ましく、0.010以下がより好ましい。Mのモル比cの下限を上記範囲とすることにより、十分な発光強度を得ることができる。また、Mのモル比cの上限を上記範囲とすることにより、濃度消光を抑制し、発光強度を十分な値に保つことができる。
In the above general formula, M 3 is an activator added to the mother crystal, that is, an element constituting the emission center ion of the phosphor, and is one or more elements selected from Eu and Ce. M 3 can be selected according to the required emission wavelength, and preferably contains at least Eu.
The lower limit of the molar ratio c of M 3 is preferably 0.001 or more, and more preferably 0.005 or more. On the other hand, the upper limit of the molar ratio c of M 3 is preferably 0.015 or less, more preferably 0.010 or less. By setting the lower limit of the molar ratio c of M 3 to the above range, sufficient emission intensity can be obtained. Further, by setting the upper limit of the molar ratio c of M 3 to the above range, concentration quenching can be suppressed and the emission intensity can be maintained at a sufficient value.
 上記一般式において、酸素のモル比dの下限は0以上が好ましく、0.05以上がより好ましい。一方、酸素のモル比dの上限は、0.40以下が好ましく、0.35以下がより好ましい。酸素のモル比dを上記範囲とすることにより、蛍光体の結晶状態を安定化させ、発光強度を十分な値に保つことができる。
 また、蛍光体中の酸素元素の含有量は2質量%未満が好ましく、1.8質量%以下がより好ましい。酸素元素の含有量を2質量%未満とすることにより、蛍光体の結晶状態を安定化させ、発光強度を十分な値に保つことができる。
In the above general formula, the lower limit of the molar ratio d of oxygen is preferably 0 or more, more preferably 0.05 or more. On the other hand, the upper limit of the molar ratio d of oxygen is preferably 0.40 or less, more preferably 0.35 or less. By setting the molar ratio d of oxygen in the above range, the crystalline state of the phosphor can be stabilized and the emission intensity can be maintained at a sufficient value.
Further, the content of the oxygen element in the phosphor is preferably less than 2% by mass, more preferably 1.8% by mass or less. By setting the content of the oxygen element to less than 2% by mass, the crystalline state of the phosphor can be stabilized and the emission intensity can be maintained at a sufficient value.
 Mおよび酸素のモル比、即ちa、dから算出されるd/(a+d)の値の下限は、0以上が好ましく、0.05以上がより好ましい。一方、d/(a+d)の値の上限は、0.30未満が好ましく、0.25以下がより好ましい。d/(a+d)を上記範囲とすることにより、蛍光体の結晶状態を安定化させ、発光強度を十分な値に保つことができる。 The lower limit of the molar ratio of M 1 and oxygen, that is, the value of d / (a + d) calculated from a and d is preferably 0 or more, and more preferably 0.05 or more. On the other hand, the upper limit of the value of d / (a + d) is preferably less than 0.30, more preferably 0.25 or less. By setting d / (a + d) in the above range, the crystal state of the phosphor can be stabilized and the emission intensity can be maintained at a sufficient value.
 被覆部は、上述した蛍光体を含む粒子の最表面の少なくとも一部を構成する。当該被覆部は、フッ素元素およびアルミニウム元素を含有するフッ素含有化合物を含む。
 フッ素含有化合物において、フッ素元素とアルミニウム元素とが直接に共有結合していることが好ましく、より具体的には、フッ素含有化合物は、(NHAlFまたはAlFのいずれか一方または両方を含むことが好ましい。なお、フッ素含有化合物は、フッ素元素およびアルミニウム元素を含有する単一の化合物により構成されていてもよい。
 上述の被覆部が蛍光体を含む粒子の表面の少なくとも一部を構成することにより、粒子を構成する蛍光体の耐湿性を向上させることができる。なお、蛍光体の耐湿性をより一層向上させる観点から、被覆部がAlFを含むことがより好ましい。
The covering portion constitutes at least a part of the outermost surface of the particles containing the above-mentioned phosphor. The coating contains a fluorine-containing compound containing a fluorine element and an aluminum element.
In the fluorine-containing compound, it is preferable that the fluorine element and the aluminum element are directly covalently bonded, and more specifically, the fluorine-containing compound is one or both of (NH 4 ) 3 AlF 6 and AlF 3. Is preferably included. The fluorine-containing compound may be composed of a single compound containing a fluorine element and an aluminum element.
By forming at least a part of the surface of the particles containing the phosphor in the above-mentioned coating portion, the moisture resistance of the phosphor constituting the particles can be improved. From the viewpoint of further improving the moisture resistance of the phosphor, it is more preferable that the coating portion contains AlF 3 .
 被覆部の態様は特に制限されないが、被覆部は粒子表面の少なくとも一部を覆うように構成されていればよく、粒子表面全体を覆うように構成されてもよい。被覆部の態様として、たとえば、粒子状のフッ素含有化合物が蛍光体を含む粒子の表面に多数分布している態様や、フッ素含有化合物が蛍光体を含む粒子の表面を連続的に被覆する態様が挙げられる。 The mode of the covering portion is not particularly limited, but the covering portion may be configured to cover at least a part of the particle surface, and may be configured to cover the entire particle surface. Examples of the mode of the coating portion include a mode in which a large number of particulate fluorine-containing compounds are distributed on the surface of the particles containing the phosphor, and a mode in which the fluorine-containing compound continuously covers the surface of the particles containing the phosphor. Can be mentioned.
 本実施形態では、表面被覆蛍光体粒子全体に対するフッ素元素の含有率が15質量%以上30質量%以下である。表面被覆蛍光体粒子全体に対するフッ素元素の含有率を15質量%以上とすることにより、耐湿性を高めることができる。表面被覆蛍光体粒子全体に対するフッ素元素の含有率を30質量%以下とすることにより、耐湿性を高めつつ、発光強度を十分な値に保つことができる。
 表面被覆蛍光体粒子全体に対するフッ素元素の含有率の下限は18質量%以上がより好ましく、20質量%以上がさらに好ましい。また、表面被覆蛍光体粒子全体に対するフッ素元素の含有率の上限は、27質量%以下がより好ましく、25質量%以下がさらに好ましい。フッ素元素の含有率の下限を上記範囲とすることにより、より一層耐湿性を高めることができる。また、フッ素元素の含有率の上限を上記範囲とすることにより、耐湿性をより一層高めつつ、発光強度を十分な値に保つことができる。
 なお、フッ素元素は、後述する、原料として用いられる金属元素のフッ化物に由来するか、後述するフッ素処理工程により添加されるものであり、蛍光体の結晶構造を構成しない。
In the present embodiment, the content of the fluorine element with respect to the entire surface-coated phosphor particles is 15% by mass or more and 30% by mass or less. Moisture resistance can be enhanced by setting the content of the fluorine element to the entire surface-coated phosphor particles to be 15% by mass or more. By setting the content of the fluorine element with respect to the entire surface-coated phosphor particles to 30% by mass or less, it is possible to maintain the emission intensity at a sufficient value while increasing the moisture resistance.
The lower limit of the content of the fluorine element with respect to the entire surface-coated phosphor particles is more preferably 18% by mass or more, further preferably 20% by mass or more. Further, the upper limit of the content of the fluorine element with respect to the entire surface-coated phosphor particles is more preferably 27% by mass or less, further preferably 25% by mass or less. By setting the lower limit of the content of the fluorine element in the above range, the moisture resistance can be further enhanced. Further, by setting the upper limit of the content of the fluorine element in the above range, it is possible to further improve the moisture resistance and maintain the emission intensity at a sufficient value.
The fluorine element is derived from the fluoride of the metal element used as a raw material, which will be described later, or is added by the fluorine treatment step described later, and does not constitute the crystal structure of the phosphor.
 本実施形態の表面被覆蛍光体粒子によれば、水暴露環境下における蛍光強度の抑制でき、好ましくは90%RH以上等の高湿環境下における蛍光強度の低下を抑制でき、より好ましくは高温高湿環境下における蛍光強度の低下を抑制できる。 According to the surface-coated phosphor particles of the present embodiment, the fluorescence intensity in a water exposure environment can be suppressed, the decrease in the fluorescence intensity in a high humidity environment such as 90% RH or more can be suppressed, and more preferably the high temperature and high temperature. It is possible to suppress a decrease in fluorescence intensity in a humid environment.
 本実施形態の表面被覆蛍光体粒子における、波長300nmの光照射に対する拡散反射率が、例えば、56%以上、より好ましくは58%以上、より好ましくは60%以上である。
 また、表面被覆蛍光体粒子における、蛍光スペクトルのピーク波長における光照射に対する拡散反射率が、例えば85%以上、好ましくは86%以上である。このような特性を備えることにより、さらに発光効率が高くなり発光強度が向上する。
The diffuse reflectance of the surface-coated phosphor particles of the present embodiment with respect to light irradiation at a wavelength of 300 nm is, for example, 56% or more, more preferably 58% or more, and more preferably 60% or more.
Further, the diffuse reflectance of the surface-coated phosphor particles with respect to light irradiation at the peak wavelength of the fluorescence spectrum is, for example, 85% or more, preferably 86% or more. By providing such characteristics, the luminous efficiency is further increased and the luminous intensity is improved.
