WO2020209049A1 - Optical device and method for producing same - Google Patents

Optical device and method for producing same Download PDF

Info

Publication number
WO2020209049A1
WO2020209049A1 PCT/JP2020/013065 JP2020013065W WO2020209049A1 WO 2020209049 A1 WO2020209049 A1 WO 2020209049A1 JP 2020013065 W JP2020013065 W JP 2020013065W WO 2020209049 A1 WO2020209049 A1 WO 2020209049A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
layer
electro
material layer
electrode
Prior art date
Application number
PCT/JP2020/013065
Other languages
French (fr)
Japanese (ja)
Inventor
尚徳 増子
宏幸 高木
平澤 拓
寺部 一弥
敬志 土屋
Original Assignee
パナソニック株式会社
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社, 国立研究開発法人物質・材料研究機構 filed Critical パナソニック株式会社
Publication of WO2020209049A1 publication Critical patent/WO2020209049A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure

Definitions

  • This disclosure relates to an optical device and a method for manufacturing the same.
  • Patent Documents 1 and 2 and Non-Patent Documents 1 to 4 have been proposed (for example, Patent Documents 1 and 2 and Non-Patent Documents 1 to 4).
  • the index of refraction can be varied by various optical effects. For example, by changing the refractive index of the optical waveguide, the phase of the light propagating in the optical waveguide can be modulated.
  • the present disclosure provides an optical device capable of realizing a large refractive index modulation using an electro-optical effect.
  • FIG. 1A is a side view schematically showing the optical phase modulator in the exemplary embodiment of the present disclosure as viewed from the X direction.
  • FIG. 1B is a side view of the optical phase modulator in the exemplary embodiment of the present disclosure schematically shown from the Y direction.
  • FIG. 2A is a diagram schematically showing charge distribution in the pair of electrodes, the electro-optical material layer, and the electrolyte layer when a voltage is applied to the pair of electrodes.
  • FIG. 2B is a diagram schematically showing the relationship between the electric potential and the distance between the pair of electrodes along the Z direction from the upper surface of the first electrode.
  • FIG. 2C is a diagram schematically showing the relationship between the distance between the pair of electrodes from the upper surface of the first electrode along the Z direction and the strength of the electric field.
  • FIG. 4 is a flowchart showing a manufacturing process of the optical phase modulator.
  • FIG. 5 is a plan view schematically showing an example of a Mach-Zehnder type optical switching device.
  • FIG. 6A is a diagram schematically showing a first example of an optical phased array.
  • FIG. 6B is a diagram schematically showing a second example of an optical phased array.
  • Non-Patent Document 1 discloses an optical phase modulator using a stress-optic effect in which the refractive index changes with stress.
  • the piezoelectric body is deformed by applying a voltage to the piezoelectric body laminated on the optical waveguide. Due to the deformation of the piezoelectric body, stress is applied to the optical waveguide, and the refractive index of the optical waveguide changes. Due to the change in refractive index, the phase of light propagating in the optical waveguide is modulated.
  • the amount of change in the refractive index of the optical waveguide due to the piezoelectric material is small, for example, on the order of about 10-6 . Therefore, the phase of light cannot be significantly modulated unless the optical waveguide is lengthened. Lengthening the optical waveguide leads to an increase in the size of the optical phase modulator.
  • Non-Patent Documents 2 and 3 disclose an optical phase modulator using a thermo-optic effect in which the refractive index changes with heat.
  • the amount of change in refractive index due to thermo-optic effect is large, for example, 10 -2 order. Therefore, even when the optical phase modulator is small, the phase of light can be largely modulated.
  • the modulation speed of the refractive index due to the thermo-optical effect is low, and it is not possible to realize high-speed modulation exceeding, for example, several hundred kHz.
  • Non-Patent Document 4 discloses an optical phase modulator using an electro-optic effect in which the refractive index changes by applying an electric field.
  • electro-optical effects the Pockels effect and the Kerr effect are known. When no electric field is applied, the amount of change in the refractive index is zero.
  • the amount of change in the refractive index is determined by the product of the electro-optical constant inherent in the electro-optical material and the strength of the applied electric field.
  • the Kerr effect the amount of change in the refractive index is determined by the product of the electro-optic constant and the square of the strength of the applied electric field.
  • the change in the refractive index modulates the phase of the light propagating through the electro-optical material.
  • the modulation speed of the refractive index due to the electro-optical effect is high, and for example, modulation of several tens of MHz or more can be realized.
  • the stronger the applied electric field the greater the amount of change in the refractive index.
  • the strength of the applied electric field is limited to a strength lower than the dielectric breakdown electric field strength of the electro-optical material. Therefore, the amount of change in the refractive index is on the order of about 10-4 and does not become so large.
  • Patent Document 1 discloses an optical modulation device using an electro-optical effect.
  • the electro-optical material layer is in contact with the electrolyte layer.
  • an external voltage is applied to the electro-optical material layer and the electrolyte layer, a strong electric field is generated near the interface between the electro-optic material layer and the electrolyte layer.
  • the strength of the electric field exceeds the dielectric breakdown electric field strength of the electro-optical material layer.
  • the state in which light is transmitted through the electro-optical material layer and the state in which light is reflected by the electro-optical material layer are switched by changing the refractive index of the electro-optical material layer.
  • This optical modulation device is used as an optical switching element. It is not envisioned that the electro-optical material layer or electrolyte layer will be used as an optical waveguide. Furthermore, no specific material for the electrolyte layer is mentioned.
  • Patent Document 2 discloses an optical switch using an electrochromic effect.
  • the optical waveguide is surrounded by an electrochromic material layer.
  • the electrochromic material layer is in contact with the electrolyte layer.
  • a voltage is applied to the electrochromic material layer and the electrolyte layer.
  • a redox reaction occurs in the electrochromic material layer, and the electronic structure of the electrochromic material layer changes.
  • the refractive index of the electrochromic material layer changes due to the change in the electronic structure.
  • the oxidation reaction or reduction reaction occurs reversibly depending on the polarity of the voltage applied from the outside. The oxidized or reduced state is maintained even when no voltage is applied.
  • the amount of change in the refractive index is on the order of about 10-3 .
  • the modulation rate is very slow, at most a few Hz.
  • the electrolyte layer is provided to oxidize or reduce the electrochromic material layer.
  • the present inventor has come up with the optical device described in the following item, which can realize a large refractive index modulation using an electro-optical effect by using an electrolyte layer formed of a specific material.
  • the refractive index of the electro-optical material layer can be greatly modulated by a strong electric field generated near the interface between the electro-optical material layer and the electrolyte layer.
  • the optical device according to the second item further includes a control circuit for controlling the voltage in the optical device according to the first item.
  • the control circuit modulates the phase of light propagating through the electro-optical material layer by controlling the voltage to change the refractive index of the electro-optical material layer.
  • the phase of light propagating in the electro-optical material layer can be modulated by a control circuit.
  • the optical device according to the third item is 1 ⁇ x ⁇ 4 in the optical device according to the first or second item.
  • the electrolyte layer has Li ion conductivity effective for generating a strong electric field near the interface between the electro-optical material layer and the electrolyte layer.
  • the electrolyte layer has the above-mentioned effective Li-ion conductivity and has a flat surface.
  • the optical device according to the fifth item is the optical device according to any one of the first to fourth items, in which the electrolyte layer has an amorphous structure.
  • the flatness of the interface between the electro-optical material layer and the electrolyte layer can be improved.
  • the optical device according to the sixth item is the optical device according to any one of the first to fifth items, in which the electro-optical material layer is formed of potassium niobate tantalate.
  • the electro-optical material layer exhibits a high electro-optical effect near room temperature.
  • the method for manufacturing an optical device includes a step of forming a first electrode, a step of forming an electro-optical material layer on the first electrode, and Li x on the electro-optical material layer.
  • a step of forming an electrolyte layer formed from a substance represented by Zr z Si 1-z Oy (x> 0, y x / 2 + 2, 0 ⁇ z ⁇ 1) and a second step on the electrolyte layer. It includes a step of forming an electrode.
  • the step of forming the electrolyte layer is such that the electrolyte layer is charged with electricity at room temperature by a pulse laser deposition method. Includes the step of depositing on the optical material layer.
  • the electrolyte layer can be easily deposited on the electro-optical material layer. Further, the flatness of the interface between the electro-optical material layer and the electrolyte layer can be improved.
  • all or part of a circuit, unit, device, member or part, or all or part of a functional block in a block diagram is, for example, a semiconductor device, a semiconductor integrated circuit (IC), or an LSI (range scale integration). ) Can be performed by one or more electronic circuits.
  • the LSI or IC may be integrated on one chip, or may be configured by combining a plurality of chips.
  • functional blocks other than the storage element may be integrated on one chip.
  • it is called an LSI or an IC, but the name changes depending on the degree of integration, and it may be called a system LSI, a VLSI (very large scale integration), or a ULSI (ultra large scale integration).
  • a Field Programmable Gate Array (FPGA) programmed after the LSI is manufactured, or a reconfigurable logistic device capable of reconfiguring the junction relationship inside the LSI or setting up the circuit partition inside the LSI can also be used for the same purpose.
  • FPGA Field Programmable Gate Array
  • circuits, units, devices, members or parts can be performed by software processing.
  • the software is recorded on a non-temporary recording medium such as one or more ROMs, optical discs, hard disk drives, etc., and when the software is executed by a processor, the functions identified by the software It is executed by a processor and peripheral devices.
  • the system or device may include one or more non-temporary recording media on which the software is recorded, a processor, and the required hardware devices, such as an interface.
  • light refers to electromagnetic waves including not only visible light (wavelength of about 400 nm to about 700 nm) but also ultraviolet rays (wavelength of about 10 nm to about 400 nm) and infrared rays (wavelength of about 700 nm to about 1 mm). means.
  • an optical phase modulator will be described as an example of an optical device capable of realizing a large refractive index modulation using an electro-optical effect.
  • FIGS. 1A and 1B are diagrams schematically showing the optical phase modulator 100 in the exemplary embodiment of the present disclosure.
  • the coordinate system including the X-axis, the Y-axis, and the Z-axis which are orthogonal to each other shown in FIGS. 1A and 1B is used.
  • the + Z direction is referred to as "upward”
  • the -Z direction is referred to as "downward”.
  • the dimension in the X direction is referred to as "length”
  • the dimension in the Y direction is referred to as "width”
  • the dimension in the Z direction is referred to as "thickness”.
  • FIG. 1A schematically shows the structure of the optical phase modulator 100 as viewed from the + X direction.
  • FIG. 1B schematically shows the structure of the optical phase modulator 100 as viewed from the ⁇ Y direction.
  • the optical phase modulator 100 includes a substrate 10, a first electrode 20a and a second electrode 20b, an electro-optical material layer 30, an electrolyte layer 40, and a control circuit 50.
  • the substrate 10 has a main surface 10s parallel to the XY plane.
  • the first electrode 20a is located on the main surface 10s of the substrate 10.
  • the electro-optical material layer 30 is located on the first electrode 20a.
  • the electrolyte layer 40 is located on the electro-optical material layer 30.
  • the second electrode 20b is located on the electrolyte layer 40. That is, the substrate 10, the first electrode 20a, the electro-optical material layer 30, the electrolyte layer 40, and the second electrode 20b are laminated in this order.
  • the first electrode 20a and the second electrode 20b may be referred to as a "pair of electrodes 20".
  • the substrate 10, the first electrode 20a and the second electrode 20b, the electro-optical material layer 30, and the electrolyte layer 40 have a structure extending at least in the X direction.
  • the substrate 10 supports a pair of electrodes 20, an electro-optical material layer 30, and an electrolyte layer 40.
  • the substrate 10 can be formed from, for example, at least one selected from the group consisting of magnesium oxide (MgO), spinel (MgAl 2 O 4 ), and ⁇ -alumina ( ⁇ -Al 2 O 3 ).
  • the substrate 10 may be omitted if it is unnecessary.
  • the pair of electrodes 20 directly or indirectly sandwich the electro-optical material layer 30 and the electrolyte layer 40 in the Z direction.
  • “Directly sandwiching” means that the first electrode 20a and the electro-optical material layer 30 are in contact with each other, and the second electrode 20b and the electrolyte layer 40 are in contact with each other.
  • “Indirectly sandwiching” means that another member is located between the first electrode 20a and the electro-optical material layer 30 and / or between the second electrode 20b and the electrolyte layer 40. To do.
  • the other member may be a dielectric member, a gas such as air, or a liquid such as water.
  • the X direction may be referred to as a "first direction”.
  • Each of the pair of electrodes 20 has a plane parallel to the XY plane.
  • a DC voltage is applied to the pair of electrodes 20.
  • the DC voltage may be a DC pulse voltage.
  • the time average of the voltage value of the DC pulse voltage may be treated as the value of the DC voltage. By changing the duty ratio of the DC pulse voltage, the time average value of the voltage can be adjusted.
  • Each of the pair of electrodes 20 may be a metal electrode or a transparent electrode.
  • the thickness of the first electrode 20a can be, for example, 100 nm or more and 200 nm or less.
  • the second electrode 20b was formed from, for example, at least one selected from the group consisting of SnO 2- doped In 2 O 3 (ITO), F-doped SnO 2 (FTO), and Sb-doped TiO 2 (ATO). It can be a transparent electrode.
  • the thickness of the second electrode 20b can be, for example, 100 nm or more and 200 nm or less.
  • the electro-optical material layer 30 functions as an optical waveguide layer that propagates light 32 along the X direction by total reflection.
  • the ellipse shown in FIG. 1A indicates that the intensity of the light 32 is high within the ellipse.
  • the refractive index of the electro-optical material layer 30 is higher than the refractive index of the medium around the optical phase modulator 100 and the refractive index of each of the substrate 10 and the electrolyte layer 40.
  • the first electrode 20a is a transparent electrode
  • the refractive index of the electro-optical material layer 30 is higher than the refractive index of the first electrode 20a.
  • the refractive index of the first electrode 20a is higher than that of the substrate 10.
  • the substrate 10 does not function as an optical waveguide layer.
  • the loss of light 32 can be ignored.
  • the refractive index of the electro-optical material layer 30 changes according to the strength of the applied electric field due to the Pockels effect or the Kerr effect. The stronger the applied electric field, the greater the amount of change in the refractive index of the electro-optical material layer 30. When no electric field is applied, the amount of change becomes zero.
  • the apparatus of this embodiment is different from the apparatus utilizing the electrochromic effect described above.
  • the refractive index changes from the initial value only when a voltage is applied, it is easy to turn on and off the optical phase modulator 100.
  • the phase of the light 32 propagating in the electro-optical material layer 30 can be modulated by the change in the refractive index of the electro-optical material layer 30 due to the application of an electric field. Due to the fast response of the electro-optic effect, the phase modulation rate can be high, for example, several tens of MHz or higher.
  • the wavelength of the light 32 in the air is ⁇
  • the refractive index of the electro-optical material layer 30 when no electric field is applied is n 0
  • the amount of change in the refractive index of the electro-optical material layer 30 due to the application of an electric field is ⁇ n
  • electricity is applied.
  • the length of the optical material layer 30 is L
  • each of the first electrode 20a and the second electrode 20b may be a transparent electrode or a metal electrode.
  • the loss of light 32 can be ignored. If the thickness of the electrolyte layer 40 is sufficiently large, the evanescent light of the light 32 does not reach the second electrode 20b. Therefore, when the thickness of the electrolyte layer 40 is sufficiently large, the loss of light 32 can be ignored even if the second electrode 20b is a metal electrode.
  • the electro-optical material layer 30 may be formed from a bulk or a thin film.
  • the thickness of the thin film can be, for example, 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the cost of thin films is lower than the cost of bulk.
  • the electro-optical material layer 30 is composed of, for example, lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), potassium dihydrogen phosphate (KH 2 PO 4 ), and ammonium dihydrogen phosphate (KH 2 PO 4 ). It can be formed from at least one selected from the group consisting of NH 4 H 2 PO 4 ).
  • the electro-optical material layer 30 is, for example, for example, barium titanate (BaTiO 3), strontium titanate (SrTiO 3), potassium titanate (KTaO 3), zirconate lead lanthanum titanate ((Pb 1-x La x) (Zr y Ti 1-y) 1-x / 4 O 3: PLZT), and potassium tantalate niobate (KTa 1-x Nb x O 3: is selected from the group consisting of KTN) It can be formed from at least one. Among these, KTN exhibits a high electro-optical effect near room temperature by setting the composition ratio of Nb and Ta to an appropriate ratio.
  • KTN is transparent at a wavelength of 1550 nm for light used in optical communication. Therefore, application of KTN to optical devices is expected.
  • the electro-optical material layer 30 may be formed of a material exhibiting other electro-optical effects such as the electrochromic effect.
  • the electrolyte layer 40 is in contact with at least a part of the electro-optical material layer 30.
  • the electrolyte layer 40 has a structure extending at least in the X direction.
  • the electrolyte layer 40 is formed of an ionic conductor. In an ionic conductor, at least one of a positive ion and a negative ion moves by applying an electric field from the outside.
  • the electrolyte layer 40 is typically a solid electrolyte layer.
  • the solid electrolyte layer depending on its composition, may have a 10 -2 S / cm order of the order of the ion conductivity of 10 -8 S / cm. The material of the electrolyte layer 40 will be described later.
  • the control circuit 50 applies a DC voltage to the pair of electrodes 20.
  • the broken line with an arrow shown in FIG. 1A indicates that a signal is input from the control circuit 50 to the pair of electrodes 20.
  • the control circuit 50 modulates the phase of the light 32 propagating in the electro-optical material layer 30 by applying a voltage to the pair of electrodes 20 to change the refractive index of the electro-optical material layer 30.
  • the control circuit 50 includes a programmable logic device (PLD) such as a digital signal processor (DSP) or a field programmable gate array (FPGA), or a central processing unit (CPU) or an image processing arithmetic processor (GPU) and a computer program. It may be realized by the combination of. In the following figure, the control circuit 50 may be omitted.
