WO2020204046A1 - Device for producing sodium hypochlorite diluted solution - Google Patents

Device for producing sodium hypochlorite diluted solution Download PDF

Info

Publication number
WO2020204046A1
WO2020204046A1 PCT/JP2020/014912 JP2020014912W WO2020204046A1 WO 2020204046 A1 WO2020204046 A1 WO 2020204046A1 JP 2020014912 W JP2020014912 W JP 2020014912W WO 2020204046 A1 WO2020204046 A1 WO 2020204046A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium hypochlorite
chamber
container
solution
valve
Prior art date
Application number
PCT/JP2020/014912
Other languages
French (fr)
Japanese (ja)
Inventor
広人 甲田
安廣 甲田
Original Assignee
有限会社エー・ジー・アイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社エー・ジー・アイ filed Critical 有限会社エー・ジー・アイ
Priority to JP2020556829A priority Critical patent/JP6872832B2/en
Publication of WO2020204046A1 publication Critical patent/WO2020204046A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/02Feed or outlet devices; Feed or outlet control devices for feeding measured, i.e. prescribed quantities of reagents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/04Hypochlorous acid
    • C01B11/06Hypochlorites
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens

Definitions

  • the present invention relates to a generator for a sodium hypochlorite diluent. More specifically, the present invention relates to a device for producing a diluted sodium hypochlorite solution, which is effective for sterilization, sterilization, infection prevention, deodorization, cleaning, cleaning, deodorization and the like.
  • Non-Patent Document 1 Sodium hypochlorite diluted solution is used in food factories, kitchens, hospitals, welfare facilities for the elderly, nursery schools, etc. as an effective treatment solution for sterilization, sterilization, infection prevention, deodorization, cleaning, cleaning, deodorization, etc.
  • Non-Patent Document 1 Sodium hypochlorite diluted solution is used in food factories, kitchens, hospitals, welfare facilities for the elderly, nursery schools, etc. as an effective treatment solution for sterilization, sterilization, infection prevention, deodorization, cleaning, cleaning, deodorization, etc.
  • Non-Patent Document 1 Sodium hypochlorite diluted solution is used in food factories, kitchens, hospitals, welfare facilities for the elderly, nursery schools, etc.
  • Non-Patent Document 1 Sodium hypochlorite diluted solution is used in food factories, kitchens, hospitals, welfare facilities for the elderly, nursery schools, etc.
  • Non-Patent Document 1 Sodium hypochlorite diluted solution is used in food factories, kitchens, hospitals, welfare facilities for the
  • the sodium hypochlorite diluent inactivates norovirus substitute cat calicivirus, influenza virus, herpesvirus, adenovirus, coxsackie virus, parvovirus, etc. in a few seconds to a few minutes, and inactivates yellow staphylococcus, glaucoma, salmonella, vibrio, etc. It is described that not only Candida and tuberculosis but also disinfectant alcohol, spores of Defisile and spores for which heating is ineffective can be killed in a short time.
  • MRSA methicillin-resistant Staphylococcus aureus
  • MDRP multidrug-resistant Pseudomonas aeruginosa
  • VRE vancomycin-resistant enterococci
  • Sodium hypochlorite is a sodium salt (NaClO) of hypochlorous acid, and its aqueous solution is usually commercially available at concentrations of 12%, 10%, and 6%, and is suitable depending on the application. It is diluted and used.
  • the concentration of sodium hypochlorite is generally about 0.8 ppm for sterilizing water (drinking water, pool, wastewater), and for sterilizing tableware, raw vegetables and fruits. It seems that it is about 100 ppm, about 600 ppm for sterilization of bathrooms, bathtubs, toilet bowls, etc., and about 600 to 2000 ppm for stain removal and bleaching.
  • the diluted solution of sodium hypochlorite is a commercially available water-soluble solution having the above concentration, which is manually diluted at the work site.
  • a commercially available solution having a relatively high concentration it has a strong sterilizing effect, so care must be taken in preparing diluted water.
  • some techniques such as Patent Documents 1 and 2 have been proposed.
  • Patent Document 1 proposes a sterilizing diluted water manufacturing device that solves the problem that a stock solution of a chlorine-based aqueous solution or an acid aqueous solution easily flows out into water in a mixer when the sterilizing water manufacturing device is stopped. Has been done.
  • the technology is provided in a water flow path, a stock solution reservoir that stores an undiluted solution of an acid aqueous solution or a chlorine-based aqueous solution, and keeps the liquid level of the stored undiluted solution at a predetermined height, and a water flow path.
  • Patent Document 2 proposes a sterilizing water production device that prevents the possibility of leakage of these aqueous solutions even if the acid aqueous solution container or the chlorine-based aqueous solution container falls, and makes the device compact.
  • a sterilizing water production device that produces sterilizing water by mixing an acid aqueous solution and a chlorine-based aqueous solution into water, the acid aqueous solution is sucked from the acid aqueous solution container by the negative pressure generated by using the water flow and turned into water.
  • It has an acid aqueous solution mixer to be mixed and a chlorine-based aqueous solution mixer that sucks the chlorine-based aqueous solution from the chlorine-based aqueous solution container by a negative pressure generated by using a water stream and mixes it into water.
  • It is a sterilizing water production device that produces sterilized water by mixing the aqueous solution mixed with the chlorine-based aqueous solution, and the acid aqueous solution or the chlorine-based aqueous solution is sucked into the acid aqueous solution container and the chlorine-based aqueous solution container by negative pressure. It is said that the necessary air can be taken in from the outside, but the aqueous solution is sealed by a lid equipped with a check valve to prevent the outflow of the aqueous solution from the inside.
  • the sodium hypochlorite diluted solution is prepared by diluting the commercially available solution, but by hand, the commercially available solution adheres to the skin and clothes during the work. Therefore, a dedicated diluting device is commercially available. However, the dedicated diluting device is large and expensive, and multiple units cannot be installed. If a sodium hypochlorite diluent generator can be installed at each station in a welfare facility or hospital, caregivers and nurses can easily and quickly prepare the diluent and immediately go to the patient for treatment. it can.
  • the present invention solves the above-mentioned problems, and an object of the present invention is to easily obtain a diluted sodium hypochlorite solution effective for sterilization, sterilization, infection prevention, deodorization, cleaning, cleaning, deodorization, etc.
  • An object of the present invention is to provide a sodium hypochlorite diluent generator that can be rapidly produced, and has achieved miniaturization and cost reduction.
  • the sodium hypochlorite diluent generation device is provided above the site where the container for generating the diluent is installed, and has a storage chamber for charging and accommodating the sodium hypochlorite solution.
  • a sub-containment chamber attached to the bottom of the containment chamber and accommodating the sodium hypochlorite solution by spontaneous flow, and a first on-off valve for a predetermined amount of the sodium hypochlorite solution from the sub-accommodation chamber. It is characterized by having a quantification chamber for flowing out and accommodating the quantification chamber, and an injection portion for injecting the predetermined amount of sodium hypochlorite solution from the quantification chamber into the container by flowing down by a second on-off valve. ..
  • the sodium hypochlorite solution contained in the storage chamber is flowed into the metering chamber by the first on-off valve via the sub-containment chamber, and then injected into the container by the second on-off valve.
  • It can be controlled only by the on-off valve without using a pump or the like as in the conventional case.
  • the sodium hypochlorite solution is stored in the storage chamber in advance, the sodium hypochlorite diluted solution can be easily and quickly produced only by operating the on-off valve such as the solenoid valve.
  • the sodium hypochlorite solution is accommodated in the sub-accommodation chamber even if the sodium hypochlorite solution in the accommodation chamber is emptied.
  • the sodium hypochlorite diluted solution can be produced without any problem until the storage chamber is replenished with the sodium hypochlorite solution.
  • the present invention is a mechanism in which the liquid naturally flows down by opening and closing the valve without using a pump, it is a low-cost and safe diluent generator.
  • the first on-off valve and the second on-off valve are solenoid valves, and when the first on-off valve opens, the second on-off valve closes.
  • the first on-off valve closes and the second on-off valve opens to open the hypochlorous acid.
  • a predetermined amount of the sodium solution is injected into the container.
  • the sub-containment chamber is provided at a position adjacent to the quantification chamber, and the inflow from the outflow portion at the bottom of the sub-containment chamber to the bottom of the quantification chamber.
  • a pipe into which the sodium hypochlorite liquid flows is provided in the portion, and the first on-off valve is provided in the middle of the pipe.
  • the sub-accommodation chamber is formed by connecting an upper member and a lower member, and the upper portion of the upper member is provided with a mounting portion to be attached to the bottom of the accommodating chamber.
  • the lower portion of the upper member is provided with a connecting portion that is fitted into the inner peripheral surface of the lower member without a gap.
  • the containment chamber has a third on-off valve for making the pressure in the containment chamber the same as the atmospheric pressure.
  • the third on-off valve is opened to open the containment chamber (sub-accommodation). It is possible to facilitate the natural flow of the sodium hypochlorite solution (including the chamber). Furthermore, since the third on-off valve is closed except when flowing out to the metering chamber, the sodium hypochlorite solution volatilizes or volatilizes from the containment chamber and the sub-containment chamber in which the sodium hypochlorite solution is contained. It is possible to prevent evaporation and prevent the emission of the odor of the sodium hypochlorite solution.
  • the containment chamber and the sub-containment chamber can be sealed, so that the device may tip over by any chance. Even if there is, the sodium hypochlorite solution does not leak from the containment chamber or sub-containment chamber.
  • the pressure in the quantification chamber is atmospheric pressure. Will be the same as.
  • a predetermined amount of sodium hypochlorite solution contained in the metering chamber can be easily injected into the container. Since the sodium hypochlorite solution does not remain in the quantification chamber after injection into the container, the problem of volatilization and odor of the sodium hypochlorite solution is small.
  • an open pipe that keeps the atmospheric pressure at all times may be provided, or a fourth on-off valve that opens at the same time as the second on-off valve opens may be provided.
  • the injection unit has an injection nozzle for injecting the sodium hypochlorite solution into the container, and the injection nozzle is previously provided in the container. It is designed to be long enough to fit into the water contained in the container.
  • the injection unit since the injection unit has an injection nozzle designed to have a length that allows it to enter water that has been previously placed in the container, the sodium hypochlorite solution remains at the tip of the injection nozzle. No, only the sodium hypochlorite diluent remaining diluted with water remains. As a result, the liquid that may drip from the tip of the injection nozzle is a diluted liquid having a low concentration, so that even if it comes into contact with the liquid, there is no significant effect.
  • the quantification chamber includes a first liquid level sensor that detects the sodium hypochlorite solution that has reached the predetermined amount, and the next of the predetermined amount. It is equipped with a second liquid level sensor that detects that the sodium hypochlorite liquid has been poured into the container.
  • the first on-off valve when a predetermined amount is detected by the first liquid level sensor, the first on-off valve is closed and the second on-off valve is opened. Therefore, a sodium hypochlorite diluted solution diluted to a predetermined concentration is always used. Can be generated. Further, since the second liquid level sensor detects that a predetermined amount of the sodium hypochlorite liquid has been poured into the container, the sodium hypochlorite liquid in the metering chamber can be discharged without waste. ..
  • an acidic solution for adjusting the pH of the sodium hypochlorite diluent produced in the container is accommodated by being attached to the mouth of the container. It is equipped with an acid storage cap.
  • the pH of the sodium hypochlorite diluted solution produced in the container can be adjusted by the acid containing cap containing the acidic solution.
  • the quantification chamber has a flow nozzle for flowing the sodium hypochlorite solution from the quantification chamber toward the container, and the flow nozzle is provided.
  • a predetermined amount of sodium hypochlorite solution to be stored in the metering chamber is detected by a liquid level sensor or the like, but other than that, fine adjustment can be made by such a flow nozzle.
  • the storage chamber and the metering chamber are connected by the pipe without providing the sub storage chamber, and the first on-off valve is in the middle of the pipe. It may be provided in.
  • the sodium hypochlorite solution contained in the storage chamber can be discharged to the metering chamber by the first on-off valve and then injected into the container by the second on-off valve.
  • a diluted sodium hypochlorite solution effective for sterilization, sterilization, infection prevention, deodorization, cleaning, cleaning, deodorization, etc. can be easily and quickly produced, resulting in miniaturization and cost reduction. It is possible to provide a realized device for generating a sodium hypochlorite diluent.
  • FIG. 1 It is a perspective view which shows an example of the generator of the sodium hypochlorite diluted solution which concerns on this invention. It is an example of the front view (A) and the sectional view (B) of BB shown in FIG. It is an example of the left side view (B) and the cross-sectional view (A) of AA of the generator shown in FIG. It is explanatory drawing of an example of the internal structure on the upper side of the generator shown in FIG. It is explanatory drawing which shows an example of the structural form of a quantification chamber. It is a flow figure explaining the operation process of the generator of the sodium hypochlorite diluent which concerns on this invention. It is explanatory drawing which shows an example of the structural form of the acid containing cap.
  • the generator 1 (hereinafter referred to as “generation device 1”) of the sodium hypochlorite diluent (hereinafter referred to as “diluted solution”) according to the present invention is diluted as shown in FIGS. 1 to 4 and 9.
  • a storage chamber 39 provided above the site where the liquid generation container 5 is installed to charge and store the sodium hypochlorite liquid 60, and a storage chamber 39 attached to the bottom of the storage chamber 39 to store the sodium hypochlorite liquid 60.
  • the quantification chamber 56 in which a predetermined amount of the sodium hypochlorite solution 60 is discharged from the sub-accommodation chamber 80 by the first on-off valve 53, and the quantification chamber 56 is accommodated. It has an injection unit 45 in which a predetermined amount of sodium hypochlorite solution 60 is naturally flowed down by a second on-off valve 54 and injected into the container 5.
  • the sodium hypochlorite solution 60 stored in the storage chamber 39 is flowed into the metering chamber 56 by the first on-off valve 53 via the sub-containment chamber 80, and then by the second on-off valve 54. Since it is injected into the container 5, it can be controlled only by the first and second on-off valves 53 and 54 without using a pump or the like as in the conventional case. As a result, it is possible to realize miniaturization and cost reduction of the device. Further, if the sodium hypochlorite solution 60 is stored in the storage chamber 39 in advance, sterilization, sterilization, infection prevention, deodorization, cleaning, cleaning, etc. can be performed simply by operating the on-off valves 53 and 54 such as the solenoid valve.
  • a diluted solution effective for deodorizing and the like can be repeatedly and easily and quickly generated.
  • the sodium hypochlorite solution 60 is accommodated in the sub-accommodation chamber 81 even if the sodium hypochlorite solution 60 in the accommodation room is emptied. ..
  • the sodium hypochlorite diluted solution can be produced without any problem until the storage chamber 39 is replenished with the sodium hypochlorite solution 60.
  • the storage chamber 39 and the metering chamber 56 are connected by a pipe 58 without providing the sub storage chamber 80, so that the first on-off valve 53 is provided in the middle of the pipe 58. You may.
  • the generation device 1 is composed of a bottom portion 2, a main body portion 3, and an upper portion 4.
  • the bottom portion 2 is a portion on which the container 5 is placed, and a tray 21 on which the container 5 can be placed is provided.
  • the tray 21 may not be provided.
  • the main body 3 is provided with 31 on the right side surface and the left side surface. Inside the main body 3, a circuit plate 38 for driving and controlling the first to third on-off valves (solenoid valves), a liquid level sensor, etc., wirings (not shown), and a connector (not shown) are provided.
  • the main body 3 is provided with a power supply 37 such as an AC adapter and a battery, if necessary.
  • the upper part 4 is provided with main members of the generation device 1 according to the present invention, such as a storage chamber 39, a sub storage chamber 80, a metering chamber 56, and an operation panel 44.
  • the materials of the bottom portion 2, the main body portion 3, and the upper portion 4 are not particularly limited, but are preferably formed of a material having excellent corrosion resistance, and examples of such a material include stainless steel and a high-strength resin material. Can be done.
  • the container 5 mounted on the generator 1 is not particularly limited, but is preferably a so-called PET bottle or a similar container as shown in FIG. Such containers such as PET bottles are preferably used because they are easy to put in and the cost is low.
  • the container 5 is preferably colorless and transparent or colored transparent, and in the example of FIG. 8, a colorless and transparent PET bottle is used as the container 5.
  • the capacity of the container 5 is not particularly limited, but a container 5 such as 1000 mL or 500 mL is preferable because of its versatility.
  • a predetermined amount of water is put in the container 5.
  • Water can be used properly according to the purpose, such as tap water or pure water.
  • the amount of water can be adjusted by putting a line in the container 5 and putting water up to the line.
  • the amount of water when 1000 mL of 200 ppm diluted water is produced using the 6% sodium hypochlorite solution 60, 4 mL of the 6% sodium hypochlorite solution may be injected. Therefore, a container 5 containing approximately 1000 mL of water in a 1000 mL PET bottle may be set in the tray 21 of the generator 1.
  • the container 5 containing a little less than 1000 mL (about 980 mL) of water in a 1000 mL PET bottle may be set in the tray 21 of the generator 1.
  • the container sensor 35 can detect the presence of the container 5 (including water) with an optical sensor from the sensor window 32 provided in the main body 3.
  • the type of the container sensor 35 is not particularly limited.
  • the container sensor 35 detects the presence of the container 5 containing water. On the premise of this detection, each on-off valve is opened and closed. That is, if the container sensor 35 does not detect the container 5, the on-off valve of the generator 1 does not operate. By doing so, the sodium hypochlorite solution 60 is not discharged from the injection unit 45 without the presence of the container. Further, even when the container 5 does not contain water, the container sensor 35 does not detect the presence of the container 5.
  • the tray 21 is not an essential member, as shown in FIG. 1 and the like, the tray 21 is preferably provided on the bottom 2 as a member for installing the container 5 for generating the diluent.
  • the shape of the tray 21 is not particularly limited and may be in various forms, but as shown in FIGS. 2A and 3A, it is preferable that the tray 21 has a dish shape with a concave center. It is preferable that the tray 21 is provided with a slit plate 22 in which a slit is formed.
  • the slit plate 22 is a member that functions so that even if the sodium hypochlorite solution 60 or the produced diluent overflows, it can pass through the slit and be stored in the tray 21.
  • the shape of the slit plate 22 is not particularly limited, but in the example of FIG. 1, slits are formed radially from the central hole 23. Since the slit plate 22 is arranged on the tray 21, the central hole 23 and the corner hole 24 are not particularly limited, but the holes are large enough to be picked up by fingers so that the slit plate 22 can be picked up. It is preferable to have.
  • the storage chamber 39 is a member for charging and storing the sodium hypochlorite solution 60, is arranged in the upper portion 4 of the generation device 1, and is provided above the portion (preferably the tray 21) in which the container 5 is installed. There is.
  • the capacity of the storage chamber 39 is not particularly limited, but as an example, it is preferable that the standard capacity of the sodium hypochlorite solution 60 is a capacity that can accommodate 500 mL or 600 mL that are widely available on the market at one time.
  • the upper limit of such capacity is a capacity that allows a little margin even if all 500 mL or 600 mL of sodium hypochlorite solution 60 is added, and the lower limit is about 200 mL from the viewpoint of realizing miniaturization of the storage chamber 39. It can, but is not limited to these.
