WO2020206882A1 - 一种基于光催化剂自分频的太阳能光热耦合制氢装置 - Google Patents

一种基于光催化剂自分频的太阳能光热耦合制氢装置 Download PDF

Info

Publication number
WO2020206882A1
WO2020206882A1 PCT/CN2019/098661 CN2019098661W WO2020206882A1 WO 2020206882 A1 WO2020206882 A1 WO 2020206882A1 CN 2019098661 W CN2019098661 W CN 2019098661W WO 2020206882 A1 WO2020206882 A1 WO 2020206882A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hydrogen production
frequency division
photothermal coupling
photothermal
Prior art date
Application number
PCT/CN2019/098661
Other languages
English (en)
French (fr)
Inventor
郭烈锦
敬登伟
曾子龙
马利静
刘茂昌
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2020206882A1 publication Critical patent/WO2020206882A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/127Sunlight; Visible light
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the invention belongs to the technical field of new energy preparation, and in particular relates to a solar photothermal coupling hydrogen production device based on a photocatalyst self-frequency division.
  • the solar photothermal coupling hydrogen production method based on the self-frequency division of photocatalyst is one of the efficient, low-cost, clean and pollution-free hydrogen production paths that we have proposed. Effectively ease the pressure on the construction of domestic hydrogen refueling stations.
  • the traditional photocatalytic water splitting is when sunlight is irradiated on the semiconductor material, the photons with energy higher than the semiconductor forbidden band width are absorbed by the semiconductor, and the electrons located in the semiconductor valence band are excited to transition to the conduction band and form at the valence band. Holes are called photo-generated electrons (e-) and photo-generated holes (h+), respectively. Photogenerated electrons and photogenerated holes can be used to reduce water and oxidize water to generate H2 and O2, respectively.
  • the purpose of the present invention is to provide a solar photothermal coupling hydrogen production device based on the photocatalyst self-frequency division, which is used to evaluate the hydrogen production performance of a series of photothermal coupling catalysts.
  • the device has the advantages of simplicity, convenience, cleanliness and environmental protection. .
  • a solar energy photothermal coupling hydrogen production device based on photocatalyst self-frequency division, comprising several reflectors, arc-shaped secondary reflection devices, and a heat-absorbing fluid layer, a photothermal coupling reaction layer and a vacuum layer arranged in sequence from the inside to the outside; among them,
  • Several reflecting mirrors are arranged side by side under the vacuum layer, and the opening direction of the arc-shaped secondary reflection device is downward and arranged above the vacuum layer; while the photothermal coupling reaction is proceeding, the test catalyst sample is placed in the photothermal coupling reactor, The reflector collects the light source and reflects it, and part of it is directly absorbed by the heat-absorbing fluid layer, and some is reflected by the arc-shaped secondary reflection device and further reflects the light source to the heat-absorbing fluid layer for absorption.
  • the vacuum layer is wrapped around the photothermal coupling reaction layer to prevent Convection heat loss with air.
  • a further improvement of the present invention is that the reflector adopts a linear Fresnel reflector, and its reflecting surface can be rotated according to different directions of solar radiation.
  • test catalyst sample is placed inside the photothermal coupling reaction layer in the middle of the sandwich cylinder, and the two sides of the sandwich are sealed at both ends.
  • a further improvement of the present invention is that the whole device is symmetrical with the central axis.
  • a further improvement of the present invention is that the light source is solar radiation that irradiates the surface of the earth throughout the year.
  • a further improvement of the present invention is that the catalyst in the test catalyst sample in the test catalyst sample can transmit the infrared light part of the solar radiation light and absorb the ultraviolet light and visible light part thereof.
  • the present invention aims to provide a safe and feasible test device for coupling light and heat physical fields for the novel photothermal coupling catalyst, and provide a reaction place for further research on the coupling mechanism of the photothermal catalyst.
  • the present invention places the test catalyst sample in the photothermal coupling reactor, the reflector collects the light source and reflects it, partly absorbed by the heat-absorbing fluid layer, and partly reflected by the arc-shaped secondary reflecting device The light source is further reflected to the endothermic fluid layer for absorption, the vacuum layer is wrapped around the light-heat coupling reaction layer to prevent convective heat loss with the air, and the endothermic fluid layer is placed in the innermost layer of the entire interlayer of the reactor.