  • FIG. 2A is a diagram schematically showing the charge distribution in the pair of electrodes 20, the electro-optical material layer 30, and the electrolyte layer 40 when a voltage is applied to the pair of electrodes 20.
  • the upper part of FIG. 2A represents the optical phase modulator 100 shown in FIG.
  • the lower figure of FIG. 2A schematically shows an example of charge distribution in the region surrounded by the thick line shown in the upper figure.
  • the potential of the second electrode 20b is higher than the potential of the first electrode 20a, a downward electric field is generated between the pair of electrodes 20.
  • FIG. 2A shows the negative charge ( ⁇ ) in the first electrode 20a, the positive charge (+) in the second electrode 20b, and the polarization (+ ⁇ ) in the electro-optical material layer 30 at this time. ), And the distribution of positive ions (+) and negative ions ( ⁇ ) in the electrolyte layer 40 is schematically shown.
  • the negative charge contained in the first electrode 20a is distributed on the side of the electro-optical material layer 30.
  • the positive charge contained in the second electrode 20b is distributed on the side of the electrolyte layer 40. Due to the downward electric field generated between the pair of electrodes 20, positive ions among the ions contained in the electrolyte layer 40 move toward the electro-optical material layer 30, and negative ions move to the side of the second electrode 20b. Move to the side.
  • polarization of a pair of positive and negative charges occurs. Due to the movement of positive and negative ions in the electrolyte layer 40, an electric double layer surrounded by a broken line is formed at the interface 35 between the electro-optical material layer 30 and the electrolyte layer 40. Similarly, an electric double layer surrounded by a broken line is formed at the interface between the electrolyte layer 40 and the second electrode 20b.
  • the electric double layer functions as a capacitor.
  • the strengths of the electric potentials and electric fields generated in the electro-optical material layer 30 and the electrolyte layer 40 will be described. However, it is assumed that the electro-optical material layer 30 is formed from carrier-injected KTN.
  • FIG. 2B is a diagram schematically showing the relationship between the potential V and the distance Z along the Z direction from the upper surface of the first electrode 20a between the pair of electrodes 20.
  • V 1 represents the potential of the first electrode 20a, and V 2 represents the potential of the second electrode 20b.
  • the potential V sharply increases as the distance Z increases due to the formation of the electric double layer.
  • the potential V increases substantially parabolic with the increase in distance Z due to the carrier injection described above.
  • the potential V is substantially constant.
  • FIG. 2C is a diagram schematically showing the relationship between the distance Z between the pair of electrodes 20 along the Z direction from the upper surface of the first electrode 20a and the strength E of the electric field.
  • the electric field strength E shown in FIG. 2C corresponds to the absolute value of the gradient of the potential V shown in FIG. 2B.
  • the electric field strength E increases substantially linearly as the distance Z increases.
  • the electric field strength E sharply decreases as the distance Z increases.
  • the electro-optic material layer 30 in the portion near the interface 35, a strong electric field having an intensity of E m is generated. Even if the strength of the electric field locally exceeds the strength of the dielectric breakdown electric field, the electro-optical material layer 30 is not destroyed. Since there is no limitation on the dielectric breakdown electric field, the amount of change in the refractive index of the portion of the electro-optical material layer 30 near the interface 35 can be expected to be on the order of, for example, 10-2 or more. The amount of change in the refractive index is larger than that in the case without the electrolyte layer 40. On the other hand, the amount of change in the refractive index of the portion away from the interface 35 is on the order of about 10-3 on average.
  • the amount of change in the refractive index of the electro-optical material layer 30 varies depending on the location.
  • the average value of the change in the refractive index of the electro-optical material layer 30 in space may be the change ⁇ n in the refractive index of the electro-optical material layer 30.
  • the optical phase modulator 100 can modulate the phase of the light 32 propagating through the electro-optical material layer 30 at a large speed and at high speed by using a fast-responsive electro-optical effect.
  • the interface 35 between the electro-optical material layer 30 and the electrolyte layer 40 in this embodiment is flat.
  • the interface 35 does not necessarily have to be strictly flat and may have a portion having some inclination or recesses or protrusions.
  • the electric fields generated in the concave portion or the convex portion may weaken each other, and a strong electric field may not be concentrated in the vicinity of the interface 35. In that case, the amount of change in the refractive index of the portion of the electro-optical material layer 30 near the interface 35 may be small. Further, the light 32 may be lost due to the scattering of the light 32 by the concave or convex portion of the interface 35.
  • the interface 35 when the interface 35 is flat, a strong electric field is concentrated in the Z direction near the interface 35. As a result, the amount of change in the refractive index of the portion of the electro-optical material layer 30 near the interface 35 can be increased. Further, the flat interface 35 suppresses the loss of light 32.
  • the amount of change in the refractive index of the electro-optical material layer 30 is described by a tensor. Therefore, the refractive index of the electro-optical material layer 30 can change in a plurality of directions depending on the direction of the applied electric field. The amount of change in the refractive index of the electro-optical material layer 30 differs depending on the plurality of directions.
  • the refractive index of the electro-optical material layer 30 changes in the X direction and Y. It changes in the direction and the Z direction.
  • the amount of change in the refractive index of the electro-optical material layer 30 becomes maximum in the Z direction.
  • the phase of the light 32 in the TM (transverse magnetic) mode can be greatly modulated.
  • the light 32 in the TM mode has an electric field parallel to the Z direction.
  • a waveguide mode exists when the electro-optical material layer 30 has a width and thickness equal to or greater than a predetermined value. As a result, the electro-optical material layer 30 functions as an optical waveguide layer.
  • the width and thickness of the electro-optical material layer 30 are set to values that form an optical waveguide layer that propagates light 32 along the X direction.
  • LZSO Li x Zr z Si 1-z O y
  • z 0.5.
  • PLD Pulsed Laser Deposition
  • the surface of the LZSO layer becomes rough. This is because carbonates such as lithium carbonate are precipitated on the surface of the LZSO layer by the reaction between Li and CO 2 in the air. Therefore, if the amount of Li in the LZSO layer is small, the flatness of the surface of the LZSO layer can be improved. On the other hand, if the amount of Li in the LZSO layer is too small, the Li ion conductivity decreases. If the Li ion conductivity of the LZSO layer is on the order of about 10-8 S / cm or more, a strong electric field can be generated near the interface 35. From the above, when 1 ⁇ x ⁇ 4, at least the effectiveness of Li ion conductivity is satisfied.
  • the LZSO layer can be formed in an amorphous phase on both the Si substrate and the KTN layer.
  • the Li ion conductivity and surface roughness of the LZSO layer are determined by the amount of Li in the LZSO layer regardless of whether the base of the LZSO layer is a Si substrate or a KTN layer.
  • the LZSO layer has a crystal structure
  • temperature control is performed in order to deposit the LZSO layer having a crystal structure on the KTN layer. Due to the temperature control, the KTN layer and the LZSO layer may be thermally diffused. As a result, the interface 35 can be rough.
  • the LZSO layer has an amorphous structure
  • the LZSO layer can be deposited on the KTN layer at room temperature without controlling the temperature of heating or cooling. As a result, heat diffusion between the KTN layer and the LZSO layer is suppressed. As a result, the interface 35 becomes flat. Since no temperature control is required, the LZSO layer can be easily deposited on the KTN layer. As described above, when the interface 35 is flat, a strong electric field is likely to be generated in the vicinity of the interface 35. Further, the loss of light 32 due to scattering can be suppressed.
  • the thickness of the electrolyte layer 40 can be, for example, 500 nm or more and 2.5 ⁇ m or less. If the thickness of the electrolyte layer 40 is less than 500 nm, the evanescent light of the light 32 may reach the second electrode 20b. When the thickness of the electrolyte layer 40 is thicker than 2.5 ⁇ m, the strength of the electric field applied to the electro-optical material layer 30 and the electrolyte layer 40 may decrease due to the increase in the internal resistance of the electrolyte layer 40.
  • the LZSO layer has (1) a flat surface, (2) effective Li ion conductivity can be obtained, and (3) the LZSO layer can be easily deposited on the KTN layer. Has advantages.
  • FIG. 4 is a flowchart showing the manufacturing process of the optical phase modulator 100.
  • the method for manufacturing the optical phase modulator 100 includes the following steps S101 to S104.
  • step S101 an MgO substrate formed from an MgO (100) single crystal is prepared.
  • the MgO substrate corresponds to the substrate 10 shown in FIGS. 1A and 1B.
  • the LSSO layer and the KTN layer are formed on the main surface of the MgO substrate by epitaxial growth in this order.
  • the LSSO layer corresponds to the first electrode 20a shown in FIGS. 1A and 1B.
  • the LSSO layer exhibits electrical conductivity.
  • the LSSO layer is oriented in the [100] direction.
  • the thickness of the LSSO layer is 200 nm.
  • the KTN layer corresponds to the electro-optical material layer 30 shown in FIGS. 1A and 1B.
  • the thickness of the KTN layer is 500 nm.
  • the PLD method is used to form the LSSO layer and the KTN layer.
  • the MgO substrate and the target formed from LSSO are arranged to face each other.
  • the facing distance is 40 mm.
  • O 2 gas By injecting O 2 gas after evacuating the inside of the vacuum chamber, the pressure inside the vacuum chamber becomes 10 Pa.
  • the MgO substrate is heated to 700 ° C.
  • the target formed from the LSSO is irradiated with an ArF excimer laser. As a result, the LSSO layer is deposited on the main surface 10s of the MgO substrate.
  • the MgO substrate on which the LSSO layer is formed on the main surface 10s is heated to 700 ° C., and the target formed from KTN is irradiated with an ArF excimer laser. As a result, the KTN layer is deposited on the LSSO layer. After cooling, the MgO substrate containing the LSSO layer and the KTN layer is removed from the vacuum chamber.
  • the amount of carbonate deposited on the surface of the LZSO layer is small.
  • the LZSO layer has an amorphous structure. Due to the small amount of Li and the amorphous structure, the surface of the LZSO layer is flat.
  • the LZSO layer corresponds to the electrolyte layer 40 shown in FIGS. 1A and 1B.
  • the thickness of the LZSO layer is 600 nm.
  • the PLD method is used to form the LZSO layer.
  • the MgO substrate containing the LSSO layer and the KTN layer and the target formed from LZSO are arranged to face each other.
  • the facing distance is 40 mm.
  • Targets formed from LZSO are irradiated with an ArF excimer laser at room temperature.
  • the LZSO layer is deposited on the KTN layer.
  • step S103 includes a step of depositing the electrolyte layer 40 on the electro-optical material layer 30 by the PLD method at room temperature.
  • an ITO layer formed of 10 wt% SnO 2- doped In 2 O 3 is formed on the LZSO layer at room temperature.
  • the ITO layer corresponds to the second electrode 20b shown in FIGS. 1A and 1B.
  • the thickness of the second electrode 20b is 100 nm.
  • a sputtering method is used to form the ITO layer.
  • an MgO substrate containing an LSSO layer, a KTN layer, and an LZSO layer and a target formed of ITO are arranged so as to face each other.
  • the facing distance is 45 mm.
  • Ar gas By injecting Ar gas after evacuating the inside of the vacuum chamber, the pressure inside the vacuum chamber becomes 1.5 Pa.
  • the ITO layer is deposited on the LZSO layer by sputtering for 12 minutes at an RF power of 50 W.
  • the refractive indexes of the LSSO layer, the KTN layer, and the LZSO layer are about 2.0, 2.2, and 1.7, respectively. Therefore, the KTN layer having the highest refractive index functions as an optical waveguide layer.
  • the refractive index of the KTN layer can be changed in the range of about 2.0 to about 2.2. As a result, the phase of the light 32 propagating in the KTN layer can be modulated.
  • the following materials may be selected for the substrate 10, the pair of electrodes 20, and the electro-optical material layer 30.
  • step S101 instead of the MgO substrate may be prepared MgAl 2 O 4 substrate, or ⁇ -Al 2 O 3 ⁇ - Al 2 O 3 substrate formed from, formed from MgAl 2 O 4.
  • An LSSO layer can be formed as the first electrode 20a on the MgAl 2 O 4 substrate and the a—Al 2 O 3 substrate by epitaxial growth.
  • the MgAl 2 O 4 substrate and the a-Al 2 O 3 substrate are transparent at a wavelength of 1550 nm.
  • the refractive index of the MgAl 2 O 4 substrate and the a-Al 2 O 3 substrate is lower than that of the LSSO layer.
  • a KTN layer can be formed on the layer by epitaxial growth.
  • the layer is transparent at a wavelength of 1550 nm.
  • the refractive index of the layer is lower than that of the KTN layer.
  • the layer has electrical conductivity.
  • step S102 instead of the KTN layer, a layer formed from an electro-optical material exhibiting the Pockels effect or the Kerr effect described above may be formed.
  • a material capable of epitaxially growing the layer is selected for the first electrode 20a.
  • an FTO layer formed of F-doped SnO 2 (FTO) or an ATO layer formed of Sb-doped TiO 2 (ATO) may be formed.
  • the FTO layer and the ATO layer are transparent at a wavelength of 1550 nm.
  • the FTO and ATO layers can be deposited at room temperature.
  • the laminated structure produced by steps S101 to S104 can be patterned into an arbitrary shape by photolithography and dry etching.
  • the width of the laminated structure is designed to be, for example, 1 ⁇ m because there is a 0th-order TM mode in which the wavelength in air is 1550 nm.
  • the laminated structure may be patterned on a Mach-Zehnder type optical switching device or an optical phased array described later.
  • the control circuit 50 changes the refractive index of the electro-optical material layer 30 by changing the value of the DC voltage applied to the pair of electrodes 20. As a result, the phase of the light 32 propagating in the electro-optical material layer 30 is modulated.
  • An application example using the phase modulation of the light 32 will be described below.
  • the optical phase modulator 100 in this embodiment can be applied to, for example, a Mach-Zehnder type optical switching device.
  • FIG. 5 is a plan view schematically showing an example of a Mach-Zehnder type optical switching device 200.
  • the optical switching device 200 includes an input waveguide 200a, two branched optical waveguides 200b, and an output waveguide 200c.
  • the two branched optical waveguides 200b are located between the input waveguide 200a and the output waveguide 200c.
  • the reflection of light at the branch point A on the input waveguide 200a side and the branch point B on the output waveguide 200c side is not considered.
  • one of the optical waveguides includes the optical phase modulator 100 in this embodiment.
  • 2 ⁇ / ⁇
  • ⁇ nL 2 ⁇ / ⁇
  • the phases of the light output from the two branched optical waveguides 200b are in phase with each other. Therefore, when two lights having the same phase are input to the output waveguide 200c, the two lights overlap each other. Therefore, the intensity I out of the light output from the output waveguide 200c is equal to the intensity I in of the light input to the input waveguide 200a.
  • ⁇ can be set by adjusting the value of the DC voltage applied to the pair of electrodes 20 in the optical phase modulator 100.
  • the phases of the light output from the two branched optical waveguides 200b are opposite to each other. Therefore, when two lights having opposite phases are input to the output waveguide 200c, the two lights cancel each other out. Therefore, the intensity I out of the light output from the output waveguide 200c becomes 0.
  • the intensity I out of the light output from the output waveguide 200c of the optical switching device 200 is changed from I in to 0. Can be adjusted continuously.
  • the optical phase modulator 100 capable of modulating the refractive index at a large speed and at a high speed enables the optical switching device 200 to be miniaturized and the intensity modulation of the light output from the optical switching device 200 to be accelerated.
  • optical phase modulator 100 in this embodiment can be applied to, for example, an optical phased array 300.
  • 6A and 6B are diagrams schematically showing an example of an optical phased array 300.
  • the optical phased array 300 includes a plurality of optical waveguides 300w arranged in the Y direction.
  • Each of the plurality of optical waveguides 300w includes the optical phase modulator 100 in this embodiment.
  • the plurality of lights output from the plurality of optical waveguides 300w interfere with each other.
  • the interference light output from the optical phased array 300 propagates in a specific direction.
  • the broken lines represent the wave planes of the plurality of lights output from the plurality of optical waveguides 300w, respectively.
  • the solid line represents the wave surface of the interference light output from the optical phased array 300.
  • the plurality of optical waveguides 300w are arranged at equal intervals, but may be arranged at different intervals.
  • the phases of the light output from the plurality of optical waveguides 300w are in phase. Therefore, the interference light output from the optical phased array 300 propagates in the same direction as the X direction in which the plurality of optical waveguides 300w extend.
  • the phase of the light output from the plurality of optical waveguides 300w is ⁇ along the Y direction. It increases little by little. Therefore, the interference light output from the optical phased array 300 propagates in a direction different from the X direction in which the plurality of optical waveguides 300w extend.
  • the propagation direction of the interference light output from the optical phased array 300 can be adjusted by changing the DC voltage applied to the pair of electrodes 20 in the optical phase modulator 100. That is, light beam scanning becomes possible. Further, the optical phased array 300 can also detect light incident from a specific direction. In the example shown in FIGS. 6A and 6B, the optical phased array 300 can detect incident light from the direction opposite to the arrow.
  • the optical phase modulator 100 capable of modulating the refractive index at high speed makes it possible to reduce the size of the optical phased array 300 and to increase the speed and widening of the optical scan of the optical phased array 300.
  • the optical phased array 300 can be used, for example, as an antenna in an optical scanning system such as a LiDAR (Light Detection and Ranking) system and / or an optical detection system.
  • an optical scanning system such as a LiDAR (Light Detection and Ranking) system and / or an optical detection system.
  • the LiDAR system electromagnetic waves having a short wavelength such as visible light, infrared rays, or ultraviolet rays are used as compared with a radar system using radio waves such as millimeter waves. Therefore, the distance distribution of the object can be scanned and detected with high resolution.
  • a LiDAR system can be mounted on a moving body such as an automobile, a UAV (Unmanned Aerial Vehicle, so-called drone), or an AGV (Automated Guided Vehicle), and can be used as one of collision avoidance technologies.
  • UAV Unmanned Aerial Vehicle, so-called drone
  • AGV Automatic Guided Vehicle
  • the optical phase modulator that modulates the phase of the light propagating in the optical waveguide has been described, but the present invention is not limited to this.
  • the present disclosure can be applied to any optical device that modulates the refractive index.
  • the optical device according to the embodiment of the present disclosure can be used, for example, as a Mach-Zehnder type optical switching device or a LiDAR system mounted on a vehicle such as an automobile, UAV, or AGV.
  • Substrate 10s Main surface 20: Electrode 20a: First electrode 20b: Second electrode 30: Electro-optical material layer 32: Light 35: Interface 40: Electrolyte layer 50: Control circuit 100: Optical phase modulator 200: Optical switching device 200a: Input waveguide 200b: Optical waveguide 200c: Output waveguide 300: Optical phased array 300w: Optical waveguide

