WO2020204060A1 - Bending angle prediction method, bending angle prediction device, program, and recording medium - Google Patents

Bending angle prediction method, bending angle prediction device, program, and recording medium Download PDF

Info

Publication number
WO2020204060A1
WO2020204060A1 PCT/JP2020/014990 JP2020014990W WO2020204060A1 WO 2020204060 A1 WO2020204060 A1 WO 2020204060A1 JP 2020014990 W JP2020014990 W JP 2020014990W WO 2020204060 A1 WO2020204060 A1 WO 2020204060A1
Authority
WO
WIPO (PCT)
Prior art keywords
bending angle
steel material
bending
surface layer
maximum principal
Prior art date
Application number
PCT/JP2020/014990
Other languages
French (fr)
Japanese (ja)
Inventor
孝博 相藤
繁 米村
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2021512167A priority Critical patent/JP7243816B2/en
Publication of WO2020204060A1 publication Critical patent/WO2020204060A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/01Bending sheet metal along straight lines, e.g. to form simple curves between rams and anvils or abutments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Definitions

  • the present invention relates to a bending angle prediction method, a bending angle prediction device, a program, and a recording medium.
  • automobile members are formed by press forming a steel plate.
  • tensile force and compressive force are applied to the steel sheet, and depending on the part of the steel sheet, the thickness may be reduced or increased, which is several percent of the thickness of the steel sheet before press forming. There are some parts where the plate thickness fluctuates by more than 10%.
  • the car body is assembled by welding the press-molded members, and when the collision deformation prediction of the car body is performed by finite element analysis on the computer, the stress introduced in the press-molding process, which is the previous process. It is known that the prediction accuracy of collision deformation is further improved by mapping the strain and plate thickness distribution to the model of collision deformation analysis and performing collision deformation analysis.
  • the limit VDA bending angle obtained from the VDA bending test is a value that changes depending on the plate thickness of the steel plate, it is necessary to perform the test for each steel type and plate thickness. Therefore, for example, in the first step, when the press molding is performed as described above and a portion where the plate thickness of the steel plate is changed occurs, the value of the limit VDA bending angle is also increased according to the plate thickness distribution after molding. It will be changing. However, the fluctuation of the plate thickness in the part during molding is wide-ranging, and it is extremely difficult to prepare the test pieces of all the plate thicknesses and perform the VDA bending test.
  • the present invention has been made in view of the above problems, and the maximum principal strain of the outermost surface layer of the bent steel material is obtained by using the finite element method with the material properties and plate thickness of the steel material as input values.
  • the limit VDA bending angle of the steel material is calculated based on the above, that is, for a steel material having arbitrary material properties, for example, when the plate thickness fluctuates due to pre-deformation in the previous step, in an arbitrary plate thickness after deformation. It is possible to easily and accurately obtain the limit VDA bending angle, and to predict the bending fracture of steel materials using the result, which contributes to a significant reduction in the cost required for product development and shortening of the development period. It is an object of the present invention to provide a bending angle prediction method, a bending angle prediction device, a program, and a recording medium capable of predicting the bending angle.
  • the gist of the present invention is as follows.
  • the first step is to obtain the maximum principal strain of the bent outermost surface layer of the steel material corresponding to the material characteristics of the steel material based on the relationship in which the maximum principal strain of the bent outermost surface layer is uniquely determined from the material properties.
  • the bending angle prediction method according to (1) which is a feature.
  • the limit VDA bending angle is ⁇ .
  • exp ⁇ ( ⁇ b ⁇ b) / a ⁇ ⁇ b : The bending angle prediction method according to claim 1 or 2, wherein a: the maximum principal strain of the outermost surface layer of bending a: the relational expression of the plate thickness t b: the relational expression of the plate thickness t.
  • An acquisition unit that acquires the maximum principal strain of the outermost surface layer of the steel material based on the material properties of the steel material for which the bending angle is predicted, and the acquisition unit.
  • the plate thickness of the steel material and the plate thickness of the first step were obtained by the relational expression in which the limit VDA bending angle was defined by the function of the plate thickness and the maximum principal strain of the outermost surface layer of the bending, which was defined by using the finite element method.
  • a calculation unit that calculates the limit VDA bending angle of the steel material by inputting (substituting) the maximum principal strain of the outermost surface layer of the steel material. Bending angle prediction device characterized by being equipped with.
  • the acquisition unit is characterized by acquiring the maximum principal strain of the bent outermost surface layer of the steel material corresponding to the material characteristics of the steel material based on the relationship in which the maximum principal strain of the bent outermost surface layer is uniquely determined from the material characteristics.
  • the bending angle prediction device according to (6).
  • the second step of calculating the limit VDA bending angle of the steel material by inputting (substituting) the maximum principal strain of the outermost surface layer of the bending of the steel material, and An angle prediction program that lets your computer run.
  • the first step is to obtain the maximum principal strain of the bent outermost surface layer of the steel material corresponding to the material characteristics of the steel material based on the relationship in which the maximum principal strain of the bent outermost surface layer is uniquely determined from the material properties.
  • a computer-readable recording medium comprising recording the angle prediction program according to any one of (11) to (15).
  • the limit VDA bending at an arbitrary plate thickness after deformation is performed for a steel material having arbitrary material properties by using the finite element method, for example, when the plate thickness fluctuates due to pre-deformation in the previous process. It is possible to obtain the angle easily and accurately. In addition, the presence or absence of bending fracture of the steel material can be predicted by using the obtained limit VDA bending angle. As a result, it is possible to omit the collision test on the actual automobile member or to significantly reduce the number of collision tests. In addition, since the steel material that prevents breakage during a collision can be designed on a computer, it contributes to a significant cost reduction and shortening of the development period.
  • FIG. 1A is a perspective view showing how the limit VDA bending angle is experimentally acquired.
  • FIG. 1B is an enlarged front view showing how the limit VDA bending angle is obtained on a trial basis.
  • FIG. 2 is a diagram showing the obtained limit VDA bending angle (experimental value) and the maximum principal strain of the bending outermost surface layer at the bending outer top (solid element detailed FEM analysis value) for each plate thickness.
  • FIG. 3 is a characteristic diagram showing the relationship between the distance from the bending outer top and the maximum principal strain of the bending outer outermost layer.
  • FIG. 4 is a characteristic diagram showing the relationship between the limit VDA bending angle and the maximum principal strain of the outermost surface layer of bending.
  • FIG. 1A is a perspective view showing how the limit VDA bending angle is experimentally acquired.
  • FIG. 1B is an enlarged front view showing how the limit VDA bending angle is obtained on a trial basis.
  • FIG. 2 is a diagram showing the obtained limit VDA bending angle (
  • FIG. 5 is a block diagram showing a bending angle prediction device according to the first embodiment.
  • FIG. 6 is a flow chart showing a bending angle prediction method according to the first embodiment.
  • FIG. 7 is a diagram showing the relationship between the steel grade (strength grade) of the steel sheet and the maximum principal strain on the bending outer side.
  • FIG. 8 is a flow chart showing a bending fracture prediction method according to the second embodiment.
  • FIG. 9 is a flow chart showing a bending fracture prediction method according to the third embodiment.
  • FIG. 10 is a block diagram showing a computer function.
  • VDA bending test a test standard called a plate bending test (VDA bending test) for a metal material by the German Association of the Automotive Industry (VDA) is used.
  • VDA bending test a test standard called a plate bending test (VDA bending test) for a metal material by the German Association of the Automotive Industry (VDA) is used.
  • FIGS. 1A and 1B The state of performing the VDA bending experiment is shown in FIGS. 1A and 1B.
  • the steel plate 10 is placed on the pair of rolls 21 and 22, and the punch 20 is brought into contact with the central portion (bending center) of the surface of the steel plate 10 between the pair of rolls 21 and 22.
  • the steel plate 10 is bent while pushing the punch 20, and the bending angle of the steel plate 10 at the timing when the pushing load of the punch is maximized (the timing when the bending break occurs) is defined as the limit VDA bending angle ⁇ (FIG. 1B).
  • the maximum principal strain when the limit VDA bending angle ⁇ is reached at the point P on the back surface corresponding to the contact portion of the punch 20 on the front surface of the steel sheet 10 is defined as the maximum principal strain of the outermost surface layer of bending at the outer top of bending. ..
  • the obtained limit VDA bending angle (experimental value) and bending at the outer top of the bending were obtained for three types of steel sheets (plate thickness: 1.0 mm, 1.4 mm, 2.3 mm) with a tensile strength class of 1500 MPa and different plate thicknesses.
  • the maximum principal strain of the outer outermost layer (detailed FEM analysis value using a solid element having a mesh size of 0.1 mm) is shown in FIG. Further, for the above three types of steel sheets, the relationship between the distance from the bending outer top and the maximum principal strain of the bending outer outermost layer is shown in FIG.
  • a detailed FEM model (solid model) using a solid element and a FEM model (shell model) using a shell element are mainly used.
  • the solid model is modeled using a three-dimensional solid element such as a tetrahedron, a hexahedron, or a pentahedron.
  • the analysis time is long, but the analysis accuracy is high.
  • the shell model is modeled using shell elements that are two-dimensional surface elements such as triangles and quadrangles, and generally, the analysis target is a member composed of plates that are thinner than the length and width. It is often used in targeted analysis and has the advantage of short analysis time. Therefore, even analysis with a large-scale model, which cannot be analyzed with a solid model, can be performed by using shell elements.
  • the limit VDA bending angles obtained in the experiment were 75 °, 65 °, and 55 ° for each steel sheet having a thickness of 1.0 mm, 1.4 mm, and 2.3 mm. ..
  • the maximum principal strain of the outermost surface layer of the bent outer surface of the bent outermost layer is simply referred to as "the maximum principal strain of the outermost surface layer of the bent outer layer”.
  • FIG. 4 shows the results of plotting the relationship between a large number of limit VDA bending angles and the maximum principal strain of the outermost surface layer of bending at various steel types and various plate thicknesses obtained in this way.
  • the plate thickness is shown as t 1 , t 2 , and t 3 .
  • the present inventor found that the maximum principal strain of the outermost surface layer of bending due to the solid element is represented by a function of the limit VDA bending angle and the plate thickness.
  • the present inventor scrutinized this finding to embody it, and found that the maximum principal strain of the outermost surface layer of bending due to the lid element was formulated by the linear logarithm of the limit VDA bending angle for each plate thickness regardless of the steel type. I found out what I could do.
  • the coefficient a and the coefficient b are represented by the relational expression of the plate thickness t.
  • This relational expression is determined to fit the test result by the above equation (1), and the form of the equation is not particularly limited, but can be expressed by, for example, a polynomial of plate thickness t.
  • the limit VDA bending angle of the steel sheet at an arbitrary steel type and an arbitrary plate thickness is calculated by using the equation (2) defined as described above. That is, in the present embodiment, the limit VDA bending angle can be obtained extremely easily, in a short time, and accurately without performing a test or simulation.
  • FIG. 5 is a block diagram showing a bending angle prediction device according to the first embodiment
  • FIG. 6 is a flow diagram showing a bending angle prediction method according to the first embodiment.
  • the bending angle prediction device includes a steel grade (strength grade) determination unit 1, a maximum main strain acquisition unit 2, and an angle calculation unit 3.
