WO2020206567A1 - Process for obtaining lithium carbonate from spodumene ore by sulphation with ferrous sulphate at high temperature - Google Patents

Process for obtaining lithium carbonate from spodumene ore by sulphation with ferrous sulphate at high temperature Download PDF

Info

Publication number
WO2020206567A1
WO2020206567A1 PCT/CL2020/050038 CL2020050038W WO2020206567A1 WO 2020206567 A1 WO2020206567 A1 WO 2020206567A1 CL 2020050038 W CL2020050038 W CL 2020050038W WO 2020206567 A1 WO2020206567 A1 WO 2020206567A1
Authority
WO
WIPO (PCT)
Prior art keywords
spodumene
lithium
lithium carbonate
reactor
liai
Prior art date
Application number
PCT/CL2020/050038
Other languages
Spanish (es)
French (fr)
Inventor
Igor Wilkomirsky Fuica
Fernando Parada Luna
Original Assignee
Universidad De Concepcion
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Concepcion filed Critical Universidad De Concepcion
Publication of WO2020206567A1 publication Critical patent/WO2020206567A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • C01D7/06Preparation via sodium or potassium magnesium carbonate
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • C22B1/06Sulfating roasting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the technology is oriented to the mining area, more particularly, it corresponds to a process to produce lithium carbonate or other lithium chemical products from concentrates of spodumene mineral, LiAI (Si03) 2.
  • Lithium has become in just over a decade a central player in the technological change that is taking place around the world in the automotive industry, and since the new generation of these will be electric, it will require electrical storage batteries. large capacity.
  • Lithium is the ideal metal to make batteries of high charge density, because it has the highest standard potential positive oxidation among all elements, with 3.05 volts at 25 Q C and an electrochemical equivalent of 13.9 kcal / g.
  • the use of lithium in rechargeable batteries increases at rates of 15 to 20% per year, already exceeding 52% of the total world lithium consumption in 2018.
  • Other important uses of this metal are as carbonate, hydroxide, chloride and other compounds organic and inorganic, which represent the rest of world consumption.
  • lithium pyroxenes such as the double pyroxene of lithium and aluminum called “spodumene” with the chemical formula LiAI (Si03) 2 or U2O.
  • AI2O3 ⁇ 4S1O2, which has a lithium content of 3.73%.
  • Other lithium minerals with commercial levels of lithium are lepidolite (K (Li, Al) 3 (Si, AI) 40io (F, OH) 2; petalite (LiAISUO-io) and others with lower lithium content such as hectorites and montmorillonites. Of all these minerals, the most important and currently most exploited is spodumene.
  • Spodumene occurs in nature in the monoclinic crystalline form that is virtually insoluble even in concentrated sulfuric acid, so it must be transformed to the crystalline state.
  • tetragonal b which is soluble in acid, a reaction that occurs above 800 Q C.
  • the process employed in universal virtually form to treat spodumene to as detailed in DE 3622105 A the ® consists of a first calcination step at 800-1 100 Q C, alone or in the presence of lime (CaO), limestone (CaCC> 3) and / or calcium sulfate (CaSC) to transform it from a crystalline form to a crystalline form b and neutralize part of the silica to form a calcium silicate.
  • lime CaO
  • limestone limestone
  • CaSC calcium sulfate
  • the calcined spodumene b is ground and then treated with concentrated sulfuric acid (96-98%) at 200-280 Q C in a reactor (furnace) stirred, thereby forming lithium sulfate and aluminum sulfate, which are then dissolved by leaching with water at 50 - 60 ° C for subsequent recovery.
  • the reaction stage of spodumene b with concentrated sulfuric acid at 200 - 280 ° C is difficult and complicated, and occurs in the form of a semi-plastic paste with the appearance of pasty cement and with generation of gases with SO2 , SO3 and gaseous sulfuric acid, which requires agitated reactors such as mixer or deck ovens, with control and neutralization of the exhaust gases.
  • agitated reactors such as mixer or deck ovens
  • from 50 to 200% excess of acid is used with respect to the stocheometric, since part of it evaporates, which must be captured and neutralized.
  • the hot sulfuric acid sulphation stage is the most complex of the process and represents a major technical and operational challenge.
  • the semi dry paste discharging the reactor is cooled directly in the leach tanks, maintaining the temperature of leaching 50 - 60 Q C.
  • the overall reaction which occurs with sulfuric acid in the sulfation step is:
  • Calcination can also be done with calcium sulfate (anhydrite, CaSC> 4).
  • anhydrite CaSC> 4
  • various solid-state reactions can occur between spodumene and anhydrite to form lithium sulfate and other compounds such as single, double, and triple oxides.
  • a different option is represented by the alkaline digestion with sodium hydroxide (NaOH), as mentioned in the Chinese patent CN 104003428 A (7) where the spodumene is treated with a concentrated solution of sodium hydroxide in a plug flow type reactor. from 0.5 to 5 has from 90 to 250 Q C and pressure to dissolve about 95% of the spodumene. Treatment of the solution is complex due to the formation of sodium silicate and sodium aluminate.
  • a similar process was patented by Palmer et al. (EP1994191 A2) ⁇ 8 > where NaOH or KOH is used for the same purpose.
  • Table 1 contains a summary of the studies and commercial operations for the treatment of spodumene, as well as the reagents and conditions used. It is observed that, independent of the additive added in the calcination stage and in the chemical treatment stage, the lithium extraction in the leaching stage fluctuates between 85 to 90% and that of all the reagents used in the chemical stage (extraction), H2SO4 appears as the most recurrent.
  • the extraction of lithium does not show a significant variation if limestone (or lime) is added or not in the calcination stage.
  • limestone or lime
  • the presence of CaO fixes part of the spodumene silica as insoluble calcium silicate, since silica in the presence of sulfuric acid at high temperature forms a gel in the leaching stage that can be infiltrable and, in addition, part of this can react with the lithium oxide formed.
  • Figure 1 Process diagram for producing lithium carbonate from spodumene concentrates using separate calcination and sulphation steps.
  • Figure 2 Thermodynamic diagram of phase stability of the Fe - S - O system at 800 Q C.
  • Figure 4 Diagram of standard free energy decomposition of ferrous sulfates (FeSC> 4), lithium (U2SO4) and aluminum (Al2 (S04) 3).
  • Figure 5 One-stage calcination-sulfation reactor.
  • Figure 6 Ferrous sulfate sulfation-decomposition double concentric reactor.
  • Figure 7 Detail of the double concentric reactor, where in (a) the cross section of both reactors is shown and in (b) the detail of the internal reactor.
  • the present technology corresponds to a process to produce lithium carbonate or other lithium chemical products from spodumene mineral concentrates, LiAI (Si03) 2.
  • the calcination stages of the spodumene and the sulphation of the spodumene b are carried out separately and sequentially, coupled and at high temperature, or together, using ferrous sulfate (FeSÜ4) or ferrous sulfate (FeSÜ4) in the sulphation stage instead of sulfuric acid.
  • ferric sulfate Fe2 (SC> 4) 3
  • U2SO4 lithium sulfate
  • Al2 (SC> 4) 3 aluminum sulfate
  • the calcination stage of spodumene a to form b is carried out in a rotary reactor and part of the hot gases leaving the calcination reactor are used to dehydrate the hydrated ferrous sulphate, which is the commercial compound generally used in industry for its low cost and wide availability. If a single reactor is used, the calcination and sulfation stages occur simultaneously. In this case, the reactor is heated externally to keep the reacting gases inside.
  • the sulphated spodumene calcine is cooled and then leached with water, and with part of the mother liquor (generated in the precipitation of lithium carbonate).
  • Aluminum is then precipitated as insoluble alumina (AI2O3) and transforms lithium sulfate into lithium hydroxide (LiOH) in solution, using milk of lime (Ca (OFl2).
  • the solution containing lithium as hydroxide can be treated as different forms, depending on the desired lithium end product. If the end product is lithium carbonate, the The solution is treated with soda ash (Na2CC> 3) to precipitate lithium carbonate (U2CO3).
  • the spodumene concentrate 1 normally of a grade higher than 90% of spodumene and with a particle size under 100 ASTM mesh (-0.1 5 mm), is fed to a calcination reactor 2, such as a rotary kiln or other appropriate conventional heated directly with oil or other fuel 3 in conventional way.
  • This calciner is operated at temperature between 600 to 300 Q C 1, preferably 900 to 1 200 Q C to transform the spodumene from monoclinic crystalline form its tetragonal crystalline form aa b.
  • the reaction that occurs is as follows:
  • the reaction time of the material (spodumene) 62 in the calcination reactor 2 ranges from 0.5-6 h, preferably between 2 to 4 h.
  • the spodumene calcine b 5 discharges hot from the calciner 2 through a conventional gas seal system 19 such as a rotary star valve into a sulfation reactor 22.
  • Part or all of the combustion exhaust gases 4 from reactor 2 are taken 6 to a conventional gas cleaning system 7 such as one or more cyclones.
  • the separated powder 18 is discharged through a conventional gas seal system 17 such as a rotary star valve and is joined in a common duct 20 with the calcine 5 from the calcination reactor to feed the sulfation reactor 22.
  • the clean hot gases 8 coming from the cleaning system 7 are taken to a conventional dehydration reactor 9 such as a rotary kiln, which is fed with commercial hydrated iron sulfate (ferrous sulfate) 10, which normally contains 7 molecules of water. hydration as FeSÜ4 7H2O. It is also possible to use ferric sulfate Fe2 (SÜ4) 3, but its cost is considerably higher than ferrous sulfate.
  • FeS0 4 nH 2 0 FeS0 4 + nH 2 0
  • the dehydration temperature of FeSC hteO and Fe2 (S04) 3-nH20 is 200 350 Q C, preferably between 220-260 Q C and a retention time in the reactor 9 0.25 to 4 h, preferably between 1 - 2 h.
  • the inlet temperature of the hot gas 8 is controlled by the addition of cold air 72 by a conventional duct 73 to prevent the ferrous sulfate (or ferric sulfate) or their sulfates
  • Anhydrous 63 within the reactor 9 exceed 350 Q C , temperature above which begins a slight decomposition of both ferrous and ferric sulfate.
  • the hot gases 11 coming from the reactor 9 are cleaned in a conventional gas cleaning system 12 such as one or more cyclones and the clean gas 13 is sent to the atmosphere since it is essentially air and water vapor, and the collected dust 14 it can be returned to reactor 9 along with feed 10.
  • a conventional gas cleaning system 12 such as one or more cyclones
  • the clean gas 13 is sent to the atmosphere since it is essentially air and water vapor, and the collected dust 14 it can be returned to reactor 9 along with feed 10.
  • Anhydrous ferrous sulfate 15 (FeSÜ4) (or anhydrous ferric sulfate (Fe2 (SÜ4) 3)) discharges from reactor 9 through a conventional gas seal 16 such as a rotary star valve, and ferrous (or ferric) sulfate together with the calcine 5 and powders 18 from the calcination reactor 2, they are fed through a common pipeline 20 towards a sulfation reactor 22 such as a rotary kiln or other, provided with a conventional gas shut-off 32, in which they occur now the thermal decomposition reactions of ferrous (or ferric) sulfate above 600 Q C, according to the following reactions in the absence of oxygen:
  • ferric oxide or hematite Fe2Ü3 or ferrous oxide - ferric or magnetite (Fe3Ü4) depends on the oxygen potential within the reactor 22.
  • 800 Q C to form magnetite Fe3Ü4 requires a partial pressure of oxygen at 10 9 atmospheres.
  • hematite, Fe2Ü3, is formed, as observed in Figure 2.
  • reaction (xi) and (xii) and the global ones (xiii) and (xiv) are exothermic, that is, they generate heat.
  • Reactions (xiii) and (xiv) as well as (viii) and (ix) are carried out at temperatures between 400 to 1200 Q C, preferably between 700 to 900 Q C in order to have a kinetic fast, and time reaction time between 0.5-6 h, preferably between 2-4 h.
  • part of the hot gases 65 coming from the calcination reactor of spodumene 2 are cleaned in a cleaning train of conventional gases such as one or more cyclones 66 and gas Clean 68 is taken to an external heating chamber 69 of reactor 22, where additional heat can be added by conventional burners 23 for oil or other fuel.
  • the gases 24 can be vented to the atmosphere, as well as any excess flue gases 64. Collected powders 67 can be added to the ferrous (or ferric) sulfate feed 10.
  • the reactor body 22 can be constructed of a high thermal conductivity material such as nickel-chromium alloy steel or commercial alloys such as Incoloy, Hastelloy or Inconel 600, alloys that are not attacked by SO2 or SO3.
  • the total pressure of the gas 60 inside the reactor 22 is kept close to 1 atmosphere by a gas duct 25 and a conventional hydraulic seal 26.
  • Sulfated calcine 27 discharges from reactor 22 and passes through a conventional gas seal 28 such as a rotary star valve and discharges 29 to a conventional calcine cooler 30, such as a water-cooled rotary drum 31 to cool them to 50 - 80 Q C. If necessary, the calcine can be ground under 100 mesh (-0.15 mm) or finer in a conventional mill.
  • the calcine 33 is leached with water 74 and mother liquor 35 (from the precipitation stage lithium carbonate) in a conventional stirred tank 34 at a temperature between 5 and 95 Q C, preferably between 30 - 60 Q C, with 1 to 25% solid, preferably between 5 and 15% and a leaching time between 0.5 and 5 h, preferably between 1 - 2 h.
  • the leached pulp 36 is thickened in a conventional thickener 37.
  • the thick low flow (discharge) 38 is filtered in a conventional filter 39 such as a drum filter by washing the solid cake with 1 volume of water 122 on the filter.