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

An optical device (100) is provided with: an electro-optical material layer (30); an electrolyte layer (40) that is in contact with the electro-optical material layer (30) and that is formed from a material represented by LixZrzSi1 - zOy (wherein x > 0, y = x/2 + 2, and 0 ≤ z ≤ 1 ); and a first electrode (20a) and a second electrode (20b) for applying voltage to the electro-optical material layer (30) and the electrolyte layer (40).

Description

光デバイス、およびその製造方法Optical devices and their manufacturing methods
 本開示は、光デバイス、およびその製造方法に関する。 This disclosure relates to an optical device and a method for manufacturing the same.
 従来、屈折率を変化させる多くのデバイスが提案されている(例えば、特許文献1および2、ならびに非特許文献1から4)。屈折率は、様々な光学効果によって変化させることができる。例えば、光導波路の屈折率を変化させれば、光導波路を伝搬する光の位相を変調することができる。 Conventionally, many devices that change the refractive index have been proposed (for example, Patent Documents 1 and 2 and Non-Patent Documents 1 to 4). The index of refraction can be varied by various optical effects. For example, by changing the refractive index of the optical waveguide, the phase of the light propagating in the optical waveguide can be modulated.
特開2017-44856号公報Japanese Unexamined Patent Publication No. 2017-44856 特開平7-168214号公報Japanese Patent Application Laid-Open No. 7-168214
 本開示は、電気光学効果を用いた大きい屈折率変調を実現することができる光デバイスを提供する。 The present disclosure provides an optical device capable of realizing a large refractive index modulation using an electro-optical effect.
 本開示の一態様に係る光デバイスは、電気光学材料層と、LiZrSi1-z(x>0、y=x/2+2、0≦z≦1)によって表される物質から形成され、前記電気光学材料層に接する電解質層と、前記電気光学材料層および前記電解質層に電圧を印加するための第1の電極および第2の電極と、を備える。 The optical device according to one aspect of the present disclosure is composed of an electro-optical material layer and a substance represented by Li x Zr z Si 1-z Oy (x> 0, y = x / 2 + 2, 0 ≦ z ≦ 1). It includes an electrolyte layer that is formed and is in contact with the electro-optical material layer, and a first electrode and a second electrode for applying a voltage to the electro-optical material layer and the electrolyte layer.
 本開示によれば、電気光学効果を用いた大きい屈折率変調を実現することができる。 According to the present disclosure, it is possible to realize a large refractive index modulation using an electro-optical effect.
図1Aは、本開示の例示的な実施形態における光位相変調器を模式的に示すX方向から見た側面図である。FIG. 1A is a side view schematically showing the optical phase modulator in the exemplary embodiment of the present disclosure as viewed from the X direction. 図1Bは、本開示の例示的な実施形態における光位相変調器を模式的に示すY方向から見た側面図である。FIG. 1B is a side view of the optical phase modulator in the exemplary embodiment of the present disclosure schematically shown from the Y direction. 図2Aは、一対の電極に電圧を印加した場合における、一対の電極、電気光学材料層、および電解質層内の電荷分布を模式的に示す図である。FIG. 2A is a diagram schematically showing charge distribution in the pair of electrodes, the electro-optical material layer, and the electrolyte layer when a voltage is applied to the pair of electrodes. 図2Bは、一対の電極間での、第1の電極の上面からZ方向に沿った距離と、電位との関係を模式的に示す図である。FIG. 2B is a diagram schematically showing the relationship between the electric potential and the distance between the pair of electrodes along the Z direction from the upper surface of the first electrode. 図2Cは、一対の電極間での、第1の電極の上面からZ方向に沿った距離と、電界の強度との関係を模式的に示す図である。FIG. 2C is a diagram schematically showing the relationship between the distance between the pair of electrodes from the upper surface of the first electrode along the Z direction and the strength of the electric field. 図3は、x=1、x=2、およびx=4のLZSO層のLiイオン伝導度および表面の粗さを示す図である。FIG. 3 is a diagram showing the Li ion conductivity and surface roughness of the LZSO layer of x = 1, x = 2, and x = 4. 図4は、光位相変調器の製造工程を示すフローチャートである。FIG. 4 is a flowchart showing a manufacturing process of the optical phase modulator. 図5は、マッハ・ツェンダー型の光スイッチングデバイスの例を模式的に示す平面図である。FIG. 5 is a plan view schematically showing an example of a Mach-Zehnder type optical switching device. 図6Aは、光フェーズドアレイの第1の例を模式的に示す図である。FIG. 6A is a diagram schematically showing a first example of an optical phased array. 図6Bは、光フェーズドアレイの第2の例を模式的に示す図である。FIG. 6B is a diagram schematically showing a second example of an optical phased array.
 本開示の実施形態を説明する前に、本開示の基礎となった知見を説明する。 Before explaining the embodiments of the present disclosure, the findings underlying the present disclosure will be explained.
 非特許文献1は、応力によって屈折率が変化する応力光学効果(stress-optic effect)を用いた光位相変調器を開示している。非特許文献1に開示されている光位相変調器では、光導波路上に積層された圧電体に電圧を印加することにより、圧電体が変形する。圧電体の変形に起因して、光導波路に応力がかかり、光導波路の屈折率が変化する。屈折率の変化に起因して、光導波路中を伝搬する光の位相が変調される。圧電体による光導波路の屈折率の変化量は小さく、例えば10-6程度のオーダーである。このため、光導波路を長くしなければ、光の位相を大きく変調することができない。光導波路を長くすることは、光位相変調器の大型化を招く。 Non-Patent Document 1 discloses an optical phase modulator using a stress-optic effect in which the refractive index changes with stress. In the optical phase modulator disclosed in Non-Patent Document 1, the piezoelectric body is deformed by applying a voltage to the piezoelectric body laminated on the optical waveguide. Due to the deformation of the piezoelectric body, stress is applied to the optical waveguide, and the refractive index of the optical waveguide changes. Due to the change in refractive index, the phase of light propagating in the optical waveguide is modulated. The amount of change in the refractive index of the optical waveguide due to the piezoelectric material is small, for example, on the order of about 10-6 . Therefore, the phase of light cannot be significantly modulated unless the optical waveguide is lengthened. Lengthening the optical waveguide leads to an increase in the size of the optical phase modulator.
 非特許文献2および3は、熱によって屈折率が変化する熱光学効果(thermo-optic effect)を用いた光位相変調器を開示している。熱光学効果による屈折率の変化量は大きく、例えば10-2程度のオーダーである。このため、光位相変調器が小さい場合でも、光の位相を大きく変調することができる。しかし、熱光学効果による屈折率の変調速度は低く、例えば数百kHzを超える高速の変調を実現することができない。 Non-Patent Documents 2 and 3 disclose an optical phase modulator using a thermo-optic effect in which the refractive index changes with heat. The amount of change in refractive index due to thermo-optic effect is large, for example, 10 -2 order. Therefore, even when the optical phase modulator is small, the phase of light can be largely modulated. However, the modulation speed of the refractive index due to the thermo-optical effect is low, and it is not possible to realize high-speed modulation exceeding, for example, several hundred kHz.
 非特許文献4は、電界を印加することによって屈折率が変化する電気光学効果(electro-optic effect)を用いた光位相変調器を開示している。代表的な電気光学効果として、ポッケルス(Pockels)効果、およびカー(Kerr)効果が知られている。電界が印加されていないとき、屈折率の変化量はゼロである。ポッケルス効果では、屈折率の変化量は、電気光学材料固有の電気光学定数と、印加された電界の強度との積によって決定される。カー効果では、屈折率の変化量は、電気光学定数と、印加された電界の強度の2乗との積によって決定される。屈折率の変化により、電気光学材料を伝搬する光の位相が変調される。電気光学効果による屈折率の変調速度は高く、例えば数十MHz以上の変調を実現することができる。 Non-Patent Document 4 discloses an optical phase modulator using an electro-optic effect in which the refractive index changes by applying an electric field. As typical electro-optical effects, the Pockels effect and the Kerr effect are known. When no electric field is applied, the amount of change in the refractive index is zero. In the Pockels effect, the amount of change in the refractive index is determined by the product of the electro-optical constant inherent in the electro-optical material and the strength of the applied electric field. In the Kerr effect, the amount of change in the refractive index is determined by the product of the electro-optic constant and the square of the strength of the applied electric field. The change in the refractive index modulates the phase of the light propagating through the electro-optical material. The modulation speed of the refractive index due to the electro-optical effect is high, and for example, modulation of several tens of MHz or more can be realized.
 電気光学効果を用いた光位相変調器では、印加された電界が強いほど、屈折率の変化量は大きい。しかし、印加される電界の強度は、電気光学材料の絶縁破壊電界強度よりも低い強度に制限される。このため、屈折率の変化量は10-4程度のオーダーであり、それほど大きくならない。 In an optical phase modulator using an electro-optical effect, the stronger the applied electric field, the greater the amount of change in the refractive index. However, the strength of the applied electric field is limited to a strength lower than the dielectric breakdown electric field strength of the electro-optical material. Therefore, the amount of change in the refractive index is on the order of about 10-4 and does not become so large.
 特許文献1は、電気光学効果を用いた光変調装置を開示している。特許文献1に開示されている装置では、電気光学材料層が電解質層に接している。電気光学材料層および電解質層に外部から電圧を印加すると、電気光学材料層と電解質層との界面付近で、強い電界が発生する。当該電界の強度は、電気光学材料層の絶縁破壊電界強度を超える。そのような強い電界が印加されることにより、電気光学材料層の屈折率を大きく変化させることができる。特許文献1に開示されている装置では、電気光学材料層の屈折率を変化させることにより、電気光学材料層を光が透過する状態と、電気光学材料層で光が反射される状態とを切り替えることができる。この光変調装置は、光スイッチング素子として利用される。電気光学材料層または電解質層を光導波路として利用することは想定されていない。さらに、電解質層の具体的な材料については、言及されていない。 Patent Document 1 discloses an optical modulation device using an electro-optical effect. In the apparatus disclosed in Patent Document 1, the electro-optical material layer is in contact with the electrolyte layer. When an external voltage is applied to the electro-optical material layer and the electrolyte layer, a strong electric field is generated near the interface between the electro-optic material layer and the electrolyte layer. The strength of the electric field exceeds the dielectric breakdown electric field strength of the electro-optical material layer. By applying such a strong electric field, the refractive index of the electro-optical material layer can be significantly changed. In the apparatus disclosed in Patent Document 1, the state in which light is transmitted through the electro-optical material layer and the state in which light is reflected by the electro-optical material layer are switched by changing the refractive index of the electro-optical material layer. be able to. This optical modulation device is used as an optical switching element. It is not envisioned that the electro-optical material layer or electrolyte layer will be used as an optical waveguide. Furthermore, no specific material for the electrolyte layer is mentioned.
 特許文献2は、エレクトロクロミック効果(electrochromic effect)を用いた光スイッチを開示している。特許文献2に開示されている光スイッチでは、光導波路が、エレクトロクロミック材料層によって囲まれている。エレクトロクロミック材料層は電解質層に接している。エレクトロクロミック材料層および電解質層に電圧が印加される。これにより、当該エレクトロクロミック材料層内で、酸化還元反応が生じ、エレクトロクロミック材料層の電子構造が変化する。当該電子構造の変化により、エレクトロクロミック材料層の屈折率が変化する。酸化反応または還元反応は、外部から印加される電圧の極性に応じて可逆的に生じる。電圧を印加しなくても、酸化状態または還元状態が保持される。言い換えれば、一旦屈折率を変化させた後は、逆極性の電圧を印加しなければ、屈折率を戻すことはできない。この構造では、屈折率の変化量は10-3程度のオーダーである。変調速度は非常に遅く、せいぜい数Hzである。この光スイッチでは、電解質層は、エレクトロクロミック材料層を酸化または還元させるために設けられている。 Patent Document 2 discloses an optical switch using an electrochromic effect. In the optical switch disclosed in Patent Document 2, the optical waveguide is surrounded by an electrochromic material layer. The electrochromic material layer is in contact with the electrolyte layer. A voltage is applied to the electrochromic material layer and the electrolyte layer. As a result, a redox reaction occurs in the electrochromic material layer, and the electronic structure of the electrochromic material layer changes. The refractive index of the electrochromic material layer changes due to the change in the electronic structure. The oxidation reaction or reduction reaction occurs reversibly depending on the polarity of the voltage applied from the outside. The oxidized or reduced state is maintained even when no voltage is applied. In other words, once the refractive index is changed, the refractive index cannot be restored unless a voltage of opposite polarity is applied. In this structure, the amount of change in the refractive index is on the order of about 10-3 . The modulation rate is very slow, at most a few Hz. In this optical switch, the electrolyte layer is provided to oxidize or reduce the electrochromic material layer.
 本発明者は、以上の検討に基づき、特定の材料から形成された電解質層により、電気光学効果を用いた大きい屈折率変調を実現することができる以下の項目に記載の光デバイスに想到した。 Based on the above studies, the present inventor has come up with the optical device described in the following item, which can realize a large refractive index modulation using an electro-optical effect by using an electrolyte layer formed of a specific material.
 第1の項目に係る光デバイスは、電気光学材料層と、LiZrSi1-z(x>0、y=x/2+2、0≦z≦1)によって表される物質から形成され、前記電気光学材料層に接する電解質層と、前記電気光学材料層および前記電解質層に電圧を印加するための第1の電極および第2の電極と、を備える。 The optical device according to the first item is formed of an electro-optical material layer and a substance represented by Li x Zr z Si 1-z Oy (x> 0, y = x / 2 + 2, 0 ≦ z ≦ 1). It is provided with an electrolyte layer in contact with the electro-optical material layer, and a first electrode and a second electrode for applying a voltage to the electro-optical material layer and the electrolyte layer.
 この光デバイスでは、電気光学材料層と電解質層との界面付近で発生する強電界により、電気光学材料層の屈折率を大きく変調することができる。 In this optical device, the refractive index of the electro-optical material layer can be greatly modulated by a strong electric field generated near the interface between the electro-optical material layer and the electrolyte layer.
 第2の項目に係る光デバイスは、第1の項目に係る光デバイスにおいて、前記電圧を制御する制御回路をさらに備える。前記制御回路は、前記電圧を制御して前記電気光学材料層の屈折率を変化させることにより、前記電気光学材料層を伝搬する光の位相を変調する。 The optical device according to the second item further includes a control circuit for controlling the voltage in the optical device according to the first item. The control circuit modulates the phase of light propagating through the electro-optical material layer by controlling the voltage to change the refractive index of the electro-optical material layer.
 この光デバイスでは、制御回路により、電気光学材料層を伝搬する光の位相を変調することができる。 In this optical device, the phase of light propagating in the electro-optical material layer can be modulated by a control circuit.
 第3の項目に係る光デバイスは、第1または第2の項目に係る光デバイスにおいて、1≦x≦4である。 The optical device according to the third item is 1 ≦ x ≦ 4 in the optical device according to the first or second item.
 この光デバイスでは、電解質層は、電気光学材料層と電解質層との界面付近に強電界を発生させるために有効なLiイオン伝導度を有する。 In this optical device, the electrolyte layer has Li ion conductivity effective for generating a strong electric field near the interface between the electro-optical material layer and the electrolyte layer.
 第4の項目に係る光デバイスは、第3の項目に係る光デバイスにおいて、x=1である。 The optical device according to the fourth item is x = 1 in the optical device according to the third item.
 この光デバイスでは、電解質層は、上記の有効なLiイオン伝導度を有し、かつ、平坦な表面を有する。 In this optical device, the electrolyte layer has the above-mentioned effective Li-ion conductivity and has a flat surface.
 第5の項目に係る光デバイスは、第1から第4の項目のいずれかに係る光デバイスにおいて、前記電解質層が、アモルファス構造を有する。 The optical device according to the fifth item is the optical device according to any one of the first to fourth items, in which the electrolyte layer has an amorphous structure.
 この光デバイスでは、電気光学材料層と電解質層との界面の平坦性を向上させることができる。 With this optical device, the flatness of the interface between the electro-optical material layer and the electrolyte layer can be improved.
 第6の項目に係る光デバイスは、第1から第5の項目のいずれかに係る光デバイスにおいて、前記電気光学材料層が、タンタル酸ニオブ酸カリウムから形成されている。 The optical device according to the sixth item is the optical device according to any one of the first to fifth items, in which the electro-optical material layer is formed of potassium niobate tantalate.
 この光デバイスでは、電気光学材料層は、常温付近で高い電気光学効果を示す。 In this optical device, the electro-optical material layer exhibits a high electro-optical effect near room temperature.
 第7の項目に係る光デバイスの製造方法は、第1の電極を形成する工程と、前記第1の電極上に電気光学材料層を形成する工程と、前記電気光学材料層上に、LiZrSi1-z(x>0、y=x/2+2、0≦z≦1)によって表される物質から形成された電解質層を形成する工程と、前記電解質層上に第2の電極を形成する工程とを含む。 The method for manufacturing an optical device according to the seventh item includes a step of forming a first electrode, a step of forming an electro-optical material layer on the first electrode, and Li x on the electro-optical material layer. A step of forming an electrolyte layer formed from a substance represented by Zr z Si 1-z Oy (x> 0, y = x / 2 + 2, 0 ≦ z ≦ 1) and a second step on the electrolyte layer. It includes a step of forming an electrode.
 この光デバイスの製造方法では、電気光学材料層と電解質層との界面付近で発生する強電界によって電気光学材料層の屈折率を大きく変調することができる光デバイスを製造することができる。 In this method of manufacturing an optical device, it is possible to manufacture an optical device capable of greatly modulating the refractive index of the electro-optical material layer by a strong electric field generated near the interface between the electro-optical material layer and the electrolyte layer.
 第8の項目に係る光デバイスの製造方法は、第7の項目に係る光デバイスの製造方法において、前記電解質層を形成する工程が、前記電解質層を、室温で、パルスレーザ堆積法によって前記電気光学材料層上に堆積する工程を含む。 In the method for manufacturing an optical device according to the eighth item, in the method for manufacturing an optical device according to the seventh item, the step of forming the electrolyte layer is such that the electrolyte layer is charged with electricity at room temperature by a pulse laser deposition method. Includes the step of depositing on the optical material layer.
 この光デバイスの製造方法では、電解質層を、電気光学材料層上に容易に堆積することができる。さらに、電気光学材料層と電解質層との界面の平坦性を向上させることができる。 In this method of manufacturing an optical device, the electrolyte layer can be easily deposited on the electro-optical material layer. Further, the flatness of the interface between the electro-optical material layer and the electrolyte layer can be improved.
 本開示において、回路、ユニット、装置、部材または部の全部または一部、またはブロック図における機能ブロックの全部または一部は、例えば、半導体装置、半導体集積回路(IC)、またはLSI(large scale integration)を含む1つまたは複数の電子回路によって実行され得る。LSIまたはICは、1つのチップに集積されてもよいし、複数のチップを組み合わせて構成されてもよい。例えば、記憶素子以外の機能ブロックは、1つのチップに集積されてもよい。ここでは、LSIまたはICと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(very large scale integration)、もしくはULSI(ultra large scale integration)と呼ばれるものであってもよい。LSIの製造後にプログラムされる、Field Programmable Gate Array(FPGA)、またはLSI内部の接合関係の再構成またはLSI内部の回路区画のセットアップができるreconfigurable logic deviceも同じ目的で使うことができる。 In the present disclosure, all or part of a circuit, unit, device, member or part, or all or part of a functional block in a block diagram, is, for example, a semiconductor device, a semiconductor integrated circuit (IC), or an LSI (range scale integration). ) Can be performed by one or more electronic circuits. The LSI or IC may be integrated on one chip, or may be configured by combining a plurality of chips. For example, functional blocks other than the storage element may be integrated on one chip. Here, it is called an LSI or an IC, but the name changes depending on the degree of integration, and it may be called a system LSI, a VLSI (very large scale integration), or a ULSI (ultra large scale integration). A Field Programmable Gate Array (FPGA) programmed after the LSI is manufactured, or a reconfigurable logistic device capable of reconfiguring the junction relationship inside the LSI or setting up the circuit partition inside the LSI can also be used for the same purpose.
