WO2020206946A1 - 自动收割机的倒伏行驶规划系统及其方法 - Google Patents

自动收割机的倒伏行驶规划系统及其方法 Download PDF

Info

Publication number
WO2020206946A1
WO2020206946A1 PCT/CN2019/106988 CN2019106988W WO2020206946A1 WO 2020206946 A1 WO2020206946 A1 WO 2020206946A1 CN 2019106988 W CN2019106988 W CN 2019106988W WO 2020206946 A1 WO2020206946 A1 WO 2020206946A1
Authority
WO
WIPO (PCT)
Prior art keywords
lodging
path
module
driving
planning
Prior art date
Application number
PCT/CN2019/106988
Other languages
English (en)
French (fr)
Inventor
吴迪
王波
张虓
姚远
王清泉
范顺
沈永泉
Original Assignee
丰疆智能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丰疆智能科技股份有限公司 filed Critical 丰疆智能科技股份有限公司
Publication of WO2020206946A1 publication Critical patent/WO2020206946A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D75/00Accessories for harvesters or mowers
    • A01D75/18Safety devices for parts of the machines
    • A01D75/185Avoiding collisions with obstacles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D75/00Accessories for harvesters or mowers
    • A01D75/20Devices for protecting men or animals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS

Definitions

  • the invention relates to an automatic harvester, in particular to an automatic harvester's lodging travel planning system and a method thereof, so as to ensure the harvesting effect and reduce the loss of crops.
  • One advantage of the present invention is that it provides a lodging travel planning system and method for an automatic harvester, wherein the lodging travel planning system is configured to plan the most suitable lodging harvesting travel path through manual, automatic or semi-automatic setting, To ensure the harvesting effect and reduce the loss of crops.
  • An advantage of the present invention is that it provides a lodging travel planning system and method for an automatic harvester, in which various messages are used to enable the lodging travel planning system to plan an optimal path. Furthermore, based on basic farmland information, obstacle lodging information, walking information, and harvesting lodging sequence information, analyze and plan lodging and harvesting travel paths.
  • An advantage of the present invention is that it provides a lodging driving planning system for an automatic harvester and a method thereof, in which obstacle lodging information is obtained in advance to avoid the obstacles and set to harvest the lodging during route planning or driving operation The sequence of crops to harvest crops more efficiently and reduce yield loss.
  • An advantage of the present invention is that it provides a lodging travel planning system and method for an automatic harvester, in which obstacle information is obtained in real time to correct the path plan and avoid obstacles, or directly stop the automatic harvester from moving forward .
  • obstacle information is obtained in real time to correct the path plan and avoid obstacles, or directly stop the automatic harvester from moving forward .
  • the lodging driving planning system will stop the machine to ensure safety.
  • An advantage of the present invention is that it provides a lodging travel planning system and method for an automatic harvester, in which each time an obstacle lodging message is generated, it is sequentially transmitted to a lodging path planning module for analysis, and passes the The lodging path planning module re-plans a lodging harvesting travel path.
  • One advantage of the present invention is that it provides a lodging travel planning system and method for an automatic harvester, wherein when a probe touches an obstacle, the lodging path planning module determines whether the automatic harvester stops working .
  • An advantage of the present invention is that it provides a lodging driving planning system and method for an automatic harvester, in which an infrared detector is used to detect whether an obstacle suddenly breaks into the dangerous area in front of the automatic harvester.
  • Another advantage of the present invention is that it provides a kind of adaptability, wherein the precision parts and complicated structure are not required, the manufacturing process is simple and the cost is low.
  • the present invention provides a lodging driving planning method for an automatic harvester, which includes the following steps:
  • a detection device obtains an obstacle lodging message
  • a lodging path planning module After receiving the obstacle lodging information, a lodging path planning module analyzes and plans a lodging harvesting travel path of the automatic harvester.
  • the method of lodging driving planning further includes a step:
  • the detection device obtains a basic farmland information, and the lodging path planning module plans a pre-driving route according to the basic farmland information in advance.
  • the basic farmland information is selected from the group consisting of farmland size, size, area, shape, coordinates, and the range of lodging crops.
  • the method of lodging driving planning further includes a step:
  • a lodging sequence setting module sets a harvesting lodging sequence message, and the lodging path planning module plans the lodging harvesting travel path according to the lodging sequence setting module.
  • the harvesting sequence is determined according to whether the height of a header of the automatic harvester is adjusted, and if the header needs to be adjusted The height is used to harvest the fallen crops later; if the height of the cutting platform does not need to be adjusted, the fallen crops are harvested first.
  • the harvesting sequence is determined according to whether the height of a header of the automatic harvester is adjusted, and if the header needs to be adjusted The height is used to harvest the fallen crops afterwards; if the height of the cutting platform does not need to be adjusted, the fallen crops are harvested directly.
  • the automatic harvester travels along the lodging harvesting path and encounters a lodging crop, such as on a rainy day, the crop is harvested after harvest; if it is sunny, the crop is harvested first.
  • the method of lodging driving planning further includes a step:
  • a type setting module sets a harvesting crop message and sends it to the lodging path planning module.
  • the walking mode of the automatic harvester is preset by a path setting module of the lodging path planning module, and a walking message is generated.
  • the walking information is selected from the group consisting of a back shape, a zigzag shape, the shortest path, the best path, and the outer circle inward.
  • the basic farmland information is obtained through a certain point detection or a movement detection by an automatic detection module.
  • the automatic detection module is selected from a module consisting of an infrared sensor, a laser sensor, an ultrasonic sensor, an image sensor or a GPS satellite positioning module.
  • a lodging obstacle detector is used to detect whether there is an obstacle or a lodging crop, and the obstacle lodging message is generated and sent to the lodging path planning module.
  • a pre-lodging obstacle detector is used to detect whether there is an obstacle or a lodging crop, and the obstacle lodging message is generated and sent to the lodging path planning module.
  • the present invention also provides a lodging travel planning system suitable for automatic harvesters, including:
  • a detection device that obtains a basic farmland information and an obstacle lodging information
  • a lodging path planning module connected to the detection device to analyze and plan a lodging harvesting travel path of the automatic harvester.
  • the lodging driving planning system includes a lodging sequence setting module that sets a harvesting lodging sequence message, and the lodging path planning module further plans the lodging harvesting traveling path according to the lodging sequence setting module .
  • the lodging driving planning system includes a type setting module, which sets a harvesting crop message and transmits it to the lodging path planning module.
  • the lodging path planning module includes a path setting module to preset the walking mode of the automatic harvester and generate a walking message.
  • the walking information is selected from the group consisting of a back shape, a zigzag shape, the shortest path, the best path, and the outer circle inward circle.
  • the detection device includes at least one automatic detection module connected to the lodging path planning module, wherein the automatic detection module obtains the basic farmland information through a certain point detection or a movement detection , And send the basic farmland information to the lodging path planning module.
  • the automatic detection module is arranged on an automatic harvester, an unmanned aircraft or a wireless detector to perform the motion detection.
  • the automatic detection module is selected from a module consisting of an infrared sensor, a laser sensor, an ultrasonic sensor, an image sensor or a GPS satellite positioning module.
  • the detection device includes at least one manual setting module connected to the lodging path planning module, wherein the basic farmland information is input to the lodging path through the manual setting module Planning module.
  • the detection device includes at least one pre-lodging obstacle detector, which is connected to the lodging path planning module, wherein the pre-lodging obstacle detector obtains the detection by a certain point or a movement detection. Obstacle lodging message, and transmitting the obstacle lodging message to the lodging path planning module.
  • the detection device further includes at least one lodging obstacle detector, which is connected to the lodging path planning module, wherein the lodging obstacle detector is arranged on the automatic harvester for the automatic harvesting When the machine runs and encounters an obstacle or falls down on crops, the obstacle fall information is sent to the fall path planning module.
  • the driving lodging obstacle detector includes a driving camera sensor, which includes a plurality of cameras surrounding the automatic harvester to collect images around the automatic harvester.
  • the lodging obstacle detector includes at least one probe, which is arranged in front of the automatic harvester to detect whether there is an obstacle in front of the automatic harvester.
  • the lodging obstacle detector includes at least one infrared detector, which is arranged in front of the automatic harvester to sense people or animals that suddenly enter the automatic harvester.
  • the lodging driving planning system can be installed in the automatic harvester, a remote remote control, a smart phone, a radio remote control, or a smart tablet PC.
  • Fig. 1 is a logical schematic diagram of a lodging driving planning system for an automatic harvester according to a preferred embodiment of the present invention.
  • Fig. 2 is a further logical schematic diagram of the lodging driving planning system of the automatic harvester according to a preferred embodiment of the present invention.
  • Fig. 3 is a logical schematic diagram of a detection device in a preferred embodiment according to the present invention.
  • Fig. 4 is a schematic diagram of the walking mode of the lodging travel planning system according to a preferred embodiment of the present invention.
  • Fig. 5 is a zigzag schematic diagram of the walking mode of the lodging travel planning system according to a preferred embodiment of the present invention.
  • Fig. 6 is a schematic diagram of a harvesting travel path of the lodging travel planning system according to a preferred embodiment of the present invention, which illustrates the post-harvesting of fallen crops.
  • Fig. 7 is a logical schematic diagram of an automatic harvester according to a preferred embodiment of the present invention.
  • Fig. 8 is a schematic flowchart of a method for planning a lodging harvesting travel path of an automatic harvester according to a preferred embodiment of the present invention.
  • a should be understood as “at least one” or “one or more”, that is, in one embodiment, the number of a component may be one, while in other embodiments, The number can be multiple, and the term “one” cannot be understood as a restriction on the number.
  • FIG. 1 to 6 it is a lodging driving planning system and method for an automatic harvester according to the first preferred embodiment of the present invention, so that the automatic harvester 1 is planned by the lodging driving planning system 100 A lodging harvesting travel path of the automatic harvester 1.
  • the lodging travel planning system 100 is applicable to the automatic harvester 1 to plan the lodging harvesting travel path of the automatic harvester 1, especially for lodging crops. It is worth mentioning that the planning of the lodging harvesting travel path is planned in consideration of the lodging of crops. Furthermore, the order of lodging crops and non-lodging crops is set by the lodging travel planning system 100.
  • the lodging travel planning system 100 plans the lodging harvesting travel path, it is planned based on the size, shape, and coordinates of the farmland or field, and the nature of the crops, so as to achieve the best Lodging and harvesting driving path.