  • the material properties of the steel sheet are input to the steel type (strength grade) determination unit 1 from the input file.
  • the material property there is a Swift coefficient obtained by fitting a tensile strength property corresponding to the material property, for example, a stress-strain curve or a stress-strain curve by a Swift equation.
  • the steel type (strength grade) determination unit 1 determines the steel type (strength grade) of the steel sheet based on the input material properties of the steel sheet.
  • the steel type of the steel sheet it is particularly preferable to target a steel sheet of 980 MPa class or higher. Since the steel sheet in which bending fracture is a problem is mainly a high-strength material, in the present embodiment, a steel sheet of 980 MPa class or higher is applied to the fracture prediction as a specific index of the high-strength material.
  • the relationship is such that the maximum principal strain of the outermost surface layer of the bent steel sheet is uniquely determined from the steel sheet grade (strength grade) of the steel sheet, for example, as shown in FIG.
  • a table showing the relationship with the main strain is stored.
  • the maximum principal strain on the outside of the bend is almost the same value regardless of the plate thickness according to the steel type (strength grade), and the plate thickness is arbitrary for each steel type (strength grade).
  • the maximum principal strain on the outside of the obtained bend is listed.
  • the maximum principal strain acquisition unit 2 acquires the maximum principal strain on the bending outer side from the above table based on the steel grade (strength grade) of the steel sheet determined in step S1.
  • a predetermined plate thickness of the steel plate for each element from the input file here, the plate thickness after pre-deformation and the maximum principal strain of the outermost surface layer of bending acquired by the maximum principal strain acquisition unit 2 are obtained. Entered.
  • the angle calculation unit 3 uses the above equation (2) to preliminarily predict the steel sheet based on the plate thickness after pre-deformation of the steel sheet and the maximum principal strain of the outermost surface layer of bending, which are input for each element. The limit VDA bending angle after deformation is calculated.
  • the plate thickness of a steel material having arbitrary material properties fluctuates due to pre-deformation in the previous process, for example, any arbitrary material after deformation is used by FEM analysis.
  • the limit VDA bending angle in the plate thickness can be easily and accurately obtained.
  • FIG. 8 is a flow chart showing a bending fracture prediction method according to the second embodiment.
  • Automobile parts are generally formed by press forming a steel plate.
  • press molding involves forming a steel sheet into a final shape through a plurality of steps such as a draw forming step, a bending forming step, a trim forming step, and a wrist-like forming step. If it is a soft steel sheet, fracture rarely occurs during bending and forming, but for example, when a high-strength steel sheet exceeding 980 MPa is press-formed, fracture may occur at the bent portion.
  • the draw forming step and the bending forming step are illustrated, and the drawing forming step is described as the first forming analysis step S10, and the bending forming step is described as the second forming analysis step S20.
  • step S11 FEM analysis is performed on the draw forming step of the first forming analysis step S10.
  • step S12 the plate thickness and strain component of the steel sheet after drawing and forming are acquired for each element (mesh) of the FEM model in the first forming analysis step S10.
  • step S21 the plate thickness and strain component of the steel plate acquired in step S12 are taken over and mapped to each element of the FEM model of the bending forming step which is the second forming analysis step S20.
  • step S22 steps S1 to S3 of the bending angle prediction method according to the first embodiment shown in FIG. 6 are executed, and the limit VDA bending angle in the plate thickness after pre-deformation of the steel plate is calculated.
  • step S23 FEM analysis is performed on the bending molding step of the second molding analysis step S20.
  • step S24 it is determined whether or not bending breakage occurs for each element of the FEM model in the second molding analysis step S20, and the element determined to cause breakage is deleted. As described above, the bending fracture of the steel sheet can be accurately predicted by FEM analysis.
  • step S24 after capturing the change in strain for each element size of the shell element, in step S24, the limit strain on the bending outside of the shell element at the limit VDA bending angle is obtained, and the shell element under molding analysis is being analyzed. Fracture can also be predicted by whether or not the maximum principal strain of the outermost surface layer of the bend reaches the limit strain on the outer side of the bend.
  • the strain applied by the pre-deformation in the first molding step is naturally inherited in the second molding step. Therefore, also in the FEM analysis, the strain component is acquired together with the plate thickness after the first molding analysis step S10 and mapped to each element of the FEM model in the second molding analysis step S20. As a result, it is possible to further improve the accuracy when predicting fracture based on whether or not the strain on the bending outer side of the shell element reaches the limit strain.
  • step S24 the presence or absence of fracture is determined based on whether or not the bending angle of the steel sheet reaches the limit VDA bending angle in the FEM analysis without converting the limit VDA bending angle into the limit strain on the outside of the bending of the shell element. You can also do it.
  • the presence or absence of bending fracture of the steel material is accurately predicted by using the limit VDA bending angle obtained by using the bending angle prediction method according to the first embodiment.
  • the steel sheet that prevents bending fracture can be designed on the computer, which contributes to a significant cost reduction and shortening of the development period.
  • FIG. 9 is a flow chart showing a bending fracture prediction method according to the third embodiment.
  • Automobile parts are generally formed by press forming a steel plate, and then an automobile body is formed through an assembly process such as welding. From the viewpoint of collision safety, automobile bodies are required to absorb energy while generating the target reaction force at the time of a collision, but if the steel plate breaks at the time of a collision, the target reaction force may not be obtained. .. Therefore, it is required to perform FEM analysis of collision and predict rupture in advance.
  • each steel material of the automobile body undergoes various deformations, and the steel plate undergoes bending deformation at the part where it is compressed and buckled by the collision input. If it is a soft steel sheet, fracture rarely occurs during bending deformation, but if it is a high-strength steel sheet exceeding 980 MPa, for example, fracture may occur during bending deformation.
  • the shoulder portion is subjected to tensile deformation due to pushing of a punch, and the plate thickness is reduced.
  • the peripheral portion (die flange portion) of the component is subjected to compression deformation due to the contraction of the peripheral length, and the plate thickness increases.
  • step S31 FEM analysis is performed in the steel sheet forming analysis step S30. Subsequently, in step S32, the plate thickness and strain component of the molded steel sheet are acquired for each element (mesh) of the FEM model in the molding analysis step S30.
  • step S41 the plate thickness and strain component of the steel plate acquired in step S32 are taken over and mapped to each element of the FEM model in the collision analysis step S40.
  • step S42 steps S1 to S3 of the bending angle prediction method according to the first embodiment shown in FIG. 2 are executed, and the limit VDA bending angle in the plate thickness after pre-deformation of the steel plate is calculated.
  • step S43 FEM analysis is performed in the collision analysis step S40.
  • step S44 it is determined whether or not bending breakage occurs for each element of the FEM model in the collision analysis step S40, and the element determined to cause breakage is deleted. From the above, it is possible to accurately predict bending fracture at the time of a collision of an automobile body on FEM analysis.
  • step S44 after capturing the change in strain for each element size of the shell element, in step S44, the limit strain on the bending outside of the shell element at the limit VDA bending angle is determined. Fracture is predicted by determining whether or not the maximum principal strain of the outermost bending outer layer of the shell element during the molding analysis reaches the limit strain on the outer bending side.
  • the strain applied by the pre-deformation in the molding process is naturally inherited in the collision process. Therefore, also in the FEM analysis, the strain component is acquired together with the plate thickness after the molding analysis step S30 and mapped to each element of the FEM model in the collision analysis step S40. As a result, it is possible to further improve the accuracy when predicting fracture based on whether or not the strain on the bending outer side of the shell element reaches the limit strain.
  • step S44 the presence or absence of fracture is determined by whether or not the bending angle of the steel sheet reaches the limit VDA bending angle in the FEM analysis without converting the limit VDA bending angle into the limit strain outside the bending of the shell element. You can also do it.
  • the presence or absence of bending fracture of the steel material is accurately predicted by using the limit VDA bending angle obtained by using the bending angle prediction method according to the first embodiment.
  • the steel material that prevents breakage during a collision can be designed on a computer, it contributes to a significant cost reduction and shortening of the development period.
  • the steel grade (strength grade) determination unit 1, the maximum principal strain acquisition unit 2, and the angle calculation unit 3 shown in FIG. 5, which are the components of the bending angle prediction device according to the first embodiment described above, are dedicated hardware. It may be realized by.
  • each of the above components is composed of a memory and a CPU (Central Processing Unit), and the functions are realized by loading and executing a program for realizing various functions of each component in the memory. There may be.
  • a program for realizing various functions of each of the above components (steps S1 to S3 of the angle prediction method of FIG. 6, steps S10 (S11 to S12) and S20 (S21 to S24) of the bending break prediction method of FIG. ), Steps S30 (S31 to S32) and S40 (S41 to S44) of the bending break prediction method of FIG. 9 are recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into the computer system.
  • the processing of each of the above-mentioned components may be executed by executing the above.
  • the "computer system” here includes hardware such as an OS and peripheral devices.
  • the "computer system” may include a homepage providing environment (or display environment) as long as the WWW system is used.
  • the "computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, or a storage device such as a hard disk built in a computer system.
  • a "computer-readable recording medium” is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time.
  • It may also include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or a client in that case. Further, the above program may be for realizing a part of the above-mentioned functions, and may be further realized for realizing the above-mentioned functions in combination with a program already recorded in the computer system. ..
  • the computer function 100 includes a CPU 101, a ROM 102, and a RAM 103. Further, the controller (CONSC) 105 of the operation unit (CONS) 109 and the display controller (DISPC) 106 of the display (DISP) 110 as a display unit such as a CRT or an LCD are provided. Further, it includes a hard disk (HD) 111, a controller (DCONT) 107 of a storage device (STD) 112 such as a flexible disk, and a network interface card (NIC) 108.
  • the functional units 101, 102, 103, 105, 106, 107, and 108 are connected to each other via the system bus 104 so as to be able to communicate with each other.
  • the CPU 101 comprehensively controls each component connected to the system bus 104 by executing the software stored in the ROM 102 or the HD 111 or the software supplied from the STD 112. That is, the CPU 101 controls to realize the operation in the present embodiment by reading and executing the processing program (structure design support program) for performing the above-described operation from the ROM 102, HD111, or STD112. I do.
  • the RAM 103 functions as a main memory or a work area of the CPU 101.
  • the CONSC 105 controls the instruction input from the CONS 109.
  • the DISPC 105 controls the display of the DISP 110.
  • the DCONT 107 controls access to HD111 and STD112 that store boot programs, various applications, user files, network management programs, and the above processing programs in this embodiment.
  • the NIC 108 exchanges data bidirectionally with other devices on the network 113. Instead of using a normal computer terminal device, a predetermined computer or the like specialized for the bending angle prediction device may be used.
  • the present invention can be used, for example, in an industry related to steel sheets that are public for automobile parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Analysis (AREA)
  • Analytical Chemistry (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Computational Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