  • the filtrate 41 together with the clear liquid 40 coming from the thickener 37 are taken 43 to a reactor 44 for the precipitation of aluminum as alumina (AI2O3) and lithium in the form of soluble lithium hydroxide (LiOH), using a 5% excess on the stoichiometric of milk of lime (Ca (OH) 2) according to the following reactions: (xv) (xvi)
  • CaSC> 4 precipitates (solid) as CaSC> 4 2H2O along with insoluble alumina.
  • the reaction is carried out in a conventional stirred reactor 44 by adding milk of lime 45 (Ca (OH) 2) prepared in a conventional stirred tank or reactor 46, in which lime, calcium oxide (CaO) 47 and water 48 are added.
  • the temperature in the reactor 44 is kept between 5 and 90 Q C, preferably 15 to 50 Q C, with a reaction time of between 0.25 to 2 h, preferably from 0.5 to 1 h.
  • the resulting pulp 49 is thickened in a conventional thickener 50 and the low flow (discharge) 52 is filtered in a conventional filter 53 washing the cake in the filter with a volume of water 54.
  • Solid cake with CaSC> 42H2O + AI2O3 58, can be discarded.
  • the clear liquid 51 and the filtrate 55 containing the lithium as hydroxide 56 are taken to a lithium carbonate precipitation stage in one or more conventional reactors stirred in series 85 at a temperature between 20-95 ° C, preferably between 60-90 ° C.
  • Q C since lithium carbonate has inverse solubility with temperature, with a reaction time between 0.2 - 4 h, preferably between 0.5 - 2 h using a sodium carbonate solution or soda ash ( Na2CC> 3) 84 from 24 to 30 g / L concentration, prepared in a conventional agitated pond 83 to which water 81 and sodium carbonate 82 are fed.
  • the reaction that occurs is the following:
  • the hot pulp generated in the reactor (s) 86 continuously discharges to a conventional thermally insulated thickener 87, from which the low pulp flow (discharge) 88 containing the precipitated lithium carbonate and is carried to a filtration stage in a conventional filter 90, where the solid lithium carbonate cake was washed with 2 volumes of hot water 93-60 - 90 Q C, preferably between 70 and 85 Q C, with a reaction time between 0.2 to 4 h, preferably between 1 at 2 h recirculating part of the resulting liquid (mother liquor) to the calcine leaching stage and another part discarding it to avoid the accumulation of soluble impurities.
  • the washed lithium carbonate cake 91 is dried in a conventional rotary dryer 78 or another appropriate one at 110-150 ° C for a time of 1 to 4 h, preferably between 2 to 3 h, and the dry lithium carbonate 79 is brought to packaging 80 as it is hygroscopic.
  • the clear liquid 89 from the lithium carbonate thickener 87, as well as the filtrate 92 from the filter 90 are collected 95 and a part (30 to 50% of the volume) is carried 35 to the stirred tank 34. Another part is discarded 94 to avoid accumulation of impurities.
  • Solid 42 from filter 39 contains between 35 to 40% iron as magnetite (Fe3Ü4), a commercial product, and is carried through one or more conventional wet magnetic 75 concentration stages to obtain a magnetite 76 concentrate for sale with about 62% iron.
  • Final residue 77 contains essentially silica (S1O2) and can be discarded.
  • the spodumene concentrate 97 is fed through a conventional gas seal system 98 such as a rotary star valve to a conventional reactor 96 such as an externally heated rotary kiln with conventional gas, oil or other fuel burners 106.
  • a conventional gas seal system 98 such as a rotary star valve
  • a conventional reactor 96 such as an externally heated rotary kiln with conventional gas, oil or other fuel burners 106.
  • the hot gases 107 coming from the heating system of the reactor 96 pass to a pipeline 108 where part of the gas 110 is mixed with air 111 and 112 is introduced into a conventional hydrated iron sulfate dehydration reactor 113 such as a rotary kiln, in which is fed at the other end the hydrated iron sulfate 114 which is dehydrated in its interior 115 to anhydrous FeSÜ4 (or Fe2 (SC> 4) 3 ) and discharges 100 through a conventional gas seal 101 such as a rotary star valve to a common duct 102, where the spodumene is also fed. Additional air can be added via duct 111.
  • a conventional hydrated iron sulfate dehydration reactor 113 such as a rotary kiln
  • the mixture of anhydrous spodumene and ferrous (or ferric) sulfate 99 reacts 103 inside the reactor 96 and discharges at the end of it 104 through a conventional gas seal such as a rotary star valve 105 to be processed the calcine in the same way as that described in the case of using two separate reactors.
  • Excess flue gases, if any, are evacuated to environment 109.
  • Process gases 116 from reactor 113 are cleaned in a conventional system such as one or more cyclones 117 and then vented to environment 118. Collected dust 119 can be returned to dewatering reactor 113 along with feed 114.
  • the total pressure within reactor 96 is maintained at approximately 1 atmosphere using a conventional gas line 120 and hydraulic gas seal 121.
  • this process can also operate with other lithium minerals such as petalite, amblygonite and lepidolite.
  • Another preferred configuration is the use of a double concentric rotary reactor system in which decomposition is carried out in the inner reactor according to the reactions for ferrous (or ferric) sulfate, and from which the gases generated (S0 3 and SO2 ) sulfate the spodumene that reacts in the outer reactor, concentric with the previous one.
  • a sulfated calcine containing lithium sulfate that follows the process
  • a virtually pure (over 95%) high-grade hematite concentrate (Fe2Ü 3 ) that goes on sale directly.
  • Figure 6 shows a diagram of the equipment and process for this technological option.
  • the spodumene 187 concentrate is feeds through a conventional gas seal 128 to a calcination reactor 124, such as a rotary kiln or other suitable conventional directly heated with oil or other fuel 125 in conventional manner.
  • This calciner is operated at temperature between 600 to 1300 Q C, preferably from 900 to 1200 Q C to transform the spodumene from monoclinic crystalline form its tetragonal crystalline form aa b.
  • the reaction time of the material (spodumene) 123 in the calcination reactor 124 ranges from 0.5 - 6 h, preferably between 2 to 4 h.
  • the spodumene calcine b 126 discharges hot from calciner 124 to a conventional gas seal mailbox 127 and from there through a conventional gas seal system 129, such as a rotary star valve to the sulfation reactor 154.
  • Part or all of the combustion exhaust gases 131 from reactor 124 are led 133 to a conventional gas cleaning system 134 such as one or more cyclones. Another part, 132 can be vented to the atmosphere or reused.
  • the separated powder 189 is discharged through a conventional gas seal system 188, such as a rotary star valve, and is joined in a common duct 130 with the calcine 126 from the calcination reactor 124 to feed the sulfation reactor 154.
  • the clean hot gases 137 from the cleaning system 134 are led to a conventional dehydration reactor 140 such as a rotary kiln, which is fed with commercial hydrated ferrous sulfate (or ferric sulfate) 141 through a conventional gas seal 142
  • a conventional dehydration reactor 140 such as a rotary kiln
  • ferrous sulfate (or ferric sulfate) 141 through a conventional gas seal 142
  • this reactor or dehydration furnace 140 the thermal decomposition of the hydrated sulfates to their respective anhydrous sulfates 139 occurs according to the general reactions indicated above (iii) and (iv). These dehydration reactions are endothermic, and the heat required comes from the hot gases 137.
  • the dehydration temperature of the FeS047H20 and Fe2 (S04) 3-nH20 is from 200 to 350 Q C preferably between 220-260 C Q and a retention time in the reactor 140 of 0.25 to 4 h, preferably between 1 - 2 h.
  • the inlet temperature of the hot gas 137 is controlled by the addition of cold air 135 by a conventional duct 136 to prevent ferrous sulfate (or ferric sulfate) or their sulfates
  • Anhydrous 139 inside the reactor 140 exceed 350 Q C , temperature above which begins a slight decomposition of both ferrous and ferric sulfate.
  • Anhydrous sulfates 147 discharge to a conventional gas seal mailbox 138.
  • the hot gases 143 from the reactor 140 are cleaned in a conventional gas cleaning system 145 such as one or more cyclones and the clean gas 144 is sent to the atmosphere, since it is essentially air and water vapor, and the collected dust 146 can be returned to reactor 140 along with feed 141.
  • a conventional gas cleaning system 145 such as one or more cyclones
  • the clean gas 144 is sent to the atmosphere, since it is essentially air and water vapor, and the collected dust 146 can be returned to reactor 140 along with feed 141.
  • Anhydrous ferrous sulfate 147 (FeSÜ4) (or anhydrous ferric sulfate (Fe2 (SC> 4) 3)) discharges from reactor 140 through a conventional 148 gas seal such as a rotary star valve, and ferrous sulfate (or ferric) is fed through a pipeline 149 towards the decomposition reactor 157 such as a rotary kiln or other, provided with conventional closures of gases 151 and 164, in which the thermal decomposition reactions of ferrous sulfate (or ferric) 156 over 600 Q C, according to the reactions previously seen (v), (vi) and (vii).
  • 800 C to form magnetite Q Fe3Ü4 requires a partial pressure of oxygen to 10 9 atmospheres. Above this value, hematite, Fe2Ü3, is formed, as observed in Figure 2.
  • the gaseous atmosphere inside the reactor 157 is essentially SO3 and SO2, such that in the material bed 155 the spodumene continuously reacts with these gases.
  • Longitudinal conventional lifters 190 allow a constant spodumene shower to be maintained within reactor 157 to improve reactions with SO3 and SO2.
  • the central ferrous (or ferric) sulfate decomposition concentric reactor 157 rotates in conjunction with the exterior 154.
  • the anhydrous ferrous (or ferric) sulfate is fed 150 through a pipeline 149 into the reactor 157 to decompose it into hematite SO3 and SO2 ( or magnetite and SO3) at a temperature between 600 and 900 Q C, preferably 700 to 800 Q C for a reaction time between 0.5 to 10 h, preferably 2 to 4 h.
  • the spodumene calcine b from the reactor or calcination furnace 124 is fed 153 through an appropriate pipeline 130 to the spodumene sulphation reactor 154, concentric with that of the decomposition of ferrous (or ferric) sulfate 157.
  • the external spodumene sulfation reactor 154 is heated by conventional gas, oil or other fuel burners 169 and the heat from the reactor body 154 is transferred to the spodumene charge 155, and is further radiated to the internal reactor 157.
  • outlet 170 are destined for other uses 171 or are vented to the atmosphere.
  • the sulfated spodumene calcine discharges 159 from the external rotary reactor 154 into a mailbox fitted with conventional seals 160 and through a conventional gas seal valve 161 such as a rotary star valve.
  • the calcine 162 is processed in the manner described above.
  • the calcine resulting from the decomposition of ferrous (or ferric) sulfate 163 which is essentially hematite Fe2Ü3 (or magnetite, Fe3Ü4) discharges the internal reactor 157 to a conventional mailbox and from there to a conventional gas seal such as a rotary star valve 165 and calcine 166 goes to sale or processing.
  • Conventional gas seals 151 and 152 at the feed ends, as well as at the discharges 160 and 164 of both concentric reactors allow to maintain the gaseous atmosphere with SO3 -SO2 in the complete system and a duct 167 and a conventional hydraulic seal 168 allow to maintain the internal pressure of the system close to 1 atmosphere.
  • FIG. N Q 7 shows a cross-sectional diagram of the set of concentric furnaces or reactors described above. Specifically, in Figure 7 (a) the cross section of both reactors is observed, the one for sulphating the spodumene 172 in which the charge or bed of spodumene 173 reacts with the SO3 / SO2 186 gas that is generated inside the reactor 175 decomposition of ferrous (or ferric) sulfate 176.
  • Conventional lifters 184 allow to maintain a shower of spodumene 185 in its interior, which improves the mass transfer and the sulfation reaction of spodumene with SO3 and SO2.
  • Heat is supplied by conventional burners 182 and hot gases 183 circulate in annular space 181 outside sulfation reactor 172.
  • An outer shell 174 surrounds the concentric reactor assembly.
  • FIG 7 (b) the construction detail of the internal reactor 175 for decomposition of ferrous (or ferric) sulfate is observed, which is built with longitudinal angles 179 that are welded 177 to support rings 180 and that with its profile in Z allow the passage of gas (SO3 / SO2) through the spaces or vents between them 179.
  • This type of profile allows the passage of gases, but not the passage of the solid towards the external reactor, and can be made of 316 steel, Inconel 600 or similar.
  • a spodumene will concentrate of said composition in Table 2 was calcined at 1 100 Q C for 2 h in a microwave cripples.
  • the mixture was reacted at 800 C with a flow Q of 0.2 cc / sec (30 cc / min) 99.8% oxygen for 3 h.
  • a the term calcine the reaction was cooled and triturated to size 100% - 100 ASTM mesh (-0.15 mm) and then with water lixiviarla 50 Q C with 15% solids for 30 minutes.
  • the pulp obtained after leaching was filtered and the solid cake was washed with 1 volume equivalent of water at 50 Q C.
  • the liquid (filtrate) was treated with milk of lime (Ca (OH) 2) in proportion equal to the stoichiometric plus 5% excess to precipitate all the aluminum (present in the pulp as dissolved aluminum sulfate) to the alumina form (insoluble) according to reaction (xv) and transform the dissolved lithium sulfate into lithium hydroxide (soluble ) according to reaction (xvi).
  • the resulting pulp was filtered and the solid was was washed with 1 equivalent volume of water at room temperature.
  • the resulting solution (filtrate) was then treated with a solution containing 24 g / L sodium carbonate (Na2CÜ3) at 90 Q C in ratio of 10% excess over the stoichiometric value to precipitate lithium carbonate (Li2CO3) according to the reaction (xvii).
  • the solid cake was washed with 2 U2CO3 equivalent volumes of water at 90 Q C and then dried at a temperature of 120 Q C for 1 h.
  • the final U2CO3 product had a purity of 98.8% U2CO3 (Table 3) and the overall recovery of lithium from spodumene was 91.1%.
  • the solid residue obtained from the first precipitation after washing had the composition indicated in Table 4.

