WO2020203937A1 - Method for recovering valuable metals - Google Patents

Method for recovering valuable metals Download PDF

Info

Publication number
WO2020203937A1
WO2020203937A1 PCT/JP2020/014401 JP2020014401W WO2020203937A1 WO 2020203937 A1 WO2020203937 A1 WO 2020203937A1 JP 2020014401 W JP2020014401 W JP 2020014401W WO 2020203937 A1 WO2020203937 A1 WO 2020203937A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixture
metal
reducing agent
valuable
recovering
Prior art date
Application number
PCT/JP2020/014401
Other languages
French (fr)
Japanese (ja)
Inventor
昌麟 王
健太郎 浦田
卓 對馬
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019071320A external-priority patent/JP7103293B2/en
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN202080009023.2A priority Critical patent/CN113302005B/en
Publication of WO2020203937A1 publication Critical patent/WO2020203937A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a technique for recovering a valuable metal such as Co or Ni from an oxide containing Al 2 O 3 or CoO X or NiO X.
  • rare metals such as Co and Ni are used for secondary batteries such as LIB and Ni-MH.
  • LIB lithium-ion rechargeable battery
  • problems such as ubiquitous resources worldwide, and the risk of resource depletion has been pointed out.
  • cobalt and nickel which are indispensable for the production of LIB (lithium-ion rechargeable battery) have problems such as ubiquitous resources worldwide, and the risk of resource depletion has been pointed out.
  • cobalt unfair labor conditions at mines have been reported, and mining alone may not be sufficient to meet the demand.
  • Patent Document 1 describes a method for recovering valuable metals from metal oxides containing alkali metals, which efficiently recovers valuable metals from metal oxides containing alkali metals generated in the process of manufacturing a secondary battery. There is.
  • a reducing agent and a slag-forming agent are added to a metal oxide containing an alkali metal generated in the manufacturing process of a secondary battery, and the valuable metal is reduced and settled. Is to be collected.
  • Patent Document 2 describes a method for easily recovering valuable metals from a used lithium secondary battery in good yield.
  • the method for recovering valuable metals in Patent Document 2 described above includes a step of roasting a used lithium secondary battery to obtain a roasted product, a step of crushing the roasted product to obtain a crushed product, and a step of sieving the crushed product.
  • Patent Document 3 describes a method capable of improving the recovery rate of valuable metals such as cobalt and reducing the recovery cost when a waste battery such as a lithium ion battery is dry-treated.
  • the method for recovering the valuable metal of Patent Document 3 described above is a pre-oxidation step ST20 in which a waste battery containing aluminum and iron is roasted to perform a pre-oxidation treatment, and a melted product obtained by melting the waste battery after the pre-oxidation step ST20.
  • the first slag separation step ST22 for separating and recovering the first slag containing aluminum oxide from the melt, and the first alloy which is the melt after the first slag separation step.
  • Iron is passed through a second slag separation step ST23, which performs an oxidation treatment, and a second slag separation step ST24, which separates and recovers a second slag containing iron from the first alloy after the second oxidation step ST23.
  • the second slag is reused as a flux added to promote the second and subsequent melting steps ST21b. ing.
  • Patent Document 4 describes a recycling method for recovering a metal from a lithium ion battery.
  • the recycling method of Patent Document 4 described above is a method of recovering cobalt from a lithium ion battery containing aluminum and carbon, and includes a step of preparing a bath furnace provided with a means for injecting O 2 and a slag forming agent.
  • the method includes a step of collecting the slag in the phase and a step of separating the slag from the metal phase by boiling water, and the method is expressed in terms of mass% of the metallurgical charge raw material: 153 mass% -3.5 ( Al% + 0.6C%) Self-generated conditions by supplying a fraction of a lithium-ion battery equal to or greater than [Al% and C% represent the mass% of aluminum and carbon in the battery]. It is characterized by being operated with.
  • Patent Document 5 describes a separation step in which a waste secondary battery is physically separated and separated into a separated negative electrode material and a separated positive electrode material, and a valuable metal from the positive electrode material or the separated negative electrode material separated by the separation step.
  • a valuable metal recovery system for recovering valuable metals from a waste secondary battery is described, including a step of recovering the precious metals.
  • the valuable metal recovery system of Patent Document 5 described above includes a separation step of physically separating a waste secondary battery and separating it into a separated negative electrode material and a separated positive electrode material, and a positive electrode material or separation separated by the separation step. It includes a step of recovering valuable metal from the negative electrode material.