This bending angle prediction method includes: a first step for acquiring, on the basis of the material characteristics of a steel material, the bending angle of which is to be predicted, the maximum main strain of an outermost bending surface of the steel material; and a second step for calculating a limit VDA bending angle of the steel material by inputting the sheet thickness of the steel material and the maximum main strain of the outermost bending surface of the steel material acquired in the first step to a relational expression that is predetermined by using a finite element method and that defines the limit VDA bending angle through a function of the sheet thickness and the maximum main strain of the outermost bending surface. As a result, with respect to a steel material having intended material characteristics, a limit VDA bending angle in any sheet thickness after deformation can be easily and accurately acquired, for example, when sheet thickness has changed as a result of preliminary deformation performed in a previous step.

Description

曲げ角度予測方法、曲げ角度予測装置、プログラム及び記録媒体Bending angle prediction method, bending angle prediction device, program and recording medium
 本発明は、曲げ角度予測方法、曲げ角度予測装置、プログラム及び記録媒体に関するものである。 The present invention relates to a bending angle prediction method, a bending angle prediction device, a program, and a recording medium.
 近年、自動車の衝突時の車体の変形挙動や衝撃エネルギー吸収特性を評価する際に必要となる、例えば自動車の車体に用いられる鋼板の曲げ特性を的確に評価する方法として、VDAドイツ自動車工業会の試験標準規格(非特許文献1)による、金属材料の板曲げ試験(VDA曲げ試験)を用いた評価方法が広まりつつある。VDA曲げ試験は、一対のロール間にパンチを押し込みながら鋼板を曲げてゆき、パンチの反力が最大値となったタイミングにおける鋼板の曲げ角度を、当該鋼板の限界VDA曲げ角度と定義する。この評価方法によれば、連続的な曲げ角度のデータから限界曲げ角度を決定できるだけでなく、測定者によるバラツキが発生しないという利点がある。 In recent years, as a method for accurately evaluating the bending characteristics of steel plates used for, for example, the body of an automobile, which is necessary for evaluating the deformation behavior and impact energy absorption characteristics of the vehicle body at the time of a collision of an automobile, the VDA German Association of the Automotive Industry An evaluation method using a plate bending test (VDA bending test) for a metal material according to a test standard (Non-Patent Document 1) is becoming widespread. In the VDA bending test, a steel sheet is bent while pushing a punch between a pair of rolls, and the bending angle of the steel sheet at the timing when the reaction force of the punch becomes the maximum value is defined as the limit VDA bending angle of the steel sheet. According to this evaluation method, not only can the limit bending angle be determined from the continuous bending angle data, but there is an advantage that the measurer does not vary.
特開2012-11458号公報Japanese Unexamined Patent Publication No. 2012-11458 特許第6330981号公報Japanese Patent No. 6330981 特開2011-141237号公報Japanese Unexamined Patent Publication No. 2011-141237
 一般的に、自動車部材は、鋼板をプレス成形することで形成されている。このプレス成形時には、鋼板に引張力や圧縮力が加わり、鋼板の部位によっては板厚が減肉したり、増肉したりする部位があり、プレス成形前の鋼板の板厚と比べて数%~十数%板厚が変動している部位が生じる。 Generally, automobile members are formed by press forming a steel plate. During this press forming, tensile force and compressive force are applied to the steel sheet, and depending on the part of the steel sheet, the thickness may be reduced or increased, which is several percent of the thickness of the steel sheet before press forming. There are some parts where the plate thickness fluctuates by more than 10%.
 プレス成形部材を溶接することで自動車の車体が組み上げられており、自動車車体の衝突変形予測をコンピュータ上での有限要素解析で行う場合において、前工程である、プレス成形工程で導入された、応力やひずみ及び板厚分布を衝突変形解析のモデルにマッピングして衝突変形解析を行うことで、より衝突変形の予測精度が高まることが知られている。 The car body is assembled by welding the press-molded members, and when the collision deformation prediction of the car body is performed by finite element analysis on the computer, the stress introduced in the press-molding process, which is the previous process. It is known that the prediction accuracy of collision deformation is further improved by mapping the strain and plate thickness distribution to the model of collision deformation analysis and performing collision deformation analysis.
 また、一方で衝突時に曲げ部で破断が発生する場合もあるため、衝突変形解析において、例えば鋼板の限界VDA曲げ角度の値を用いて衝突変形解析時の曲げ破断を予測する試みも検討されている。 On the other hand, since fracture may occur at the bent portion at the time of collision, an attempt to predict bending fracture at the time of collision deformation analysis using, for example, the value of the limit VDA bending angle of the steel sheet is also considered in the collision deformation analysis. There is.
 しかしながら、VDA曲げ試験から得られる限界VDA曲げ角度は、鋼板の板厚によって変化する値であるため、各鋼種及び板厚ごとに試験をする必要がある。そのため、例えば、第1工程において、上述のようにプレス成形を行い、鋼板の板厚が変化した部位が生じた場合には、成形後の板厚分布に応じて、限界VDA曲げ角度の値も変化していることになる。しかしながら、成形時における部品内の板厚変動は多岐に亘るものであり、それら全ての板厚の試験片を準備して、VDA曲げ試験を行うことは極めて困難である。そのため、第2工程において車体の衝突変形時の曲げ破断予測を行う場合において、第1工程であるプレス成形工程における応力やひずみ及び板厚分布を取得するだけでは不十分であり、板厚変動に応じた各部位毎の限界VDA曲げ角度を取得することが必要であるが、極めて困難である。 However, since the limit VDA bending angle obtained from the VDA bending test is a value that changes depending on the plate thickness of the steel plate, it is necessary to perform the test for each steel type and plate thickness. Therefore, for example, in the first step, when the press molding is performed as described above and a portion where the plate thickness of the steel plate is changed occurs, the value of the limit VDA bending angle is also increased according to the plate thickness distribution after molding. It will be changing. However, the fluctuation of the plate thickness in the part during molding is wide-ranging, and it is extremely difficult to prepare the test pieces of all the plate thicknesses and perform the VDA bending test. Therefore, when predicting bending fracture at the time of collision deformation of the vehicle body in the second step, it is not enough to obtain the stress, strain and plate thickness distribution in the press forming process which is the first step, and the plate thickness fluctuates. It is necessary to obtain the limit VDA bending angle for each part according to the situation, but it is extremely difficult.
 本発明は、上記の課題に鑑みてなされたものであり、有限要素法を用いて、鋼材の材料特性及び板厚を入力値として、鋼材の曲げ外側最表層の最大主ひずみを取得し、これに基づいて鋼材の限界VDA曲げ角度を算出すること、即ち、任意の材料特性を持つ鋼材について、例えば前工程の予変形を受けて板厚が変動した場合に、変形後の任意の板厚における限界VDA曲げ角度を容易且つ正確に取得することを可能とし、その結果を利用した鋼材の曲げ破断予測をして、製品開発に必要なコストの大幅な削減及び開発期間の短縮に寄与することができる曲げ角度予測方法、曲げ角度予測装置、プログラム及び記録媒体を提供することを目的とする。 The present invention has been made in view of the above problems, and the maximum principal strain of the outermost surface layer of the bent steel material is obtained by using the finite element method with the material properties and plate thickness of the steel material as input values. The limit VDA bending angle of the steel material is calculated based on the above, that is, for a steel material having arbitrary material properties, for example, when the plate thickness fluctuates due to pre-deformation in the previous step, in an arbitrary plate thickness after deformation. It is possible to easily and accurately obtain the limit VDA bending angle, and to predict the bending fracture of steel materials using the result, which contributes to a significant reduction in the cost required for product development and shortening of the development period. It is an object of the present invention to provide a bending angle prediction method, a bending angle prediction device, a program, and a recording medium capable of predicting the bending angle.
 上記の課題を解決するため、鋭意検討の結果、以下に示す発明の諸様態に想到した。本発明の要旨は、次の通りである。 In order to solve the above problems, as a result of diligent studies, we came up with the following aspects of the invention. The gist of the present invention is as follows.
 (1)
 曲げ角度の予測対象である鋼材の材料特性により、前記鋼材の曲げ外側最表層の最大主ひずみを取得する第1ステップと、
 有限要素法を用いて既定されている、限界VDA曲げ角度を板厚及び曲げ外側最表層の最大主ひずみの関数で規定した関係式に、前記鋼材の板厚及び前記第1ステップで取得された前記鋼材の前記曲げ外側最表層の最大主ひずみを入力(代入)して、前記鋼材の限界VDA曲げ角度を算出する第2ステップと、
 を備えたことを特徴とする曲げ角度予測方法。
(1)
The first step of obtaining the maximum principal strain of the outermost surface layer of the steel material based on the material properties of the steel material for which the bending angle is predicted, and
The thickness of the steel material and the thickness of the steel material and the first step were obtained by the relational expression in which the limit VDA bending angle was defined by the function of the plate thickness and the maximum principal strain of the outermost surface layer of the bending, which was defined by using the finite element method. The second step of calculating the limit VDA bending angle of the steel material by inputting (substituting) the maximum principal strain of the outermost surface layer of the bending of the steel material, and
A bending angle prediction method characterized by being provided with.
 (2)
 前記第1ステップは、材料特性から曲げ外側最表層の最大主ひずみが一意に定まる関係に基づいて、前記鋼材の材料特性に対応する前記鋼材の曲げ外側最表層の最大主ひずみを取得することを特徴とする(1)に記載の曲げ角度予測方法。
(2)
The first step is to obtain the maximum principal strain of the bent outermost surface layer of the steel material corresponding to the material characteristics of the steel material based on the relationship in which the maximum principal strain of the bent outermost surface layer is uniquely determined from the material properties. The bending angle prediction method according to (1), which is a feature.
 (3)
 前記関係式は、限界VDA曲げ角度をθとして、
 θ=exp{(εb-b)/a}
 εb:曲げ外側最表層の最大主ひずみ
 a:板厚tの関係式
 b:板厚tの関係式
 により表されることを特徴とする請求項1又は2に記載の曲げ角度予測方法。
(3)
In the above relational expression, the limit VDA bending angle is θ.
θ = exp {(ε b −b) / a}
ε b : The bending angle prediction method according to claim 1 or 2, wherein a: the maximum principal strain of the outermost surface layer of bending a: the relational expression of the plate thickness t b: the relational expression of the plate thickness t.
 (4)
 前記鋼材の板厚は、予変形を受けた後の値であることを特徴とする(1)~(3)のいずれかに記載の曲げ角度予測方法。
(4)
The bending angle prediction method according to any one of (1) to (3), wherein the plate thickness of the steel material is a value after undergoing pre-deformation.
 (5)
 前記鋼材は、980MPa級以上の鋼種の鋼板であることを特徴とする(1)~(4)のいずれかに記載の曲げ角度予測方法。
(5)
The bending angle prediction method according to any one of (1) to (4), wherein the steel material is a steel plate of a steel type of 980 MPa class or higher.
 (6)
 曲げ角度の予測対象である鋼材の材料特性により、前記鋼材の曲げ外側最表層の最大主ひずみを取得する取得部と、
 有限要素法を用いて既定されている、限界VDA曲げ角度を板厚及び曲げ外側最表層の最大主ひずみの関数で規定した関係式に、前記鋼材の板厚及び前記第1ステップで取得された前記鋼材の前記曲げ外側最表層の最大主ひずみを入力(代入)して、前記鋼材の限界VDA曲げ角度を算出する算出部と、
 を備えたことを特徴とする曲げ角度予測装置。
(6)