Abstract

A process for producing lithium carbonate or other lithium chemical products from spodumene ore concentrates, LiAl(SiO3)2, which comprises: (a) calcining the spodumene concentrate to transform it from its crystalline form α to the crystalline form; (b) dehydrating hydrated ferrous sulphate; (c) sulphation reaction of the spodumene with anhydrous ferrous sulphate; (d) cooling the sulphated calcines; (e) leaching the calcines; (f) thickening and filtering the pulp generated; (g) forming lithium and aluminium sulphate; (h) thickening and filtering the pulp; (i) precipitating and filtering the pulp; (j) precipitating the lithium carbonate; (k) thickening and filtering the pulp; and (l) drying and packaging the lithium carbonate precipitate.

Description

PROCESO PARA OBTENER CARBONATO DE LITIO DESDE EL MINERAL ESPODUMENO POR SULFATACIÓN CON SULFATO FERROSO A ALTA TEMPERATURA. PROCESS TO OBTAIN LITHIUM CARBONATE FROM SPODUMEN MINERAL BY SULFATATION WITH FERROUS SULPHATE AT HIGH TEMPERATURE.
Sector Técnico Technical Sector
La tecnología está orientada al área minera, más particularmente, corresponde a un proceso para producir carbonato de litio u otros productos químicos de litio a partir de concentrados de mineral de espodumeno, LiAI(Si03)2. The technology is oriented to the mining area, more particularly, it corresponds to a process to produce lithium carbonate or other lithium chemical products from concentrates of spodumene mineral, LiAI (Si03) 2.
Técnica Anterior Previous Technique
El litio se ha transformado en poco más de una década en un actor central del cambio tecnológico que está ocurriendo en todo el mundo en la industria del automóvil, y debido a que la nueva generación de estos será eléctrica, se requerirá de baterías de almacenamiento eléctrico de gran capacidad. Lithium has become in just over a decade a central player in the technological change that is taking place around the world in the automotive industry, and since the new generation of these will be electric, it will require electrical storage batteries. large capacity.
El litio es el metal ideal para fabricar baterías de alta densidad de carga, ya que posee el más alto potencial estándar de oxidación positivo entre todos los elementos, con 3,05 volts a 25QC y un equivalente electroquímico de 13,9 kcal/g. El uso de litio en baterías recargables aumenta a tasas de 15 a 20% anual, superando ya el 52% del total de consumo de litio mundial en el año 2018. Otros usos importantes de este metal son como carbonato, hidróxido, cloruro y otros compuestos orgánicos e inorgánicos, que representan el resto del consumo mundial. Lithium is the ideal metal to make batteries of high charge density, because it has the highest standard potential positive oxidation among all elements, with 3.05 volts at 25 Q C and an electrochemical equivalent of 13.9 kcal / g. The use of lithium in rechargeable batteries increases at rates of 15 to 20% per year, already exceeding 52% of the total world lithium consumption in 2018. Other important uses of this metal are as carbonate, hydroxide, chloride and other compounds organic and inorganic, which represent the rest of world consumption.
Aparte del litio producido desde salares, una de las fuentes principales de obtención de litio son los piroxenos de litio, tal como el piroxeno doble de litio y aluminio llamado“espodumeno” de fórmula química LiAI(Si03)2 ó U2O . AI2O3 · 4S1O2, el cual tiene un contenido de litio de 3,73%. Otros minerales de litio con niveles comerciales de litio son la lepidolita (K(Li, Al)3 (Si,AI)40io (F, OH)2; la petalita (LiAISUO-io) y otros de menor contenido de litio como las hectoritas y montmorillonitas. De todos estos minerales, el más importante y de mayor explotación actualmente es el espodumeno. Éste se encuentra siempre asociado a pegmatitas y se concentra por flotación diferencial para obtener un concentrado con 2,5 a 3,2% de litio, lo que equivale a 85% y 95% de espodumeno, respectivamente. En Estados Unidos, uno de los desarrollos más importantes para producir litio desde espodumeno lo efectuó la empresa Foote Mineral Corp. a comienzos de la década del 50 cuando por razones estratégicas se comenzó a explotar un mineral de espodumeno en Carolina del Norte. El proceso desarrollado es básicamente el mismo que se ha continuado empleando en otros lugares, con variaciones menores. Apart from lithium produced from salt flats, one of the main sources of obtaining lithium are lithium pyroxenes, such as the double pyroxene of lithium and aluminum called “spodumene” with the chemical formula LiAI (Si03) 2 or U2O. AI2O3 · 4S1O2, which has a lithium content of 3.73%. Other lithium minerals with commercial levels of lithium are lepidolite (K (Li, Al) 3 (Si, AI) 40io (F, OH) 2; petalite (LiAISUO-io) and others with lower lithium content such as hectorites and montmorillonites. Of all these minerals, the most important and currently most exploited is spodumene. This is always associated with pegmatites and is concentrated by differential flotation to obtain a concentrate with 2.5 to 3.2% lithium, which which is equivalent to 85% and 95% of spodumene, respectively. In the United States, one of the most important developments to produce lithium from spodumene was carried out by the company Foote Mineral Corp. at the beginning of the 1950s when, for strategic reasons, it began to exploit a spodumene ore in North Carolina The process developed is basically the same as that which has continued to be used elsewhere, with minor variations.
El espodumeno se encuentra en la naturaleza en la forma cristalina monoclínica a que es virtualmente insoluble aún en ácido sulfúrico concentrado, de manera que debe ser transformado al estado cristalino tetragonal b el cual si es soluble en ácido, reacción que ocurre por sobre 800QC. Spodumene occurs in nature in the monoclinic crystalline form that is virtually insoluble even in concentrated sulfuric acid, so it must be transformed to the crystalline state. tetragonal b which is soluble in acid, a reaction that occurs above 800 Q C.
El proceso empleado en forma virtualmente universal para tratar el espodumeno a, tal como el detallado en la patente DE 3622105 Al ®, consiste en una primera etapa de calcinación a 800 - 1 100QC, solo o en presencia de cal (CaO), caliza (CaCC>3) y/o sulfato de calcio (CaSC ) para transformarlo desde la forma cristalina a a la forma cristalina b y neutralizar parte de la sílice al formar un silicato de calcio. La calcina de espodumeno b se muele y luego se trata con ácido sulfúrico concentrado (96 - 98%) a 200 - 280QC en un reactor (horno) agitado, formando así sulfato de litio y sulfato de aluminio, los cuales se disuelven luego mediante lixiviación con agua a 50 - 60°C para su posterior recuperación. The process employed in universal virtually form to treat spodumene to as detailed in DE 3622105 A the ®, consists of a first calcination step at 800-1 100 Q C, alone or in the presence of lime (CaO), limestone (CaCC> 3) and / or calcium sulfate (CaSC) to transform it from a crystalline form to a crystalline form b and neutralize part of the silica to form a calcium silicate. The calcined spodumene b is ground and then treated with concentrated sulfuric acid (96-98%) at 200-280 Q C in a reactor (furnace) stirred, thereby forming lithium sulfate and aluminum sulfate, which are then dissolved by leaching with water at 50 - 60 ° C for subsequent recovery.
En esta forma de tratamiento, la etapa de reacción del espodumeno b con ácido sulfúrico concentrado a 200 - 280°C es dificultosa y complicada, y ocurre en forma de una pasta semi-plástica con apariencia de cemento pastoso y con generación de gases con SO2, SO3 y ácido sulfúrico gaseoso, lo cual requiere de reactores agitados tipo mezcladores u hornos de pisos, con control y neutralización de los gases de salida. Generalmente, se emplea desde 50 a 200% de exceso de ácido respecto del estequeométrico, ya que parte de éste se evapora, el que debe ser captado y neutralizado. La etapa de sulfatación con ácido sulfúrico en caliente es la más compleja del proceso y representa un desafío técnico y operacional mayor. La pasta semi seca que descarga del reactor se enfría directamente en los estanques de lixiviación, manteniendo la temperatura de lixiviación en 50 - 60QC. La reacción global que ocurre con ácido sulfúrico en la etapa de sulfatación es la siguiente: In this form of treatment, the reaction stage of spodumene b with concentrated sulfuric acid at 200 - 280 ° C is difficult and complicated, and occurs in the form of a semi-plastic paste with the appearance of pasty cement and with generation of gases with SO2 , SO3 and gaseous sulfuric acid, which requires agitated reactors such as mixer or deck ovens, with control and neutralization of the exhaust gases. Generally, from 50 to 200% excess of acid is used with respect to the stocheometric, since part of it evaporates, which must be captured and neutralized. The hot sulfuric acid sulphation stage is the most complex of the process and represents a major technical and operational challenge. The semi dry paste discharging the reactor is cooled directly in the leach tanks, maintaining the temperature of leaching 50 - 60 Q C. The overall reaction which occurs with sulfuric acid in the sulfation step is:
2AIL¡(S¡03)2 + 4H2S04 = LÍ2S04 + AI2(S04)3 + 4Si02 + 4H20 (i) 2AIL¡ (S¡0 3 ) 2 + 4H 2 S0 4 = LÍ 2 S0 4 + AI 2 (S0 4 ) 3 + 4Si0 2 + 4H 2 0 (i)
Al emplear, por ejemplo, 100% de exceso de ácido respecto del estequeométrico con una razón en peso de espodumeno/ácido = 1 /1 ,4, al lixiviar la masa sulfatada ésta genera una solución de alta acidez por el exceso de ácido empleado en la sulfatación, con sobre 120 g/L de ácido libre, que luego debe ser neutralizado generando gran cantidad de sulfato de calcio hidratado CaSC>4 2H2O. La pulpa lixiviada conteniendo el litio en solución como sulfato se puede tratar luego de diferentes formas según el producto de litio deseado. When using, for example, 100% excess acid with respect to the stocheometric with a weight ratio of spodumene / acid = 1 / 1.4, when the sulphated mass is leached, it generates a solution of high acidity due to the excess acid used in sulphation, with over 120 g / L of free acid, which must then be neutralized, generating a large amount of hydrated calcium sulfate CaSC> 4 2H2O. The leached pulp containing the lithium in solution as sulfate can then be treated in different ways depending on the desired lithium product.
La etapa de calcinación del espodumeno para transformarlo desde su forma cristalina oc a la b se realiza generalmente en reactores (hornos) rotativos, ya que tienen mayor eficiencia térmica que otros. Sin embargo, se han propuesto alternativas a éste empleando lecho fluidizado, como en la patente European WO201 148040A1 , “Método y equipo para procesar espodumeno”® en que The calcination stage of spodumene to transform it from its crystalline form c to b is generally carried out in rotary reactors (furnaces), since they have higher thermal efficiency than others. However, alternatives to this have been proposed using fluidized bed, as in the European patent WO201 148040A1, "Method and equipment for processing spodumene" ® in which
0 DE 3622105 A1 , (07.01 .1988), P. Broedemann, G. Krueger and R. Heng, “Process for minning lithium carbonate”. 0 DE 3622105 A1, (07.01. 1988), P. Broedemann, G. Krueger and R. Heng, "Process for minning lithium carbonate".
( ) W0201 1 148040 Al, (01 .12.201 1 ), L.L. Metsarinta,“Method and equipment to process spodumene" empleando mineral o concentrado fino de espodumeno (bajo 0,5 mm) se transforma a su forma cristalina b calentándolo en un lecho fluidizado a 800 - 1000QC. No hay información del tratamiento posterior de la calcina. () W0201 1 148040 Al, (01 .12.201 1), LL Metsarinta, "Method and equipment to process spodumene" using mineral or fine concentrate of spodumene (under 0.5 mm) it is transformed to its crystalline form b by heating it in a fluidized bed at 800 - 1000 ° C. There is no information on the subsequent treatment of calcine.
Otra patente más reciente (Fl 126509B)
Figure imgf000004_0001
describe un horno rotatorio de dos secciones en la que en la primera se calienta el espodumeno fino (entre 0,02 a 1 mm de tamaño) hasta 600 - 700QC y en la segunda parte se calienta hasta 1000QC. No hay detalles sobre el tratamiento posterior de la calcina.
Another more recent patent (Fl 126509B)
Figure imgf000004_0001
it describes a rotary kiln two sections in which the first fine spodumene is heated (from 0.02 to 1 mm in size) to 600 to 700 Q C and in the second part is heated to 1000 C. No details Q on the subsequent treatment of calcine.
Si en la etapa de calcinación se agrega cal (CaO) o caliza (CaC03), además de transformar el espodumeno oc a la forma b, permite eliminar parte de la sílice del espodumeno como silicato dicalcico y liberar el litio como óxido (U2O): If lime (CaO) or limestone (CaC03) is added in the calcination stage, in addition to transforming the spodumene oc to form b, it allows removing part of the silica from the spodumene as dicalcium silicate and liberating lithium as oxide (U2O):
2LiAI(S¡03)2 + 4CaO(s) = Li20(s) + 4CaSi03(s) + Al203(s) 2LiAI (S¡0 3 ) 2 + 4CaO (s) = Li 2 0 (s) + 4CaSi0 3 (s) + Al 2 0 3 (s)
Para la etapa de calcinación del espodumeno aún cuando la mayor parte de las operaciones comerciales no emplean aditivos ó solo caliza (CaCC>3), se han empleado o propuesto diferentes combinaciones de aditivos, así como diferentes reactivos en la etapa química y en la siguiente de lixiviación. For the calcination stage of spodumene, even though most commercial operations do not use additives or only limestone (CaCC> 3), different combinations of additives have been used or proposed, as well as different reagents in the chemical stage and in the following leaching.
La calcinación también puede hacerse con sulfato de calcio (anhidrita, CaSC>4). A alta temperatura pueden ocurrir varias reacciones de estado sólido entre el espodumeno y la anhidrita para formar sulfato de litio y otros compuestos tales como óxidos simples, dobles y triples. Termodinámicamente, sólo la reacción de formación de anortita (CaÓ-Al203-2Si02 ó CaAl2SÍ2C>3) es posible, la cual tiene una pequeña constante de equilibrio (4,54) a 1200QC, de manera que bajo 1 100QC esta reacción prácticamente no ocurre, en tanto, que la formación de óxido de litio por reacción del espodumeno con CaO o caliza, ocurre por sobre 600QC. Calcination can also be done with calcium sulfate (anhydrite, CaSC> 4). At high temperatures, various solid-state reactions can occur between spodumene and anhydrite to form lithium sulfate and other compounds such as single, double, and triple oxides. Thermodynamically, only the formation reaction of anorthite (CaÓ-Al203-2Si02 or CaAl2SÍ2C> 3) is possible, which has a small equilibrium constant (4.54) at 1200 Q C, so that under 1 100 Q C this reaction hardly occurs, while, the formation of lithium oxide by the reaction with CaO or limestone spodumene occurs above 600 C. Q
En la etapa“química” en que se transforma el espodumeno b a una forma soluble de litio (sulfato u óxido), como se ha indicado anteriormente, se emplea ácido sulfúrico concentrado a alta temperatura, pero se han propuesto otras alternativas como la descrita en la patente US 2,972,517<4> en la cual se describe el uso de SO2 y/o SO3 para tratar mineral de espodumeno b fino (bajo 0,1 mm) en un reactor de lecho fluidizado empleando aire y SO2 ó SO3 a 650 - 800QC. El proceso, si bien era relativamente eficiente, particularmente al emplear SO3, no fue aplicado comercialmente por la dificultad de tener una fuente externa de generación de SO3 (que provenía de una planta de ácido sulfúrico), y porque el empleo de un reactor de lecho fluidizado resultaba en In the "chemical" stage in which spodumene is transformed into a soluble form of lithium (sulfate or oxide), as indicated above, concentrated sulfuric acid is used at high temperature, but other alternatives have been proposed such as that described in US Patent 2,972,517 < 4 > which describes the use of SO2 and / or SO3 to treat fine spodumene mineral b (under 0.1 mm) in a fluidized bed reactor using air and SO2 or SO3 at 650-800 Q C. The process, although it was relatively efficient, particularly when using SO3, was not applied commercially due to the difficulty of having an external source of SO3 generation (which came from a sulfuric acid plant), and because the use of a reactor fluidized bed resulted in