  • the present invention adjusts the light absorption characteristics of the catalyst by adding a co-catalyst during the preparation process of the catalyst, accurately absorbs the ultraviolet light or visible light of a specific frequency and filters out the infrared light region of the specific frequency, and then reduces the infrared light. Part of the carried heat is transferred to the reaction device through the endothermic fluid medium to experiment with the purpose of light-heat coupling hydrogen production.
  • the tested catalyst sample is placed inside the photothermal coupling reaction layer in the middle of the sandwich cylinder, and both ends of the sandwich layer are sealed.
  • the reaction fluid layer is surrounded by a uniform and stable endothermic fluid layer, which can prevent the problem of test errors caused by partial overheating of the reactor.
  • linear Fresnel mirrors are placed side by side directly below the entire photothermal coupling hydrogen production device.
  • the linear Fresnel reflector collects solar radiation light and reflects it to the whole part of the interlayer of the reactor and the arc-shaped secondary reflector.
  • the arc-shaped secondary reflection device further reflects the solar radiation light above the whole part of the interlayer of the reactor to ensure a higher utilization rate of sunlight.
  • a low-cost linear Fresnel reflector condenser is used to reduce the production cost.
  • the entire reaction device is symmetrical on the central axis and has a stable structure.
  • the light source is sunlight that illuminates the surface of the earth throughout the year. It has the advantages of low cost, high efficiency and environmental protection.
  • the present invention cleverly based on the selective frequency division characteristics of the catalyst itself, the ultraviolet light partly penetrates the vacuum layer and directly irradiates the surface of the catalyst to induce the semiconductor to perform photocatalytic reaction, and the infrared light part passes through the reaction vacuum layer and the photothermal coupling In the reaction layer, the heat carried by it is absorbed by the heat-absorbing fluid layer, and then the heat is supplied to the photothermal reaction layer in the reverse direction to achieve the purpose of photothermal coupling.
  • the invention is clean and environmentally friendly, simple and easy to implement, and can be stably used in the hydrogen production performance test of the photothermal coupling catalyst with the self-frequency division effect.
  • Figure 1 is a schematic diagram of the device of the present invention.
  • Linear Fresnel reflector 2. Vacuum layer, 3. Light-heat coupling reaction layer, 4. Heat-absorbing fluid layer, 5. Arc-shaped secondary reflecting device, 6. Light source.
  • the present invention provides a solar photothermal coupling hydrogen production device based on photocatalyst self-frequency division, which includes a linear Fresnel reflector 1, a vacuum layer 2, a photothermal coupling reaction layer 3, and an endothermic fluid layer 4.
  • the entire catalyst evaluation process mainly includes: firstly, a catalyst with self-frequency division characteristics obtained through precise control methods such as co-catalysts is required, and then the catalyst and the reaction fluid are evenly mixed and placed on the photothermal coupling reaction layer 3, linear Fresnel mirror 1 Reflect the reflected solar radiation light to the interlayer part of the reactor.
  • the ultraviolet light area and part of the visible light of the solar radiation light part are absorbed by the catalyst in the reaction fluid layer and then projected to the light-absorbing fluid layer to transfer heat to the endothermic fluid for conversion.
  • the heat energy is used to reversely heat the reactor to realize the quantitative coupling of the two physical fields of light and heat.
  • the direction of the linear Fresnel reflector 1 can be adjusted according to the specific direction at the time to ensure that the reflected solar radiation is aligned with the entire reactor device.
  • the prerequisite for the operation of the reaction device is mainly based on the self-frequency dividing characteristics of the prepared catalyst, so it is only necessary to figure out the light absorption characteristics of the catalyst before the reaction to obtain the ratio of light/heat units absorbed by the reactor. It is convenient to realize the quantitative input of light and heat in the photothermal reaction, so as to further explore the mechanism of photothermal coupling.