An acquisition unit that acquires the maximum principal strain of the outermost surface layer of the steel material based on the material properties of the steel material for which the bending angle is predicted, and the acquisition unit.
The plate thickness of the steel material and the plate thickness of the first step were obtained by the relational expression in which the limit VDA bending angle was defined by the function of the plate thickness and the maximum principal strain of the outermost surface layer of the bending, which was defined by using the finite element method. A calculation unit that calculates the limit VDA bending angle of the steel material by inputting (substituting) the maximum principal strain of the outermost surface layer of the steel material.
Bending angle prediction device characterized by being equipped with.
 (7)
 前記取得部は、材料特性から曲げ外側最表層の最大主ひずみが一意に定まる関係に基づいて、前記鋼材の材料特性に対応する前記鋼材の曲げ外側最表層の最大主ひずみを取得することを特徴とする(6)に記載の曲げ角度予測装置。
(7)
The acquisition unit is characterized by acquiring the maximum principal strain of the bent outermost surface layer of the steel material corresponding to the material characteristics of the steel material based on the relationship in which the maximum principal strain of the bent outermost surface layer is uniquely determined from the material characteristics. The bending angle prediction device according to (6).
 (8)
 前記関係式は、限界VDA曲げ角度をθとして、
 θ=exp{(εb-b)/a}
 εb:曲げ外側最表層の最大主ひずみ
 a:板厚tの関係式
 b:板厚tの関係式
 により表されることを特徴とする(6)又は(7)に記載の曲げ角度予測装置。
(8)
In the above relational expression, the limit VDA bending angle is θ.
θ = exp {(ε b −b) / a}
ε b : Maximum principal strain of the outermost surface layer of bending a: Relational expression of plate thickness t b: Bending angle prediction device according to (6) or (7), which is represented by the relational expression of plate thickness t. ..
 (9)
 前記鋼材の板厚は、予変形を受けた後の値であることを特徴とする(6)~(8)のいずれかに記載の曲げ角度予測装置。
(9)
The bending angle predictor according to any one of (6) to (8), wherein the plate thickness of the steel material is a value after undergoing pre-deformation.
 (10)
 前記鋼材は、980MPa級以上の鋼種の鋼板であることを特徴とする(6)~(9)のいずれかに記載の曲げ角度予測装置。
(10)
The bending angle predictor according to any one of (6) to (9), wherein the steel material is a steel plate of a steel type of 980 MPa class or higher.
 (11)
 曲げ角度の予測対象である鋼材の材料特性により、前記鋼材の曲げ外側最表層の最大主ひずみを取得する第1ステップと、
 有限要素法を用いて既定されている、限界VDA曲げ角度を板厚及び曲げ外側最表層の最大主ひずみの関数で規定した関係式に、前記鋼材の板厚及び前記第1ステップで取得された前記鋼材の前記曲げ外側最表層の最大主ひずみを入力(代入)して、前記鋼材の限界VDA曲げ角度を算出する第2ステップと、
 をコンピュータに実行させる角度予測プログラム。
(11)
The first step of obtaining the maximum principal strain of the outermost surface layer of the steel material based on the material properties of the steel material for which the bending angle is predicted, and
The plate thickness of the steel material and the plate thickness of the steel material and the first step were obtained by the relational expression in which the limit VDA bending angle was defined by the function of the plate thickness and the maximum principal strain of the outermost surface layer of the bending, which was defined by using the finite element method. The second step of calculating the limit VDA bending angle of the steel material by inputting (substituting) the maximum principal strain of the outermost surface layer of the bending of the steel material, and
An angle prediction program that lets your computer run.
 (12)
 前記第1ステップは、材料特性から曲げ外側最表層の最大主ひずみが一意に定まる関係に基づいて、前記鋼材の材料特性に対応する前記鋼材の曲げ外側最表層の最大主ひずみを取得することを特徴とする(11)に記載の曲げ角度予測プログラム。
(12)
The first step is to obtain the maximum principal strain of the bent outermost surface layer of the steel material corresponding to the material characteristics of the steel material based on the relationship in which the maximum principal strain of the bent outermost surface layer is uniquely determined from the material properties. The bending angle prediction program according to (11).
 (13)
 前記関係式は、限界VDA曲げ角度をθとして、
 θ=exp{(εb-b)/a}
 εb:曲げ外側最表層の最大主ひずみ
 a:板厚tの関係式
 b:板厚tの関係式
 により表されることを特徴とする(11)又は(12)に記載の曲げ角度予測プログラム。
(13)
In the above relational expression, the limit VDA bending angle is θ.
θ = exp {(ε b −b) / a}
ε b : Maximum principal strain of the outermost surface layer of bending a: Relational expression of plate thickness t b: Bending angle prediction program according to (11) or (12), which is represented by the relational expression of plate thickness t. ..
 (14)
 前記鋼材の板厚は、予変形を受けた後の値であることを特徴とする(11)~(13)のいずれかに記載の曲げ角度予測プログラム。
(14)
The bending angle prediction program according to any one of (11) to (13), wherein the plate thickness of the steel material is a value after undergoing pre-deformation.
 (15)
 前記鋼材は、980MPa級以上の鋼種の鋼板であることを特徴とする(11)~(14)のいずれかに記載の曲げ角度予測プログラム。
(15)
The bending angle prediction program according to any one of (11) to (14), wherein the steel material is a steel plate of a steel type of 980 MPa class or higher.
 (16)
 (11)~(15)のいずれか1項に記載の角度予測プログラムを記録したことを特徴とするコンピュータ読み取り可能な記録媒体。
(16)
A computer-readable recording medium comprising recording the angle prediction program according to any one of (11) to (15).
 本発明によれば、有限要素法を用いて、任意の材料特性を持つ鋼材について、例えば前工程の予変形を受けて板厚が変動した場合に、変形後の任意の板厚における限界VDA曲げ角度を容易且つ正確に取得することが可能となる。また、得られた限界VDA曲げ角度を利用して鋼材の曲げ破断の有無を予測することができる。これによって、実際の自動車部材についての衝突試験を省略すること、或いは衝突試験の回数を大幅に削減することができる。また、衝突時の破断を防止する鋼材の設計をコンピュータ上で行うことができるため、大幅なコスト削減、開発期間の短縮への寄与が実現する。 According to the present invention, the limit VDA bending at an arbitrary plate thickness after deformation is performed for a steel material having arbitrary material properties by using the finite element method, for example, when the plate thickness fluctuates due to pre-deformation in the previous process. It is possible to obtain the angle easily and accurately. In addition, the presence or absence of bending fracture of the steel material can be predicted by using the obtained limit VDA bending angle. As a result, it is possible to omit the collision test on the actual automobile member or to significantly reduce the number of collision tests. In addition, since the steel material that prevents breakage during a collision can be designed on a computer, it contributes to a significant cost reduction and shortening of the development period.
図1Aは、図1Aは、限界VDA曲げ角度を試験的に取得する様子を示す斜視図である。FIG. 1A is a perspective view showing how the limit VDA bending angle is experimentally acquired. 図1Bは、限界VDA曲げ角度を試験的に取得する様子を拡大して示す正面図である。FIG. 1B is an enlarged front view showing how the limit VDA bending angle is obtained on a trial basis. 図2は、板厚ごとの、得られた限界VDA曲げ角度(実験値)及び曲げ外側頂部における曲げ外側最表層の最大主ひずみ(ソリッド要素詳細FEM解析値)を示す図である。FIG. 2 is a diagram showing the obtained limit VDA bending angle (experimental value) and the maximum principal strain of the bending outermost surface layer at the bending outer top (solid element detailed FEM analysis value) for each plate thickness. 図3は、曲げ外側頂部からの距離と曲げ外側最表層の最大主ひずみとの関係を示す特性図である。FIG. 3 is a characteristic diagram showing the relationship between the distance from the bending outer top and the maximum principal strain of the bending outer outermost layer. 図4は、限界VDA曲げ角度と曲げ外側最表層の最大主ひずみとの関係を示す特性図である。FIG. 4 is a characteristic diagram showing the relationship between the limit VDA bending angle and the maximum principal strain of the outermost surface layer of bending. 図5は、第1の実施形態による曲げ角度予測装置を示すブロック図である。FIG. 5 is a block diagram showing a bending angle prediction device according to the first embodiment. 図6は、第1の実施形態による曲げ角度予測方法を示すフロー図である。FIG. 6 is a flow chart showing a bending angle prediction method according to the first embodiment. 図7は、鋼板の鋼種(強度グレード)と曲げ外側の最大主ひずみの関係を示す図である。FIG. 7 is a diagram showing the relationship between the steel grade (strength grade) of the steel sheet and the maximum principal strain on the bending outer side. 図8は、第2の実施形態による曲げ破断予測方法を示すフロー図である。FIG. 8 is a flow chart showing a bending fracture prediction method according to the second embodiment. 図9は、第3の実施形態による曲げ破断予測方法を示すフロー図である。FIG. 9 is a flow chart showing a bending fracture prediction method according to the third embodiment. 図10は、コンピュータ機能を示すブロック図である。FIG. 10 is a block diagram showing a computer function.
 (本発明の基本的骨子)
 先ず、本発明の実施形態について開示するに当たり、本発明の基本的骨子について説明する。
(Basic gist of the present invention)
First, in disclosing the embodiments of the present invention, the basic gist of the present invention will be described.
 本実施形態では、鋼板の曲げ性を評価する方法として、ドイツ自動車工業会(VDA)による金属材料の板曲げ試験(VDA曲げ試験)と呼ばれる試験規格を用いる。本発明者は、VDA曲げ試験における鋼板の破断と鋼板の材料特性との関係を種々調査した結果、曲げ外側最表層の最大主ひずみが材料固有の限界値に達すると、VDA曲げ試験において曲げ破断が発生することを知見した。 In this embodiment, as a method for evaluating the bendability of a steel sheet, a test standard called a plate bending test (VDA bending test) for a metal material by the German Association of the Automotive Industry (VDA) is used. As a result of various investigations on the relationship between the fracture of the steel sheet and the material properties of the steel sheet in the VDA bending test, the present inventor found that when the maximum principal strain of the outermost surface layer of the bending reaches the material-specific limit value, the bending fracture in the VDA bending test. Was found to occur.
 VDA曲げ実験を行う様子を図1A、図1Bに示す。一対のロール21,22上に鋼板10を載置し、一対のロール21,22間における鋼板10の表面の中央部位(曲げ中心)にパンチ20を当接させる。パンチ20を押し込みながら鋼板10を曲げてゆき、パンチの押し込み荷重が最大となったタイミング(曲げ破断が発生したタイミング)における鋼板10の曲げ角度を限界VDA曲げ角度θと定義する(図1B)。鋼板10の表面のパンチ20の当接部位に対応した裏面の点Pにおいて、限界VDA曲げ角度θとなったときの最大主ひずみを、曲げ外側頂部における曲げ外側最表層の最大主ひずみと定義する。 The state of performing the VDA bending experiment is shown in FIGS. 1A and 1B. The steel plate 10 is placed on the pair of rolls 21 and 22, and the punch 20 is brought into contact with the central portion (bending center) of the surface of the steel plate 10 between the pair of rolls 21 and 22. The steel plate 10 is bent while pushing the punch 20, and the bending angle of the steel plate 10 at the timing when the pushing load of the punch is maximized (the timing when the bending break occurs) is defined as the limit VDA bending angle θ (FIG. 1B). The maximum principal strain when the limit VDA bending angle θ is reached at the point P on the back surface corresponding to the contact portion of the punch 20 on the front surface of the steel sheet 10 is defined as the maximum principal strain of the outermost surface layer of bending at the outer top of bending. ..