 本実施形態の表面被覆蛍光体粒子の一例は、波長455nmの青色光で励起した場合、ピーク波長が640nm以上670nm以下の範囲にあり、半値幅が45nm以上60nm以下であることが好ましい。このような特性を備えることにより、優れた演色性や色再現性が期待できる。 An example of the surface-coated phosphor particles of the present embodiment preferably has a peak wavelength in the range of 640 nm or more and 670 nm or less and a half width of 45 nm or more and 60 nm or less when excited by blue light having a wavelength of 455 nm. By providing such characteristics, excellent color rendering and color reproducibility can be expected.
 本実施形態の表面被覆蛍光体粒子の一例は、波長455nmの青色光で励起した場合、発光色の色純度がCIE-xy色度図において、x値が0.680≦x<0.735を満たすことが好ましい。このような特性を備えることにより、優れた演色性や色再現性が期待できる。x値が0.680以上であれば色純度の良い赤色発光をさらに期待でき、x値が0.735以上の値はCIE-xy色度図内の最大値を超えるため、上記範囲を満たすことが好ましい。 An example of the surface-coated phosphor particles of the present embodiment has a color purity of emission color of 0.680 ≦ x <0.735 in the CIE-xy chromaticity diagram when excited by blue light having a wavelength of 455 nm. It is preferable to meet. By providing such characteristics, excellent color rendering and color reproducibility can be expected. If the x value is 0.680 or more, red light emission with good color purity can be further expected, and if the x value is 0.735 or more, it exceeds the maximum value in the CIE-xy chromaticity diagram, so the above range is satisfied. Is preferable.
 本実施形態においては、酸処理工程における酸および溶媒の種類、酸の濃度、フッ酸処理工程における、フッ酸の濃度、フッ酸処理の時間、フッ酸処理後に行う加熱工程における加熱温度および加熱時間等を適切に調整すること等により、蛍光体を含む粒子の表面にフッ素元素およびアルミニウム元素を含有するフッ素含有化合物を形成でき、粒子中のフッ素元素の含有率を所望の範囲内に制御することができる。 In the present embodiment, the type of acid and solvent in the acid treatment step, the concentration of the acid, the concentration of hydrofluoric acid in the hydrofluoric acid treatment step, the time of the hydrofluoric acid treatment, the heating temperature and the heating time in the heating step performed after the hydrofluoric acid treatment. By appropriately adjusting the above, a fluorine-containing compound containing a fluorine element and an aluminum element can be formed on the surface of the particles containing a phosphor, and the content of the fluorine element in the particles can be controlled within a desired range. Can be done.
 以上説明した表面被覆蛍光体粒子によれば、フッ素元素およびアルミニウム元素を含有するフッ素含有化合物を含む被覆部が蛍光体粒子の表面を被覆することにより、窒化物蛍光体の耐湿性を高めることができ、ひいては発光強度を長期間にわたって維持することができる。 According to the surface-coated phosphor particles described above, the moisture resistance of the nitride phosphor can be enhanced by coating the surface of the phosphor particles with a coating portion containing a fluorine-containing compound containing a fluorine element and an aluminum element. As a result, the emission intensity can be maintained for a long period of time.
(表面被覆蛍光体粒子の製造方法)
 本実施形態の表面被覆蛍光体粒子は、原料を混合する混合工程と、混合工程により得た混合体を焼成する焼成工程と、焼成工程により得た焼成物と酸性溶液とを混合する酸処理工程と、酸処理工程を経た焼成物と、フッ素元素を含む化合物とを混合するフッ素処理工程によって製造することができる。上記の工程の他に、フッ素処理工程により得られる結果物に加熱処理を施す加熱工程を追加することが好ましい。
(Manufacturing method of surface-coated phosphor particles)
The surface-coated phosphor particles of the present embodiment are a mixing step of mixing raw materials, a firing step of firing the mixture obtained by the mixing step, and an acid treatment step of mixing the fired product obtained by the firing step and an acidic solution. It can be produced by a fluorine treatment step of mixing a fired product that has undergone the acid treatment step and a compound containing a fluorine element. In addition to the above steps, it is preferable to add a heating step of applying a heat treatment to the result product obtained by the fluorine treatment step.
(混合工程)
 混合工程は、目的とする表面被覆蛍光体粒子が得られるように秤量した各原料を混合して粉末状の原料混合体を得る工程である。原料を混合する方法は特に限定されないが、たとえば、乳鉢、ボールミル、V型混合機、遊星ミルなどの混合装置を用いて十分に混合する方法がある。なお、空気中の水分や酸素と激しく反応する窒化ストロンチウム、窒化リチウム等は、内部が不活性雰囲気で置換されたグローブボックス内や混合装置を用いて取り扱うことが適切である。
(Mixing process)
The mixing step is a step of mixing each of the raw materials weighed so as to obtain the desired surface-coated phosphor particles to obtain a powdered raw material mixture. The method of mixing the raw materials is not particularly limited, but for example, there is a method of sufficiently mixing using a mixing device such as a mortar, a ball mill, a V-type mixer, and a planetary mill. Strontium nitride, lithium nitride, etc., which react violently with moisture and oxygen in the air, should be handled in a glove box in which the inside is replaced with an inert atmosphere or by using a mixing device.
 混合工程において、Alのモル比を3としたときのMの仕込み量がモル比で1.10以上であることが好ましい。Mの仕込み量をモル比で1.10以上とすることにより、焼成工程中のMの揮発などにより蛍光体中のMが不足することが抑制され、Mに欠陥が生じにくくなり、結晶構造の結晶性が良好に保たれる。この結果、狭帯域の蛍光スペクトルが得られ、発光強度を高めることができると推測される。また、混合工程において、Alのモル比を3としたときのMの仕込み量がモル比で1.20以下であることが好ましい。Mの仕込み量をモル比で1.20以下とすることにより、Mを含む異相の増加を抑制し、酸処理工程により異相の除去が容易になり、発光強度を高めることができる。 In the mixing step, it is preferable that the amount of M 1 charged when the molar ratio of Al is 3 is 1.10 or more in terms of molar ratio. By setting the amount of M 1 charged to 1.10 or more in terms of molar ratio, it is possible to prevent the shortage of M 1 in the phosphor due to volatilization of M 1 during the firing process, and it is difficult for defects to occur in M 1. , The crystallinity of the crystal structure is kept good. As a result, a narrow-band fluorescence spectrum can be obtained, and it is presumed that the emission intensity can be increased. Further, in the mixing step, it is preferable that the amount of M 1 charged when the molar ratio of Al is 3 is 1.20 or less in terms of molar ratio. By setting the charge amount of M 1 to 1.20 or less in terms of molar ratio, the increase of the different phase containing M 1 can be suppressed, the removal of the different phase can be facilitated by the acid treatment step, and the emission intensity can be increased.
 混合工程において用いられる各原料は、蛍光体の組成に含まれる金属元素の金属単体および当該金属元素を含む金属化合物からなる群より選ばれる1種以上を含むことができる。金属化合物としては、窒化物、水素化物、フッ化物、酸化物、炭酸塩、塩化物等が挙げられる。このうち、蛍光体の発光強度を向上させる観点から、MおよびMを含む金属化合物として窒化物が好ましく用いられる。具体的には、Mを含む金属化合物として、Sr、SrN、SrNなどが挙げられる。Mを含む金属化合物として、LiN、LiNなどが挙げられる。Mを含む金属化合物としては、Eu、EuN、EuFが挙げられる。Alを含む金属化合物としては、AlN、AlH、AlF、LiAlHなどが挙げられる。なお、必要に応じて、フラックスを添加してもよい。フラックスとしては、LiF、SrF、BaF,AlFなどが挙げられる。 Each raw material used in the mixing step can include one or more selected from the group consisting of a simple substance of a metal element contained in the composition of a phosphor and a metal compound containing the metal element. Examples of the metal compound include nitrides, hydrides, fluorides, oxides, carbonates, chlorides and the like. Of these, nitrides are preferably used as the metal compound containing M 1 and M 2 from the viewpoint of improving the emission intensity of the phosphor. Specifically, as a metal compound containing M 1, Sr 3 N 2, SrN 2, etc. SrN the like. Examples of the metal compound containing M 2 include Li 3 N and Li N 3 . Examples of the metal compound containing M 3 include Eu 2 O 3 , Eu N, and Eu F 3 . Examples of the metal compound containing Al include AlN, AlH 3 , AlF 3 , LiAlH 4 and the like. If necessary, flux may be added. Examples of the flux include LiF, SrF 2 , BaF 2 , AlF 3, and the like.
(焼成工程)
 焼成工程では、上述した原料の混合体を焼成容器の内部に充填して焼成する。前記焼成容器は、気密性を高められる構造を備えていることが好ましく、焼成容器の内部はアルゴン、ヘリウム、水素、窒素等の非酸化性ガスの雰囲気ガスで満たすことが好ましい。焼成容器は、高温の雰囲気ガス下において安定で、原料の混合体及びその反応生成物と反応しにくい材質で構成されることが好ましく、たとえば、窒化ホウ素製、カーボン製の容器や、モリブデンやタンタルやタングステン等の高融点金属製の容器を使用することが好ましい。
(Baking process)
In the firing step, the above-mentioned mixture of raw materials is filled inside the firing container and fired. The firing container preferably has a structure capable of enhancing airtightness, and the inside of the firing container is preferably filled with an atmospheric gas of a non-oxidizing gas such as argon, helium, hydrogen, or nitrogen. The firing vessel is preferably made of a material that is stable under high temperature atmospheric gas and does not easily react with the mixture of raw materials and the reaction product thereof. For example, a vessel made of boron nitride or carbon, molybdenum or tantalum, or a container made of boron nitride or tantalum. It is preferable to use a container made of a refractory metal such as molybdenum or tungsten.
[焼成温度]