  • the lodging driving planning system 100 can be installed in an automatic harvester, a remote remote control, a smart phone, a radio remote control, or a smart tablet PC.
  • the lodging driving planning system 100 includes a detection device 10 and a lodging path planning module 20.
  • the detection device 10 is connected to the lodging path planning module 20.
  • the lodging path planning module 20 receives the data or information from the detection device 10′, and then performs path planning during harvesting, especially for the harvesting sequence of lodging crops and non-lodging crops.
  • the above-mentioned connection mode may be wired connection or unlimited connection, which is not a limitation of the present invention.
  • the detection device 10 is used to obtain basic farmland information, that is, the area, shape, range, coordinates of the farmland or the field, and the range of fallen crops.
  • the lodging path planning module 20 can plan a pre-driving route according to the basic farmland information in advance.
  • the lodging path planning module 20 includes a path setting module 21, which is used to set the walking mode of the automatic harvester 1, that is, to generate a walking message, such as a back shape, a zigzag shape, the shortest path, and the best path. Path, outer circle inward circle, etc.
  • the lodging path planning module 20 analyzes and plans the driving path of the automatic harvester 1 according to the information of the detection device 10 and the setting of the path setting module 21.
  • the lodging driving planning system 100 includes a lodging sequence setting module 30.
  • the lodging sequence setting module 30 is connected to the lodging path planning module 20.
  • the lodging sequence setting module 30 can be used to set a harvesting lodging sequence message, which includes harvesting lodging crops first, harvesting lodging crops later, or harvesting lodging crops directly.
  • the lodging path planning module 20 plans in advance according to the setting of the lodging sequence setting module 30. Assuming that the lodging crops are harvested first, then when planning the lodging harvesting travel path, the crops are harvested first when the lodging crops are encountered. If it is set to post-harvest the lodging crops, when planning the lodging harvesting travel path, first avoid the lodging crops, and harvest the lodging crops after the non-lodging crops are harvested.
  • the lodging path planning module 20 determines whether the harvest path needs to be re-planned based on the obtained information. In other words, the lodging path planning module 20 analyzes and plans the lodging harvesting travel path of the automatic harvester 1 according to the information of the detection device 10 and the lodging sequence setting module 30.
  • the lodging driving planning system 100 can also intelligently determine the harvesting sequence of lodging crops. It is understandable that the automatic harvester 1 includes a header 501, and when the automatic harvester 1 harvests fallen crops and non-lodged crops, the height of the header 501 needs to be adjusted in coordination. Therefore, when the automatic harvester 1 travels along the lodging harvesting path and encounters fallen crops, the harvesting sequence is determined according to whether the height of the header 501 of the automatic harvester 1 is adjusted. The height of the platform 501 is adopted to harvest the fallen crops later; if the height of the cutting platform 501 does not need to be adjusted, the fallen crops are harvested first.
  • the lodging travel planning system 100 can also be set to harvest the traveling path of the automatic harvester 1 according to the lodging.
  • the harvesting sequence is determined according to whether the height of the cutting platform 501 of the automatic harvester 1 is adjusted. If the height of the cutting platform 501 needs to be adjusted, use post-harvest crops; The height of the cutting platform 501 is used to directly harvest fallen crops. It is worth mentioning that generally, when harvesting fallen crops, the height of the header 501 is lowered, but in fact, it can be adjusted in reality, which is not a limitation of the present invention.
  • the intelligent judgment of the lodging driving planning system 100 can also determine the harvesting sequence of lodging crops according to the weather. In other words, consider the overall crop yield and evaluate the best harvesting sequence. In this setting, you can set that when it rains, the fallen crops are harvested later; when it is sunny, the fallen crops are harvested first.
  • the lodging driving planning system 100 further includes a type setting module 50, which is used to set the types of crops to be harvested, such as barley, wheat, rye, oats, corn, rice, etc. Kind of five-shell impurities.
  • the type setting module 50 is connected to the lodging path planning module 20.
  • the lodging path planning module 20 receives various data or messages from the detection device 10, the lodging sequence setting module 30, and the type setting module 50, and then performs path planning during harvesting, especially for lodging crops and non-products. The harvesting sequence of the fallen crops.
  • the lodging travel planning system 100 of the present invention can intelligently determine the best lodging harvesting travel path, wherein the determination method is as described above, and the cutting platform 501 can be adjusted according to the weather or whether The height and the type of crops are determined.
  • the detection device 10 includes at least one automatic detection module 11, wherein the automatic detection module 11 is connected to the lodging path planning module 20.
  • the automatic detection module 11 is implemented as a certain point detection or a movement detection.
  • the fixed-point detection means that a plurality of the automatic detection modules 11 are respectively arranged on the corner edges of the land or the field, and a basic farmland information is obtained through mutual sensing of the plurality of the automatic detection modules 11, which includes farmland , Land or field scope, shape and coordinates, etc.
  • the automatic detection module 11 is set on an automatic harvester, an unmanned aircraft, or a wireless detector, so that the automatic harvester, the unmanned aircraft or the operator can move to obtain The basic farmland information.
  • the automatic detection module 11 can be implemented as an infrared sensor, a laser sensor, an ultrasonic sensor, an image sensor or a GPS satellite positioning module, etc., which is not a limitation of the present invention.
  • the detection device 10 includes at least one manual setting module 12 connected to the lodging path planning module 20.
  • the manual setting module 12 is used to pre-determine the basic farmland information, such as farmland, land or field range, shape and coordinates, etc., and manually pass the basic farmland information through the The manual setting module 12 inputs and transmits to the lodging path planning module 20. It is understandable that the lodging path planning module 20 will be based on the automatic detection module 11 or the manual setting module 12, the path setting module 21, the lodging sequence setting module 30, and the type setting module 50 Analyze the information and plan the lodging harvesting travel path of the automatic harvester 1.
  • the detection device 10 further includes a pre-lodging obstacle detector 13 to detect whether there are obstacles and lodging crops. If there are obstacles or lodging crops, an obstacle lodging message will be generated, and The obstacle lodging message is transmitted to the lodging path planning module 20.
  • the pre-lodging obstacle detector 13 can be provided with the automatic detection module 11 for synchronous detection. In other words, when the automatic detection module 11 obtains the range and shape of the land or field, the pre-lodging obstacle detector 13 can simultaneously obtain the obstacle lodging information, so that the lodging path planning module 20 is performing the lodging harvesting driving During path planning, obstacles and fallen crops can be considered at the same time to avoid obstacles or plan the sequence of harvesting fallen crops.
  • the pre-lodging obstacle detector 13 and the automatic detection module 11 can also be implemented as the same component.
  • the pre-lodging obstacle detector 13 can also be implemented as an infrared sensor, a laser sensor, an ultrasonic sensor, an image sensor, or a GPS satellite positioning module, etc., which is not a limitation of the present invention.
  • the lodging path planning module 20 will be set according to the automatic detection module 11, the manual setting module 12, the pre-lodging obstacle detector 13, the path setting module 21, and the lodging sequence The information of the module 30 and the type setting module 50 is analyzed and the lodging harvesting travel path of the automatic harvester 1 is planned.
  • the pre-lodging obstacle detector 13 can be used to distinguish the difference between lodging crops, non-lodging crops and obstacles. It is worth mentioning that the lodging path planning module 20 will determine whether the size of the obstacle affects the lodging harvesting travel path according to the obstacle lodging information. If there is no impact, it will not affect the planning of the lodging harvesting travel path. The lodging path planning module 20 re-plans the lodging harvesting travel path.
  • the obstacle lodging information may include size information, drawing information, and coordinate information of the obstacle, and size information, drawing information, and coordinate information of the lodging crop. It is worth mentioning that the pre-lodging obstacle detector 13 and the automatic detection module 11 can use the fixed-point detection method or the movement detection method in the same way, which can also be performed simultaneously, or the two are the same element. It is not a limitation of the present invention.
  • the detection device 10 further includes a driving lodging obstacle detector 14, which synchronously detects whether there are obstacles or lodging crops during driving, and further obtains when detecting obstacles or lodging crops.
  • An obstacle lodging message is sent to the lodging path planning module 20, and the lodging path planning module 20 determines whether to re-plan the lodging harvesting travel path according to the obstacle lodging information.
  • the obstacle lodging information obtained by the lodging obstacle detector 14 is transmitted to the lodging path planning module 20, the lodging path planning module 20 shares the information with the pre-lodging obstacle detector. 13
  • the obtained obstacle lodging information is compared to determine whether it is the same obstacle or lodging crop. In other words, if it is the same obstacle or lodging crop, the lodging harvesting travel path and harvesting sequence will be modified differently. If there are different obstacles or lodging crops, the lodging path planning module 20 determines whether to modify the lodging harvesting travel path, wherein the harvesting order of the lodging crops is set by the lodging sequence setting module 30.
  • the driving lodging obstacle detector 14 is installed on the automatic harvester 1, and the best setting method is to be installed in front of the automatic harvester 1, so that the automatic harvester 1 travels forward.
  • the driving and falling obstacle detector 14 can be directly detected by the driving and falling obstacle detector 14.
  • the lodging obstacle detector 14 detects obstacles or lodging crops, the automatic harvester 1 re-plans the lodging harvesting path on the existing basis.
  • the module 50 information plans the lodging harvesting travel path of the automatic harvester 1, the automatic harvester 1 drives and harvests according to the lodging harvesting travel path, and the lodging obstacle detector 14 will detect during the driving process
  • the received obstacle lodging information is transmitted to the lodging path planning module 20, and the lodging path planning module 20 uses the obstacle lodging provided by the traveling lodging obstacle detector 14 on the basis of the original lodging harvesting travel path.
  • the message determines whether to re-plan the lodging and harvesting driving path.
  • the lodging path planning module 20 plans the lodging harvesting travel path in advance according to the basic farmland information, the walking information, and the harvesting and lodging sequence information , And then during the driving process, according to the obstacle lodging information provided by the lodging obstacle detector 14 to re-plan the lodging harvesting traveling path.
  • the lodging obstacle detector 14 can distinguish crops and obstacles, obtain information about the obstacle, such as size, and send the size information of the obstacle to the lodging path planning module 20 .
  • the lodging obstacle detector 14 can also distinguish between lodging crops and non-lodging crops, and transmit range information of the lodging crops to the lodging path planning module 20.