Abstract

一种基于光催化剂自分频的太阳能光热耦合制氢装置,包括若干反射镜、圆弧形二次反射器件(5)以及由内至外依次设置的吸热流体层(4)、光热耦合反应层(3)和真空层(2);其中,若干反射镜并排设置在真空层(2)的下方,圆弧形二次反射器件(5)的开口方向朝下并设置在真空层(2)上方;在光热耦合反应进行时,测试催化剂样品放置在光热耦合反应器内,反射镜收集光源(6)后反射,部分通过吸热流体层(4)直接吸收,部分通过圆弧形二次反射器件(5)反射后进一步将光源(6)反射至吸热流体层(4)吸收,真空层(2)包裹在光热耦合反应层(3)外围进而防止与空气的对流热损。基于光催化剂自分频的太阳能光热耦合制氢装置清洁环保、简单易行,可稳定用于光热耦合催化剂产氢性能测试。

Description

一种基于光催化剂自分频的太阳能光热耦合制氢装置 【技术领域】
本发明属于新能源制备技术领域,具体涉及一种基于光催化剂自分频的太阳能光热耦合制氢装置。
【背景技术】
近年来随着国际上美中日韩等国家都在积极推进氢氧燃料电池汽车的发展和合作,我国车用氢能的发展方向已愈发明朗,国家和地方政府也出台了多项产业政策和规划,并已初见成效。但是目前国内加氢站核心设备研发还处于起步阶段,高压氢气压缩机系统要依靠进口。国内生产氢气压缩机企业较多,但输出压力均在30兆帕以下,无法满足加氢站技术要求。所以制氢技术的发展和提升仍然是十分有必要的,基于光催化剂自分频的太阳能光热耦合制氢方法是我们提出来的能高效、低成本、清洁无污染的制氢路径之一,能够有效缓解国内加氢站建设的压力。
传统的光催化分解水是通过太阳光照射到半导体材料上时,能量高于半导体禁带宽度的光子被半导体吸收,位于半导体价带上的电子被激发跃迁到导带,并在价带位置形成空穴,分别称为光生电子(e-)和光生空穴(h+)。光生电子和光生空穴分别可以用于还原水和氧化水产生H2和O2。但是我们注意到,这种光催化分解水的方式只是利用了太阳能大部分的紫外光和部分可见光为激发光源,而大大忽视了对太阳能红外光部分能量的利用,至使太阳能制氢转化效率一直徘徊于较低水平。基于此,希望在反应装置上加强对太阳能红外光部分的利用,即光热耦合制氢的思路。由于光热耦合制氢在国际和国内的高校和研究所研究并不 是很广泛,基本的反应装置也不是特别齐全,因此有进行反应器设计的必要。
【发明内容】
本发明的目的在于提供一种基于光催化剂自分频的太阳能光热耦合制氢装置,利用此装置来对一系列光热耦合催化剂进行制氢性能的评价,该装置具有简单方便、清洁环保等优点。
本发明采用如下技术方案来实现的:
一种基于光催化剂自分频的太阳能光热耦合制氢装置,包括若干反射镜、圆弧形二次反射器件以及由内至外依次设置的吸热流体层、光热耦合反应层和真空层;其中,
若干反射镜并排设置在真空层的下方,圆弧形二次反射器件的开口方向朝下并设置在真空层上方;在光热耦合反应进行时,测试催化剂样品放置在光热耦合反应器内,反射镜收集光源后反射,部分通过吸热流体层直接吸收,部分通过圆弧形二次反射器件反射后进一步将光源反射至吸热流体层吸收,真空层包裹在光热耦合反应层外围进而防止与空气的对流热损。
本发明进一步的改进在于,反射镜采用线性菲涅尔反射镜,且其反射面能够根据太阳辐射光的不同方位来进行旋转。
本发明进一步的改进在于,测试催化剂样品放置在夹层式圆筒中间的光热耦合反应层内部,两边夹层两端有封口。
本发明进一步的改进在于,该装置整体呈中心轴对称。
本发明进一步的改进在于,光源为一年四季照射到地球表面的太阳辐射光。