 焼成工程における焼成温度の下限は、900℃以上が好ましく、1000℃以上がより好ましく、1100℃以上がさらに好ましい。一方、焼成温度の上限は、1500℃以下が好ましく、1400℃以下がより好ましく、1300℃以下がさらに好ましい。焼成温度を上記範囲とすることにより、焼成工程終了後の未反応原料を少なくでき、また主結晶相の分解を抑制することができる。
[Baking temperature]
The lower limit of the firing temperature in the firing step is preferably 900 ° C. or higher, more preferably 1000 ° C. or higher, and even more preferably 1100 ° C. or higher. On the other hand, the upper limit of the firing temperature is preferably 1500 ° C. or lower, more preferably 1400 ° C. or lower, and even more preferably 1300 ° C. or lower. By setting the firing temperature within the above range, the amount of unreacted raw material after the completion of the firing step can be reduced, and the decomposition of the main crystal phase can be suppressed.
[焼成雰囲気ガスの種類]
 焼成工程における焼成雰囲気ガスの種類としては、例えば元素としての窒素を含むガスを好ましく用いることができる。具体的には、窒素および/またはアンモニアを挙げることができ、特に窒素が好ましい。また同様に、アルゴン、ヘリウム等の不活性ガスも好ましく用いることができる。なお焼成雰囲気ガスは1種類のガスで構成されていても、複数の種類のガスの混合ガスであっても構わない。
[Type of firing atmosphere gas]
As the type of firing atmosphere gas in the firing step, for example, a gas containing nitrogen as an element can be preferably used. Specific examples include nitrogen and / or ammonia, with nitrogen being particularly preferred. Similarly, an inert gas such as argon or helium can also be preferably used. The firing atmosphere gas may be composed of one type of gas or a mixed gas of a plurality of types of gases.
[焼成雰囲気ガスの圧力]
 焼成雰囲気ガスの圧力は、焼成温度に応じて選択されるが、通常0.1MPa・G以上10MPa・G以下の範囲の加圧状態である。焼成雰囲気ガスの圧力が高いほど、蛍光体の分解温度は高くなるが、工業的生産性を考慮すると0.5MPa・G以上1MPa・G以下とすることが好ましい。
[Pressure of firing atmosphere gas]
The pressure of the firing atmosphere gas is selected according to the firing temperature, but is usually in a pressurized state in the range of 0.1 MPa · G or more and 10 MPa · G or less. The higher the pressure of the firing atmosphere gas, the higher the decomposition temperature of the phosphor, but considering industrial productivity, it is preferably 0.5 MPa · G or more and 1 MPa · G or less.
[焼成時間]
 焼成工程における焼成時間は、未反応物が多く存在したり、蛍光体の粒子が成長不足であったり、或いは生産性の低下という不都合が生じない時間範囲が選択される。実施形態に係る表面被覆蛍光体粒子の製造方法では、焼成時間の下限は、0.5時間以上が好ましく、1時間以上がより好ましく、2時間以上がさらに好ましい。また、焼成時間の上限は、48時間以下が好ましく、36時間以下がより好ましく、24時間以下がさらに好ましい。
[Baking time]
As the firing time in the firing step, a time range is selected in which a large amount of unreacted substances are not present, the phosphor particles are insufficiently grown, or the productivity is not lowered. In the method for producing surface-coated phosphor particles according to the embodiment, the lower limit of the firing time is preferably 0.5 hours or more, more preferably 1 hour or more, still more preferably 2 hours or more. The upper limit of the firing time is preferably 48 hours or less, more preferably 36 hours or less, and even more preferably 24 hours or less.
 焼成工程により得られる焼成物の状態は、原料配合や焼成条件によって、粉体状、塊状と様々である。表面被覆蛍光体粒子として実際に使用する場合に備えて、得られた焼成物を所定のサイズの粉末にする解砕・粉砕工程及び/又は分級操作工程を備えていてもよい。なお、表面被覆蛍光体粒子の平均粒子径は、励起光の吸収効率および十分な発光効率を得るという点から、LED用の表面被覆蛍光体粒子として使用する場合には、表面被覆蛍光体粒子の平均粒子径が5μm以上30μm以下となるように調整することが好ましい。また上述の解砕・粉砕工程では、その処理に由来する不純物の混入を防ぐため、焼成物と接触する機器の部材が、窒化ケイ素、アルミナ、サイアロンといった高靭性セラミックス製であることが好ましい。 The state of the fired product obtained by the firing process varies from powdery to lumpy depending on the raw material composition and firing conditions. A crushing / crushing step and / or a classification operation step of converting the obtained fired product into a powder having a predetermined size may be provided in preparation for actual use as surface-coated phosphor particles. The average particle size of the surface-coated fluorophore particles is the same as that of the surface-coated phosphor particles when used as the surface-coated phosphor particles for LEDs, from the viewpoint of obtaining excitation light absorption efficiency and sufficient emission efficiency. It is preferable to adjust so that the average particle size is 5 μm or more and 30 μm or less. Further, in the above-mentioned crushing / crushing step, in order to prevent impurities derived from the treatment from being mixed in, it is preferable that the member of the device in contact with the fired product is made of high toughness ceramics such as silicon nitride, alumina, and sialon.
(酸処理工程)
 酸処理工程において用いられる酸性溶液は水溶液であることが好ましく、酸性溶液との接触は、たとえば、硝酸、塩酸、酢酸、硫酸、蟻酸、リン酸の1種以上を含む酸性の水溶液中に上述の焼成物を分散させ、数分から数時間撹拌する方法が一般的である。
 具体的には、有機溶媒および酸性溶液の混合溶液中に上述の焼成物を分散させ、数分から数時間撹拌後、有機溶媒を用いて洗浄することができる。酸処理によって、原料に含まれる不純物元素、焼成容器に由来する不純物元素、焼成工程で生じた異相、粉砕工程にて混入した不純物元素を溶解除去できる。同時に微粉を取り除くことも可能なため、光の散乱を抑えられ、蛍光体の光吸収率も向上する。
 なお、有機溶媒は、メタノール、エタノール、2-プロパノールなどのアルコールおよびアセトンなどのケトンを使用できる。酸性溶液は、硝酸、塩酸、酢酸、硫酸、蟻酸、リン酸の1種以上とする。これら溶液の混合比率としては、たとえば、有機溶媒に対して酸性溶液が0.1体積%以上3体積%以下の濃度となるように調製する。
(Acid treatment process)
The acidic solution used in the acid treatment step is preferably an aqueous solution, and the contact with the acidic solution is described above in an acidic aqueous solution containing one or more of nitric acid, hydrochloric acid, acetic acid, sulfuric acid, formic acid and phosphoric acid, for example. A general method is to disperse the calcined product and stir for several minutes to several hours.
Specifically, the above-mentioned fired product can be dispersed in a mixed solution of an organic solvent and an acidic solution, stirred for several minutes to several hours, and then washed with an organic solvent. By the acid treatment, impurity elements contained in the raw material, impurity elements derived from the firing container, different phases generated in the firing step, and impurity elements mixed in the crushing step can be dissolved and removed. Since it is possible to remove fine powder at the same time, light scattering can be suppressed and the light absorption rate of the phosphor can be improved.
As the organic solvent, alcohols such as methanol, ethanol and 2-propanol and ketones such as acetone can be used. The acidic solution is one or more of nitric acid, hydrochloric acid, acetic acid, sulfuric acid, formic acid, and phosphoric acid. The mixing ratio of these solutions is, for example, adjusted so that the acidic solution has a concentration of 0.1% by volume or more and 3% by volume or less with respect to the organic solvent.
(フッ素処理工程)
 フッ素処理工程において、酸処理工程を経た焼成物に混合されるフッ素元素を含む化合物として、フッ酸水溶液が好ましく用いられる。フッ酸水溶液の濃度の下限は25%以上が好ましく、27%以上がより好ましく、30%以上がさらに好ましい。一方、フッ酸水溶液の濃度の上限は、38%以下が好ましく、36%以下がより好ましく、34%以下がさらに好ましい。フッ酸水溶液の濃度を25%以上とすることにより、蛍光体を含む粒子の最表面の少なくとも一部に(NHAlFを含む被覆部を形成することができる。一方、フッ酸水溶液の濃度を38%以下とすることにより、粒子とフッ酸との反応が激しくなり過ぎることを抑制することができる。
 酸処理工程を経た焼成物とフッ酸水溶液との混合は、スターラーなどの攪拌手段により行うことができる。上記焼成物とフッ酸水溶液との混合時間の下限は、5分以上が好ましく10分以上がより好ましく、15分以上がさらに好ましい。一方、上記焼成物とフッ酸水溶液との混合時間の上限は、30分以下が好ましく、25分以下がより好ましく、20分以下がさらに好ましい。上記焼成物とフッ酸水溶液との混合時間を上記範囲とすることにより、蛍光体を含む粒子の最表面の少なくとも一部に(NHAlFを含む被覆部を安定的に形成することができる。
(Fluorine treatment process)
In the fluorine treatment step, a hydrofluoric acid aqueous solution is preferably used as a compound containing a fluorine element to be mixed with the fired product that has undergone the acid treatment step. The lower limit of the concentration of the hydrofluoric acid aqueous solution is preferably 25% or more, more preferably 27% or more, still more preferably 30% or more. On the other hand, the upper limit of the concentration of the hydrofluoric acid aqueous solution is preferably 38% or less, more preferably 36% or less, still more preferably 34% or less. By setting the concentration of the hydrofluoric acid aqueous solution to 25% or more, a coating portion containing (NH 4 ) 3 AlF 6 can be formed on at least a part of the outermost surface of the particles containing the phosphor. On the other hand, by setting the concentration of the hydrofluoric acid aqueous solution to 38% or less, it is possible to prevent the reaction between the particles and hydrofluoric acid from becoming too violent.