 引張強度クラスが1500MPa級で板厚の異なる3種(板厚:1.0mm,1.4mm,2.3mm)の鋼板について、得られた限界VDA曲げ角度(実験値)及び曲げ外側頂部における曲げ外側最表層の最大主ひずみ(0.1mmメッシュサイズのソリッド要素を用いた詳細FEM解析値)を図2に示す。また、上記の3種の鋼板について、曲げ外側頂部からの距離と曲げ外側最表層の最大主ひずみとの関係を図3に示す。 The obtained limit VDA bending angle (experimental value) and bending at the outer top of the bending were obtained for three types of steel sheets (plate thickness: 1.0 mm, 1.4 mm, 2.3 mm) with a tensile strength class of 1500 MPa and different plate thicknesses. The maximum principal strain of the outer outermost layer (detailed FEM analysis value using a solid element having a mesh size of 0.1 mm) is shown in FIG. Further, for the above three types of steel sheets, the relationship between the distance from the bending outer top and the maximum principal strain of the bending outer outermost layer is shown in FIG.
 一般的に、FEM解析では、ソリッド要素を用いた詳細なFEMモデル(ソリッドモデル)と、シェル要素を用いたFEMモデル(シェルモデル)とが主に用いられている。ソリッドモデルは、四面体、六面体、または五面体等の3次元のソリッド要素を使用してモデリングされ、一般的に解析時間は長くなるが、解析精度は高い特長がある。シェルモデルは、三角形や四角形のような2次元の面要素であるシェル要素を使用してモデリングされ、一般的に、解析対象が長さ及び幅と比べて厚みが薄い板で構成された部材を対象とした解析において使用されることが多く、解析時間が短い特長がある。そのため、ソリッドモデルでは解析が不可能になる大規模なモデルでの解析であっても、シェル要素を使えば可能となる。 Generally, in FEM analysis, a detailed FEM model (solid model) using a solid element and a FEM model (shell model) using a shell element are mainly used. The solid model is modeled using a three-dimensional solid element such as a tetrahedron, a hexahedron, or a pentahedron. Generally, the analysis time is long, but the analysis accuracy is high. The shell model is modeled using shell elements that are two-dimensional surface elements such as triangles and quadrangles, and generally, the analysis target is a member composed of plates that are thinner than the length and width. It is often used in targeted analysis and has the advantage of short analysis time. Therefore, even analysis with a large-scale model, which cannot be analyzed with a solid model, can be performed by using shell elements.
 図2及び図3に示すように、実験で取得された限界VDA曲げ角度は、板厚1.0mm,1.4mm,2.3mmの各鋼板について、75°,65°,55°となった。 As shown in FIGS. 2 and 3, the limit VDA bending angles obtained in the experiment were 75 °, 65 °, and 55 ° for each steel sheet having a thickness of 1.0 mm, 1.4 mm, and 2.3 mm. ..
 VDA曲げ実験を再現したFEMモデルを作成し、ひずみの再現精度が高いソリッド要素を用い、且つサイズが例えば0.1mm程度の詳細なメッシュでモデル化する。このFEMモデルを用いて、VDA曲げ実験において、破断が発生した曲げ角度(限界VDA曲げ角度)までパンチを押し込み、その時の鋼板の曲げ外側の最大主ひずみを求め、限界VDA曲げ角度との関係を調査した。その結果、図2及び図3に示すように、曲げ外側頂部における曲げ外側の最大主ひずみは、限界VDA曲げ角度75°,65°,55°の各鋼板について、0.386,0.396,0.393となり、ほぼ同一と見なし得る値を示した。即ち、鋼板の板厚が異なることで、限界VDA曲げ角度が変化しているにも関わらず、曲げ外側頂部における曲げ外側の最大主ひずみは板厚に依らずほぼ同一の値となることが判った。以下、記載上の便宜のため、曲げ外側頂部の曲げ外側最表層の最大主ひずみを、単に「曲げ外側最表層の最大主ひずみ」と記す。 Create an FEM model that reproduces the VDA bending experiment, use solid elements with high strain reproduction accuracy, and model with a detailed mesh with a size of, for example, about 0.1 mm. Using this FEM model, in the VDA bending experiment, the punch is pushed to the bending angle at which the fracture occurred (limit VDA bending angle), the maximum principal strain on the bending outside of the steel sheet at that time is obtained, and the relationship with the limit VDA bending angle is determined. investigated. As a result, as shown in FIGS. 2 and 3, the maximum bending outer maximum principal strain at the bending outer top is 0.386, 0.396, for each steel sheet having the limit VDA bending angles of 75 °, 65 ° and 55 °. It was 0.393, showing a value that can be regarded as almost the same. That is, it was found that the maximum principal strain on the bending outer side at the bending outer top is almost the same value regardless of the plate thickness, even though the limit VDA bending angle is changed due to the difference in the plate thickness of the steel plate. It was. Hereinafter, for convenience of description, the maximum principal strain of the outermost surface layer of the bent outer surface of the bent outermost layer is simply referred to as "the maximum principal strain of the outermost surface layer of the bent outer layer".
  本発明者は、詳細なソリッド要素からなるFEMモデルを用いた場合には、同じ鋼種の鋼板であれば、板厚が異なっても各板厚における限界VDA曲げ角度まで曲げ変形を加えた時の、曲げ外側最表層の最大主ひずみはほぼ等しくなるという上記の知見を用い、様々な板厚における限界VDA曲げ角度を、FEM解析から求めた。他の鋼種においても同様に、詳細なソリッド要素からなるFEMモデルを用いた解析を行い、各板厚における限界VDA曲げ角度を求めた。このようにして求めた、様々な鋼種、様々な板厚における、多数の限界VDA曲げ角度と曲げ外側最表層の最大主ひずみとの関係をプロットした結果を図4に示す。図4では、板厚をt,t,tと示す。 When the FEM model consisting of detailed solid elements is used, the present inventor applies bending deformation to the limit VDA bending angle at each plate thickness even if the plate thickness is different if the steel plate is of the same steel type. Using the above findings that the maximum principal strains of the outermost surface layer of bending are almost equal, the limit VDA bending angles at various plate thicknesses were obtained from FEM analysis. Similarly, for other steel types, analysis was performed using an FEM model composed of detailed solid elements, and the limit VDA bending angle at each plate thickness was obtained. FIG. 4 shows the results of plotting the relationship between a large number of limit VDA bending angles and the maximum principal strain of the outermost surface layer of bending at various steel types and various plate thicknesses obtained in this way. In FIG. 4, the plate thickness is shown as t 1 , t 2 , and t 3 .
 本発明者は、図4より、ソリッド要素による曲げ外側最表層の最大主ひずみは、限界VDA曲げ角度と板厚の関数で表される旨を知見した。本発明者は、この知見を具体化すべく精査したところ、リッド要素による曲げ外側最表層の最大主ひずみは、鋼種によらず板厚毎の限界VDA曲げ角度の自然対数の1次式で定式化できることを見出した。 From FIG. 4, the present inventor found that the maximum principal strain of the outermost surface layer of bending due to the solid element is represented by a function of the limit VDA bending angle and the plate thickness. The present inventor scrutinized this finding to embody it, and found that the maximum principal strain of the outermost surface layer of bending due to the lid element was formulated by the linear logarithm of the limit VDA bending angle for each plate thickness regardless of the steel type. I found out what I could do.
 ソリッド要素による曲げ外側最表層の最大主ひずみをε、限界VDA曲げ角度をθとして、εは係数a,bを用いて以下のように表される。
 ε=a・ln(θ)+b         ・・・(1)
Bending by a solid element The maximum principal strain of the outermost surface layer is ε b , the limit VDA bending angle is θ, and ε b is expressed using coefficients a and b as follows.
ε b = a · ln (θ) + b ··· (1)
 係数a及び係数bは、板厚tの関係式で表される。この関係式は、試験結果を前記(1)式でフィッティングするために決定されるものであり、特に式の形は問わないが、例えば板厚tの多項式で表すことができる。 The coefficient a and the coefficient b are represented by the relational expression of the plate thickness t. This relational expression is determined to fit the test result by the above equation (1), and the form of the equation is not particularly limited, but can be expressed by, for example, a polynomial of plate thickness t.
 上記の(1)式より、限界VDA曲げ角度θについて解けば、θは以下のように表される。
 θ=exp{(ε-b)/a}        ・・・・(2)
From the above equation (1), if the limit VDA bending angle θ is solved, θ is expressed as follows.
θ = exp {(ε b − b) / a} ・ ・ ・ ・ (2)
 本実施形態では、上記のように既定された(2)式を用いて、任意の鋼種及び任意の板厚における鋼板の限界VDA曲げ角度を算出する。即ち本実施形態では、限界VDA曲げ角度を、試験やシミュレーションによることなく、極めて簡易に短時間で、しかも正確に得ることができる。 In the present embodiment, the limit VDA bending angle of the steel sheet at an arbitrary steel type and an arbitrary plate thickness is calculated by using the equation (2) defined as described above. That is, in the present embodiment, the limit VDA bending angle can be obtained extremely easily, in a short time, and accurately without performing a test or simulation.
 (第1の実施形態)
 第1の実施形態では、鋼材である鋼板の曲げ角度予測方法及び曲げ角度予測装置について、図面を参照しながら詳細に説明する。図5は第1の実施形態による曲げ角度予測装置を示すブロック図、図6は第1の実施形態による曲げ角度予測方法を示すフロー図である。
(First Embodiment)
In the first embodiment, a bending angle prediction method and a bending angle prediction device for a steel plate, which is a steel material, will be described in detail with reference to the drawings. FIG. 5 is a block diagram showing a bending angle prediction device according to the first embodiment, and FIG. 6 is a flow diagram showing a bending angle prediction method according to the first embodiment.
 本実施形態による曲げ角度予測装置は、図5に示すように、鋼種(強度グレード)判定部1、最大主ひずみ取得部2、及び角度算出部3を備えている。
 鋼板の限界VDA曲げ角度を予測するに際して、先ず、鋼種(強度グレード)判定部1には、インプットファイルから鋼板の材料特性が入力される。材料特性として、具体的には、当該材料特性に対応する引張強度特性、例えば応力-ひずみ曲線又は応力-ひずみ曲線をスイフトの式でフィッティングすることで得られるスイフト係数がある。
As shown in FIG. 5, the bending angle prediction device according to the present embodiment includes a steel grade (strength grade) determination unit 1, a maximum main strain acquisition unit 2, and an angle calculation unit 3.
When predicting the limit VDA bending angle of a steel sheet, first, the material properties of the steel sheet are input to the steel type (strength grade) determination unit 1 from the input file. Specifically, as the material property, there is a Swift coefficient obtained by fitting a tensile strength property corresponding to the material property, for example, a stress-strain curve or a stress-strain curve by a Swift equation.
 鋼種(強度グレード)判定部1は、ステップS1において、入力された鋼板の材料特性に基づいて、当該鋼板の鋼種(強度グレード)を判定する。
 本実施形態では、鋼板の鋼種として、特に980MPa級以上の鋼板を対象とすることが好ましい。曲げ破断が問題となる鋼板は主に高強度材のものであることから、本実施形態では、高強度材の具体的指標として980MPa級以上の鋼板を破断予測の適用対象とする。
In step S1, the steel type (strength grade) determination unit 1 determines the steel type (strength grade) of the steel sheet based on the input material properties of the steel sheet.
In the present embodiment, as the steel type of the steel sheet, it is particularly preferable to target a steel sheet of 980 MPa class or higher. Since the steel sheet in which bending fracture is a problem is mainly a high-strength material, in the present embodiment, a steel sheet of 980 MPa class or higher is applied to the fracture prediction as a specific index of the high-strength material.
 最大主ひずみ取得部2には、鋼板の鋼種(強度グレード)から曲げ外側最表層の最大主ひずみが一意に定まる関係、例えば図7のような、鋼板の鋼種(強度グレード)と曲げ外側の最大主ひずみとの関係を示すテーブルが格納されている。当該テーブルでは、鋼種(強度グレード)に対応して、曲げ外側の最大主ひずみが板厚に依らずほぼ同一の値となることを利用して、鋼種(強度グレード)ごとに任意の板厚で取得された曲げ外側の最大主ひずみが掲載されている。最大主ひずみ取得部2は、ステップS2において、ステップS1で判定された鋼板の鋼種(強度グレード)に基づいて、上記のテーブルから曲げ外側の最大主ひずみを取得する。 In the maximum principal strain acquisition section 2, the relationship is such that the maximum principal strain of the outermost surface layer of the bent steel sheet is uniquely determined from the steel sheet grade (strength grade) of the steel sheet, for example, as shown in FIG. A table showing the relationship with the main strain is stored. In the table, the maximum principal strain on the outside of the bend is almost the same value regardless of the plate thickness according to the steel type (strength grade), and the plate thickness is arbitrary for each steel type (strength grade). The maximum principal strain on the outside of the obtained bend is listed. In step S2, the maximum principal strain acquisition unit 2 acquires the maximum principal strain on the bending outer side from the above table based on the steel grade (strength grade) of the steel sheet determined in step S1.