本发明进一步的改进在于,测试催化剂样品中测试催化剂样品中的催化剂能够让太阳辐射光中的红外光部分透过,吸收其中的紫外光和可见光部分。
本发明具有如下有益的技术效果:
本发明旨在为新型的光热耦合催化剂提供一个安全可行的,耦合光、热两种物理场的测试装置,为进一步研究光热催化剂的耦合机制提供反应场所。在光热耦合反应进行时,本发明将测试催化剂样品放置在光热耦合反应器内,反射镜收集光源后反射,部分通过吸热流体层直接吸收,部分通过圆弧形二次反射器件反射后进一步将光源反射至吸热流体层吸收,真空层包裹在光热耦合反应层外围进而防止与空气的对流热损,吸热流体层放置在反应器夹层整体部分的最里层。便于将透过反应流体层的红外光部分热量吸收用来反应器反向加热。因此,本发明根据在催化剂制备过程中,对催化剂通过加入助催化剂等方式来调控催化剂的吸光特性,精准地吸收特定频率的紫外光或可见光并过滤掉特定频率的红外光区域,继而将红外光部分所携带热量通过吸热流体介质传递给反应装置,实验光热耦合制氢的目的。
进一步,所测试催化剂样品放置在夹层式圆筒中间的光热耦合反应层内部,两边夹层两端有封口。反应流体层被均一、稳定的吸热流体层包围,能够防止反应器局部过热而造成的测试误差的问题。
进一步,光热耦合产氢装置整体正下方放置并排的线性菲涅尔反射镜。线性菲涅尔反射镜收集太阳能辐射光后反射至反应器夹层整体部分和弧形二次反射器件。弧形二次反射器件进一步将太阳辐射光反射至反应器夹层整体部分的上方以保证太阳光更高的利用率,另外采用低成本的线性菲涅尔反射镜聚光器降低了生产成本。
进一步,整个反应装置呈中心轴对称,结构稳定。
进一步,光源为一年四季照射到地球表面的太阳光。具有低成本、高效、环 保的优点。
综上所述,本发明巧妙地根据催化剂本身的选择性分频特性,紫外光部分透过真空层直接照射到催化剂表面诱导半导体进行光催化反应,红外光部分穿过反应真空层和光热耦合反应层,其所携带热量被吸热流体层吸收,进而向光热反应层反向供给热量,实现光热耦合的目的。本发明清洁环保、简单易行,可稳定用于具有自分频效应的光热耦合催化剂产氢性能测试。
【附图说明】
图1为本发明的装置示意图。
附图标记说明:
1、线性菲涅尔反射镜,2、真空层,3、光热耦合反应层,4、吸热流体层,5、圆弧形二次反射器件,6、光源。
【具体实施方式】
以下结合附图通过具体实施例对本发明作进一步详细说明。以下具体实例有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,在不脱离本发明构思的前提下,都可以对装置做出若干的变形和改造。这些都属于本发明的保护范围
如图1所示,本发明提供一种基于光催化剂自分频的太阳能光热耦合制氢装置,包括有线性菲涅尔反射镜1、真空层2、光热耦合反应层3、吸热流体层4、圆弧形二次反射器件5和光源6。整个催化剂评测过程主要包括,首先需要有通过助催化剂等精准调控手段得到的具有自分频特性的催化剂,再将催化剂与反应流体均匀混合后放置在光热耦合反应层3,线性菲涅耳反射镜1将反射来的太阳辐射光反射至反应器夹层部分,太阳能辐射光部分的紫外光区域和部分可见光被 反应流体层中的催化剂吸收后进一步投射到吸光流体层,将热量传递给吸热流体转化为热能用于对反应器进行反向加热,实现对光、热两种物理场的定量耦合。
线性菲涅尔反射镜1的方向可以根据具体当时的方向进行调整,保证反射后的太阳辐射光对准反应器装置整体。
反应装置工作的前提主要基于所制备催化剂的自分频特性,所以反应前只需要弄清楚催化剂的吸光特性后便可以得到反应器所吸收的光/热单元的比例。便于实现对光热反应中的光热的定量输入,从而进一步挖掘光热耦合的机理。