 さらに、回路、ユニット、装置、部材または部の全部または一部の機能または動作は、ソフトウェア処理によって実行することが可能である。この場合、ソフトウェアは1つまたは複数のROM、光学ディスク、ハードディスクドライブなどの非一時的記録媒体に記録され、ソフトウェアが処理装置(processor)によって実行されたときに、そのソフトウェアで特定された機能が処理装置(processor)および周辺装置によって実行される。システムまたは装置は、ソフトウェアが記録されている1つまたは複数の非一時的記録媒体、処理装置(processor)、および必要とされるハードウェアデバイス、例えばインターフェースを備えていてもよい。 Furthermore, all or part of the functions or operations of circuits, units, devices, members or parts can be performed by software processing. In this case, the software is recorded on a non-temporary recording medium such as one or more ROMs, optical discs, hard disk drives, etc., and when the software is executed by a processor, the functions identified by the software It is executed by a processor and peripheral devices. The system or device may include one or more non-temporary recording media on which the software is recorded, a processor, and the required hardware devices, such as an interface.
 本開示において、「光」とは、可視光(波長が約400nm~約700nm)だけでなく、紫外線(波長が約10nm~約400nm)および赤外線(波長が約700nm~約1mm)を含む電磁波を意味する。 In the present disclosure, "light" refers to electromagnetic waves including not only visible light (wavelength of about 400 nm to about 700 nm) but also ultraviolet rays (wavelength of about 10 nm to about 400 nm) and infrared rays (wavelength of about 700 nm to about 1 mm). means.
 以下、図面を参照しながら、本開示のより具体的な実施形態を説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明および実質的に同一の構成に対する重複する説明を省略することがある。これは、以下の説明が不必要に冗長になることを避け、当業者の理解を容易にするためである。なお、発明者らは、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題を限定することを意図するものではない。以下の説明において、同一または類似する構成要素については、同じ参照符号を付している。 Hereinafter, a more specific embodiment of the present disclosure will be described with reference to the drawings. However, more detailed explanation than necessary may be omitted. For example, detailed descriptions of already well-known matters and duplicate explanations for substantially the same configuration may be omitted. This is to avoid unnecessary redundancy of the following description and to facilitate the understanding of those skilled in the art. It should be noted that the inventors are intended to limit the subject matter described in the claims by those skilled in the art by providing the accompanying drawings and the following description in order to fully understand the present disclosure. is not. In the following description, the same or similar components are designated by the same reference numerals.
 (実施形態)
 以下では、電気光学効果を用いた大きい屈折率変調を実現することができる光デバイスの一例として、光位相変調器を説明する。
(Embodiment)
In the following, an optical phase modulator will be described as an example of an optical device capable of realizing a large refractive index modulation using an electro-optical effect.
 図1Aおよび図1Bは、本開示の例示的な実施形態における光位相変調器100を模式的に示す図である。以下の説明において、図1Aおよび図1Bに示す互いに直交するX軸、Y軸、およびZ軸からなる座標系を用いる。説明の便宜上、+Z方向を「上方向」と称し、-Z方向を「下方向」と称する。これらの呼称は、便宜上のものにすぎず、現実に使用される光位相変調器100の配置または姿勢を限定することを意図するものではない。以下の説明では、X方向における寸法を「長さ」と称し、Y方向における寸法を「幅」と称し、Z方向における寸法を「厚さ」と称する。 1A and 1B are diagrams schematically showing the optical phase modulator 100 in the exemplary embodiment of the present disclosure. In the following description, the coordinate system including the X-axis, the Y-axis, and the Z-axis which are orthogonal to each other shown in FIGS. 1A and 1B is used. For convenience of explanation, the + Z direction is referred to as "upward" and the -Z direction is referred to as "downward". These designations are for convenience only and are not intended to limit the arrangement or orientation of the optical phase modulator 100 in practice. In the following description, the dimension in the X direction is referred to as "length", the dimension in the Y direction is referred to as "width", and the dimension in the Z direction is referred to as "thickness".
 図1Aは、+X方向から見た光位相変調器100の構造を模式的に示している。図1Bは、-Y方向から見た光位相変調器100の構造を模式的に示している。 FIG. 1A schematically shows the structure of the optical phase modulator 100 as viewed from the + X direction. FIG. 1B schematically shows the structure of the optical phase modulator 100 as viewed from the −Y direction.
 光位相変調器100は、基板10と、第1の電極20aおよび第2の電極20bと、電気光学材料層30と、電解質層40と、制御回路50とを備える。 The optical phase modulator 100 includes a substrate 10, a first electrode 20a and a second electrode 20b, an electro-optical material layer 30, an electrolyte layer 40, and a control circuit 50.
 基板10は、XY平面に平行な主面10sを有する。第1の電極20aは、基板10の主面10s上に位置する。電気光学材料層30は、第1の電極20a上に位置する。電解質層40は、電気光学材料層30上に位置する。第2の電極20bは、電解質層40上に位置する。すなわち、基板10、第1の電極20a、電気光学材料層30、電解質層40、および第2の電極20bは、この順に積層されている。第1の電極20aおよび第2の電極20bを、「一対の電極20」と称することがある。基板10と、第1の電極20aおよび第2の電極20bと、電気光学材料層30と、電解質層40とは、少なくともX方向に延びた構造を有する。 The substrate 10 has a main surface 10s parallel to the XY plane. The first electrode 20a is located on the main surface 10s of the substrate 10. The electro-optical material layer 30 is located on the first electrode 20a. The electrolyte layer 40 is located on the electro-optical material layer 30. The second electrode 20b is located on the electrolyte layer 40. That is, the substrate 10, the first electrode 20a, the electro-optical material layer 30, the electrolyte layer 40, and the second electrode 20b are laminated in this order. The first electrode 20a and the second electrode 20b may be referred to as a "pair of electrodes 20". The substrate 10, the first electrode 20a and the second electrode 20b, the electro-optical material layer 30, and the electrolyte layer 40 have a structure extending at least in the X direction.
 以下に、各構成要素をより具体的に説明する。 Each component will be described in more detail below.
 基板10は、一対の電極20、電気光学材料層30、および電解質層40を支持する。基板10は、例えば、酸化マグネシウム(MgO)、スピネル(MgAl)、およびα-アルミナ(α-Al)からなる群から選択される少なくとも1つから形成され得る。基板10は、不要であれば省略してもよい。 The substrate 10 supports a pair of electrodes 20, an electro-optical material layer 30, and an electrolyte layer 40. The substrate 10 can be formed from, for example, at least one selected from the group consisting of magnesium oxide (MgO), spinel (MgAl 2 O 4 ), and α-alumina (α-Al 2 O 3 ). The substrate 10 may be omitted if it is unnecessary.
 一対の電極20は、Z方向において、電気光学材料層30および電解質層40を直接的または間接的に挟む。「直接的に挟む」とは、第1の電極20aと電気光学材料層30とが接し、第2の電極20bと電解質層40とが接することを意味する。「間接的に挟む」とは、第1の電極20aと電気光学材料層30との間、および/または、第2の電極20bと電解質層40との間に他の部材が位置することを意味する。当該他の部材は、誘電体部材であってもよいし、空気などの気体であってもよし、水などの液体であってもよい。本明細書では、X方向を「第1の方向」と称することがある。 The pair of electrodes 20 directly or indirectly sandwich the electro-optical material layer 30 and the electrolyte layer 40 in the Z direction. “Directly sandwiching” means that the first electrode 20a and the electro-optical material layer 30 are in contact with each other, and the second electrode 20b and the electrolyte layer 40 are in contact with each other. "Indirectly sandwiching" means that another member is located between the first electrode 20a and the electro-optical material layer 30 and / or between the second electrode 20b and the electrolyte layer 40. To do. The other member may be a dielectric member, a gas such as air, or a liquid such as water. In the present specification, the X direction may be referred to as a "first direction".
 一対の電極20の各々は、XY平面に平行な面を有する。一対の電極20には、直流電圧が印加される。これにより、電気光学材料層30および電解質層40に、電界が印加される。直流電圧は、直流パルス電圧であってもよい。直流パルス電圧の電圧値の時間平均を直流電圧の値として扱ってもよい。直流パルス電圧のデューティ比を変えることにより、電圧の時間平均値を調整することができる。一対の電極20の各々は、金属電極であってもよいし、透明電極であってもよい。第1の電極20aは、例えば、LaドープSrSnO(LSSO)、およびAドープSrBa1-xSnO(A=La、Ta、またはNb)からなる群から選択された少なくとも1つから形成された透明電極であり得る。第1の電極20aの厚さは、例えば100nm以上200nm以下であり得る。第2の電極20bは、例えば、SnOドープIn(ITO)、FドープSnO(FTO)、およびSbドープTiO(ATO)からなる群から選択された少なくとも1つから形成された透明電極であり得る。第2の電極20bの厚さは、例えば100nm以上200nm以下であり得る。 Each of the pair of electrodes 20 has a plane parallel to the XY plane. A DC voltage is applied to the pair of electrodes 20. As a result, an electric field is applied to the electro-optical material layer 30 and the electrolyte layer 40. The DC voltage may be a DC pulse voltage. The time average of the voltage value of the DC pulse voltage may be treated as the value of the DC voltage. By changing the duty ratio of the DC pulse voltage, the time average value of the voltage can be adjusted. Each of the pair of electrodes 20 may be a metal electrode or a transparent electrode. The first electrode 20a is formed from, for example, at least one selected from the group consisting of La-doped SrSnO 3 (LSSO) and A-doped Sr x Ba 1-x SnO 3 (A = La, Ta, or Nb). It can be a transparent electrode. The thickness of the first electrode 20a can be, for example, 100 nm or more and 200 nm or less. The second electrode 20b was formed from, for example, at least one selected from the group consisting of SnO 2- doped In 2 O 3 (ITO), F-doped SnO 2 (FTO), and Sb-doped TiO 2 (ATO). It can be a transparent electrode. The thickness of the second electrode 20b can be, for example, 100 nm or more and 200 nm or less.
 電気光学材料層30は、図1Bに示すように、全反射によって光32をX方向に沿って伝搬させる光導波層として機能する。図1Aに示す楕円は、光32の強度が当該楕円内で高いことを表している。電気光学材料層30の屈折率は、光位相変調器100の周辺の媒質の屈折率、ならびに基板10および電解質層40のそれぞれの屈折率よりも高い。第1の電極20aが透明電極である場合、電気光学材料層30の屈折率は、第1の電極20aの屈折率よりも高い。第1の電極20aの屈折率は、基板10の屈折率よりも高い。これにより、基板10は光導波層として機能しない。第1の電極20aが透明電極である場合、光32のロスは無視できる。 As shown in FIG. 1B, the electro-optical material layer 30 functions as an optical waveguide layer that propagates light 32 along the X direction by total reflection. The ellipse shown in FIG. 1A indicates that the intensity of the light 32 is high within the ellipse. The refractive index of the electro-optical material layer 30 is higher than the refractive index of the medium around the optical phase modulator 100 and the refractive index of each of the substrate 10 and the electrolyte layer 40. When the first electrode 20a is a transparent electrode, the refractive index of the electro-optical material layer 30 is higher than the refractive index of the first electrode 20a. The refractive index of the first electrode 20a is higher than that of the substrate 10. As a result, the substrate 10 does not function as an optical waveguide layer. When the first electrode 20a is a transparent electrode, the loss of light 32 can be ignored.
 電気光学材料層30の屈折率は、ポッケルス効果またはカー効果により、印加された電界の強度に応じて変化する。印加された電界が強いほど、電気光学材料層30の屈折率の変化量が大きくなる。電界を印加しないときは、当該変化量はゼロになる。この点で、本実施形態の装置は、前述のエレクトロクロミック効果を利用した装置とは異なる。本実施形態によれば、電圧が印加されているときだけ屈折率が初期値から変化するので、光位相変調器100のオンおよびオフが容易である。電界の印加による電気光学材料層30の屈折率の変化により、電気光学材料層30内を伝搬する光32の位相を変調することができる。電気光学効果の速い応答性により、位相の変調速度は高く、例えば数十MHz以上にすることができる。 The refractive index of the electro-optical material layer 30 changes according to the strength of the applied electric field due to the Pockels effect or the Kerr effect. The stronger the applied electric field, the greater the amount of change in the refractive index of the electro-optical material layer 30. When no electric field is applied, the amount of change becomes zero. In this respect, the apparatus of this embodiment is different from the apparatus utilizing the electrochromic effect described above. According to this embodiment, since the refractive index changes from the initial value only when a voltage is applied, it is easy to turn on and off the optical phase modulator 100. The phase of the light 32 propagating in the electro-optical material layer 30 can be modulated by the change in the refractive index of the electro-optical material layer 30 due to the application of an electric field. Due to the fast response of the electro-optic effect, the phase modulation rate can be high, for example, several tens of MHz or higher.
 光32の空気中での波長をλ、電界が印加されていないときの電気光学材料層30の屈折率をn、電界の印加による電気光学材料層30の屈折率の変化量をΔn、電気光学材料層30の長さをL、電気光学材料層30を伝搬する前の光32の位相をφ=0とする。このとき、電気光学材料層30を伝搬した後の光32の位相は、φ=(2π/λ)(n+Δn)Lである。このうち、電界の印加による光32の位相の変化量は、Δφ=(2π/λ)ΔnLである。 The wavelength of the light 32 in the air is λ, the refractive index of the electro-optical material layer 30 when no electric field is applied is n 0 , the amount of change in the refractive index of the electro-optical material layer 30 due to the application of an electric field is Δn, and electricity. The length of the optical material layer 30 is L, and the phase of the light 32 before propagating through the electro-optical material layer 30 is φ = 0. At this time, the phase of the light 32 after propagating through the electro-optical material layer 30 is φ = (2π / λ) (n 0 + Δn) L. Of these, the amount of change in the phase of the light 32 due to the application of an electric field is Δφ = (2π / λ) ΔnL.
 前述のように、第1の電極20aおよび第2の電極20bの各々は、透明電極であってもよいし、金属電極であってもよい。第1の電極20aが透明電極である場合、光32のロスは無視できる。電解質層40の厚さが十分に大きい場合、光32のエバネッセント光は、第2の電極20bまで達しない。したがって、電解質層40の厚さが十分に大きい場合は、第2の電極20bが金属電極であっても、光32のロスは無視できる。 As described above, each of the first electrode 20a and the second electrode 20b may be a transparent electrode or a metal electrode. When the first electrode 20a is a transparent electrode, the loss of light 32 can be ignored. If the thickness of the electrolyte layer 40 is sufficiently large, the evanescent light of the light 32 does not reach the second electrode 20b. Therefore, when the thickness of the electrolyte layer 40 is sufficiently large, the loss of light 32 can be ignored even if the second electrode 20b is a metal electrode.
 電気光学材料層30は、バルクから形成されていてもよいし、薄膜から形成されていてもよい。薄膜の厚さは、例えば0.1μm以上10μm以下であり得る。薄膜のコストは、バルクのコストよりも低い。ポッケルス効果を用いる場合、電気光学材料層30は、例えば、ニオブ酸リチウム(LiNbO)、タンタル酸リチウム(LiTaO)、リン酸二水素カリウム(KHPO)、およびリン酸二水素アンモニウム(NHPO)からなる群から選択される少なくとも1つから形成され得る。カー効果を用いる場合、電気光学材料層30は、例えば、例えば、チタン酸バリウム(BaTiO)、チタン酸ストロンチウム(SrTiO)、チタン酸カリウム(KTaO)、ジルコン酸チタン酸鉛ランタン((Pb1-xLa)(ZrTi1-y1-x/4:PLZT)、およびタンタル酸ニオブ酸カリウム(KTa1-xNb:KTN)からなる群から選択される少なくとも1つから形成され得る。この中でも、KTNは、NbとTaとの組成比を適切な比に設定することにより、常温付近で高い電気光学効果を示す。KTNは、光通信に用いられる光の波長1550nmで透明である。したがって、KTNの光デバイスへの応用が期待されている。なお、電気光学材料層30は、エレクトロクロミック効果などの他の電気光学効果を示す材料から形成されていてもよい。 The electro-optical material layer 30 may be formed from a bulk or a thin film. The thickness of the thin film can be, for example, 0.1 μm or more and 10 μm or less. The cost of thin films is lower than the cost of bulk. When the Pockels effect is used, the electro-optical material layer 30 is composed of, for example, lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), potassium dihydrogen phosphate (KH 2 PO 4 ), and ammonium dihydrogen phosphate (KH 2 PO 4 ). It can be formed from at least one selected from the group consisting of NH 4 H 2 PO 4 ). When using the Kerr effect, the electro-optical material layer 30 is, for example, for example, barium titanate (BaTiO 3), strontium titanate (SrTiO 3), potassium titanate (KTaO 3), zirconate lead lanthanum titanate ((Pb 1-x La x) (Zr y Ti 1-y) 1-x / 4 O 3: PLZT), and potassium tantalate niobate (KTa 1-x Nb x O 3: is selected from the group consisting of KTN) It can be formed from at least one. Among these, KTN exhibits a high electro-optical effect near room temperature by setting the composition ratio of Nb and Ta to an appropriate ratio. KTN is transparent at a wavelength of 1550 nm for light used in optical communication. Therefore, application of KTN to optical devices is expected. The electro-optical material layer 30 may be formed of a material exhibiting other electro-optical effects such as the electrochromic effect.
 電解質層40は、電気光学材料層30の少なくとも一部に接している。電解質層40は、少なくともX方向に延びた構造を有する。電解質層40は、イオン伝導体から形成されている。イオン伝導体では、正イオンおよび負イオンの少なくとも一方が、外部からの電界印加によって移動する。電解質層40は、典型的には固体電解質層である。固体電解質層は、その組成に応じて、10-8S/cmから10-2S/cm程度のオーダーのイオン伝導度を有し得る。電解質層40の材料については、後述する。 The electrolyte layer 40 is in contact with at least a part of the electro-optical material layer 30. The electrolyte layer 40 has a structure extending at least in the X direction. The electrolyte layer 40 is formed of an ionic conductor. In an ionic conductor, at least one of a positive ion and a negative ion moves by applying an electric field from the outside. The electrolyte layer 40 is typically a solid electrolyte layer. The solid electrolyte layer, depending on its composition, may have a 10 -2 S / cm order of the order of the ion conductivity of 10 -8 S / cm. The material of the electrolyte layer 40 will be described later.
 制御回路50は、一対の電極20に直流電圧を印加する。図1Aに示す矢印付きの破線は、制御回路50から一対の電極20に信号が入力されることを表している。制御回路50は、一対の電極20に電圧を印加して電気光学材料層30の屈折率を変化させることにより、電気光学材料層30を伝搬する光32の位相を変調する。制御回路50は、例えばデジタルシグナルプロセッサ(DSP)、フィールドプログラマブルゲートアレイ(FPGA)などのプログラマブルロジックデバイス(PLD)、または中央演算処理装置(CPU)もしくは画像処理用演算プロセッサ(GPU)とコンピュータプログラムとの組み合わせによって実現されてもよい。なお、以下の図では、制御回路50を省略することがある。 The control circuit 50 applies a DC voltage to the pair of electrodes 20. The broken line with an arrow shown in FIG. 1A indicates that a signal is input from the control circuit 50 to the pair of electrodes 20. The control circuit 50 modulates the phase of the light 32 propagating in the electro-optical material layer 30 by applying a voltage to the pair of electrodes 20 to change the refractive index of the electro-optical material layer 30. The control circuit 50 includes a programmable logic device (PLD) such as a digital signal processor (DSP) or a field programmable gate array (FPGA), or a central processing unit (CPU) or an image processing arithmetic processor (GPU) and a computer program. It may be realized by the combination of. In the following figure, the control circuit 50 may be omitted.
 図2Aは、一対の電極20に電圧を印加した場合における、一対の電極20、電気光学材料層30、および電解質層40内の電荷分布を模式的に示す図である。図2Aの上段は、図1に示す光位相変調器100を表している。図2Aの下の図は、上の図に示す太線によって囲まれた領域における電荷分布の例を模式的に表している。第2の電極20bの電位が第1の電極20aの電位よりも高い場合、一対の電極20間には、下向きの電界が発生する。図2Aの下の図は、このときの第1の電極20a内の負の電荷(-)、第2の電極20b内の正の電荷(+)、電気光学材料層30内の分極(+-)、ならびに電解質層40内の正イオン(+)および負イオン(-)の分布を模式的に表している。 FIG. 2A is a diagram schematically showing the charge distribution in the pair of electrodes 20, the electro-optical material layer 30, and the electrolyte layer 40 when a voltage is applied to the pair of electrodes 20. The upper part of FIG. 2A represents the optical phase modulator 100 shown in FIG. The lower figure of FIG. 2A schematically shows an example of charge distribution in the region surrounded by the thick line shown in the upper figure. When the potential of the second electrode 20b is higher than the potential of the first electrode 20a, a downward electric field is generated between the pair of electrodes 20. The lower figure of FIG. 2A shows the negative charge (−) in the first electrode 20a, the positive charge (+) in the second electrode 20b, and the polarization (+ −) in the electro-optical material layer 30 at this time. ), And the distribution of positive ions (+) and negative ions (−) in the electrolyte layer 40 is schematically shown.