  • the storage chamber 39 has a charging port 40, and the sodium hypochlorite solution 60 is charged from the charging port 40.
  • the slot 40 appears when the knob 34 is pinched by hand and the upper lid 33 is opened. It is preferable that the input port 40 is tightly closed by screwing the male screw port 41a and the female screw cap 41b. By doing so, it is possible to prevent volatilization of the sodium hypochlorite solution 60 and emission of odor.
  • the accommodation chamber 39 may be provided with a liquid level gauge accommodating unit 51 and a liquid level gauge observation unit 52.
  • a float type liquid level gauge as shown in FIG. 4 is provided in the liquid level gauge accommodating portion 51.
  • the liquid level gauge observation unit 52 is provided with a float type liquid level gauge as shown in FIG.
  • the liquid level can be confirmed at the position of a bar extending from the upper portion thereof.
  • Any means other than the liquid level gauge storage unit 51 and the liquid level gauge observation unit 52 may be used as long as the amount of the sodium hypochlorite liquid 60 in the storage chamber 39 can be measured or observed.
  • the sub-containment chamber 80 is also called a sub-tank, and as shown in FIGS. 9 and 10, a tank attached to the bottom of the accommodation chamber 39 and in which the sodium hypochlorite solution 60 naturally flows down from the accommodation chamber 39 and is accommodated. Is.
  • the sub-accommodation chamber 80 is connected to the metering chamber 56 by a pipe 58, and a predetermined amount of the sodium hypochlorite solution 60 flows out to the metering chamber 56 by a first on-off valve 53 provided in the middle of the pipe 58. ..
  • the sodium hypochlorite solution 60 is accommodated in the sub-accommodation chamber 81 even if the sodium hypochlorite solution 60 in the accommodation chamber is emptied. ing.
  • the air is caught in a narrow outflow path and the hypochlorous acid is transferred from the storage chamber 39 to the quantitative chamber 56.
  • the sodium hypochlorite diluted solution can be produced without causing problems such as the sodium solution 60 not easily flowing out.
  • the sub-containment chamber 80 is provided at a position adjacent to the metering chamber 56.
  • the size of the sub-containment chamber 80 is not particularly limited, but even if the sodium hypochlorite solution 60 in the containment chamber 39 is emptied and the replenishment instruction displayed on the operation panel is overlooked, the quantitative chamber is to some extent. Any size may be sufficient as long as the amount that can be supplied to 56 can be secured. As an example, for example, a container of about 10 mL may be used.
  • the "adjacent position" is preferably provided directly beside the pipe 58 and the first on-off valve 53 sandwiched between them.
  • the sub-containment chamber 80 is provided at the bottom of the accommodation chamber 39, and the "bottom” means the bottom surface or the bottom of the side surface of the accommodation chamber 39.
  • the sub-containment chamber 80 can be easily attached to the bottom surface of the accommodation chamber 39, but may be attached to the lowermost part of the side surface of the accommodation chamber 39 if the difficulty of attachment is not considered.
  • An outflow portion 83 (see FIG. 10) and an outflow nozzle 82 are provided at the bottom of the sub storage chamber 80.
  • the first on-off valve 53 is provided in the middle of the pipe 58.
  • the sub-containment chamber 80 is attached to the accommodation chamber 39.
  • the means for that purpose is various and not particularly limited, but it is preferable that the upper portion of the sub-accommodation chamber 80 is provided with a mounting portion (mounting screw portion) 84 and a flange portion 85 to be attached to the bottom of the accommodating chamber 39.
  • the male screw type mounting screw portion 84 of the sub storage chamber 80 can be attached.
  • the sub-accommodation chamber 80 may be an integrated type as shown in FIG. 9, or may be a separable assembly type as shown in FIG. 10A and 10B are explanatory views showing an example of the structure of the sub-accommodation chamber 80 composed of two members (upper member 80a and lower member 80b), (A) is an overall view, and (B) is an upper member. It is a form of each of the 80a and the lower member 80b.
  • the form of the sub-containment chamber 80 in FIG. 10 is an example, and is not limited to this form.
  • the sub-accommodation chamber 80 of FIG. 10 is formed by connecting the upper member 80a and the lower member 80b.
  • the upper portion of the upper member 80a includes a mounting portion (mounting screw portion) 84 and a flange portion 85 to be attached to the bottom of the accommodating chamber 39.
  • mounting screw portion mounting screw portion
  • flange portion 85 to be attached to the bottom of the accommodating chamber 39.
  • the lower part of the upper member 80a is provided with a connecting portion 86 that is fitted into the inner peripheral surface of the lower member 80b without any gap.
  • the connecting portion 86 includes two O-rings 87 and is in close contact with the inner peripheral surface of the lower member 80b. Due to this close contact, the split type sub-accommodation chamber 80 can also have a closed structure.
  • the first on-off valve 53 is provided in the middle of the pipe 58 connecting the sub-accommodation chamber 80 and the metering chamber 56.
  • the first on-off valve 53 is an on-off valve for letting out or stopping the outflow of the sodium hypochlorite solution 60 from the sub-accommodation chamber 80 or the accommodation chamber 39.
  • a solenoid valve is adopted.
  • the second on-off valve 54 When the first on-off valve 53 is opened and the sodium hypochlorite solution 60 flows out of the accommodation chamber 39 (FIG. 4) or the sub-accommodation chamber 80 (FIG. 9), the second on-off valve 54, which will be described later, remains closed. By doing so, the outflowed sodium hypochlorite solution 60 enters the quantification chamber 56 without being injected into the container. As will be described later, when a predetermined amount of sodium hypochlorite solution 60 is contained in the metering chamber 56, the first on-off valve 53 is closed and the second on-off valve 54 is opened. By operating the on-off valve in this way, a predetermined amount of the sodium hypochlorite solution 60 is injected into the container 5.
  • the fact that the sodium hypochlorite solution 60 flows out (spontaneously outflows) at atmospheric pressure means that the accommodation chamber 39 (including the space consisting of the accommodation chamber 39 and the sub-containment chamber 80. The same applies in this paragraph) is large. It means that it is open to atmospheric pressure. In the example of FIG. 4, such opening can be performed at the air inlet 55a which is opened and closed by the third on-off valve 55 provided in the upper part of the accommodation chamber 39, and the pressure in the accommodation chamber 39 is made the same as the atmospheric pressure. be able to.
  • the third on-off valve 55 is also preferably a solenoid valve.
  • the third on-off valve 55 is opened to bring the inside of the storage chamber 39 to atmospheric pressure and hypochlorous acid.
  • the sodium solution 60 can be easily discharged.
  • the third on-off valve 55 is closed except when it is discharged to the metering chamber 56. By doing so, it is possible to prevent the sodium hypochlorite liquid 60 from volatilizing or evaporating from the storage chamber 39 or the sub-storage chamber 80 in which the sodium hypochlorite liquid 60 is housed in a well-sealed state. it can. As a result, it is possible to prevent the odor of the sodium hypochlorite solution 60 from being emitted.
  • the third on-off valve (solenoid valve) 55 should be closed except when the sodium hypochlorite solution 60 is discharged from the storage chamber 39 (FIG. 4) or the sub-containment chamber 80 (FIG. 9) to the metering chamber 56. Therefore, the storage chamber 39 can be sealed. Therefore, even if the device 1 may tip over, the sodium hypochlorite solution 60 does not leak from the storage chamber 39.
  • the metering chamber 56 is a member that allows a predetermined amount of the sodium hypochlorite solution 60 to flow out (spontaneously outflow) from the sub-containment chamber 80 (containment chamber 39 in FIG. 4) by the first on-off valve 53 in FIG. ..
  • the pressure in the quantification chamber 56 is made the same as the atmospheric pressure. By doing so, a predetermined amount of the sodium hypochlorite solution 60 contained in the quantification chamber 56 can be easily injected into the container 5.
  • the sodium hypochlorite solution 60 does not remain in the quantification chamber 56 after being injected into the container 5, the problem of volatilization and odor of the sodium hypochlorite solution 60 is small.
  • a pipe 57 that always keeps the atmospheric pressure may be provided, or a fourth on-off valve (not shown) that opens at the same time as the second on-off valve 54 opens may be provided. Good.
  • the metering chamber 56 is composed of a transparent pipe 61, a lower flange 62 that holds the transparent pipe 61 from below, and an upper flange 63 that holds the transparent pipe 61 from above.
  • the upper flange 63 is provided with the pipe 57 described above.
  • a nozzle 59 for flowing in the sodium hypochlorite solution 60 is connected to the lower flange 62.
  • the arrow in FIG. 5C shows the flow of the sodium hypochlorite solution 60 flowing out of the sub-containment chamber 80 (containment chamber 39 in FIG. 4) in FIG.
  • the quantification chamber 56 contains first liquid level sensors 66a and 66b for detecting a predetermined amount of sodium hypochlorite solution 60, and a predetermined amount of sodium hypochlorite solution. It is provided with second liquid level sensors 67a and 67b for detecting that 60 has finished pouring into the container 5. By doing so, when a predetermined amount is detected by the first liquid level sensors 66a and 66b, the first on-off valve 53 is closed and the second on-off valve 54 is opened, so that hypochlorous acid always diluted to a predetermined concentration is used. A sodium diluent can be produced.
  • the second liquid level sensors 67a and 67b detect that a predetermined amount of the sodium hypochlorite liquid 60 has been poured into the container 5, the sodium hypochlorite liquid 60 in the quantification chamber 56 is wasted. Can be discharged without.
  • the first liquid level sensors 66a and 66b and the second liquid level sensors 67a and 67b are provided, but other liquid level sensors may be provided.
  • the first liquid level sensors 66a and 66b can detect a predetermined amount of the sodium hypochlorite liquid 60 contained in the metering chamber 56, but in addition to that, as will be described later, FIG. It can be finely adjusted by the structure of the flow nozzle 54a shown in.
  • the quantification chamber 56 has a flow nozzle 54a that allows the sodium hypochlorite solution 60 to flow down from the inside of the quantification chamber 56 toward the container 5.
  • the flow-down nozzle 54a has a flange portion 65 on the metering chamber side.
  • the size of the flange portion 65 can be changed to finely adjust the amount of the sodium hypochlorite solution 60 contained in the metering chamber 56. Specifically, by changing the height of the flange portion 65 shown in FIG. 5, the amount of the sodium hypochlorite solution 60 in the quantification chamber 56 is finely adjusted by the volume of the flange portion 65. Can be done. Therefore, it is preferable to prepare a plurality of types of flange portions 65 having different heights.
  • the injection unit 45 is a member that allows a predetermined amount of sodium hypochlorite solution 60 to flow down (naturally flow down) from the metering chamber 56 by the second on-off valve 54 and inject it into the container 5.
  • the injection unit 45 has an injection nozzle (not shown) for injecting the sodium hypochlorite solution 60 into the container 5.
  • the injection nozzle is designed to have a length that allows it to enter water that has been previously placed in the container 5. By doing so, the sodium hypochlorite solution 60 does not remain at the tip of the injection nozzle, only the diluted solution diluted with water remains.
  • the liquid that may drip from the tip of the injection nozzle is a diluted liquid having a low concentration, so that even if it comes into contact with the liquid, there is no significant effect.
  • the shape of the injection nozzle is not particularly limited, but it may be a pipe having the same diameter or a pipe having a tapered tip.
  • a connection pipe 54b is provided between the injection unit 45 and the second on-off valve 54, if necessary.
  • Diluted water can be obtained by injecting a predetermined amount of sodium hypochlorite solution 60 into the water in the container 5.
  • the pH is about 9.8, and when 1000 ppm of diluted water is used, the pH is about 10.7.
  • the diluted water is alkaline, it can be used as it is, of course, but it can be neutralized by adding an acidic solution to obtain a neutral solution. Neutralization may be carried out by applying the acid containing cap 90 described later.
  • Neutralized diluted water is extremely safe and has high bactericidal activity accompanied by oxidative decomposition. Therefore, it can be used for sterilizing and cleaning wounds, oral care, and air spraying as a countermeasure against airborne infection.
  • the front surface of the upper portion 4 of the generator 1 is composed of an operation panel surface 41, a front surface portion 42, and an inclined portion 43.
  • the operation panel 44 is preferably a liquid crystal display panel, and is embedded in the operation panel surface 41. In such an operation on the operation panel 44, at least the concentration of the diluent is set, but other indications can be performed.
  • Such displays include the presence / absence of the container 5 by the container sensor 35, the display of replenishment of the sodium hypochlorite solution 60 in the storage chamber 39 and the display of the remaining amount, the selection display of the child lock, the display of the piping abnormality, and the power supply.
  • the device can be arbitrarily selected from functions such as abnormality display, battery level display, time display, and information data transmission display. In reality, it is designed in consideration of cost.
  • FIG. 6 is a flow chart illustrating an operation process of the generation device 1. Hereinafter, the flow order will be described. First, turn on the power, set the initial information, and start. Next, the container sensor 35 detects whether or not the container 5 containing water is installed. If a container 5 containing water is installed, set the concentration. In the example of FIG. 6, the concentration of either 200 ppm or 1000 ppm is selected. After selecting the concentration, the first on-off valve (solenoid valve) 53 and the third on-off valve (solenoid valve) 55 are opened, from the sub-containment chamber 80 (containment chamber 39 in FIG. 4) to the metering chamber 56 in FIG. Sodium hypochlorite solution 60 flows in.
  • the first on-off valve (solenoid valve) 53 and the third on-off valve (solenoid valve) 55 are opened, from the sub-containment chamber 80 (containment chamber 39 in FIG. 4) to the metering chamber 56 in FIG.
  • the second on-off valve (solenoid valve) 54 is closed.
  • the first on-off valve 53 is closed and the first on-off valve 53 is closed. 2
  • the on-off valve 54 opens.
  • the second on-off valve 54 is opened, the sodium hypochlorite solution 60 is injected into the container from the metering chamber 56.
  • the second on-off valve 54 is closed when the liquid is no longer detected by the second liquid level sensors 67a and 67b.
  • the third on-off valve 55 is also closed. When the concentration is set to 1000 ppm, this operation is repeated 5 times. In this way, diluted water can be produced.
  • the first liquid level sensors 66a and 66b of the metering chamber 56 cannot detect that the predetermined amount has been reached, for example, a 5-second timeout chemical replenishment message is displayed, the first on-off valve 53 is closed, and then After confirming the replenishment, the first on-off valve 53 is opened again.
  • the second on-off valve 54 opens and the sodium hypochlorite liquid 60 is injected into the container from the metering chamber 56. Will be done.
  • the sodium hypochlorite solution 60 can be injected into the container 5 to generate diluted water, but the obtained diluted water is alkaline as it is.
  • the alkaline diluent is effective for bacteria, sterilization, infection prevention, deodorization, cleaning, cleaning, deodorization, etc., but by neutralizing it to make it neutral, the range of its utilization can be expanded. ..
  • the neutralized diluted water can be sprayed into the atmosphere, and can be used without problems for materials that easily discolor in response to alkali.
  • FIG. 7 is an example of an acid containing cap 90 that houses an acidic solution.
  • the acid containing cap 90 is a member that is attached to the mouth of the container 5 and holds an acidic solution for adjusting the pH of the diluted solution produced in the container 5. With this acid containing cap 90, the pH of the diluent produced in the container 5 can be adjusted.
  • the acid accommodating cap 90 is composed of a body portion 91, an acid accommodating portion 92, and a tip lid portion 93.
  • the body portion 91 is a hollow body portion that penetrates the acid accommodating portion 92, and is in contact with the anti-slip portion 91a, the acid accommodating portion connecting portion 91b, and the tip lid portion. It is composed of a part 91c.
  • the anti-slip portion 91a is a portion processed so as not to slip when held by hand. As shown in FIGS.
  • the acid accommodating portion connecting portion 91b is a male screw portion screwed into a female screw portion (not shown) formed on the inner wall surface of the rotating portion 92a of the acid accommodating portion 92.
  • the tip lid portion contact portion 91c is a portion that contacts the tip lid portion 93 when it is fitted to the tip of the acid accommodating portion 92.
  • the acid accommodating portion 92 is composed of a rotating portion 92a and a tubular portion 92b.
  • the rotating portion 92a has a female screw portion on the inner wall surface thereof, and is screwed into the acid accommodating portion connecting portion 91b of the body portion 91.
  • the tubular portion 92b is a tubular body that penetrates the hollow portion of the body portion 91, and is a portion that houses an acidic solution (for example, a hydrochloric acid solution having a predetermined concentration) inside.
  • the tip lid portion 93 is composed of a lid outer peripheral portion 93a, a lid inner peripheral portion 93b, and a lid fitting portion 93c between the lid outer peripheral portion 93a and the lid inner peripheral portion 93b. As shown in FIGS. 7B and 7C, the tip lid portion 93 has a lid fitting portion 93c fitted to the tip of the acid containing portion 92 so as to seal the acidic solution contained in the acid containing portion 92. Works for.
  • the acid solution is contained in the acid accommodating portion 92 and the tip lid portion 93. Since the inner wall surface of the body portion 91 is provided with a screw portion for screwing and connecting to the mouth portion of the container 5, the acid storage cap 90 is screwed into the mouth portion of the container 5 containing diluted water. To connect. After that, when the acid accommodating portion 92 of the acid accommodating cap 90 is rotated, the rotating portion 92a is separated from the body portion 91, and the tip lid portion 93 is separated from the tip of the acid accommodating portion 92. Due to this detachment, the tip lid portion 93 falls into the container 5, and the acidic solution contained therein is put into the container.
  • the acid storage cap 90 is attached to a container 5 containing a predetermined amount of water, and after the water is acidified in advance, diluted water is generated in the container 5 and the diluted water is filled in. It is preferable to make it sex.
  • the acid containing cap 90 may be attached to the container 5 containing the generated diluted water having a pH of about 9 ⁇ 0.2 to neutralize the alkaline diluted water to acidity.
  • the type and concentration of the acidic solution for neutralization shall depend on the amount of sodium hypochlorite solution 60 contained in the diluted water.
  • Such neutralization with the acid containing cap 90 is controlled because the handling of the acidic solution is safe and easy, no gas is generated, the acid does not come into contact with the hand, and the acid storage management is performed by the acid containing cap 90 itself. It has the advantage of being easy. Further, since the tip lid portion 93 of the neutral diluted water remains in the container 5, it is possible to easily distinguish between the pH-adjusted neutral diluted water and the non-pH-adjusted alkaline diluted water.
  • the sodium hypochlorite diluent 1 generator 1 provides sodium hypochlorite diluent effective for sterilization, sterilization, infection prevention, deodorization, cleaning, cleaning, deodorization, etc. It can be generated easily and quickly. Since it does not have a pump, it is possible to realize miniaturization and cost reduction. As a result, it can be expected to be used in local governments such as welfare facilities, medical institutions, long-term care facilities, nursery schools, kindergartens, schools, fire stations, and city halls. Furthermore, because it is small and easy to move, it can be expected to be used in disaster areas. If a battery is installed, it can be used without electricity and can be used even in the event of a disaster or power outage.
  • norovirus substitute cat calicivirus, influenza virus, herpesvirus, adenovirus, coxsackie virus, parvovirus, Staphylococcus aureus, pyogenes, salmonella, vibrio, candida, tuberculosis, defisile spore, sporeus spore
  • MRSA methicillin-resistant Staphylococcus aureus
  • MDRP multidrug-resistant Pseudomonas aeruginosa
  • VRE vancomycin-resistant enterococci
  • COVID-19 new coronavirus
  • the sodium hypochlorite diluent generator according to the present invention is a mechanism in which the liquid naturally flows down by opening and closing the valve without using a pump, and is a low-cost and safe diluent generator. By installing it at each station such as welfare facilities, hospitals, government offices, schools, and various private facilities, the diluent can be prepared easily and quickly and can be used immediately. Therefore, as a means for blocking the infection route, it is extremely useful as a generator of a sodium hypochlorite diluent having extremely high bactericidal properties and safety in space sterilization, humidification, hand washing, gargle and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Bidet-Like Cleaning Device And Other Flush Toilet Accessories (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