The fired product that has undergone the acid treatment step and the hydrofluoric acid aqueous solution can be mixed by a stirring means such as a stirrer. The lower limit of the mixing time of the fired product and the aqueous solution of hydrofluoric acid is preferably 5 minutes or more, more preferably 10 minutes or more, and even more preferably 15 minutes or more. On the other hand, the upper limit of the mixing time of the fired product and the aqueous solution of hydrofluoric acid is preferably 30 minutes or less, more preferably 25 minutes or less, still more preferably 20 minutes or less. By setting the mixing time of the fired product and the aqueous solution of hydrofluoric acid within the above range, a coating portion containing (NH 4 ) 3 AlF 6 is stably formed on at least a part of the outermost surface of the particles containing the phosphor. Can be done.
(加熱工程)
 フッ素処理により得られる結果物が被覆部として(NHAlFを含む場合には、以上の工程の後に、加熱工程を実施してもよい。加熱工程における加熱温度の下限は220℃以上が好ましく、250℃以上がより好ましい。一方、上記加熱温度の上限は、500℃以下が好ましく、450℃以下がより好ましく、400℃以下がさらに好ましい。
 加熱温度を220℃以上とすることにより、下記反応式(1)を進行させることにより、(NHAlFをAlFに変えることができる。
(NHAlF→AlF+3NH+3HF・・・(1)
 一方、加熱温度を500℃以下とすることにより、蛍光体の結晶構造を良好に維持し、発光強度を高めることができる。
 加熱時間の下限は、1時間以上が好ましく、1.5時間以上がより好ましく、2時間以上がさらに好ましい。一方、加熱時間の上限は、6時間以下が好ましく、5.5時間以下がより好ましく、5時間以下がさらに好ましい。加熱時間を上記範囲とすることにより、(NHAlFを耐湿性がより高いAlFに確実に変えることができる。
 なお、加熱工程は大気中あるいは窒素雰囲気下で実施することが好ましい。これによれば、加熱雰囲気の物質自身が上記の反応式(1)を阻害することなく、目的の物質を生成することができる。
(Heating process)
When the product obtained by the fluorine treatment contains (NH 4 ) 3 AlF 6 as a coating portion, a heating step may be carried out after the above steps. The lower limit of the heating temperature in the heating step is preferably 220 ° C. or higher, more preferably 250 ° C. or higher. On the other hand, the upper limit of the heating temperature is preferably 500 ° C. or lower, more preferably 450 ° C. or lower, and even more preferably 400 ° C. or lower.
By setting the heating temperature to 220 ° C. or higher and proceeding with the following reaction formula (1), (NH 4 ) 3 AlF 6 can be changed to AlF 3 .
(NH 4 ) 3 AlF 6 → AlF 3 + 3NH 3 + 3HF ... (1)
On the other hand, by setting the heating temperature to 500 ° C. or lower, the crystal structure of the phosphor can be maintained well and the emission intensity can be increased.
The lower limit of the heating time is preferably 1 hour or more, more preferably 1.5 hours or more, still more preferably 2 hours or more. On the other hand, the upper limit of the heating time is preferably 6 hours or less, more preferably 5.5 hours or less, and even more preferably 5 hours or less. By setting the heating time within the above range, (NH 4 ) 3 AlF 6 can be reliably changed to AlF 3 having higher moisture resistance.
The heating step is preferably carried out in the air or in a nitrogen atmosphere. According to this, the target substance can be produced without the substance itself in the heating atmosphere hindering the above reaction formula (1).
 以上説明した表面被覆蛍光体粒子の製造方法によれば、耐湿性が向上し、ひいては発光強度を長期間にわたり維持することができる窒化物蛍光体粒子を製造することができる。 According to the method for producing surface-coated phosphor particles described above, it is possible to produce nitride phosphor particles having improved moisture resistance and, by extension, capable of maintaining emission intensity for a long period of time.
(発光装置)
 実施形態に係る発光装置は、上述した実施形態の表面被覆蛍光体粒子と発光素子とを有する。
 発光素子としては、紫外LED、青色LED、蛍光ランプの単体又はこれらの組み合わせを用いることができる。発光素子は、250nm以上550nm以下の波長の光を発するものが望ましく、なかでも420nm以上500nm以下の青色LED発光素子が好ましい。
(Light emitting device)
The light emitting device according to the embodiment includes the surface-coated phosphor particles of the above-described embodiment and a light emitting element.
As the light emitting element, an ultraviolet LED, a blue LED, a fluorescent lamp alone, or a combination thereof can be used. The light emitting element is preferably one that emits light having a wavelength of 250 nm or more and 550 nm or less, and particularly preferably a blue LED light emitting element of 420 nm or more and 500 nm or less.
 発光装置に使用する蛍光体粒子としては、上述した実施形態の表面被覆蛍光体粒子の他に、他の発光色を持つ蛍光体粒子を併用することができる。他の発光色の蛍光体粒子としては、青色発光蛍光体粒子、緑色発光蛍光体粒子、黄色発光蛍光体粒子、橙色発光蛍光体粒子、赤色蛍光体があり、例えば、CaScSi12:Ce、CaSc:Ce、β-SiAlON:Eu、YAl12:Ce、TbAl12:Ce、(Sr、Ca、Ba)SiO:Eu、LaSi11:Ce、α-SiAlON:Eu、SrSi:Eu等が挙げられる。上述した実施形態の表面被覆蛍光体粒子と併用できる蛍光体粒子は、特に限定されるものではなく、発光装置に要求される輝度や演色性等に応じて適宜選択可能である。上述した実施形態の表面被覆蛍光体粒子と他の発光色の蛍光体粒子とを混在させることにより、昼白色や電球色などの様々な色温度の白色を実現することができる。
 発光装置としては、照明装置、バックライト装置、画像表示装置および信号装置がある。
As the phosphor particles used in the light emitting device, in addition to the surface-coated phosphor particles of the above-described embodiment, fluorescent particles having other emission colors can be used in combination. Examples of the phosphor particles having other emission colors include blue emission phosphor particles, green emission phosphor particles, yellow emission phosphor particles, orange emission phosphor particles, and red phosphor. For example, Ca 3 Sc 2 Si 3 O. 12 : Ce, CaSc 2 O 4 : Ce, β-SiAlON: Eu, Y 3 Al 5 O 12 : Ce, Tb 3 Al 5 O 12 : Ce, (Sr, Ca, Ba) 2 SiO 4 : Eu, La 3 Examples thereof include Si 6 N 11 : Ce, α-SiAlON: Eu, Sr 2 Si 5 N 8 : Eu and the like. The phosphor particles that can be used in combination with the surface-coated phosphor particles of the above-described embodiment are not particularly limited, and can be appropriately selected depending on the brightness, color rendering property, and the like required for the light emitting device. By mixing the surface-coated phosphor particles of the above-described embodiment with phosphor particles of other emission colors, it is possible to realize white color having various color temperatures such as neutral white color and light bulb color.
Light emitting devices include a lighting device, a backlight device, an image display device, and a signal device.
 本実施形態の発光装置は、上述した実施形態の表面被覆蛍光体粒子を採用することにより、高い発光強度を実現しつつ、信頼性を高めることができる。 By adopting the surface-coated phosphor particles of the above-described embodiment, the light emitting device of this embodiment can improve reliability while realizing high light emitting intensity.
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 Although the embodiments of the present invention have been described above, these are examples of the present invention, and various configurations other than the above can be adopted.
 以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
(実施例1)
 M Al4-dで表される組成を有する蛍光体であり、M=Sr、M=Li、M=Euを満たすものを得るため、Sr(太平洋セメント社製)、LiN(Materion社製)、AlN(トクヤマ社製)、Eu(信越化学工業社製)を各原料として用い、フラックスとしてLiF(和光純薬社製)を用いた。Alのモル比を3としたときのSrの仕込み量をモル比で1.15とするとともに、Euの仕込み量をモル比で0.0115とした。前記原料混合物とフラックスの合計量100質量%に対して、5質量%のLiFを添加した。なお、Euは前述したようにAlのモル比を3としたときの仕込み量をモル比で0.0115とした。
 以下、実施例1の表面被覆蛍光体粒子の製造方法について具体的に記載する。
 大気中で、AlN、EuおよびLiFを秤量、混合したのち、目開き150μmのナイロン篩で凝集を解砕し、プレ混合物を得た。
 前記プレ混合物を、水分1ppm以下、酸素1ppm以下とした不活性雰囲気を保持しているグローブボックス中に移動させた。その後、化学量論比(a=1、b=1)でaの値が15%過剰、bの値が20%過剰になるように、前述のSrおよびLiNを秤量後、追加配合して混合後、目開き150μmのナイロン篩で凝集を解砕して蛍光体の原料混合物を得た。SrおよびLiは焼成中に飛散しやすいため、理論値より多めに配合した。
 次いで、前記原料混合物を蓋付きの円筒型BN製容器(デンカ株式会社製)に充填した。
 次いで、蛍光体の原料混合物を充填した前記容器をグローブボックスから取り出した後、グラファイト断熱材を備えたカーボンヒーター付きの電気炉(富士電波工業社製)にセットし、焼成工程を実施した。
 焼成工程の開始にあっては、電気炉内を真空状態まで一旦脱ガスしたのち、室温から0.8MPa・Gの加圧窒素雰囲気下で焼成を開始した。電気炉内の温度が1100℃に到達後は、8時間温度を保ちながら焼成を続け、その後室温まで冷却した。得られた焼成物は乳鉢で粉砕後、目開き75μmのナイロン篩で分級し、回収した。
 酸処理工程としてMeOH(99%)(国産化学株式会社製)にHNO(60%)(和光純薬社製)を加えた混合溶液中に焼成物の粉体を加えて3時間撹拌した後、分級し、蛍光体粉末を得た。
 得られた蛍光体粉末を30%フッ酸水溶液中に加え、15分間撹拌することでフッ素処理工程を実施した。フッ素処理工程の後、MeOHによるデカンテーションで溶液が中性になるまで洗浄し、濾過による固液分離を行った後、固形分を乾燥し、それを目開き45μmの篩を全通させることで、凝集を解き、実施例1の表面被覆蛍光体粒子を得た。
(Example 1)
In order to obtain a phosphor having a composition represented by M 1 a M 2 b M 3 c Al 3 N 4-d Od and satisfying M 1 = Sr, M 2 = Li, and M 3 = Eu. Sr 3 N 2 (manufactured by Pacific Cement), Li 3 N (manufactured by Matterion), AlN (manufactured by Tokuyama), Eu 2 O 3 (manufactured by Shin-Etsu Chemical Industries) are used as raw materials, and LiF (Jun Wako) is used as the flux. Made by Yakusha) was used. When the molar ratio of Al was 3, the amount of Sr charged was 1.15, and the amount of Eu charged was 0.0115. 5% by mass of LiF was added to 100% by mass of the total amount of the raw material mixture and the flux. As described above, Eu has a molar ratio of 0.0115 when the molar ratio of Al is 3.
Hereinafter, the method for producing the surface-coated phosphor particles of Example 1 will be specifically described.