  • Patent Document 6 describes a method for reducing the sulfur content generated in the step of recovering the valuable metal contained in the waste battery.
  • the method of Patent Document 6 described above is a method of recovering the valuable metal from a waste battery or process waste containing at least one valuable metal of cobalt or nickel, and (1) pre-roasting treatment, crushing treatment and sieving.
  • a primary concentration step of obtaining a primary concentrate of the valuable metal through a division treatment (2) a secondary concentration step of dissolving the primary concentrate with sulfuric acid and obtaining the solution as a secondary concentrate.
  • Japanese Unexamined Patent Publication No. 2000-226619 Japanese Patent Application Laid-Open No. 10-158751 Japanese Unexamined Patent Publication No. 2012-224877 Special Table 2013-5006048 International Publication No. 2000-025382 Japanese Unexamined Patent Publication No. 2016-037661
  • Patent Document 1 is a technique of recovering a valuable metal as an alloy from a raw material of an oxide containing Li, Mn, Co, Ni, and Fe generated in the manufacturing process of a secondary battery.
  • the raw material does not contain Al in the first place, and cannot be applied when the alloy is recovered from an oxide containing Al. That is, when Al (Al 2 O 3 ) is contained in the raw material, the raw material has a high melting point, so that it cannot be melted and it may be difficult to recover the valuable metal as an alloy. ..
  • Patent Document 3 does not describe the reducing agent ratio required to obtain granular metallic iron.
  • Patent Document 4 As in the case of Patent Document 2, an appropriate reducing agent ratio is not written, and the amount of SiO 2 and CaO added is large, and SiO 2 / Al 2 O 3 and CaO / The value of Al 2 O 3 is high. Therefore, the productivity is low and the cost may be reduced, and the alloy recovery when a large amount of Al 2 O 3 is contained is not included.
  • Patent Document 5 does not contain Al 2 O 3 in the raw material, and cannot be applied when the alloy is recovered from the oxide containing Al.
  • Patent Document 6 is a method of reducing the residue obtained by removing Cu and C from under the sieve after incineration, crushing and sieving with C (coke) or Al, but 100% coke is used as a reducing agent.
  • Patent Documents 1 to 6 are for recovering valuable metals by reducing the recovered material of the secondary battery while melting it, and adding flux to melt the recovered product. It has become.
  • the recovered product is slag containing Al 2 O 3
  • even when flux is added for melting if the amount of flux added is too large, Co and Ni to be recovered in the mixture The amount is reduced and the productivity is directly deteriorated. Therefore, although it is possible to recover the alloys of Co and Ni, there is a concern that the productivity will be deteriorated, the cost will be reduced, and the advantage of relatively low cost, which is a characteristic of pyrometallurgy, will be erased.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method for recovering valuable metals such as Co and Ni from a recovered product containing Al 2 O 3 at low cost and efficiently. And.
  • the method for recovering valuable metals of the present invention takes the following technical measures. That is, in the method for recovering valuable metals of the present invention, a recovered product containing valuable metals is obtained by subjecting a used secondary battery to treatments of heating, crushing, sieving, and magnetic separation, and the obtained recovered product is obtained. By mixing the product with a reducing agent and heating it, the valuable metal in the mixture is metallized by reduction and melted to separate the metal and oxide from the mixture, and after cooling, the metal is sorted from the oxide. In the method for recovering the valuable metal to be recovered, the heating temperature of the mixture is set to 1400 ° C.
  • the amount of oxygen compounded with the valuable metal in the mixture is O [mol. / Kg], where the reducing agent content of the reducing agent contained in the mixture is R [mol / kg], 0 ⁇ O / R ⁇ 0.97 is established, and the reducing agent is contained in the mixture.
  • a reducing agent is mixed with the recovered material so that the ratios x and y of the concentrations [wt%] of Al 2 O 3 , SiO 2 , and CaO satisfy the following formulas (1) to (4), and the valuable metal. It is characterized by collecting.
  • Another method for recovering the valuable metal of the present invention was obtained by subjecting a used secondary battery to a treatment of heating, crushing, sieving, and magnetic separation to obtain a recovered product containing the valuable metal.
  • a recovered product containing the valuable metal.
  • the valuable metal in the mixture is metallized by reduction and melted to separate the metal and oxide from the mixture, and after cooling, the metal is separated from the oxide.