 第1の電極20aに含まれる負の電荷は、電気光学材料層30の側に分布する。第2の電極20bに含まれる正の電荷は、電解質層40の側に分布する。一対の電極20の間に発生する下方向の電界により、電解質層40に含まれるイオンのうち、正イオンは、電気光学材料層30の側に移動し、負イオンは、第2の電極20bの側に移動する。電気光学材料層30内では、正の電荷および負の電荷を一対とする分極が発生する。電解質層40内の正イオンおよび負イオンの移動に起因して、電気光学材料層30と電解質層40との界面35には、破線によって囲まれた電気二重層が形成される。同様に、電解質層40と第2の電極20bとの界面にも、破線によって囲まれた電気二重層が形成される。電気二重層は、キャパシタとして機能する。 The negative charge contained in the first electrode 20a is distributed on the side of the electro-optical material layer 30. The positive charge contained in the second electrode 20b is distributed on the side of the electrolyte layer 40. Due to the downward electric field generated between the pair of electrodes 20, positive ions among the ions contained in the electrolyte layer 40 move toward the electro-optical material layer 30, and negative ions move to the side of the second electrode 20b. Move to the side. Within the electro-optical material layer 30, polarization of a pair of positive and negative charges occurs. Due to the movement of positive and negative ions in the electrolyte layer 40, an electric double layer surrounded by a broken line is formed at the interface 35 between the electro-optical material layer 30 and the electrolyte layer 40. Similarly, an electric double layer surrounded by a broken line is formed at the interface between the electrolyte layer 40 and the second electrode 20b. The electric double layer functions as a capacitor.
 次に、図2Bおよび図2Cを参照して、電気光学材料層30、および電解質層40内に生じる電位および電界の強度を説明する。ただし、電気光学材料層30は、キャリア注入されたKTNから形成されているとする。 Next, with reference to FIGS. 2B and 2C, the strengths of the electric potentials and electric fields generated in the electro-optical material layer 30 and the electrolyte layer 40 will be described. However, it is assumed that the electro-optical material layer 30 is formed from carrier-injected KTN.
 図2Bは、一対の電極20間での、第1の電極20aの上面からZ方向に沿った距離Zと、電位Vとの関係を模式的に示す図である。Z=0は、第1の電極20aの上面の位置を表している。Z=Zは、電気光学材料層30と電解質層40との界面35の位置を表している。Z=Zは、第2の電極20bの下面の位置を表している。Vは、第1の電極20aの電位を表し、Vは、第2の電極20bの電位を表している。Z=Z付近およびZ=Z付近では、電気二重層の形成により、電位Vが、距離Zの増加に伴い急峻に増加する。電気光学材料層30のうち、Z=Zから離れた部分では、電位Vは、上記のキャリア注入に起因して、距離Zの増加に伴いほぼ放物線的に増加する。電解質層40のうち、Z=ZおよびZ=Zから離れた部分では、電位Vはほぼ一定である。 FIG. 2B is a diagram schematically showing the relationship between the potential V and the distance Z along the Z direction from the upper surface of the first electrode 20a between the pair of electrodes 20. Z = 0 represents the position of the upper surface of the first electrode 20a. Z = Z 1 represents the position of the interface 35 between the electro-optical material layer 30 and the electrolyte layer 40. Z = Z 2 represents the position of the lower surface of the second electrode 20b. V 1 represents the potential of the first electrode 20a, and V 2 represents the potential of the second electrode 20b. In the vicinity of Z = Z 1 and in the vicinity of Z = Z 2 , the potential V sharply increases as the distance Z increases due to the formation of the electric double layer. In the portion of the electro-optical material layer 30 away from Z = Z 1 , the potential V increases substantially parabolic with the increase in distance Z due to the carrier injection described above. In the portion of the electrolyte layer 40 away from Z = Z 1 and Z = Z 2 , the potential V is substantially constant.
 図2Cは、一対の電極20間での、第1の電極20aの上面からZ方向に沿った距離Zと、電界の強度Eとの関係を模式的に示す図である。図2Cに示す電界の強度Eは、図2Bに示す電位Vの勾配の絶対値に相当する。電気光学材料層30のうち、Z=Zから離れた部分では、電界の強度Eは、距離Zの増加に伴い、ほぼ直線的に増加する。電気光学材料層30のうち、Z=Z付近の部分では、電界の強度Eは、最大になる(E=E)。電解質層40のうち、Z=Z付近の部分では、電界の強度Eは、距離Zの増加に伴い急峻に減少する。電解質層40のうち、Z=ZおよびZ=Zから離れた部分では、電界の強度Eはほぼゼロである(E=0)。電解質層40のうち、Z=Z付近の部分では、電界の強度Eは、距離Zの増加に伴い急峻に増加する。 FIG. 2C is a diagram schematically showing the relationship between the distance Z between the pair of electrodes 20 along the Z direction from the upper surface of the first electrode 20a and the strength E of the electric field. The electric field strength E shown in FIG. 2C corresponds to the absolute value of the gradient of the potential V shown in FIG. 2B. In the portion of the electro-optical material layer 30 away from Z = Z 1 , the electric field strength E increases substantially linearly as the distance Z increases. In the portion of the electro-optical material layer 30 near Z = Z 1 , the electric field strength E becomes maximum (E = Em ). In the portion of the electrolyte layer 40 near Z = Z 1 , the electric field strength E sharply decreases as the distance Z increases. In the portion of the electrolyte layer 40 away from Z = Z 1 and Z = Z 2 , the electric field strength E is almost zero (E = 0). In the portion of the electrolyte layer 40 near Z = Z 2 , the strength E of the electric field sharply increases as the distance Z increases.
 図2Cに示すように、電気光学材料層30のうち、界面35付近の部分では、Eの強度を有する強い電界が発生する。当該電界の強度が局所的に絶縁破壊電界の強度を超えていても、電気光学材料層30は破壊されない。絶縁破壊電界の制限がないことから、電気光学材料層30のうち、界面35付近の部分の屈折率の変化量は、例えば10-2以上のオーダーになることが期待できる。当該屈折率の変化量は、電解質層40がない場合と比較して大きい。一方、界面35付近から離れた部分の屈折率の変化量は平均して10-3程度のオーダーである。このように、電気光学材料層30の屈折率の変化量は、場所によって異なる。簡単のために、電気光学材料層30の屈折率の変化量の空間での平均値を、電気光学材料層30の屈折率の変化量Δnとしてもよい。 As shown in Figure 2C, of the electro-optic material layer 30, in the portion near the interface 35, a strong electric field having an intensity of E m is generated. Even if the strength of the electric field locally exceeds the strength of the dielectric breakdown electric field, the electro-optical material layer 30 is not destroyed. Since there is no limitation on the dielectric breakdown electric field, the amount of change in the refractive index of the portion of the electro-optical material layer 30 near the interface 35 can be expected to be on the order of, for example, 10-2 or more. The amount of change in the refractive index is larger than that in the case without the electrolyte layer 40. On the other hand, the amount of change in the refractive index of the portion away from the interface 35 is on the order of about 10-3 on average. As described above, the amount of change in the refractive index of the electro-optical material layer 30 varies depending on the location. For simplicity, the average value of the change in the refractive index of the electro-optical material layer 30 in space may be the change Δn in the refractive index of the electro-optical material layer 30.
 以上の構成により、光位相変調器100では、速い応答性の電気光学効果を用いて、電気光学材料層30を伝搬する光32の位相を大きくかつ高速に変調することができる。 With the above configuration, the optical phase modulator 100 can modulate the phase of the light 32 propagating through the electro-optical material layer 30 at a large speed and at high speed by using a fast-responsive electro-optical effect.
 本実施形態における電気光学材料層30と電解質層40との界面35は平坦である。界面35は必ずしも厳密に平坦でなくてもよく、多少の傾斜または凹部もしくは凸部を有する部分が存在していてもよい。しかし、界面35が全体にわたって凹部または凸部を有する場合、凹部または凸部で発生する電界が弱め合い、界面35付近には、強い電界が集中しない可能性がある。その場合、電気光学材料層30のうち、界面35付近の部分の屈折率の変化量が小さくなる可能性がある。また、界面35の凹部または凸部による光32の散乱により、光32のロスが生じ得る。これに対し、界面35が平坦である場合、界面35付近には、Z方向に強い電界が集中する。これにより、電気光学材料層30の界面35付近の部分の屈折率の変化量を大きくできる。また、平坦な界面35により、光32のロスが抑制される。 The interface 35 between the electro-optical material layer 30 and the electrolyte layer 40 in this embodiment is flat. The interface 35 does not necessarily have to be strictly flat and may have a portion having some inclination or recesses or protrusions. However, when the interface 35 has a concave portion or a convex portion as a whole, the electric fields generated in the concave portion or the convex portion may weaken each other, and a strong electric field may not be concentrated in the vicinity of the interface 35. In that case, the amount of change in the refractive index of the portion of the electro-optical material layer 30 near the interface 35 may be small. Further, the light 32 may be lost due to the scattering of the light 32 by the concave or convex portion of the interface 35. On the other hand, when the interface 35 is flat, a strong electric field is concentrated in the Z direction near the interface 35. As a result, the amount of change in the refractive index of the portion of the electro-optical material layer 30 near the interface 35 can be increased. Further, the flat interface 35 suppresses the loss of light 32.
 電気光学材料層30の屈折率の変化量は、テンソルによって記述される。したがって、印加された電界の方向に応じて、電気光学材料層30の屈折率は、複数の方向において変化し得る。電気光学材料層30の屈折率の変化量は、当該複数の方向に応じて異なる。図1Aおよび図1Bに示す例において、Z方向に沿って配向した結晶構造を有する電気光学材料層30に、電界をZ方向に印加すると、電気光学材料層30の屈折率は、X方向、Y方向、およびZ方向において変化する。電気光学材料層30の屈折率の変化量は、Z方向において最大になる。これにより、TM(transverse magnetic)モードでの光32の位相を大きく変調することができる。TMモードでの光32は、Z方向に平行な電界を有する。 The amount of change in the refractive index of the electro-optical material layer 30 is described by a tensor. Therefore, the refractive index of the electro-optical material layer 30 can change in a plurality of directions depending on the direction of the applied electric field. The amount of change in the refractive index of the electro-optical material layer 30 differs depending on the plurality of directions. In the examples shown in FIGS. 1A and 1B, when an electric field is applied to the electro-optical material layer 30 having a crystal structure oriented along the Z direction, the refractive index of the electro-optical material layer 30 changes in the X direction and Y. It changes in the direction and the Z direction. The amount of change in the refractive index of the electro-optical material layer 30 becomes maximum in the Z direction. As a result, the phase of the light 32 in the TM (transverse magnetic) mode can be greatly modulated. The light 32 in the TM mode has an electric field parallel to the Z direction.
 電気光学材料層30が、所定値以上の幅および厚さを有するとき、導波モードが存在する。これにより、電気光学材料層30は、光導波層として機能する。電気光学材料層30の幅および厚さは、X方向に沿って光32を伝搬させる光導波層を形成する値に設定されている。 A waveguide mode exists when the electro-optical material layer 30 has a width and thickness equal to or greater than a predetermined value. As a result, the electro-optical material layer 30 functions as an optical waveguide layer. The width and thickness of the electro-optical material layer 30 are set to values that form an optical waveguide layer that propagates light 32 along the X direction.
 (電解質層40の材料)
 次に、電解質層40の材料を、詳細に説明する。本開示では、電解質層40は、LiZrSi1-z(x>0、y=x/2+2、0≦z≦1)(LZSO)によって表される物質から形成されている。以下に、LZSO層のLiイオン伝導度および表面の粗さを説明する。
(Material of electrolyte layer 40)
Next, the material of the electrolyte layer 40 will be described in detail. In this disclosure, the electrolyte layer 40 is formed from Li x Zr z Si 1-z O y (x> 0, y = x / 2 + 2,0 ≦ z ≦ 1) material represented by (LZSO). The Li ion conductivity and surface roughness of the LZSO layer will be described below.
 図3は、代表的な値としてx=1、x=2、およびx=4のLZSO層のLiイオン伝導度および表面の粗さを示す図である。これらの例では、z=0.5である。x=1のLZSO層は、LiZr0.5Si0.52.5から形成されている。x=2のLZSO層は、LiZr0.5Si0.5から形成されている。x=4のLZSO層は、LiZr0.5Si0.5から形成されている。左下、左上、および右上の挿入図は、それぞれ、Si基板上に、後述するパルスレーザ堆積(Pulsed Laser Deposition:PLD)法によって堆積されたx=1、x=2、およびx=4のLZSO層の断面を示す走査電子顕微鏡図である。左下、および左上の挿入図に示す例では、x=1のLZSO層とSi基板との間、およびx=2のLZSO層とSi基板との間に、それぞれ、非常に薄いSiO層が形成されている。右上の挿入図に示す例では、x=4のLZSO層とSi基板との間に、厚さ250nm程度のSiO層が形成されている。 FIG. 3 is a diagram showing the Li ion conductivity and surface roughness of the LZSO layer having x = 1, x = 2, and x = 4 as typical values. In these examples, z = 0.5. The LZSO layer with x = 1 is formed from LiZr 0.5 Si 0.5 O 2.5 . The LZSO layer with x = 2 is formed from Li 2 Zr 0.5 Si 0.5 O 3 . The LZSO layer with x = 4 is formed from Li 4 Zr 0.5 Si 0.5 O 4 . The lower left, upper left, and upper right insets show the x = 1, x = 2, and x = 4 LZSO layers deposited on a Si substrate by the Pulsed Laser Deposition (PLD) method described below, respectively. It is a scanning electron microscope view which shows the cross section of. In the examples shown in the lower left and upper left insets, very thin SiO x layers are formed between the LZSO layer with x = 1 and the Si substrate, and between the LZSO layer with x = 2 and the Si substrate, respectively. Has been done. In the example shown in the insertion view on the upper right, a SiO x layer having a thickness of about 250 nm is formed between the LZSO layer having x = 4 and the Si substrate.
 x=1のLZSO層のLiイオン伝導度は、4.0×10-8S/cmである。左下の挿入図に示すように、x=1のLZSO層の表面は、平坦である。x=2のLZSO層のLiイオン伝導度は、4.0×10-8S/cmである。左上の挿入図に示すように、x=2のLZSO層の表面は、x=1のLZSO層の表面よりも粗くなる。x=4のLZSO層のLiイオン伝導度は、2.0×10-7S/cmである。x=4のLZSO層のLiイオン伝導度は、x=1およびx=2のLZSO層のLiイオン伝導度よりも高い。右上の挿入図に示すように、x=4のLZSO層の表面は、x=2のLZSO層の表面よりも粗くなる。 The Li ion conductivity of the LZSO layer with x = 1 is 4.0 × 10-8 S / cm. As shown in the lower left inset, the surface of the LZSO layer with x = 1 is flat. The Li ion conductivity of the LZSO layer with x = 2 is 4.0 × 10-8 S / cm. As shown in the upper left inset, the surface of the LZSO layer with x = 2 is rougher than the surface of the LZSO layer with x = 1. The Li ion conductivity of the LZSO layer with x = 4 is 2.0 × 10-7 S / cm. The Li-ion conductivity of the LZSO layer of x = 4 is higher than the Li-ion conductivity of the LZSO layer of x = 1 and x = 2. As shown in the upper right inset, the surface of the LZSO layer with x = 4 is rougher than the surface of the LZSO layer with x = 2.
 Li量が増加すると、LZSO層の表面が粗くなる。これは、Liと空気中のCOとの反応により、LZSO層の表面に炭酸リチウムなどの炭酸塩が析出するからである。したがって、LZSO層中のLi量が少なければ、LZSO層の表面の平坦性を向上させることができる。一方、LZSO層中のLi量が少なすぎると、Liイオン伝導度が減少する。LZSO層のLiイオン伝導度が10-8S/cm程度のオーダー以上であれば、界面35付近に強い電界を発生させることができる。以上から、1≦x≦4のとき、少なくともLiイオン伝導度の有効性が満たされる。上限のx=4は、化学量論組成に基づいている。さらに、x=1のとき、LZSO層の表面の平坦性、およびLiイオン伝導度の有効性の両方が満たされる。z>0のとき、LZSO層中のLiイオン伝導度は、z=0のときと比較して増加する。 As the amount of Li increases, the surface of the LZSO layer becomes rough. This is because carbonates such as lithium carbonate are precipitated on the surface of the LZSO layer by the reaction between Li and CO 2 in the air. Therefore, if the amount of Li in the LZSO layer is small, the flatness of the surface of the LZSO layer can be improved. On the other hand, if the amount of Li in the LZSO layer is too small, the Li ion conductivity decreases. If the Li ion conductivity of the LZSO layer is on the order of about 10-8 S / cm or more, a strong electric field can be generated near the interface 35. From the above, when 1 ≦ x ≦ 4, at least the effectiveness of Li ion conductivity is satisfied. The upper limit x = 4 is based on the stoichiometric composition. Furthermore, when x = 1, both the flatness of the surface of the LZSO layer and the effectiveness of the Li ion conductivity are satisfied. When z> 0, the Li ion conductivity in the LZSO layer increases as compared with the case of z = 0.
 上記の議論は、図3に示すSi基板上に形成されたLZSO層以外に、電気光学材料層30であるKTN層上に形成されたLZSO層についても成り立つ。LZSO層は、Si基板およびKTN層のどちらの上にもアモルファス相で形成することができる。LZSO層のLiイオン伝導度および表面の粗さは、LZSO層の下地がSi基板であるかKTN層であるかにかかわらず、LZSO層中のLi量によって決定される。 The above discussion holds true for the LZSO layer formed on the KTN layer, which is the electro-optical material layer 30, in addition to the LZSO layer formed on the Si substrate shown in FIG. The LZSO layer can be formed in an amorphous phase on both the Si substrate and the KTN layer. The Li ion conductivity and surface roughness of the LZSO layer are determined by the amount of Li in the LZSO layer regardless of whether the base of the LZSO layer is a Si substrate or a KTN layer.
 LZSO層が結晶構造を有する場合、KTN層上に、結晶構造を有するLZSO層を堆積するために、温度制御が行われる。当該温度制御により、KTN層とLZSO層とが熱拡散する可能性がある。その結果、界面35が粗くなり得る。これに対し、LZSO層がアモルファス構造を有する場合、加熱または冷却の温度制御をせずに、室温で、KTN層上にLZSO層を堆積することができる。これにより、KTN層とLZSO層との熱拡散が抑制される。その結果、界面35は平坦になる。温度制御が不必要であることから、LZSO層のKTN層上への堆積が容易になる。前述したように、界面35が平坦であると、界面35付近に強い電界が発生しやすくなる。さらに、散乱による光32のロスを抑制することができる。 When the LZSO layer has a crystal structure, temperature control is performed in order to deposit the LZSO layer having a crystal structure on the KTN layer. Due to the temperature control, the KTN layer and the LZSO layer may be thermally diffused. As a result, the interface 35 can be rough. On the other hand, when the LZSO layer has an amorphous structure, the LZSO layer can be deposited on the KTN layer at room temperature without controlling the temperature of heating or cooling. As a result, heat diffusion between the KTN layer and the LZSO layer is suppressed. As a result, the interface 35 becomes flat. Since no temperature control is required, the LZSO layer can be easily deposited on the KTN layer. As described above, when the interface 35 is flat, a strong electric field is likely to be generated in the vicinity of the interface 35. Further, the loss of light 32 due to scattering can be suppressed.
 電解質層40の厚さは、例えば500nm以上2.5μm以下であり得る。電解質層40の厚さが500nmより薄いと、光32のエバネッセント光が、第2の電極20bに達する可能性がある。電解質層40の厚さが2.5μmよりも厚いと、電解質層40の内部抵抗の増加により、電気光学材料層30および電解質層40に印加された電界の強度が減少する可能性がある。 The thickness of the electrolyte layer 40 can be, for example, 500 nm or more and 2.5 μm or less. If the thickness of the electrolyte layer 40 is less than 500 nm, the evanescent light of the light 32 may reach the second electrode 20b. When the thickness of the electrolyte layer 40 is thicker than 2.5 μm, the strength of the electric field applied to the electro-optical material layer 30 and the electrolyte layer 40 may decrease due to the increase in the internal resistance of the electrolyte layer 40.
 以上のように、LZSO層は、(1)表面が平坦であり、(2)有効なLiイオン伝導度が得られ、および、(3)LZSO層のKTN層上への堆積が容易であるという利点を有する。 As described above, the LZSO layer has (1) a flat surface, (2) effective Li ion conductivity can be obtained, and (3) the LZSO layer can be easily deposited on the KTN layer. Has advantages.
 (製造方法)
 以下に、光位相変調器100の製造方法を説明する。
(Production method)
The manufacturing method of the optical phase modulator 100 will be described below.
 図4は、光位相変調器100の製造工程を示すフローチャートである。光位相変調器100の製造方法は、以下のステップS101からステップS104を含む。 FIG. 4 is a flowchart showing the manufacturing process of the optical phase modulator 100. The method for manufacturing the optical phase modulator 100 includes the following steps S101 to S104.
 ステップS101において、MgO(100)単結晶から形成されたMgO基板が用意される。MgO基板は、図1Aおよび図1Bに示す基板10に相当する。 In step S101, an MgO substrate formed from an MgO (100) single crystal is prepared. The MgO substrate corresponds to the substrate 10 shown in FIGS. 1A and 1B.