  • the lodging path planning module 20 determines whether the obstacle affects the lodging and harvesting travel path based on the information provided by the traveling lodging obstacle detector 14, if there is no impact, directly follow the original planned path, and if there is an impact, the obstacle is brought down.
  • the message is sent to the lodging path planning module 20 to re-plan the lodging harvesting travel path.
  • the lodging obstacle detector 14 can obtain image features for distinguishing the difference between lodging crops, non-lodging crops and obstacles, so that in addition to avoiding obstacles, the automatic harvester 1 can also be
  • the setting of the lodging sequence setting module 30 harvests the crops.
  • the lodging obstacle detector 14 is installed on the automatic harvester 1 to conveniently obtain at least one forward signal, such as lodging crops and obstacles, when the automatic harvester 1 is traveling. Furthermore, the driving lodging obstacle detector 14 includes a driving camera sensor 141, which collects images around the automatic harvester 1 and forms a video signal. In particular, the driving camera sensor 141 includes a plurality of cameras 1411 surrounding the automatic harvester 1 to collect images around the automatic harvester 1 and form the video signal.
  • the driving lodging obstacle detector 14 further includes at least one probe 142, which is arranged in front of the automatic harvester to detect whether there are obstacles in front of the automatic harvester 1, such as trees, walls, large Stones, caves, puddles, rivers, etc., and detect the size or nature of various obstacles at the same time to transmit the detection information to the lodging path planning module 20, and the lodging path planning module 20 determines the automatic harvesting Whether the machine stops working.
  • the lodging obstacle detector 14 further includes at least one infrared detector 143 which is arranged in front of the automatic harvester 1 to sense the safety of persons or animals who suddenly enter the front of the automatic harvester 1.
  • the path setting module 21 is used to set the walking mode of the automatic harvester, which includes a back shape, a zigzag shape, the shortest path, the best path, and the outer circle inward loop, etc. Way of walking.
  • the path setting module 21 sets the walking mode of the automatic harvester and generates a walking message.
  • the user or operator of the automatic harvester can select the back shape or the zigzag shape in advance according to the shape of the field or farmland. For example, when the field or farmland is square, the reciprocal shape can be adopted, and when the field or farmland is rectangular, the zigzag shape can be adopted.
  • the outer thick line represents the edge of the field or farmland
  • the dashed line represents the lodging harvesting path of the automatic harvester
  • the arrow represents the driving direction of the automatic harvester
  • Figure 4 shows the back-shaped A schematic diagram of the travel path of the lodging harvesting.
  • the automatic harvester 1 travels as indicated by the dashed line and the arrow.
  • the outer thick line represents the edge of the field or farmland
  • the dotted line represents the lodging harvesting travel path of the automatic harvester
  • the arrow represents the traveling direction of the automatic harvester
  • Figure 5 shows the schematic diagram of the zigzag lodging harvesting travel path
  • the automatic harvester 1 travels as indicated by the dotted line and the arrow.
  • the zigzag shape means walking back and forth in rows. Therefore, when the field or farmland is not rectangular but has any shape, the zigzag pattern can also be selected. That is to say, when the automatic harvester 1 travels to the boundary of one row, it turns and travels to another row, and similarly, it turns to travel when it reaches the boundary. In other words, when the zigzag setting is selected, the automatic harvester 1 travels row by row along the boundary of the field, and each row travels to the boundary of the field.
  • the shortest path or the best path is an intelligent setting. When the user or operator of the automatic harvester selects this method, the lodging path planning module 20 will plan the path according to all options. The shortest path or the best path.
  • the shortest path is the least path that the automatic harvester 1 travels in the entire field
  • the optimal path is the optimal path planned after considering the overall situation.
  • the shape of fields or farms is not all complete rectangles or squares, but often has many irregular shapes.
  • the lodging path planning module 20 analyzes and plans the lodging harvesting of the automatic harvester 1 based on the information of the pre-detection device 10, the path setting module 21, and the lodging sequence setting module 30 Driving path. It is worth mentioning that multiple different walking modes can also be set in the same field.
  • the manual setting module 12 can be used to set different field ranges for the same field to match the settings of various walking modes.
  • the optimal path may also be a combination of probabilities including a back shape, a zigzag shape, the shortest path, or a circle inward from the periphery.
  • the outer thick line represents the edge of the field or farmland
  • the dashed line represents the lodging harvesting path of the automatic harvester
  • the arrow represents the traveling direction of the automatic harvester
  • the oblique area represents the fallen crop.
  • the information of the harvesting and lodging sequence is set to post-harvesting lodging crops. Therefore, it can be clearly seen that the lodging harvesting travel path causes the automatic harvester to avoid the lodging crops first, and harvest the lodging crops after the non-lodging crops are harvested. It is understandable that if the harvesting and lodging sequence information is set to harvest the lodging crops first, the route direction is just opposite to that of FIG. 6.
  • the automatic harvester 1 includes the lodging travel planning system 100, a control device 200, a driving device 300, a traveling device 400, and an actuation device 500.
  • the lodging driving planning system 100, the driving device 300, the driving device 400, and the actuating device 500 are respectively connected to the control device 200.
  • the control device 200 is a central control system of the automatic harvester 1 for integrated control of various devices of the automatic harvester 1.
  • the driving device 300 is respectively connected to the actuating device 500, the traveling device 400 and the control device 200, and provides power for them, and is controlled by the control device 200 to drive various components to perform corresponding operations.
  • the driving device 300 can be implemented as a fuel, electric or hybrid drive, which is not a limitation of the present invention.
  • the traveling device 400 is used to drive the automatic harvester 1 to travel, which may be crawler walking, two-wheel walking or four-wheel walking.
  • the actuating device 500 is used for harvesting operations.
  • the lodging driving planning system 100 is used to provide a planned route.
  • the lodging harvesting travel path planning method of the automatic harvester includes the following steps:
  • a detection device 10 obtains an obstacle lodging message
  • a lodging path planning module 20 After receiving the obstacle lodging information, a lodging path planning module 20 analyzes and plans a lodging harvesting travel path of the automatic harvester.
  • the lodging harvesting travel path planning method of the automatic harvester further includes a step:
  • the detection device 10 obtains a basic farmland information, and the lodging path planning module plans a pre-driving route according to the basic farmland information in advance.
  • the lodging harvesting travel path planning method of the automatic harvester further includes a step:
  • a type setting module 50 sets a harvesting crop message and transmits it to the lodging path planning module 20.
  • the lodging path planning module 20 receives the harvesting crop information to further analyze and plan the lodging harvesting travel path.
  • the harvested crop information includes barley, wheat, rye, oats, corn, rice, millet, etc.
  • the basic farmland information includes information such as farmland size, size, area, shape, coordinates, and the range of lodging crops.
  • the walking information includes information such as a back shape, a zigzag shape, the shortest path, the best path, and the outer circle inward loop.
  • the harvesting sequence is determined according to whether the height of a header 501 of the automatic harvester 1 is adjusted.
  • the height of the header 501 is used to harvest the fallen crops later; if the height of the header 501 does not need to be adjusted, the fallen crops are harvested first.
  • the harvesting sequence is determined according to whether the height of a header 501 of the automatic harvester 1 is adjusted.
  • the height of the header 501 is used to harvest the fallen crops afterwards; if the height of the header 501 does not need to be adjusted, the fallen crops are directly harvested.
  • the automatic harvester 1 when the automatic harvester 1 travels along the lodging and harvesting path and encounters a lodging crop, such as on a rainy day, the crop is harvested after harvest; if it is sunny, the crop is harvested first.
  • the information of the harvesting and lodging sequence includes information such as first harvesting of lodging crops, later harvesting of lodging crops, or direct harvesting of lodging crops.
  • first harvesting of the fallen crops is the first harvesting when the fallen crops are encountered during the driving harvesting operation; the post-harvesting the fallen crops is the first to avoid the fallen crops when encountering the fallen crops during the traveling harvesting operation
  • the lodging crops are harvested; the direct harvesting of the lodging crops is when the lodging crops are harvested, and the lodging crops and the non-lodging crops are directly harvested according to the lodging path Go on the road to harvest.
  • the basic farmland information is obtained through an automatic detection module 11 through a certain point detection or a movement detection.
  • the automatic detection module 11 can be used with an automatic harvester, an unmanned aircraft or an operator to obtain the basic farmland information.
  • the automatic detection module 11 can be implemented as an infrared sensor, a laser sensor, an ultrasonic sensor, an image sensor, or a GPS satellite positioning module.
  • the basic farmland information is manually input through a manual setting module 12.
  • a pre-lodging obstacle detector 13 detects whether there are obstacles or lodging crops, and generates an obstacle lodging message. In particular, the pre-lodging obstacle detector 13 detects together with the automatic detection module 11. Furthermore, in addition to generating the basic farmland information, the detection device 10 also generates the obstacle lodging information if there is an obstacle or falling crops. The basic farmland information and the obstacle lodging information are both transmitted to the lodging path planning module 20, and the lodging path planning module 20 performs analysis and planning.
  • the farmland When the farmland is square, it is recommended to adopt the said back shape, and when the farmland is rectangular, it is recommended to adopt the said zigzag.
  • the zigzag shape means walking back and forth in rows.
  • a lodging obstacle detector 14 of the detecting device 10 will detect the lodging obstacle detector 14 during the traveling process, and will detect obstacles Or, when crops are lodging, an obstacle lodging message is generated to the lodging path planning module 20.
  • the lodging path planning module 20 determines that the automatic harvester 1 immediately stops, keeps driving, or re-plans the path according to the obstacle lodging information.
  • the lodging path planning module 20 can immediately re-plan the path after the automatic harvester 1 is stopped immediately, and restart the automatic harvester 1 after completing the new lodging harvesting travel path planning.
  • a driving camera sensor 141 of the driving lodging obstacle detector 14 includes a plurality of cameras 1411 surrounding the automatic harvester 1 to collect images around the automatic harvester 1 and form a Video signal.
  • the lodging obstacle detector 14 further includes at least one probe 142, which is arranged in front of the automatic harvester to detect whether there is an obstacle in front of the automatic harvester 1 when traveling.
  • the lodging obstacle detector 14 further includes at least one infrared detector 143 which is arranged in front of the automatic harvester 1 to sense the safety of persons or animals who suddenly enter the front of the automatic harvester 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Guiding Agricultural Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种自动收割机(1)的倒伏行驶规划方法,包括步骤:(a)一探测装置(10)取得一障碍倒伏讯息;以及(b)一倒伏路径规划模块(20)接收障碍倒伏讯息后,进行分析并规划出自动收割机(1)的一倒伏收割行驶路径。