Claims (6)

  1. 一种基于光催化剂自分频的太阳能光热耦合制氢装置,其特征在于,包括若干反射镜、圆弧形二次反射器件(5)以及由内至外依次设置的吸热流体层(4)、光热耦合反应层(3)和真空层(2);其中,
    若干反射镜并排设置在真空层(2)的下方,圆弧形二次反射器件(5)的开口方向朝下并设置在真空层(2)上方;在光热耦合反应进行时,测试催化剂样品放置在光热耦合反应器内,反射镜收集光源(6)后反射,部分通过吸热流体层(4)直接吸收,部分通过圆弧形二次反射器件(5)反射后进一步将光源(6)反射至吸热流体层(4)吸收,真空层(2)包裹在光热耦合反应层(3)外围进而防止与空气的对流热损。
  2. 根据权利要求1所述的一种基于光催化剂自分频的太阳能光热耦合制氢装置,其特征在于,反射镜采用线性菲涅尔反射镜(1),且其反射面能够根据太阳辐射光的不同方位来进行旋转。
  3. 根据权利要求1所述的一种基于光催化剂自分频的太阳能光热耦合制氢装置,其特征在于,测试催化剂样品放置在夹层式圆筒中间的光热耦合反应层(3)内部,两边夹层两端有封口。
  4. 根据权利要求1所述的一种基于光催化剂自分频的太阳能光热耦合制氢装置,其特征在于,该装置整体呈中心轴对称。
  5. 根据权利要求1所述的一种基于光催化剂自分频的太阳能光热耦合制氢装置,其特征在于,光源(6)为一年四季照射到地球表面的太阳辐射光。
  6. 根据权利要求5所述的一种基于光催化剂自分频的太阳能光热耦合制氢装置,其特征在于,测试催化剂样品中测试催化剂样品中的催化剂能够让太阳辐射光中的红外光部分透过,吸收其中的紫外光和可见光部分。
PCT/CN2019/098661 2019-04-09 2019-07-31 一种基于光催化剂自分频的太阳能光热耦合制氢装置 WO2020206882A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910280176.X 2019-04-09
CN201910280176.XA CN109985590B (zh) 2019-04-09 2019-04-09 一种基于光催化剂自分频的太阳能光热耦合制氢装置

Publications (1)

Publication Number Publication Date
WO2020206882A1 true WO2020206882A1 (zh) 2020-10-15

Family

ID=67131117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098661 WO2020206882A1 (zh) 2019-04-09 2019-07-31 一种基于光催化剂自分频的太阳能光热耦合制氢装置

Country Status (2)

Country Link
CN (1) CN109985590B (zh)
WO (1) WO2020206882A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112844422A (zh) * 2021-02-03 2021-05-28 西北工业大学深圳研究院 一种海水制氢的气/固两相界面光催化体系及制备使用方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109985590B (zh) * 2019-04-09 2020-10-27 西安交通大学 一种基于光催化剂自分频的太阳能光热耦合制氢装置
CN114768717B (zh) * 2022-04-15 2024-01-30 中国科学院电工研究所 一种基于分光谱的太阳能光热协同催化制气装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101367505A (zh) * 2008-09-19 2009-02-18 燕山大学 一种利用太阳能分解水制备氢气的方法
US20100300892A1 (en) * 2009-06-02 2010-12-02 Herbert Franz Matare Apparatus and Method for Solar Hydrogen Synfuel Production
CN103383150A (zh) * 2013-07-08 2013-11-06 西安交通大学 一种线性菲涅尔反射式中低温太阳能热化学利用装置
EP2789928A1 (en) * 2011-11-21 2014-10-15 Guradoor, S.L. Parabolic concentrating solar collector
CN106374815A (zh) * 2016-09-20 2017-02-01 中国科学院工程热物理研究所 基于纳米催化剂的太阳能光伏‑热化学复合装置及发电系统
CN107416768A (zh) * 2017-09-13 2017-12-01 哈尔滨工业大学(威海) 一种通过光谱分频实现太阳能光催化与中低温热化学联合产能系统及方法
CN109985590A (zh) * 2019-04-09 2019-07-09 西安交通大学 一种基于光催化剂自分频的太阳能光热耦合制氢装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2240214A1 (en) * 1998-05-05 1999-11-05 James Thomas Beck Process for the production of hydrogen by solar decomposition of water
EP1188711A1 (en) * 2000-09-15 2002-03-20 The Hydrogen Solar Production Company Limited Photocatalyst for use in the production of hydrogen from water or aqueous solutions of organic compounds
AU2007289219B2 (en) * 2006-08-29 2012-07-12 The Regents Of The University Of Colorado, A Body Corporate Rapid solar-thermal conversion of biomass to syngas
US20100242354A1 (en) * 2009-06-09 2010-09-30 Sundrop Fuels, Inc. Systems and methods for reactor chemistry and control
WO2011155962A1 (en) * 2010-06-08 2011-12-15 Sundrop Fuels, Inc. Various methods and apparatuses for an ultra-high heat flux chemical reactor
CN101597026B (zh) * 2009-07-03 2011-06-22 西安交通大学 聚焦太阳能热驱动的生物质超临界水气化制氢系统与方法
CN103372413B (zh) * 2012-04-11 2015-08-12 中国科学院工程热物理研究所 一种金属泡沫载体催化床太阳能吸收反应装置
CN108055001B (zh) * 2017-12-06 2019-10-11 西安交通大学 一种可动态调控的太阳能聚光分频热电联产装置及方法
CN108554333B (zh) * 2018-04-19 2020-10-09 中国科学院工程热物理研究所 太阳能热化学吸收反应装置及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101367505A (zh) * 2008-09-19 2009-02-18 燕山大学 一种利用太阳能分解水制备氢气的方法
US20100300892A1 (en) * 2009-06-02 2010-12-02 Herbert Franz Matare Apparatus and Method for Solar Hydrogen Synfuel Production
EP2789928A1 (en) * 2011-11-21 2014-10-15 Guradoor, S.L. Parabolic concentrating solar collector
CN103383150A (zh) * 2013-07-08 2013-11-06 西安交通大学 一种线性菲涅尔反射式中低温太阳能热化学利用装置
CN106374815A (zh) * 2016-09-20 2017-02-01 中国科学院工程热物理研究所 基于纳米催化剂的太阳能光伏‑热化学复合装置及发电系统
CN107416768A (zh) * 2017-09-13 2017-12-01 哈尔滨工业大学(威海) 一种通过光谱分频实现太阳能光催化与中低温热化学联合产能系统及方法
CN109985590A (zh) * 2019-04-09 2019-07-09 西安交通大学 一种基于光催化剂自分频的太阳能光热耦合制氢装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112844422A (zh) * 2021-02-03 2021-05-28 西北工业大学深圳研究院 一种海水制氢的气/固两相界面光催化体系及制备使用方法