AlN, Eu 2 O 3 and LiF were weighed and mixed in the air, and then the agglomerates were crushed with a nylon sieve having a mesh size of 150 μm to obtain a premix.
The pre-mixture was moved into a glove box holding an inert atmosphere with water content of 1 ppm or less and oxygen of 1 ppm or less. Then, after weighing the above-mentioned Sr 3 N 2 and Li 3 N so that the value of a is 15% excess and the value of b is 20% excess in the stoichiometric ratio (a = 1, b = 1), After additional compounding and mixing, the agglomeration was crushed with a nylon sieve having an opening of 150 μm to obtain a raw material mixture of the phosphor. Since Sr and Li are likely to scatter during firing, they are blended in a larger amount than the theoretical value.
Next, the raw material mixture was filled in a cylindrical BN container with a lid (manufactured by Denka Corporation).
Next, after taking out the container filled with the raw material mixture of the phosphor from the glove box, it was set in an electric furnace (manufactured by Fuji Denpa Kogyo Co., Ltd.) equipped with a graphite heat insulating material and equipped with a carbon heater, and a firing step was carried out.
At the start of the firing step, the inside of the electric furnace was once degassed to a vacuum state, and then firing was started in a pressurized nitrogen atmosphere of 0.8 MPa · G from room temperature. After the temperature in the electric furnace reached 1100 ° C., firing was continued while maintaining the temperature for 8 hours, and then cooled to room temperature. The obtained calcined product was pulverized in a mortar, classified with a nylon sieve having an opening of 75 μm, and recovered.
As an acid treatment step, after adding the powder of the calcined product to a mixed solution of MeOH (99%) (manufactured by Kokusan Kagaku Co., Ltd.) and HNO 3 (60%) (manufactured by Wako Pure Chemical Industries, Ltd.) and stirring for 3 hours. , Classified to obtain a phosphor powder.
The obtained fluorescent powder was added to a 30% aqueous hydrofluoric acid solution, and the mixture was stirred for 15 minutes to carry out a fluorine treatment step. After the fluorine treatment step, the solution is washed by decantation with MeOH until the solution becomes neutral, solid-liquid separation is performed by filtration, the solid content is dried, and the solid content is passed through a sieve having a mesh size of 45 μm. , The agglomeration was released to obtain the surface-coated phosphor particles of Example 1.
(実施例2)
 フッ素処理が施された後、目開き45μmの篩を全通させることで凝集を解いた蛍光体粉末に対して、大気雰囲気下で250℃、4時間の加熱処理を実施したことを除いて、実施例1と同様な原料の仕込み量および手順にて実施例2の表面被覆蛍光体粒子を得た。
(Example 2)
The fluorescent powder, which had been subjected to fluorine treatment and then disaggregated by passing through a sieve having a mesh size of 45 μm, was heat-treated at 250 ° C. for 4 hours in an air atmosphere, except that it was heat-treated. The surface-coated phosphor particles of Example 2 were obtained by the same raw material charge amount and procedure as in Example 1.
(実施例3)
 フッ素処理が施された後、目開き45μmの篩を全通させることで、凝集を解いた蛍光体粉末に対して、大気雰囲気下で300℃、4時間の加熱処理を実施したことを除いて、実施例1と同様な原料の仕込み量および手順にて実施例3の表面被覆蛍光体粒子を得た。
(Example 3)
After being treated with fluorine, the fluorescent powder that had been disaggregated by passing through a sieve with a mesh size of 45 μm was heat-treated at 300 ° C. for 4 hours in an air atmosphere. The surface-coated phosphor particles of Example 3 were obtained by the same amount and procedure of charging raw materials as in Example 1.
(実施例4)
 フッ素処理が施された後、目開き45μmの篩を全通させることで、凝集を解いた蛍光体粉末に対して、大気雰囲気下で350℃、4時間の加熱処理を実施したことを除いて、実施例1と同様な原料の仕込み量および手順にて実施例4の表面被覆蛍光体粒子を得た。
(Example 4)
After being treated with fluorine, the fluorescent powder that had been disaggregated by passing through a sieve with a mesh size of 45 μm was heat-treated at 350 ° C. for 4 hours in an air atmosphere. The surface-coated phosphor particles of Example 4 were obtained by the same amount and procedure of charging raw materials as in Example 1.
(実施例5)
 フッ素処理が施された後、目開き45μmの篩を全通させることで、凝集を解いた蛍光体粉末に対して、大気雰囲気下で400℃、4時間の加熱処理を実施したことを除いて、実施例1と同様な原料の仕込み量および手順にて実施例5の表面被覆蛍光体粒子を得た。
(Example 5)
After being treated with fluorine, the fluorescent powder that had been disaggregated by passing through a sieve with a mesh size of 45 μm was heat-treated at 400 ° C. for 4 hours in an air atmosphere. , The surface-coated phosphor particles of Example 5 were obtained by the same raw material charge amount and procedure as in Example 1.
(比較例1)
 フッ素処理を実施しないことを除いて、実施例1と同様な原料の仕込み量および手順にて比較例1の蛍光体粒子を得た。
(Comparative Example 1)
The phosphor particles of Comparative Example 1 were obtained by the same raw material charge amount and procedure as in Example 1 except that the fluorine treatment was not performed.
(比較例2)
 フッ素処理で10%フッ酸水溶液を用いたことを除いて、実施例1と同様な原料の仕込み量および手順にて比較例2の蛍光体粒子を得た。
(Comparative Example 2)
Fluorescent particles of Comparative Example 2 were obtained by the same raw material charge amount and procedure as in Example 1 except that a 10% hydrofluoric acid aqueous solution was used for the fluorine treatment.
(比較例3)
 フッ素処理で20%フッ酸水溶液を用いたことを除いて、実施例1と同様な原料の仕込み量および手順にて比較例3の蛍光体粒子を得た。
(Comparative Example 3)
Fluorescent particles of Comparative Example 3 were obtained by the same raw material charge amount and procedure as in Example 1 except that a 20% hydrofluoric acid aqueous solution was used for the fluorine treatment.
 各実施例の表面被覆蛍光体粒子および各比較例の蛍光体粒子について、全結晶相を合計した化学組成(即ち、一般式:M Al4-d)の各元素の添字a~dを求めた。
 上記添字a~dを求めるに当たっては、得られた蛍光体粒子を以下の方法で分析することにより求めた。すなわち、Sr、Li、Al及びEuについてはICP発光分光分析装置(SPECTRO社製、CIROS-120)により、O及びNについては酸素窒素分析計(堀場製作所社製、EMGA-920)を用いた分析結果を用いて算出した。実施例および比較例の蛍光体に関するa~dの数値を表1に示す。
For the surface-coated fluorescent particles of each example and the fluorescent particles of each comparative example, the total chemical composition of all crystal phases (that is, general formula: M 1 a M 2 b M 3 c Al 3 N 4-d Od ), The subscripts a to d of each element were obtained.
In obtaining the above subscripts a to d, the obtained phosphor particles were analyzed by the following method. That is, analysis using an ICP emission spectroscopic analyzer (Spectro, CIROS-120) for Sr, Li, Al and Eu, and an oxygen-nitrogen analyzer (EMGA-920, HORIBA, Ltd.) for O and N. Calculated using the results. Table 1 shows the numerical values a to d for the phosphors of Examples and Comparative Examples.
(X線回折法による分析)
 各実施例の表面被覆蛍光体粒子および各比較例の蛍光体粒子について、X線回折装置(株式会社リガク製UltimaIV)を用い、CuKα線を用いた粉末X線回折パターンによりその結晶構造を確認した。実施例1については、2θが16.5°以上17.5°以下の範囲に(NHAlFに対応するピークが確認された。実施例2~5については、2θが14°以上15°以下の範囲にAlFに対応するピークが確認された。一方、比較例1、2では、(NHAlFに対応するピーク、AlFに対応するピークのいずれも観察されなかった。比較例3では、AlFに対応するピークは確認されず、(NHAlFに対応する小さいピークが観察された。
(Analysis by X-ray diffraction method)
The crystal structures of the surface-coated fluorescent particles of each example and the fluorescent particles of each comparative example were confirmed by a powder X-ray diffraction pattern using CuKα rays using an X-ray diffractometer (Ultima IV manufactured by Rigaku Co., Ltd.). .. In Example 1, a peak corresponding to (NH 4 ) 3 AlF 6 was confirmed in the range where 2θ was 16.5 ° or more and 17.5 ° or less. In Examples 2 to 5, a peak corresponding to AlF 3 was confirmed in the range where 2θ was 14 ° or more and 15 ° or less. On the other hand, in Comparative Examples 1 and 2, neither the peak corresponding to (NH 4 ) 3 AlF 6 nor the peak corresponding to AlF 3 was observed. In Comparative Example 3, no peak corresponding to AlF 3 was confirmed, and a small peak corresponding to (NH 4 ) 3 AlF 6 was observed.
(XPSによる表面分析)
 各実施例の表面被覆蛍光体粒子および各比較例の蛍光体粒子について、XPSによる表面分析を実施した。各実施例の表面被覆蛍光体粒子については、蛍光体粒子の最表面において、AlとFが存在し、AlとFとが共有結合していることが確認された。一方、比較例1、2ではAlとFとが共有結合していることは確認できず、比較例3ではわずかではあるがAlとFとが共有結合していることが確認された。
 XPSによる表面分析結果と、X線回折法による分析により、実施例1の表面被覆蛍光体粒子では、蛍光体粒子の最表面の少なくとも一部を(NHAlFが構成しており、実施例2~5の表面被覆蛍光体粒子では、蛍光体粒子の最表面の少なくとも一部をAlFが構成しているといえる。
  また、比較例1、2では、蛍光体粒子の最表面には(NHAlFおよびAlFは存在しておらず、比較例3では、AlFは存在しておらず、わずかに(NHAlFが存在していると考えられる。
(Surface analysis by XPS)