  • the amount of oxygen compounded with the valuable metal in the mixed product is O [mol / kg], which is contained in the mixed product.
  • the reducing agent content of the reducing agent is R [mol / kg]
  • 0 ⁇ O / R ⁇ 0.97 is established, and the SiO 2 of SiO 2 with respect to Al 2 O 3 contained in the mixture is satisfied.
  • a reducing agent is mixed with the recovered product so that the ratio x of the concentration [wt%] and the ratio y of the concentration [wt%] of CaO to Al 2 O 3 satisfy the following formulas (1) to (4).
  • the heating temperature for heating the mixture is T [° C.] and the time for heating the mixture is t [min]
  • the following formula It is characterized in that the recovered product is heated so that 5) is established.
  • the reducing agent one having a particle size of 75 ⁇ m or less and having an integrated volume adjusted to 65% or more is used.
  • valuable metals such as Co and Ni can be recovered inexpensively and efficiently from the recovered product containing Al 2 O 3 .
  • the method for recovering valuable metals in the present embodiment is to recover valuable metals from the recovered material of a used secondary battery in the state of a single metal or an alloy by utilizing a reduction reaction. ..
  • the recovery method of the present embodiment targets a recovery product containing a valuable metal obtained by subjecting a used secondary battery to a treatment of heating, crushing, sieving, and magnetic separation. Then, by mixing the recovered product to be recovered with a reducing agent and heating it, the valuable metal in the mixture is metallized by reduction and melted to separate the metal and the oxide from the mixture, and the metal after cooling. Is selected from oxides and recovered.
  • the amount of oxygen compounded with the valuable metal in the mixture is O [mol / kg], and the reducing agent of the reducing agent contained in the mixture is used.
  • the content is R [mol / kg]
  • 0 ⁇ O / R ⁇ 0.97 is established, and the concentrations of Al 2 O 3 , SiO 2 , and Ca O contained in the mixture [wt%].
  • a reducing agent is mixed with the recovered product so that the ratios x and y of the above satisfy the above formulas (1) to (4).
  • the heating temperature of the mixture is 1400 ° C.
  • the heating temperature for heating the mixture is T [° C.] and the time for heating the mixture is t [min], the above formula (5) ) Is established, and the valuable metal is recovered by heating the mixture.
  • the heating temperature T is preferably 1400 ° C. or higher.
  • the recovered product which is the target of the recovery method described above, is obtained by heating, crushing, sieving, or the like a used secondary battery containing a valuable metal such as nickel and cobalt. That is, in the secondary battery, lithium cobalt oxide, lithium nickel oxide, or the like may be used as the positive electrode material, and valuable metals such as Li, Mn, Co, and Ni are contained. Further, since a metal such as copper may be used for the secondary battery, the used secondary battery is appropriately heated, crushed, sieved, etc., and Li, Mn, Co, Ni, etc. To prepare a recovered product in which the valuable metal of the above is easily recovered.
  • the recovered material is first heated to burn a combustible material such as a synthetic resin contained in a secondary battery as a separator or the like.
  • a combustible material such as a synthetic resin contained in a secondary battery as a separator or the like.
  • metals such as Li, Mn, Co, Ni, Fe, and Cu remain in the state of oxides or metals, so that valuable metals can be easily recovered.
  • oxides or metals such as Li, Mn, Co, Ni, Fe, and Cu may be in large lumps, the particle size is appropriately crushed or sorted so as to easily react with the reducing agent described later. It also needs to be adjusted.
  • the non-magnetized metals can be removed as oxides and dust of metals that are not valuable metals by performing appropriate magnetic selection. It is also possible to improve the recovery efficiency of valuable metals.
  • the reducing agent is mixed with the recovered product for the purpose of removing oxygen bound to valuable metals in the oxide by oxidizing itself.
  • the reducing agent is formed in the form of particles (powder) having a small diameter, and is uniformly mixed with the recovered product formed in the form of particles (powder) having a small diameter, and then heated to a desired temperature. As a result, a reduction reaction is caused. When the reduction reaction occurs, the oxide of the valuable metal contained in the recovered product reacts with the reducing agent, and the oxide of the valuable metal is reduced to a single metal or alloy.