 ステップS102において、MgO基板の主面上に、LSSO層およびKTN層が、この順に、エピタキシャル成長によって形成される。LSSO層は、図1Aおよび図1Bに示す第1の電極20aに相当する。LSSO層は、電気伝導性を示す。LSSO層は、[100]方向に配向している。LSSO層の厚さは、200nmである。KTN層は、図1Aおよび図1Bに示す電気光学材料層30に相当する。KTN層の厚さは500nmである。 In step S102, the LSSO layer and the KTN layer are formed on the main surface of the MgO substrate by epitaxial growth in this order. The LSSO layer corresponds to the first electrode 20a shown in FIGS. 1A and 1B. The LSSO layer exhibits electrical conductivity. The LSSO layer is oriented in the [100] direction. The thickness of the LSSO layer is 200 nm. The KTN layer corresponds to the electro-optical material layer 30 shown in FIGS. 1A and 1B. The thickness of the KTN layer is 500 nm.
 LSSO層およびKTN層の形成には、PLD法が用いられる。真空チャンバ内に、MgO基板と、LSSOから形成されたターゲットとが対向して配置される。対向距離は40mmである。真空チャンバ内を真空排気した後Oガスを注入することにより、真空チャンバ内の圧力が10Paになる。MgO基板は700℃に加熱される。LSSOから形成されたターゲットは、ArFエキシマレーザで照射される。これにより、MgO基板の主面10s上に、LSSO層が堆積される。同様の手法により、LSSO層が主面10s上に形成されたMgO基板が700℃に加熱され、KTNから形成されたターゲットがArFエキシマレーザで照射される。これにより、LSSO層上に、KTN層が堆積される。冷却後、LSSO層およびKTN層を含むMgO基板が、真空チャンバから取り出される。 The PLD method is used to form the LSSO layer and the KTN layer. In the vacuum chamber, the MgO substrate and the target formed from LSSO are arranged to face each other. The facing distance is 40 mm. By injecting O 2 gas after evacuating the inside of the vacuum chamber, the pressure inside the vacuum chamber becomes 10 Pa. The MgO substrate is heated to 700 ° C. The target formed from the LSSO is irradiated with an ArF excimer laser. As a result, the LSSO layer is deposited on the main surface 10s of the MgO substrate. By the same method, the MgO substrate on which the LSSO layer is formed on the main surface 10s is heated to 700 ° C., and the target formed from KTN is irradiated with an ArF excimer laser. As a result, the KTN layer is deposited on the LSSO layer. After cooling, the MgO substrate containing the LSSO layer and the KTN layer is removed from the vacuum chamber.
 ステップS103において、KTN層上に、x=1のLZSO層が形成される。当該LZSO層の表面に析出する炭酸塩は少ない。また、LZSO層は、アモルファス構造を有する。少ないLi量およびアモルファス構造により、LZSO層の表面は平坦である。LZSO層は、図1Aおよび図1Bに示す電解質層40に相当する。LZSO層の厚さは、600nmである。 In step S103, an LZSO layer with x = 1 is formed on the KTN layer. The amount of carbonate deposited on the surface of the LZSO layer is small. Further, the LZSO layer has an amorphous structure. Due to the small amount of Li and the amorphous structure, the surface of the LZSO layer is flat. The LZSO layer corresponds to the electrolyte layer 40 shown in FIGS. 1A and 1B. The thickness of the LZSO layer is 600 nm.
 LZSO層の形成には、PLD法が用いられる。真空チャンバ内に、LSSO層およびKTN層を含むMgO基板と、LZSOから形成されたターゲットが対向して配置される。対向距離は40mmである。真空チャンバ内を真空排気した後Oガスを注入することにより、真空チャンバ内の圧力が2Paになる。LZSOから形成されたターゲットは、室温で、ArFエキシマレーザで照射される。これにより、LZSO層が、KTN層上に堆積される。このように、ステップS103は、電解質層40を、室温で、PLD法によって電気光学材料層30上に堆積するステップを含む。 The PLD method is used to form the LZSO layer. In the vacuum chamber, the MgO substrate containing the LSSO layer and the KTN layer and the target formed from LZSO are arranged to face each other. The facing distance is 40 mm. By injecting O 2 gas after evacuating the inside of the vacuum chamber, the pressure inside the vacuum chamber becomes 2 Pa. Targets formed from LZSO are irradiated with an ArF excimer laser at room temperature. As a result, the LZSO layer is deposited on the KTN layer. As described above, step S103 includes a step of depositing the electrolyte layer 40 on the electro-optical material layer 30 by the PLD method at room temperature.
 ステップS104において、LZSO層上に、室温で、10wt%SnOドープInから形成されたITO層が形成される。ITO層は、図1Aおよび図1Bに示す第2の電極20bに相当する。第2の電極20bの厚さは、100nmである。ITO層の形成には、スパッタ法が用いられる。高周波スパッタ装置の真空チャンバ内に、LSSO層、KTN層、およびLZSO層を含むMgO基板と、ITOから形成されたターゲットが対向して配置される。対向距離は45mmである。真空チャンバ内を真空排気した後Arガスを注入することにより、真空チャンバ内の圧力が1.5Paになる。RFパワー50Wで12分スパッタリングすることにより、ITO層が、LZSO層上に堆積される。 In step S104, an ITO layer formed of 10 wt% SnO 2- doped In 2 O 3 is formed on the LZSO layer at room temperature. The ITO layer corresponds to the second electrode 20b shown in FIGS. 1A and 1B. The thickness of the second electrode 20b is 100 nm. A sputtering method is used to form the ITO layer. In the vacuum chamber of the high-frequency sputtering apparatus, an MgO substrate containing an LSSO layer, a KTN layer, and an LZSO layer and a target formed of ITO are arranged so as to face each other. The facing distance is 45 mm. By injecting Ar gas after evacuating the inside of the vacuum chamber, the pressure inside the vacuum chamber becomes 1.5 Pa. The ITO layer is deposited on the LZSO layer by sputtering for 12 minutes at an RF power of 50 W.
 LSSO層、KTN層、およびLZSO層の屈折率は、それぞれ、2.0、2.2および1.7程度である。したがって、一番高い屈折率のKTN層が、光導波層として機能する。一対の電極20に電圧を印加することにより、KTN層の屈折率を、約2.0から約2.2の範囲内で変化させることができる。これにより、KTN層を伝搬する光32の位相を変調することができる。 The refractive indexes of the LSSO layer, the KTN layer, and the LZSO layer are about 2.0, 2.2, and 1.7, respectively. Therefore, the KTN layer having the highest refractive index functions as an optical waveguide layer. By applying a voltage to the pair of electrodes 20, the refractive index of the KTN layer can be changed in the range of about 2.0 to about 2.2. As a result, the phase of the light 32 propagating in the KTN layer can be modulated.
 基板10、一対の電極20、および電気光学材料層30には、以下の材料を選択してもよい。 The following materials may be selected for the substrate 10, the pair of electrodes 20, and the electro-optical material layer 30.
 ステップS101において、MgO基板の代わりに、MgAlから形成されたMgAl基板、またはα-Alから形成されたα-Al基板を準備してもよい。MgAl基板、およびa-Al基板上には、第1の電極20aとしてLSSO層をエピタキシャル成長によって形成することができる。MgAl基板、およびa-Al基板は、波長1550nmで透明である。MgAl基板、およびa-Al基板の屈折率は、LSSO層の屈折率よりも低い。 In step S101, instead of the MgO substrate may be prepared MgAl 2 O 4 substrate, or α-Al 2 O 3 α- Al 2 O 3 substrate formed from, formed from MgAl 2 O 4. An LSSO layer can be formed as the first electrode 20a on the MgAl 2 O 4 substrate and the a—Al 2 O 3 substrate by epitaxial growth. The MgAl 2 O 4 substrate and the a-Al 2 O 3 substrate are transparent at a wavelength of 1550 nm. The refractive index of the MgAl 2 O 4 substrate and the a-Al 2 O 3 substrate is lower than that of the LSSO layer.
 ステップS102において、LSSO層の代わりに、AドープSrBa1-xSnO(A=La、Ta、またはNb)から形成された層を形成してもよい。当該層上には、KTN層をエピタキシャル成長によって形成することができる。当該層は、波長1550nmで透明である。当該層の屈折率は、KTN層の屈折率よりも低い。当該層は、電気伝導性を有する。 In step S102, a layer formed from A-doped Sr x Ba 1-x SnO 3 (A = La, Ta, or Nb) may be formed instead of the LSSO layer. A KTN layer can be formed on the layer by epitaxial growth. The layer is transparent at a wavelength of 1550 nm. The refractive index of the layer is lower than that of the KTN layer. The layer has electrical conductivity.
 ステップS102において、KTN層の代わりに、前述したポッケルス効果またはカー効果を示す電気光学材料から形成された層を形成してもよい。ただし、第1の電極20aには、当該層をエピタキシャル成長することができる材料が選択される。 In step S102, instead of the KTN layer, a layer formed from an electro-optical material exhibiting the Pockels effect or the Kerr effect described above may be formed. However, for the first electrode 20a, a material capable of epitaxially growing the layer is selected.
 ステップS104において、ITO層の代わりに、FドープSnO(FTO)から形成されたFTO層、またはSbドープTiO(ATO)から形成されたATO層を形成してもよい。FTO層およびATO層は、波長1550nmで透明である。FTO層およびATO層は、室温で堆積することができる。 In step S104, instead of the ITO layer, an FTO layer formed of F-doped SnO 2 (FTO) or an ATO layer formed of Sb-doped TiO 2 (ATO) may be formed. The FTO layer and the ATO layer are transparent at a wavelength of 1550 nm. The FTO and ATO layers can be deposited at room temperature.
 ステップS101からステップS104によって製造された積層構造は、フォトリソグラフィおよびドライエッチングにより、任意の形状にパターニングすることができる。上記のKTN層において、空気中での波長が1550nmである0次のTMモードが存在するために、当該積層構造の幅は、例えば1μmに設計される。当該積層構造は、後述するマッハ・ツェンダー(Mach-Zehnder)型の光スイッチングデバイス、または光フェーズドアレイにパターニングしてもよい。 The laminated structure produced by steps S101 to S104 can be patterned into an arbitrary shape by photolithography and dry etching. In the above KTN layer, the width of the laminated structure is designed to be, for example, 1 μm because there is a 0th-order TM mode in which the wavelength in air is 1550 nm. The laminated structure may be patterned on a Mach-Zehnder type optical switching device or an optical phased array described later.
 (応用例)
 本実施形態における光位相変調器100では、制御回路50は、一対の電極20に印加される直流電圧の値を変化させることにより、電気光学材料層30の屈折率を変化させる。これにより、電気光学材料層30内を伝搬する光32の位相が変調される。以下に、光32の位相変調を利用した応用例を説明する。
(Application example)
In the optical phase modulator 100 of the present embodiment, the control circuit 50 changes the refractive index of the electro-optical material layer 30 by changing the value of the DC voltage applied to the pair of electrodes 20. As a result, the phase of the light 32 propagating in the electro-optical material layer 30 is modulated. An application example using the phase modulation of the light 32 will be described below.
 本実施形態における光位相変調器100は、例えば、マッハ・ツェンダー型の光スイッチングデバイスに適用することができる。図5は、マッハ・ツェンダー型の光スイッチングデバイス200の例を模式的に示す平面図である。光スイッチングデバイス200は、入力導波路200a、分岐された2つの光導波路200b、および出力導波路200cを備える。分岐された2つの光導波路200bは、入力導波路200aと出力導波路200cとの間に位置する。図5に示す例では、入力導波路200a側の分岐点A、および出力導波路200c側の分岐点Bでの光の反射は考慮されない。分岐された2つの光導波路200bのうち、一方の光導波路は、本実施形態における光位相変調器100を含む。 The optical phase modulator 100 in this embodiment can be applied to, for example, a Mach-Zehnder type optical switching device. FIG. 5 is a plan view schematically showing an example of a Mach-Zehnder type optical switching device 200. The optical switching device 200 includes an input waveguide 200a, two branched optical waveguides 200b, and an output waveguide 200c. The two branched optical waveguides 200b are located between the input waveguide 200a and the output waveguide 200c. In the example shown in FIG. 5, the reflection of light at the branch point A on the input waveguide 200a side and the branch point B on the output waveguide 200c side is not considered. Of the two branched optical waveguides 200b, one of the optical waveguides includes the optical phase modulator 100 in this embodiment.
 当該一方の光導波路内を伝搬する光の位相は、他方の光導波路内を伝搬する光の位相と比較して、Δφ=(2π/λ)ΔnLだけシフトする。光位相変調器100における一対の電極20に印加する直流電圧の値が0Vのとき、Δφ=0である。このとき、分岐された2つの光導波路200bからそれぞれ出力された光の位相は、同位相である。このため、同位相の2つの光が出力導波路200cに入力すると、当該2つの光は重なり合う。したがって、出力導波路200cから出力された光の強度Ioutは、入力導波路200aに入力された光の強度Iinに等しい。 The phase of the light propagating in the one optical waveguide is shifted by Δφ = (2π / λ) ΔnL as compared with the phase of the light propagating in the other optical waveguide. When the value of the DC voltage applied to the pair of electrodes 20 in the optical phase modulator 100 is 0V, Δφ = 0. At this time, the phases of the light output from the two branched optical waveguides 200b are in phase with each other. Therefore, when two lights having the same phase are input to the output waveguide 200c, the two lights overlap each other. Therefore, the intensity I out of the light output from the output waveguide 200c is equal to the intensity I in of the light input to the input waveguide 200a.
 一方、光位相変調器100における一対の電極20に印加する直流電圧の値を調整することにより、Δφ=πにすることができる。このとき、分岐された2つの光導波路200bからそれぞれ出力された光の位相は、逆位相になる。このため、逆位相の2つの光が出力導波路200cに入力すると、当該2つの光は打ち消しあう。したがって、出力導波路200cから出力された光の強度Ioutは0になる。 On the other hand, Δφ = π can be set by adjusting the value of the DC voltage applied to the pair of electrodes 20 in the optical phase modulator 100. At this time, the phases of the light output from the two branched optical waveguides 200b are opposite to each other. Therefore, when two lights having opposite phases are input to the output waveguide 200c, the two lights cancel each other out. Therefore, the intensity I out of the light output from the output waveguide 200c becomes 0.
 以上のように、光位相変調器100における一対の電極20に印加する直流電圧を変化させることにより、光スイッチングデバイス200の出力導波路200cから出力された光の強度Ioutを、Iinから0まで連続的に調整することができる。屈折率を大きくかつ高速に変調することができる光位相変調器100により、光スイッチングデバイス200の小型化、および光スイッチングデバイス200から出力された光の強度変調の高速化が可能になる。 As described above, by changing the DC voltage applied to the pair of electrodes 20 in the optical phase modulator 100, the intensity I out of the light output from the output waveguide 200c of the optical switching device 200 is changed from I in to 0. Can be adjusted continuously. The optical phase modulator 100 capable of modulating the refractive index at a large speed and at a high speed enables the optical switching device 200 to be miniaturized and the intensity modulation of the light output from the optical switching device 200 to be accelerated.
 また、本実施形態における光位相変調器100は、例えば、光フェーズドアレイ300に適用することができる。図6Aおよび図6Bは、光フェーズドアレイ300の例を模式的に示す図である。光フェーズドアレイ300は、Y方向に配列された複数の光導波路300wを備える。複数の光導波路300wの各々は、本実施形態における光位相変調器100を含む。複数の光導波路300wからそれぞれ出力された複数の光は、互いに干渉する。これにより、光フェーズドアレイ300から出力された干渉光は、特定の方向に伝搬する。図6Aおよび図6Bに示す例において、破線は、複数の光導波路300wからそれぞれ出力された複数の光の波面を表している。実線は、光フェーズドアレイ300から出力された干渉光の波面を表している。図6Aおよび図6Bに示す例において、複数の光導波路300wは、等間隔で配列されているが、異なる間隔で配列されていてもよい。 Further, the optical phase modulator 100 in this embodiment can be applied to, for example, an optical phased array 300. 6A and 6B are diagrams schematically showing an example of an optical phased array 300. The optical phased array 300 includes a plurality of optical waveguides 300w arranged in the Y direction. Each of the plurality of optical waveguides 300w includes the optical phase modulator 100 in this embodiment. The plurality of lights output from the plurality of optical waveguides 300w interfere with each other. As a result, the interference light output from the optical phased array 300 propagates in a specific direction. In the examples shown in FIGS. 6A and 6B, the broken lines represent the wave planes of the plurality of lights output from the plurality of optical waveguides 300w, respectively. The solid line represents the wave surface of the interference light output from the optical phased array 300. In the examples shown in FIGS. 6A and 6B, the plurality of optical waveguides 300w are arranged at equal intervals, but may be arranged at different intervals.
 図6Aに示す例では、光位相変調器100における一対の電極20に印加する直流電圧の値が0Vのとき、複数の光導波路300wから出力される光の位相は、同位相である。したがって、光フェーズドアレイ300から出力された干渉光は、複数の光導波路300wが延びるX方向と同じ方向に伝搬する。 In the example shown in FIG. 6A, when the value of the DC voltage applied to the pair of electrodes 20 in the optical phase modulator 100 is 0V, the phases of the light output from the plurality of optical waveguides 300w are in phase. Therefore, the interference light output from the optical phased array 300 propagates in the same direction as the X direction in which the plurality of optical waveguides 300w extend.
 図6Bに示す例では、光位相変調器100における一対の電極20に印加する直流電圧の値を調整することにより、複数の光導波路300wから出力される光の位相は、Y方向に沿ってΔφずつ増加する。したがって、光フェーズドアレイ300から出力された干渉光は、複数の光導波路300wが延びるX方向とは異なる方向に伝搬する。 In the example shown in FIG. 6B, by adjusting the value of the DC voltage applied to the pair of electrodes 20 in the optical phase modulator 100, the phase of the light output from the plurality of optical waveguides 300w is Δφ along the Y direction. It increases little by little. Therefore, the interference light output from the optical phased array 300 propagates in a direction different from the X direction in which the plurality of optical waveguides 300w extend.
 以上のように、光位相変調器100における一対の電極20に印加する直流電圧を変化させることにより、光フェーズドアレイ300から出力された干渉光の伝搬方向を調整することができる。すなわち、光ビームスキャンが可能になる。さらに、光フェーズドアレイ300は、特定の方向から入射する光を検出することも可能である。図6Aおよび図6Bに示す例では、光フェーズドアレイ300は、矢印とは逆の方向から入射した光を検出することができる。屈折率を大きくかつ高速に変調することができる光位相変調器100により、光フェーズドアレイ300の小型化、ならびに、光フェーズドアレイ300における光スキャンの高速化および広角度化が可能になる。 As described above, the propagation direction of the interference light output from the optical phased array 300 can be adjusted by changing the DC voltage applied to the pair of electrodes 20 in the optical phase modulator 100. That is, light beam scanning becomes possible. Further, the optical phased array 300 can also detect light incident from a specific direction. In the example shown in FIGS. 6A and 6B, the optical phased array 300 can detect incident light from the direction opposite to the arrow. The optical phase modulator 100 capable of modulating the refractive index at high speed makes it possible to reduce the size of the optical phased array 300 and to increase the speed and widening of the optical scan of the optical phased array 300.
 光フェーズドアレイ300は、例えば、LiDAR(Light Detection and Ranging)システムなどの光スキャンシステムおよび/または光検出システムにおけるアンテナとして用いられ得る。LiDARシステムでは、ミリ波などの電波を用いたレーダシステムと比較して、可視光、赤外線、または紫外線などの短波長の電磁波が用いられる。このため、物体の距離分布を高い分解能でスキャンおよび検出することができる。そのようなLiDARシステムは、例えば自動車、UAV(Unmanned Aerial Vehicle、所謂ドローン)、またはAGV(Automated Guided Vehicle)などの移動体に搭載され、衝突回避技術の1つとして使用され得る。 The optical phased array 300 can be used, for example, as an antenna in an optical scanning system such as a LiDAR (Light Detection and Ranking) system and / or an optical detection system. In the LiDAR system, electromagnetic waves having a short wavelength such as visible light, infrared rays, or ultraviolet rays are used as compared with a radar system using radio waves such as millimeter waves. Therefore, the distance distribution of the object can be scanned and detected with high resolution. Such a LiDAR system can be mounted on a moving body such as an automobile, a UAV (Unmanned Aerial Vehicle, so-called drone), or an AGV (Automated Guided Vehicle), and can be used as one of collision avoidance technologies.
 上記では、光導波路を伝搬する光の位相を変調する光位相変調器を説明したが、これに限定されない。本開示は、屈折率を変調する任意の光デバイスに適用することができる。 In the above, the optical phase modulator that modulates the phase of the light propagating in the optical waveguide has been described, but the present invention is not limited to this. The present disclosure can be applied to any optical device that modulates the refractive index.
 本開示の実施形態における光デバイスは、例えば、マッハ・ツェンダー型の光スイッチングデバイス、または自動車、UAV、もしくはAGVなどの車両に搭載されるLiDARシステムの用途に利用できる。 The optical device according to the embodiment of the present disclosure can be used, for example, as a Mach-Zehnder type optical switching device or a LiDAR system mounted on a vehicle such as an automobile, UAV, or AGV.
  10   :基板
  10s  :主面
  20  :電極
  20a  :第1の電極
  20b  :第2の電極
  30   :電気光学材料層
  32   :光
  35   :界面
  40   :電解質層
  50   :制御回路
  100  :光位相変調器
  200  :光スイッチングデバイス
  200a :入力導波路
  200b :光導波路
  200c :出力導波路
  300  :光フェーズドアレイ
  300w :光導波路
10: Substrate 10s: Main surface 20: Electrode 20a: First electrode 20b: Second electrode 30: Electro-optical material layer 32: Light 35: Interface 40: Electrolyte layer 50: Control circuit 100: Optical phase modulator 200: Optical switching device 200a: Input waveguide 200b: Optical waveguide 200c: Output waveguide 300: Optical phased array 300w: Optical waveguide