The surface-coated fluorescent particles of each example and the fluorescent particles of each comparative example were subjected to surface analysis by XPS. Regarding the surface-coated phosphor particles of each example, it was confirmed that Al and F were present on the outermost surface of the phosphor particles, and that Al and F were covalently bonded. On the other hand, in Comparative Examples 1 and 2, it was not confirmed that Al and F were covalently bonded, and in Comparative Example 3, it was confirmed that Al and F were covalently bonded, albeit slightly.
According to the surface analysis result by XPS and the analysis by the X-ray diffractometry, in the surface-coated phosphor particles of Example 1, at least a part of the outermost surface of the phosphor particles is composed of (NH 4 ) 3 AlF 6 . In the surface-coated phosphor particles of Examples 2 to 5, it can be said that AlF 3 constitutes at least a part of the outermost surface of the phosphor particles.
Further, in Comparative Examples 1 and 2, (NH 4 ) 3 AlF 6 and AlF 3 were not present on the outermost surface of the phosphor particles, and in Comparative Example 3, AlF 3 was not present and was slightly present. (NH 4 ) 3 AlF 6 is considered to be present.
(フッ素元素の含有率)
 各実施例の表面被覆蛍光体粒子全体に対するフッ素元素の含有率および各比較例の蛍光体粒子全体に対するフッ素元素の含有率を、試料燃焼装置(三菱化学アナリテック社製、AQF-2100H)およびイオンクロマト(日本ダイオネクス社製、ICS1500)を用いた分析結果を用いて算出した。
(Content rate of fluorine element)
The content of fluorine element in the entire surface-coated phosphor particles of each example and the content of fluorine element in the entire phosphor particles of each comparative example are determined by a sample combustion device (manufactured by Mitsubishi Chemical Analytech Co., Ltd., AQF-2100H) and ions. It was calculated using the analysis result using a chromatograph (ICS1500 manufactured by Nippon Dionex Co., Ltd.).
(拡散反射率)
 拡散反射率は、日本分光社製紫外可視分光光度計(V-550)に積分球装置(ISV-469)を取り付けて測定した。標準反射板(スペクトラロン)でベースライン補正を行い、各実施例の表面被覆蛍光体粒子または各比較例の蛍光体粒子を充填した固体試料ホルダーを取り付けて、波長300nmの光に対する拡散反射率、およびピーク波長の光に対する拡散反射率の測定を行った。
(Diffuse reflectance)
The diffuse reflectance was measured by attaching an integrating sphere device (ISV-469) to an ultraviolet-visible spectrophotometer (V-550) manufactured by JASCO Corporation. Baseline correction is performed with a standard reflector (Spectralon), and a solid sample holder filled with the surface-coated phosphor particles of each example or the phosphor particles of each comparative example is attached, and the diffuse reflectance for light having a wavelength of 300 nm is determined. And the diffuse reflectance for light of peak wavelength was measured.
(発光特性)
 色度xは、分光光度計(大塚電子株式会社製MCPD-7000)により測定し、以下の手順で算出した。
 各実施例の表面被覆蛍光体粒子または各比較例の蛍光体粒子を凹型セルの表面が平滑になるように充填し、積分球を取り付けた。この積分球に、発光光源(Xeランプ)から455nmの波長に分光した青色単色光を、光ファイバーを用いて導入した。この単色光を励起源として、蛍光体の試料に照射し、試料の蛍光スペクトル測定を行った。
 得られた蛍光スペクトルデータからピーク波長およびピークの半値幅を求めた。
 また、色度xは蛍光スペクトルデータの465nmから780nmの範囲の波長域データからJIS Z 8724:2015に準じ、JIS Z 8781-3:2016で規定されるXYZ表色系におけるCIE色度座標x値(色度x)を算出した。
(Emission characteristics)
The chromaticity x was measured by a spectrophotometer (MCPD-7000 manufactured by Otsuka Electronics Co., Ltd.) and calculated by the following procedure.
The surface-coated fluorescent particles of each example or the fluorescent particles of each comparative example were filled so that the surface of the concave cell was smooth, and an integrating sphere was attached. Blue monochromatic light dispersed at a wavelength of 455 nm from a light source (Xe lamp) was introduced into the integrating sphere using an optical fiber. Using this monochromatic light as an excitation source, a phosphor sample was irradiated, and the fluorescence spectrum of the sample was measured.
The peak wavelength and the half width of the peak were obtained from the obtained fluorescence spectrum data.
Further, the chromaticity x is the CIE chromaticity coordinate x value in the XYZ color system defined by JIS Z 8781-3: 2016 according to JIS Z 8724: 2015 from the wavelength range data in the range of 465 nm to 780 nm of the fluorescence spectrum data. (Saturation x) was calculated.
(高温高湿試験前後の発光強度比)
 各実施例の表面被覆蛍光体粒子および各比較例の蛍光体粒子について、高温高湿試験を開始する前の発光強度Iを測定した。続いて、恒温恒湿器(ヤマト科学株式会社製、IW-222)を用いて、60℃、90%RHの環境に50時間載置する高温高湿試験後の発光強度Iを測定した。得られた測定値から発光強度比I/I(%)を算出した。
 また、60℃、90%RHの環境に100時間載置し、高温高湿試験後の発光強度Iを測定した。得られた測定値から発光強度比I/I(%)を算出した。
 発光強度比I/I0、/Iに関して得られた結果を表1に示す。
 なお、発光強度の測定は、ローダミンBと副標準光源により補正した分光蛍光光度計(日立ハイテクノロジーズ社製、F-7000)を用いて測定した。即ち光度計に付属の固体試料ホルダーを使用し、励起波長455nmでの蛍光スペクトルを測定した。
 各実施例の表面被覆蛍光体粒子および比較例3の蛍光体粒子の蛍光スペクトルのピーク波長は656nmであった。また、比較例1、2の蛍光体粒子の蛍光スペクトルのピーク波長は657nmであった。蛍光スペクトルのピーク波長における強度値を表面被覆蛍光体粒子または蛍光体粒子の発光強度とした。
(Ratio of emission intensity before and after high temperature and high humidity test)
For the surface-coated fluorescent particles of each example and the fluorescent particles of each comparative example, the emission intensity I 0 was measured before starting the high temperature and high humidity test. Subsequently, using a thermo-hygrostat (manufactured by Yamato Scientific Co., Ltd., IW-222), the emission intensity I 1 after the high-temperature and high-humidity test of placing in an environment of 60 ° C. and 90% RH for 50 hours was measured. The emission intensity ratio I 1 / I 0 (%) was calculated from the obtained measured values.
Further, it was placed in an environment of 60 ° C. and 90% RH for 100 hours, and the emission intensity I 2 after the high temperature and high humidity test was measured. The emission intensity ratio I 2 / I 0 (%) was calculated from the obtained measured values.
Table 1 shows the results obtained for the emission intensity ratios I 1 / I 0 and I 2 / I 0 .
The emission intensity was measured using a spectrofluorometer (F-7000, manufactured by Hitachi High-Technologies Corporation) corrected by Rhodamine B and a sub-standard light source. That is, the fluorescence spectrum at an excitation wavelength of 455 nm was measured using the solid sample holder attached to the photometer.
The peak wavelength of the fluorescence spectrum of the surface-coated phosphor particles of each example and the phosphor particles of Comparative Example 3 was 656 nm. The peak wavelength of the fluorescence spectrum of the phosphor particles of Comparative Examples 1 and 2 was 657 nm. The intensity value at the peak wavelength of the fluorescence spectrum was defined as the emission intensity of the surface-coated phosphor particles or the phosphor particles.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、蛍光体粒子の最表面の少なくとも一部がフッ素元素およびアルミニウム元素を含有するフッ素含有化合物を含む被覆部で構成された実施例1~5は、50時間の高温高湿試験を経た後の発光強度の低下が顕著に抑制されており、比較例1~3と比べて、発光強度比I/Iが大幅に高くなっており、耐湿性が優れていることが確認された。また、実施例2~4は、100時間の高温高湿試験を経た後の発光強度比I/Iが50時間の高温高湿試験を経た後の発光強度比I/Iからほとんど低下しておらず、耐湿性が特に優れていることが確認された。
 なお、比較例3では、(NHAlFの生成量が不十分であるため、十分な耐湿性が得られなかったと考えられる。
As shown in Table 1, Examples 1 to 5 in which at least a part of the outermost surface of the phosphor particles was composed of a coating portion containing a fluorine-containing compound containing a fluorine element and an aluminum element, had high temperature and high humidity for 50 hours. The decrease in emission intensity after the test is remarkably suppressed, the emission intensity ratio I 1 /I 0 is significantly higher than that of Comparative Examples 1 to 3, and the moisture resistance is excellent. confirmed. Further, in Examples 2 to 4, the luminescence intensity ratio I 2 /I 0 after passing through the high temperature and high humidity test for 100 hours is almost the same as the luminescence intensity ratio I 1 / I 0 after passing through the high temperature and high humidity test for 50 hours. It was confirmed that there was no decrease and the moisture resistance was particularly excellent.
In Comparative Example 3, it is considered that sufficient moisture resistance could not be obtained because the amount of (NH 4 ) 3 AlF 6 produced was insufficient.
 この出願は、2019年4月9日に出願された日本出願特願2019-074459号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Application Japanese Patent Application No. 2019-074459 filed on April 9, 2019, and incorporates all of its disclosures herein.