  • reducing agents can be used as the reducing agent of the present invention, and for example, coal such as bituminous coal and carbon-based reducing agent (carbon material reducing agent) such as charcoal and bamboo charcoal can be preferably used. .. Since the reaction product of the reduction reaction of the carbon-based reducing agent is carbon dioxide or carbon monoxide, the reaction product can be easily removed from the recovered product, and the valuable metal can be easily recovered as a single metal or alloy. This is to become.
  • the ratio (O / R) When the above-mentioned ratio (O / R) is too high, the amount of the reducing agent is small with respect to the amount of oxygen combined with the valuable metal to be reduced, so that the reduction is insufficient and the oxygen combined with the valuable metal can be sufficiently reduced. It disappears. Therefore, all the valuable metals such as nickel and cobalt cannot be metallized, and the recovery efficiency of the valuable metals is lowered. If the ratio (O / R) is too low, valuable metals such as nickel and cobalt are sufficiently metallized, but the reducing agent is excessive with respect to the amount of oxygen, so that the reducing agent remains even after the reaction. It ends up.
  • the ratio (O / R) described above is preferably 0 ⁇ O / R ⁇ 0.97, preferably 0.46 ⁇ O / R ⁇ 0.97, and more preferably 0.53 ⁇ . It is preferable that O / R ⁇ 0.97.
  • the heating temperature In order to melt the above-mentioned mixture, it is preferable to first maintain the heating temperature at 1400 ° C. or higher. If the heating temperature is maintained at 1400 ° C. or higher, the elemental metal or the valuable metal of the alloy produced by the reduction reaction can be sufficiently melted, and the valuable metal melted after cooling can be agglomerated and separated from the oxide. It will be easy.
  • the composition of the recovered product is also important in order to bring the above-mentioned reduced mixture into a molten state.
  • the above-mentioned recovered product contains oxides such as Al 2 O 3 , SiO 2 , and CaO, and if Al 2 O 3 is present among them, the mixture may be melted. It will be difficult. Therefore, in the method for recovering valuable metals of the present invention, the Al 2 O 3 concentration [wt%], the SiO 2 concentration [wt%], and the Ca O concentration [wt%] in the mixture are the following formulas (1) to (4). ), The composition of the recovered product or mixture is adjusted.
  • valuable metals such as Co and Ni can be recovered inexpensively and efficiently from the recovered product containing Al 2 O 3 .
  • the heating temperature to 1400 ° C. or higher and melting the mixture
  • recovery of valuable metals after cooling becomes cheaper and more efficient than before, but if there is a method for further increasing the recovery rate, that is, the yield.
  • the mixture when the mixture is reduced in a state where the amount of the reducing agent such as graphite is too large (the state where the O / R is very small) with respect to the amount of oxygen in the oxide such as cobalt, the cobalt and the like are reduced and metallized.
  • the amount of the reducing agent since the amount of the reducing agent is originally larger than the amount of oxygen, the reducing agent not used in the reaction remains in the recovered product. If graphite or the like, which is a reducing agent, is present in the recovered product, the aggregation of metals is inhibited, so that the residual reducing agent inhibits the aggregation of metals.
  • the recovered product is recovered in a state of containing extremely fine metal having a particle size of several tens of ⁇ m or less.
  • a particle size of 1 mm or less is difficult to separate at the time of magnetic separation and cannot be recovered with good magnetic selection efficiency, so that the metal can be recovered.
  • the rate drops significantly. Therefore, in the method for recovering valuable metals of the present invention, the agglomeration of the metal is further promoted, and the metal is recovered after growing into particles having a particle size of more than 1 mm.
  • the higher the heating temperature and the longer the heating time the more the metal aggregates. Therefore, in the present invention, when the heating temperature is T [° C.] and the heating time is t [min], the valuable metal is further increased by heating so that the relationship of the above formula (5) is established. It was made possible to collect by yield.
  • Examples and Comparative Examples a waste battery of a lithium ion battery (LIB) is incinerated, crushed, and sieved, and the material separated under the sieve is used as a recovered product to recover valuable metals and a recovery rate. Is calculated. More specifically, Examples and Comparative Examples were carried out according to Experiments 1 to 3 below.
  • LIB lithium ion battery
  • the mixture is heated to any of the predetermined heating temperatures (1300 ° C., 1350 ° C., 1375 ° C., 1400 ° C.), and the temperature is raised at a heating rate of about 100 ° C./min to determine the predetermined heating. After reaching the temperature, the inside of the crucible was kept in a heated state for 6 minutes at a predetermined heating temperature.