Claims (8)

  1.  電気光学材料層と、
     LiZrSi1-z(x>0、y=x/2+2、0≦z≦1)によって表される物質から形成され、前記電気光学材料層に接する電解質層と、
     前記電気光学材料層および前記電解質層に電圧を印加するための第1の電極および第2の電極と、
    を備える、
    光デバイス。
    Electro-optic material layer and
    An electrolyte layer formed from a substance represented by Li x Zr z Si 1-z Oy (x> 0, y = x / 2 + 2, 0 ≦ z ≦ 1) and in contact with the electro-optical material layer, and
    A first electrode and a second electrode for applying a voltage to the electro-optical material layer and the electrolyte layer,
    To prepare
    Optical device.
  2.  前記電圧を制御する制御回路をさらに備え、
     前記制御回路は、前記電圧を制御して前記電気光学材料層の屈折率を変化させることにより、前記電気光学材料層を伝搬する光の位相を変調する、
    請求項1に記載の光デバイス。
    Further provided with a control circuit for controlling the voltage,
    The control circuit modulates the phase of light propagating through the electro-optical material layer by controlling the voltage and changing the refractive index of the electro-optical material layer.
    The optical device according to claim 1.
  3.  1≦x≦4である、
    請求項1または2に記載の光デバイス。
    1 ≦ x ≦ 4,
    The optical device according to claim 1 or 2.
  4.  x=1である、
    請求項3に記載の光デバイス。
    x = 1,
    The optical device according to claim 3.
  5.  前記電解質層は、アモルファス構造を有する、
    請求項1から4のいずれかに記載の光デバイス。
    The electrolyte layer has an amorphous structure.
    The optical device according to any one of claims 1 to 4.
  6.  前記電気光学材料層は、タンタル酸ニオブ酸カリウムから形成されている、
    請求項1から5のいずれかに記載の光デバイス。
    The electro-optical material layer is made of potassium niobate tantalate.
    The optical device according to any one of claims 1 to 5.
  7.  第1の電極を形成する工程と、
     前記第1の電極上に電気光学材料層を形成する工程と、
     前記電気光学材料層上に、LiZrSi1-z(x>0、y=x/2+2、0≦z≦1)によって表される物質から形成された電解質層を形成する工程と、
     前記電解質層上に第2の電極を形成する工程と、
    を含む、
    光デバイスの製造方法。
    The process of forming the first electrode and
    A step of forming an electro-optical material layer on the first electrode and
    A step of forming an electrolyte layer formed of a substance represented by Li x Zr z Si 1-z Oy (x> 0, y = x / 2 + 2, 0 ≦ z ≦ 1) on the electro-optical material layer. When,
    The step of forming the second electrode on the electrolyte layer and
    including,
    Manufacturing method of optical device.
  8.  前記電解質層を形成する工程は、前記電解質層を、室温で、パルスレーザ堆積法によって前記電気光学材料層上に堆積する工程を含む、
    請求項7に記載の光デバイスの製造方法。
    The step of forming the electrolyte layer includes a step of depositing the electrolyte layer on the electro-optical material layer by a pulse laser deposition method at room temperature.
    The method for manufacturing an optical device according to claim 7.
PCT/JP2020/013065 2019-04-12 2020-03-24 Optical device and method for producing same WO2020209049A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-076231 2019-04-12
JP2019076231 2019-04-12