Claims (11)

  1.  蛍光体を含む粒子と、
     前記粒子の表面を被覆する被覆部と、
     を含む表面被覆蛍光体粒子であって、
     前記蛍光体は、一般式M Al4-d(ただし、MはSr、Mg、CaおよびBaから選ばれる1種以上の元素であり、MはLi、およびNaから選ばれる1種以上の元素であり、MはEu、およびCeから選ばれる1種以上の元素である。)で表される組成を有し、前記a、b、c、およびdが次の各式を満たすものであり、
    0.850≦a≦1.150
    0.850≦b≦1.150
    0.001≦c≦0.015
    0≦d≦0.40
    0≦d/(a+d)<0.30
     前記被覆部は、前記粒子の最表面の少なくとも一部を構成するとともに、フッ素元素およびアルミニウム元素を含有するフッ素含有化合物を含み、
     前記表面被覆蛍光体粒子全体に対して、フッ素元素の含有率が15質量%以上30質量%以下である表面被覆蛍光体粒子。
    Particles containing phosphors and
    A coating portion that covers the surface of the particles and
    Surface-coated fluorophore particles containing
    The phosphor is a general formula M 1 a M 2 b M 3 c Al 3 N 4-d Od (where M 1 is one or more elements selected from Sr, Mg, Ca and Ba, and M 2 Is one or more elements selected from Li and Na, and M 3 is one or more elements selected from Eu and Ce), and has a composition represented by (a, b, c). , And D satisfy the following equations,
    0.850 ≤ a ≤ 1.150
    0.850 ≤ b ≤ 1.150
    0.001 ≤ c ≤ 0.015
    0 ≦ d ≦ 0.40
    0 ≦ d / (a + d) <0.30
    The coating portion comprises at least a part of the outermost surface of the particles and contains a fluorine-containing compound containing a fluorine element and an aluminum element.
    Surface-coated phosphor particles having a fluorine element content of 15% by mass or more and 30% by mass or less with respect to the entire surface-coated phosphor particles.
  2.  前記フッ素含有化合物において、フッ素元素とアルミニウム元素とが直接に共有結合している請求項1に記載の表面被覆蛍光体粒子。 The surface-coated phosphor particle according to claim 1, wherein the fluorine element and the aluminum element are directly covalently bonded in the fluorine-containing compound.
  3.  前記フッ素含有化合物は、(NHAlFまたはAlFのいずれか一方または両方を含む請求項1または2に記載の表面被覆蛍光体粒子。 The surface-coated phosphor particles according to claim 1 or 2, wherein the fluorine-containing compound contains either one or both of (NH 4 ) 3 AlF 6 and AlF 3 .
  4.  前記Mは、少なくともSrを含み、前記Mは、少なくともLiを含み、前記Mは、少なくともEuを含む請求項1乃至3のいずれか1項に記載の表面被覆蛍光体粒子。 The surface-coated phosphor particles according to any one of claims 1 to 3 , wherein M 1 contains at least Sr, M 2 contains at least Li, and M 3 contains at least Eu.
  5.  波長300nmの光照射に対する拡散反射率が56%以上であり、蛍光スペクトルのピーク波長における光照射に対する拡散反射率が85%以上である請求項1乃至4のいずれか1項に記載の表面被覆蛍光体粒子。 The surface-coated fluorescence according to any one of claims 1 to 4, wherein the diffuse reflectance for light irradiation at a wavelength of 300 nm is 56% or more, and the diffuse reflectance for light irradiation at the peak wavelength of the fluorescence spectrum is 85% or more. Body particles.
  6.  波長455nmの青色光で励起した場合、ピーク波長が640nm以上670nm以下の範囲にあり、半値幅が45nm以上60nm以下である請求項1乃至5のいずれか1項に記載の表面被覆蛍光体粒子。 The surface-coated phosphor particles according to any one of claims 1 to 5, wherein the peak wavelength is in the range of 640 nm or more and 670 nm or less and the half width is 45 nm or more and 60 nm or less when excited by blue light having a wavelength of 455 nm.
  7.  波長455nmの青色光で励起した場合、発光色の色純度がCIE-xy色度図において、x値が0.680≦x<0.735を満たす請求項1乃至6のいずれか1項に記載の表面被覆蛍光体粒子。 The invention according to any one of claims 1 to 6, wherein the color purity of the emitted color satisfies 0.680 ≦ x <0.735 in the CIE-xy chromaticity diagram when excited by blue light having a wavelength of 455 nm. Surface-coated phosphor particles.
  8.  請求項1乃至7のいずれか1項に記載の表面被覆蛍光体粒子の製造方法であって、
     原料を混合する混合工程と、
     前記混合工程により得た混合体を焼成する焼成工程と、
     前記焼成工程により得た焼成物と酸性溶液とを混合する酸処理工程と、
     前記酸処理工程を経た前記焼成物と、フッ素元素を含む化合物とを混合するフッ素処理工程と、
    を含み、
     前記混合工程において、前記Alのモル比を3としたときの前記Mの仕込み量がモル比1.10以上1.20以下である表面被覆蛍光体粒子の製造方法。
    The method for producing surface-coated phosphor particles according to any one of claims 1 to 7.
    Mixing process to mix raw materials and
    A firing step of firing the mixture obtained by the mixing step, and a firing step.
    An acid treatment step of mixing the fired product obtained by the firing step with an acidic solution, and
    A fluorine treatment step of mixing the fired product that has undergone the acid treatment step with a compound containing a fluorine element.
    Including
    A method for producing surface-coated phosphor particles in which the amount of M 1 charged in the mixing step when the molar ratio of Al is 3 is 1.10 or more and 1.20 or less in molar ratio.
  9.  前記酸処理工程において、前記酸性溶液に、フッ素濃度が25%以上のフッ酸水溶液を用いる、請求項8に記載の表面被覆蛍光体粒子の製造方法。 The method for producing surface-coated phosphor particles according to claim 8, wherein a hydrofluoric acid aqueous solution having a fluorine concentration of 25% or more is used as the acidic solution in the acid treatment step.
  10.  前記フッ素処理工程により得られる結果物に加熱処理を施す加熱工程をさらに備える請求項8または9に記載の表面被覆蛍光体粒子の製造方法。 The method for producing surface-coated phosphor particles according to claim 8 or 9, further comprising a heating step of heat-treating the result obtained by the fluorine treatment step.
  11.  請求項1乃至7のいずれか1項に記載の表面被覆蛍光体粒子と、発光素子とを有する発光装置。 A light emitting device having the surface-coated phosphor particles according to any one of claims 1 to 7 and a light emitting element.
PCT/JP2020/014910 2019-04-09 2020-03-31 Surface-coated fluorescent particles, production method for surface-coated fluorescent particles, and light-emitting device WO2020209147A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217036081A KR20210150474A (en) 2019-04-09 2020-03-31 Surface-coated phosphor particles, method for producing surface-coated phosphor particles, and light-emitting device
JP2021513590A JPWO2020209147A1 (en) 2019-04-09 2020-03-31
CN202080027709.4A CN113785030B (en) 2019-04-09 2020-03-31 Surface-coated phosphor particle, method for producing surface-coated phosphor particle, and light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-074459 2019-04-09
JP2019074459 2019-04-09