[Problem] To provide a device for producing a sodium hypochlorite diluted solution, the device being capable of easily and quickly producing a sodium hypochlorite diluted solution that is effective in disinfecting, sterilization, infection prevention, deodorization, washing, cleaning, air freshening, etc., and which realizes reductions in both size and cost. [Solution] The problem described above is solved by a device 1 for producing a sodium hypochlorite diluted solution, the device comprising: a storage chamber 39 provided above a location at which a container 5 for diluted solution production is installed, and into which a sodium hypochlorite solution 60 is introduced and stored; a sub-storage chamber 80 attached to a bottom part of the storage chamber 39, and into which the sodium hypochlorite solution 60 naturally flows in a downward direction and is stored; a fixed amount chamber 56 that causes a prescribed amount of the sodium hypochlorite solution 60 to flow out from the sub-storage chamber 80 by using a first opening/closing valve 53, and that stores the predetermined amount of the sodium hypochlorite solution 60; and an injection part 45 that causes a prescribed amount of the sodium hypochlorite solution 60 to naturally flow downward from the fixed amount chamber 56 by using a second opening/closing valve 54, and injects the sodium hypochlorite solution 60 into the container 5.

Description

次亜塩素酸ナトリウム希釈液の生成装置Sodium hypochlorite diluent generator
 本発明は、次亜塩素酸ナトリウム希釈液の生成装置に関する。さらに詳しくは、本発明は、除菌、殺菌、感染予防、消臭、洗浄、掃除、消臭等に有効な次亜塩素酸ナトリウム希釈液の生成装置に関する。 The present invention relates to a generator for a sodium hypochlorite diluent. More specifically, the present invention relates to a device for producing a diluted sodium hypochlorite solution, which is effective for sterilization, sterilization, infection prevention, deodorization, cleaning, cleaning, deodorization and the like.
 次亜塩素酸ナトリウム希釈液は、除菌、殺菌、感染予防、消臭、洗浄、掃除、消臭等に有効な処理液として、食品工場、厨房、病院、老人福祉施設、保育園等で利用されている(非特許文献1を参照)。同文献には、例えば、食品工場や厨房での配管内殺菌、洗浄除菌、空間除菌、病院や老人福祉施設での手洗い、汚物処理後の器具除菌、オムツ交換後の陰部ケア、清掃時の環境除菌、保育園での砂場の除菌、哺乳ビンや食器などの殺菌等に利用されていることが記載されている。また、同文献には、環境面では、福祉施設、精神科病棟の環境消臭、製紙工場の脱臭にも活用されていることも記載されている。 Sodium hypochlorite diluted solution is used in food factories, kitchens, hospitals, welfare facilities for the elderly, nursery schools, etc. as an effective treatment solution for sterilization, sterilization, infection prevention, deodorization, cleaning, cleaning, deodorization, etc. (See Non-Patent Document 1). In the same document, for example, in-pipe sterilization in food factories and kitchens, cleaning sterilization, space sterilization, hand washing in hospitals and welfare facilities for the elderly, equipment sterilization after filth treatment, pubic care after diaper replacement, cleaning It is described that it is used for environmental sterilization at the time, sterilization of sand fields in nursery schools, sterilization of baby bottles and tableware, etc. The document also states that in terms of the environment, it is also used for environmental deodorization of welfare facilities and psychiatric wards, and deodorization of paper mills.
 さらに同文献では、次亜塩素酸ナトリウム希釈液の有効性が記載されている。具体的には、ノロウィルス代替ネコカリシウィルス、インフルエンザウィルス、ヘルペスウィルス、アデノウィルス、コクサッキーウィルス、パルボウィルスなどを数秒から数分で不活化し、黄色ブドウ球菌、緑膿菌、サルモネラ菌、ビブリオ菌、カンジダ菌、結核菌をはじめとして、消毒用アルコールや加熱が無効なデフィシレ菌芽胞、セレウス菌芽胞なども同じく短時間で殺滅できることが記載されている。さらに、同文献には、現在、医療分野で問題となっているメチシリン耐性黄色ブドウ球菌(MRSA)、多剤耐性緑膿菌(MDRP)、バンコマイシン耐性腸球菌(VRE)にも有効であることが記載されている。さらに、同文献には、これられの感染経路遮断手段として、空間殺菌、加湿、手洗い、うがい等において極めて高い殺菌性と安全性を備えた次亜塩素酸ナトリウム希釈液を用いることが記載されている。 Furthermore, the same document describes the effectiveness of the sodium hypochlorite diluent. Specifically, it inactivates norovirus substitute cat calicivirus, influenza virus, herpesvirus, adenovirus, coxsackie virus, parvovirus, etc. in a few seconds to a few minutes, and inactivates yellow staphylococcus, glaucoma, salmonella, vibrio, etc. It is described that not only Candida and tuberculosis but also disinfectant alcohol, spores of Defisile and spores for which heating is ineffective can be killed in a short time. Furthermore, the document states that it is also effective against methicillin-resistant Staphylococcus aureus (MRSA), multidrug-resistant Pseudomonas aeruginosa (MDRP), and vancomycin-resistant enterococci (VRE), which are currently problems in the medical field. Are listed. Further, the document describes that a diluted solution of sodium hypochlorite having extremely high bactericidal properties and safety in space sterilization, humidification, hand washing, gargle, etc. is used as a means for blocking the infection route. There is.
 次亜塩素酸ナトリウムは、次亜塩素酸のナトリウム塩(NaClO)であり、その水溶液は、通常は、12%,10%,6%の濃度のものが市販されており、その用途によって適度に希釈されて使用されている。次亜塩素酸ナトリウム塩の濃度は、一般的には、例えば、水(飲料水、プール、排水)の除菌には約0.8ppm程度、食器類や生野菜・果実類の除菌には約100ppm程度、浴室、浴槽、便器等の除菌には約600ppm程度、しみ抜き及び漂白には600~2000ppm程度のようである Sodium hypochlorite is a sodium salt (NaClO) of hypochlorous acid, and its aqueous solution is usually commercially available at concentrations of 12%, 10%, and 6%, and is suitable depending on the application. It is diluted and used. The concentration of sodium hypochlorite is generally about 0.8 ppm for sterilizing water (drinking water, pool, wastewater), and for sterilizing tableware, raw vegetables and fruits. It seems that it is about 100 ppm, about 600 ppm for sterilization of bathrooms, bathtubs, toilet bowls, etc., and about 600 to 2000 ppm for stain removal and bleaching.
 次亜塩素酸ナトリウムの希釈液は、市販された上記濃度の水溶性を作業現場で手作業で希釈される。しかし、比較的濃度が濃い市販液の場合は、殺菌等の作用が強いので、希釈水の作製に注意しなければならなかった。殺菌希釈水の製造装置として、例えば特許文献1,2等の技術が幾つか提案されている。 The diluted solution of sodium hypochlorite is a commercially available water-soluble solution having the above concentration, which is manually diluted at the work site. However, in the case of a commercially available solution having a relatively high concentration, it has a strong sterilizing effect, so care must be taken in preparing diluted water. As an apparatus for producing sterilizing diluted water, for example, some techniques such as Patent Documents 1 and 2 have been proposed.
 特許文献1には、殺菌水の製造装置が停止したときに、塩素系水溶液や酸水溶液の原液が混入器において水の中に流出しやすいという問題等を解決した殺菌希釈水の製造装置が提案されている。その技術は、水の流路と、酸水溶液または塩素系水溶液の原液を貯留し、貯留される原液の液面が所定の高さに保たれる、原液貯留器と、水の流路に設けられ、原液貯留器からの酸水溶液または塩素系水溶液を水に吸い込み混入させるための混入器と、酸水溶液等が混入された水を所定の高さにおいてオーバーフローさせ、混入器の下流にある流路の出口を所定の高さより低い位置で受けるオーバーフロータンクを備えるというものである。 Patent Document 1 proposes a sterilizing diluted water manufacturing device that solves the problem that a stock solution of a chlorine-based aqueous solution or an acid aqueous solution easily flows out into water in a mixer when the sterilizing water manufacturing device is stopped. Has been done. The technology is provided in a water flow path, a stock solution reservoir that stores an undiluted solution of an acid aqueous solution or a chlorine-based aqueous solution, and keeps the liquid level of the stored undiluted solution at a predetermined height, and a water flow path. A mixer for sucking and mixing an acid aqueous solution or a chlorine-based aqueous solution from the stock solution reservoir and water mixed with an acid aqueous solution overflow at a predetermined height, and a flow path downstream of the mixer. It is equipped with an overflow tank that receives the outlet of the water at a position lower than a predetermined height.
 特許文献2には、酸水溶液容器や塩素系水溶液容器が転倒してもこれらの水溶液が漏れる虞を防止し、かつ装置を小型にする殺菌水製造装置が提案されている。この技術は、酸水溶液と塩素系水溶液とを水に混入させて殺菌水を製造する殺菌水製造装置において、水流を利用して生じさせた負圧によって酸水溶液容器から酸水溶液を吸い込んで水に混入させる酸水溶液混入器と、水流を利用して生じさせた負圧によって塩素系水溶液容器から塩素系水溶液を吸い込んで水に混入させる塩素系水溶液混入器と、を有し、酸水溶液混入済水溶液と、塩素系水溶液混入済水溶液と、を混合することによって、殺菌水を製造する殺菌水製造装置であって、酸水溶液容器及び塩素系水溶液容器は、負圧によって酸水溶液又は塩素系水溶液が吸い込まれる際には必要な空気を外部から取り入れることができるが、内部からの水溶液の流出は阻止する逆止弁を備えた蓋体によって密閉している、というものである。 Patent Document 2 proposes a sterilizing water production device that prevents the possibility of leakage of these aqueous solutions even if the acid aqueous solution container or the chlorine-based aqueous solution container falls, and makes the device compact. In this technology, in a sterilizing water production device that produces sterilizing water by mixing an acid aqueous solution and a chlorine-based aqueous solution into water, the acid aqueous solution is sucked from the acid aqueous solution container by the negative pressure generated by using the water flow and turned into water. It has an acid aqueous solution mixer to be mixed and a chlorine-based aqueous solution mixer that sucks the chlorine-based aqueous solution from the chlorine-based aqueous solution container by a negative pressure generated by using a water stream and mixes it into water. It is a sterilizing water production device that produces sterilized water by mixing the aqueous solution mixed with the chlorine-based aqueous solution, and the acid aqueous solution or the chlorine-based aqueous solution is sucked into the acid aqueous solution container and the chlorine-based aqueous solution container by negative pressure. It is said that the necessary air can be taken in from the outside, but the aqueous solution is sealed by a lid equipped with a check valve to prevent the outflow of the aqueous solution from the inside.
特開2006-297174号公報Japanese Unexamined Patent Publication No. 2006-297174 特開2015-9234号公報Japanese Unexamined Patent Publication No. 2015-9234
 次亜塩素酸ナトリウム希釈液は、市販液を希釈して作製されるが、手作業では、作業中に市販液が皮膚や衣服に付着してしまう。そのため、専用の希釈装置が市販されている。しかし、専用の希釈装置は、大型で高価であり、複数台を設置できない。次亜塩素酸ナトリウム希釈液の生成装置が福祉施設や病院でステーション毎に設置できれば、介護師や看護師が手軽に且つ迅速に希釈液を準備でき、直ぐに患者のところに行って処置することができる。 The sodium hypochlorite diluted solution is prepared by diluting the commercially available solution, but by hand, the commercially available solution adheres to the skin and clothes during the work. Therefore, a dedicated diluting device is commercially available. However, the dedicated diluting device is large and expensive, and multiple units cannot be installed. If a sodium hypochlorite diluent generator can be installed at each station in a welfare facility or hospital, caregivers and nurses can easily and quickly prepare the diluent and immediately go to the patient for treatment. it can.
 本発明は、上記課題を解決したものであって、その目的は、除菌、殺菌、感染予防、消臭、洗浄、掃除、消臭等に有効な次亜塩素酸ナトリウム希釈液を、手軽に迅速に生成でき、小型化と低コスト化を実現した次亜塩素酸ナトリウム希釈液の生成装置を提供することにある。 The present invention solves the above-mentioned problems, and an object of the present invention is to easily obtain a diluted sodium hypochlorite solution effective for sterilization, sterilization, infection prevention, deodorization, cleaning, cleaning, deodorization, etc. An object of the present invention is to provide a sodium hypochlorite diluent generator that can be rapidly produced, and has achieved miniaturization and cost reduction.
 (1)本発明に係る次亜塩素酸ナトリウム希釈液の生成装置は、希釈液生成用の容器を設置する部位の上方に設けられて次亜塩素酸ナトリウム液を投入して収容する収容室と、前記収容室の底部に取り付けられて前記次亜塩素酸ナトリウム液が自然流下して収容されるサブ収容室と、前記サブ収容室から前記次亜塩素酸ナトリウム液の所定量を第1開閉弁により流出させて収容する定量室と、前記定量室から前記所定量の次亜塩素酸ナトリウム液を第2開閉弁により流下させて前記容器内に注入する注入部と、を有することを特徴とする。 (1) The sodium hypochlorite diluent generation device according to the present invention is provided above the site where the container for generating the diluent is installed, and has a storage chamber for charging and accommodating the sodium hypochlorite solution. A sub-containment chamber attached to the bottom of the containment chamber and accommodating the sodium hypochlorite solution by spontaneous flow, and a first on-off valve for a predetermined amount of the sodium hypochlorite solution from the sub-accommodation chamber. It is characterized by having a quantification chamber for flowing out and accommodating the quantification chamber, and an injection portion for injecting the predetermined amount of sodium hypochlorite solution from the quantification chamber into the container by flowing down by a second on-off valve. ..
 この発明によれば、収容室に収容された次亜塩素酸ナトリウム液をサブ収容室を経由して第1開閉弁で定量室に流入させ、その後に第2開閉弁で容器内に注入させるので、従来のようにポンプ等を使用せず、開閉弁だけで制御することができる。その結果、装置の小型化と低コスト化を実現することができる。さらに、次亜塩素酸ナトリウム液を予め収容室に収容させておけば、電磁弁等の開閉弁の操作だけで次亜塩素酸ナトリウム希釈液を手軽に迅速に生成できる。特に、サブ収容室を収容室の下に備えるので、収容室内の次亜塩素酸ナトリウム液が空になっても、サブ収容室内に次亜塩素酸ナトリウム液が収容されている。その結果、収容室に次亜塩素酸ナトリウム液を補充するまでの間も問題なく次亜塩素酸ナトリウム希釈液を生成することができる。このように、本発明はポンプを使用せずに、弁の開閉によって液が自然流下する機構であるので、低コストで安全な希釈液生成装置になっている。 According to the present invention, the sodium hypochlorite solution contained in the storage chamber is flowed into the metering chamber by the first on-off valve via the sub-containment chamber, and then injected into the container by the second on-off valve. , It can be controlled only by the on-off valve without using a pump or the like as in the conventional case. As a result, it is possible to realize miniaturization and cost reduction of the device. Further, if the sodium hypochlorite solution is stored in the storage chamber in advance, the sodium hypochlorite diluted solution can be easily and quickly produced only by operating the on-off valve such as the solenoid valve. In particular, since the sub-containment chamber is provided under the accommodation chamber, the sodium hypochlorite solution is accommodated in the sub-accommodation chamber even if the sodium hypochlorite solution in the accommodation chamber is emptied. As a result, the sodium hypochlorite diluted solution can be produced without any problem until the storage chamber is replenished with the sodium hypochlorite solution. As described above, since the present invention is a mechanism in which the liquid naturally flows down by opening and closing the valve without using a pump, it is a low-cost and safe diluent generator.
 本発明に係る次亜塩素酸ナトリウム希釈液の生成装置において、前記第1開閉弁及び前記第2開閉弁が電磁弁であり、前記第1開閉弁が開いたとき、前記第2開閉弁は閉じたままで前記次亜塩素酸ナトリウム液の所定量が前記定量室内に収容され、前記所定量が収容されたとき、前記第1開閉弁が閉じるとともに前記第2開閉弁が開いて前記次亜塩素酸ナトリウム液の所定量が前記容器内に注入される。 In the sodium hypochlorite diluent generator according to the present invention, the first on-off valve and the second on-off valve are solenoid valves, and when the first on-off valve opens, the second on-off valve closes. When a predetermined amount of the sodium hypochlorite solution is contained in the metering chamber as it is and the predetermined amount is contained, the first on-off valve closes and the second on-off valve opens to open the hypochlorous acid. A predetermined amount of the sodium solution is injected into the container.
 こうした電磁弁の動作により、サブ収容室から流出させた所定量の次亜塩素酸ナトリウム液を容器内に注入することができる。 By the operation of such a solenoid valve, a predetermined amount of sodium hypochlorite solution discharged from the sub-containment chamber can be injected into the container.
 本発明に係る次亜塩素酸ナトリウム希釈液の生成装置において、前記サブ収容室が、前記定量室と隣接した位置に設けられ、前記サブ収容室の底部の流出部から前記定量室の底部の流入部に前記次亜塩素酸ナトリウム液が流入する配管が設けられ、前記第1開閉弁が前記配管の途中に設けられている。 In the sodium hypochlorite diluent generator according to the present invention, the sub-containment chamber is provided at a position adjacent to the quantification chamber, and the inflow from the outflow portion at the bottom of the sub-containment chamber to the bottom of the quantification chamber. A pipe into which the sodium hypochlorite liquid flows is provided in the portion, and the first on-off valve is provided in the middle of the pipe.
 本発明に係る次亜塩素酸ナトリウム希釈液の生成装置において、前記サブ収容室は上部材と下部材とが接続されてなり、前記上部材の上部は前記収容室の底部に取り付ける取付部を備え、前記上部材の下部は前記下部材の内周面に隙間なく嵌め込まれる連結部を備える。 In the sodium hypochlorite diluent generator according to the present invention, the sub-accommodation chamber is formed by connecting an upper member and a lower member, and the upper portion of the upper member is provided with a mounting portion to be attached to the bottom of the accommodating chamber. The lower portion of the upper member is provided with a connecting portion that is fitted into the inner peripheral surface of the lower member without a gap.
 本発明に係る次亜塩素酸ナトリウム希釈液の生成装置において、前記収容室は、該収容室内の圧力を大気圧と同じにするための第3開閉弁を有する。 In the sodium hypochlorite diluent generator according to the present invention, the containment chamber has a third on-off valve for making the pressure in the containment chamber the same as the atmospheric pressure.
 この発明によれば、密閉した収容室及びその収容室に連結したサブ収容室から次亜塩素酸ナトリウム液を定量室に流出させる際に、第3開閉弁を開くことで、収容室内(サブ収容室を含む。)の次亜塩素酸ナトリウム液を自然流下し易くさせることができる。さらに、定量室に流出させる場合以外は、第3開閉弁が閉じられるので、次亜塩素酸ナトリウム液が収容した状態になっている収容室及びサブ収容室から次亜塩素酸ナトリウム液が揮発又は蒸発するのを防ぐことができ、次亜塩素酸ナトリウム液の臭いの発散等を防ぐことができる。また、次亜塩素酸ナトリウム液を定量室に流出させる場合以外に第3開閉弁を閉じておくことで、収容室及びサブ収容室を密閉することができるので、万が一に装置が転倒する場合があったとしても、収容室やサブ収容室から次亜塩素酸ナトリウム液が漏れることがない。 According to the present invention, when the sodium hypochlorite solution is discharged from the closed containment chamber and the sub-containment chamber connected to the containment chamber to the metering chamber, the third on-off valve is opened to open the containment chamber (sub-accommodation). It is possible to facilitate the natural flow of the sodium hypochlorite solution (including the chamber). Furthermore, since the third on-off valve is closed except when flowing out to the metering chamber, the sodium hypochlorite solution volatilizes or volatilizes from the containment chamber and the sub-containment chamber in which the sodium hypochlorite solution is contained. It is possible to prevent evaporation and prevent the emission of the odor of the sodium hypochlorite solution. In addition, by closing the third on-off valve except when the sodium hypochlorite solution is discharged to the metering chamber, the containment chamber and the sub-containment chamber can be sealed, so that the device may tip over by any chance. Even if there is, the sodium hypochlorite solution does not leak from the containment chamber or sub-containment chamber.
 本発明に係る次亜塩素酸ナトリウム希釈液の生成装置において、前記定量室は、該定量室から前記次亜塩素酸ナトリウム液が前記容器に注入される際に、該定量室内の圧力が大気圧と同じになる。 In the device for generating the sodium hypochlorite diluent according to the present invention, in the quantification chamber, when the sodium hypochlorite solution is injected into the container from the quantification chamber, the pressure in the quantification chamber is atmospheric pressure. Will be the same as.
 この発明によれば、定量室内に収容された所定量の次亜塩素酸ナトリウム液を容易に容器内に注入させることができる。容器に注入した後の定量室には次亜塩素酸ナトリウム液は残っていないので、次亜塩素酸ナトリウム液の揮発や臭いの問題が小さい。大気圧と同じにする手段としては、常時大気圧とする開放配管が設けられていてもよいし、第2開閉弁が開くのと同時に開く第4開閉弁を備えていてもよい。 According to the present invention, a predetermined amount of sodium hypochlorite solution contained in the metering chamber can be easily injected into the container. Since the sodium hypochlorite solution does not remain in the quantification chamber after injection into the container, the problem of volatilization and odor of the sodium hypochlorite solution is small. As a means for making the atmospheric pressure the same, an open pipe that keeps the atmospheric pressure at all times may be provided, or a fourth on-off valve that opens at the same time as the second on-off valve opens may be provided.
 本発明に係る次亜塩素酸ナトリウム希釈液の生成装置において、前記注入部は、前記容器内に前記次亜塩素酸ナトリウム液を注入する注入ノズルを有し、該注入ノズルは、予め前記容器内に入れてある水の中まで入る長さに設計されている。 In the sodium hypochlorite diluent generator according to the present invention, the injection unit has an injection nozzle for injecting the sodium hypochlorite solution into the container, and the injection nozzle is previously provided in the container. It is designed to be long enough to fit into the water contained in the container.
 この発明によれば、注入部は、予め容器内に入れてある水の中まで入る長さに設計された注入ノズルを有するので、注入ノズルの先端には、次亜塩素酸ナトリウム液は残っておらず、水で希釈された次亜塩素酸ナトリウム希釈液が残っているだけである。その結果、注入ノズルの先端から垂れることがある液体は、濃度が薄い希釈された液なので、その液に触れた場合であっても大きな影響が生じない。 According to the present invention, since the injection unit has an injection nozzle designed to have a length that allows it to enter water that has been previously placed in the container, the sodium hypochlorite solution remains at the tip of the injection nozzle. No, only the sodium hypochlorite diluent remaining diluted with water remains. As a result, the liquid that may drip from the tip of the injection nozzle is a diluted liquid having a low concentration, so that even if it comes into contact with the liquid, there is no significant effect.
 本発明に係る次亜塩素酸ナトリウム希釈液の生成装置において、前記定量室は、前記所定量に至った前記次亜塩素酸ナトリウム液を検知する第1液面センサーと、前記所定量の前記次亜塩素酸ナトリウム液が前記容器に注出し終わったことを検知する第2液面センサーとを備えている。 In the sodium hypochlorite diluent generator according to the present invention, the quantification chamber includes a first liquid level sensor that detects the sodium hypochlorite solution that has reached the predetermined amount, and the next of the predetermined amount. It is equipped with a second liquid level sensor that detects that the sodium hypochlorite liquid has been poured into the container.
 この発明によれば、第1液面センサーにより所定量を検知したときに、第1開閉弁を閉じて第2開閉弁を開くので、常に所定濃度に希釈された次亜塩素酸ナトリウム希釈液を生成することができる。また、第2液面センサーにより、所定量の前記次亜塩素酸ナトリウム液が前記容器に注出し終わったことを検知するので、定量室内の次亜塩素酸ナトリウム液を無駄なく排出することができる。 According to the present invention, when a predetermined amount is detected by the first liquid level sensor, the first on-off valve is closed and the second on-off valve is opened. Therefore, a sodium hypochlorite diluted solution diluted to a predetermined concentration is always used. Can be generated. Further, since the second liquid level sensor detects that a predetermined amount of the sodium hypochlorite liquid has been poured into the container, the sodium hypochlorite liquid in the metering chamber can be discharged without waste. ..
 本発明に係る次亜塩素酸ナトリウム希釈液の生成装置において、前記容器の口部に装着して、前記容器内で生成した次亜塩素酸ナトリウム希釈液のpHを調整するための酸性溶液を収容する酸収容キャップを備える。 In the sodium hypochlorite diluent generating apparatus according to the present invention, an acidic solution for adjusting the pH of the sodium hypochlorite diluent produced in the container is accommodated by being attached to the mouth of the container. It is equipped with an acid storage cap.
 この発明によれば、酸性溶液を収容する酸収容キャップにより、容器内で生成した次亜塩素酸ナトリウム希釈液のpHを調整することができる。 According to the present invention, the pH of the sodium hypochlorite diluted solution produced in the container can be adjusted by the acid containing cap containing the acidic solution.
 本発明に係る次亜塩素酸ナトリウム希釈液の生成装置において、前記定量室には、該定量室内から前記容器に向けて前記次亜塩素酸ナトリウム液を流下させる流下ノズルを有し、該流下ノズルは、前記定量室内側にフランジ部を有し、前記フランジ部の大きさを変えて前記定量室内に収容する前記次亜塩素酸ナトリウム液の量を微調整する。 In the sodium hypochlorite diluted solution generation device according to the present invention, the quantification chamber has a flow nozzle for flowing the sodium hypochlorite solution from the quantification chamber toward the container, and the flow nozzle is provided. Has a flange portion on the side of the metering chamber, and changes the size of the flange portion to finely adjust the amount of the sodium hypochlorite solution contained in the metering chamber.
 この発明によれば、定量室内に収容する次亜塩素酸ナトリウム液の所定量は液面センサー等で検知するが、それ以外にも、こうした流下ノズルにより微調整することができる。 According to the present invention, a predetermined amount of sodium hypochlorite solution to be stored in the metering chamber is detected by a liquid level sensor or the like, but other than that, fine adjustment can be made by such a flow nozzle.
 本発明に係る次亜塩素酸ナトリウム希釈液の生成装置において、前記サブ収容室を設けずに、前記収容室と前記定量室とを前記配管で連結し、前記第1開閉弁が前記配管の途中に設けられているようにしてもよい。 In the sodium hypochlorite diluent generator according to the present invention, the storage chamber and the metering chamber are connected by the pipe without providing the sub storage chamber, and the first on-off valve is in the middle of the pipe. It may be provided in.
 この発明によれば、収容室に収容された次亜塩素酸ナトリウム液を第1開閉弁で定量室に流出させ、その後に第2開閉弁で容器内に注入させることができる。 According to the present invention, the sodium hypochlorite solution contained in the storage chamber can be discharged to the metering chamber by the first on-off valve and then injected into the container by the second on-off valve.
 本発明によれば、除菌、殺菌、感染予防、消臭、洗浄、掃除、消臭等に有効な次亜塩素酸ナトリウム希釈液を、手軽に迅速に生成でき、小型化と低コスト化を実現した次亜塩素酸ナトリウム希釈液の生成装置を提供することができる。 According to the present invention, a diluted sodium hypochlorite solution effective for sterilization, sterilization, infection prevention, deodorization, cleaning, cleaning, deodorization, etc. can be easily and quickly produced, resulting in miniaturization and cost reduction. It is possible to provide a realized device for generating a sodium hypochlorite diluent.
本発明に係る次亜塩素酸ナトリウム希釈液の生成装置の一例を示す斜視図である。It is a perspective view which shows an example of the generator of the sodium hypochlorite diluted solution which concerns on this invention. 図1に示す生成装置の正面図(A)とB-B断面図(B)の一例である。It is an example of the front view (A) and the sectional view (B) of BB shown in FIG. 図1に示す生成装置の左側面図(B)とA-A断面図(A)の一例である。It is an example of the left side view (B) and the cross-sectional view (A) of AA of the generator shown in FIG. 図1に示す生成装置の上部側の内部構造の一例の説明図である。It is explanatory drawing of an example of the internal structure on the upper side of the generator shown in FIG. 定量室の構造形態の一例を示す説明図である。It is explanatory drawing which shows an example of the structural form of a quantification chamber. 本発明に係る次亜塩素酸ナトリウム希釈液の生成装置の操作工程を説明するフロー図である。It is a flow figure explaining the operation process of the generator of the sodium hypochlorite diluent which concerns on this invention. 酸収容キャップの構造形態の一例を示す説明図である。It is explanatory drawing which shows an example of the structural form of the acid containing cap. 本発明に係る次亜塩素酸ナトリウム希釈液の生成装置の外観写真の例である。This is an example of an external photograph of the generator of the sodium hypochlorite diluent according to the present invention. 図1に示す生成装置の上部側の内部構造の他の一例の説明図であり、サブ収容室を設けた例である。It is explanatory drawing of another example of the internal structure on the upper side of the generator shown in FIG. 1, and is the example which provided the sub accommodation chamber. 2つの部材(上部材と下部材)で構成されたサブ収容室の構造の一例を示す説明図であり、(A)は全体図であり、(B)は上部材と下部材それぞれの形態である。It is explanatory drawing which shows an example of the structure of the sub-accommodation chamber composed of two members (upper member and lower member), (A) is an overall view, and (B) is the form of the upper member and the lower member respectively. is there.
 以下、図面を参照しながら本発明の実施形態について説明する。本発明は、以下に説明する実施形態及び図面に記載した形態と同じ技術的思想の発明を含むものであり、本発明の技術的範囲は実施形態の記載や図面の記載のみに限定されるものでない。なお、本発明では「生成装置」としているが、「製造装置」と読み替えてもよい。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention includes inventions having the same technical ideas as those described in the embodiments and drawings described below, and the technical scope of the present invention is limited to the description of the embodiments and the drawings. Not. In the present invention, the term "generation apparatus" is used, but it may be read as "manufacturing apparatus".
 [次亜塩素酸ナトリウム希釈液の生成装置]
 本発明に係る次亜塩素酸ナトリウム希釈液(以下「希釈液」という。)の生成装置1(以下「生成装置1」という。)は、図1~図4及び図9に示すように、希釈液生成用の容器5を設置する部位の上方に設けられて次亜塩素酸ナトリウム液60を投入して収容する収容室39と、収容室39の底部に取り付けられて次亜塩素酸ナトリウム液60が自然流下して収容されるサブ収容室80と、サブ収容室80から次亜塩素酸ナトリウム液60の所定量を第1開閉弁53により流出させて収容する定量室56と、定量室56から所定量の次亜塩素酸ナトリウム液60を第2開閉弁54により自然流下させて容器5内に注入する注入部45とを有する。
[Sodium hypochlorite diluent generator]
The generator 1 (hereinafter referred to as “generation device 1”) of the sodium hypochlorite diluent (hereinafter referred to as “diluted solution”) according to the present invention is diluted as shown in FIGS. 1 to 4 and 9. A storage chamber 39 provided above the site where the liquid generation container 5 is installed to charge and store the sodium hypochlorite liquid 60, and a storage chamber 39 attached to the bottom of the storage chamber 39 to store the sodium hypochlorite liquid 60. From the sub-containment chamber 80 in which the sodium hypochlorite is naturally flowed down and accommodated, the quantification chamber 56 in which a predetermined amount of the sodium hypochlorite solution 60 is discharged from the sub-accommodation chamber 80 by the first on-off valve 53, and the quantification chamber 56 is accommodated. It has an injection unit 45 in which a predetermined amount of sodium hypochlorite solution 60 is naturally flowed down by a second on-off valve 54 and injected into the container 5.
 この生成装置1は、収容室39に収容された次亜塩素酸ナトリウム液60をサブ収容室80を経由して第1開閉弁53で定量室56に流入させ、その後に第2開閉弁54で容器5内に注入させるので、従来のようにポンプ等を使用せず、第1及び第2開閉弁53,54だけで制御することができる。その結果、装置の小型化と低コスト化を実現することができる。さらに、次亜塩素酸ナトリウム液60を予め収容室39に収容させておけば、電磁弁等の開閉弁53,54の操作だけで、除菌、殺菌、感染予防、消臭、洗浄、掃除、消臭等に有効な希釈液を、繰り返し手軽に迅速に生成できる。特に、サブ収容室80を収容室39の下に備えるので、収容室内の次亜塩素酸ナトリウム液60が空になっても、サブ収容室内81に次亜塩素酸ナトリウム液60が収容されている。その結果、収容室39に次亜塩素酸ナトリウム液60を補充するまでの間も問題なく次亜塩素酸ナトリウム希釈液を生成することができる。 In this generator 1, the sodium hypochlorite solution 60 stored in the storage chamber 39 is flowed into the metering chamber 56 by the first on-off valve 53 via the sub-containment chamber 80, and then by the second on-off valve 54. Since it is injected into the container 5, it can be controlled only by the first and second on-off valves 53 and 54 without using a pump or the like as in the conventional case. As a result, it is possible to realize miniaturization and cost reduction of the device. Further, if the sodium hypochlorite solution 60 is stored in the storage chamber 39 in advance, sterilization, sterilization, infection prevention, deodorization, cleaning, cleaning, etc. can be performed simply by operating the on-off valves 53 and 54 such as the solenoid valve. A diluted solution effective for deodorizing and the like can be repeatedly and easily and quickly generated. In particular, since the sub-containment chamber 80 is provided under the accommodation chamber 39, the sodium hypochlorite solution 60 is accommodated in the sub-accommodation chamber 81 even if the sodium hypochlorite solution 60 in the accommodation room is emptied. .. As a result, the sodium hypochlorite diluted solution can be produced without any problem until the storage chamber 39 is replenished with the sodium hypochlorite solution 60.
 なお、図4に示すように、サブ収容室80を設けずに、収容室39と定量室56とを配管58で連結し、第1開閉弁53が配管58の途中に設けられているようにしてもよい。 As shown in FIG. 4, the storage chamber 39 and the metering chamber 56 are connected by a pipe 58 without providing the sub storage chamber 80, so that the first on-off valve 53 is provided in the middle of the pipe 58. You may.
 以下、各構成要素を説明する。 Each component will be described below.
 <生成装置と容器>
 生成装置1は、図1に示すように、底部2と本体部3と上部4とで構成されている。底部2は、容器5を載置する部位であり、容器5載せることができるトレイ21が設けられている。なお、生成装置1を載せる台(テーブル)の上に容器5を載せる場合には、トレイ21はなくてもよい。本体部3には、取って31が右側面と左側面に設けられている。本体部3の内部には、第1~第3開閉弁(電磁弁)や液面センサー等を駆動制御する回路板38、配線類(図示しない)、コネクタ(図示しない)が設けられている、本体部3には、必要に応じて、ACアダプターやバッテリー等の電源部37が設けられている。上部4には、収容室39、サブ収容室80、定量室56、操作パネル44等、本発明に係る生成装置1の主要な部材が設けられている。これら底部2、本体部3、上部4の材質は特に限定されないが、耐食性に優れた素材で形成されていることが好ましく、そうした素材としては、例えばステンレス鋼や高強度の樹脂素材等を挙げることができる。
<Generator and container>
As shown in FIG. 1, the generation device 1 is composed of a bottom portion 2, a main body portion 3, and an upper portion 4. The bottom portion 2 is a portion on which the container 5 is placed, and a tray 21 on which the container 5 can be placed is provided. When the container 5 is placed on the table on which the generation device 1 is placed, the tray 21 may not be provided. The main body 3 is provided with 31 on the right side surface and the left side surface. Inside the main body 3, a circuit plate 38 for driving and controlling the first to third on-off valves (solenoid valves), a liquid level sensor, etc., wirings (not shown), and a connector (not shown) are provided. The main body 3 is provided with a power supply 37 such as an AC adapter and a battery, if necessary. The upper part 4 is provided with main members of the generation device 1 according to the present invention, such as a storage chamber 39, a sub storage chamber 80, a metering chamber 56, and an operation panel 44. The materials of the bottom portion 2, the main body portion 3, and the upper portion 4 are not particularly limited, but are preferably formed of a material having excellent corrosion resistance, and examples of such a material include stainless steel and a high-strength resin material. Can be done.
 この生成装置1に装着される容器5は、特に限定されないが、図8に示すようないわゆるペットボトルやそれに類する容器であることが好ましい。こうしたペットボトル等の容器は、入所が容易で低コストであるので、好ましく用いられる。容器5は、無色透明又は着色透明であることが好ましく、図8の例では、無色透明のペットボトルを容器5として用いる。容器5の容量は特に限定されないが、1000mLや500mL等の容器5は汎用性があって好ましい。 The container 5 mounted on the generator 1 is not particularly limited, but is preferably a so-called PET bottle or a similar container as shown in FIG. Such containers such as PET bottles are preferably used because they are easy to put in and the cost is low. The container 5 is preferably colorless and transparent or colored transparent, and in the example of FIG. 8, a colorless and transparent PET bottle is used as the container 5. The capacity of the container 5 is not particularly limited, but a container 5 such as 1000 mL or 500 mL is preferable because of its versatility.
 容器5を生成装置1にセットする際には、容器5内に所定量の水を入れておく。水は、水道水や純水等、用途に応じて使い分けることができる。水の量は、容器5にラインを入れておいて、そのラインまで水を入れることで調整することができる。水の量としては、6%次亜塩素酸ナトリウム液60を用いて200ppmの希釈水を1000mL生成する場合には、6%次亜塩素酸ナトリウム液を4mL注入すればよい。したがって、1000mLのペットボトルに水をほぼ1000mL入れた容器5を生成装置1のトレイ21にセットすればよい。一方、6%次亜塩素酸ナトリウム液60を用いて1000ppmの希釈水を1000mL生成する場合には、6%次亜塩素酸ナトリウム液を20mL注入すればよい。したがって、1000mLのペットボトルに水を1000mL弱(ほぼ980mL程度)入れた容器5を生成装置1のトレイ21にセットすればよい。 When setting the container 5 in the generator 1, a predetermined amount of water is put in the container 5. Water can be used properly according to the purpose, such as tap water or pure water. The amount of water can be adjusted by putting a line in the container 5 and putting water up to the line. As for the amount of water, when 1000 mL of 200 ppm diluted water is produced using the 6% sodium hypochlorite solution 60, 4 mL of the 6% sodium hypochlorite solution may be injected. Therefore, a container 5 containing approximately 1000 mL of water in a 1000 mL PET bottle may be set in the tray 21 of the generator 1. On the other hand, when 1000 mL of diluted water of 1000 ppm is produced using the 6% sodium hypochlorite solution 60, 20 mL of the 6% sodium hypochlorite solution may be injected. Therefore, the container 5 containing a little less than 1000 mL (about 980 mL) of water in a 1000 mL PET bottle may be set in the tray 21 of the generator 1.
 生成装置1に水が入った容器5がセットされているか否かは、本体部3に設けられた容器センサー35で検出することができる。容器センサー35は、本体部3に設けられたセンサー窓32から光学式センサーで容器5(水を含む。)の存在を検出できる。容器センサー35の種類は特に限定されない。この容器センサー35は、水を含む容器5の存在を検知する。この検知を前提として各開閉弁の開閉を行う。すなわち、容器センサー35で容器5を検出しない場合には、生成装置1の開閉弁は作動しない。こうすることにより、次亜塩素酸ナトリウム液60が容器の存在なしに、注入部45から注出することがない。また、容器5に水が入っていない場合も、容器センサー35で容器5の存在を検知しないようになっている。 Whether or not the container 5 containing water is set in the generation device 1 can be detected by the container sensor 35 provided in the main body 3. The container sensor 35 can detect the presence of the container 5 (including water) with an optical sensor from the sensor window 32 provided in the main body 3. The type of the container sensor 35 is not particularly limited. The container sensor 35 detects the presence of the container 5 containing water. On the premise of this detection, each on-off valve is opened and closed. That is, if the container sensor 35 does not detect the container 5, the on-off valve of the generator 1 does not operate. By doing so, the sodium hypochlorite solution 60 is not discharged from the injection unit 45 without the presence of the container. Further, even when the container 5 does not contain water, the container sensor 35 does not detect the presence of the container 5.
 <トレイ>
 トレイ21は、必須の部材ではないが、図1等に示すように、希釈液生成用の容器5を設置する部材として底部2に好ましく設けられている。トレイ21の形状は、特に限定されず各種の形態とすることができるが、図2(A)及び図3(A)に示すように、中央が凹んだ皿状であることが好ましい。トレイ21には、スリットが形成されたスリットプレート22が設けられていることが好ましい。スリットプレート22は、次亜塩素酸ナトリウム液60や生成した希釈液が溢れたりした場合であっても、そのスリットを通過してトレイ21に溜めることができるように機能する部材である。スリットプレート22の形状は特に限定されないが、図1の例では、中央穴23から放射状にスリットが形成されている。スリットプレート22はトレイ21上に配置されるので、中央穴23やコーナー穴24は特に限定されないが、スリットプレート22を取り上げることができるように指で摘まむことができる程度の大きさの穴であることが好ましい。
<Tray>
Although the tray 21 is not an essential member, as shown in FIG. 1 and the like, the tray 21 is preferably provided on the bottom 2 as a member for installing the container 5 for generating the diluent. The shape of the tray 21 is not particularly limited and may be in various forms, but as shown in FIGS. 2A and 3A, it is preferable that the tray 21 has a dish shape with a concave center. It is preferable that the tray 21 is provided with a slit plate 22 in which a slit is formed. The slit plate 22 is a member that functions so that even if the sodium hypochlorite solution 60 or the produced diluent overflows, it can pass through the slit and be stored in the tray 21. The shape of the slit plate 22 is not particularly limited, but in the example of FIG. 1, slits are formed radially from the central hole 23. Since the slit plate 22 is arranged on the tray 21, the central hole 23 and the corner hole 24 are not particularly limited, but the holes are large enough to be picked up by fingers so that the slit plate 22 can be picked up. It is preferable to have.
 <収容室>
 収容室39は、次亜塩素酸ナトリウム液60を投入して収容する部材であり、生成装置1の上部4に配置され、容器5を設置する部位(好ましくはトレイ21)の上方に設けられている。収容室39の容量は特に限定されないが、一例としては、次亜塩素酸ナトリウム液60の標準容量として多く市販されている500mL又は600mLを一度に収容できる容量とすることが好ましい。そうした容量としては、500mL又は600mLの次亜塩素酸ナトリウム液60を全て投入しても少し余裕がある容量を上限とし、下限は、収容室39の小型化を実現できるという観点から200mL程度とすることができるが、これらに限定されない。
<Accommodation room>
The storage chamber 39 is a member for charging and storing the sodium hypochlorite solution 60, is arranged in the upper portion 4 of the generation device 1, and is provided above the portion (preferably the tray 21) in which the container 5 is installed. There is. The capacity of the storage chamber 39 is not particularly limited, but as an example, it is preferable that the standard capacity of the sodium hypochlorite solution 60 is a capacity that can accommodate 500 mL or 600 mL that are widely available on the market at one time. The upper limit of such capacity is a capacity that allows a little margin even if all 500 mL or 600 mL of sodium hypochlorite solution 60 is added, and the lower limit is about 200 mL from the viewpoint of realizing miniaturization of the storage chamber 39. It can, but is not limited to these.
 収容室39は、投入口40を有し、その投入口40から次亜塩素酸ナトリウム液60を投入する。投入口40は、つまみ34を手でつまんで上蓋33を開けると表れる。投入口40は、雄ねじ口41aと雌ねじキャップ41bとを螺合して密閉性よく締め込まれていることが好ましい。こうすることにより、次亜塩素酸ナトリウム液60の揮発や臭いの発散を防ぐことができる。収容室39には、液面計収容部51と液面計観察部52とが設けられていてもよい。液面計収容部51に図4に示すようなフロート式液面計が設けられている。液面計観察部52には、例えば図4に示すようなフロート式液面計が設けられている場合には、その上部から延びるバーの位置で液面レベルを確認することができる。なお、収容室39内の次亜塩素酸ナトリウム液60の量を計量又は観察できる手段であれば、こうした液面計収容部51と液面計観察部52以外の手段であってもよい。 The storage chamber 39 has a charging port 40, and the sodium hypochlorite solution 60 is charged from the charging port 40. The slot 40 appears when the knob 34 is pinched by hand and the upper lid 33 is opened. It is preferable that the input port 40 is tightly closed by screwing the male screw port 41a and the female screw cap 41b. By doing so, it is possible to prevent volatilization of the sodium hypochlorite solution 60 and emission of odor. The accommodation chamber 39 may be provided with a liquid level gauge accommodating unit 51 and a liquid level gauge observation unit 52. A float type liquid level gauge as shown in FIG. 4 is provided in the liquid level gauge accommodating portion 51. When the liquid level gauge observation unit 52 is provided with a float type liquid level gauge as shown in FIG. 4, for example, the liquid level can be confirmed at the position of a bar extending from the upper portion thereof. Any means other than the liquid level gauge storage unit 51 and the liquid level gauge observation unit 52 may be used as long as the amount of the sodium hypochlorite liquid 60 in the storage chamber 39 can be measured or observed.
 <サブ収容室>
 サブ収容室80は、サブタンクとも呼ばれ、図9及び図10に示すように、収容室39の底部に取り付けられて次亜塩素酸ナトリウム液60が収容室39から自然流下して収容されるタンクである。そのサブ収容室80は、定量室56に配管58で接続され、その配管58の途中に設けられた第1開閉弁53により、次亜塩素酸ナトリウム液60の所定量が定量室56に流出する。こうしたサブ収容室80が収容室39の下に設けられているので、収容室内の次亜塩素酸ナトリウム液60が空になっても、サブ収容室内81に次亜塩素酸ナトリウム液60が収容されている。その結果、収容室39が空になって次亜塩素酸ナトリウム液60が補充されるまでの間も、例えば空気が狭い流出経路に巻き込まれることで収容室39から定量室56に次亜塩素酸ナトリウム液60が流出しにくくなる等の問題を起こすことなく次亜塩素酸ナトリウム希釈液を生成することができる。
<Sub containment room>
The sub-containment chamber 80 is also called a sub-tank, and as shown in FIGS. 9 and 10, a tank attached to the bottom of the accommodation chamber 39 and in which the sodium hypochlorite solution 60 naturally flows down from the accommodation chamber 39 and is accommodated. Is. The sub-accommodation chamber 80 is connected to the metering chamber 56 by a pipe 58, and a predetermined amount of the sodium hypochlorite solution 60 flows out to the metering chamber 56 by a first on-off valve 53 provided in the middle of the pipe 58. .. Since such a sub-containment chamber 80 is provided under the accommodation chamber 39, the sodium hypochlorite solution 60 is accommodated in the sub-accommodation chamber 81 even if the sodium hypochlorite solution 60 in the accommodation chamber is emptied. ing. As a result, even until the storage chamber 39 is emptied and the sodium hypochlorite solution 60 is replenished, for example, the air is caught in a narrow outflow path and the hypochlorous acid is transferred from the storage chamber 39 to the quantitative chamber 56. The sodium hypochlorite diluted solution can be produced without causing problems such as the sodium solution 60 not easily flowing out.
 サブ収容室80は、図9に示すように、定量室56と隣接した位置に設けられている。サブ収容室80の大きさは特に限定されないが、収容室39中の次亜塩素酸ナトリウム液60が空になって操作パネルに表示された補充指示を見逃した場合であっても、ある程度定量室56に供給できる量を確保できる大きさであればよい。一例としては、例えば10mL前後程度の容器であればよい。「隣接した位置」とは、図9に示すように、配管58と第1開閉弁53を間に挟んだ真横に設けられていることが好ましい。 As shown in FIG. 9, the sub-containment chamber 80 is provided at a position adjacent to the metering chamber 56. The size of the sub-containment chamber 80 is not particularly limited, but even if the sodium hypochlorite solution 60 in the containment chamber 39 is emptied and the replenishment instruction displayed on the operation panel is overlooked, the quantitative chamber is to some extent. Any size may be sufficient as long as the amount that can be supplied to 56 can be secured. As an example, for example, a container of about 10 mL may be used. As shown in FIG. 9, the "adjacent position" is preferably provided directly beside the pipe 58 and the first on-off valve 53 sandwiched between them.
 サブ収容室80は、収容室39の底部に設けられるが、「底部」とは、収容室39の底面又は側面の最下部の意味である。サブ収容室80は、収容室39の底面に容易に取り付けることができるが、取付性の難易を考慮しなければ収容室39の側面の最下部に取り付けてもよい。 The sub-containment chamber 80 is provided at the bottom of the accommodation chamber 39, and the "bottom" means the bottom surface or the bottom of the side surface of the accommodation chamber 39. The sub-containment chamber 80 can be easily attached to the bottom surface of the accommodation chamber 39, but may be attached to the lowermost part of the side surface of the accommodation chamber 39 if the difficulty of attachment is not considered.
 サブ収容室80の底部には、流出部83(図10参照)と流出ノズル82が設けられている。その流出部83及び流出ノズル82から流出した次亜塩素酸ナトリウム液60は、配管と第1開閉弁53を経由して定量室56の底部の流入ノズル59から定量室56に流入する。第1開閉弁53は、配管58の途中に設けられている。 An outflow portion 83 (see FIG. 10) and an outflow nozzle 82 are provided at the bottom of the sub storage chamber 80. The sodium hypochlorite solution 60 flowing out from the outflow portion 83 and the outflow nozzle 82 flows into the metering chamber 56 from the inflow nozzle 59 at the bottom of the metering chamber 56 via the pipe and the first on-off valve 53. The first on-off valve 53 is provided in the middle of the pipe 58.
 サブ収容室80は収容室39に取り付けられる。そのための手段は様々であり特に限定されないが、サブ収容室80の上部が、収容室39の底部に取り付ける取付部(取付ねじ部)84とフランジ部85を備えていることが好ましい。収容室39の底部に雌ネジ部を設けておくことで、サブ収容室80の雄ネジ形態の取付ネジ部84を取り付けることができる。 The sub-containment chamber 80 is attached to the accommodation chamber 39. The means for that purpose is various and not particularly limited, but it is preferable that the upper portion of the sub-accommodation chamber 80 is provided with a mounting portion (mounting screw portion) 84 and a flange portion 85 to be attached to the bottom of the accommodating chamber 39. By providing the female screw portion at the bottom of the storage chamber 39, the male screw type mounting screw portion 84 of the sub storage chamber 80 can be attached.
 サブ収容室80は、図9に示すように、一体型であってもよいし、図10に示すように分割可能な組立型であってもよい。図10は、2つの部材(上部材80aと下部材80b)で構成されたサブ収容室80の構造の一例を示す説明図であり、(A)は全体図であり、(B)は上部材80aと下部材80bそれぞれの形態である。なお、サブ収容室80の図10の形態は一例であり、この形態に限定されない。図10のサブ収容室80は、上部材80aと下部材80bとが接続されてなるものである。上部材80aの上部は、収容室39の底部に取り付ける取付部(取付ネジ部)84とフランジ部85を備えている。収容室39の底部に雌ネジ部を設けておくことで、サブ収容室80の雄ネジ形態の取付ネジ部84を取り付けることができる。 The sub-accommodation chamber 80 may be an integrated type as shown in FIG. 9, or may be a separable assembly type as shown in FIG. 10A and 10B are explanatory views showing an example of the structure of the sub-accommodation chamber 80 composed of two members (upper member 80a and lower member 80b), (A) is an overall view, and (B) is an upper member. It is a form of each of the 80a and the lower member 80b. The form of the sub-containment chamber 80 in FIG. 10 is an example, and is not limited to this form. The sub-accommodation chamber 80 of FIG. 10 is formed by connecting the upper member 80a and the lower member 80b. The upper portion of the upper member 80a includes a mounting portion (mounting screw portion) 84 and a flange portion 85 to be attached to the bottom of the accommodating chamber 39. By providing the female screw portion at the bottom of the storage chamber 39, the male screw type mounting screw portion 84 of the sub storage chamber 80 can be attached.
 上部材80aの下部は、下部材80bの内周面に隙間なく嵌め込まれる連結部86を備えている。この連結部86は、2つのOリング87を備えており、下部材80bの内周面と密着させている。この密着により、分割型のサブ収容室80も密閉構造とすることができる。なお、上部材80aと下部材80bとを連結部86で嵌め込んだ後、下部材80bに設けた押しネジ89の先端を、上部材80aの凹部88に押し当てることで、上部材80aと下部材80bとを一体化させることができる。 The lower part of the upper member 80a is provided with a connecting portion 86 that is fitted into the inner peripheral surface of the lower member 80b without any gap. The connecting portion 86 includes two O-rings 87 and is in close contact with the inner peripheral surface of the lower member 80b. Due to this close contact, the split type sub-accommodation chamber 80 can also have a closed structure. After the upper member 80a and the lower member 80b are fitted by the connecting portion 86, the tip of the push screw 89 provided on the lower member 80b is pressed against the recess 88 of the upper member 80a to press the upper member 80a and the lower member 80a. The member 80b can be integrated.
 <開閉弁>
 第1開閉弁53は、図9ではサブ収容室80と定量室56とを連結する配管58の途中に設けられている。一方、図4では、収容室39と定量室56とを連結する配管58の途中に設けられている。この第1開閉弁53は、サブ収容室80又は収容室39から次亜塩素酸ナトリウム液60を流出させ又は流出を止めるための開閉弁である。好ましくは、電磁弁が採用される。第1開閉弁53が開いたとき、次亜塩素酸ナトリウム液60がノズル53aから流出し、配管58、ノズル59を経て定量室56内に収容される。このときの流出は、ポンプを使用せず、大気圧で流出(自然流出)するという意味である。
<Opening valve>
In FIG. 9, the first on-off valve 53 is provided in the middle of the pipe 58 connecting the sub-accommodation chamber 80 and the metering chamber 56. On the other hand, in FIG. 4, it is provided in the middle of the pipe 58 connecting the accommodation chamber 39 and the metering chamber 56. The first on-off valve 53 is an on-off valve for letting out or stopping the outflow of the sodium hypochlorite solution 60 from the sub-accommodation chamber 80 or the accommodation chamber 39. Preferably, a solenoid valve is adopted. When the first on-off valve 53 is opened, the sodium hypochlorite solution 60 flows out from the nozzle 53a and is housed in the metering chamber 56 via the pipe 58 and the nozzle 59. The outflow at this time means that the outflow (spontaneous outflow) occurs at atmospheric pressure without using a pump.
 第1開閉弁53を開いて次亜塩素酸ナトリウム液60を収容室39(図4)又はサブ収容室80(図9)から流出する際、後述する第2開閉弁54は閉じたままである。こうすることにより、流出した次亜塩素酸ナトリウム液60は、容器内に注入されずに、定量室56に入る。なお、後述するように、定量室56に所定量の次亜塩素酸ナトリウム液60が入った場合には、第1開閉弁53が閉じるとともに第2開閉弁54が開く。こうした開閉弁の操作により、次亜塩素酸ナトリウム液60の所定量が容器5内に注入されることになる。 When the first on-off valve 53 is opened and the sodium hypochlorite solution 60 flows out of the accommodation chamber 39 (FIG. 4) or the sub-accommodation chamber 80 (FIG. 9), the second on-off valve 54, which will be described later, remains closed. By doing so, the outflowed sodium hypochlorite solution 60 enters the quantification chamber 56 without being injected into the container. As will be described later, when a predetermined amount of sodium hypochlorite solution 60 is contained in the metering chamber 56, the first on-off valve 53 is closed and the second on-off valve 54 is opened. By operating the on-off valve in this way, a predetermined amount of the sodium hypochlorite solution 60 is injected into the container 5.
 なお、次亜塩素酸ナトリウム液60が大気圧で流出(自然流出)するということは、収容室39(収容室39とサブ収容室80とからなる空間も含む。この段落において同じ。)が大気圧に開放されていることを意味している。そうした開放は、図4の例では、収容室39の上部に設けられた第3開閉弁55で開閉する空気流入口55aで行うことができ、収容室39内の圧力を大気圧と同じにすることができる。この第3開閉弁55も電磁弁であることが好ましい。このように、密閉した収容室39から次亜塩素酸ナトリウム液60を定量室56に流出させる際に、第3開閉弁55を開くことで、収容室39内を大気圧にして次亜塩素酸ナトリウム液60を流出し易くさせることができる。 The fact that the sodium hypochlorite solution 60 flows out (spontaneously outflows) at atmospheric pressure means that the accommodation chamber 39 (including the space consisting of the accommodation chamber 39 and the sub-containment chamber 80. The same applies in this paragraph) is large. It means that it is open to atmospheric pressure. In the example of FIG. 4, such opening can be performed at the air inlet 55a which is opened and closed by the third on-off valve 55 provided in the upper part of the accommodation chamber 39, and the pressure in the accommodation chamber 39 is made the same as the atmospheric pressure. be able to. The third on-off valve 55 is also preferably a solenoid valve. In this way, when the sodium hypochlorite solution 60 is discharged from the closed storage chamber 39 to the metering chamber 56, the third on-off valve 55 is opened to bring the inside of the storage chamber 39 to atmospheric pressure and hypochlorous acid. The sodium solution 60 can be easily discharged.
 この第3開閉弁55は、定量室56に流出させる場合以外は閉じられている。こうすることで、次亜塩素酸ナトリウム液60が密閉性よく収容した状態になっている収容室39やサブ収容室80から、次亜塩素酸ナトリウム液60が揮発又は蒸発するのを防ぐことができる。その結果、次亜塩素酸ナトリウム液60の臭いの発散等を防ぐことができる。また、収容室39(図4)やサブ収容室80(図9)から次亜塩素酸ナトリウム液60を定量室56に流出させる場合以外に第3開閉弁(電磁弁)55を閉じておくことで、収容室39を密閉することができる。そのため、万が一、装置1が転倒する場合があったとしても、収容室39から次亜塩素酸ナトリウム液60が漏れることがない。 The third on-off valve 55 is closed except when it is discharged to the metering chamber 56. By doing so, it is possible to prevent the sodium hypochlorite liquid 60 from volatilizing or evaporating from the storage chamber 39 or the sub-storage chamber 80 in which the sodium hypochlorite liquid 60 is housed in a well-sealed state. it can. As a result, it is possible to prevent the odor of the sodium hypochlorite solution 60 from being emitted. In addition, the third on-off valve (solenoid valve) 55 should be closed except when the sodium hypochlorite solution 60 is discharged from the storage chamber 39 (FIG. 4) or the sub-containment chamber 80 (FIG. 9) to the metering chamber 56. Therefore, the storage chamber 39 can be sealed. Therefore, even if the device 1 may tip over, the sodium hypochlorite solution 60 does not leak from the storage chamber 39.
 <定量室>
 定量室56は、図9ではサブ収容室80(図4では収容室39)から次亜塩素酸ナトリウム液60の所定量を第1開閉弁53により流出(自然流出)させて収容する部材である。定量室56から次亜塩素酸ナトリウム液60が容器5に注入される際には、定量室56内の圧力が大気圧と同じにしている。こうすることにより、定量室56内に収容された所定量の次亜塩素酸ナトリウム液60を容易に容器5内に注入させることができる。容器5に注入した後の定量室56には次亜塩素酸ナトリウム液60は残っていないので、次亜塩素酸ナトリウム液60の揮発や臭いの問題が小さい。大気圧と同じにする手段としては、常時大気圧とする配管57が設けられていてもよいし、第2開閉弁54が開くのと同時に開く第4開閉弁(図示しない)を備えていてもよい。
<Quantitative room>
The metering chamber 56 is a member that allows a predetermined amount of the sodium hypochlorite solution 60 to flow out (spontaneously outflow) from the sub-containment chamber 80 (containment chamber 39 in FIG. 4) by the first on-off valve 53 in FIG. .. When the sodium hypochlorite solution 60 is injected into the container 5 from the quantification chamber 56, the pressure in the quantification chamber 56 is made the same as the atmospheric pressure. By doing so, a predetermined amount of the sodium hypochlorite solution 60 contained in the quantification chamber 56 can be easily injected into the container 5. Since the sodium hypochlorite solution 60 does not remain in the quantification chamber 56 after being injected into the container 5, the problem of volatilization and odor of the sodium hypochlorite solution 60 is small. As a means for making the atmospheric pressure the same, a pipe 57 that always keeps the atmospheric pressure may be provided, or a fourth on-off valve (not shown) that opens at the same time as the second on-off valve 54 opens may be provided. Good.
 定量室56は、図5に示すように、透明パイプ61と、透明パイプ61を下から保持する下部フランジ62と、透明パイプ61を上から保持する上部フランジ63とで構成されている。上部フランジ63には、既述した配管57が設けられている。下部フランジ62には、次亜塩素酸ナトリウム液60を流入させるノズル59が接続されている。図5(C)中の矢印は、図9ではサブ収容室80(図4では収容室39)から流出した次亜塩素酸ナトリウム液60の流れを示している。 As shown in FIG. 5, the metering chamber 56 is composed of a transparent pipe 61, a lower flange 62 that holds the transparent pipe 61 from below, and an upper flange 63 that holds the transparent pipe 61 from above. The upper flange 63 is provided with the pipe 57 described above. A nozzle 59 for flowing in the sodium hypochlorite solution 60 is connected to the lower flange 62. The arrow in FIG. 5C shows the flow of the sodium hypochlorite solution 60 flowing out of the sub-containment chamber 80 (containment chamber 39 in FIG. 4) in FIG.
 定量室56には、図5(B)に示すように、所定量に至った次亜塩素酸ナトリウム液60を検知する第1液面センサー66a,66bと、所定量の次亜塩素酸ナトリウム液60が容器5に注出し終わったことを検知する第2液面センサー67a,67bとを備えている。こうすることにより、第1液面センサー66a,66bにより所定量を検知したときに、第1開閉弁53を閉じて第2開閉弁54を開くので、常に所定濃度に希釈された次亜塩素酸ナトリウム希釈液を生成することができる。また、第2液面センサー67a,67bにより、所定量の次亜塩素酸ナトリウム液60が容器5に注出し終わったことを検知するので、定量室56内の次亜塩素酸ナトリウム液60を無駄なく排出することができる。なお、図5(B)の例では、第1液面センサー66a,66bと第2液面センサー67a,67bとを備えているが、それ以外の液面センサーが設けられていてもよい。なお、こうした第1液面センサー66a,66bにより、定量室56内に収容する次亜塩素酸ナトリウム液60の所定量を検知することができるが、それ以外にも、後述のように、図5に示す流下ノズル54aの構造により微調整することができる。 As shown in FIG. 5B, the quantification chamber 56 contains first liquid level sensors 66a and 66b for detecting a predetermined amount of sodium hypochlorite solution 60, and a predetermined amount of sodium hypochlorite solution. It is provided with second liquid level sensors 67a and 67b for detecting that 60 has finished pouring into the container 5. By doing so, when a predetermined amount is detected by the first liquid level sensors 66a and 66b, the first on-off valve 53 is closed and the second on-off valve 54 is opened, so that hypochlorous acid always diluted to a predetermined concentration is used. A sodium diluent can be produced. Further, since the second liquid level sensors 67a and 67b detect that a predetermined amount of the sodium hypochlorite liquid 60 has been poured into the container 5, the sodium hypochlorite liquid 60 in the quantification chamber 56 is wasted. Can be discharged without. In the example of FIG. 5B, the first liquid level sensors 66a and 66b and the second liquid level sensors 67a and 67b are provided, but other liquid level sensors may be provided. The first liquid level sensors 66a and 66b can detect a predetermined amount of the sodium hypochlorite liquid 60 contained in the metering chamber 56, but in addition to that, as will be described later, FIG. It can be finely adjusted by the structure of the flow nozzle 54a shown in.
 定量室56は、図5に示すように、定量室56内から容器5に向けて次亜塩素酸ナトリウム液60を流下させる流下ノズル54aを有している。この流下ノズル54aは、定量室内側にフランジ部65を有している。フランジ部65は、その大きさを変えて定量室56内に収容する次亜塩素酸ナトリウム液60の量を微調整することができる。具体的には、図5に示すフランジ部65の高さを変化させることにより、そのフランジ部65の容積分だけ、定量室56内での次亜塩素酸ナトリウム液60の量を微調整することができる。したがって、フランジ部65の高さの異なるものを複数種類準備しておくことが好ましい。 As shown in FIG. 5, the quantification chamber 56 has a flow nozzle 54a that allows the sodium hypochlorite solution 60 to flow down from the inside of the quantification chamber 56 toward the container 5. The flow-down nozzle 54a has a flange portion 65 on the metering chamber side. The size of the flange portion 65 can be changed to finely adjust the amount of the sodium hypochlorite solution 60 contained in the metering chamber 56. Specifically, by changing the height of the flange portion 65 shown in FIG. 5, the amount of the sodium hypochlorite solution 60 in the quantification chamber 56 is finely adjusted by the volume of the flange portion 65. Can be done. Therefore, it is preferable to prepare a plurality of types of flange portions 65 having different heights.
 <注入部>
 注入部45は、定量室56から所定量の次亜塩素酸ナトリウム液60を第2開閉弁54により流下(自然流下)させて容器5内に注入する部材である。注入部45は、容器5内に次亜塩素酸ナトリウム液60を注入する注入ノズル(図示しない)を有している。その注入ノズルは、予め容器5内に入れてある水の中まで入る長さに設計されている。こうすることにより、注入ノズルの先端には、次亜塩素酸ナトリウム液60は残っておらず、水で希釈された希釈液が残っているだけである。その結果、注入ノズルの先端から垂れることがある液体は、濃度が薄い希釈された液なので、その液に触れた場合であっても大きな影響が生じない。注入ノズルの形状は特に限定されないが、同一径のパイプであってもよいし、先端が細くなったパイプであってもよい。なお、注入部45と第2開閉弁54との間には、図2(B)に示すように、必要に応じて接続配管54bが設けられている。
<Injection part>
The injection unit 45 is a member that allows a predetermined amount of sodium hypochlorite solution 60 to flow down (naturally flow down) from the metering chamber 56 by the second on-off valve 54 and inject it into the container 5. The injection unit 45 has an injection nozzle (not shown) for injecting the sodium hypochlorite solution 60 into the container 5. The injection nozzle is designed to have a length that allows it to enter water that has been previously placed in the container 5. By doing so, the sodium hypochlorite solution 60 does not remain at the tip of the injection nozzle, only the diluted solution diluted with water remains. As a result, the liquid that may drip from the tip of the injection nozzle is a diluted liquid having a low concentration, so that even if it comes into contact with the liquid, there is no significant effect. The shape of the injection nozzle is not particularly limited, but it may be a pipe having the same diameter or a pipe having a tapered tip. As shown in FIG. 2B, a connection pipe 54b is provided between the injection unit 45 and the second on-off valve 54, if necessary.
 希釈水は、容器5内の水に所定量の次亜塩素酸ナトリウム液60を注入して得ることができる。例えば、200ppmの希釈水とした場合には、pHは9.8程度になり、1000ppmの希釈水とした場合には、pHは10.7程度になる。このように、希釈水はアルカリ性であるので、もちろんそのまま使用してもよいが、酸性溶液を加えて中和して中性溶液とすることができる。中和は、後述する酸収容キャップ90を適用して行ってもよい。中和した希釈水は、安全性が極めて高くなり、酸化分解を伴う殺菌力も高くなるため、傷等の殺菌洗浄や、口腔ケア、空気感染対策としての空間噴霧に利用することができる。 Diluted water can be obtained by injecting a predetermined amount of sodium hypochlorite solution 60 into the water in the container 5. For example, when 200 ppm of diluted water is used, the pH is about 9.8, and when 1000 ppm of diluted water is used, the pH is about 10.7. As described above, since the diluted water is alkaline, it can be used as it is, of course, but it can be neutralized by adding an acidic solution to obtain a neutral solution. Neutralization may be carried out by applying the acid containing cap 90 described later. Neutralized diluted water is extremely safe and has high bactericidal activity accompanied by oxidative decomposition. Therefore, it can be used for sterilizing and cleaning wounds, oral care, and air spraying as a countermeasure against airborne infection.
 <操作パネル面等>
 生成装置1の上部4の手前側前面は、図1に示すように、操作パネル面41、前面部42、傾斜部43で構成されている。操作パネル44は、液晶表示パネルであることが好ましく、操作パネル面41に埋め込まれている。こうした操作パネル44での操作は、少なくとも希釈液の濃度設定を行うが、それ以外の表示を行うことができる。そうした表示としては、容器センサー35による容器5の有無の表示、収容室39への次亜塩素酸ナトリウム液60の補充の表示や残量の表示、チャイルドロックの選択表示、配管異常の表示、電源異常の表示、バッテリー残量の表示、時刻表示、情報データの送信表示、等の機能の中から任意に選択した装置とすることができる。なお、現実には、コストを考慮して設計される。
<Operation panel surface, etc.>
As shown in FIG. 1, the front surface of the upper portion 4 of the generator 1 is composed of an operation panel surface 41, a front surface portion 42, and an inclined portion 43. The operation panel 44 is preferably a liquid crystal display panel, and is embedded in the operation panel surface 41. In such an operation on the operation panel 44, at least the concentration of the diluent is set, but other indications can be performed. Such displays include the presence / absence of the container 5 by the container sensor 35, the display of replenishment of the sodium hypochlorite solution 60 in the storage chamber 39 and the display of the remaining amount, the selection display of the child lock, the display of the piping abnormality, and the power supply. The device can be arbitrarily selected from functions such as abnormality display, battery level display, time display, and information data transmission display. In reality, it is designed in consideration of cost.
 <動作フロー>
 図6は、生成装置1の操作工程を説明するフロー図である。以下、フロー順に説明する。先ず、電源を投入し、イニシャル情報を設定してスタートさせる。次に、容器センサー35で、水が入った容器5が設置されているかを検知する。水が入った容器5が設置されている場合には、濃度を設定する。図6の例では、200ppmと1000ppmのいずれかの濃度を選択する。濃度を選択した後、第1開閉弁(電磁弁)53と第3開閉弁(電磁弁)55とが開かれ、図9ではサブ収容室80(図4では収容室39)から定量室56に次亜塩素酸ナトリウム液60が流入する。このとき、第2開閉弁(電磁弁)54は閉じている。定量室56での定量は、上側の一対の第1液面センサー66a,66bがONになり、第1液面センサー66a,66bで液が検知されると、第1開閉弁53が閉じて第2開閉弁54が開く。第2開閉弁54が開くことで、定量室56から容器内に次亜塩素酸ナトリウム液60が注入される。第2開閉弁54は、第2液面センサー67a,67bで液が検知されなくなることによって閉じる。これと同時に、第3開閉弁55も閉じる。なお、濃度が1000ppmを設定したときは、この操作を5回繰り返す。こうして希釈水を生成することができる。
<Operation flow>
FIG. 6 is a flow chart illustrating an operation process of the generation device 1. Hereinafter, the flow order will be described. First, turn on the power, set the initial information, and start. Next, the container sensor 35 detects whether or not the container 5 containing water is installed. If a container 5 containing water is installed, set the concentration. In the example of FIG. 6, the concentration of either 200 ppm or 1000 ppm is selected. After selecting the concentration, the first on-off valve (solenoid valve) 53 and the third on-off valve (solenoid valve) 55 are opened, from the sub-containment chamber 80 (containment chamber 39 in FIG. 4) to the metering chamber 56 in FIG. Sodium hypochlorite solution 60 flows in. At this time, the second on-off valve (solenoid valve) 54 is closed. In the quantification in the quantification chamber 56, when the pair of upper first liquid level sensors 66a and 66b are turned on and the liquid is detected by the first liquid level sensors 66a and 66b, the first on-off valve 53 is closed and the first on-off valve 53 is closed. 2 The on-off valve 54 opens. When the second on-off valve 54 is opened, the sodium hypochlorite solution 60 is injected into the container from the metering chamber 56. The second on-off valve 54 is closed when the liquid is no longer detected by the second liquid level sensors 67a and 67b. At the same time, the third on-off valve 55 is also closed. When the concentration is set to 1000 ppm, this operation is repeated 5 times. In this way, diluted water can be produced.
 なお、定量室56の第1液面センサー66a,66bで所定量に至ったことを検知できない場合には、例えば5秒のタイムアウトの薬液補充メッセージが表示され、第1開閉弁53を閉じ、その後に補充確認を行った後、再度第1開閉弁53を開く。こうした操作で第1液面センサー66a,66bで所定量に至ったことを検知できた場合に、第2開閉弁54が開いて、定量室56から容器内に次亜塩素酸ナトリウム液60が注入される。 If the first liquid level sensors 66a and 66b of the metering chamber 56 cannot detect that the predetermined amount has been reached, for example, a 5-second timeout chemical replenishment message is displayed, the first on-off valve 53 is closed, and then After confirming the replenishment, the first on-off valve 53 is opened again. When the first liquid level sensors 66a and 66b can detect that the predetermined amount has been reached by such an operation, the second on-off valve 54 opens and the sodium hypochlorite liquid 60 is injected into the container from the metering chamber 56. Will be done.
 <酸収容キャップ>
 本発明に係る生成装置1では、容器5内に次亜塩素酸ナトリウム液60を注入して希釈水を生成できるが、得られた希釈水は、そのままではアルカリ性を示している。アルカリ性の希釈液は、もちろん菌、殺菌、感染予防、消臭、洗浄、掃除、消臭等に有効ではあるが、中和して中性にすることにより、その活用の幅を広げることができる。中性にした希釈水は、大気中に噴霧することができ、また、アルカリに反応して変色しやすい素材に対して問題なく利用することができる。
<Acid storage cap>
In the generator 1 according to the present invention, the sodium hypochlorite solution 60 can be injected into the container 5 to generate diluted water, but the obtained diluted water is alkaline as it is. Of course, the alkaline diluent is effective for bacteria, sterilization, infection prevention, deodorization, cleaning, cleaning, deodorization, etc., but by neutralizing it to make it neutral, the range of its utilization can be expanded. .. The neutralized diluted water can be sprayed into the atmosphere, and can be used without problems for materials that easily discolor in response to alkali.
 中和は、酸を供給することで行うことができる。図7は、酸性溶液を収容する酸収容キャップ90の例である。酸収容キャップ90は、容器5の口部に装着して、容器5内で生成した希釈液のpHを調整するための酸性溶液を収容する部材である。この酸収容キャップ90により、容器5内で生成した希釈液のpHを調整することができる。 Neutralization can be performed by supplying acid. FIG. 7 is an example of an acid containing cap 90 that houses an acidic solution. The acid containing cap 90 is a member that is attached to the mouth of the container 5 and holds an acidic solution for adjusting the pH of the diluted solution produced in the container 5. With this acid containing cap 90, the pH of the diluent produced in the container 5 can be adjusted.
 図7に示す例では酸収容キャップ90は、胴体部91と酸収容部92と先端蓋部93とで構成されている。胴体部91は、図7(A)(B)に示すように、酸収容部92を貫通させる中空の胴体部であり、滑り防止部91aと、酸収容部接続部91b、先端蓋部当接部91cとで構成されている。滑り防止部91aは、手で持った時に滑らないように加工された部分である。酸収容部接続部91bは、図7(B)(C)に示すように、酸収容部92の回転部92aの内壁面に形成された雌ネジ部(図示しない)に螺合する雄ネジ部である。先端蓋部当接部91cは、先端蓋部93が酸収容部92の先端に嵌め合わされた時に当接する部分である。 In the example shown in FIG. 7, the acid accommodating cap 90 is composed of a body portion 91, an acid accommodating portion 92, and a tip lid portion 93. As shown in FIGS. 7A and 7B, the body portion 91 is a hollow body portion that penetrates the acid accommodating portion 92, and is in contact with the anti-slip portion 91a, the acid accommodating portion connecting portion 91b, and the tip lid portion. It is composed of a part 91c. The anti-slip portion 91a is a portion processed so as not to slip when held by hand. As shown in FIGS. 7B and 7C, the acid accommodating portion connecting portion 91b is a male screw portion screwed into a female screw portion (not shown) formed on the inner wall surface of the rotating portion 92a of the acid accommodating portion 92. Is. The tip lid portion contact portion 91c is a portion that contacts the tip lid portion 93 when it is fitted to the tip of the acid accommodating portion 92.
 酸収容部92は、回転部92aと筒部92bとで構成されている。回転部92aは、その内壁面に雌ネジ部を有し、胴体部91の酸収容部接続部91bに螺合する。筒部92bは、胴体部91の中空部分を貫通する筒状体であり、内部に酸性溶液(例えば所定濃度の塩酸溶液)を収容する部分である。 The acid accommodating portion 92 is composed of a rotating portion 92a and a tubular portion 92b. The rotating portion 92a has a female screw portion on the inner wall surface thereof, and is screwed into the acid accommodating portion connecting portion 91b of the body portion 91. The tubular portion 92b is a tubular body that penetrates the hollow portion of the body portion 91, and is a portion that houses an acidic solution (for example, a hydrochloric acid solution having a predetermined concentration) inside.
 先端蓋部93は、蓋外周部93aと、蓋内周部93bと、蓋外周部93aと蓋内周部93bとの間の蓋嵌め込み部93cとで構成されている。先端蓋部93は、図7(B)(C)に示すように、酸収容部92の先端に蓋嵌め込み部93cが嵌まって、酸収容部92内に収容された酸性溶液を密閉するように機能する。 The tip lid portion 93 is composed of a lid outer peripheral portion 93a, a lid inner peripheral portion 93b, and a lid fitting portion 93c between the lid outer peripheral portion 93a and the lid inner peripheral portion 93b. As shown in FIGS. 7B and 7C, the tip lid portion 93 has a lid fitting portion 93c fitted to the tip of the acid containing portion 92 so as to seal the acidic solution contained in the acid containing portion 92. Works for.
 酸性溶液は、図7(C)に示すように、酸収容部92と先端蓋部93とで収容されている。胴体部91の内壁面には、容器5の口部に螺合して接続するネジ部が設けられているので、酸収容キャップ90を、希釈水を収容した容器5の口部に螺合して接続する。その後、酸収容キャップ90の酸収容部92を回転させると、回転部92aが胴体部91から離れていき、酸収容部92先端から先端蓋部93が離脱する。この離脱により、容器5内に先端蓋部93が落下し、内部に収容された酸性溶液は容器内に投入される。 As shown in FIG. 7C, the acid solution is contained in the acid accommodating portion 92 and the tip lid portion 93. Since the inner wall surface of the body portion 91 is provided with a screw portion for screwing and connecting to the mouth portion of the container 5, the acid storage cap 90 is screwed into the mouth portion of the container 5 containing diluted water. To connect. After that, when the acid accommodating portion 92 of the acid accommodating cap 90 is rotated, the rotating portion 92a is separated from the body portion 91, and the tip lid portion 93 is separated from the tip of the acid accommodating portion 92. Due to this detachment, the tip lid portion 93 falls into the container 5, and the acidic solution contained therein is put into the container.
 なお、酸収容キャップ90は、所定量の水を収容した容器5に装着して、その水を事前に酸性にしておいた後に、容器5内に希釈水を生成して、その希釈水を中性にすることが好ましい。一方、酸収容キャップ90は、生成したpH9±0.2程度の希釈水を収容した容器5に装着して、アルカリ性の希釈水を酸性に中和してもよい。中和するための酸性溶液の種類と濃度は、希釈水に含まれる次亜塩素酸ナトリウム液60の量に応じたものとする。こうした酸収容キャップ90での中和は、酸性溶液の取り扱いが安全且つ簡単であり、ガスの発生がない、酸が手に触れない、酸の保管管理を酸収容キャップ90自体で行うので管理しやすい、という利点がある。また、中性希釈水は先端蓋部93が容器5内に残っているので、pH調整された中性希釈水とpH調整されていないアルカリ性希釈水とを容易に区別することができる。 The acid storage cap 90 is attached to a container 5 containing a predetermined amount of water, and after the water is acidified in advance, diluted water is generated in the container 5 and the diluted water is filled in. It is preferable to make it sex. On the other hand, the acid containing cap 90 may be attached to the container 5 containing the generated diluted water having a pH of about 9 ± 0.2 to neutralize the alkaline diluted water to acidity. The type and concentration of the acidic solution for neutralization shall depend on the amount of sodium hypochlorite solution 60 contained in the diluted water. Such neutralization with the acid containing cap 90 is controlled because the handling of the acidic solution is safe and easy, no gas is generated, the acid does not come into contact with the hand, and the acid storage management is performed by the acid containing cap 90 itself. It has the advantage of being easy. Further, since the tip lid portion 93 of the neutral diluted water remains in the container 5, it is possible to easily distinguish between the pH-adjusted neutral diluted water and the non-pH-adjusted alkaline diluted water.
 以上説明した本発明に係る次亜塩素酸ナトリウム希釈液の生成装置1は、除菌、殺菌、感染予防、消臭、洗浄、掃除、消臭等に有効な次亜塩素酸ナトリウム希釈液を、手軽に迅速に生成できる。ポンプを有しないので、小型化と低コスト化を実現できる。その結果、福祉施設、医療機関、介護施設、保育園、幼稚園、学校、消防署、市役所等地方自治体での利用を期待できる。さらに、小型で移動しやすいので、被災地での利用も期待できる。バッテリーを装着していれば、電気がなくても利用でき、災害時や停電時でも使用できる。 The sodium hypochlorite diluent 1 generator 1 according to the present invention described above provides sodium hypochlorite diluent effective for sterilization, sterilization, infection prevention, deodorization, cleaning, cleaning, deodorization, etc. It can be generated easily and quickly. Since it does not have a pump, it is possible to realize miniaturization and cost reduction. As a result, it can be expected to be used in local governments such as welfare facilities, medical institutions, long-term care facilities, nursery schools, kindergartens, schools, fire stations, and city halls. Furthermore, because it is small and easy to move, it can be expected to be used in disaster areas. If a battery is installed, it can be used without electricity and can be used even in the event of a disaster or power outage.
 特に、ノロウィルス代替ネコカリシウィルス、インフルエンザウィルス、ヘルペスウィルス、アデノウィルス、コクサッキーウィルス、パルボウィルス、黄色ブドウ球菌、緑膿菌、サルモネラ菌、ビブリオ菌、カンジダ菌、結核菌、デフィシレ菌芽胞、セレウス菌芽胞に対して効果がある次亜塩素酸ナトリウム希釈液を、低コストで安全に生成することができる。さらに、現在、医療分野で問題となっているメチシリン耐性黄色ブドウ球菌(MRSA)、多剤耐性緑膿菌(MDRP)、バンコマイシン耐性腸球菌(VRE)、新型コロナウイルス(COVID-19)に対して効果がある次亜塩素酸ナトリウム希釈液を、低コストで安全に生成することができる。本発明に係る次亜塩素酸ナトリウム希釈液の生成装置はポンプを使用せずに、弁の開閉によって液が自然流下する機構であり、低コストで安全な希釈液生成装置になっているので、福祉施設、病院、役所、学校、民間の各種施設等のステーション毎に設置されることにより、手軽に且つ迅速に希釈液を準備でき、直ぐに使用することができる。そのため、感染経路遮断手段として、空間殺菌、加湿、手洗い、うがい等において極めて高い殺菌性と安全性を備えた次亜塩素酸ナトリウム希釈液の生成装置として極めて有用である。 In particular, norovirus substitute cat calicivirus, influenza virus, herpesvirus, adenovirus, coxsackie virus, parvovirus, Staphylococcus aureus, pyogenes, salmonella, vibrio, candida, tuberculosis, defisile spore, sporeus spore A sodium hypochlorite diluent that is effective against the virus can be safely produced at low cost. Furthermore, against methicillin-resistant Staphylococcus aureus (MRSA), multidrug-resistant Pseudomonas aeruginosa (MDRP), vancomycin-resistant enterococci (VRE), and new coronavirus (COVID-19), which are currently problems in the medical field. An effective sodium hypochlorite diluent can be safely produced at low cost. The sodium hypochlorite diluent generator according to the present invention is a mechanism in which the liquid naturally flows down by opening and closing the valve without using a pump, and is a low-cost and safe diluent generator. By installing it at each station such as welfare facilities, hospitals, government offices, schools, and various private facilities, the diluent can be prepared easily and quickly and can be used immediately. Therefore, as a means for blocking the infection route, it is extremely useful as a generator of a sodium hypochlorite diluent having extremely high bactericidal properties and safety in space sterilization, humidification, hand washing, gargle and the like.
 1 次亜塩素酸ナトリウム希釈液の生成装置
 2 底部
 3 本体部
 4 上部
 5 容器
 21 トレイ
 22 スリットプレート
 23 中央穴
 24 コーナー穴
 31 取って
 32 センサー窓
 33 上蓋
 34 つまみ
 35 容器センサー
 37 電源部
 38 回路板
 39 収容室
 40 投入口
 41a 雄ねじ口
 41b 雌ねじキャップ
 41 操作パネル面
 42 前面部
 43 傾斜部
 44 操作パネル
 45 注入部
 51 液面計収容部
 52 液面計観察部
 53 第1開閉弁(第1電磁弁)
 53a ノズル
 54 第2開閉弁(第2電磁弁)
 54a 流下ノズル
 54b 接続配管
 55 第3開閉弁(第3電磁弁)
 55a 空気流入口
 56 定量室
 57 配管
 58 配管
 59 ノズル
 60 次亜塩素酸ナトリウム液
 61 透明パイプ
 62 下部フランジ
 63 上部フランジ
 65 フランジ部
 66a,66b 第1液面センサー
 67a,67b 第2液面センサー
 80 サブ収容室
 80a 上部材
 80b 下部材
 81 サブ収容室の内部
 82 ノズル
 83 流出部
 84 取付部(取付ネジ部)
 85 フランジ部
 86 連結部
 87 Oリング
 88 凹部
 89 押しネジ
 90 酸収容キャップ
 91 胴体部
 91a 滑り防止部
 91b 酸収容部接続部
 91c 先端蓋部当接部
 92 酸収容部
 92a 回転部
 92b 筒部
 93 先端蓋部
 93a 蓋外周部
 93b 蓋内周部
 93c 蓋嵌め込み部
Generator of primary sodium hypochlorite diluent 2 Bottom 3 Main body 4 Top 5 Container 21 Tray 22 Slit plate 23 Center hole 24 Corner hole 31 Take 32 Sensor window 33 Top lid 34 Knob 35 Container sensor 37 Power supply 38 Circuit board 39 Storage chamber 40 Input port 41a Male screw port 41b Female screw cap 41 Operation panel surface 42 Front part 43 Inclined part 44 Operation panel 45 Injection part 51 Liquid level gauge storage part 52 Liquid level gauge observation part 53 First on-off valve (first solenoid valve) )
53a Nozzle 54 Second on-off valve (second solenoid valve)
54a Flow nozzle 54b Connection piping 55 Third on-off valve (third solenoid valve)
55a Air inlet 56 Metering chamber 57 Piping 58 Piping 59 Nozzle 60 Sodium hypochlorite solution 61 Transparent pipe 62 Lower flange 63 Upper flange 65 Flange part 66a, 66b 1st liquid level sensor 67a, 67b 2nd liquid level sensor 80 Sub Containment chamber 80a Upper member 80b Lower member 81 Inside of sub-accommodation chamber 82 Nozzle 83 Outflow part 84 Mounting part (mounting screw part)
85 Flange part 86 Connection part 87 O-ring 88 Recession 89 Push screw 90 Acid storage cap 91 Body part 91a Anti-slip part 91b Acid storage part Connection part 91c Tip lid contact part 92 Acid storage part 92a Rotating part 92b Cylinder part 93 Tip Lid 93a Lid outer circumference 93b Lid inner circumference 93c Lid fitting

Claims (12)

  1.  希釈液生成用の容器を設置する部位の上方に設けられて次亜塩素酸ナトリウム液を投入して収容する収容室と、前記収容室の底部に取り付けられて前記次亜塩素酸ナトリウム液が自然流下して収容されるサブ収容室と、前記サブ収容室から前記次亜塩素酸ナトリウム液の所定量を第1開閉弁により流出させて収容する定量室と、前記定量室から前記所定量の次亜塩素酸ナトリウム液を第2開閉弁により流下させて前記容器内に注入する注入部と、を有する、ことを特徴とする次亜塩素酸ナトリウム希釈液の生成装置。 A storage chamber provided above the site where the container for generating the diluent is installed to charge and store the sodium hypochlorite solution, and a storage chamber attached to the bottom of the storage chamber to allow the sodium hypochlorite solution to be naturally produced. A sub-containment chamber for flowing down and accommodating, a quantification chamber for storing a predetermined amount of the sodium hypochlorite solution flowing out from the sub-accommodation chamber by a first on-off valve, and a quantification chamber for accommodating the predetermined amount of the sodium hypochlorite solution. A device for producing a sodium hypochlorite diluent, which comprises an injection portion for injecting a sodium hypochlorite solution into the container by flowing it down by a second on-off valve.
  2.  前記第1開閉弁及び第2開閉弁が電磁弁であり、前記第1開閉弁が開いたとき、前記第2開閉弁は閉じたままで前記次亜塩素酸ナトリウム液の所定量が前記定量室内に収容され、前記所定量が収容されたとき、前記第1開閉弁が閉じるとともに前記第2開閉弁が開いて前記次亜塩素酸ナトリウム液の所定量が前記容器内に注入される、請求項1に記載の次亜塩素酸ナトリウム希釈液の生成装置。 The first on-off valve and the second on-off valve are solenoid valves, and when the first on-off valve opens, the second on-off valve remains closed and a predetermined amount of the sodium hypochlorite solution is placed in the metering chamber. When the predetermined amount is contained, the first on-off valve closes and the second on-off valve opens to inject a predetermined amount of the sodium hypochlorite solution into the container. The generator for the sodium hypochlorite diluent described in 1.
  3.  前記サブ収容室が、前記定量室と隣接した位置に設けられ、前記サブ収容室の底部の流出部から前記定量室の底部の流入部に前記次亜塩素酸ナトリウム液が流入する配管が設けられ、前記第1開閉弁が前記配管の途中に設けられている、請求項1又は2に記載の次亜塩素酸ナトリウム希釈液の生成装置。 The sub-containment chamber is provided at a position adjacent to the metering chamber, and a pipe for flowing the sodium hypochlorite solution from the outflow portion at the bottom of the sub-containment chamber to the inflow portion at the bottom of the metering chamber is provided. The device for producing a sodium hypochlorite diluent according to claim 1 or 2, wherein the first on-off valve is provided in the middle of the pipe.
  4.  前記サブ収容室は上部材と下部材とが接続されてなり、前記上部材の上部は前記収容室の底部に取り付ける取付部を備え、前記上部材の下部は前記下部材の内周面に隙間なく嵌め込まれる連結部を備える、請求項1~3のいずれか1項に記載の次亜塩素酸ナトリウム希釈液の生成装置。 The sub-accommodation chamber is formed by connecting an upper member and a lower member, the upper portion of the upper member is provided with a mounting portion to be attached to the bottom of the accommodation chamber, and the lower portion of the upper member has a gap in the inner peripheral surface of the lower member. The device for producing a sodium hypochlorite diluent according to any one of claims 1 to 3, further comprising a connecting portion to be fitted without any trouble.
  5.  前記収容室は、該収容室内の圧力を大気圧と同じにするための第3開閉弁を有する、請求項1~4のいずれか1項に記載の次亜塩素酸ナトリウム希釈液の生成装置。 The sodium hypochlorite diluent according to any one of claims 1 to 4, wherein the containment chamber has a third on-off valve for making the pressure in the containment chamber the same as atmospheric pressure.
  6.  前記定量室は、該定量室から前記次亜塩素酸ナトリウム液が前記容器に注入される際に、該定量室内の圧力が大気圧と同じにする、請求項1~5のいずれか1項に記載の次亜塩素酸ナトリウム希釈液の生成装置。 The quantification chamber is according to any one of claims 1 to 5, wherein when the sodium hypochlorite solution is injected into the container from the quantification chamber, the pressure in the quantification chamber becomes the same as the atmospheric pressure. The above-mentioned sodium hypochlorite diluent generator.
  7.  前記注入部は、前記容器内に前記次亜塩素酸ナトリウム液を注入する注入ノズルを有し、該注入ノズルは、予め前記容器内に入れてある水の中まで入る長さに設計されている、請求項1~6のいずれか1項に記載の次亜塩素酸ナトリウム希釈液の生成装置。 The injection unit has an injection nozzle for injecting the sodium hypochlorite solution into the container, and the injection nozzle is designed to have a length that allows it to enter into water previously contained in the container. , The device for producing a sodium hypochlorite diluent according to any one of claims 1 to 6.
  8.  前記定量室は、前記所定量に至った前記次亜塩素酸ナトリウム液を検知する第1液面センサーと、前記所定量の前記次亜塩素酸ナトリウム液が前記容器に注出し終わったことを検知する第2液面センサーとを備えている、請求項1~7のいずれか1項に記載の次亜塩素酸ナトリウム希釈液の生成装置。 The quantification chamber detects that the first liquid level sensor that detects the sodium hypochlorite solution that has reached the predetermined amount and that the predetermined amount of the sodium hypochlorite solution has been poured into the container. The device for producing a sodium hypochlorite diluent according to any one of claims 1 to 7, further comprising a second liquid level sensor.
  9.  前記容器の口部に装着して、前記容器内で生成した次亜塩素酸ナトリウム希釈液のpHを調整するための酸収容キャップを備える、請求項1~8のいずれか1項に記載の次亜塩素酸ナトリウム希釈液の生成装置。 The following according to any one of claims 1 to 8, which is attached to the mouth of the container and includes an acid containing cap for adjusting the pH of the sodium hypochlorite diluent produced in the container. Sodium hypochlorite diluent generator.
  10.  前記定量室には、該定量室内から前記容器に向けて前記次亜塩素酸ナトリウム液を流下させる流下ノズルを有し、該流下ノズルは、前記定量室内側にフランジ部を有し、前記フランジ部の大きさを変えて前記定量室内に収容する前記次亜塩素酸ナトリウム液の量を微調整する、請求項1~9のいずれか1項に記載の次亜塩素酸ナトリウム希釈液の生成装置。 The quantification chamber has a flow nozzle for flowing the sodium hypochlorite solution from the quantification chamber toward the container, and the flow nozzle has a flange portion on the quantification chamber side and the flange portion. The device for producing a sodium hypochlorite diluent according to any one of claims 1 to 9, wherein the amount of the sodium hypochlorite solution to be stored in the metering chamber is finely adjusted by changing the size of the sodium hypochlorite solution.
  11.  前記サブ収容室を設けずに、前記収容室と前記定量室とを前記配管で連結し、前記第1開閉弁が前記配管の途中に設けられている、請求項1~10のいずれか1項に記載の次亜塩素酸ナトリウム希釈液の生成装置。 Any one of claims 1 to 10, wherein the accommodation chamber and the metering chamber are connected by the pipe without providing the sub-accommodation chamber, and the first on-off valve is provided in the middle of the pipe. The generator for the sodium hypochlorite diluent described in 1.
  12.  前記希釈液生成用の容器を設置する部位には、前記容器を載置するトレイが設けられている。請求項1~11のいずれか1項に記載の次亜塩素酸ナトリウム希釈液の生成装置。 A tray on which the container is placed is provided at a site where the container for generating the diluent is installed. The device for producing a sodium hypochlorite diluent according to any one of claims 1 to 11.
PCT/JP2020/014912 2019-03-31 2020-03-31 Device for producing sodium hypochlorite diluted solution WO2020204046A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020556829A JP6872832B2 (en) 2019-03-31 2020-03-31 Sodium hypochlorite diluent generator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019069572 2019-03-31
JP2019-069572 2019-03-31
JP2019-208721 2019-11-19
JP2019208721 2019-11-19

Publications (1)

Publication Number Publication Date
WO2020204046A1 true WO2020204046A1 (en) 2020-10-08

Family

ID=72667866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014912 WO2020204046A1 (en) 2019-03-31 2020-03-31 Device for producing sodium hypochlorite diluted solution

Country Status (2)

Country Link
JP (2) JP6872832B2 (en)
WO (1) WO2020204046A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216573A (en) * 1994-02-01 1995-08-15 Yoshitane Tamura Sodium hypochlorite forming device
JP2008259986A (en) * 2007-04-13 2008-10-30 Shinei Kogyo Kk Sterilization device
JP2010253463A (en) * 2009-03-31 2010-11-11 Shinmeiwa:Kk Apparatus for producing residual active chlorine-containing water for sterilization and method therefor
JP2015016761A (en) * 2013-07-10 2015-01-29 栗田工業株式会社 System and method for treating ballast water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216573A (en) * 1994-02-01 1995-08-15 Yoshitane Tamura Sodium hypochlorite forming device
JP2008259986A (en) * 2007-04-13 2008-10-30 Shinei Kogyo Kk Sterilization device
JP2010253463A (en) * 2009-03-31 2010-11-11 Shinmeiwa:Kk Apparatus for producing residual active chlorine-containing water for sterilization and method therefor
JP2015016761A (en) * 2013-07-10 2015-01-29 栗田工業株式会社 System and method for treating ballast water

Also Published As

Publication number Publication date
JP2021119111A (en) 2021-08-12
JPWO2020204046A1 (en) 2021-04-30
JP6872832B2 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
CN104271199B (en) Harl decontamination mechanism and its operating method
US6405387B1 (en) Sanitized jetted bathing facility
US20060037869A1 (en) Scented electrolysis product
JPH01274765A (en) Sterilizing agent concentrate injection system
CN103083697B (en) A kind ofly apply the system and method that Electricity Functional acid electrolyzed functional water carries out cleaning and sterilizing
AU2015364430B2 (en) Cleaning composition
US20210094850A1 (en) Bubble-Generating Electrochemical Reactors and Systems for Manufacturing a Sanitizing, a Disinfecting, and/or a Cleaning Solution
WO2004098657A1 (en) Method for forming bactericidal water containing hypochlorous acid or chlorous acid, raw bactericidal material package and kit for forming bactericidal water, and method and apparatus for sterilizing space
JP2010253463A (en) Apparatus for producing residual active chlorine-containing water for sterilization and method therefor
WO2020204046A1 (en) Device for producing sodium hypochlorite diluted solution
JP2021531941A (en) Sterilization system
WO2012071863A1 (en) Method for sterilizing/disinfecting indoor air
US20150013053A1 (en) Methods and systems for reducing spread of microbes
CN201906242U (en) Air sterilizing equipment capable of spraying perfume and removing unusual smell
CN201883474U (en) Special water supply and drainage device for disinfection and sterilization system
KR100481060B1 (en) Sterilization apparatus for building
JPH07217943A (en) Germ-removing device for air conditioner
CN105363050A (en) Automatic electronic food and beverage sterilizer
KR101460791B1 (en) Apparatus of suppling sterilizing water for bidet
JP2009034361A (en) Apparatus for spraying sterile water
JP2003052556A (en) Automatic hand washing system with ozone water
CN216616071U (en) Automatic disinfectant preparation water tank for disinfection equipment
CN210620339U (en) Automatic dosing equipment for sewage disinfection
JP2002355678A (en) Method and apparatus for making sterilized water
CN203123095U (en) Sterilizer for reverse osmosis water pipeline for hemodialysis water treatment

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020556829

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20783528

Country of ref document: EP

Kind code of ref document: A1