Description

自动收割机的倒伏行驶规划系统及其方法 技术领域
本发明涉及一种自动收割机,尤其涉及一种自动收割机的倒伏行驶规划系统及其方法,以确保收割的效果和减少农作物的损失。
背景技术
随着科技的发展,人们也不断的改良农业的发展,从依靠人力到利用机械,并且将科技的发展用于农业上,在这当中不断的改良各种的农用机具从手工具到大型农机。因此,农业机械行业也呈现出良好的发展势头,现今的农业已经摆脱了靠人力来耕作的落后方式,从播种、植保到收割等各个环节几乎都完全依靠农机设备来完成,现代农业可以说已经进入了机械化时代。进一步地说,随着农业生产的手段不断增加,近年来农业机械同时不断发展与进步,为了提高农业的经济效益,促进经济社会的发展,各种农业机械像雨后春笋般的涌现,进入农村千家万户,给农民带来了切身的好处。
因此,现今农业机械发展与改良是使现今农业不断进步的一种方式。当中由于农用机械通常都在不平整的土地或田地上的执行操作,所以农民、农机操作者或驾驶员在农机上行驶作业时,通常需忍受强烈的颠簸和不舒适,可以想象当中的劳动强度是极大的。因此,现今农机也开始向无人机或自动驾驶的方向发展,特别是自动收割机。但是,对于现今无人机或自动驾驶的自动收割机来说,如果农作物是倒伏的情况,将影响产量。也就是说,无人机或自动驾驶的自动收割机可能在没有发现农作物是倒伏直接进行收割,这样将影响农作物的产量,甚至可能直接行经倒伏的农作物,这样更是一大损失。
发明内容
本发明的一个优势在于其提供一种自动收割机的倒伏行驶规划系统及其方法,其中经由手动、自动或半自动的设定,使所述倒伏行驶规划系统规划出最合适的倒伏收割行驶路径,以确保收割的效果和减少农作物的损失。
本发明的一个优势在于其提供一种自动收割机的倒伏行驶规划系统及其方法,其中通过各种讯息,以使所述倒伏行驶规划系统规划出最佳路径。进一步地说,依据基本农地讯息、障碍倒伏讯息、行走讯息以及收割倒伏顺序讯息等讯息 进行分析并规划倒伏收割行驶路径。
本发明的一个优势在于其提供一种自动收割机的倒伏行驶规划系统及其方法,其中预先取得障碍倒伏讯息,以在路径规划或行驶操作时避开所述障碍物和设定收割所述倒伏农作物的顺序,以更有效率的收割农作物并减少产量的损失。
本发明的一个优势在于其提供一种自动收割机的倒伏行驶规划系统及其方法,其中实时取得障碍物信息,以即时修正路径规划并避开障碍物,或者直接使所述自动收割机停止前进。换言之,如出现突发生障碍物时,像小动物或人,所述倒伏行驶规划系统将使所述机停止前进,以确保安全。
本发明的一个优势在于其提供一种自动收割机的倒伏行驶规划系统及其方法,其中在每次产生障碍倒伏讯息时,将依次的传送到一倒伏路径规划模块以进行分析,并通过所述倒伏路径规划模块重新规划一倒伏收割行驶路径。
本发明的一个优势在于其提供一种自动收割机的倒伏行驶规划系统及其方法,其中在一探头触碰到障碍物时,经由所述倒伏路径规划模块判定所述自动收割机是否停止作动。
本发明的一个优势在于其提供一种自动收割机的倒伏行驶规划系统及其方法,其中经由一红外探测器侦测是否有障碍物突然闯入所述自动收割机前方的危险区。
本发明的另一优势在于其提供一种适于,其中该不需要精密的部件和复杂的结构,其制造工艺简单,成本低廉。
本发明的其它优势和特点通过下述的详细说明得以充分体现并可通过所附权利要求中特地指出的手段和装置的组合得以实现。
为满足本发明的以上目的以及本发明的其他目的和优势,本发明提供一自动收割机的倒伏行驶规划方法,包括以下步骤:
(a)一探测装置取得一障碍倒伏讯息;以及
(b)一倒伏路径规划模块接收所述障碍倒伏讯息后,进行分析并规划出该自动收割机的一倒伏收割行驶路径。
所述倒伏行驶规划方法还包括一步骤:
所述探测装置取得一基本农地讯息,所述倒伏路径规划模块预先依所述基本农地讯息规划一预先行驶路径。
根据本发明一方法,所述基本农地讯息系选自由农地大小、尺寸、面积、形 状、坐标、倒伏农作物的范围所组成的群组。
所述倒伏行驶规划方法还包括一步骤:
一倒伏顺序设置模块设定一收割倒伏顺序讯息,所述倒伏路径规划模块依所述倒伏顺序设置模块规划所述倒伏收割行驶路径。
根据本发明一方法,该自动收割机依所述倒伏收割行驶路径行驶并遇到一倒伏农作物时,其中依是否调整该自动收割机的一割台高度决定收割顺序,如需调整所述割台高度,采用后收割倒伏农作物;如不需调整所述割台高度,采用先收割倒伏农作物。
根据本发明一方法,该自动收割机依所述倒伏收割行驶路径行驶并遇到一倒伏农作物时,其中依是否调整该自动收割机的一割台高度决定收割顺序,如需调整所述割台高度,采用后收割倒伏农作物;如不需调整所述割台高度,采用直接收割倒伏农作物。
根据本发明一方法,该自动收割机依所述倒伏收割行驶路径行驶并遇到一倒伏农作物时,如在雨天,采后收割倒伏农作物;如在晴天时,采先收割倒伏农作物。
所述倒伏行驶规划方法还包括一步骤:
一类型设置模块设定一收割农作物讯息,并传送到所述倒伏路径规划模块。
根据本发明一方法,通过所述倒伏路径规划模块的一路径设定模块预设该自动收割机的行走方式,并产生一行走讯息。
根据本发明一方法,所述行走讯息系选自由回字形、之字形、最短路径、最佳路径、外围向内回圈所组成的群组。
根据本发明一方法,农地为方形时建议采用所述回字形,农地为长方形时建议采用所述之字形。
根据本发明一方法,经由一自动探测模块采一定点探测或一移动探测取得所述基本农地讯息。
根据本发明一方法,所述自动探测模块系选自由红外线传感器、激光传感器、超声波传感器、图像传感器或GPS卫星定位模块所组成的模块。
根据本发明一方法,在该自动收割机行驶时,经由一行驶倒伏障碍探测器探测是否存在障碍物或倒伏农作物,并产生所述障碍倒伏讯息传送到所述倒伏路径规划模块。
根据本发明一方法,经由一预先倒伏障碍探测器探测是否存在障碍物或倒伏农作物,并产生所述障碍倒伏讯息传送到所述倒伏路径规划模块。
另外,为满足本发明的以上目的以及本发明的其他目的和优势,本发明还提供一倒伏行驶规划系统,适用于自动收割机,包括:
一探测装置,其取得一基本农地讯息和一障碍倒伏讯息;以及
一倒伏路径规划模块,其连接所述探测装置,以分析并规划出该自动收割机的一倒伏收割行驶路径。
根据本发明一实施例,所述倒伏行驶规划系统包括一倒伏顺序设置模块,其设定一收割倒伏顺序讯息,所述倒伏路径规划模块进一步依所述倒伏顺序设置模块规划所述倒伏收割行驶路径。
根据本发明一实施例,所述倒伏行驶规划系统包括一类型设置模块,其设定一收割农作物讯息,并传送到所述倒伏路径规划模块。
根据本发明一实施例,所述倒伏路径规划模块包括一路径设定模块,以预设该自动收割机的行走方式,并产生一行走讯息。
根据本发明一实施例,所述行走讯息系选自由回字形、之字形、最短路径、最佳路径、外围向内回圈所组成的群组。
根据本发明一实施例,所述探测装置包括至少一自动探测模块,其连接于所述倒伏路径规划模块,其中所述自动探测模块在通过一定点探测或一移动探测取得所述基本农地讯息,并将所述基本农地讯息传送到所述倒伏路径规划模块。
根据本发明一实施例,所述自动探测模块设置于一自动收割机、一无人飞机或一无线侦测器上,以进行所述移动探测。
根据本发明一实施例,所述自动探测模块系选自由红外线传感器、激光传感器、超声波传感器、图像传感器或GPS卫星定位模块所组成的模块。
根据本发明一实施例,所述探测装置包括至少一手动设定模块,其连接于所述倒伏路径规划模块,其中通过所述手动设定模块将所述基本农地讯息输入至所述倒伏路径规划模块。
根据本发明一实施例,所述探测装置包括至少一预先倒伏障碍探测器,其连接于所述倒伏路径规划模块,其中所述预先倒伏障碍探测器在通过一定点探测或一移动探测取得所述障碍倒伏讯息,并将所述障碍倒伏讯息传送到所述倒伏路径规划模块。
根据本发明一实施例,所述探测装置还包括至少一行驶倒伏障碍探测器,其连接所述倒伏路径规划模块,其中所述行驶倒伏障碍探测器设置于该自动收割机上,以在该自动收割机行驶并遇到障碍物或倒伏农作物时传送所述障碍倒伏讯息至所述倒伏路径规划模块。
根据本发明一实施例,所述行驶倒伏障碍探测器包括一行驶摄像传感器,其包括多个环绕在该自动收割机周围的多个摄像头,以采集该自动收割机周围影像。
根据本发明一实施例,所述行驶倒伏障碍探测器包括至少一探头,其设置于该自动收割机的前方,以探测该自动收割机的行驶前方是否有障碍物。
根据本发明一实施例,所述行驶倒伏障碍探测器包括至少一红外探测器,其设置于该自动收割机的前方,以感测突然闯入该自动收割机的人员或动物。
根据本发明一实施例,所述倒伏行驶规划系统可设置于该自动收割机、一远端摇控器、一智能手机、一无线电摇控器或一智能平板上位机。
通过对随后的描述和附图的理解,本发明进一步的目的和优势将得以充分体现。
本发明的这些和其它目的、特点和优势,通过下述的详细说明,附图和权利要求得以充分体现。
附图说明
图1是根据本发明的一个优选实施例的自动收割机的倒伏行驶规划系统的逻辑示意图。
图2是根据本发明的一个优选实施例的自动收割机的倒伏行驶规划系统的进一步地逻辑示意图。
图3是根据本发明的一个优选实施例中探测装置的逻辑示意图。
图4是根据本发明的一个优选实施例中倒伏行驶规划系统的行走方式的回字形示意图。
图5是根据本发明的一个优选实施例中倒伏行驶规划系统的行走方式的之字形示意图。
图6是根据本发明的一个优选实施例中倒伏行驶规划系统的收割行驶路径的示意图,其中说明后收割倒伏农作物。
图7是根据本发明的一个优选实施例的自动收割机的逻辑示意图。
图8是根据本发明的一个优选实施例的自动收割机的倒伏收割行驶路径规划方法的流程示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或组件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个组件的数量可以为一个,而在另外的实施例中,该组件的数量可以为多个,术语“一”不能理解为对数量的限制。
如图1至图6所示,是根据本发明的第一个优选实施例的一自动收割机的倒伏行驶规划系统及其方法,使所述自动收割机1通过所述倒伏行驶规划系统100规划所述自动收割机1的一倒伏收割行驶路径。换言之,所述倒伏行驶规划系统100适用于所述自动收割机1,以规划所述自动收割机1的倒伏收割行驶路径,特别是针对倒伏农作物。值得一提的,所述倒伏收割行驶路径的规划是考虑到农作物倒伏的情况进行规划的。进一步地说,通过所述倒伏行驶规划系统100设定倒伏农作物和非倒伏农作物的顺序。更进一步地说,所述倒伏行驶规划系统100在规划所述倒伏收割行驶路径时,是依据农地或田地的大小、形状、坐标,以及依据农作物的性质进行规划,以达到最佳的所述倒伏收割行驶路径。另外,所述倒伏行驶规划系统100可设置于一自动收割机、一远端摇控器、一智能手机、一无线电摇控器或一智能平板上位机。
在本发明的这个实施例中,所述倒伏行驶规划系统100包括一探测装置10, 以及一倒伏路径规划模块20。所述探测装置10连接于所述倒伏路径规划模块20。换言之,所述倒伏路径规划模块20接收所述探测装置10,的数据或讯息后,进行收割时的路径规划,特别是针对倒伏农作物和非倒伏农作物的收割顺序。另外,上述的连接方式可为有线连接或无限连接,这不为本发明的限制。进一步地说,所述探测装置10用于取得一基本农地讯息,即农地或田地的面积、形状、范围、坐标以及倒伏农作物的范围等。在所述探测装置10取得所述基本农地讯息后,所述倒伏路径规划模块20可预先依所述基本农地讯息规划一预先行驶路径。另外,所述倒伏路径规划模块20包括一路径设定模块21,其用于设定所述自动收割机1的行走方式,即产生一行走讯息,例如回字形、之字形、最短路径、最佳路径、外围向内回圈等。所述倒伏路径规划模块20依所述探测装置10信息和所述路径设定模块21的设定进行分析并规划出所述自动收割机1的行驶路径。
在本发明的这个实施例中,所述倒伏行驶规划系统100包括一倒伏顺序设置模块30。所述倒伏顺序设置模块30连接于所述倒伏路径规划模块20。所述倒伏顺序设置模块30可用于设定一收割倒伏顺序讯息,其包括先收割倒伏农作物、后收割倒伏农作物或直接收割倒伏农作物。也就是说,所述倒伏路径规划模块20预先依所述倒伏顺序设置模块30的设定进行规划。假设设定所述先收割倒伏农作物,那么在规划倒伏收割行驶路径时,是一遇到倒伏农作物则先进行收割。若是设定所述后收割倒伏农作物,则是在规划倒伏收割行驶路径时,先避开所述倒伏农作物,在所述非倒伏农作物收割完成后,在对所述倒伏农作物进行收割。如果设定直接收割倒伏农作物,那么在规划倒伏收割行驶路径时,不管是倒伏农作物和非倒伏农作物皆不影响倒伏收割行驶路径的规划。特别地,在行驶过程中,若侦测到事先所没探测到的倒伏农作物时,其依一开始的设定,并通知所述倒伏路径规划模块20。所述倒伏路径规划模块20进一步地依所获得的讯息判断是否需进行收割路径的重新规划。换言之,所述倒伏路径规划模块20依所述探测装置10以及所述倒伏顺序设置模块30信息进行分析并规划所述自动收割机1的所述倒伏收割行驶路径。
在本发明的这个实施例中,所述倒伏行驶规划系统100亦可智能判断倒伏农作物的收割顺序。可以理解的,所述自动收割机1包括一割台501,其中所述自动收割机1在收割倒伏农作物和非倒伏农作物时,所述割台501的高度将需配合调整。因此,所述自动收割机1依所述倒伏收割行驶路径行驶并遇到倒伏农作物 时,其中依是否调整所述自动收割机1的所述割台501高度决定收割顺序,如需调整所述割台501的高度,采用后收割倒伏农作物;如不需调整所述割台501的高度,采用先收割倒伏农作物。另外,考虑整体收割效率,所述倒伏行驶规划系统100在智能判断倒伏农作物的收割顺序时,所述倒伏行驶规划系统100亦可设定为在所述自动收割机1依所述倒伏收割行驶路径行驶并遇到倒伏农作物时,其中依是否调整所述自动收割机1的割台501的高度决定收割顺序,如需调整所述割台501的高度,采用后收割倒伏农作物;如不需调整所述割台501的高度,采用直接收割倒伏农作物。值得一提的,一般在收割倒伏农作物时,是将所述割台501的高度降低,但实际上可以现实情况调整,这不为本发明的限制。
在本发明的这个实施例中,所述倒伏行驶规划系统100的智能判断亦可依天气来决定倒伏农作物的收割顺序。换言之,考量到整体农作物的收获量,评估最佳的收割顺序。在此设定中,可设定,雨天时,后收割倒伏农作物;在晴天时,先收割倒伏农作物。
另外,如图2所示,所述倒伏行驶规划系统100还包括一类型设置模块50,其用于设定预计收割农作物的种类,像是大麦、小麦、黑麦、燕麦、玉米、稻米等各种五壳杂量。所述类型设置模块50连接所述倒伏路径规划模块20。所述倒伏路径规划模块20接收所述探测装置10、所述倒伏顺序设置模块30以及所述类型设置模块50的各种数据或讯息后,进行收割时的路径规划,特别是针对倒伏农作物和非倒伏农作物的收割顺序。换言之,根据不同农作物的倒伏情况,本发明的所述倒伏行驶规划系统100可智能地判断最佳的所述倒伏收割行驶路径,其中判断方式如上述,可依据天气或是否调整所述割台501的高度以及农作物的种类来决定。
在本发明的这个实施例中,所述探测装置10包括至少一自动探测模块11,其中所述自动探测模块11连接到所述倒伏路径规划模块20。所述自动探测模块11实施为一定点探测或一移动探测。所述定点探测为将多个所述自动探测模块11分别设置于土地或田地的转角边缘,通过多个所述自动探测模块11的相互感测,以取得一基本农地讯息,其包括农地、土地或田地范围、形状和坐标等。所述移动探测则将所述自动探测模块11设置于一自动收割机、一无人飞机或一无线侦测器上,以使所述自动收割机、所述无人飞机或操作者移动从而取得所述基本农地讯息。值得一提的,所述自动探测模块11可实施为红外线传感器、激光 传感器、超声波传感器、图像传感器或GPS卫星定位模块等,这不为本发明的限制。
在本发明的这个实施例中,所述探测装置10包括至少一手动设定模块12,其连接到所述倒伏路径规划模块20。所述手动设定模块12是用于事先将已知所述基本农地讯息,例如农地、土地或田地范围、形状和坐标等,并利用手动的方式将所述基本农地讯息通过所述手动设定模块12输入并传送到所述倒伏路径规划模块20。可以理解的,所述倒伏路径规划模块20将依所述自动探测模块11或所述手动设定模块12,所述路径设定模块21,所述倒伏顺序设置模块30以及所述类型设置模块50的信息进行分析并规划出所述自动收割机1的倒伏收割行驶路径。
在本发明的这个实施例中,所述探测装置10还包括一预先倒伏障碍探测器13,以探测是否存在障碍物和倒伏农作物,如有障碍物或倒伏农作物则产生一障碍倒伏讯息,并将所述障碍倒伏讯息传送到所述倒伏路径规划模块20。值得一提的,在所述预先倒伏障碍探测器13可设置与所述自动探测模块11一起以同步进行侦测。换言之,在所述自动探测模块11取得土地或田地范围和形状时,所述预先倒伏障碍探测器13可同时取得所述障碍倒伏讯息,这样所述倒伏路径规划模块20在进行所述倒伏收割行驶路径规划时,可同时考虑障碍物和倒伏农作物的问题以避开障碍物或规划收割倒伏农作物的顺序。特别地,所述预先倒伏障碍探测器13与所述自动探测模块11亦可实施为同一元件。换言之,所述预先倒伏障碍探测器13亦可实施为红外线传感器、激光传感器、超声波传感器、图像传感器或GPS卫星定位模块等,这不为本发明的限制。可以理解的,所述倒伏路径规划模块20将依所述自动探测模块11、所述手动设定模块12、所述预先倒伏障碍探测器13,所述路径设定模块21,所述倒伏顺序设置模块30以及所述类型设置模块50信息进行分析并规划出所述自动收割机1的倒伏收割行驶路径。进一步地说,所述预先倒伏障碍探测器13可用于辨别倒伏农作物、非倒伏农作物和障碍物的差异。值得一提的,所述倒伏路径规划模块20将依所述障碍倒伏讯息判断所述障碍物的尺寸是否影响倒伏收割行驶路径,若无影响则不影响倒伏收割行驶路径的规划,若有影响时所述倒伏路径规划模块20将重新规划倒伏收割行驶路径。所述障碍倒伏讯息可包括所述障碍物的尺寸讯息、图面讯息、坐标讯息,以及所述倒伏农作物的尺寸讯息、图面讯息、坐标讯息。值得一提的,所述 预先倒伏障碍探测器13与所述自动探测模块11可相同采用所述定点探测方式或所述移动探测方式,其中亦可同步进行,或者二者为相同一元件,这不为本发明的限制。
在本发明的这个实施例中,所述探测装置10还包括一行驶倒伏障碍探测器14,其在行驶期间同步侦测是否存在障碍物或倒伏农作物,并在探障碍物或倒伏农作物时进一步取得一障碍倒伏讯息并传送至所述倒伏路径规划模块20,所述倒伏路径规划模块20判断是否依所述障碍倒伏讯息重新规划倒伏收割行驶路径。值得一提的,所述行驶倒伏障碍探测器14取得的所述障碍倒伏讯息传送至所述倒伏路径规划模块20时,其中所述倒伏路径规划模块20将该讯息与所述预先倒伏障碍探测器13取得的所述障碍倒伏讯息进行比较判断是否为同一障碍物或倒伏农作物。换言之,若为相同的障碍物或倒伏农作物,将不同修改倒伏收割行驶路径和收割顺序。若为不相同的障碍物或倒伏农作物,则由所述倒伏路径规划模块20判断是否修正倒伏收割行驶路径,其中倒伏农作物的收割顺序依所述倒伏顺序设置模块30的设定。
另外,所述行驶倒伏障碍探测器14是设置于所述自动收割机1上,其中最佳的设置方式是设置于所述自动收割机1的前方,这样在所述自动收割机1向前行驶若遇到障碍物或倒伏农作物时可直接被所述行驶倒伏障碍探测器14侦测到。特别地,当所述行驶倒伏障碍探测器14侦测到障碍物或倒伏农作物,所述自动收割机1是以现有的基础下重新规划倒伏收割行驶路径。也就是说,事先依所述自动探测模块11或所述手动设定模块12,所述预先倒伏障碍探测器13,所述路径设定模块21,所述倒伏顺序设置模块30以及所述类型设置模块50信息规划出所述自动收割机1的倒伏收割行驶路径,所述自动收割机1依所述倒伏收割行驶路径进行行驶并收割,在行驶过程中所述行驶倒伏障碍探测器14将侦测到的所述障碍倒伏讯息传送到所述倒伏路径规划模块20,所述倒伏路径规划模块20在原始的倒伏收割行驶路径的基础下在依所述行驶倒伏障碍探测器14提供的所述障碍倒伏讯息判断是否重新规划倒伏收割行驶路径。值得一提的,若须重新规划倒伏收割行驶路径时,所述倒伏路径规划模块20预先依所述基本农地讯息、所述行走讯息以及所述收割倒伏顺序讯息规划出所述倒伏收割行驶路径,接着在行驶过程中,依所述行驶倒伏障碍探测器14提供的所述障碍倒伏讯息重新规划倒伏收割行驶路径。
进一步地说,所述行驶倒伏障碍探测器14可辨别出农作物和障碍物,并取得所述障碍物的讯息,例如尺寸,并将所述障碍物的尺寸讯息传送到所述倒伏路径规划模块20。特别地,所述行驶倒伏障碍探测器14还可辨别出倒伏农作物和非倒伏农作物,并将所述倒伏农作物的范围讯息传送到所述倒伏路径规划模块20。所述倒伏路径规划模块20依所述行驶倒伏障碍探测器14提供的讯息判断所述障碍物是否影响倒伏收割行驶路径,若无影响直接依原始规划路径行驶,若有影响则将所述障碍倒伏讯息传送到所述倒伏路径规划模块20以重新规划倒伏收割行驶路径。特别地,所述行驶倒伏障碍探测器14可取得图像特征,以用于辨别倒伏农作物、非倒伏农作物和障碍物的差异,这样除了避开障碍物物,所述自动收割机1还可依所述倒伏顺序设置模块30的设定收割倒所述伏农作物。
值得一提的,所述行驶倒伏障碍探测器14装置于所述自动收割机1,以在所述自动收割机1的行驶时方便取得至少一前方信号,例如倒伏农作物和障碍物。进一步地说,所述行驶倒伏障碍探测器14包括一行驶摄像传感器141,其采集所述自动收割机1周围影像,并形成一视频信号。特别地,所述行驶摄像传感器141包括多个环绕在所述自动收割机1周围的多个摄像头1411,以采集所述自动收割机1周围影像,并形成所述视频信号。所述行驶倒伏障碍探测器14还包括至少一探头142,其设置于所述自动收割机的前方,以探测所述自动收割机1的行驶前方是否有障碍物,像是树木、墙面、大石头、凹洞、水坑、河道等,并同时探测各种障碍物的大小或性质,以将探测讯息传至所述倒伏路径规划模块20,由所述倒伏路径规划模块20判定所述自动收割机是否停止作动。另外,所述行驶倒伏障碍探测器14还包括至少一红外探测器143,其设置于所述自动收割机1的前方,以感测突然闯入所述自动收割机1前方人员或动物的安全。
在本发明的这个实施例中,所述路径设定模块21用于设定所述自动收割机的行走方式,其中包括回字形、之字形、最短路径、最佳路径、外围向内回圈等行走方式。也就是说,所述路径设定模块21设定该自动收割机的行走方式,并产生一行走讯息。值得一提的,自动收割机使用者或操作者可依据田地或农地的形状,事先选择所述回字形或所述之字形。例如,田地或农地为方形时可采用所述回字形,田地或农地为长方形时可采用所述之字形。值得一提的,如图3所示,外围粗线表示田地或农地的边缘,虚线表示自动收割机的倒伏收割行驶路径,箭头表示自动收割机的行驶方向,图4表示所述回字形的倒伏收割行驶路径示意 图,所述自动收割机1依虚线和箭头的指示行驶。如图5所示,外围粗线表示田地或农地的边缘,虚线表示自动收割机的倒伏收割行驶路径,箭头表示自动收割机的行驶方向,图5表示所述之字形的倒伏收割行驶路径示意图,所述自动收割机1依虚线和箭头的指示行驶。可以理解的,所述之字形表示一来一回地一排排行走。因此,当田地或农地非长方形而是任意形状时亦可选则所述之字形的模式。也就是说,当所述自动收割机1行驶到一排的边界时即转弯行驶到另一排,同样地在行驶到边界时又转弯行驶。换言之,选择所述之字形的设定时,所述自动收割机1是一来一回依田地的边界一排排行走,每一排都是行驶到田地的边界。另外,所述最短路径或所述最佳路径则是智能型设定,当自动收割机使用者或操作者选择此方式时,所述倒伏路径规划模块20会依所有选项内容进行规划出所述最短路径或所述最佳路径。可以明白地,所述最短路径是所述自动收割机1在整片田地中整体行驶的最少路径,所述最佳路径则是考虑整体情况后规划出的最优化的路径。另外,并非田地或农地的形状都是完整的长方形或方形,常常有许多不规则的形状,这时除了选择所述之字形、所述最短路径或所述最佳路径的方式外,还可选择所述外围向内回圈。所述外围向内回圈的方式则是依田地的边界形状直接一圈圈地向内行驶。换言之,所述外围向内回圈的方式相似于所述回字形,不同在于农地的形状。
值得一提的,所述倒伏路径规划模块20依所述预先探测装置10,所述路径设定模块21,所述倒伏顺序设置模块30信息进行分析并规划出所述自动收割机1的倒伏收割行驶路径。值得一提的,同一块田地亦可设置多种不同的行走方式,其中可配合所述手动设定模块12将同一片田地设定不同的田地范围,在配合各种行走方式的设定。另外,在所述最佳路径中,经过判断亦可能是包含回字形、之字形、最短路径或外围向内回圈的概率组合。
另外,如图6所示,外围粗线表示田地或农地的边缘,虚线表示自动收割机的倒伏收割行驶路径,箭头表示自动收割机的行驶方向,斜线区域表示倒伏农作物,在本图示说明中,所述收割倒伏顺序讯息设定为后收割倒伏农作物。因此,明显地可以看出,所述倒伏收割行驶路径会使所述自动收割机先行避开所述倒伏农作物,在非倒伏农作物完成收割后,再对所述倒伏农作物进行收割。可以理解的,若是所述收割倒伏顺序讯息设定为先收割倒伏农作物,其中路线方向刚好与图6相反。
值得一提的,如图7所示,所述自动收割机1包括所述倒伏行驶规划系统100,一控制装置200,一驱动装置300,一行驶装置400,以及一作动装置500。所述倒伏行驶规划系统100,所述驱动装置300,所述行驶装置400,所述作动装置500分别连接所述控制装置200。可以理解的,所述控制装置200为所述自动收割机1的中央控制系统,以用于整合控制所述自动收割机1的各项装置。所述驱动装置300分别连接所述作动装置500、所述行驶装置400和所述控制装置200,并为其提供动力,通过所述控制装置200的控制来驱动各部件进行相应的作业。值得一提的,所述驱动装置300可实施为燃油、电力或油电混合的驱动,这不为本发明的限制。所述行驶装置400用于驱动所述自动收割机1进行行走,其中可为履带行走或两轮行走或四轮行走。所述作动装置500用于进行收割作业。所述倒伏行驶规划系统100用于提供规划路径。
另外,如图8所示,本发明还提供的一自动收割机的倒伏收割行驶路径规划方法将被阐述。所述自动收割机的倒伏收割行驶路径规划方法包括以下步骤:
(a)一探测装置10取得一障碍倒伏讯息;以及
(b)一倒伏路径规划模块20接收所述障碍倒伏讯息后,进行分析并规划出该自动收割机的一倒伏收割行驶路径。
所述自动收割机的倒伏收割行驶路径规划方法还包括一步骤:
所述探测装置10取得一基本农地讯息,所述倒伏路径规划模块预先依所述基本农地讯息规划一预先行驶路径。
所述自动收割机的倒伏收割行驶路径规划方法还包括一步骤:
一类型设置模块50设定一收割农作物讯息,并传送到所述倒伏路径规划模块20。
上述方法中,所述倒伏路径规划模块20接收所述收割农作物讯息以进一步地分析和规划所述倒伏收割行驶路径。所述收割农作物讯息包括大麦、小麦、黑麦、燕麦、玉米、稻米、小米等。
上述方法中,所述基本农地讯息包括农地大小、尺寸、面积、形状、坐标、倒伏农作物的范围等讯息。
上述方法中,所述行走讯息包括回字形、之字形、最短路径、最佳路径、外围向内回圈等讯息。
上述方法中,该自动收割机1依所述倒伏收割行驶路径行驶并遇到一倒伏农 作物时,其中依是否调整该自动收割机1的一割台501的高度决定收割顺序,如需调整所述割台501的高度,采用后收割倒伏农作物;如不需调整所述割台501的高度,采用先收割倒伏农作物。
上述方法中,该自动收割机1依所述倒伏收割行驶路径行驶并遇到一倒伏农作物时,其中依是否调整该自动收割机1的一割台501的高度决定收割顺序,如需调整所述割台501的高度,采用后收割倒伏农作物;如不需调整所述割台501的高度,采用直接收割倒伏农作物。
上述方法中,该自动收割机1依所述倒伏收割行驶路径行驶并遇到一倒伏农作物时,如在雨天,采后收割倒伏农作物;如在晴天时,采先收割倒伏农作物。
上述方法中,所述收割倒伏顺序讯息包括先收割倒伏农作物、后收割倒伏农作物或直接收割倒伏农作物等讯息。进一步地说,所述先收割倒伏农作物是在行驶收割作业时,遇到倒伏农作物时先进行收割;所述后收割倒伏农作物是在行驶收割作业时,遇到倒伏农作物时先避开所述倒伏农作物,在非倒伏农作物收割完成后,在对所述倒伏农作物进行收割;所述直接收割倒伏农作物是在行驶收割作业时,遇到倒伏农作物时不管倒伏农作物和非倒伏农作物直接依倒伏收割行驶路径进行行驶收割。
经由一自动探测模块11采一定点探测或一移动探测取得所述基本农地讯息。特别地,所述自动探测模块11可搭配自动收割机、无人飞机或操作者从而取得所述基本农地讯息。另外,所述自动探测模块11可实施为红外线传感器、激光传感器、超声波传感器、图像传感器或GPS卫星定位模块等。
经由一手动设定模块12将所述基本农地讯息手动输入。
经由一预先倒伏障碍探测器13探测是否存在障碍物或倒伏农作物,并产生一障碍倒伏讯息。特别地,所述预先倒伏障碍探测器13与所述自动探测模块11一同侦测。进一步地说,所述探测装置10除了产生所述基本农地讯息外,如有障碍物或倒伏农作物时亦产生所述障碍倒伏讯息。所述基本农地讯息和所述障碍倒伏讯息皆传送到所述倒伏路径规划模块20,由所述倒伏路径规划模块20进行分析规划。
农地为方形时建议采用所述回字形,农地为长方形时建议采用所述之字形。特别地,所述之字形表示一来一回地一排排行走。
特别地,在所述自动收割机1依所述倒伏收割行驶路径于农地上行驶时,所 述探测装置10的一行驶倒伏障碍探测器14将在行驶过程中进行探测,并在探测到障碍物或倒伏农作物时产生一障碍倒伏讯息到所述倒伏路径规划模块20。所述倒伏路径规划模块20依所述障碍倒伏讯息判断所述自动收割机1立即停止、保持行驶或重新规划路径。特别地,所述倒伏路径规划模块20可使所述自动收割机1立即停止后,马上重新规划路径,并在完成新倒伏收割行驶路径规划后,使所述自动收割机1重新启动。
另外,所述行驶倒伏障碍探测器14的一行驶摄像传感器141,其包括多个环绕在所述自动收割机1周围的多个摄像头1411,以采集所述自动收割机1周围影像,并形成一视频信号。
另外,所述行驶倒伏障碍探测器14还包括至少一探头142,其设置于所述自动收割机的前方,以探测所述自动收割机1的行驶前方是否有障碍物。
另外,所述行驶倒伏障碍探测器14还包括至少一红外探测器143,其设置于所述自动收割机1的前方,以感测突然闯入所述自动收割机1前方人员或动物的安全。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。
本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (30)

  1. 一自动收割机的倒伏行驶规划方法,其特征在于,包括以下步骤:
    (a)一探测装置取得一障碍倒伏讯息;以及
    (b)一倒伏路径规划模块接收所述障碍倒伏讯息后,进行分析并规划出该自动收割机的一倒伏收割行驶路径。
  2. 根据权利要求1所述倒伏行驶规划方法,还包括一步骤:
    所述探测装置取得一基本农地讯息,所述倒伏路径规划模块预先依所述基本农地讯息规划一预先行驶路径。
  3. 根据权利要求2所述倒伏行驶规划方法,其中所述基本农地讯息系选自由农地大小、尺寸、面积、形状、坐标、倒伏农作物的范围所组成的群组。
  4. 根据权利要求1所述倒伏行驶规划方法,还包括一步骤:
    一倒伏顺序设置模块设定一收割倒伏顺序讯息,所述倒伏路径规划模块依所述倒伏顺序设置模块规划所述倒伏收割行驶路径。
  5. 根据权利要求1所述倒伏行驶规划方法,其中该自动收割机依所述倒伏收割行驶路径行驶并遇到一倒伏农作物时,其中依是否调整该自动收割机的一割台高度决定收割顺序,如需调整所述割台高度,采用后收割倒伏农作物;如不需调整所述割台高度,采用先收割倒伏农作物。
  6. 根据权利要求1所述倒伏行驶规划方法,其中该自动收割机依所述倒伏收割行驶路径行驶并遇到一倒伏农作物时,其中依是否调整该自动收割机的一割台高度决定收割顺序,如需调整所述割台高度,采用后收割倒伏农作物;如不需调整所述割台高度,采用直接收割倒伏农作物。
  7. 根据权利要求1所述倒伏行驶规划方法,其中该自动收割机依所述倒伏收割行驶路径行驶并遇到一倒伏农作物时,如在雨天,采后收割倒伏农作物;如在晴 天时,采先收割倒伏农作物。
  8. 根据权利要求1所述倒伏行驶规划方法,还包括一步骤:
    一类型设置模块设定一收割农作物讯息,并传送到所述倒伏路径规划模块。
  9. 根据权利要求1所述倒伏行驶规划方法,其中通过所述倒伏路径规划模块的一路径设定模块预设该自动收割机的行走方式,并产生一行走讯息。
  10. 根据权利要求9所述倒伏行驶规划方法,其中所述行走讯息系选自由回字形、之字形、最短路径、最佳路径、外围向内回圈所组成的群组。
  11. 根据权利要求10所述倒伏行驶规划方法,其中农地为方形时建议采用所述回字形,农地为长方形时建议采用所述之字形。
  12. 根据权利要求2所述倒伏行驶规划方法,其中经由一自动探测模块采一定点探测或一移动探测取得所述基本农地讯息。
  13. 根据权利要求12所述倒伏行驶规划方法,其中所述自动探测模块系选自由红外线传感器、激光传感器、超声波传感器、图像传感器或GPS卫星定位模块所组成的模块。
  14. 根据权利要求1所述倒伏行驶规划方法,其中在该自动收割机行驶时,经由一行驶倒伏障碍探测器探测是否存在障碍物或倒伏农作物,并产生所述障碍倒伏讯息传送到所述倒伏路径规划模块。
  15. 根据权利要求2所述倒伏行驶规划方法,其中经由一预先倒伏障碍探测器探测是否存在障碍物或倒伏农作物,并产生所述障碍倒伏讯息传送到所述倒伏路径规划模块。
  16. 一倒伏行驶规划系统,适用于自动收割机,其特征在于,包括:
    一探测装置,其取得一基本农地讯息和一障碍倒伏讯息;以及
    一倒伏路径规划模块,其连接所述探测装置,以分析并规划出该自动收割机的一倒伏收割行驶路径。
  17. 根据权利要求16所述倒伏行驶规划系统,其包括一倒伏顺序设置模块,其设定一收割倒伏顺序讯息,所述倒伏路径规划模块进一步依所述倒伏顺序设置模块规划所述倒伏收割行驶路径。
  18. 根据权利要求16所述倒伏行驶规划系统,其包括一类型设置模块,其设定一收割农作物讯息,并传送到所述倒伏路径规划模块。
  19. 根据权利要求16所述倒伏行驶规划系统,其中所述倒伏路径规划模块包括一路径设定模块,以预设该自动收割机的行走方式,并产生一行走讯息。
  20. 根据权利要求19所述倒伏行驶规划系统,其中所述行走讯息系选自由回字形、之字形、最短路径、最佳路径、外围向内回圈所组成的群组。
  21. 根据权利要求16所述倒伏行驶规划系统,其中所述探测装置包括至少一自动探测模块,其连接于所述倒伏路径规划模块,其中所述自动探测模块在通过一定点探测或一移动探测取得所述基本农地讯息,并将所述基本农地讯息传送到所述倒伏路径规划模块。
  22. 根据权利要求21所述倒伏行驶规划系统,其中所述自动探测模块设置于一自动收割机、一无人飞机或一无线侦测器上,以进行所述移动探测。
  23. 根据权利要求21所述倒伏行驶规划系统,其中所述自动探测模块系选自由红外线传感器、激光传感器、超声波传感器、图像传感器或GPS卫星定位模块所组成的模块。
  24. 根据权利要求16所述倒伏行驶规划系统,其中所述探测装置包括至少一手动设定模块,其连接于所述倒伏路径规划模块,其中通过所述手动设定模块将所述基本农地讯息输入至所述倒伏路径规划模块。
  25. 根据权利要求16所述倒伏行驶规划系统,其中所述探测装置包括至少一预先倒伏障碍探测器,其连接于所述倒伏路径规划模块,其中所述预先倒伏障碍探测器在通过一定点探测或一移动探测取得所述障碍倒伏讯息,并将所述障碍倒伏讯息传送到所述倒伏路径规划模块。
  26. 根据权利要求16所述倒伏行驶规划系统,其中所述探测装置还包括至少一行驶倒伏障碍探测器,其连接所述倒伏路径规划模块,其中所述行驶倒伏障碍探测器设置于该自动收割机上,以在该自动收割机行驶并遇到障碍物或倒伏农作物时传送所述障碍倒伏讯息至所述倒伏路径规划模块。
  27. 根据权利要求26所述倒伏行驶规划系统,其中所述行驶倒伏障碍探测器包括一行驶摄像传感器,其包括多个环绕在该自动收割机周围的多个摄像头,以采集该自动收割机周围影像。
  28. 根据权利要求26所述倒伏行驶规划系统,其中所述行驶倒伏障碍探测器包括至少一探头,其设置于该自动收割机的前方,以探测该自动收割机的行驶前方是否有障碍物。
  29. 根据权利要求26所述倒伏行驶规划系统,其中所述行驶倒伏障碍探测器包括至少一红外探测器,其设置于该自动收割机的前方,以感测突然闯入该自动收割机的人员或动物。
  30. 根据权利要求16所述倒伏行驶规划系统,其设置于该自动收割机、一远端摇控器、一智能手机、一无线电摇控器或一智能平板上位机。
PCT/CN2019/106988 2019-04-09 2019-09-20 自动收割机的倒伏行驶规划系统及其方法 WO2020206946A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910280327.1A CN110209153A (zh) 2019-04-09 2019-04-09 自动收割机的倒伏行驶规划系统及其方法
CN201910280327.1 2019-04-09

Publications (1)

Publication Number Publication Date
WO2020206946A1 true WO2020206946A1 (zh) 2020-10-15

Family

ID=67785179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106988 WO2020206946A1 (zh) 2019-04-09 2019-09-20 自动收割机的倒伏行驶规划系统及其方法

Country Status (2)

Country Link
CN (1) CN110209153A (zh)
WO (1) WO2020206946A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110209153A (zh) * 2019-04-09 2019-09-06 丰疆智能科技股份有限公司 自动收割机的倒伏行驶规划系统及其方法
JP7547088B2 (ja) * 2020-06-02 2024-09-09 ヤンマーホールディングス株式会社 コンバイン及び走行経路作成方法
CN112020982A (zh) * 2020-09-15 2020-12-04 中联农业机械股份有限公司 一种倒伏作物自动收割方法及收割机
CN113607096B (zh) * 2021-08-06 2022-08-26 上海华测导航技术股份有限公司 一种ai应用于农作物倒伏检测的方法
CN114675659B (zh) * 2022-05-28 2022-09-23 广州市盛望信息科技有限公司 一种农用机器人运动控制方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991694A (en) * 1995-11-13 1999-11-23 Caterpillar Inc. Method and apparatus for determining the location of seedlings during agricultural production
US20080195270A1 (en) * 2004-06-03 2008-08-14 Norbert Diekhans Route planning system and method for agricultural working machines
US20170082442A1 (en) * 2015-09-17 2017-03-23 Deere & Company Mission and path planning using images of crop wind damage
CN107926264A (zh) * 2017-10-23 2018-04-20 北京勇搏科技有限公司 一种基于无人驾驶技术的收割机
US10180328B2 (en) * 2013-07-10 2019-01-15 Agco Coporation Automating distribution of work in a field
US20190021226A1 (en) * 2017-07-20 2019-01-24 Deere & Company System for optimizing platform settings based on crop state classification
CN110209153A (zh) * 2019-04-09 2019-09-06 丰疆智能科技股份有限公司 自动收割机的倒伏行驶规划系统及其方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2656961B2 (ja) * 1988-10-27 1997-09-24 ヤンマー農機株式会社 コンバインにおける刈取前処理装置の制御装置
US6453655B2 (en) * 1999-12-09 2002-09-24 Omar Ruben Ferraris Reel for harvesting machines
DE102004027895A1 (de) * 2004-06-09 2006-01-05 Claas Selbstfahrende Erntemaschinen Gmbh Ballenablagesystem
JP4805973B2 (ja) * 2008-05-09 2011-11-02 株式会社クボタ 刈取収穫機の刈取部昇降構造
CN102506852B (zh) * 2011-11-01 2016-08-03 华中农业大学 农用车辆视觉导航系统及其导航方法
CN205721364U (zh) * 2016-04-27 2016-11-23 河北德普电器有限公司 机器人障碍路径避让控制系统
CN105955275B (zh) * 2016-05-26 2021-07-13 华讯方舟科技有限公司 一种机器人路径规划方法及系统
KR102523426B1 (ko) * 2016-09-05 2023-04-20 가부시끼 가이샤 구보다 작업차 자동 주행 시스템, 주행 경로 관리 장치, 주행 경로 생성 장치, 주행 경로 결정 장치
CN106979785B (zh) * 2017-03-24 2020-10-16 北京大学深圳研究生院 一种面向多机器人系统的完全遍历路径规划方法
CN107229275A (zh) * 2017-04-24 2017-10-03 华南农业大学 一种果园自动遍历智能割草机控制系统及方法
CN207135530U (zh) * 2017-07-22 2018-03-27 西北农林科技大学 一种基于激光传感器的小麦倒伏检测系统
CN107817798A (zh) * 2017-10-30 2018-03-20 洛阳中科龙网创新科技有限公司 一种基于深度学习系统的农用机械避障方法
CN109115225A (zh) * 2018-08-31 2019-01-01 江苏大学 一种无人作业谷物联合收割机导航方法与导航装置
CN109362331A (zh) * 2018-12-19 2019-02-22 江西洪都航空工业集团有限责任公司 无人割草车

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991694A (en) * 1995-11-13 1999-11-23 Caterpillar Inc. Method and apparatus for determining the location of seedlings during agricultural production
US20080195270A1 (en) * 2004-06-03 2008-08-14 Norbert Diekhans Route planning system and method for agricultural working machines
US10180328B2 (en) * 2013-07-10 2019-01-15 Agco Coporation Automating distribution of work in a field
US20170082442A1 (en) * 2015-09-17 2017-03-23 Deere & Company Mission and path planning using images of crop wind damage
US20190021226A1 (en) * 2017-07-20 2019-01-24 Deere & Company System for optimizing platform settings based on crop state classification
CN107926264A (zh) * 2017-10-23 2018-04-20 北京勇搏科技有限公司 一种基于无人驾驶技术的收割机
CN110209153A (zh) * 2019-04-09 2019-09-06 丰疆智能科技股份有限公司 自动收割机的倒伏行驶规划系统及其方法

Also Published As

Publication number Publication date
CN110209153A (zh) 2019-09-06

Similar Documents

Publication Publication Date Title
WO2020206946A1 (zh) 自动收割机的倒伏行驶规划系统及其方法
WO2020206934A1 (zh) 自动收割机的行驶路径规划系统及其方法
WO2020206945A1 (zh) 多台自动收割机的行驶路径规划系统及其方法
RU2605775C2 (ru) Система и способ автоматического документирования ситуаций при полевых работах
US20180338422A1 (en) Aerial vehicle systems and methods
CN204515530U (zh) 自动行走系统
WO2020140491A1 (zh) 谷物处理自动驾驶系统及其自动驾驶方法和路径规划方法
WO2020206935A1 (zh) 自动收割机的障碍物避让系统及其方法
AU2019422604B2 (en) Route management system and management method thereof
CN113128747A (zh) 智能割草系统及其自主建图方法
Hansen et al. An autonomous robotic system for mapping weeds in fields
WO2020206940A1 (zh) 自动收割机的残留收割路径规划系统及其方法
US12001221B2 (en) Methods for managing coordinated autonomous teams of under-canopy robotic systems for an agricultural field and devices
KR102371909B1 (ko) 드론을 이용한 스마트 팜 작물 감시 방법 및 감시 시스템
KR102546183B1 (ko) 지능형 농장 관리 방법 및 시스템
US20230210039A1 (en) Virtual safety bubbles for safe navigation of farming machines
US20170325400A1 (en) Method for navigation and joint coordination of automated devices
WO2017042789A1 (en) Harvesting and lawn care robot
Chang et al. Design and implementation of a semi-autonomous mini-cultivator using human-machine collaboration systems
US20230027496A1 (en) Systems and methods for obstacle detection
Thamaraiselvan et al. LIDAR-based Navigation Rover for Fields with Smart Pest Sprayer using Machine Vision
JP2022119267A (ja) 農業支援システム、移動体、及び農業支援方法
Arif et al. COMPUTER VISION BASED NAVIGATION MODULE FOR SUSTAINABLE BROAD-ACRE AGRICULTURE ROBOTS.
Kounalakis et al. A framework leveraging robotics and machine learning technologies for early disease and pest detection in greenhouse tomato crops
CN118525832A (zh) 一种激光除草机器人的除草方法及激光除草机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923869

Country of ref document: EP

Kind code of ref document: A1