Also Published As

Publication number Publication date
CN109985590B (zh) 2020-10-27
CN109985590A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
WO2020206882A1 (zh) 一种基于光催化剂自分频的太阳能光热耦合制氢装置
US20220024759A1 (en) Device for producing hydrogen through photothermal coupling of solar energy based on frequency division technology
CN1773190B (zh) 一种太阳能热电联供系统
CN104617863B (zh) 基于透镜聚光原理的光伏‑光催化复合系统
CN103383150A (zh) 一种线性菲涅尔反射式中低温太阳能热化学利用装置
CN102155797A (zh) 用于光热发电的太阳能收集装置
CN102141301B (zh) 管腔一体化碟式太阳能热接收器
CN110467152A (zh) 一种基于高聚光点光源的光热耦合微流道制氢反应装置
Liu et al. Solar thermal power generation technology research
CN111747379B (zh) 一种基于太阳能光热的化学链连续制氧系统及方法
CN202092333U (zh) 全智能自动聚光反射太阳能热水系统
CN216048431U (zh) 一种可再生深空能源高效转化供冷供热供电装置
CN201973900U (zh) 一种管腔一体化碟式太阳能热接收器
WO2022160780A1 (zh) 一种可再生深空能源高效转化供冷供热供电装置
CN211385000U (zh) 一种基于螺旋导流结构的太阳能热化学反应器
CN104329812B (zh) 内壁绕有u型同轴套管反应器的方形腔式集热器
CN113945015A (zh) 一种分光反射高倍聚光光伏光热一体化腔式接收器
CN206329440U (zh) 浮力发电机的太阳能装置和系统
CN114768717B (zh) 一种基于分光谱的太阳能光热协同催化制气装置
CN104964461B (zh) 一种太阳能水工质腔式吸热器
CN204285842U (zh) 内壁绕有u型同轴套管反应器的方形腔式集热器
CN209801831U (zh) 一种碟式太阳能螺旋盘管腔式吸热器装置
CN213063847U (zh) 一种塔式太阳能吸热发电装置
CN201885434U (zh) 旋转抛物面聚光旋转抛物面采光太阳能热水器
WO2023061426A1 (zh) 太阳能储能及发电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19924131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19924131

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19924131

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 30/11/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19924131

Country of ref document: EP

Kind code of ref document: A1