<3> FI126509B, (13.01 .2017), O. Sirén and P.A Transkanen,“Process for the preparation of beta- alpha spodumene-containing materials”. < 3 > FI126509B, (01.13.2017), O. Sirén and PA Transkanen, “Process for the preparation of beta-alpha spodumene-containing materials”.
(4) US. 2,972,517, (21 .02.1 961 ), J.U. Mc Ewan,“Method of producing lithium sulphate from alpha and beta spodumene”. una baja eficiencia de conversión del SO3 a sulfato, con menos de 20%, con gran cantidad de estos gases sin reaccionar en el gas de salida del reactor, los que debían neutralizarse. (4) US. 2,972,517, (21.02.1 961), JU Mc Ewan, "Method of producing lithium sulphate from alpha and beta spodumene." a low conversion efficiency of SO3 to sulfate, with less than 20%, with a large amount of these unreacted gases in the reactor exit gas, which had to be neutralized.
Otra opción está descrita en la patente US 3,017,243 A(5) en la que igualmente mineral de espodumeno fino se trata en un lecho fluidizado con una mezcla de SO3, H2O y aire a 335 - 450QC para formar U2SO4 y Na2SÜ4, seguido de la lixiviación de la calcina con agua, purificación de la solución y cristalización del sulfato de litio. Al igual que en la patente anterior, la eficiencia de conversión de SO3 a sulfato de litio no superaba el 20% y el gas de salida del reactor contenía vapor de ácido sulfúrico que corroía los equipos de limpieza de los gases debido a la presencia de SO3 y vapor de agua. Another option is described in patent US 3,017,243 A (5) which also ore fines spodumene is I treated in a fluidized bed with a mixture of SO3, H2O and air to 335-450 Q C to form U2SO4 and Na2SÜ4, followed by the leaching of calcine with water, purification of the solution and crystallization of lithium sulfate. As in the previous patent, the conversion efficiency of SO3 to lithium sulfate did not exceed 20% and the reactor exit gas contained sulfuric acid vapor that corroded the gas cleaning equipment due to the presence of SO3 and water vapor.
Alternativamente, en la patente US 2,801 ,153 A<6> la calcina de espodumeno b se trata con sulfato de amonio (NH4)2SC>4 a 150 - 330QC. El proceso no está aclarado en su fundamento ya que por sobre 380QC se descompone el sulfato de amonio generando bisulfato de amonio, (NH4 HSO4) y amoniaco (NH3) (que debía recuperarse), y por sobre 360QC el bisulfato de amonio se descompone a amoníaco, SO2 y vapor de agua, que debían tratarse. La calcina se lixiviaba con una solución amoniacal. La extracción de litio no se reporta. Alternatively, in the patent US 2,801,153 A < 6 > the calcine of spodumene b is treated with ammonium sulfate (NH4) 2SC> 4 at 150 - 330 Q C. The process is not clarified in its foundation since above 380 Q C ammonium sulfate decomposes generating ammonium bisulfate, (NH4 HSO4) and ammonia (NH3) (to be recovered), and above 360 Q C ammonium bisulfate decomposes to ammonia, SO2 and water vapor, which they had to be treated. The calcine was leached with an ammonia solution. Lithium extraction is not reported.
Una opción distinta la representa la digestión alcalina con hidróxido de sodio (NaOH), tal como se menciona en la patente china CN 104003428 A(7) en donde se trata el espodumeno con una solución concentrada de hidróxido de sodio en un reactor tipo flujo pistón entre 0,5 a 5 h a 90 - 250QC y presión para disolver sobre 95% del espodumeno. El tratamiento de la solución es complejo debido a la formación de silicato de sodio y aluminato de sodio. Un proceso similar fue patentado por Palmer et al. (EP1994191 A2)<8> en donde se emplea NaOH ó KOH con el mismo propósito. A different option is represented by the alkaline digestion with sodium hydroxide (NaOH), as mentioned in the Chinese patent CN 104003428 A (7) where the spodumene is treated with a concentrated solution of sodium hydroxide in a plug flow type reactor. from 0.5 to 5 has from 90 to 250 Q C and pressure to dissolve about 95% of the spodumene. Treatment of the solution is complex due to the formation of sodium silicate and sodium aluminate. A similar process was patented by Palmer et al. (EP1994191 A2) < 8 > where NaOH or KOH is used for the same purpose.
En la Tabla 1 se encuentra un resumen de los estudios y operaciones comerciales de tratamiento de espodumeno, además de reactivos y condiciones empleadas. Se observa que, independiente del aditivo agregado en la etapa de calcinación y en la de tratamiento químico, la extracción de litio en la etapa de lixiviación fluctúa entre 85 a 90% y que de todos los reactivos empleados en la etapa química (extracción), el H2SO4 aparece como el más recurrente. Table 1 contains a summary of the studies and commercial operations for the treatment of spodumene, as well as the reagents and conditions used. It is observed that, independent of the additive added in the calcination stage and in the chemical treatment stage, the lithium extraction in the leaching stage fluctuates between 85 to 90% and that of all the reagents used in the chemical stage (extraction), H2SO4 appears as the most recurrent.
(5) US. 3,017,243 A, (16.01 .1962), M. Archembault, U. Me Ewan and C.A. Oliver,“Method of producing lithium sulphate from spodumene”. (5) US. 3,017,243 A, (16.01. 1962), M. Archembault, U. Me Ewan and CA Oliver, "Method of producing lithium sulphate from spodumene".
(6) US 2,801 ,153 A, (30.07.1957), T.E. Dwyer,“Recovery of lithium from spodumene ores”. (6) US 2,801, 153 A, (07/30/1957), TE Dwyer, "Recovery of lithium from spodumene ores".
(7) CN 10,4003,428 A, (18.1 1 .2015), Y. Kuan et al.,“Method of producing lithium hydroxide by dissolving spodumen in a pipeline reactor”. (7) CN 10,4003,428 A, (18.1 1 .2015), Y. Kuan et al., "Method of producing lithium hydroxide by dissolving spodumen in a pipeline reactor".
<8> EP 9941 91 -2, (26.1 1 .2008) D.A. Palmer, L.M. Anovitz and B.B Blencoe,“Lithium extraction process”. Actualmente, todas las plantas comerciales que producen carbonato e hidróxido de litio desde espodumeno emplean la calcinación como primera etapa seguida de la sulfatación con ácido sulfúrico caliente y luego la lixiviación con agua de la pulpa ácida sulfatada. < 8 > EP 9941 91 -2, (26.1 1 .2008) DA Palmer, LM Anovitz and BB Blencoe, "Lithium extraction process". Currently, all commercial plants that produce lithium carbonate and hydroxide from spodumene use calcination as the first stage followed by hot sulfuric acid sulphation and then water leaching of the sulphated acidic pulp.
Por otra parte, la extracción de litio no muestra una variación significativa si en la etapa de calcinación se agrega o no caliza (o cal). Sin embargo, la presencia de CaO fija parte de la sílice del espodumeno como silicato de calcio insoluble, ya que la sílice en presencia de ácido sulfúrico a alta temperatura forma un gel en la etapa de lixiviación que puede ser infiltrable y, además, parte de éste puede reaccionar con el óxido de litio formado. On the other hand, the extraction of lithium does not show a significant variation if limestone (or lime) is added or not in the calcination stage. However, the presence of CaO fixes part of the spodumene silica as insoluble calcium silicate, since silica in the presence of sulfuric acid at high temperature forms a gel in the leaching stage that can be infiltrable and, in addition, part of this can react with the lithium oxide formed.
Tabla 1. Extracción de litio de concentrados de espodumeno. Resumen de operaciones comerciales y estudios de laboratorio y piloto. Table 1. Extraction of lithium from spodumene concentrates. Summary of business operations and laboratory and pilot studies.
Calcinación Tratamiento químico Lixiviación Extracción Calcination Chemical treatment Leaching Extraction
Figure imgf000006_0001
Figure imgf000006_0001
En la forma actual de tratamiento de calcinación-sulfatación con ácido- lixiviación es posible extraer una parte significativa del litio, quedando el resto en el silicato en forma parcialmente reaccionado, como núcleos de partículas recubiertas de silicato de calcio - alúmina, y probablemente, como silicatos de litio debido a la reacción a alta temperatura entre el óxido de litio y la sílice. In the current form of calcination-sulfation treatment with acid-leaching it is possible to extract a significant part of the lithium, with the rest remaining in the silicate in partially reacted form, as calcium silicate-alumina coated particle cores, and probably, as lithium silicates due to the high temperature reaction between lithium oxide and silica.
En bases a estos antecedentes es que se hace necesario el desarrollo de nuevos procesos más eficientes que permitan producir carbonato de litio u otros productos químicos de litio a partir de concentrado o de mineral de espodumeno y que eviten el empleo del ácido sulfúrico concentrado en caliente, como es la tecnología industrial actualmente empleada. Breve descripción de las figuras Based on these antecedents, it is necessary to develop new, more efficient processes that allow the production of lithium carbonate or other lithium chemical products from concentrate or spodumene ore and avoid the use of hot concentrated sulfuric acid. as is the industrial technology currently used. Brief description of the figures
Figura 1 : Diagrama de procesos para producir carbonato de litio desde concentrados de espodumeno empleando etapas separadas de calcinación y sulfatación. Figure 1: Process diagram for producing lithium carbonate from spodumene concentrates using separate calcination and sulphation steps.
Figura 2: Diagrama termodinámico de estabilidad de fases del sistema Fe - S - O a 800QC. Figure 2: Thermodynamic diagram of phase stability of the Fe - S - O system at 800 Q C.
Figura 3: Diagrama de energías libres estándar de reacción. Figure 3: Standard free energy reaction diagram.
Figura 4: Diagrama energías libres estándar de descomposición de sulfatos ferroso (FeSC>4), litio (U2SO4) y aluminio (Al2(S04)3). Figure 4: Diagram of standard free energy decomposition of ferrous sulfates (FeSC> 4), lithium (U2SO4) and aluminum (Al2 (S04) 3).
Figura 5: Reactor de calcinación-sulfatación de una etapa. Figure 5: One-stage calcination-sulfation reactor.
Figura 6: Reactor doble concéntrico de sulfatación-descomposición del sulfato ferroso. Figure 6: Ferrous sulfate sulfation-decomposition double concentric reactor.
Figura 7: Detalle del reactor doble concéntrico, donde en (a) se muestra la sección transversal de ambos reactores y en (b) el detalle del reactor interno. Figure 7: Detail of the double concentric reactor, where in (a) the cross section of both reactors is shown and in (b) the detail of the internal reactor.
Divulgación de la Invención Disclosure of the Invention
La presente tecnología corresponde a un proceso para producir carbonato de litio u otros productos químicos de litio a partir de concentrados de mineral de espodumeno, LiAI(Si03)2. En este proceso, las etapas de calcinación del espodumeno y sulfatación del espodumeno b se ejecutan en forma separada y secuencial acopladas y a alta temperatura, o bien en conjunto, empleando en la etapa de sulfatación en vez de ácido sulfúrico, sulfato ferroso (FeSÜ4) o sulfato férrico (Fe2(SC>4)3), que al descomponerse térmicamente por sobre 600QC genera SO3 y SO2 in situ dentro de la masa de material reaccionante, sulfatando efectiva y completamente el espodumeno b, y formando así sulfato de litio (U2SO4) y sulfato de aluminio (Al2(SC>4)3) en ausencia de una fase líquida, como el ácido sulfúrico. The present technology corresponds to a process to produce lithium carbonate or other lithium chemical products from spodumene mineral concentrates, LiAI (Si03) 2. In this process, the calcination stages of the spodumene and the sulphation of the spodumene b are carried out separately and sequentially, coupled and at high temperature, or together, using ferrous sulfate (FeSÜ4) or ferrous sulfate (FeSÜ4) in the sulphation stage instead of sulfuric acid. ferric sulfate (Fe2 (SC> 4) 3), which when thermally decomposed above 600 Q C generates SO3 and SO2 in situ within the mass of reactant material, effectively and completely sulphating the spodumene b, and thus forming lithium sulfate ( U2SO4) and aluminum sulfate (Al2 (SC> 4) 3) in the absence of a liquid phase, such as sulfuric acid.
Al emplear etapas separadas de calcinación y de sulfatación, la etapa de calcinación del espodumeno a a la forma b se efectúa en un reactor rotativo y parte de los gases calientes que salen del reactor de calcinación se emplean para deshidratar el sulfato ferroso hidratado, que es el compuesto comercial empleado generalmente en la industria por su bajo costo y amplia disponibilidad. Si se emplea un solo reactor, las etapas de calcinación y de sulfatación ocurren simultáneamente. En este caso, el reactor se calienta en forma externa para mantener los gases reaccionantes en su interior. By employing separate calcination and sulphation stages, the calcination stage of spodumene a to form b is carried out in a rotary reactor and part of the hot gases leaving the calcination reactor are used to dehydrate the hydrated ferrous sulphate, which is the commercial compound generally used in industry for its low cost and wide availability. If a single reactor is used, the calcination and sulfation stages occur simultaneously. In this case, the reactor is heated externally to keep the reacting gases inside.
Independiente si se emplean etapas separadas de calcinación y sulfatación, o simultáneas en el mismo reactor, la calcina sulfatada de espodumeno se enfría y luego se lixivia con agua, y con parte de licor madre (generado en la precipitación del carbonato de litio). En seguida se precipita el aluminio como alúmina insoluble (AI2O3) y transforma el sulfato de litio en hidróxido de litio (LiOH) en solución, empleando lechada de cal, (Ca(OFl2). La solución conteniendo el litio como hidróxido se puede tratar de diferentes formas, según el producto final de litio deseado. Si el producto final es carbonato de litio, la solución se trata con ceniza de soda (Na2CC>3) para precipitar así el carbonato de litio (U2CO3). Regardless of whether separate calcination and sulphation stages are used, or simultaneously in the same reactor, the sulphated spodumene calcine is cooled and then leached with water, and with part of the mother liquor (generated in the precipitation of lithium carbonate). Aluminum is then precipitated as insoluble alumina (AI2O3) and transforms lithium sulfate into lithium hydroxide (LiOH) in solution, using milk of lime (Ca (OFl2). The solution containing lithium as hydroxide can be treated as different forms, depending on the desired lithium end product. If the end product is lithium carbonate, the The solution is treated with soda ash (Na2CC> 3) to precipitate lithium carbonate (U2CO3).
Para una mejor comprensión de esta invención , a continuación, se hará una descripción detallada de ésta haciendo referencia a las Figuras 1 a 7. For a better understanding of this invention, a detailed description of it will now be made with reference to Figures 1 to 7.
El concentrado de espodumeno 1 , normalmente de ley superior al 90% de espodumeno y de tamaño de partículas bajo 1 00 mallas ASTM (-0,1 5 mm) se alimenta a un reactor de calcinación 2, tal como un horno rotativo u otro apropiado convencional calentado directamente con petróleo u otro combustible 3 en forma convencional. Este calcinador opera a temperatura entre 600 a 1 300QC, preferentemente entre 900 a 1 200QC para transformar el espodumeno desde su forma cristalina monoclínica a a su forma cristalina tetragonal b. La reacción que ocurre es la siguiente: The spodumene concentrate 1, normally of a grade higher than 90% of spodumene and with a particle size under 100 ASTM mesh (-0.1 5 mm), is fed to a calcination reactor 2, such as a rotary kiln or other appropriate conventional heated directly with oil or other fuel 3 in conventional way. This calciner is operated at temperature between 600 to 300 Q C 1, preferably 900 to 1 200 Q C to transform the spodumene from monoclinic crystalline form its tetragonal crystalline form aa b. The reaction that occurs is as follows:
LiAI(Si03)2(a) >800 C > L¡AI(S¡03)2(p) (ii) LiAI (Si0 3 ) 2 (a)> 800 C > L¡AI (S¡0 3 ) 2 (p) (ii)