  • the yield (recovery rate) of recovery was calculated for valuable metals of 1 mm or more obtained from the mixture after heating. Specifically, this recovery rate is obtained by dividing the "total weight of the recovered valuable metal" by the "total weight of Co, Ni, Mn, Cu, and Fe contained in the mixture from the beginning". It is a ratio, which is the calculated ratio expressed as a percentage.
  • the reaction product obtained from the heated mixture is pulverized and then subjected to magnetic separation.
  • the reaction products selected on the magnetized side in this magnetic selection are sieved with a mesh size of 1 mm, and the weight of the reaction products remaining on the sieve is weighed to obtain the above-mentioned “total recovered valuable metals”. "Weight" can be calculated.
  • recovery was performed by magnetic separation, but the recovery method is not limited to magnetic selection, and other general recovery techniques can be adopted.
  • the total weight of Co, Ni, Mn, Cu, and Fe contained in the mixture from the beginning is obtained, in principle, all the raw materials of the mixture are analyzed for the mixture before heating. That is, when the mixture is composed of a recovered product and a reducing agent, each of the recovered product and the reducing agent is analyzed by ICP (inductively coupled plasma emission spectrometry). In addition, when the mixture contains flux in addition to the recovered product and the reducing agent, or when a plurality of types of recovered products are mixed and used, ICP analysis is also performed on the flux, and ICP analysis is performed on all recovered products. Or do.
  • the calculated weight concentrations of Co, Ni, Mn, Cu, and Fe in the mixture are multiplied by the weight of the mixture charged into the pit, and the Co, Ni, Mn, Cu, contained in the mixture in the pit are multiplied. And Fe were calculated, and the sum of the calculated weights was calculated as the "total weight of recovered valuable metals".
  • the “total weight of Co, Ni, Mn, Cu, and Fe contained in the mixture from the beginning” obtained in this way minus the above-mentioned "total weight of the recovered valuable metal”.
  • the percentage is the recovery rate (yield).
  • Table 1 shows the experimental results related to Experiment 1.
  • the amount of oxygen compounded with the valuable metal in the mixture is O [mol / kg], and the reducing agent content of the reducing agent contained in the mixture is R.
  • the recovery rate is evaluated as “ ⁇ ” or “ ⁇ ”, and the O / R value is larger than 1.03. In that case, it can be seen that the evaluation of the recovery rate is “x”.
  • the "Temperature” column in Table 1 when the heating temperature is 1400 ° C, the evaluation of the recovery rate is " ⁇ " or " ⁇ ”, and when the heating temperature is 1300 ° C, 1350 ° C, or 1375 ° C. It can be seen that the evaluation of the recovery rate is "x”.
  • Table 2 shows the experimental results related to Experiment 2.
  • the concentration of Al 2 O 3 in the mixture is 16.0 wt% to 17.3 wt%
  • the concentration of SiO 2 is 2.0 wt% to 6.3 wt%
  • the concentration of Ca O is 0.5 wt% to 2 It is about the composition of .6 wt%.
  • the concentration of Al 2 O 3 in the mixture is 16.7 wt% to 17.7 wt%
  • the concentration of SiO 2 is 0.6 wt% to 3.4 wt%
  • the concentration of Ca O is 0.5 wt%. It is about a composition of about 3.7 wt%.
  • the evaluation of the recovery rate is ⁇ or ⁇ in the gray shaded portion in the figure.
  • This shaded portion is composed of four boundary lines (I) to (IV).
  • S / A (SiO 2 / Al 2 O 3 ) and C / A (CaO / Al 2 O 3 ) are defined for the following reasons. That is, the used secondary batteries, Co to become a metal is reduced, in addition to Ni, Al 2 O 3 as a component to become slag as oxide, MnO X, Li, are included F, etc., recovered material Has a complex composition.
  • metals such as Co and Ni for recovery from the recovered material, it is necessary to put both the metal and the oxide in a molten state.
  • the heating temperature is T [° C.] and the heating time is t [min]
  • the valuable metal is increased by heating so that the relationship of the formula (5) is established. It is possible to collect by yield.
  • the applicant confirms that the relational expression of the equation (5) is empirically derived and satisfies the actual data.
  • the relationship of the above-mentioned formula (5) (relationship between the heating temperature T [° C.] and the heating time t [min]) is derived from the result of Experiment 3.