 角度算出部3には、インプットファイルからの要素毎の鋼板の所定板厚、ここでは予変形後の板厚と、最大主ひずみ取得部2で取得された曲げ外側最表層の最大主ひずみとが入力される。角度算出部3は、ステップS3において、各要素毎に入力された鋼板の予変形後の板厚及び曲げ外側最表層の最大主ひずみに基づき、上記の(2)式を用いて、鋼板の予変形後における限界VDA曲げ角度を算出する。 In the angle calculation unit 3, a predetermined plate thickness of the steel plate for each element from the input file, here, the plate thickness after pre-deformation and the maximum principal strain of the outermost surface layer of bending acquired by the maximum principal strain acquisition unit 2 are obtained. Entered. In step S3, the angle calculation unit 3 uses the above equation (2) to preliminarily predict the steel sheet based on the plate thickness after pre-deformation of the steel sheet and the maximum principal strain of the outermost surface layer of bending, which are input for each element. The limit VDA bending angle after deformation is calculated.
 以上説明したように、本実施形態によれば、FEM解析を用いて、任意の材料特性を持つ鋼材について、例えば前工程の予変形を受けて板厚が変動した場合に、変形後の任意の板厚における限界VDA曲げ角度を容易且つ正確に取得することが可能となる。 As described above, according to the present embodiment, when the plate thickness of a steel material having arbitrary material properties fluctuates due to pre-deformation in the previous process, for example, any arbitrary material after deformation is used by FEM analysis. The limit VDA bending angle in the plate thickness can be easily and accurately obtained.
 (第2の実施形態)
 第2の実施形態では、第1の実施形態による曲げ角度予測方法を利用した、鋼板の曲げ破断予測方法について、図面を参照しながら詳細に説明する。本実施形態では、プレス成形解析における複数の成形工程において、予変形により鋼板に板厚変動が生じる場合における鋼板の曲げ破断予測方法を例示する。図8は第2の実施形態による曲げ破断予測方法を示すフロー図である。
(Second Embodiment)
In the second embodiment, a bending fracture prediction method for a steel sheet using the bending angle prediction method according to the first embodiment will be described in detail with reference to the drawings. In this embodiment, a method for predicting bending fracture of a steel sheet when the thickness of the steel sheet fluctuates due to pre-deformation in a plurality of forming steps in the press forming analysis is illustrated. FIG. 8 is a flow chart showing a bending fracture prediction method according to the second embodiment.
 自動車部品は、一般に鋼板をプレス成形することにより形成されている。通常、プレス成形は、鋼板について絞り成形工程、曲げ成形工程、トリム成形工程、リストライク成形工程等の複数の工程を経て、最終的な形状に成形される。軟質な鋼板であれば、曲げ成形中に破断が発生することは殆どないが、例えば980MPaを超えるような高強度の鋼板をプレス成形した場合、曲げ部で破断が発生する可能性がある。本実施形態では、絞り成形工程及び曲げ成形工程を例示し、絞り成形工程を第1成形解析工程S10、曲げ成形工程を第2成形解析工程S20として説明する。 Automobile parts are generally formed by press forming a steel plate. Usually, press molding involves forming a steel sheet into a final shape through a plurality of steps such as a draw forming step, a bending forming step, a trim forming step, and a wrist-like forming step. If it is a soft steel sheet, fracture rarely occurs during bending and forming, but for example, when a high-strength steel sheet exceeding 980 MPa is press-formed, fracture may occur at the bent portion. In this embodiment, the draw forming step and the bending forming step are illustrated, and the drawing forming step is described as the first forming analysis step S10, and the bending forming step is described as the second forming analysis step S20.
 絞り成形工程において、鋼板に対して絞り成形を行うと、例えばパンチの押し込みにより肩部は引張変形を受けて板厚が減少する。一方、パンチの押し込みにより材料が流入することによって、部品の周辺部分(ダイフランジ部分)は、周長が縮まることによる圧縮の変形を受けて板厚が増加する。 In the draw forming process, when draw forming is performed on a steel sheet, for example, the shoulder portion is subjected to tensile deformation due to the pushing of a punch, and the plate thickness is reduced. On the other hand, when the material flows in due to the pushing of the punch, the peripheral portion (die flange portion) of the component is deformed by compression due to the reduction of the peripheral length, and the plate thickness increases.
 本実施形態では先ず、ステップS11において、第1成形解析工程S10の絞り成形工程についてFEM解析を行う。
 続いて、ステップS12において、第1成形解析工程S10のFEMモデルの各要素(メッシュ)ごとに絞り成形後の鋼板の板厚及びひずみ成分を取得する。
In the present embodiment, first, in step S11, FEM analysis is performed on the draw forming step of the first forming analysis step S10.
Subsequently, in step S12, the plate thickness and strain component of the steel sheet after drawing and forming are acquired for each element (mesh) of the FEM model in the first forming analysis step S10.
 続いて、ステップS21において、ステップS12で取得された鋼板の板厚及びひずみ成分を、第2成形解析工程S20である曲げ成形工程のFEMモデルの各要素に引き継いでマッピングする。 Subsequently, in step S21, the plate thickness and strain component of the steel plate acquired in step S12 are taken over and mapped to each element of the FEM model of the bending forming step which is the second forming analysis step S20.
 続いて、ステップS22において、図6に示した第1の実施形態による曲げ角度予測方法のステップS1~S3を実行し、鋼板の予変形後の板厚における限界VDA曲げ角度を算出する。 Subsequently, in step S22, steps S1 to S3 of the bending angle prediction method according to the first embodiment shown in FIG. 6 are executed, and the limit VDA bending angle in the plate thickness after pre-deformation of the steel plate is calculated.
 続いて、ステップS23において、第2成形解析工程S20の曲げ成形工程についてFEM解析を行う。
 そして、ステップS24において、第2成形解析工程S20のFEMモデルの要素ごとに曲げ破断が発生するか否かを判定し、破断が発生すると判定された要素を削除する。
 以上により、鋼板の曲げ破断をFEM解析上で精度良く予測することができる。
Subsequently, in step S23, FEM analysis is performed on the bending molding step of the second molding analysis step S20.
Then, in step S24, it is determined whether or not bending breakage occurs for each element of the FEM model in the second molding analysis step S20, and the element determined to cause breakage is deleted.
As described above, the bending fracture of the steel sheet can be accurately predicted by FEM analysis.
 自動車部材のFEM成形解析では、大規模なモデルとなるため、一般に詳細なソリッド要素でのモデル化は計算負荷が高すぎるため困難である。そのため、計算負荷の小さいシェル要素で且つ、例えば1mm~5mm程度の比較的粗い要素サイズでモデル化されることが多い。シェル要素でモデル化した場合、鋼板の曲げ頂部のように局所的にひずみが集中しているような部位においては、要素内でひずみが平均化されることから、用いる要素サイズによって、計算されるひずみの値が異なることが知られている。本実施形態では、このシェル要素の要素サイズ毎のひずみの変化を捉えた上で、ステップS24において、限界VDA曲げ角度における、シェル要素の曲げ外側の限界ひずみを求め、成形解析中のシェル要素の曲げ外側最表層の最大主ひずみが、この曲げ外側の限界ひずみに達するか否かで破断を予測することもできる。 In FEM molding analysis of automobile parts, it is a large-scale model, so it is generally difficult to model with detailed solid elements because the calculation load is too high. Therefore, it is often modeled with a shell element having a small calculation load and a relatively coarse element size of, for example, about 1 mm to 5 mm. When modeled with a shell element, the strain is averaged within the element at a site where strain is locally concentrated, such as the bent top of a steel plate, so it is calculated according to the element size used. It is known that the strain values are different. In the present embodiment, after capturing the change in strain for each element size of the shell element, in step S24, the limit strain on the bending outside of the shell element at the limit VDA bending angle is obtained, and the shell element under molding analysis is being analyzed. Fracture can also be predicted by whether or not the maximum principal strain of the outermost surface layer of the bend reaches the limit strain on the outer side of the bend.
 第1成形工程における予変形によって付与されたひずみは、当然に第2成形工程にも引き継がれる。そのため、FEM解析においても、第1成形解析工程S10後の板厚と共に、ひずみ成分を取得し、第2成形解析工程S20のFEMモデルの各要素にマッピングする。これにより、シェル要素の曲げ外側のひずみが、限界ひずみに達するか否かで破断を予測する場合において、より精度を向上させることができる。 The strain applied by the pre-deformation in the first molding step is naturally inherited in the second molding step. Therefore, also in the FEM analysis, the strain component is acquired together with the plate thickness after the first molding analysis step S10 and mapped to each element of the FEM model in the second molding analysis step S20. As a result, it is possible to further improve the accuracy when predicting fracture based on whether or not the strain on the bending outer side of the shell element reaches the limit strain.
 なお、ステップS24では、限界VDA曲げ角度をシェル要素の曲げ外側の限界ひずみに変換することなく、FEM解析において鋼板の曲げ角度が限界VDA曲げ角度に到達したか否かで破断発生の有無を判定することもできる。 In step S24, the presence or absence of fracture is determined based on whether or not the bending angle of the steel sheet reaches the limit VDA bending angle in the FEM analysis without converting the limit VDA bending angle into the limit strain on the outside of the bending of the shell element. You can also do it.
 以上説明したように、本実施形態によれば、第1の実施形態による曲げ角度予測方法を用いて得られた限界VDA曲げ角度を利用して鋼材の曲げ破断の有無を精度良く予測する。これによって、曲げ破断を防止する鋼板の設計をコンピュータ上で行うことができるため、大幅なコスト削減、開発期間の短縮への寄与が実現する。 As described above, according to the present embodiment, the presence or absence of bending fracture of the steel material is accurately predicted by using the limit VDA bending angle obtained by using the bending angle prediction method according to the first embodiment. As a result, the steel sheet that prevents bending fracture can be designed on the computer, which contributes to a significant cost reduction and shortening of the development period.
 (第3の実施形態)
 第3の実施形態では、第1の実施形態による曲げ角度予測方法を利用した、鋼板の曲げ破断予測方法について、図面を参照しながら詳細に説明する。本実施形態では、プレス成形解析及びこれに続く衝突解析において、予変形により鋼板に板厚変動が生じる場合における鋼板の曲げ破断予測方法を例示する。図9は第3の実施形態による曲げ破断予測方法を示すフロー図である。
(Third Embodiment)
In the third embodiment, a bending fracture prediction method for a steel sheet using the bending angle prediction method according to the first embodiment will be described in detail with reference to the drawings. In this embodiment, in the press forming analysis and the subsequent collision analysis, a method for predicting bending fracture of a steel sheet when the sheet thickness fluctuates due to pre-deformation is illustrated. FIG. 9 is a flow chart showing a bending fracture prediction method according to the third embodiment.
 自動車部品は、一般に鋼板をプレス成形して形成されており、その後に溶接等の組立て工程を経て自動車車体が形成される。自動車車体は衝突安全性の観点から、衝突時に狙いの反力を発生させながらエネルギー吸収をすることが求められるところ、衝突時に鋼板が破断した場合、狙いの反力が得られない可能性がある。そのため、衝突のFEM解析を行い、事前に破断を予測することが求められている。 Automobile parts are generally formed by press forming a steel plate, and then an automobile body is formed through an assembly process such as welding. From the viewpoint of collision safety, automobile bodies are required to absorb energy while generating the target reaction force at the time of a collision, but if the steel plate breaks at the time of a collision, the target reaction force may not be obtained. .. Therefore, it is required to perform FEM analysis of collision and predict rupture in advance.
 衝突時に自動車車体の各鋼材は様々な変形をし、衝突入力により圧縮されて座屈するような部位では、鋼板は曲げ変形を受ける。軟質な鋼板であれば曲げ変形中に破断が発生することは殆どないが、例えば980MPaを超える高強度の鋼板の場合、曲げ変形中に破断が発生する可能性がある。 At the time of a collision, each steel material of the automobile body undergoes various deformations, and the steel plate undergoes bending deformation at the part where it is compressed and buckled by the collision input. If it is a soft steel sheet, fracture rarely occurs during bending deformation, but if it is a high-strength steel sheet exceeding 980 MPa, for example, fracture may occur during bending deformation.