Publications (1)

Publication Number Publication Date
WO2020209147A1 true WO2020209147A1 (en) 2020-10-15

Family

ID=72751588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014910 WO2020209147A1 (en) 2019-04-09 2020-03-31 Surface-coated fluorescent particles, production method for surface-coated fluorescent particles, and light-emitting device

Country Status (5)

Country Link
JP (1) JPWO2020209147A1 (en)
KR (1) KR20210150474A (en)
CN (1) CN113785030B (en)
TW (1) TWI829912B (en)
WO (1) WO2020209147A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080262A1 (en) * 2020-10-13 2022-04-21 デンカ株式会社 Phosphor and luminescence device
WO2022080265A1 (en) * 2020-10-13 2022-04-21 デンカ株式会社 Fluorescent body, and light-emitting device
WO2022080263A1 (en) * 2020-10-13 2022-04-21 デンカ株式会社 Phosphor, method for producing phosphor, and light-emitting device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002539925A (en) * 1999-03-24 2002-11-26 サーノフ コーポレイション How to improve moisture resistance for moisture sensitive inorganic materials
JP2009286995A (en) * 2007-09-03 2009-12-10 Showa Denko Kk Phosphor, method for producing the same, and light-emitting device using the same
WO2012098932A1 (en) * 2011-01-18 2012-07-26 シャープ株式会社 Semiconductor light-emitting device
WO2014077240A1 (en) * 2012-11-13 2014-05-22 電気化学工業株式会社 Phosphor, light-emitting element and lighting device
JP2015526532A (en) * 2012-05-22 2015-09-10 コーニンクレッカ フィリップス エヌ ヴェ Novel phosphors such as novel narrow-band red-emitting phosphors for solid state lighting
JP2015224339A (en) * 2014-05-30 2015-12-14 株式会社東芝 Phosphor, production method thereof, and light emitting device
CN105400513A (en) * 2015-07-21 2016-03-16 杭州萤鹤光电材料有限公司 Red phosphor powder and preparation method thereof
JP2017155209A (en) * 2016-02-29 2017-09-07 日亜化学工業株式会社 Manufacturing method of nitride phosphor, nitride phosphor and light-emitting device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007018099A1 (en) * 2007-04-17 2008-10-23 Osram Gesellschaft mit beschränkter Haftung Red emitting phosphor and light source with such phosphor
JP6291675B2 (en) 2015-11-11 2018-03-14 日亜化学工業株式会社 Nitride phosphor manufacturing method, nitride phosphor and light emitting device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002539925A (en) * 1999-03-24 2002-11-26 サーノフ コーポレイション How to improve moisture resistance for moisture sensitive inorganic materials
JP2009286995A (en) * 2007-09-03 2009-12-10 Showa Denko Kk Phosphor, method for producing the same, and light-emitting device using the same
WO2012098932A1 (en) * 2011-01-18 2012-07-26 シャープ株式会社 Semiconductor light-emitting device
JP2015526532A (en) * 2012-05-22 2015-09-10 コーニンクレッカ フィリップス エヌ ヴェ Novel phosphors such as novel narrow-band red-emitting phosphors for solid state lighting
WO2014077240A1 (en) * 2012-11-13 2014-05-22 電気化学工業株式会社 Phosphor, light-emitting element and lighting device
JP2015224339A (en) * 2014-05-30 2015-12-14 株式会社東芝 Phosphor, production method thereof, and light emitting device
CN105400513A (en) * 2015-07-21 2016-03-16 杭州萤鹤光电材料有限公司 Red phosphor powder and preparation method thereof
JP2017155209A (en) * 2016-02-29 2017-09-07 日亜化学工業株式会社 Manufacturing method of nitride phosphor, nitride phosphor and light-emitting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080262A1 (en) * 2020-10-13 2022-04-21 デンカ株式会社 Phosphor and luminescence device
WO2022080265A1 (en) * 2020-10-13 2022-04-21 デンカ株式会社 Fluorescent body, and light-emitting device
WO2022080263A1 (en) * 2020-10-13 2022-04-21 デンカ株式会社 Phosphor, method for producing phosphor, and light-emitting device

Also Published As

Publication number Publication date
CN113785030A (en) 2021-12-10
KR20210150474A (en) 2021-12-10
TWI829912B (en) 2024-01-21
JPWO2020209147A1 (en) 2020-10-15
TW202104549A (en) 2021-02-01
CN113785030B (en) 2024-02-23

Similar Documents

Publication Publication Date Title
JP4422653B2 (en) Phosphor, production method thereof, and light source
JP5140061B2 (en) Phosphor, production method thereof, and light source
TWI555824B (en) Nitroxide phosphor powder, nitroxide phosphor powder, and nitrogen oxide phosphor powder for manufacturing the same
WO2020209147A1 (en) Surface-coated fluorescent particles, production method for surface-coated fluorescent particles, and light-emitting device
TW201942333A (en) Phosphor, production method for same, and light-emitting device
WO2020209148A1 (en) Surface-coated fluorescent particles, production method for surface-coated fluorescent particles, and light-emitting device
WO2021015004A1 (en) Fluorescent particle production method
KR20130138744A (en) SILICON NITRIDE POWDER FOR SILICONITRIDE FLUORESCENT MATERIAL, SR3AL3SI13O2N21 FLUORESCENT MATERIAL AND β-SIALON FLUORESCENT MATERIAL BOTH OBTAINED USING SAME, AND PROCESSES FOR PRODUCING THESE
WO2020241482A1 (en) Surface-coated fluorescent body particles and luminescent device
WO2018092696A1 (en) Red-emitting phosphor, light-emitting member, and light-emitting device
WO2022080263A1 (en) Phosphor, method for producing phosphor, and light-emitting device
CN105008486A (en) Method for producing nitride phosphor, silicon nitride powder for nitride phosphor, and nitride phosphor
WO2022080265A1 (en) Fluorescent body, and light-emitting device
KR20150067259A (en) Method for producing phosphor
WO2022080262A1 (en) Phosphor and luminescence device
JP2018109080A (en) Green phosphor, light emitting element and light emitting device
JP2008045080A (en) Method for producing inorganic compound
WO2013111411A1 (en) Phosphor, method for producing same, and use of same
CN106978166B (en) Red phosphor and light-emitting device
JP2019026657A (en) Fluophor, manufacturing method therefor, light-emitting element using the same, and silicon nitride powder for manufacturing fluophor
JP7217709B2 (en) Red phosphor and light-emitting device
US11952520B2 (en) Method for manufacturing phosphor powder, phosphor powder, and light emitting device
JP2018109075A (en) Green phosphor, method for producing the same, light emitting element and light emitting device
WO2019220816A1 (en) Red phosphor and light emitting device
TW202204576A (en) Phosphor, wavelength converter, and light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20786711

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021513590

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217036081

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20786711

Country of ref document: EP

Kind code of ref document: A1