Abstract

The purpose of the present invention is to inexpensively and efficiently recover valuable metals such as Co or Ni from a recovery product containing Al2O3, CoOX, or NiOX. In a method for recovering valuable metals according to the present invention, used secondary batteries are subjected to heating, pulverizing, sieving, and magnetic separation to obtain a recovery product containing valuable metals, and a mixture of the obtained recovery product and a reducing agent is heated to reduce valuable metals in the mixture into a molten metal state, thereby separating the mixture into metals and oxides. When separating and recovering the metals from the oxides after cooling, the heating temperature of the mixture is set to 1400°C or higher. When the reducing agent is mixed with the recovery product, the reducing agent is mixed with the recovery product such that 0<O/R≤0.97 is satisfied (where, O [mol/kg] is the amount of oxygen chemically bonded with valuable metals in the mixture, and R [mol/kg] is the amount of the reducing agent contained in the mixture), and such that x and y, which are the ratios of the concentrations [wt%] of Al2O3, SiO2, and CaO contained in the mixture, satisfy the desired relationship.

Description

有価金属の回収方法How to recover valuable metals
 本発明は、AlやCoO、NiO含む酸化物からCoやNiといった有価金属を回収する有価金属の回収技術に関するものである。 The present invention relates to a technique for recovering a valuable metal such as Co or Ni from an oxide containing Al 2 O 3 or CoO X or NiO X.
 近年、環境規制が厳しくなる中、今後再生可能エネルギーは増加すると考えられており、自動車燃費向上に向けた電動化が進む中で、二次電池はますます重要性を増していくと考えられている。例えば、現在使用されている二次電池はリチウムイオンバッテリ(LIB)やニッケル水素電池(Ni-MH)が主流であり、これらの二次電池については今後も需要増が予想される。 In recent years, it is thought that renewable energy will increase in the future as environmental regulations become stricter, and it is thought that secondary batteries will become more and more important as electrification progresses to improve fuel efficiency of automobiles. There is. For example, lithium-ion batteries (LIB) and nickel-metal hydride batteries (Ni-MH) are the mainstream of the secondary batteries currently in use, and demand for these secondary batteries is expected to increase in the future.
 ここで、LIBやNi-MHなどの二次電池にはCoやNiなどのレアメタル(有価金属)が使用されている。例えば、LIB(lithium-ion rechargeable battery)の製造に不可欠とされるコバルトやニッケルについては、資源が世界的に遍在化しているなどの問題があり、資源枯渇のリスクが指摘されている。また、コバルトについても、鉱山での不当な労働実態が取り沙汰されており、採掘のみでは需要を十分に満たせない可能性がある。 Here, rare metals (valuable metals) such as Co and Ni are used for secondary batteries such as LIB and Ni-MH. For example, cobalt and nickel, which are indispensable for the production of LIB (lithium-ion rechargeable battery), have problems such as ubiquitous resources worldwide, and the risk of resource depletion has been pointed out. In addition, with regard to cobalt, unfair labor conditions at mines have been reported, and mining alone may not be sufficient to meet the demand.
 これらの観点から、コバルトやニッケルなどのレアメタルのリサイクル技術が注目されている。ただ、現行は湿式の溶媒抽出が中心であり、コスト的な問題から大量処理技術確立に至っていない。そこで、コバルトやニッケルを使用するLIBから、安価に、且つ、効率良く有価金属を回収する技術が要望されている。製鉄プロセスで利用される高温精錬技術(以下、乾式精錬技術)は、比較的安価な処理が可能で、社会的な再資源化の課題に応えるためにも、また自動車や電気機器などさまざまな産業分野で利用が可能であるという面でも技術の確立が急務であると考えられている。 From these points of view, the recycling technology of rare metals such as cobalt and nickel is drawing attention. However, at present, wet solvent extraction is the main focus, and mass processing technology has not yet been established due to cost issues. Therefore, there is a demand for a technique for recovering valuable metals inexpensively and efficiently from LIBs that use cobalt or nickel. The high-temperature refining technology used in the iron-making process (hereinafter referred to as "pyrometallurgy") can be processed at a relatively low cost, and in order to meet the challenges of social recycling, and in various industries such as automobiles and electrical equipment. It is considered that there is an urgent need to establish technology in terms of its availability in the field.
 例えば、特許文献1には、二次電池の製造過程で発生するアルカリ金属を含む金属酸化物から効率よく有価金属を回収するアルカリ金属を含む金属酸化物からの有価金属の回収方法が記載されている。上述した特許文献1の有価金属の回収方法は、二次電池の製造過程で発生するアルカリ金属を含む金属酸化物に、還元剤及び造滓剤を加えて溶融し、還元されて沈降する有価金属を回収するものとなっている。 For example, Patent Document 1 describes a method for recovering valuable metals from metal oxides containing alkali metals, which efficiently recovers valuable metals from metal oxides containing alkali metals generated in the process of manufacturing a secondary battery. There is. In the method for recovering valuable metals in Patent Document 1 described above, a reducing agent and a slag-forming agent are added to a metal oxide containing an alkali metal generated in the manufacturing process of a secondary battery, and the valuable metal is reduced and settled. Is to be collected.
 また、特許文献2には、使用済みリチウム2次電池から有価金属を簡便に収率よく回収する方法が記載されている。上述した特許文献2の有価金属の回収方法は、使用済みリチウム2次電池を焙焼して焙焼物を得る工程、該焙焼物を粉砕して粉砕物を得る工程、該粉砕物を篩い分けして篩下として1次有価金属濃縮物を得る工程、および該1次有価金属濃縮物をカルシウム化合物と混合し、次に溶融し、これにより生成するスラグを除去して、メタルを2次有価金属濃縮物として回収する工程からなるものとなっている。 Further, Patent Document 2 describes a method for easily recovering valuable metals from a used lithium secondary battery in good yield. The method for recovering valuable metals in Patent Document 2 described above includes a step of roasting a used lithium secondary battery to obtain a roasted product, a step of crushing the roasted product to obtain a crushed product, and a step of sieving the crushed product. The step of obtaining a primary valuable metal concentrate under a sieve, and the process of mixing the primary valuable metal concentrate with a calcium compound and then melting the metal to remove the slag produced thereby to make the metal a secondary valuable metal. It consists of a process of collecting as a concentrate.
 また、特許文献3には、リチウムイオン電池等の廃電池を乾式処理する際に、コバルト等の有価金属の回収率を向上し、かつ回収コストを低減できる方法が記載されている。上述した特許文献3の有価金属の回収方法は、アルミニウムと鉄を含む廃電池を焙焼して予備酸化処理を行う予備酸化工程ST20と、予備酸化工程ST20後の廃電池を熔融して熔融物を得る熔融工程ST21と、熔融物から、酸化アルミニウムを含む第1のスラグを分離して回収する第1のスラグ分離工程ST22と、第1のスラグ分離工程後の熔融物である第1の合金に酸化処理を行う第2酸化工程ST23と、第2酸化工程ST23後の第1の合金から、鉄を含む第2のスラグを分離して回収する第2のスラグ分離工程ST24とを経て、鉄とコバルトの分離性能に優れ、鉄の含有量が少ない第2の合金を得る方法において、第2のスラグを2回目以降の熔融工程ST21bを促進するために添加するフラックスとして再利用するものとなっている。 Further, Patent Document 3 describes a method capable of improving the recovery rate of valuable metals such as cobalt and reducing the recovery cost when a waste battery such as a lithium ion battery is dry-treated. The method for recovering the valuable metal of Patent Document 3 described above is a pre-oxidation step ST20 in which a waste battery containing aluminum and iron is roasted to perform a pre-oxidation treatment, and a melted product obtained by melting the waste battery after the pre-oxidation step ST20. The first slag separation step ST22 for separating and recovering the first slag containing aluminum oxide from the melt, and the first alloy which is the melt after the first slag separation step. Iron is passed through a second slag separation step ST23, which performs an oxidation treatment, and a second slag separation step ST24, which separates and recovers a second slag containing iron from the first alloy after the second oxidation step ST23. In the method of obtaining a second alloy having excellent separation performance between and cobalt and a low iron content, the second slag is reused as a flux added to promote the second and subsequent melting steps ST21b. ing.