El tiempo de reacción del material (espodumeno) 62 en el reactor de calcinación 2 varía de 0,5 - 6 h, preferentemente, entre 2 a 4 h. La calcina de espodumeno b 5 descarga caliente del calcinador 2 a través de un sistema convencional de sello de gas 19 tal como una válvula rotativa de estrella hacia un reactor de sulfatación 22. The reaction time of the material (spodumene) 62 in the calcination reactor 2 ranges from 0.5-6 h, preferably between 2 to 4 h. The spodumene calcine b 5 discharges hot from the calciner 2 through a conventional gas seal system 19 such as a rotary star valve into a sulfation reactor 22.
Parte o la totalidad de los gases de salida de la combustión 4 del reactor 2 se llevan 6 a un sistema convencional de limpieza de gases 7 tal como uno o más ciclones. El polvo separado 18 se descarga a través de un sistema de sello de gases convencional 17 tal como una válvula rotativa de estrella y se une en un ducto común 20 con la calcina 5 del reactor de calcinación para alimentar el reactor de sulfatación 22. Part or all of the combustion exhaust gases 4 from reactor 2 are taken 6 to a conventional gas cleaning system 7 such as one or more cyclones. The separated powder 18 is discharged through a conventional gas seal system 17 such as a rotary star valve and is joined in a common duct 20 with the calcine 5 from the calcination reactor to feed the sulfation reactor 22.
Los gases calientes limpios 8 provenientes del sistema de limpieza 7 se llevan a un reactor de deshidratación 9 convencional tal como un horno rotatorio, el cual es alimentado con sulfato de hierro (sulfato ferroso) hidratado comercial 10, el que normalmente contiene 7 moléculas de agua de hidratación como FeSÜ4 7H2O. Igualmente es posible emplear sulfato férrico Fe2(SÜ4)3, pero su costo es considerablemente mayor que el sulfato ferroso. The clean hot gases 8 coming from the cleaning system 7 are taken to a conventional dehydration reactor 9 such as a rotary kiln, which is fed with commercial hydrated iron sulfate (ferrous sulfate) 10, which normally contains 7 molecules of water. hydration as FeSÜ4 7H2O. It is also possible to use ferric sulfate Fe2 (SÜ4) 3, but its cost is considerably higher than ferrous sulfate.
En el reactor u horno de deshidratación 9 ocurre la descomposición térmica de los sulfatos hidratados a sus respectivos sulfatos anhidros 63 de acuerdo a las reacciones generales siguientes: In the reactor or dehydration furnace 9, the thermal decomposition of the hydrated sulfates to their respective anhydrous sulfates 63 occurs according to the following general reactions:
FeS04 · nH20 = FeS04 + nH20 FeS0 4 nH 2 0 = FeS0 4 + nH 2 0
(iii) Fe2(SÜ4)3 nhteO = Fe2(SÜ4)3 + nhteO (iii) Fe2 (SÜ4) 3 nhteO = Fe2 (SÜ4) 3 + nhteO
(iv) En donde“n” representa el número de moléculas de agua de hidratación de los sulfatos y puede variar de n = 1 a n = 7, siendo normalmente 7. (iv) Where "n" represents the number of molecules of water of hydration of sulfates and can vary from n = 1 to n = 7, normally being 7.
Estas reacciones de deshidratación son endotérmicas, es decir, consumen calor el cual proviene de los gases calientes 8. La temperatura de deshidratación del FeSC hteO y del Fe2(S04)3-nH20 (o con cualquier número de moléculas de agua) es de 200 a 350QC, preferentemente entre 220 a 260QC y con un tiempo de retención en el reactor 9 de 0,25 a 4 h, preferentemente, entre 1 - 2 h. These dehydration reactions are endothermic, that is, they consume heat which comes from hot gases 8. The dehydration temperature of FeSC hteO and Fe2 (S04) 3-nH20 (or with any number of water molecules) is 200 350 Q C, preferably between 220-260 Q C and a retention time in the reactor 9 0.25 to 4 h, preferably between 1 - 2 h.
La temperatura de entrada del gas caliente 8 se controla mediante la adición de aire frío 72 mediante un ducto convencional 73 para evitar que el sulfato ferroso (o sulfato férrico) o sus respectivos sulfatos anhidros 63 en el interior del reactor 9 sobrepasen los 350QC, temperatura por sobre la cual comienza una leve descomposición tanto del sulfato ferroso como del férrico. The inlet temperature of the hot gas 8 is controlled by the addition of cold air 72 by a conventional duct 73 to prevent the ferrous sulfate (or ferric sulfate) or their sulfates Anhydrous 63 within the reactor 9 exceed 350 Q C , temperature above which begins a slight decomposition of both ferrous and ferric sulfate.
Los gases calientes 11 provenientes del reactor 9 se limpian en un sistema convencional de limpieza de gases 12 tal como uno o más ciclones y el gas limpio 13 se envía a la atmósfera ya que esencialmente es aire y vapor de agua, y el polvo recolectado 14 se puede retornar al reactor 9 junto con la alimentación 10. The hot gases 11 coming from the reactor 9 are cleaned in a conventional gas cleaning system 12 such as one or more cyclones and the clean gas 13 is sent to the atmosphere since it is essentially air and water vapor, and the collected dust 14 it can be returned to reactor 9 along with feed 10.
El sulfato ferroso anhidro 15 (FeSÜ4) (o sulfato férrico anhidro (Fe2(SÜ4)3)) descarga del reactor 9 a través de un sello convencional de gas 16 tal como una válvula rotativa de estrella, y el sulfato ferroso (o férrico) junto con la calcina 5 y polvos 18 del reactor de calcinación 2, se alimentan a través de un ducto común 20 hacia un reactor de sulfatación 22 tal como un horno rotativo u otro, provisto de un cierre convencional de gases 32, en el cual ocurren ahora las reacciones de descomposición térmica de los sulfato ferroso (o férrico) por sobre 600QC, de acuerdo a las siguientes reacciones en ausencia de oxígeno: Anhydrous ferrous sulfate 15 (FeSÜ4) (or anhydrous ferric sulfate (Fe2 (SÜ4) 3)) discharges from reactor 9 through a conventional gas seal 16 such as a rotary star valve, and ferrous (or ferric) sulfate together with the calcine 5 and powders 18 from the calcination reactor 2, they are fed through a common pipeline 20 towards a sulfation reactor 22 such as a rotary kiln or other, provided with a conventional gas shut-off 32, in which they occur now the thermal decomposition reactions of ferrous (or ferric) sulfate above 600 Q C, according to the following reactions in the absence of oxygen:
3FeSÜ4 = Fe304+2S03+S02 (v)3FeSÜ4 = Fe304 + 2S03 + S02 (v)
2FeSÜ4 = Fe203+S03+S02 (vi)2FeSÜ4 = Fe203 + S03 + S02 (vi)
Fe2(S04)3 = Fe2Ü3 + 3SÜ3 (vii) Fe2 (S04) 3 = Fe2Ü3 + 3SÜ3 (vii)
La formación de óxido férrico o hematita (Fe2Ü3) o de óxido ferroso - férrico o magnetita (Fe3Ü4) depende del potencial de oxígeno en el interior del reactor 22. Por ejemplo, a 800QC para formar magnetita Fe3Ü4 se requiere de una presión parcial de oxígeno a 10 9 atmósferas. Por sobre este valor se forma hematita, Fe2Ü3, como se observa en la Figura 2. The formation of ferric oxide or hematite (Fe2Ü3) or ferrous oxide - ferric or magnetite (Fe3Ü4) depends on the oxygen potential within the reactor 22. For example, 800 Q C to form magnetite Fe3Ü4 requires a partial pressure of oxygen at 10 9 atmospheres. Above this value, hematite, Fe2Ü3, is formed, as observed in Figure 2.
Si se requiere una mayor proporción de SO3, que es un potente agente sulfatante, se puede agregar oxígeno 21 , aire enriquecido en oxígeno o aire mediante un ducto adicional convencional 70. En este caso, las reacciones que ocurren son las siguientes: If a higher proportion of SO3 is required, which is a powerful sulphating agent, oxygen 21, oxygen enriched air or air can be added through an additional conventional duct 70. In this case, the reactions that occur are the following:
2FeSÜ4 + 0,502 = Fe2Ü3 + 2SO3 (viii)2FeSÜ4 + 0.502 = Fe2Ü3 + 2SO3 (viii)
3FeSÜ4 + 0,502 = Fe3Ü4 + 3SO3 (ix) 3Fe2(S04)3 = 2Fe304 + 9S03 + 0,502 (x)3FeSÜ4 + 0.502 = Fe3Ü4 + 3SO3 (ix) 3Fe2 (S0 4 ) 3 = 2Fe 3 0 4 + 9S0 3 + 0.502 (x)
El S03 y SO2 generados por la descomposición del sulfato ferroso (o férrico) reaccionan con el espodumeno b en el reactor 22 para formar los sulfatos de litio y aluminio respectivos, hematita (o magnetita) y sílice de acuerdo a las reacciones siguientes: The S0 3 and SO2 generated by the decomposition of ferrous (or ferric) sulfate react with spodumene b in reactor 22 to form the respective lithium and aluminum sulfates, hematite (or magnetite) and silica according to the following reactions:
2LiAI(Si03)2 + 4S03 = U2SO4 + AI2(S04)3 + 4Si02 (xi) 2LiAI(Si03)2 + 4S02 + 202 = LÍ2SO4 + AI2 (S04)3 + 4Si02 (xii) 2LiAI (Si0 3 ) 2 + 4S0 3 = U2SO4 + AI 2 (S04) 3 + 4Si0 2 (xi) 2LiAI (Si0 3 ) 2 + 4S0 2 + 20 2 = LÍ2SO4 + AI2 (S0 4 ) 3 + 4Si0 2 (xii )
Estas reacciones tienen valores negativos de sus energías libres estándar hasta aproximadamente 450QC, es decir, ocurren espontáneamente según la convención termodinámica como se observa en la Figura 3. These reactions have negative values of their standard free energies up to approximately 450 Q C, that is, they occur spontaneously according to the thermodynamic convention as observed in Figure 3.
En el reactor 22, tanto las reacciones de descomposición térmica de los sulfatos ferroso y férrico (v), (vi), (vii), (viii), (ix) y (x) como las de sulfatación del espodumeno con S03 y SO2 (xi) y (xii), ocurren simultáneamente. La atmósfera gaseosa 60 en el interior del reactor 22 es esencialmente S03 y SO2, mientras en el lecho de material 61 , el espodumeno reacciona continuamente con estos gases de acuerdo a las reacciones globales siguientes con sulfato ferroso anhidro: In reactor 22, both the thermal decomposition reactions of ferrous and ferric sulfates (v), (vi), (vii), (viii), (ix) and (x) as well as the sulphation of spodumene with S0 3 and SO2 (xi) and (xii), occur simultaneously. The gaseous atmosphere 60 inside the reactor 22 is essentially S0 3 and SO2, while in the material bed 61, the spodumene continuously reacts with these gases according to the following global reactions with anhydrous ferrous sulfate:
2LiAI(Si03)2 + 4FeS04 + O2 = Li S04+AI2(S04)3 + 2Fe203 + 4S¡02 (xiii)2LiAI (Si0 3 ) 2 + 4FeS04 + O2 = Li S04 + AI 2 (S04) 3 + 2Fe 2 0 3 + 4S¡0 2 (xiii)
3LiAI(Si03)2 + 6FeS04 + O2 = 1 ,5 U2SO4+1 ,5 AI (SC>4)3 + 2 Fe304 + 6SÍO2 (xiv) 3LiAI (Si0 3 ) 2 + 6FeS04 + O2 = 1, 5 U2SO4 + 1, 5 AI (SC> 4) 3 + 2 Fe 3 0 4 + 6SÍO2 (xiv)
Estas reacciones globales también están trazadas en la Figura 3 y tienen igualmente valores negativos de las energías libres estándar de reacción. La reacción (xiii) tiene una temperatura de inversión de 1095QC, en tanto que la reacción (xiv) ocurre con un fuerte gradiente termodinámico (Figura 3). These global reactions are also plotted in Figure 3 and also have negative values of the standard free energies of reaction. Reaction (xiii) has an inversion temperature of 1095 Q C, while reaction (xiv) occurs with a strong thermodynamic gradient (Figure 3).
Tanto las reacciones (xi) y (xii) como las globales (xiii) y (xiv) son exotérmicas, es decir, generan calor. Las reacciones (xiii) y (xiv), así como las (viii) y (ix), se efectúan a temperatura entre 400 a 1200QC, preferentemente entre 700 a 900QC para así tener una rápida cinética, y con un tiempo de reacción entre 0,5 - 6 h, preferentemente, entre 2 - 4 h. Both the reactions (xi) and (xii) and the global ones (xiii) and (xiv) are exothermic, that is, they generate heat. Reactions (xiii) and (xiv) as well as (viii) and (ix) are carried out at temperatures between 400 to 1200 Q C, preferably between 700 to 900 Q C in order to have a kinetic fast, and time reaction time between 0.5-6 h, preferably between 2-4 h.
En la Figura 4 se observa el valor de la energía libre estándar de descomposición de los sulfatos ferroso (FeSC ), de litio (U2SO4) y de aluminio (Al2(S04)3), donde se puede ver que el sulfato ferroso se descompone completamente por sobre los 620QC y el de aluminio sobre los 950QC, en tanto que el de litio es estable aún sobre 1500QC, sin embargo, éste funde a 859QC y ebulle a 1377QC de tal forma que las reacciones (xi), (xii), (xiii) y (xiv) deben efectuarse bajo 850QC para evitar sinterizar el lecho 61 dentro del reactor 22. In Figure 4 the value of the standard free energy of decomposition of ferrous sulfate (FeSC), lithium (U2SO4) and aluminum (Al2 (S0 4 ) 3 ) is observed, where it can be seen that ferrous sulfate decomposes completely above 620 Q C and aluminum over 950 Q C, while lithium is stable even above 1500 Q C, however, it melts at 859 Q C and boils at 1377 Q C in such a way that reactions (xi), (xii), (xiii) and (xiv) are performed under 850 C to avoid sintering Q bed 61 within the reactor 22.
Si las reacciones globales (xiii) y (xiv) requieren de calor externo para alcanzar su temperatura de reacción de 400 a 1000QC, parte de los gases calientes 65 provenientes del reactor de calcinación del espodumeno 2 se limpian en un tren de limpieza de gases convencional tal como uno o más ciclones 66 y el gas limpio 68 se lleva a una cámara externa 69 de calentamiento del reactor 22, donde se puede además agregar calor adicional mediante quemadores convencionales 23 de petróleo u otro combustible. Los gases 24 pueden ser enviados a la atmósfera, así como cualquier exceso de gases de combustión 64. Polvos recolectados 67 se pueden agregar a la alimentación 10 de sulfato ferroso (o férrico). If the global reactions (xiii) and (xiv) require external heat to reach their reaction temperature of 400 to 1000 Q C, part of the hot gases 65 coming from the calcination reactor of spodumene 2 are cleaned in a cleaning train of conventional gases such as one or more cyclones 66 and gas Clean 68 is taken to an external heating chamber 69 of reactor 22, where additional heat can be added by conventional burners 23 for oil or other fuel. The gases 24 can be vented to the atmosphere, as well as any excess flue gases 64. Collected powders 67 can be added to the ferrous (or ferric) sulfate feed 10.
El cuerpo del reactor 22 puede ser construido de un material de alta conductividad térmica tal como acero de aleación níquel-cromo o aleaciones comerciales como Incoloy, Hastelloy o Inconel 600, aleaciones que no son atacadas por el SO2 o SO3. La presión total del gas 60 en el interior del reactor 22 se mantiene cercana a 1 atmósfera mediante un ducto de gas 25 y un sello hidráulico convencional 26. The reactor body 22 can be constructed of a high thermal conductivity material such as nickel-chromium alloy steel or commercial alloys such as Incoloy, Hastelloy or Inconel 600, alloys that are not attacked by SO2 or SO3. The total pressure of the gas 60 inside the reactor 22 is kept close to 1 atmosphere by a gas duct 25 and a conventional hydraulic seal 26.
La calcina sulfatada 27 descarga del reactor 22 y pasa a través de un sello de gas convencional 28 tal como una válvula rotativa de estrella y descarga 29 a un enfriador convencional de calcina 30, tal como un tambor rotativo enfriado por agua 31 para enfriarlas a 50 - 80QC. Si es necesario, la calcina puede molerse bajo 100 mallas (-0,15 mm) o más fina en un molino convencional. Sulfated calcine 27 discharges from reactor 22 and passes through a conventional gas seal 28 such as a rotary star valve and discharges 29 to a conventional calcine cooler 30, such as a water-cooled rotary drum 31 to cool them to 50 - 80 Q C. If necessary, the calcine can be ground under 100 mesh (-0.15 mm) or finer in a conventional mill.
La calcina 33 se lixivia con agua 74 y licor madre 35 (proveniente de la etapa de precipitación del carbonato de litio) en un estanque agitado convencional 34 a temperatura entre 5 y 95QC, preferentemente entre 30 - 60QC, con 1 a 25% de sólido, preferentemente, entre 5 y 15% y un tiempo de lixiviación entre 0,5 y 5 h, preferentemente, entre 1 - 2 h. The calcine 33 is leached with water 74 and mother liquor 35 (from the precipitation stage lithium carbonate) in a conventional stirred tank 34 at a temperature between 5 and 95 Q C, preferably between 30 - 60 Q C, with 1 to 25% solid, preferably between 5 and 15% and a leaching time between 0.5 and 5 h, preferably between 1 - 2 h.
La pulpa lixiviada 36 se espesa en un espesador convencional 37. El bajo flujo denso (descarga) 38 se filtra en un filtro convencional 39 tal como un filtro de tambor lavando el queque sólido con 1 volumen de agua 122 en el filtro. El filtrado 41 junto con el líquido claro 40 proveniente del espesador 37 se llevan 43 a un reactor 44 de precipitación del aluminio como alúmina (AI2O3) y de litio a la forma de hidróxido de litio soluble (LiOH), empleando un 5% de exceso sobre el estequiométrico de lechada de cal (Ca(OH)2) de acuerdo a las reacciones siguientes: (xv)
Figure imgf000011_0001
(xvi)
The leached pulp 36 is thickened in a conventional thickener 37. The thick low flow (discharge) 38 is filtered in a conventional filter 39 such as a drum filter by washing the solid cake with 1 volume of water 122 on the filter. The filtrate 41 together with the clear liquid 40 coming from the thickener 37 are taken 43 to a reactor 44 for the precipitation of aluminum as alumina (AI2O3) and lithium in the form of soluble lithium hydroxide (LiOH), using a 5% excess on the stoichiometric of milk of lime (Ca (OH) 2) according to the following reactions: (xv)
Figure imgf000011_0001
(xvi)
El CaSC>4 precipita (sólido) como CaSC>4 2H2O junto con la alúmina insoluble. La reacción se efectúa en un reactor agitado convencional 44 agregando lechada de cal 45 (Ca(OH)2) preparada en un estanque o reactor agitado convencional 46, en el cual se agrega cal, óxido de calcio (CaO) 47 y agua 48. La temperatura en el reactor 44 se mantiene entre 5 y 90QC, preferentemente entre 15 y 50QC, con un tiempo de reacción entre 0,25 a 2 h, preferentemente, entre 0,5 - 1 h. CaSC> 4 precipitates (solid) as CaSC> 4 2H2O along with insoluble alumina. The reaction is carried out in a conventional stirred reactor 44 by adding milk of lime 45 (Ca (OH) 2) prepared in a conventional stirred tank or reactor 46, in which lime, calcium oxide (CaO) 47 and water 48 are added. the temperature in the reactor 44 is kept between 5 and 90 Q C, preferably 15 to 50 Q C, with a reaction time of between 0.25 to 2 h, preferably from 0.5 to 1 h.
La pulpa resultante 49 se espesa en un espesador convencional 50 y el bajo flujo (descarga) 52 se filtra en un filtro convencional 53 lavando el queque en el filtro con un volumen de agua 54. El queque sólido de CaSC>42H2O+AI2O3 58, se puede descartar. The resulting pulp 49 is thickened in a conventional thickener 50 and the low flow (discharge) 52 is filtered in a conventional filter 53 washing the cake in the filter with a volume of water 54. Solid cake with CaSC> 42H2O + AI2O3 58, can be discarded.
El líquido claro 51 y el filtrado 55 conteniendo el litio como hidróxido 56 se lleva a una etapa de precipitación del carbonato de litio en uno o más reactores convencionales agitados en serie 85 a temperatura entre 20 - 95QC, preferentemente, entre 60 - 90QC, ya que el carbonato de litio tiene solubilidad inversa con la temperatura, con un tiempo de reacción entre 0,2 - 4 h, preferentemente, entre 0,5 - 2 h empleando una solución de carbonato de sodio o ceniza de soda (Na2CC>3) 84 de 24 a 30 g/L de concentración, preparada en un estanque agitado convencional 83 al cual se alimenta agua 81 y carbonato de sodio 82. La reacción que ocurre es la siguiente: The clear liquid 51 and the filtrate 55 containing the lithium as hydroxide 56 are taken to a lithium carbonate precipitation stage in one or more conventional reactors stirred in series 85 at a temperature between 20-95 ° C, preferably between 60-90 ° C. Q C, since lithium carbonate has inverse solubility with temperature, with a reaction time between 0.2 - 4 h, preferably between 0.5 - 2 h using a sodium carbonate solution or soda ash ( Na2CC> 3) 84 from 24 to 30 g / L concentration, prepared in a conventional agitated pond 83 to which water 81 and sodium carbonate 82 are fed. The reaction that occurs is the following:
2UOH + Na2C03 = U2CO3 + 2NaOH (xvii) 2UOH + Na 2 C0 3 = U2CO3 + 2NaOH (xvii)
La pulpa caliente generada en el o los reactores 86 descarga continuamente a un espesador convencional 87 aislado térmicamente, desde el cual el bajo flujo de pulpa (descarga) 88 conteniendo el carbonato de litio precipitado y se lleva a una etapa de filtrado en un filtro convencional 90, donde el queque sólido de carbonato de litio se lava con 2 volúmenes de agua caliente 93 a 60 - 90QC, preferentemente entre 70 y 85QC, con un tiempo de reacción entre 0,2 a 4 h, preferentemente entre 1 a 2 h recirculando parte del líquido resultante (licor madre) a la etapa de lixiviación de las calcinas y otra parte descartándolo para evitar la acumulación de impurezas solubles. The hot pulp generated in the reactor (s) 86 continuously discharges to a conventional thermally insulated thickener 87, from which the low pulp flow (discharge) 88 containing the precipitated lithium carbonate and is carried to a filtration stage in a conventional filter 90, where the solid lithium carbonate cake was washed with 2 volumes of hot water 93-60 - 90 Q C, preferably between 70 and 85 Q C, with a reaction time between 0.2 to 4 h, preferably between 1 at 2 h recirculating part of the resulting liquid (mother liquor) to the calcine leaching stage and another part discarding it to avoid the accumulation of soluble impurities.
El queque lavado de carbonato de litio 91 se seca en un secador rotativo convencional 78 u otro apropiado a 110 - 150QC por un tiempo de 1 a 4 h, preferentemente, entre 2 a 3 h y el carbonato de litio seco 79 se lleva a envasado 80 ya que es higroscópico. The washed lithium carbonate cake 91 is dried in a conventional rotary dryer 78 or another appropriate one at 110-150 ° C for a time of 1 to 4 h, preferably between 2 to 3 h, and the dry lithium carbonate 79 is brought to packaging 80 as it is hygroscopic.
El líquido claro 89 proveniente del espesador 87 del carbonato de litio, así como el filtrado 92 del filtro 90 se juntan 95 y una parte (30 a 50% del volumen) se lleva 35 al estanque agitado 34. Otra parte se descarta 94 para evitar acumulación de impurezas. The clear liquid 89 from the lithium carbonate thickener 87, as well as the filtrate 92 from the filter 90 are collected 95 and a part (30 to 50% of the volume) is carried 35 to the stirred tank 34. Another part is discarded 94 to avoid accumulation of impurities.
El sólido 42 proveniente del filtro 39 contiene entre 35 a 40% de hierro como magnetita (Fe3Ü4), producto comercial, y se lleva a una o más etapas de concentración de magnética húmeda 75 convencional para obtener un concentrado de magnetita 76 para la venta con sobre 62% de hierro. El residuo final 77 contiene esencialmente sílice (S1O2) y se puede descartar. Solid 42 from filter 39 contains between 35 to 40% iron as magnetite (Fe3Ü4), a commercial product, and is carried through one or more conventional wet magnetic 75 concentration stages to obtain a magnetite 76 concentrate for sale with about 62% iron. Final residue 77 contains essentially silica (S1O2) and can be discarded.
Como alternativa a emplear dos reactores separados, es posible emplear sólo un reactor de calcinación-sulfatación, como el indicado en la Figura 5. En éste, el concentrado de espodumeno 97 se alimenta a través de un sistema convencional de sello de gases 98 tal como una válvula rotativa de estrella a un reactor convencional 96 tal como un horno rotativo calentado externamente con quemadores convencionales 106 de gas, petróleo u otro combustible. Los gases calientes 107 provenientes del sistema de calentamiento del reactor 96 pasan a un ducto 108 donde parte del gas 110 se mezcla con aire 111 y se introduce 112 en un reactor convencional de deshidratación de sulfato de hierro hidratado 113 tal como un horno rotativo, en el que se alimenta en el otro extremo el sulfato de hierro hidratado 114 el cual se deshidrata en su interior 115 a FeSÜ4 (ó Fe2(SC>4)3) anhidros y descarga 100 a través de un sello de gases convencional 101 tal como una válvula rotativa de estrella hacia un ducto común 102, en donde también se alimenta el espodumeno. Aire adicional se puede agregar mediante un ducto 111. As an alternative to using two separate reactors, it is possible to use only one calcination-sulfation reactor, as indicated in Figure 5. In this, the spodumene concentrate 97 is fed through a conventional gas seal system 98 such as a rotary star valve to a conventional reactor 96 such as an externally heated rotary kiln with conventional gas, oil or other fuel burners 106. The hot gases 107 coming from the heating system of the reactor 96 pass to a pipeline 108 where part of the gas 110 is mixed with air 111 and 112 is introduced into a conventional hydrated iron sulfate dehydration reactor 113 such as a rotary kiln, in which is fed at the other end the hydrated iron sulfate 114 which is dehydrated in its interior 115 to anhydrous FeSÜ4 (or Fe2 (SC> 4) 3 ) and discharges 100 through a conventional gas seal 101 such as a rotary star valve to a common duct 102, where the spodumene is also fed. Additional air can be added via duct 111.
La mezcla de espodumeno y sulfato ferroso (o férrico) anhidros 99 reacciona 103 en el interior del reactor 96 y descarga en el extremo de éste 104 a través de un sello de gas convencional tal como una válvula rotativa de estrella 105 para ser procesada la calcina en igual forma que la descrita en el caso de emplear dos reactores separados. The mixture of anhydrous spodumene and ferrous (or ferric) sulfate 99 reacts 103 inside the reactor 96 and discharges at the end of it 104 through a conventional gas seal such as a rotary star valve 105 to be processed the calcine in the same way as that described in the case of using two separate reactors.
El exceso de gases de combustión, si lo hubiera, se evacúa al ambiente 109. Gases de proceso 116 del reactor 113 se limpian en un sistema convencional tal como uno o más ciclones 117 y luego ventean el ambiente 118. El polvo recolectado 119 puede retornarse al reactor de deshidratación 113 junto con la alimentación 114. La presión total en el interior del reactor 96 se mantiene en aproximadamente 1 atmósfera empleando un ducto de gases 120 y un sello hidráulico de gas 121 convencionales. Excess flue gases, if any, are evacuated to environment 109. Process gases 116 from reactor 113 are cleaned in a conventional system such as one or more cyclones 117 and then vented to environment 118. Collected dust 119 can be returned to dewatering reactor 113 along with feed 114. The total pressure within reactor 96 is maintained at approximately 1 atmosphere using a conventional gas line 120 and hydraulic gas seal 121.
Puesto que la calcinación de espodumeno a a espodumeno b requiere de 900 a 1200QC, el sulfato de aluminio se descompone sobre 950QC, si las reacciones de calcinación + sulfatación en el reactor único 96 ocurren por sobre esta temperatura, no se forma sulfato de aluminio y éste permanece en la calcina como alúmina, lo cual además hace disminuir el consumo de sulfato ferroso, ya que sólo ocurre la reacción de formación de sulfato de litio según: Since calcining spodumene aa spodumene b requires 900 to 1200 Q C, aluminum sulfate decomposes over 950 Q C, if reactions calcination + sulfation in the single reactor 96 occur above this temperature, no sulfate is formed of aluminum and this remains in the calcine as alumina, which also reduces the consumption of ferrous sulfate, since the lithium sulfate formation reaction only occurs according to:
2LiAI(S¡03)2 + FeS04 + 0,25O2 = U2SO4 + 0,5Fe2O3 + Al 03 + 4S¡02 (xviii) 2LiAI (S¡0 3 ) 2 + FeS0 4 + 0.25O 2 = U2SO4 + 0.5Fe 2 O 3 + Al 0 3 + 4S¡0 2 (xviii)
Opcionalmente, este proceso puede operar también con otros minerales de litio tal como petalita, ambligonita y lepidolita. Optionally, this process can also operate with other lithium minerals such as petalite, amblygonite and lepidolite.
Otra configuración preferente, es el empleo de un sistema de doble reactor rotativo concéntrico en el cual en el reactor interior se efectúa la descomposición según las reacciones para el sulfato ferroso (o férrico), y desde el cual los gases generados (S03 y SO2) sulfatan el espodumeno que reacciona en el reactor exterior, concéntrico con el anterior. De esta forma, se obtienen dos productos separados: una calcina sulfatada conteniendo el sulfato de litio que sigue a proceso y un concentrado de hematita (Fe2Ü3) de alta ley virtualmente puro (sobre 95%) que va a venta directamente. En la Figura 6 se observa un diagrama del equipo y proceso para esta opción tecnológica. Another preferred configuration is the use of a double concentric rotary reactor system in which decomposition is carried out in the inner reactor according to the reactions for ferrous (or ferric) sulfate, and from which the gases generated (S0 3 and SO2 ) sulfate the spodumene that reacts in the outer reactor, concentric with the previous one. In this way, two separate products are obtained: a sulfated calcine containing lithium sulfate that follows the process and a virtually pure (over 95%) high-grade hematite concentrate (Fe2Ü 3 ) that goes on sale directly. Figure 6 shows a diagram of the equipment and process for this technological option.
El concentrado de espodumeno 187, normalmente de ley superior al 90% de espodumeno y de tamaño de partículas bajo 100 mallas ASTM (-0,15 mm) se alimenta a través de un sello de gas convencional 128 a un reactor de calcinación 124, tal como un horno rotativo u otro apropiado convencional calentado directamente con petróleo u otro combustible 125 en forma convencional. Este calcinador opera a temperatura entre 600 a 1300QC, preferentemente, entre 900 a 1200QC para transformar el espodumeno desde su forma cristalina monoclínica a a su forma cristalina tetragonal b. El tiempo de reacción del material (espodumeno) 123 en el reactor de calcinación 124 varía de 0,5 - 6 h, preferentemente, entre 2 a 4 h. The spodumene 187 concentrate, normally of a grade higher than 90% of spodumene and of particle size under 100 ASTM mesh (-0.15 mm) is feeds through a conventional gas seal 128 to a calcination reactor 124, such as a rotary kiln or other suitable conventional directly heated with oil or other fuel 125 in conventional manner. This calciner is operated at temperature between 600 to 1300 Q C, preferably from 900 to 1200 Q C to transform the spodumene from monoclinic crystalline form its tetragonal crystalline form aa b. The reaction time of the material (spodumene) 123 in the calcination reactor 124 ranges from 0.5 - 6 h, preferably between 2 to 4 h.
La calcina de espodumeno b 126 descarga caliente del calcinador 124 a un buzón de sello de gas convencional 127 y desde éste a través de un sistema convencional de sello de gas 129, tal como una válvula rotativa de estrella hacia el reactor de sulfatación 154. The spodumene calcine b 126 discharges hot from calciner 124 to a conventional gas seal mailbox 127 and from there through a conventional gas seal system 129, such as a rotary star valve to the sulfation reactor 154.
Parte o la totalidad de los gases de salida de la combustión 131 del reactor 124 se llevan 133 a un sistema convencional de limpieza de gases 134 tal como uno o más ciclones. Otra parte, 132 se puede ventear a la atmósfera o reutilizarla. El polvo separado 189 se descarga a través de un sistema de sello de gases convencional 188, tal como una válvula rotativa de estrella y se une en un ducto común 130 con la calcina 126 del reactor de calcinación 124 para alimentar el reactor de sulfatación 154. Part or all of the combustion exhaust gases 131 from reactor 124 are led 133 to a conventional gas cleaning system 134 such as one or more cyclones. Another part, 132 can be vented to the atmosphere or reused. The separated powder 189 is discharged through a conventional gas seal system 188, such as a rotary star valve, and is joined in a common duct 130 with the calcine 126 from the calcination reactor 124 to feed the sulfation reactor 154.
Los gases calientes limpios 137 provenientes del sistema de limpieza 134 se llevan a un reactor de deshidratación 140 convencional tal como un horno rotatorio, el cual es alimentado con sulfato ferroso (o sulfato férrico) hidratado comercial 141 a través de un sello de gas convencional 142. En este reactor u horno de deshidratación 140 ocurre la descomposición térmica de los sulfatos hidratados a sus respectivos sulfatos anhidros 139 de acuerdo a las reacciones generales antes indicada (iii) y (iv). Estas reacciones de deshidratación son endotérmicas, y el calor requerido proviene de los gases calientes 137. La temperatura de deshidratación del FeS047H20 y del Fe2(S04)3-nH20 (o con cualquier número de moléculas de agua) es de 200 a 350QC, preferentemente, entre 220 a 260QC y con un tiempo de retención en el reactor 140 de 0,25 a 4 h, preferentemente, entre 1 - 2 h. The clean hot gases 137 from the cleaning system 134 are led to a conventional dehydration reactor 140 such as a rotary kiln, which is fed with commercial hydrated ferrous sulfate (or ferric sulfate) 141 through a conventional gas seal 142 In this reactor or dehydration furnace 140, the thermal decomposition of the hydrated sulfates to their respective anhydrous sulfates 139 occurs according to the general reactions indicated above (iii) and (iv). These dehydration reactions are endothermic, and the heat required comes from the hot gases 137. The dehydration temperature of the FeS047H20 and Fe2 (S04) 3-nH20 (or any number of water molecules) is from 200 to 350 Q C preferably between 220-260 C Q and a retention time in the reactor 140 of 0.25 to 4 h, preferably between 1 - 2 h.
La temperatura de entrada del gas caliente 137 se controla mediante la adición de aire frío 135 mediante un ducto convencional 136 para evitar que el sulfato ferroso (o sulfato férrico) o sus respectivos sulfatos anhidros 139 en el interior del reactor 140 sobrepasen los 350QC, temperatura por sobre la cual comienza una leve descomposición tanto del sulfato ferroso como del férrico. Los sulfatos anhidros 147 descargan a un buzón de sello de gases 138 convencional. The inlet temperature of the hot gas 137 is controlled by the addition of cold air 135 by a conventional duct 136 to prevent ferrous sulfate (or ferric sulfate) or their sulfates Anhydrous 139 inside the reactor 140 exceed 350 Q C , temperature above which begins a slight decomposition of both ferrous and ferric sulfate. Anhydrous sulfates 147 discharge to a conventional gas seal mailbox 138.
Los gases calientes 143 provenientes del reactor 140 se limpian en un sistema convencional de limpieza de gases 145 tal como uno o más ciclones y el gas limpio 144 se envía a la atmósfera, ya que esencialmente es aire y vapor de agua, y el polvo recolectado 146 se puede retornar al reactor 140 junto con la alimentación 141. El sulfato ferroso anhidro 147 (FeSÜ4) (o sulfato férrico anhidro (Fe2(SC>4)3)) descarga del reactor 140 a través de un sello convencional de gas 148 tal como una válvula rotativa de estrella, y el sulfato ferroso (o férrico) se alimenta a través de un ducto 149 hacia el reactor de descomposición 157 tal como un horno rotativo u otro, provisto de cierres convencionales de gases 151 y 164, en el cual ocurren ahora las reacciones de descomposición térmica de los sulfato ferroso (o férrico) 156 por sobre 600QC, de acuerdo a las reacciones antes vistas (v), (vi) y (vii). Por ejemplo, a 800QC para formar magnetita Fe3Ü4 se requiere de una presión parcial de oxígeno a 10 9 atmósferas. Por sobre este valor se forma hematita, Fe2Ü3, como se observa en la Figura 2. The hot gases 143 from the reactor 140 are cleaned in a conventional gas cleaning system 145 such as one or more cyclones and the clean gas 144 is sent to the atmosphere, since it is essentially air and water vapor, and the collected dust 146 can be returned to reactor 140 along with feed 141. Anhydrous ferrous sulfate 147 (FeSÜ4) (or anhydrous ferric sulfate (Fe2 (SC> 4) 3)) discharges from reactor 140 through a conventional 148 gas seal such as a rotary star valve, and ferrous sulfate (or ferric) is fed through a pipeline 149 towards the decomposition reactor 157 such as a rotary kiln or other, provided with conventional closures of gases 151 and 164, in which the thermal decomposition reactions of ferrous sulfate (or ferric) 156 over 600 Q C, according to the reactions previously seen (v), (vi) and (vii). For example, 800 C to form magnetite Q Fe3Ü4 requires a partial pressure of oxygen to 10 9 atmospheres. Above this value, hematite, Fe2Ü3, is formed, as observed in Figure 2.
El SO3 y SO2 generados por la descomposición del sulfato ferroso (o férrico) salen 191 continuamente desde el reactor 157 por las ventilas o ranuras 158 del cuerpo de éste y reaccionan con el espodumeno b 155 en el reactor 154 para formar los sulfatos de litio y aluminio respectivos, hematita (o magnetita) y sílice de acuerdo a las reacciones (xi) y (xii) antes vistas. The SO3 and SO2 generated by the decomposition of the ferrous (or ferric) sulfate exit 191 continuously from the reactor 157 through the vents or slots 158 of the body of this one and react with the spodumene b 155 in the reactor 154 to form the lithium sulfates and respective aluminum, hematite (or magnetite) and silica according to reactions (xi) and (xii) seen above.
La atmósfera gaseosa en el interior del reactor 157 es esencialmente SO3 y SO2, de tal forma que en el lecho de material 155 el espodumeno reacciona continuamente con estos gases. Levantadores ( lifters ) convencionales longitudinales 190 permiten mantener una constante lluvia de espodumeno dentro del reactor 157 para mejorar las reacciones con SO3 y SO2. The gaseous atmosphere inside the reactor 157 is essentially SO3 and SO2, such that in the material bed 155 the spodumene continuously reacts with these gases. Longitudinal conventional lifters 190 allow a constant spodumene shower to be maintained within reactor 157 to improve reactions with SO3 and SO2.
El reactor concéntrico de descomposición del sulfato ferroso (o férrico) central 157 gira en conjunto con el exterior 154. El sulfato ferroso (ó férrico) anhidro se alimenta 150 mediante un ducto 149 al interior del reactor 157 para descomponerlo en hematita SO3 y SO2 (o magnetita y SO3) a temperatura entre 600 y 900QC, preferentemente entre 700 y 800QC por un tiempo de reacción entre 0,5 a 10 h, preferentemente entre 2 y 4 h. The central ferrous (or ferric) sulfate decomposition concentric reactor 157 rotates in conjunction with the exterior 154. The anhydrous ferrous (or ferric) sulfate is fed 150 through a pipeline 149 into the reactor 157 to decompose it into hematite SO3 and SO2 ( or magnetite and SO3) at a temperature between 600 and 900 Q C, preferably 700 to 800 Q C for a reaction time between 0.5 to 10 h, preferably 2 to 4 h.
La calcina de espodumeno b proveniente del reactor u horno de calcinación 124 se alimenta 153 mediante un ducto apropiado 130 al reactor de sulfatación del espodumeno 154, concéntrico con el de descomposición del sulfato ferroso (o férrico) 157. The spodumene calcine b from the reactor or calcination furnace 124 is fed 153 through an appropriate pipeline 130 to the spodumene sulphation reactor 154, concentric with that of the decomposition of ferrous (or ferric) sulfate 157.
El reactor externo 154 de sulfación del espodumeno se calienta mediante quemadores convencionales de gas, petróleo u otro combustible 169 y el calor del cuerpo del reactor 154 es transferido a la carga de espodumeno 155, y además es radiado al reactor interno 157. Los gases de salida 170 se destinan a otros usos 171 o se ventean a la atmósfera. The external spodumene sulfation reactor 154 is heated by conventional gas, oil or other fuel burners 169 and the heat from the reactor body 154 is transferred to the spodumene charge 155, and is further radiated to the internal reactor 157. outlet 170 are destined for other uses 171 or are vented to the atmosphere.
La calcina sulfatada de espodumeno descarga 159 del reactor rotativo externo 154 a un buzón provisto de sellos convencionales 160 y a través de una válvula de sello de gas convencional 161 tal como una válvula rotativa de estrella. La calcina 162 va a proceso en la forma antes descrita. The sulfated spodumene calcine discharges 159 from the external rotary reactor 154 into a mailbox fitted with conventional seals 160 and through a conventional gas seal valve 161 such as a rotary star valve. The calcine 162 is processed in the manner described above.
La calcina resultante de la descomposición del sulfato ferroso (o férrico) 163 que es esencialmente hematita Fe2Ü3 (o magnetita, Fe3Ü4) descarga del reactor interno 157 a un buzón convencional y de éste a un sello de gas convencional tal como una válvula rotativa de estrella 165 y la calcina 166 va a venta o proceso. Sellos de gas convencionales 151 y 152 en los extremos de alimentación, así como en las descargas 160 y 164 de ambos reactores concéntricos permiten mantener la atmósfera gaseosa con SO3 -SO2 en el sistema completo y un ducto 167 y un sello hidráulico convencional 168 permiten mantener la presión interna del sistema cercano a 1 atmósfera. The calcine resulting from the decomposition of ferrous (or ferric) sulfate 163 which is essentially hematite Fe2Ü3 (or magnetite, Fe3Ü4) discharges the internal reactor 157 to a conventional mailbox and from there to a conventional gas seal such as a rotary star valve 165 and calcine 166 goes to sale or processing. Conventional gas seals 151 and 152 at the feed ends, as well as at the discharges 160 and 164 of both concentric reactors allow to maintain the gaseous atmosphere with SO3 -SO2 in the complete system and a duct 167 and a conventional hydraulic seal 168 allow to maintain the internal pressure of the system close to 1 atmosphere.
En la Figura NQ7 se observa un esquema en corte transversal del conjunto de hornos o reactores concéntricos antes descritos. Específicamente, en la Figura 7(a) se observa la sección transversal de ambos reactores, el de sulfatación del espodumeno 172 en que la carga o lecho de espodumeno 173 reacciona con el gas de SO3/SO2 186 que se genera en el interior del reactor 175 de descomposición del sulfato ferroso (o férrico) 176. Levantadores ( lifters ) convencionales 184 permiten mantener una lluvia de espodumeno 185 en su interior, lo cual mejora la transferencia de masa y la reacción de sulfatación del espodumeno con el SO3 y SO2. El calor es aportado por quemadores convencionales 182 y los gases calientes 183 circulan en el espacio anular 181 exterior al reactor de sulfatación 172. Una carcasa exterior 174 rodea el conjunto de reactores concéntricos. Figure N Q 7 shows a cross-sectional diagram of the set of concentric furnaces or reactors described above. Specifically, in Figure 7 (a) the cross section of both reactors is observed, the one for sulphating the spodumene 172 in which the charge or bed of spodumene 173 reacts with the SO3 / SO2 186 gas that is generated inside the reactor 175 decomposition of ferrous (or ferric) sulfate 176. Conventional lifters 184 allow to maintain a shower of spodumene 185 in its interior, which improves the mass transfer and the sulfation reaction of spodumene with SO3 and SO2. Heat is supplied by conventional burners 182 and hot gases 183 circulate in annular space 181 outside sulfation reactor 172. An outer shell 174 surrounds the concentric reactor assembly.
En la Figura 7(b) se observa el detalle de construcción del reactor interno 175 de descomposición del sulfato ferroso (o férrico), el cual está construido de ángulos longitudinales 179 que están soldados 177 a anillos de soporte 180 y que con su perfil en Z permiten el paso del gas (SO3/SO2) por los espacios o ventilas entre ellos 179. Este tipo de perfil permite el paso de los gases, pero no el paso del sólido hacia el reactor exterior, y pueden ser elaborados de acero 316, Inconel 600 o similares. In Figure 7 (b) the construction detail of the internal reactor 175 for decomposition of ferrous (or ferric) sulfate is observed, which is built with longitudinal angles 179 that are welded 177 to support rings 180 and that with its profile in Z allow the passage of gas (SO3 / SO2) through the spaces or vents between them 179. This type of profile allows the passage of gases, but not the passage of the solid towards the external reactor, and can be made of 316 steel, Inconel 600 or similar.
Ejemplo de aplicación Application example
Un concentrado de espodumeno de la composición indicada en la Tabla 2 se calcinó a 1 100QC durante 2 h en un horno de mutila. La calcina obtenida se enfrió y luego mezcló con sulfato ferroso anhidro deshidratado previamente a 280QC durante 1 hora, en una proporción en peso de espodumeno/sulfato ferroso = 1/1 ,63 que equivale al estequiométrico de la reacción (xiv). La mezcla se hizo reaccionar a 800QC con un flujo de 0,2 cc/seg (30 cc/min) de oxígeno de 99,8% durante 3 h. Al término de la reacción la calcina se enfrió y disgregó a tamaño 100% - 100 mallas ASTM (-0,15 mm) para luego lixiviarla con agua a 50QC con 15% de sólido durante 30 minutos. A spodumene will concentrate of said composition in Table 2 was calcined at 1 100 Q C for 2 h in a microwave cripples. The calcine obtained was cooled and then mixed with ferrous sulfate previously dehydrated to 280 Q C for 1 hour, in a weight ratio of spodumene / ferrous sulfate = 01/01, 63 equivalent to the stoichiometric reaction (xiv). The mixture was reacted at 800 C with a flow Q of 0.2 cc / sec (30 cc / min) 99.8% oxygen for 3 h. A the term calcine the reaction was cooled and triturated to size 100% - 100 ASTM mesh (-0.15 mm) and then with water lixiviarla 50 Q C with 15% solids for 30 minutes.
_ Tabla 2. Concentrado de espodumeno empleado _ _ Table 2. Spodumene concentrate used _
Elemento _ Li _ Al _ S1O2 _ Fe _ Ca Element _ Li _ Al _ S1O2 _ Fe _ Ca
% en peso 3,09_ 8,98_ 98,1_ 0,40_ 0,02 % by weight 3.09_ 8.98_ 98.1_ 0.40_ 0.02
La pulpa obtenida después de la lixiviación se filtró y el queque sólido se lavó con 1 volumen equivalente de agua a 50QC. El líquido (filtrado) se trató con lechada de cal (Ca(OH)2) en proporción equivalente a la estequiométrica más un 5% de exceso para precipitar todo el aluminio (presente en la pulpa como sulfato de aluminio disuelto) a la forma de alúmina (insoluble) de acuerdo a la reacción (xv) y transformar el sulfato de litio disuelto en hidróxido de litio (soluble) de acuerdo a la reacción (xvi). La pulpa resultante se filtró y el sólido se lavó con 1 volumen equivalente de agua a temperatura ambiente. The pulp obtained after leaching was filtered and the solid cake was washed with 1 volume equivalent of water at 50 Q C. The liquid (filtrate) was treated with milk of lime (Ca (OH) 2) in proportion equal to the stoichiometric plus 5% excess to precipitate all the aluminum (present in the pulp as dissolved aluminum sulfate) to the alumina form (insoluble) according to reaction (xv) and transform the dissolved lithium sulfate into lithium hydroxide (soluble ) according to reaction (xvi). The resulting pulp was filtered and the solid was washed with 1 equivalent volume of water at room temperature.
La solución resultante (filtrado) se trató luego con una solución con 24 g/L de carbonato de sodio (Na2CÜ3) a 90QC en proporción de 10% de exceso sobre el valor estequiométrico para precipitar el carbonato de litio (LÍ2CO3) de acuerdo a la reacción (xvii). El queque sólido de U2CO3 se lavó con 2 volúmenes equivalentes de agua a 90QC y luego secó en una temperatura de 120QC por 1 h. El producto final de U2CO3 tenía una pureza de 98,8% U2CO3 (Tabla 3) y la recuperación global de litio desde el espodumeno fue de 91 ,1 %. The resulting solution (filtrate) was then treated with a solution containing 24 g / L sodium carbonate (Na2CÜ3) at 90 Q C in ratio of 10% excess over the stoichiometric value to precipitate lithium carbonate (Li2CO3) according to the reaction (xvii). The solid cake was washed with 2 U2CO3 equivalent volumes of water at 90 Q C and then dried at a temperature of 120 Q C for 1 h. The final U2CO3 product had a purity of 98.8% U2CO3 (Table 3) and the overall recovery of lithium from spodumene was 91.1%.
Tabla 3. Carbonato de litio obtenido Table 3. Lithium carbonate obtained
Elemento Li Mg Ca Na U2CO3 Element Li Mg Ca Na U2CO3
% en peso 18,55 0,31 0,08 0,40 98,8 % by weight 18.55 0.31 0.08 0.40 98.8
El residuo sólido obtenido de la primera precipitación después de lavado tenía la composición indicada en la Tabla 4. The solid residue obtained from the first precipitation after washing had the composition indicated in Table 4.
_ Tabla 4. Residuo de primera filtración _ _ Table 4. First filtration residue _
Elemento _ Li _ Al _ S1O2 _ Fe _ FesC Element _ Li _ Al _ S1O2 _ Fe _ FesC
% en peso_ 0,03_ 0,1 1_ 56,1_ 21 ,1_ 43,9 % by weight_ 0.03_ 0.1 1_ 56.1_ 21, 1_ 43.9
Este residuo fue concentrado en tres pasos en húmedo en un tambor magnético de 600 gauss/cm2. El concentrado final obtenido se encuentra en la Tabla 5. This residue was concentrated in three wet steps on a 600 gauss / cm 2 magnetic drum. The final concentrate obtained is found in Table 5.
_ Tabla 5. Concentrado de hierro obtenido _ _ Table 5. Iron concentrate obtained _
Elemento _ Li _ Al _ S1O2 _ Fe _ FesC Element _ Li _ Al _ S1O2 _ Fe _ FesC
% en peso_ 0,01_ 0,18_ 2,81_ 67,1_ 89,9 % by weight_ 0.01_ 0.18_ 2.81_ 67.1_ 89.9

Claims

Reivindicaciones Claims
1 Un proceso para producir carbonato de litio u otros productos químicos de litio a partir de concentrados de mineral de espodumeno, LiAI(Si03)2, CARACTERIZADO porque comprende al menos las siguientes etapas: 1 A process to produce lithium carbonate or other lithium chemicals from spodumene mineral concentrates, LiAI (Si03) 2, CHARACTERIZED because it comprises at least the following steps:
a. calcinar el concentrado de espodumeno para transformarlo de su forma cristalina oc a la forma cristalina b, el cual opera a una temperatura entre 600 a 1300QC durante 0,5 - 6 h; to. calcining the spodumene concentrate to transform its crystalline form oc crystalline form b, which operates at a temperature between 600 to 1300 Q C for 0.5 to 6 h;
b. deshidratar sulfato ferroso hidratado (FeS04-nH20) a la forma anhidra (FeSÜ4) empleando parte de los gases de salida del calcinador de espodumeno de la etapa“a”, mezclándolos con aire, previa limpieza de estos, a una temperatura entre 200 a 350QC durante 0,25 - 4 h; b. dehydrate hydrated ferrous sulfate (FeS04-nH20) to the anhydrous form (FeSÜ4) using part of the exit gases from the spodumene calciner from stage “a”, mixing them with air, after cleaning them, at a temperature between 200 to 350 Q C for 0.25-4 h;
c. reacción de sulfatación del espodumeno b con sulfato ferroso anhidro en un reactor cerrado calentado externamente mediante una parte de los gases de salida del calcinador de espodumeno y combustible adicional mediante quemadores de petróleo u otro combustible y que opera a temperatura entre 400 a 1200QC con un tiempo de reacción entre 0,5 - 6 h manteniendo una atmósfera cercana a 1 atmósfera para formar los sulfatos de litio (U2SO4) y sulfato de aluminio (Al2(SC>4)3) respectivos, hematita (Fe2Ü3) y/o magnetita (Fe3Ü4) y sílice (S1O2); c. sulphation reaction of the spodumene b with ferrous sulfate in a closed reactor heated externally by a portion of the exhaust from the calciner spodumene and additional fuel by oil burners or other fuel and operating at temperature between 400 to 1200 Q C a reaction time between 0.5 - 6 h maintaining an atmosphere close to 1 atmosphere to form the respective lithium sulfates (U2SO4) and aluminum sulfate (Al2 (SC> 4) 3), hematite (Fe2Ü3) and / or magnetite (Fe3Ü4) and silica (S1O2);
d. enfriar las calcinas sulfatadas del reactor que descargan de la etapa“c” a una temperatura entre 50 - 80°C; d. cooling the sulphated calcines from the reactor that are discharged from stage "c" to a temperature between 50-80 ° C;
e. lixiviar las calcinas con agua y licor madre de la precipitación de carbonato de litio a temperatura entre 5 y 95QC, con 1 a 25% de sólido, y un tiempo de lixiviación entre 0,5 y 5 h; and. the calcine leaching with water and mother liquor from the precipitation of lithium carbonate to temperatures between 5 and 95 Q C, with 1 to 25% solid, and leaching time between 0.5 and 5 h;
f. espesar y filtrar la pulpa generada en la etapa de lixiviación“e”, lavando el queque sólido en el filtro; F. thicken and filter the pulp generated in the leaching stage "e", washing the solid cake on the filter;
g. formar el hidróxido de litio (LiOH) y óxido de aluminio (AI2O3) desde la solución generada en la etapa“f” agregando hidróxido de calcio (Ca (OH)2) empleando un 5% de exceso sobre el estequiométrico requerido para transformar el sulfato de aluminio (Al2(S04)3) a la forma de alúmina insoluble (AI2O3), y el sulfato de litio (U2SO4) transformarlo a hidróxido de litio (LiOH) en solución a temperatura entre 5 a 90QC, con un tiempo de reacción de 0,25 a 2 h. g. form lithium hydroxide (LiOH) and aluminum oxide (AI2O3) from the solution generated in step “f” by adding calcium hydroxide (Ca (OH) 2) using a 5% excess over the stoichiometric required to transform the sulfate aluminum (Al2 (S04) 3) to form insoluble alumina (Al2O3) and lithium sulfate (U2SO4) transform to lithium hydroxide (LiOH) in solution at temperatures between 5 to 90 Q C, with a time of reaction from 0.25 to 2 h.
h. espesar y filtrar de la pulpa generada en la etapa de reacción anterior“g” lavando el queque de sólido con un volumen de agua; h. thicken and filter from the pulp generated in the previous reaction step "g" washing the cake from solid with a volume of water;
i. precipitar el carbonato de litio (U2CO3) desde la solución generada en la etapa“h” mediante una solución de carbonato de sodio (Na2C03) de 24 a 30 g/L de concentración en uno o más reactores agitados y calentados a temperatura entre 20 y 95QC con un tiempo de reacción de 0,2 a 4 h; j. espesar y filtrar la pulpa generada en la etapa de precipitación “i” manteniendo la temperatura entre 20 y 95QC, lavando el queque de carbonato de litio en el filtro con 2 volúmenes de agua a 60 - 90QC con un tiempo de reacción entre 0,2 a 4 h, y recirculando parte del líquido resultante o licor madre a la etapa de lixiviación de las calcinas y parte descartándolo; y i. precipitate lithium carbonate (U2CO3) from the solution generated in step “h” using a sodium carbonate solution (Na2C03) with a concentration of 24 to 30 g / L in one or more stirred reactors heated to a temperature between 20 and 95 Q C with a reaction time of 0.2 to 4 h; j. thickening and filtering the pulp generated in the precipitation step "i" maintaining the temperature between 20 and 95 Q C, washing the cake of lithium carbonate in the filter with 2 volumes of water at 60-90 Q C with a reaction time between 0.2 to 4 h, and recirculating part of the resulting liquid or mother liquor to the calcine leaching stage and part discarding it; Y
k. secar el precipitado de carbonato de litio a 1 10 - 150QC un secador indirecto por un tiempo de 1 a 4 h y envasarlo. k. drying the precipitate of lithium carbonate 1 10-150 Q C an indirect dryer for a time of 1 to 4 h repacked.
2.- Un proceso para producir carbonato de litio u otros productos químicos de litio a partir de concentrados de mineral de espodumeno, LiAI(Si03)2, según reivindicación 1 , CARACTERIZADO porque en la etapa“a” de calcinación del espodumeno se realiza en un reactor convencional del tipo horno rotativo con calentamiento directo. 2.- A process to produce lithium carbonate or other lithium chemical products from spodumene mineral concentrates, LiAI (Si03) 2, according to claim 1, CHARACTERIZED because in stage "a" of calcination of spodumene is carried out in a conventional reactor of the rotary kiln type with direct heating.
3.- Un proceso para producir carbonato de litio u otros productos químicos de litio a partir de concentrados de mineral de espodumeno, LiAI(Si03)2, según reivindicación 1 , CARACTERIZADO porque la etapa “a” de calcinación del espodumeno se realiza, preferentemente, entre 900 a 1200QC y un tiempo entre 2 a 4 h. 3.- A process to produce lithium carbonate or other lithium chemical products from spodumene mineral concentrates, LiAI (Si03) 2, according to claim 1, CHARACTERIZED because stage “a” of calcination of the spodumene is carried out, preferably between 900 to 1200 Q C and a time between 2 to 4 h.
4.- Un proceso para producir carbonato de litio u otros productos químicos de litio a partir de concentrados de mineral de espodumeno, LiAI(Si03)2, según reivindicación 1 , CARACTERIZADO porque la etapa“b” de deshidratación del sulfato ferroso hidratado se efectúa en un reactor separado del tipo horno rotativo convencional empleando parte o la totalidad de los gases de combustión de salida del horno de calcinación del espodumeno. 4.- A process to produce lithium carbonate or other lithium chemical products from spodumene mineral concentrates, LiAI (Si03) 2, according to claim 1, CHARACTERIZED because step “b” of dehydration of hydrated ferrous sulfate is carried out in a separate reactor of the conventional rotary kiln type using part or all of the combustion gases exiting the spodumene calcination kiln.
5.- Un proceso para producir carbonato de litio u otros productos químicos de litio a partir de concentrados de mineral de espodumeno, LiAI(Si03)2, según reivindicación 1 , CARACTERIZADO porque la etapa“b” opera, preferentemente, a 5.- A process to produce lithium carbonate or other lithium chemical products from spodumene mineral concentrates, LiAI (Si03) 2, according to claim 1, CHARACTERIZED because step "b" operates, preferably, at
220 - 260QC y con un tiempo de reacción de 1 a 2 h. 220-260 Q C and with a reaction time of 1 to 2 h.
6.- Un proceso para producir carbonato de litio u otros productos químicos de litio a partir de concentrados de mineral de espodumeno, LiAI(Si03)2, según reivindicación 1 , CARACTERIZADO porque el reactor de la etapa“c” es un reactor de sulfatación u horno rotativo provisto de sellos convencionales en los extremos de alimentación y descarga de sólidos para evitar pérdida de gases desde su interior. 6.- A process to produce lithium carbonate or other lithium chemical products from spodumene mineral concentrates, LiAI (Si03) 2, according to claim 1, CHARACTERIZED because the reactor of stage “c” is a sulfation reactor or rotary kiln provided with conventional seals at the ends of feeding and discharge of solids to avoid loss of gases from its interior.
7.- Un proceso para producir carbonato de litio u otros productos químicos de litio a partir de concentrados de mineral de espodumeno, LiAI(Si03)2, según reivindicación 1 , CARACTERIZADO porque la etapa“c” opera, preferentemente, a una temperatura entre 700 - 900QC y con un tiempo de reacción de 2 a 4 h. 7.- A process to produce lithium carbonate or other lithium chemical products from spodumene mineral concentrates, LiAI (Si03) 2, according to claim 1, CHARACTERIZED because stage "c" operates, preferably, at a temperature between 700 - 900 Q C and with a reaction time of 2 to 4 h.
8.- Un proceso para producir carbonato de litio u otros productos químicos de litio a partir de concentrados de mineral de espodumeno, LiAI(Si03)2, según reivindicación 1 , CARACTERIZADO porque en la etapa“c” de sulfatación del espodumeno se emplea, opcionalmente, sulfato férrico (Fe2(S04)3). 8.- A process to produce lithium carbonate or other lithium chemical products from spodumene mineral concentrates, LiAI (Si03) 2, according to claim 1, CHARACTERIZED because in stage “c” of spodumene sulphation, it is used, optionally, ferric sulfate (Fe2 (S04) 3).
9.- Un proceso para producir carbonato de litio u otros productos químicos de litio a partir de concentrados de mineral de espodumeno, LiAI(Si03)2, según reivindicación 1 , CARACTERIZADO porque la etapa “a” de calcinación del espodumeno y la etapa“c” de reacción con el sulfato ferroso anhidro se efectúan en un solo reactor cerrado, con una presión cercana a 1 atmósfera y de calentamiento indirecto externo, a temperatura entre 400 a 1200QC. 9.- A process to produce lithium carbonate or other lithium chemical products from spodumene mineral concentrates, LiAI (Si03) 2, according to claim 1, CHARACTERIZED because stage "a" of calcination of spodumene and stage " c "reaction with ferrous sulfate is carried out in a single closed reactor with a pressure close to 1 atmosphere and external indirect heating at temperatures between 400 to 1200 Q C.
10.- Un proceso para producir carbonato de litio u otros productos químicos de litio a partir de concentrados de mineral de espodumeno, LiAI(Si03)2, según reivindicación 1 , CARACTERIZADO porque, opcionalmente, la calcina de la etapa“d” se muele bajo 100 mallas, -0,15 mm, en un molino convencional. 10.- A process to produce lithium carbonate or other lithium chemical products from spodumene mineral concentrates, LiAI (Si03) 2, according to claim 1, CHARACTERIZED because, optionally, the calcine of stage "d" is ground under 100 meshes, -0.15 mm, in a conventional mill.
1 1 .- Un proceso para producir carbonato de litio u otros productos químicos de litio a partir de concentrados de mineral de espodumeno, LiAI(Si03)2, según reivindicación 1 , CARACTERIZADO porque la etapa “e” de lixiviación de la calcina se efectúa, preferentemente, entre 30 - 60QC con 5 - 15% de sólido y durante 1 a 2 h. 1 1 .- A process to produce lithium carbonate or other lithium chemical products from spodumene mineral concentrates, LiAI (Si03) 2, according to claim 1, CHARACTERIZED because stage "e" of calcine leaching is carried out preferably between 30 - 60 Q C with 5 to 15% solids and for 1 to 2 h.
12.- Un proceso para producir carbonato de litio u otros productos químicos de litio a partir de concentrados de mineral de espodumeno, LiAI(Si03)2, según reivindicación 1 , CARACTERIZADO porque la etapa “g” de formación del hidróxido de litio opera, preferentemente, entre 5 - 90QC con un tiempo de reacción entre 0,25 - 2 h y con 5% de exceso de hidróxido de calcio respecto del estequiométrico. 12.- A process to produce lithium carbonate or other lithium chemical products from spodumene mineral concentrates, LiAI (Si03) 2, according to claim 1, CHARACTERIZED because stage "g" of lithium hydroxide formation operates, preferably from 5 to 90 Q C with a reaction time of between 0.25 to 2 h with 5% excess of calcium hydroxide with respect to the stoichiometric.
13.- Un proceso para producir carbonato de litio u otros productos químicos de litio a partir de concentrados de mineral de espodumeno, LiAI(Si03)2, según reivindicación 1 , CARACTERIZADO porque la etapa“h” opera, preferentemente entre 20 y 95QC. 13.- A process to produce lithium carbonate or other lithium chemical products from spodumene mineral concentrates, LiAI (Si03) 2, according to claim 1, CHARACTERIZED because stage “h” operates, preferably between 20 and 95 Q C.
14.- Un proceso para producir carbonato de litio u otros productos químicos de litio a partir de concentrados de mineral de espodumeno, LiAI(Si03)2, según reivindicación 1 , CARACTERIZADO porque la etapa“j” opera, preferentemente, entre 70 - 85QC, con un tiempo de reacción preferente entre 1 - 2 h, lavando el queque de carbonato de litio con agua entre 60 - 90QC. 14.- A process to produce lithium carbonate or other lithium chemical products from spodumene mineral concentrates, LiAI (Si03) 2, according to claim 1, CHARACTERIZED because stage "j" operates, preferably, between 70 - 85 Q C, with a preferred reaction time between 1 - 2 h, washing the lithium carbonate cake with water between 60 - 90 Q C.
15.- Un proceso para producir carbonato de litio u otros productos químicos de litio a partir de concentrados de mineral de espodumeno, LiAI(Si03)2, según reivindicación 1 , CARACTERIZADO porque en la etapa “k” el queque de carbonato de litio se seca entre 1 10 - 150QC por un tiempo de 1 - 4 h. 15.- A process to produce lithium carbonate or other lithium chemical products from spodumene mineral concentrates, LiAI (Si03) 2, according to claim 1, CHARACTERIZED because in stage "k" the lithium carbonate cake is dry from 1 10 to 150 Q C for a time of 1-4 h.
16.- Un proceso para producir carbonato de litio u otros productos químicos de litio a partir de concentrados de mineral de espodumeno, LiAI(Si03)2, según reivindicación 1 , CARACTERIZADO porque, el sólido conteniendo magnetita (Fe3Ü4) generado en la etapa“f” se concentra en forma magnética en húmedo en una o más etapas convencionales para tener un concentrado de magnetita de alta ley en hierro. 16. A process to produce lithium carbonate or other lithium chemical products from spodumene mineral concentrates, LiAI (Si03) 2, according to claim 1, CHARACTERIZED because, the solid containing magnetite (Fe3Ü4) generated in the stage " f "is concentrated in wet magnetic form in one or more conventional stages to have a high grade magnetite concentrate in iron.
17.- Un proceso para producir carbonato de litio u otros productos químicos de litio a partir de concentrados de mineral de espodumeno, LiAI(Si03)2, según reivindicación 1 , CARACTERIZADO porque, opcionalmente, se opera con otros minerales de litio como petalita, ambligonita o lepidolita. 17.- A process to produce lithium carbonate or other lithium chemicals from spodumene mineral concentrates, LiAI (Si03) 2, according to claim 1, CHARACTERIZED because, optionally, it operates with other lithium minerals such as petalite, amblygonite or lepidolite.
18.- Un proceso para producir carbonato de litio u otros productos químicos de litio a partir de concentrados de mineral de espodumeno, LiAI(Si03)2, según reivindicación 1 , CARACTERIZADO porque las reacciones de descomposición del sulfato ferroso o férrico y de sulfatación del espodumeno con SO3 - SO2 se efectúan en un reactor doble concéntrico, en el cual en el reactor interior se produce la descomposición térmica del sulfato ferroso o férrico con generación de SO3 y SO2, y en el reactor externo anular se produce la sulfatación del espodumeno con el gas de SO3 - SO2 generado y en el cual el calor requerido por las reacciones que ocurren es aportado desde el exterior mediante quemadores convencionales, y en los cuales los productos finales de la calcina sulfatada de espodumeno y la hematita o magnetita descargan separadamente para su posterior proceso. 18.- A process to produce lithium carbonate or other lithium chemicals from spodumene mineral concentrates, LiAI (Si03) 2, according to claim 1, CHARACTERIZED because the decomposition reactions of ferrous or ferric sulfate and the sulphation of spodumene with SO3 - SO2 are carried out in a double concentric reactor, in which the thermal decomposition of ferrous or ferric sulfate occurs in the inner reactor with generation of SO3 and SO2, and in the annular external reactor the sulphation of the spodumene occurs with the SO3 - SO2 gas generated and in which the heat required by the reactions that occur is supplied from the outside by means of conventional burners, and in which the final products of the sulfated calcine of spodumene and the hematite or magnetite are discharged separately for further processing.
19.- Un proceso para producir carbonato de litio u otros productos químicos de litio a partir de concentrados de mineral de espodumeno, LiAI(Si03)2, según reivindicaciones 1 y 18, CARACTERIZADO porque tanto la calcinación del espodumeno « a su forma b como la deshidratación del sulfato ferroso o férrico se efectúan en sendos reactores separados. 19. A process to produce lithium carbonate or other lithium chemical products from spodumene mineral concentrates, LiAI (Si03) 2, according to claims 1 and 18, CHARACTERIZED because both the calcination of the spodumene «to its form b and the dehydration of the ferrous or ferric sulfate is carried out in separate reactors.
20.- Un proceso para producir carbonato de litio u otros productos químicos de litio a partir de concentrados de mineral de espodumeno, LiAI(Si03)2, según reivindicaciones 1 y 18, CARACTERIZADO porque el cuerpo del reactor interior de descomposición del sulfato ferroso o férrico está formado por un conjunto de perfiles angulares que permiten el paso del gas de SO3 - SO2. 20. A process to produce lithium carbonate or other lithium chemical products from spodumene mineral concentrates, LiAI (Si03) 2, according to claims 1 and 18, CHARACTERIZED because the internal reactor body for decomposition of ferrous sulfate or Ferric is formed by a set of angular profiles that allow the passage of SO3 - SO2 gas.
PCT/CL2020/050038 2019-04-12 2020-04-09 Process for obtaining lithium carbonate from spodumene ore by sulphation with ferrous sulphate at high temperature WO2020206567A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2019000991A CL2019000991A1 (en) 2019-04-12 2019-04-12 Process to obtain lithium carbonate from the spodumene mineral by sulphation with ferrous sulfate at high temperature
CL0991-2019 2019-04-12

Publications (1)

Publication Number Publication Date
WO2020206567A1 true WO2020206567A1 (en) 2020-10-15

Family

ID=67769705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2020/050038 WO2020206567A1 (en) 2019-04-12 2020-04-09 Process for obtaining lithium carbonate from spodumene ore by sulphation with ferrous sulphate at high temperature

Country Status (2)

Country Link
CL (1) CL2019000991A1 (en)
WO (1) WO2020206567A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115180639A (en) * 2022-08-08 2022-10-14 湖南五创循环科技有限公司 Method for purifying lithium sulfate solution to remove impurities and producing lithium carbonate
CN116078344A (en) * 2023-03-16 2023-05-09 南京工程学院 Whisker spinel type magnesium aluminum oxide lithium ion sieve adsorbent for extracting lithium from salt lake and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3017243A (en) * 1958-08-11 1962-01-16 Dept Of Mines Method of producing lithium carbonate from spodumene
WO2011082444A1 (en) * 2010-01-07 2011-07-14 Galaxy Resources Limited Process for the production of lithium carbonate
WO2011148040A1 (en) * 2010-05-25 2011-12-01 Outotec Oyj Method for processing spodumene
CN107758705A (en) * 2017-12-18 2018-03-06 江西九岭新能源有限公司 Zinnwaldite extracts lithium carbonate technique

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3017243A (en) * 1958-08-11 1962-01-16 Dept Of Mines Method of producing lithium carbonate from spodumene
WO2011082444A1 (en) * 2010-01-07 2011-07-14 Galaxy Resources Limited Process for the production of lithium carbonate
WO2011148040A1 (en) * 2010-05-25 2011-12-01 Outotec Oyj Method for processing spodumene
CN107758705A (en) * 2017-12-18 2018-03-06 江西九岭新能源有限公司 Zinnwaldite extracts lithium carbonate technique

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHOUBEY, P. K. ET AL.: "Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources.", MINERALS ENGINEERING, vol. 89, 2016, pages 119 - 137, XP029442016, DOI: 10.1016/j.mineng.2016.01.010 *
LUONG, V. T. ET AL.: "Iron sulphate roasting for extraction of lithium from lepidolite", HYDROMETALLURGY, vol. 141, 2014, pages 8 - 16, XP055748344, DOI: 10.1016/j.hydromet.2013.09.016 *
WILKOMIRSKY, I: "PIROMETALURGIA EXTRACCION Y REFINACION DE METALES NO FERROSOS LITIO", VDOCUMENTS.MX, 2008, XP055748342, Retrieved from the Internet <URL:https://vdocuments.mx/28821896-metalurgia-extractiva-del-litio-01-10-2009.html> [retrieved on 20201006] *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115180639A (en) * 2022-08-08 2022-10-14 湖南五创循环科技有限公司 Method for purifying lithium sulfate solution to remove impurities and producing lithium carbonate
CN115180639B (en) * 2022-08-08 2023-12-15 湖南五创循环科技有限公司 Method for purifying and removing impurities from lithium sulfate solution and producing lithium carbonate
CN116078344A (en) * 2023-03-16 2023-05-09 南京工程学院 Whisker spinel type magnesium aluminum oxide lithium ion sieve adsorbent for extracting lithium from salt lake and preparation method thereof

Also Published As

Publication number Publication date
CL2019000991A1 (en) 2019-08-30

Similar Documents

Publication Publication Date Title
ES2884254T3 (en) Recovery of lithium from silicate minerals
CN102424391B (en) Method for comprehensive utilization of aluminum-containing material
WO2020206567A1 (en) Process for obtaining lithium carbonate from spodumene ore by sulphation with ferrous sulphate at high temperature
CN104445313B (en) Method for extracting aluminum oxide from fly ash by acid-base combination
CN109928415B (en) System and method for recovering calcium carbonate and sulfur by calcining gypsum
ES2602035T3 (en) Procedure for the treatment and use of deviated powders from the cement manufacturing process
BR112017000600B1 (en) PROCESS FOR THE PRODUCTION OF METALLIC MAGNESIUM FROM ORES CONTAINING MAGNESIUM
CN104284707A (en) Carbon dioxide sequestration involving two-salt-based thermolytic processes
WO2013143335A1 (en) Method for extracting aluminium oxide in fly ash by alkaline process
WO2013040861A1 (en) Method for producing aluminium oxide using fly ash
WO2022237528A1 (en) Quicklime preparation process and system based on carbon emission reduction
CN101497455B (en) Method for producing limestone powder and aluminium ammonium sulfate using heat-engine plant desulfurized gypsum and fly ash
CN101264904A (en) Method for producing sodium bicarbonate and sulfur from mirabilite by wet process
CN103159263B (en) Treatment method of artificial rutile mother solution
AU2015303810A1 (en) Integrated hydrometallurgical method
CN103073125B (en) Method for using acidolysis nickel laterite ore wastewater
CN104150515B (en) From flyash, the method for aluminum oxide is extracted based on ammonium sulfate method
KR102523562B1 (en) Preparation of low carbon footprint magnesia
BRPI0905473A2 (en) physicochemical process for the recovery of metals contained in steel industry waste
CN108640161A (en) A kind of calciner preparing iron oxide red
JPWO2019203274A1 (en) Method for Producing Precursor of Lithium Adsorbent
CA3228399A1 (en) Processing hard rock lithium minerals or other materials to produce both lithium carbonate and lithium hydroxide
CA3228398A1 (en) Processing hard rock lithium minerals or other materials to produce lithium materials and byproducts converted from a sodium sulfate intermediate product
WO2023097356A1 (en) A device and method for lithium ore processing
RU2243946C1 (en) Method for production of gypsum binder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20786736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20786736

Country of ref document: EP

Kind code of ref document: A1