Publications (1)

Publication Number Publication Date
WO2020209049A1 true WO2020209049A1 (en) 2020-10-15

Family

ID=72751086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013065 WO2020209049A1 (en) 2019-04-12 2020-03-24 Optical device and method for producing same

Country Status (1)

Country Link
WO (1) WO2020209049A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115274298A (en) * 2022-05-20 2022-11-01 沈阳工业大学 Lead zirconate nano composite dielectric film and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5960814A (en) * 1982-09-29 1984-04-06 株式会社日立製作所 Amorphous ion conductor for lithium oxide series
JPH10282044A (en) * 1997-04-04 1998-10-23 Tokuyama Corp Solid electrolyte type gas sensor element
US20080212914A1 (en) * 2004-09-13 2008-09-04 Marks Tobin J Transparent conducting components and related electro-optic modulator devices
JP2013238651A (en) * 2012-05-11 2013-11-28 Mitsubishi Electric Corp Manufacturing method of polarization reversal element, manufacturing method of waveguide type wavelength conversion element, and waveguide type wavelength conversion element
JP2017044856A (en) * 2015-08-26 2017-03-02 パナソニックIpマネジメント株式会社 Optical modulator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5960814A (en) * 1982-09-29 1984-04-06 株式会社日立製作所 Amorphous ion conductor for lithium oxide series
JPH10282044A (en) * 1997-04-04 1998-10-23 Tokuyama Corp Solid electrolyte type gas sensor element
US20080212914A1 (en) * 2004-09-13 2008-09-04 Marks Tobin J Transparent conducting components and related electro-optic modulator devices
JP2013238651A (en) * 2012-05-11 2013-11-28 Mitsubishi Electric Corp Manufacturing method of polarization reversal element, manufacturing method of waveguide type wavelength conversion element, and waveguide type wavelength conversion element
JP2017044856A (en) * 2015-08-26 2017-03-02 パナソニックIpマネジメント株式会社 Optical modulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115274298A (en) * 2022-05-20 2022-11-01 沈阳工业大学 Lead zirconate nano composite dielectric film and preparation method thereof
CN115274298B (en) * 2022-05-20 2023-10-03 沈阳工业大学 Lead zirconate nano composite dielectric film and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2015087988A1 (en) Electro-optical element
Matic Blazed phase liquid crystal beam steering
JP7018564B2 (en) Optical scanning device, optical receiving device, and optical detection system
US8600197B2 (en) Optical control device
US6373620B1 (en) Thin film electro-optic beam steering device
WO2018193723A1 (en) Optical scanning device, optical receiving device, and optical detection system
WO2019171806A1 (en) Optical device and optical detection system
WO2019187681A1 (en) Optical device and light detection system
CN114902130A (en) Method and system for forming stabilized tetragonal barium titanate
JP2010026079A (en) Optical device
CN114981694A (en) Electro-optic device with engineered electrodes
WO2018061515A1 (en) Optical scan device, light receiving device, and optical detection system
US20210223657A1 (en) Active photonic networks on integrated lithium niobate platforms
US11982886B2 (en) Optical modulator
CN115151849A (en) Low-loss high-efficiency photon phase shifter
WO2020209049A1 (en) Optical device and method for producing same
US20090263068A1 (en) Optical guided mode spatial switches and their fabrication
CN115485589B (en) Manipulation of electromagnetic radiation
WO2020208877A1 (en) Optical phase modulator and optical phase modulation method
JP2019164329A (en) Optical device and light detection system
US20040165815A1 (en) Light deflector and optical switch including same
WO2021131387A1 (en) Optical device
JPS5987B2 (en) Electro-optical switches and modulators
WO2014122896A1 (en) Optical deflection element and optical deflection device
JP2019168647A (en) Optical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20787144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP