WO2020206892A1 - 一种利用氯化氢气体浸取硅酸盐矿制备超细二氧化硅的系统及方法 - Google Patents

一种利用氯化氢气体浸取硅酸盐矿制备超细二氧化硅的系统及方法 Download PDF

Info

Publication number
WO2020206892A1
WO2020206892A1 PCT/CN2019/100145 CN2019100145W WO2020206892A1 WO 2020206892 A1 WO2020206892 A1 WO 2020206892A1 CN 2019100145 W CN2019100145 W CN 2019100145W WO 2020206892 A1 WO2020206892 A1 WO 2020206892A1
Authority
WO
WIPO (PCT)
Prior art keywords
circulating
liquid
ore
ejector
hydrogen chloride
Prior art date
Application number
PCT/CN2019/100145
Other languages
English (en)
French (fr)
Inventor
于常军
王麒
Original Assignee
原初科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 原初科技(北京)有限公司 filed Critical 原初科技(北京)有限公司
Priority to US17/602,407 priority Critical patent/US20220204352A1/en
Priority to EP19924491.4A priority patent/EP3954654A4/en
Publication of WO2020206892A1 publication Critical patent/WO2020206892A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1868Stationary reactors having moving elements inside resulting in a loop-type movement
    • B01J19/1881Stationary reactors having moving elements inside resulting in a loop-type movement externally, i.e. the mixture leaving the vessel and subsequently re-entering it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/028Flow sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/26Separation of sediment aided by centrifugal force or centripetal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D36/00Filter circuits or combinations of filters with other separating devices
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/187Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates
    • C01B33/193Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates of aqueous solutions of silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00103Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor in a heat exchanger separate from the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/00108Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant vapours
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/19Oil-absorption capacity, e.g. DBP values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties

Definitions

  • the invention relates to a system and method for preparing ultrafine silicon dioxide by leaching silicate ore with hydrogen chloride gas, and belongs to the field of inorganic non-metallic materials.
  • Ultra-fine SiO 2 has the characteristics of large specific surface area, porous, high temperature resistance, strong electrical insulation, good reinforcement and non-combustion. It is used in coatings, plastics, medicine, biology, paper, rubber, agriculture, chemical industry, national defense and It is widely used in machinery and other fields.
  • the precipitation method is a method commonly used in industrial production due to its simple process, stable production conditions, low cost and large output. At present, the precipitation method is divided into traditional precipitation method and new precipitation method. The new precipitation method is also called dissociation method.
  • the dissociation method mainly no longer uses the traditional water glass in the silicon source, but uses non-metallic minerals and their extensions or other substances as the silicon source.
  • the key technology is to combine the crystallized silica with The silicate is transformed into amorphous silicon dioxide. According to the different raw materials used, it can be divided into non-metallic mineral method, gramineous plant method, and by-product recovery method.
  • the dissociation methods using non-metallic minerals as raw materials are roughly divided into two types. One is to leaching raw materials with sodium hydroxide solution to obtain sodium silicate solution and then acidifying with hydrochloric acid to obtain ultrafine SiO 2 , the other is to use hydrochloric acid solution or The mixed acid solution directly leaches the raw materials to obtain ultra-fine SiO 2 . But at present, most of the research stays in the experimental research stage, and the leaching reaction of silicate ore with acid is slow, requiring high temperature and strong acid environment, and high concentration of hydrochloric acid volatilizes at high temperature.
  • the purpose of the present invention is to provide a system and method for preparing ultrafine silicon dioxide by leaching silicate ore with hydrogen chloride gas.
  • the present invention adopts the method of direct dissolution of HCl gas, which has high acid concentration and strong activity, and the heat of dissolution can be leaching. Take process heat.
  • the ultrafine silica according to the present invention refers to silica having a particle size of 10-15 ⁇ m.
  • the system for preparing ultrafine silica by leaching silicate ore with hydrogen chloride gas includes an ore raw material feeding device, a jet, a stirring tank and a liquid-solid separation device;
  • the jet is provided with a liquid inlet, a liquid outlet and a gas inlet;
  • the circulating material outlet of the stirred tank is connected to the liquid inlet of the jet through a circulating pipeline;
  • the liquid outlet of the jet is connected with the circulating material inlet of the stirred tank;
  • the material outlet of the ore raw material feeding device is connected with the circulation pipeline;
  • a circulation pump is provided on the circulation pipeline
  • the circulating material outlet of the stirred tank is communicated with the liquid-solid separation device.
  • connection between the material outlet of the ore material feeding device and the circulation pipeline is close to one end of the jet.
  • the stirred tank includes at least one inlet for the circulating material, at least one outlet for the circulating material, and at least one discharge port.
  • the ore raw material feeding device includes a powder quantitative conveying device
  • the powder quantitative conveying device is connected to the circulation pipeline through a feed pipe;
  • the powder quantitative conveying device adds the raw material powder of silicate ore to the circulation pipeline through the feed pipe, and mixes with the material in the circulation pipeline.
  • the ore raw material feeding device further includes a premix tank connected with the powder quantitative conveying device;
  • the slurry outlet and the slurry inlet of the premix tank are respectively connected to the jet and the circulation pipeline;
  • Part of the material in the circulation pipeline is introduced into the premix tank through the circulation pump to be premixed with the added silicate ore powder; the premixed slurry is input to the slurry outlet through the slurry outlet The jet device.
  • a steam outlet is provided on the stirred tank to discharge vaporized water vapor and a small amount of unreacted hydrogen chloride gas;
  • the steam outlet is connected to the circulation pipeline through a cooling water pipeline, and a heat exchanger is provided on the cooling water pipeline for condensing water vapor and a small amount of unreacted hydrogen chloride gas and then returning to the In the ejector, part of the reaction heat can be removed at the same time to keep the reaction temperature stable.
  • the liquid-solid separation device can be a sedimentation separator, a hydrocyclone, a centrifuge or a filter separator.
  • the present invention also provides a method for preparing ultrafine silica, which includes the following steps: injecting hydrogen chloride gas into the slurry of silicate ore, and obtaining ultrafine silica after reaction.
  • the system of the present invention can be used to prepare the ultrafine silica, including the following steps:
  • the powder of the silicate ore is mixed with the circulating liquid transported by the circulating pipeline through the ore raw material feeding device, and then pumped into the ejector at a high speed; the hydrogen chloride gas passes through all of the ejector The gas inlet is sucked into the ejector and dissolved in the circulating liquid, and silica is obtained by the reaction of hydrochloric acid and the silicate ore; the reaction is carried out in the ejector and the circulation pipe in sequence And the stirred tank (preliminary contact reaction is performed in the ejector, and then the reaction liquid enters the circulation pipeline and the stirred tank for further reaction);
  • the circulating liquid is a slurry formed by the silicate ore and water (at the beginning of the reaction) or a reaction liquid after the hydrochloric acid reacts with the silicate ore.
  • the purpose of using part of the material circulation in the present invention is as follows: First, use part of the circulating material to flow through the ejector to form a negative pressure in the ejector to inhale hydrogen chloride gas, so that the compressor can be used to pressurize the hydrogen chloride gas. ; Second, the unreacted calcium silicate in the circulating material reacts quickly with hydrogen chloride in the ejector and subsequent pipelines. At this time, the concentration of hydrogen chloride is high, the mixing in the pipeline is fast, and the reaction rate is high.
  • the invention utilizes the Venturi effect to form a negative pressure in the ejector, thereby sucking hydrogen chloride gas into the ejector to react with silicate ore and leaching silica.
  • the silicate ore may be feldspar (orthosite, plagioclase, parafeldspar), mica, olivine, garnet, andalusite, epidote, pyroxene, horn At least one of amphibole, wollastonite, talc, kaolinite, chlorite and serpentine;
  • the particle size of the silicate ore powder is not less than 50 mesh, based on Taylor's standard sieve;
  • the mass content of SiO 2 in the silicate ore is not less than 40%
  • the difference between the pressure of the hydrogen chloride gas at the gas inlet of the jet and the pressure in the stirred tank is not greater than the maximum vacuum that the jet can reach, such as 3.3 kPa;
  • the temperature of the reaction in the stirred tank may be 70 to 120°C;
  • the ratio of the volume flow of the circulating liquid to the hydrogen chloride gas in the ejector may be 2 to 3.5:1.
  • the specific operation is: hydrogen chloride gas is sucked into the ejector through the gas inlet on the ejector and dissolved in the circulating liquid, and reacts with the silicate ore powder in the circulating liquid initially, and then the reaction liquid Enter the stirred tank for further reaction; part of the slurry in the stirred tank is discharged into the liquid-solid separation device for solid-liquid separation operation to obtain ultrafine silica, and part of the slurry enters the circulation pipeline through the circulation pump for circulation ;
  • the molar ratio of the hydrogen chloride gas to the silicate ore may be 2 to 3:1, wherein the amount of the silicate ore is calculated as SiO 2 .
  • the powder of the silicate ore is directly added to the stirred tank to form a slurry with water; the slurry is input to the jet through the circulation pipeline; and sucked into the jet
  • the hydrogen chloride gas in the vessel is dissolved in the slurry, and silica is obtained by the reaction of hydrochloric acid and the silicate ore, thereby realizing the batch preparation of the ultrafine silica;
  • the molar ratio of the hydrogen chloride gas to the silicate ore is 2 to 2.5:1, wherein the amount of the silicate ore is calculated as SiO 2 .
  • the principle of the present invention is to leach silicate ore in the presence of hydrochloric acid, so that soluble chloride salts are formed in the leachate.
  • the reaction mechanism of mineral leaching is a multiphase reaction that occurs at the two-phase interface of solid and liquid phases.
  • the leaching process is divided into two stages: the first stage is the leaching of the mineral surface; the second stage is the pore diffusion leaching.
  • the former has fast leaching reaction speed and short time; the latter has slow reaction speed and long time.
  • the system and method for preparing ultrafine silica by leaching silicate ore by using hydrogen chloride gas in the present invention provides an industrial feasible solution for preparing silica by continuous leaching of silicate ore, and by selecting a jet, hydrogen chloride gas is used
  • the method of directly dissolving in the silicate circulating slurry, the hydrogen chloride gas and the circulating slurry will form a near-saturated hydrochloric acid solution for a short time, making the leaching reaction easier, and the heat of dissolution can provide the advantage of heating the leaching process.
  • due to the high concentration, high dispersibility of the slurry in the jet and the preliminary contact with the high concentration of hydrochloric acid solution the dissolution efficiency of ore and the utilization rate of hydrochloric acid are greatly improved.
  • Fig. 1 is a schematic diagram of a system for preparing ultrafine silica by leaching silicate ore with hydrogen chloride gas in Example 1 of the present invention.
  • Example 2 is the second schematic diagram of the system for preparing ultrafine silica by leaching silicate ore with hydrogen chloride gas in Example 2 of the present invention.
  • FIG. 1 is a schematic diagram of the preparation system of the first embodiment of the present invention.
  • the system includes an ore raw material feeding device, an ejector 4, a stirring tank 6 and a liquid-solid separation device 7.
  • the ore material feeding device includes a dust collector 1, a storage tank 2 and a powder quantitative conveying device 3 connected in sequence;
  • the jet 4 is provided with a liquid inlet (not marked in the figure) and a liquid outlet (not marked in the figure) And the gas inlet (not marked in the figure);
  • the liquid inlet of the ejector 4 and the discharge port of the stirred tank 6 are connected with a circulating pipe 8, and the liquid outlet of the ejector 4 is connected with the circulating material inlet of the stirred tank 6;
  • the volumetric quantitative conveying device 3 adds the raw material powder of the silicate ore to the circulating pipe 8 through a feeding pipe, and mixes with the material in the circulating pipe 8.
  • the discharge port of the stirred tank 6 is communicated with the liquid-solid separation
  • a steam outlet (not marked in the figure) is provided on the stirred tank 6 to discharge vaporized water vapor and a small amount of unreacted hydrogen chloride gas.
  • the steam outlet is connected to the circulation pipe 8 through a cooling water pipe 10, and the cooling water pipe 10 is provided with a heat exchanger 9 for condensing water vapor and a small amount of unreacted hydrogen chloride gas and then returning it to the ejector 4. At the same time, part of the reaction heat can be removed to keep the reaction temperature stable.
  • the liquid-solid separation device 7 can be a sedimentation separator, a hydrocyclone, a centrifuge or a filter separator.
  • the working process of the preparation system of the first embodiment of the present invention is as follows: adopting continuous operation, the ore raw material powder transported to the storage tank 2 is continuously added to the circulating pipeline 8 through the powder quantitative conveying device 3 and mixed with the circulating liquid to form a slurry , It is driven into the ejector 4 at a high speed, and a negative pressure is formed in the ejector by using the Venturi effect, the hydrogen chloride gas is sucked in and the preliminary contact reaction is carried out, and then the reaction liquid enters the stirred tank 6 for further reaction. Part of the slurry after the stirred tank reaction It is discharged into the solid-liquid separation device 7 for solid-liquid separation operation, and a part is pumped into the circulation pipeline 8 by the circulation pump 5 as a circulating liquid.
  • the effective component of the ore raw material powder is selected as CaSiO 3
  • the reaction temperature of the stirred tank is 120 °C
  • the temperature of hydrogen chloride gas is 250 °C
  • the ratio of the molar flow rate of hydrogen chloride gas to the molar flow rate of CaSiO 3 is shown in Table 1.
  • the silicate ore in this example takes wollastonite as an example.
  • Wollastonite comes from Jiangxi Shanggao, with a particle size of 200 mesh (based on the Taylor standard sieve).
  • the average mineral composition is shown in Table 2:
  • the volume of the storage tank is 4m 3
  • the powder quantitative conveying device is a screw feeder
  • the volume of the stirring tank is 4m 3
  • the rotation speed is 30 rpm
  • the amount of wollastonite powder added is 110 kg/h
  • the water The added amount is 880kg/h
  • the flow rate of hydrogen chloride is controlled to 45m 3 /h (the molar ratio of hydrogen chloride gas to wollastonite powder is 2:1, and the amount of wollastonite powder is calculated as SiO 2 )
  • the temperature of the stirring tank is set to At 80°C
  • the residence time is 2h
  • the circulation flow is 100kg/h.
  • the sedimentation the solid residue is further washed, filtered and dried to obtain ultrafine SiO 2.
  • the technical indicators are shown in Table 3.
  • the silicate mine in this example takes serpentine as an example.
  • the serpentine comes from Xinyang, Henan, with a particle size of 200 mesh (based on the Taylor standard sieve).
  • the average mineral composition is shown in Table 4:
  • the volume of the storage tank is 4m 3
  • the screw feeder is selected as the powder quantitative conveying device
  • the volume of the stirring tank is 4m 3
  • the rotation speed is 30 rpm
  • the amount of serpentine powder added is 91 kg/h
  • the water The amount of added is 880kg/h
  • the flow rate of hydrogen chloride is controlled to 45m 3 /h (the molar ratio of hydrogen chloride gas to serpentine powder is 2:1, and the amount of serpentine powder is calculated as SiO 2 )
  • the temperature of the stirring tank is set as 120°C
  • residence time of 2h residence flow rate of 100kg/h
  • the solid residue after sedimentation is further washed, filtered, dried and crushed to obtain ultrafine SiO 2.
  • the technical indicators are shown in Table 5.
  • FIG 2 is a schematic diagram of the preparation system of the second embodiment of the present invention. Its structure is basically the same as that of the system shown in Figure 1, except that the ore raw material feeding device also includes a premixer connected to the powder quantitative conveying device 3.
  • Tank 11, the slurry outlet and slurry inlet of the pre-mixing tank 11 are respectively connected to the ejector 4 and the circulation pipe 8. Part of the material in the circulation pipe 8 is introduced into the pre-mixing tank 11 through the circulation pump 5
  • the added silicate ore powder is premixed; the premixed slurry is input into the jet 4 through the slurry outlet.
  • a slurry pump 5' is provided on the pipeline connecting the premix tank 11 and the ejector 4.
  • the working process of the preparation system of the second embodiment of the present invention is as follows: adopting continuous operation, the ore raw material powder transported to the storage tank 2 is continuously added to the premixing tank 11 through the powder quantitative conveying device 3, in the premixing tank 11 Stir and mix with a certain amount of water to form a slurry.
  • the slurry is pumped into the ejector 4 at a high speed by the slurry pump 5'.
  • the Venturi effect is used to form a negative pressure in the ejector to inhale hydrogen chloride gas and perform preliminary contact reaction.
  • the reaction liquid enters the stirred tank 6 for further reaction.
  • Part of the slurry after the reaction in the stirred tank is discharged into the liquid-solid separation device 7 for solid-liquid separation operation, and a part is pumped into the premix tank 11 by the circulating pump 5 through the circulating pipeline 8 as the circulating liquid.
  • the silicate ore in this example takes wollastonite as an example.
  • Wollastonite comes from Jiangxi Shanggao, with a particle size of 200 mesh (based on the Taylor standard sieve), and the average mineral composition is the same as Table 2.
  • the volume of the storage tank is 4m 3
  • the powder quantitative conveying device is a screw feeder
  • the volume of the pre-mixing tank is 3m 3
  • the volume of the stirring tank is 4m 3
  • the rotating speed is 30rpm
  • the wollastonite powder The addition amount is 110kg/h
  • the addition amount of water is 880kg/h
  • the flow rate of hydrogen chloride is controlled to 45m 3 /h (the molar ratio of hydrogen chloride gas to wollastonite powder is 2:1, and the amount of wollastonite powder is calculated as SiO 2 )
  • the temperature of the stirred tank is set to 80°C
  • the residence time is 2h
  • the circulating flow rate is 100kg/h.
  • the solid residue is further washed, filtered and dried to obtain ultrafine SiO 2.
  • the technical indicators are shown in Table 6.
  • the silicate ore in this example still uses wollastonite as an example.
  • Wollastonite comes from Jiangxi Shanggao, with a particle size of 200 mesh (based on the Taylor standard sieve), and the average mineral composition is the same as in Table 2.
  • the decomposition reactor and the regeneration reactor will also be equipped with corresponding temperature, liquid level and other measurement, control systems and corresponding valves, which are not shown in the drawings. This does not mean that these conventional designs are not included in the process of the present invention. Adjusting the feed rate of the raw materials in the present invention according to the conversion rate and the material balance is also a conventional design of the common sense of those of ordinary skill in the art. It is also not explained one by one in the present invention, nor does it mean that the process of the present invention does not include This conventional design.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

提供一种利用氯化氢气体浸取硅酸盐矿制备二氧化硅的系统,包括矿石原料入料装置、射流器(4)、搅拌釜(6)和液固分离装置(7),其中搅拌釜(6)的循环物料出口通过循环管路与射流器(4)的液体入口相连通;射流器(4)的液体出口与搅拌釜(6)的循环物料入口相连通;原料入料装置的物料出口与循环管路相连通;循环管路上设有循环泵(5);搅拌釜的循环物料出口与液固分离装置(7)相连通。并提供利用该系统由硅酸盐矿石粉末和氯化氢气体制备二氧化硅的方法。该系统和方法提供了连续化浸取硅酸盐矿石制备二氧化硅的工业化可行方案,通过选用射流器,采用氯化氢气体直接溶解在硅酸盐循环浆料中的方式,由于射流器中浆液的高浓度、高分散性和高浓度的盐酸溶液初步接触,提高了矿石的溶解效率和盐酸的利用率。

Description

一种利用氯化氢气体浸取硅酸盐矿制备超细二氧化硅的系统及方法
本申请要求了2019年4月8日提交的、申请号为201910275773.3、发明名称为“一种利用氯化氢气体浸取硅酸盐矿制备超细二氧化硅的系统及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种利用氯化氢气体浸取硅酸盐矿制备超细二氧化硅的系统及方法,属于无机非金属材料领域。
背景技术
超细SiO 2具有比表面积大、多孔、耐高温、电绝缘性强、良好的补强作用以及不燃烧等特性,其在涂料、塑料、医学、生物、造纸、橡胶、农业、化工、国防及机械等领域有广泛应用。超细SiO 2生产工艺较多,从基本原理上划分只有气相法和沉淀法。沉淀法由于工艺简单,生产条件稳定,成本较低,产量大,是目前工业生产中普遍采用的方法,目前沉淀法又分为传统沉淀法和新型沉淀法,新型沉淀法又称离解法,与传统沉淀方法相比,离解法主要是在硅源方面不再采用传统的水玻璃,而是以非金属矿及其延伸物或其他物质为硅源,其技术关键是将结晶的二氧化硅和硅酸盐转变成非晶态的二氧化硅。根据使用的原料不同可以分为非金属矿物法、禾本科植物法、副产品回收法等。
以非金属矿为原料的离解法大致分为两种,一种是以氢氧化钠溶液浸取原料,得到硅酸钠溶液后再用盐酸酸化得到超细SiO 2,一种是采用盐酸溶液或混合酸溶液直接浸取原料得到超细SiO 2。但目前,大部分的研究都停留在实验研究阶段,且硅酸盐矿石与酸的浸取反应慢,需要高温和强酸环境,高温下高浓度盐酸挥发。
发明内容
本发明的目的是提供一种利用氯化氢气体浸取硅酸盐矿制备超细二氧化硅的系统及方法,本发明采用HCl气体直接溶解的方式,酸浓度高、活性强,溶解热可以为浸取过程供热。
本发明所涉及的超细二氧化硅指的是粒径为10~15μm的二氧化硅。
本发明提供的利用氯化氢气体浸取硅酸盐矿制备超细二氧化硅的系统,包括矿石原料入料装置、射流器、搅拌釜和液固分离装置;
所述射流器上设有液体入口、液体出口和气体入口;
所述搅拌釜的循环物料出口通过循环管路与所述射流器的液体入口相连通;
所述射流器的液体出口与所述搅拌釜的循环物料入口相连通;
所述矿石原料入料装置的物料出口与所述循环管路相连通;
所述循环管路上设有循环泵;
所述搅拌釜的循环物料出口与所述液固分离装置相连通。
所述的系统中,所述矿石原料入料装置的物料出口与所述循环管路的连接处靠近所述射流器一端。
所述的系统中,所述搅拌釜包括至少一个所述循环物料入口、至少一个所述循环物料出口和至少一个所述排料口。
所述的系统中,所述矿石原料入料装置包括粉体定量输送装置;
所述粉体定量输送装置通过一入料管与所述循环管路相连通;
所述粉体定量输送装置将硅酸盐矿石的原料粉通过所述入料管加入至所述循环管路中,并与所述循环管路中的物料混合。
所述的系统中,所述矿石原料入料装置还包括一与所述粉体定量输送装置相连通的预混罐;
所述预混罐的浆料出口和浆料入口分别与所述射流器和所述循环管路相连通;
所述循环管路中的部分物料通过所述循环泵引入至所述预混罐中使其与加入的硅酸盐矿石粉体预混;预混后的浆料通过所述浆料出口输入至所述射流器中。
所述的系统中,所述搅拌釜上设有一蒸汽出口,用以排出汽化的水蒸汽及少量未反应的氯化氢气体;
优选地,所述蒸汽出口通过一冷却水管路与所述循环管路相连通,所述冷却水管路上设有换热器,用于将水蒸汽及少量未反应的氯化氢气体冷凝后重新返回所述射流器中,同时可移去部分反应热量,保持反应温度稳定。
所述的系统中,所述液固分离装置可为沉降分离器、旋液分离器、离心机或过滤分离器。
本发明还提供了一种超细二氧化硅的制备方法,包括如下步骤:将氯化氢气体注入至硅酸盐矿石的浆料中,经反应即得到超细二氧化硅。
具体地,可利用本发明所述系统制备所述超细二氧化硅,包括如下步骤:
所述硅酸盐矿石的粉末经所述矿石原料入料装置与所述循环管路输送的循环液混合后高速泵入至所述射流器中;所述氯化氢气体通过所述射流器上的所述气体入口吸入至所述射流器中并溶解于所述循环液中,经盐酸与所述硅酸盐矿石的反应即得到二氧化硅;所述反应依次于所述射流器、所述循环管路和所述搅拌釜中进行(在所述射流器中进行初步接触反应,之后反应液进入所述循环管路和所述搅拌釜中进一步反应);
所述循环液为所述硅酸盐矿石与水形成的浆液(反应起初)或所述盐酸与所述硅酸盐矿石反应后的反应液。
本发明利用部分物料循环的目的如下:第一,用部分循环物料流过所述射流器,在所述射流器中形成负压,将氯化氢气体吸入,从而可以不使用压缩机对氯化氢气体加压;第二,循化的物料中未反应的硅酸钙在所述射流器及其后的管线与氯化氢快速反应,此时氯化氢的浓度高,管线中混合快,反应速率高。
本发明利用文丘里效应,在所述射流器中形成负压,从而将氯化氢气体吸入至所述射流器中进而与硅酸盐矿石进行反应,浸取二氧化硅。
上述的制备方法中,所述硅酸盐矿石可为长石(正长石、斜长石、副长石)、云母、橄榄石、石榴子石、红柱石、绿帘石、辉石、角闪石、硅灰石、滑石、高岭石、绿泥石和蛇纹石至少一种;
所述硅酸盐矿石的粉末的粒径不小于50目,基于泰勒标准筛制;
所述硅酸盐矿石中SiO 2的质量含量不低于40%;
所述射流器气体入口处氯化氢气体的压强与所述搅拌釜中的压强之差不大于所述射流器所能达到的最大真空度,如3.3kPa;
所述搅拌釜中的所述反应的温度可为70~120℃;
所述射流器中所述循环液与所述氯化氢气体的体积流量之比可为2~3.5:1。
上述的制备方法中,将所述硅酸盐矿石的粉末连续加入至所述射流器中即能实现所述超细二氧化硅的连续制备;
具体操作是:氯化氢气体通过所述射流器上的所述气体入口吸入所述射流器并溶解于所述循环液中,并与所述循环液中的硅酸盐矿石粉末初步反应,随后反应液进入所述搅拌釜进一步反应;所述搅拌釜内的浆液一部分排入所述液固分离装置进行固液分离操作得到超细二氧化硅,一部分通过所述循环泵进入所述循环管道中进行循环;
所述氯化氢气体与所述硅酸盐矿石的摩尔比可为2~3:1,其中所述硅酸盐矿石的量以SiO 2计。
上述的制备方法中,将所述硅酸盐矿石的粉末直接加入至所述搅拌釜中与水形成浆液;所述浆液经所述循环管路输入至所述射流器中;吸入至所述射流器中的所述氯化氢气体溶解于所述浆液中,经盐酸与所述硅酸盐矿石的反应即得到二氧化硅,进而实现所述超细二氧化硅的批式制备;
所述氯化氢气体与所述硅酸盐矿石的摩尔比为2~2.5:1,其中所述硅酸盐矿石的量以SiO 2计。
本发明的原理是在盐酸存在下对硅酸盐矿石进行浸取,使得浸取液中形成可溶性氯化物盐。矿物浸出的反应机理是在固相和液相的两相界面上发生的多相反应,浸出过程分为两个阶段:第 一阶段是矿物表面的浸出;第二阶段是毛细孔扩散浸出。前者浸出反应速度快,时间短;后者反应速度慢,时间长。
本发明利用氯化氢气体浸取硅酸盐矿制备超细二氧化硅的系统和方法,提供了连续化浸取硅酸盐矿石制备二氧化硅的工业化可行方案,而且通过选用射流器,采用氯化氢气体直接溶解在硅酸盐循环浆料中的方式,氯化氢气体和循环浆液接触后短时形成接近饱和的盐酸溶液,使浸取反应更容易进行,同时溶解热可以为浸取过程供热的优点,而且由于射流器中浆液的高浓度、高分散性和高浓度的盐酸溶液初步接触,大大提高了矿石的溶解效率和盐酸的利用率。
附图说明
图1为本发明实施例1利用氯化氢气体浸取硅酸盐矿制备超细二氧化硅的系统的示意图。
图2为本发明实施例2利用氯化氢气体浸取硅酸盐矿制备超细二氧化硅的系统的示意图之二。
图中各标记如下:
1除尘器、2储料罐、3粉体定量输送装置、4射流器、5循环泵、5’浆料泵、6搅拌釜、7液固分离装置、8循环管路、9换热器、10冷却水管线。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1、
图1为本发明第一实施例的制备系统的示意图,该系统包括矿石原料入料装置、射流器4、搅拌釜6和液固分离装置7。其中,矿石原料入料装置包括依次连接的除尘器1、储料罐2和粉体定量输送装置3;射流器4上设有液体入口(图中未标)、液体出口(图中未标)和气体入口(图中未标);射流器4的液体入口与搅拌釜6的排料口间连通一循环管路8,射流器4的液体出口与搅拌釜6的循环物料入口相连通;粉体定量输送装置3通过一入料管将硅酸盐矿石的原料粉加入至循环管路8中,并与循环管路8中的物料混合。搅拌釜6的排料口与液固分离装置7相连通;循环管路8上设有循环泵5,用于泵送循环液。
本发明制备系统中,搅拌釜6上设有一蒸汽出口(图中未标),用以排出汽化的水蒸汽及少量未反应的氯化氢气体。该蒸汽出口通过一冷却水管路10与循环管路8相连通,冷却水管路10上设有换热器9,用于将水蒸汽及少量未反应的氯化氢气体冷凝后重新返回射流器4中,同时可 移去部分反应热量,保持反应温度稳定。
本发明制备系统中,液固分离装置7可为沉降分离器、旋液分离器、离心机或过滤分离器。
本发明第一实施例的制备系统的工作过程为:采用连续操作,输送到储料罐2的矿石原料粉通过粉体定量输送装置3连续加入到循环管路8中并与循环液混合形成浆液,高速打入到射流器4中,利用文丘里效应,在射流器中形成负压,将氯化氢气体吸入并进行初步接触反应,随后反应液进入搅拌釜6进一步反应,搅拌釜反应后的浆液一部分排入固液分离装置7进行固液分离操作,一部分作为循环液由循环泵5泵入循环管路8。
作为一种具体的实施例,选择矿石原料粉的有效成分为CaSiO 3,搅拌釜的反应温度为120℃,氯化氢气体的温度为250℃,氯化氢气体的摩尔流量与CaSiO 3的摩尔流量之比为2:1的工艺条件,采用Aspen模拟得到的物料平衡和热量平衡数据见表1。
表1物料平衡及热量平衡数据
Figure PCTCN2019100145-appb-000001
作为一种具体的实施例,本例硅酸盐矿以硅灰石为例,硅灰石来源于江西上高,粒度200目(基于泰勒标准筛制),平均矿物组成如表2所示:
表2硅灰石的平均矿物组成(%)
Figure PCTCN2019100145-appb-000002
作为一种具体的实施例,储料罐体积为4m 3,粉体定量输送装置选用螺旋给料机,搅拌釜体积为4m 3,转速为30rpm,硅灰石粉的加入量为110kg/h,水的加入量为880kg/h,控制氯化氢的流量为45m 3/h(氯化氢气体与硅灰石粉的摩尔比为2:1,其中硅灰石粉的量以SiO 2计),设置搅拌釜的温度为80℃,停留时间为2h,循环流量为100kg/h,沉降后固渣经进一步洗涤过滤干燥得到超细SiO 2,技术指标如表3所示。
表3利用硅灰石矿粉制备的超细SiO 2技术指标
二氧化硅% 95
加热减量% 5.8
灼烧减量% 5.1
DBP吸收值/ml/g 2.98
BET比表面积/m 2/g 198
pH 6.4
平均粒径/um 10.5
铁/ppm 180
作为一种具体的实施例,本例硅酸盐矿以蛇纹石为例,蛇纹石来源于河南信阳,粒度200目(基于泰勒标准筛制),平均矿物组成如表4所示:
表4蛇纹石的平均矿物组成(%)
ω(氧化镁) ω(二氧化硅) ω(水)
44.3 44.1 12.9
     
作为一种具体的实施例,储料罐体积为4m 3,粉体定量输送装置选用螺旋给料机,搅拌釜体积为4m 3,转速为30rpm,蛇纹石粉的加入量为91kg/h,水的加入量为880kg/h,控制氯化氢的流量为45m 3/h(氯化氢气体与蛇纹石粉的摩尔比为2:1,其中蛇纹石粉的量以SiO 2计),设置搅拌釜的温度为120℃,停留时间为2h,循环流量为100kg/h,沉降后固渣经进一步洗涤过滤干燥粉碎得到超细SiO 2,技术指标如表5所示。
表5利用蛇纹石矿粉制备的超细SiO 2技术指标
二氧化硅% 95.8
加热减量% 5.36
灼烧减量% 6.21
DBP吸收值/ml/g 2.86
BET比表面积/m 2/g 188
pH 6.35
平均粒径/um 14.1
铁/ppm 182
实施例2、
图2为本发明第二实施例的制备系统示意图,其结构与图1所示系统基本相同,不同之处在于:矿石原料入料装置还包括一与粉体定量输送装置3相连通的预混罐11,预混罐11的浆料出口和浆料入口分别与射流器4和循环管路8相连通,循环管路8中的部分物料通过循环泵5引入至预混罐11中使其与加入的硅酸盐矿石粉体预混;预混后的浆料通过浆料出口输入至射流器4中。在预混罐11与射流器4相连通的管线上设有浆料泵5’。
本发明第二实施例的制备系统的工作过程为:采用连续操作,输送到储料罐2的矿石原料粉通过粉体定量输送装置3连续加入到预混罐11中,在预混罐11中与一定量的水搅拌混合均匀形成浆液,浆液经浆料泵5’高速打入到射流器4中,利用文丘里效应,在射流器中形成负压,将氯化氢气体吸入并进行初步接触反应,随后反应液进入搅拌釜6进一步反应,搅拌釜反应后的浆液一部分排入液固分离装置7进行固液分离操作,一部分作为循环液由循环泵5经循环管路8泵入预混罐11。
作为一种具体的实施例,本例硅酸盐矿以硅灰石为例,硅灰石来源于江西上高,粒度200目(基于泰勒标准筛制),平均矿物组成同表2,
作为一种具体的实施例,储料罐体积为4m 3,粉体定量输送装置选用螺旋给料机,预混罐体积为3m 3,搅拌釜体积为4m 3,转速为30rpm,硅灰石粉的加入量为110kg/h,水的加入量为880kg/h,控制氯化氢的流量为45m 3/h(氯化氢气体与硅灰石粉的摩尔比为2:1,其中硅灰石粉的量以SiO 2计),设置搅拌釜的温度为80℃,停留时间为2h,循环流量为100kg/h,沉降后固渣经进一步洗涤过滤干燥得到超细SiO 2,技术指标如表6所示。
表6利用硅灰石矿粉制备的超细SiO 2技术指标
二氧化硅% 96.3
加热减量% 5.76
灼烧减量% 5.24
DBP吸收值/ml/g 2.85
BET比表面积/m 2/g 214
pH 6.31
平均粒径/um 12.9
铁/ppm 182
作为一种具体的实施例,本例硅酸盐矿仍以硅灰石为例,硅灰石来源于江西上高,粒度200目(基于泰勒标准筛制),平均矿物组成同表2,
作为一种具体的实施例,采用间歇操作,将110kg硅灰石粉加入到搅拌釜中,加入880kg水,控制氯化氢的流量为45m 3/h(氯化氢气体与硅灰石粉的摩尔比为2:1,其中硅灰石粉的量以SiO 2计),设置搅拌釜的温度为80℃,反应时间为1h,循环流量为100kg/h,沉降后固渣经进一步洗涤过滤干燥得到超细SiO 2,技术指标如表7所示。
表7利用间歇操作制备的超细SiO 2技术指标
二氧化硅% 95.5
加热减量% 5.72
灼烧减量% 5.19
DBP吸收值/ml/g 2.95
BET比表面积/m 2/g 189
pH 6.4
平均粒径/um 14.1
铁/ppm 180
需要说明的是,根据本领域一般技术人员的常识,分解反应器和再生反应器上还会设置相应的温度、液位等测量,控制系统以及相应的阀门,附图中并没有一一表明,这并不表明本发明工艺中不包含这些常规的设计。根据转化率以及物料衡算调整本发明中原料的进料速率,也是本领域一般技术人员的常识的常规设计,在本发明中也没有一一说明,这也并不表明本发明工艺中不包含这种常规的设计。
依照本发明的实施例如上文所述,这些实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施例。显然,根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地利用本发明以及在本发明基础上的修改使用。

Claims (10)

  1. 一种利用氯化氢气体浸取硅酸盐矿制备超细二氧化硅的系统,包括矿石原料入料装置、射流器、搅拌釜和液固分离装置;
    所述射流器上设有液体入口、液体出口和气体入口;
    所述搅拌釜的循环物料出口通过循环管路与所述射流器的液体入口相连通;
    所述射流器的液体出口与所述搅拌釜的循环物料入口相连通;
    所述矿石原料入料装置的物料出口与所述循环管路相连通;
    所述循环管路上设有循环泵;
    所述搅拌釜的循环物料出口与所述液固分离装置相连通。
  2. 根据权利要求1所述的系统,其特征在于:所述矿石原料入料装置包括粉体定量输送装置;
    所述粉体定量输送装置通过一段入料管与所述循环管道相连通。
  3. 根据权利要求2所述的系统,其特征在于:所述矿石原料入料装置还包括一与所述粉体定量输送装置相连通的预混罐;
    所述预混罐的浆料出口和浆料入口分别与所述射流器和所述循环管路相连通。
  4. 根据权利要求1-3中任一项所述的系统,其特征在于:所述搅拌釜上设有一蒸汽出口。
  5. 根据权利要求4所述的系统,其特征在于:所述蒸汽出口通过一冷却水管路与所述循环管路相连通,所述冷却水管路上设有换热器。
  6. 根据权利要求1-5中任一项所述的系统,其特征在于:所述液固分离装置为沉降分离器、旋液分离器、离心机或过滤分离器。
  7. 一种超细二氧化硅的制备方法,其特征在于:利用权利要求1-6中任一项所述系统制备所述超细二氧化硅,包括如下步骤:
    所述硅酸盐矿石的粉末经所述矿石原料入料装置与所述循环管路输送的循环液混合后泵入至所述射流器中;所述氯化氢气体通过所述射流器上的所述气体入口吸入至所述射流器中并溶解于所述循环液中,经盐酸与所述硅酸盐矿石的反应即得到二氧化硅;所述反应依次于所述射流器、所述循环管路和所述搅拌釜中进行;
    所述循环液为所述硅酸盐矿石与水形成的浆液或所述盐酸与所述硅酸盐矿石反应后的反应液。
  8. 根据权利要求7所述的制备方法,其特征在于:所述硅酸盐矿石为长石、云母、橄榄石、石榴子石、红柱石、绿帘石、辉石、角闪石、硅灰石、滑石、高岭石、绿泥石和蛇纹石至少一种;
    所述硅酸盐矿石的粉末的粒径不小于50目;
    所述硅酸盐矿石中SiO 2的质量含量不低于40%;
    所述搅拌釜中的所述反应的温度为70~120℃;
    所述射流器中所述循环液与所述氯化氢气体的体积流量之比为2~3.5:1。
  9. 根据权利要求7或8所述的制备方法,其特征在于:将所述硅酸盐矿石的粉末连续加入至所述射流器中实现所述超细二氧化硅的连续制备。
  10. 根据权利要求7或8所述的制备方法,其特征在于:将所述硅酸盐矿石的粉末直接加入至所述搅拌釜中与水形成浆液;所述浆液经所述循环管路输入至所述射流器中;吸入至所述射流器中的所述氯化氢气体溶解于所述浆液中,经盐酸与所述硅酸盐矿石的反应即得到二氧化硅,进而实现所述超细二氧化硅的批式制备。
PCT/CN2019/100145 2019-04-08 2019-08-12 一种利用氯化氢气体浸取硅酸盐矿制备超细二氧化硅的系统及方法 WO2020206892A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/602,407 US20220204352A1 (en) 2019-04-08 2019-08-12 System and method for preparing ultrafine silica by leaching silicate ore using hydrogen chloride gas
EP19924491.4A EP3954654A4 (en) 2019-04-08 2019-08-12 SYSTEM AND METHOD FOR PRODUCING ULTRA FINE SILICON DIOXIDE BY LEACHING SILICATE ORE WITH HYDROGEN CHLORIDE GAS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910275773.3A CN109850911B (zh) 2019-04-08 2019-04-08 一种利用氯化氢气体浸取硅酸盐矿制备超细二氧化硅的系统及方法
CN201910275773.3 2019-04-08

Publications (1)

Publication Number Publication Date
WO2020206892A1 true WO2020206892A1 (zh) 2020-10-15

Family

ID=66903255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100145 WO2020206892A1 (zh) 2019-04-08 2019-08-12 一种利用氯化氢气体浸取硅酸盐矿制备超细二氧化硅的系统及方法

Country Status (4)