 鋼板をプレス成形する工程においては、例えばパンチの押し込みにより肩部は引張変形を受けて板厚が減少する。一方、パンチの押し込みにより材料が流入することによって、部品の周辺部分(ダイフランジ部分)は、周長が縮まることによる圧縮の変形を受け、板厚が増加する。 In the process of press forming a steel sheet, for example, the shoulder portion is subjected to tensile deformation due to pushing of a punch, and the plate thickness is reduced. On the other hand, when the material flows in due to the pushing of the punch, the peripheral portion (die flange portion) of the component is subjected to compression deformation due to the contraction of the peripheral length, and the plate thickness increases.
 本実施形態では先ず、ステップS31において、鋼板の成形解析工程S30においてFEM解析を行う。
 続いて、ステップS32において、成形解析工程S30のFEMモデルの各要素(メッシュ)ごとに成形後の鋼板の板厚及びひずみ成分を取得する。
In the present embodiment, first, in step S31, FEM analysis is performed in the steel sheet forming analysis step S30.
Subsequently, in step S32, the plate thickness and strain component of the molded steel sheet are acquired for each element (mesh) of the FEM model in the molding analysis step S30.
 続いて、ステップS41において、ステップS32で取得された鋼板の板厚及びひずみ成分を、衝突解析工程S40のFEMモデルの各要素に引き継いでマッピングする。 Subsequently, in step S41, the plate thickness and strain component of the steel plate acquired in step S32 are taken over and mapped to each element of the FEM model in the collision analysis step S40.
 続いて、ステップS42において、図2に示した第1の実施形態による曲げ角度予測方法のステップS1~S3を実行し、鋼板の予変形後の板厚における限界VDA曲げ角度を算出する。 Subsequently, in step S42, steps S1 to S3 of the bending angle prediction method according to the first embodiment shown in FIG. 2 are executed, and the limit VDA bending angle in the plate thickness after pre-deformation of the steel plate is calculated.
 続いて、ステップS43において、衝突解析工程S40においてFEM解析を行う。
 そして、ステップS44において、衝突解析工程S40のFEMモデルの各要素ごとに曲げ破断が発生するか否かを判定し、破断が発生すると判定された要素を削除する。
 以上により、自動車車体の衝突時の曲げ破断をFEM解析上で精度良く予測することができる。
Subsequently, in step S43, FEM analysis is performed in the collision analysis step S40.
Then, in step S44, it is determined whether or not bending breakage occurs for each element of the FEM model in the collision analysis step S40, and the element determined to cause breakage is deleted.
From the above, it is possible to accurately predict bending fracture at the time of a collision of an automobile body on FEM analysis.
 本実施形態においても、第2の実施形態と同様に、シェル要素の要素サイズ毎のひずみの変化を捉えた上で、ステップS44において、限界VDA曲げ角度における、シェル要素の曲げ外側の限界ひずみを求め、成形解析中のシェル要素の曲げ外側最表層の最大主ひずみが、この曲げ外側の限界ひずみに達するか否かで破断を予測する。 Also in the present embodiment, as in the second embodiment, after capturing the change in strain for each element size of the shell element, in step S44, the limit strain on the bending outside of the shell element at the limit VDA bending angle is determined. Fracture is predicted by determining whether or not the maximum principal strain of the outermost bending outer layer of the shell element during the molding analysis reaches the limit strain on the outer bending side.
 成形工程における予変形によって付与されたひずみは、当然に衝突工程にも引き継がれる。そのため、FEM解析においても、成形解析工程S30後の板厚と共に、ひずみ成分を取得し、衝突解析工程S40のFEMモデルの各要素にマッピングする。これにより、シェル要素の曲げ外側のひずみが、限界ひずみに達するか否かで破断を予測する場合において、より精度を向上させることができる。 The strain applied by the pre-deformation in the molding process is naturally inherited in the collision process. Therefore, also in the FEM analysis, the strain component is acquired together with the plate thickness after the molding analysis step S30 and mapped to each element of the FEM model in the collision analysis step S40. As a result, it is possible to further improve the accuracy when predicting fracture based on whether or not the strain on the bending outer side of the shell element reaches the limit strain.
 なお、ステップS44では、限界VDA曲げ角度をシェル要素の曲げ外側の限界ひずみに変換することなく、FEM解析において鋼板の曲げ角度が限界VDA曲げ角度に到達したか否かで破断発生の有無を判定することもできる。 In step S44, the presence or absence of fracture is determined by whether or not the bending angle of the steel sheet reaches the limit VDA bending angle in the FEM analysis without converting the limit VDA bending angle into the limit strain outside the bending of the shell element. You can also do it.
 以上説明したように、本実施形態によれば、第1の実施形態による曲げ角度予測方法を用いて得られた限界VDA曲げ角度を利用して鋼材の曲げ破断の有無を精度良く予測する。これによって、実際の自動車部材についての衝突試験を省略すること、或いは衝突試験の回数を大幅に削減することができる。また、衝突時の破断を防止する鋼材の設計をコンピュータ上で行うことができるため、大幅なコスト削減、開発期間の短縮への寄与が実現する。 As described above, according to the present embodiment, the presence or absence of bending fracture of the steel material is accurately predicted by using the limit VDA bending angle obtained by using the bending angle prediction method according to the first embodiment. As a result, it is possible to omit the collision test on the actual automobile member or to significantly reduce the number of collision tests. In addition, since the steel material that prevents breakage during a collision can be designed on a computer, it contributes to a significant cost reduction and shortening of the development period.
 (第4の実施形態)
 上述した第1の実施形態による曲げ角度予測装置の構成要素である、図5に示した鋼種(強度グレード)判定部1、最大主ひずみ取得部2、及び角度算出部3は、専用のハードウェアにより実現されるものであっても良い。また、上記の各構成要素は、メモリ及びCPU(中央演算装置)により構成され、各構成要素の諸機能を実現するためのプログラムをメモリにロードして実行することによりその機能を実現させるものであっても良い。
(Fourth Embodiment)
The steel grade (strength grade) determination unit 1, the maximum principal strain acquisition unit 2, and the angle calculation unit 3 shown in FIG. 5, which are the components of the bending angle prediction device according to the first embodiment described above, are dedicated hardware. It may be realized by. In addition, each of the above components is composed of a memory and a CPU (Central Processing Unit), and the functions are realized by loading and executing a program for realizing various functions of each component in the memory. There may be.
 また、上記の各構成要素の諸機能を実現するためのプログラム(図6の角度予測方法のステップS1~S3、図8の曲げ破断予測方法のステップS10(S11~S12)及びS20(S21~S24)、図9の曲げ破断予測方法のステップS30(S31~S32)及びS40(S41~S44)をコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより、上記の各構成要素の処理を実行しても良い。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。 Further, a program for realizing various functions of each of the above components (steps S1 to S3 of the angle prediction method of FIG. 6, steps S10 (S11 to S12) and S20 (S21 to S24) of the bending break prediction method of FIG. ), Steps S30 (S31 to S32) and S40 (S41 to S44) of the bending break prediction method of FIG. 9 are recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into the computer system. , The processing of each of the above-mentioned components may be executed by executing the above. Note that the "computer system" here includes hardware such as an OS and peripheral devices.
 また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものでも良い。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。更に、「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものでも良い。また上記のプログラムは、前述した機能の一部を実現するためのものであっても良く、更に前述した機能をコンピュータシステムに既に記録されているプログラムとの組み合わせで実現できるものであっても良い。
Further, the "computer system" may include a homepage providing environment (or display environment) as long as the WWW system is used.
Further, the "computer-readable recording medium" refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, or a storage device such as a hard disk built in a computer system. Further, a "computer-readable recording medium" is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It may also include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that serves as a server or a client in that case. Further, the above program may be for realizing a part of the above-mentioned functions, and may be further realized for realizing the above-mentioned functions in combination with a program already recorded in the computer system. ..
 一具体例として、第1~第3の実施形態に示した曲げ角度予測装置及び曲げ角度予測方法、並びに曲げ破断予測方法は、図10に示すようなコンピュータ機能100により実施される。
 コンピュータ機能100は、CPU101と、ROM102と、RAM103とを備える。また、操作部(CONS)109のコントローラ(CONSC)105と、CRTやLCD等の表示部としてのディスプレイ(DISP)110のディスプレイコントローラ(DISPC)106とを備える。更に、ハードディスク(HD)111、及びフレキシブルディスク等の記憶デバイス(STD)112のコントローラ(DCONT)107と、ネットワークインタフェースカード(NIC)108とを備える。それら機能部101,102,103,105,106,107,108は、システムバス104を介して互いに通信可能に接続された構成としている。
As a specific example, the bending angle prediction device and the bending angle prediction method shown in the first to third embodiments, and the bending fracture prediction method are carried out by the computer function 100 as shown in FIG.
The computer function 100 includes a CPU 101, a ROM 102, and a RAM 103. Further, the controller (CONSC) 105 of the operation unit (CONS) 109 and the display controller (DISPC) 106 of the display (DISP) 110 as a display unit such as a CRT or an LCD are provided. Further, it includes a hard disk (HD) 111, a controller (DCONT) 107 of a storage device (STD) 112 such as a flexible disk, and a network interface card (NIC) 108. The functional units 101, 102, 103, 105, 106, 107, and 108 are connected to each other via the system bus 104 so as to be able to communicate with each other.
 CPU101は、ROM102又はHD111に記憶されたソフトウェア、又はSTD112より供給されるソフトウェアを実行することで、システムバス104に接続された各構成部を総括的に制御する。即ち、CPU101は、上述したような動作を行うための処理プログラム(構造体設計支援プログラム)を、ROM102、HD111、又はSTD112から読み出して実行することで、本実施形態における動作を実現するための制御を行う。RAM103は、CPU101の主メモリ又はワークエリア等として機能する。 The CPU 101 comprehensively controls each component connected to the system bus 104 by executing the software stored in the ROM 102 or the HD 111 or the software supplied from the STD 112. That is, the CPU 101 controls to realize the operation in the present embodiment by reading and executing the processing program (structure design support program) for performing the above-described operation from the ROM 102, HD111, or STD112. I do. The RAM 103 functions as a main memory or a work area of the CPU 101.
 CONSC105は、CONS109からの指示入力を制御する。DISPC105は、DISP110の表示を制御する。DCONT107は、ブートプログラム、種々のアプリケーション、ユーザファイル、ネットワーク管理プログラム、及び本実施形態における上記の処理プログラム等を記憶するHD111及びSTD112とのアクセスを制御する。NIC108はネットワーク113上の他の装置と双方向にデータをやりとりする。
 なお、通常のコンピュータ端末装置を用いる代わりに、曲げ角度予測装置に特化された所定の計算機等を用いても良い。
The CONSC 105 controls the instruction input from the CONS 109. The DISPC 105 controls the display of the DISP 110. The DCONT 107 controls access to HD111 and STD112 that store boot programs, various applications, user files, network management programs, and the above processing programs in this embodiment. The NIC 108 exchanges data bidirectionally with other devices on the network 113.
Instead of using a normal computer terminal device, a predetermined computer or the like specialized for the bending angle prediction device may be used.
 本発明は、例えば、自動車部品に公的な鋼板に関連する産業に利用することができる。
 
The present invention can be used, for example, in an industry related to steel sheets that are public for automobile parts.

Claims (16)

  1.  曲げ角度の予測対象である鋼材の材料特性により、前記鋼材の曲げ外側最表層の最大主ひずみを取得する第1ステップと、
     有限要素法を用いて既定されている、限界VDA曲げ角度を板厚及び曲げ外側最表層の最大主ひずみの関数で規定した関係式に、前記鋼材の板厚及び前記第1ステップで取得された前記鋼材の前記曲げ外側最表層の最大主ひずみを入力して、前記鋼材の限界VDA曲げ角度を算出する第2ステップと、
     を備えたことを特徴とする曲げ角度予測方法。
    The first step of obtaining the maximum principal strain of the outermost surface layer of the steel material based on the material properties of the steel material for which the bending angle is predicted, and
    The thickness of the steel material and the thickness of the steel material and the first step were obtained by the relational expression in which the limit VDA bending angle was defined by the function of the plate thickness and the maximum principal strain of the outermost surface layer of the bending, which was defined by using the finite element method. The second step of calculating the limit VDA bending angle of the steel material by inputting the maximum principal strain of the outermost surface layer of the bending of the steel material, and
    A bending angle prediction method characterized by being provided with.
  2.  前記第1ステップは、材料特性から曲げ外側最表層の最大主ひずみが一意に定まる関係に基づいて、前記鋼材の材料特性に対応する前記鋼材の曲げ外側最表層の最大主ひずみを取得することを特徴とする請求項1に記載の曲げ角度予測方法。 The first step is to obtain the maximum principal strain of the bent outermost surface layer of the steel material corresponding to the material characteristics of the steel material based on the relationship in which the maximum principal strain of the bent outermost surface layer is uniquely determined from the material properties. The bending angle prediction method according to claim 1, wherein the bending angle is predicted.
  3.  前記関係式は、限界VDA曲げ角度をθとして、
     θ=exp{(εb-b)/a}
     εb:曲げ外側最表層の最大主ひずみ
     a:板厚tの関係式
     b:板厚tの関係式
     により表されることを特徴とする請求項1又は2に記載の曲げ角度予測方法。
    In the above relational expression, the limit VDA bending angle is θ.
    θ = exp {(ε b −b) / a}
    ε b : The bending angle prediction method according to claim 1 or 2, wherein a: the maximum principal strain of the outermost surface layer of bending a: the relational expression of the plate thickness t b: the relational expression of the plate thickness t.
  4.  前記鋼材の板厚は、予変形を受けた後の値であることを特徴とする請求項1~3のいずれか1項に記載の曲げ角度予測方法。 The bending angle prediction method according to any one of claims 1 to 3, wherein the plate thickness of the steel material is a value after undergoing pre-deformation.
  5.  前記鋼材は、980MPa級以上の鋼種の鋼板であることを特徴とする請求項1~4のいずれか1項に記載の曲げ角度予測方法。 The bending angle prediction method according to any one of claims 1 to 4, wherein the steel material is a steel plate of a steel type of 980 MPa class or higher.
  6.  曲げ角度の予測対象である鋼材の材料特性により、前記鋼材の曲げ外側最表層の最大主ひずみを取得する取得部と、
     有限要素法を用いて既定されている、限界VDA曲げ角度を板厚及び曲げ外側最表層の最大主ひずみの関数で規定した関係式に、前記鋼材の板厚及び前記第1ステップで取得された前記鋼材の前記曲げ外側最表層の最大主ひずみを入力して、前記鋼材の限界VDA曲げ角度を算出する算出部と、
     を備えたことを特徴とする曲げ角度予測装置。
    An acquisition unit that acquires the maximum principal strain of the outermost surface layer of the steel material based on the material properties of the steel material for which the bending angle is predicted, and the acquisition unit.
    The plate thickness of the steel material and the plate thickness of the first step were obtained by the relational expression in which the limit VDA bending angle was defined by the function of the plate thickness and the maximum principal strain of the outermost surface layer of the bending, which was defined by using the finite element method. A calculation unit that inputs the maximum principal strain of the outermost surface layer of the steel material and calculates the limit VDA bending angle of the steel material.
    Bending angle prediction device characterized by being equipped with.
  7.  前記取得部は、材料特性から曲げ外側最表層の最大主ひずみが一意に定まる関係に基づいて、前記鋼材の材料特性に対応する前記鋼材の曲げ外側最表層の最大主ひずみを取得することを特徴とする請求項6に記載の曲げ角度予測装置。 The acquisition unit is characterized by acquiring the maximum principal strain of the bent outermost surface layer of the steel material corresponding to the material characteristics of the steel material based on the relationship in which the maximum principal strain of the bent outermost surface layer is uniquely determined from the material characteristics. The bending angle prediction device according to claim 6.
  8.  前記関係式は、限界VDA曲げ角度をθとして、
     θ=exp{(εb-b)/a}
     εb:曲げ外側最表層の最大主ひずみ
     a:板厚tの関係式
     b:板厚tの関係式
     により表されることを特徴とする請求項6又は7に記載の曲げ角度予測装置。
    In the above relational expression, the limit VDA bending angle is θ.
    θ = exp {(ε b −b) / a}
    ε b : The bending angle predicting apparatus according to claim 6 or 7, wherein the maximum principal strain of the outermost surface layer of bending a: the relational expression of the plate thickness t b: the relational expression of the plate thickness t.
  9.  前記鋼材の板厚は、予変形を受けた後の値であることを特徴とする請求項6~8のいずれか1項に記載の曲げ角度予測装置。 The bending angle predictor according to any one of claims 6 to 8, wherein the plate thickness of the steel material is a value after undergoing pre-deformation.
  10.  前記鋼材は、980MPa級以上の鋼種の鋼板であることを特徴とする請求項6~9のいずれか1項に記載の曲げ角度予測装置。 The bending angle predictor according to any one of claims 6 to 9, wherein the steel material is a steel plate of a steel type of 980 MPa class or higher.
  11.  曲げ角度の予測対象である鋼材の材料特性により、前記鋼材の曲げ外側最表層の最大主ひずみを取得する第1ステップと、
     有限要素法を用いて既定されている、限界VDA曲げ角度を板厚及び曲げ外側最表層の最大主ひずみの関数で規定した関係式に、前記鋼材の板厚及び前記第1ステップで取得された前記鋼材の前記曲げ外側最表層の最大主ひずみを入力して、前記鋼材の限界VDA曲げ角度を算出する第2ステップと、
     をコンピュータに実行させる角度予測プログラム。
    The first step of obtaining the maximum principal strain of the outermost surface layer of the steel material based on the material properties of the steel material for which the bending angle is predicted, and
    The thickness of the steel material and the thickness of the steel material and the first step were obtained by the relational expression in which the limit VDA bending angle was defined by the function of the plate thickness and the maximum principal strain of the outermost surface layer of the bending, which was defined by using the finite element method. The second step of calculating the limit VDA bending angle of the steel material by inputting the maximum principal strain of the outermost surface layer of the bending of the steel material, and
    An angle prediction program that lets your computer run.
  12.  前記第1ステップは、材料特性から曲げ外側最表層の最大主ひずみが一意に定まる関係に基づいて、前記鋼材の材料特性に対応する前記鋼材の曲げ外側最表層の最大主ひずみを取得することを特徴とする請求項11に記載の曲げ角度予測プログラム。 The first step is to obtain the maximum principal strain of the bent outermost surface layer of the steel material corresponding to the material characteristics of the steel material based on the relationship in which the maximum principal strain of the bent outermost surface layer is uniquely determined from the material properties. The bending angle prediction program according to claim 11.
  13.  前記関係式は、限界VDA曲げ角度をθとして、
     θ=exp{(εb-b)/a}
     εb:曲げ外側最表層の最大主ひずみ
     a:板厚tの関係式
     b:板厚tの関係式
     により表されることを特徴とする請求項11又は12に記載の曲げ角度予測プログラム。
    In the above relational expression, the limit VDA bending angle is θ.
    θ = exp {(ε b −b) / a}
    ε b : The bending angle prediction program according to claim 11 or 12, wherein a: the maximum principal strain of the outermost surface layer of bending a: the relational expression of the plate thickness t b: the relational expression of the plate thickness t.
  14.  前記鋼材の板厚は、予変形を受けた後の値であることを特徴とする請求項11~13のいずれか1項に記載の曲げ角度予測プログラム。 The bending angle prediction program according to any one of claims 11 to 13, wherein the plate thickness of the steel material is a value after undergoing pre-deformation.
  15.  前記鋼材は、980MPa級以上の鋼種の鋼板であることを特徴とする請求項11~14のいずれか1項に記載の曲げ角度予測プログラム。 The bending angle prediction program according to any one of claims 11 to 14, wherein the steel material is a steel plate of a steel type of 980 MPa class or higher.
  16.  請求項11~15のいずれか1項に記載の角度予測プログラムを記録したことを特徴とするコンピュータ読み取り可能な記録媒体。
     
    A computer-readable recording medium comprising recording the angle prediction program according to any one of claims 11 to 15.
PCT/JP2020/014990 2019-04-01 2020-04-01 Bending angle prediction method, bending angle prediction device, program, and recording medium WO2020204060A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021512167A JP7243816B2 (en) 2019-04-01 2020-04-01 Bending angle prediction method, bending angle prediction device, program and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-069768 2019-04-01
JP2019069768 2019-04-01

Publications (1)

Publication Number Publication Date
WO2020204060A1 true WO2020204060A1 (en) 2020-10-08

Family

ID=72667857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014990 WO2020204060A1 (en) 2019-04-01 2020-04-01 Bending angle prediction method, bending angle prediction device, program, and recording medium

Country Status (2)

Country Link
JP (1) JP7243816B2 (en)
WO (1) WO2020204060A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112685932A (en) * 2020-12-24 2021-04-20 深圳市信维通信股份有限公司 FCCL bending fatigue stress prediction method based on thickness of covering film
CN113790977A (en) * 2021-08-10 2021-12-14 武汉钢铁有限公司 Method for measuring ultimate bending fracture strain of metal plate
CN114061533A (en) * 2021-10-26 2022-02-18 中国第一汽车股份有限公司 Three-coordinate measuring method, system, terminal and storage medium for pre-deformation amount of vehicle door

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003320421A (en) * 2002-04-26 2003-11-11 Dai Ichi High Frequency Co Ltd Method and device for bending metal wire material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190212236A1 (en) * 2016-10-05 2019-07-11 Nippon Steel & Sumitomo Metal Corporation Fracture determination device, fracture determination program, and method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003320421A (en) * 2002-04-26 2003-11-11 Dai Ichi High Frequency Co Ltd Method and device for bending metal wire material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEONG K, OMER K, BUTCHER C, GEORGE R, DYKEMAN J: "Evaluation of the VDA 238-100 Tight Radius Bending Test using Digital Image Correlation Strain Measurement", JOURNAL OF PHYSICS: CONFERENCE SERIES, vol. 896, no. 012075, 1 September 2017 (2017-09-01), pages 1 - 8, XP055745997 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112685932A (en) * 2020-12-24 2021-04-20 深圳市信维通信股份有限公司 FCCL bending fatigue stress prediction method based on thickness of covering film
CN112685932B (en) * 2020-12-24 2023-02-10 深圳市信维通信股份有限公司 FCCL bending fatigue stress prediction method based on thickness of covering film
CN113790977A (en) * 2021-08-10 2021-12-14 武汉钢铁有限公司 Method for measuring ultimate bending fracture strain of metal plate
CN114061533A (en) * 2021-10-26 2022-02-18 中国第一汽车股份有限公司 Three-coordinate measuring method, system, terminal and storage medium for pre-deformation amount of vehicle door
CN114061533B (en) * 2021-10-26 2024-03-15 中国第一汽车股份有限公司 Three-coordinate measuring method, system, terminal and storage medium for pre-deformation of vehicle door

Also Published As

Publication number Publication date
JP7243816B2 (en) 2023-03-22
JPWO2020204060A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
WO2020204060A1 (en) Bending angle prediction method, bending angle prediction device, program, and recording medium
Livatyali et al. Prediction and elimination of springback in straight flanging using computer aided design methods: Part 1. Experimental investigations
JP5445381B2 (en) Method and apparatus for predicting bending fracture of material, program, and recording medium
JP6229718B2 (en) Method for determining bending fracture of metal plate, program, and storage medium
Pereira et al. Sliding distance, contact pressure and wear in sheet metal stamping
Verma et al. Effect of normal anisotropy on springback
WO2007088935A1 (en) Breaking prediction method
Wang et al. Springback control of sheet metal air bending process
Rosa et al. External inversion of thin-walled tubes using a die: experimental and theoretical investigation
JP4621216B2 (en) Fracture limit acquisition method and apparatus, program, and recording medium
JP4621217B2 (en) Fracture prediction method and apparatus, program, and recording medium
Leu et al. Springback prediction of the vee bending process for high-strength steel sheets
Abbasi et al. New attempt to wrinkling behavior analysis of tailor welded blanks during the deep drawing process
Buranathiti et al. An effective analytical model for springback prediction in straight flanging processes
JP5098901B2 (en) Calculation method of material property parameters
JP6897413B2 (en) Formability evaluation method, program and recording medium
WO2016186135A1 (en) Breakage prediction method, program, recording medium, and arithmetic processing device
Zhang et al. An analytical model for predicting sheet springback after V-bending
Luyen et al. Investigating the impact of yield criteria and process parameters on fracture height of cylindrical cups in the deep drawing process of SPCC sheet steel
JP7004126B1 (en) Delayed rupture characterization method and program
Panthi et al. Semi analytical modeling of springback in arc bending and effect of forming load
WO2020204059A1 (en) Steel material fracture prediction method, fracture prediction device, program, and recording medium
JP6350498B2 (en) Press wrinkle generation judgment method
JP4109495B2 (en) Material data identification method, formability prediction evaluation system, program, and recording medium
Du et al. Springback prediction in sheet forming simulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021512167

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20783059

Country of ref document: EP

Kind code of ref document: A1