Country Link
US (1) US20220204352A1 (zh)
EP (1) EP3954654A4 (zh)
CN (1) CN109850911B (zh)
WO (1) WO2020206892A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109850911B (zh) * 2019-04-08 2023-11-28 原初科技(北京)有限公司 一种利用氯化氢气体浸取硅酸盐矿制备超细二氧化硅的系统及方法
CN113231192B (zh) * 2021-06-16 2022-05-27 江西省矿产资源保障服务中心 一种植硅体矿中二氧化硅的选矿方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB460410A (en) * 1936-06-17 1937-01-27 Camille Deguide Improvements in and relating to the treatment of silicate ores
JPH04224107A (ja) * 1990-12-21 1992-08-13 Nisshin Steel Co Ltd ケイ酸苦土ニッケル鉱石から精製シリカを採取する方法
CN1133586A (zh) * 1993-09-06 1996-10-16 施怀恩·奥勒拉德 一种由橄榄石生产球形二氧化硅的方法
CN101249965A (zh) * 2008-04-02 2008-08-27 中国高岭土公司 以高岭土为原料制备超细白炭黑和纳米氧化铝的方法
CN101312908A (zh) * 2005-12-01 2008-11-26 E&B纳米技术株式会社 制备纳米多孔二氧化硅的装置及其方法
CN109850911A (zh) * 2019-04-08 2019-06-07 原初科技(北京)有限公司 一种利用氯化氢气体浸取硅酸盐矿制备超细二氧化硅的系统及方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3130033A (en) * 1956-11-28 1964-04-21 Barnard & Leas Mfg Company Inc Method of producing a mixed liquid fertilizer containing nitrogen and phosphorus
GB1018013A (en) * 1963-05-21 1966-01-26 Twin Sisters Magnesia & Chemic Production of magnesium and other metal chlorides from siliceous magnesium minerals
US6506361B1 (en) * 2000-05-18 2003-01-14 Air Products And Chemicals, Inc. Gas-liquid reaction process including ejector and monolith catalyst
KR100938061B1 (ko) * 2001-05-10 2010-01-21 아크조 노벨 엔.브이. 무기 고체 입자들의 효과적인 전환을 위한 연속 방법 및장치
US7029507B2 (en) * 2001-11-29 2006-04-18 Nanoproducts Corporation Polishing using multi-metal oxide nanopowders
IS2013B (is) * 2002-11-27 2005-06-15 Ithntæknistofnun íslands Aðferð til framleiðslu á kísli
NO20040167L (no) * 2004-01-14 2005-07-15 Cod Technologies As Prosess for fremstilling av utfelt silika fra olivin
JP2010280520A (ja) * 2009-06-02 2010-12-16 Sumitomo Rubber Ind Ltd 非球状シリカ及びその製造方法
US8609068B2 (en) * 2010-02-24 2013-12-17 J.M. Huber Corporation Continuous silica production process and silica product prepared from same
EP2474390A1 (en) * 2011-01-06 2012-07-11 Tzer-Huang Guo Method and Apparatus for Recycling and Treating Waste Liquid that has been used in Cutting Mono Silicon
CN104487458B (zh) * 2012-03-29 2017-09-12 卡勒拉公司 使用电石石灰的方法和系统
CN103145181B (zh) * 2013-04-02 2014-12-03 宜宾天原集团股份有限公司 盐酸浸取法制备金红石用三相流态化连续反应装置
RU2670230C2 (ru) * 2013-05-30 2018-10-19 Сикэ Текнолоджи Аг Ускоритель для минеральных вяжущих веществ
US10486973B2 (en) * 2016-11-18 2019-11-26 Ppg Industries Ohio, Inc. Silica-based spherical particulates and methods of preparing the same
CN209974312U (zh) * 2019-04-08 2020-01-21 原初科技(北京)有限公司 一种利用氯化氢气体浸取硅酸盐矿制备超细二氧化硅的系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB460410A (en) * 1936-06-17 1937-01-27 Camille Deguide Improvements in and relating to the treatment of silicate ores
JPH04224107A (ja) * 1990-12-21 1992-08-13 Nisshin Steel Co Ltd ケイ酸苦土ニッケル鉱石から精製シリカを採取する方法
CN1133586A (zh) * 1993-09-06 1996-10-16 施怀恩·奥勒拉德 一种由橄榄石生产球形二氧化硅的方法
CN101312908A (zh) * 2005-12-01 2008-11-26 E&B纳米技术株式会社 制备纳米多孔二氧化硅的装置及其方法
CN101249965A (zh) * 2008-04-02 2008-08-27 中国高岭土公司 以高岭土为原料制备超细白炭黑和纳米氧化铝的方法
CN109850911A (zh) * 2019-04-08 2019-06-07 原初科技(北京)有限公司 一种利用氯化氢气体浸取硅酸盐矿制备超细二氧化硅的系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3954654A4 *

Also Published As

Publication number Publication date
CN109850911B (zh) 2023-11-28
EP3954654A4 (en) 2023-09-06
US20220204352A1 (en) 2022-06-30
EP3954654A1 (en) 2022-02-16
CN109850911A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
CN107523702B (zh) 一种钠盐体系加压氧化制备焦锑酸钠的方法
WO2020206892A1 (zh) 一种利用氯化氢气体浸取硅酸盐矿制备超细二氧化硅的系统及方法
CN103011226B (zh) 一种成核和生长分步进行的纳米碳酸钙的制备方法
CN111392702B (zh) 一种半水二水工艺制备浓磷酸和石膏粉的方法
CN1317191C (zh) 高纯碳酸锶制备方法
CN102961984A (zh) 药品级苯甲酸生产用的溶解罐及操作方法
CN104418332B (zh) 一种二氧化硅的制备方法
CN209974312U (zh) 一种利用氯化氢气体浸取硅酸盐矿制备超细二氧化硅的系统
CN107460330B (zh) 一种钾盐体系加压氧化制备焦锑酸钠的方法
CN103570075A (zh) 制备锰酸钾的反应器及系统
CN207108517U (zh) 一种硫铁矿渣制备聚合硫酸铁净水剂的装置
CN105110353B (zh) 一种以微硅粉为原料碳化副产水处理用纯碱溶液的方法
CN205556117U (zh) 一种阻燃级氢氧化镁的制备装置
CN103316621A (zh) 一种利用管道式反应装置制备三氯异氰尿酸的方法
CN115010142B (zh) 一种节能环保液态泡花碱生产设备及方法
CN101767822A (zh) 一种从铜冶炼过程中产生的含砷、铜废料中回收砷的方法
CN103570076B (zh) 制备锰酸钾的方法
CN207951396U (zh) 一种生产含hmb盐产物的反应装置
CN209098200U (zh) 一种用于高温加热器的镁管材料生产设备
CN105753215B (zh) 从钨冶炼废水中回收磷和钨的方法
CN113166847B (zh) 由铝土矿矿石生产氧化铝的方法和系统
CN102139921A (zh) 一种连续液相氧化反应塔生产铬酸盐的制备工艺
CN109019644A (zh) 一种用于高温加热器的镁管材料生产设备
CN103058245B (zh) 一种用硫酸钙生产氧化钙的设备与工艺
CN209456089U (zh) 一种铝系微纳米氢氧化铝生产用管道化溶出停留罐种分槽

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019924491

Country of ref document: EP

Effective date: 20211108