 また、特許文献4には、リチウムイオンバッテリーから金属を回収するためのリサイクル方法が記載されている。上述した特許文献4のリサイクル方法は、アルミニウム及び炭素を含んでいるリチウムイオンバッテリーからコバルトを回収する方法であって、Oを注入する手段を備えた浴炉を準備する工程と、スラグ形成剤としてのCaO及びリチウムイオンバッテリーを含む冶金装入原料を準備する工程と、酸素を注入するとともに前記冶金装入原料を前記炉へ供給し、これによって少なくとも一部の前記コバルトが還元され、そして金属相中に集められる工程と、湯出しによって前記金属相中から前記スラグを分離する工程を含み、前記方法は、前記冶金装入原料の質量%で表したときに153質量%-3.5(Al%+0.6C%)[Al%及びC%は前記バッテリー中のアルミニウム及び炭素の質量%を表す]と等しい若しくはこれを超えるリチウムイオンバッテリーのフラクションを供給することで自己発生条件(autogeneous conditions)で操作されることを特徴とするものとなっている。 Further, Patent Document 4 describes a recycling method for recovering a metal from a lithium ion battery. The recycling method of Patent Document 4 described above is a method of recovering cobalt from a lithium ion battery containing aluminum and carbon, and includes a step of preparing a bath furnace provided with a means for injecting O 2 and a slag forming agent. A step of preparing a metallurgical charge material containing CaO and a lithium ion battery as a metal, and supplying oxygen and the metallurgical charge material to the furnace, whereby at least a part of the cobalt is reduced, and a metal. The method includes a step of collecting the slag in the phase and a step of separating the slag from the metal phase by boiling water, and the method is expressed in terms of mass% of the metallurgical charge raw material: 153 mass% -3.5 ( Al% + 0.6C%) Self-generated conditions by supplying a fraction of a lithium-ion battery equal to or greater than [Al% and C% represent the mass% of aluminum and carbon in the battery]. It is characterized by being operated with.
 また、特許文献5には、廃二次電池を物理分別し、分離負極材と分離正極材とに分離してなる分離工程と、該分離工程により分離された正極材又は分離負極材から有価金属を回収する工程とを含み、廃二次電池から有価金属を回収する有価金属の回収システムが記載されている。上述した特許文献5の有価金属の回収システムは、廃二次電池を物理分別し、分離負極材と分離正極材とに分離してなる分離工程と、該分離工程により分離された正極材又は分離負極材から有価金属を回収する工程とを含むものとなっている。 Further, Patent Document 5 describes a separation step in which a waste secondary battery is physically separated and separated into a separated negative electrode material and a separated positive electrode material, and a valuable metal from the positive electrode material or the separated negative electrode material separated by the separation step. A valuable metal recovery system for recovering valuable metals from a waste secondary battery is described, including a step of recovering the precious metals. The valuable metal recovery system of Patent Document 5 described above includes a separation step of physically separating a waste secondary battery and separating it into a separated negative electrode material and a separated positive electrode material, and a positive electrode material or separation separated by the separation step. It includes a step of recovering valuable metal from the negative electrode material.
 さらに、特許文献6には、廃電池中に含まれる有価金属を回収する工程において、工程中で生じる硫黄分を低減する方法が記載されている。上述した特許文献6の方法は、コバルト又はニッケルの少なくとも1種の有価金属を含む廃電池又は工程屑からの前記有価金属の回収方法であって、(1)予備焙焼処理、粉砕処理及び篩分け処理を経て、前記有価金属の1次濃縮物を得る1次濃縮工程、(2)前記1次濃縮物を硫酸で溶解処理し、該溶解液を2次濃縮物として得る2次濃縮工程、(3)前記2次濃縮物をアルカリ金属の水溶液を添加し水酸化処理後、酸化焙焼処理及び水洗処理により低硫黄化処理し、前記有価金属の3次濃縮物を得る3次濃縮工程、及び(4)前記3次濃縮物を熔融し、前記有価金属を回収する4次濃縮工程、を含むものとなっている。 Further, Patent Document 6 describes a method for reducing the sulfur content generated in the step of recovering the valuable metal contained in the waste battery. The method of Patent Document 6 described above is a method of recovering the valuable metal from a waste battery or process waste containing at least one valuable metal of cobalt or nickel, and (1) pre-roasting treatment, crushing treatment and sieving. A primary concentration step of obtaining a primary concentrate of the valuable metal through a division treatment, (2) a secondary concentration step of dissolving the primary concentrate with sulfuric acid and obtaining the solution as a secondary concentrate. (3) A tertiary concentration step of adding an aqueous solution of an alkali metal to the secondary concentrate and performing a hydroxylation treatment, followed by an oxidation roasting treatment and a water washing treatment to reduce sulfurization to obtain a tertiary concentrate of the valuable metal. And (4) a quaternary concentration step of melting the tertiary concentrate and recovering the valuable metal.
特開2000-226619号公報Japanese Unexamined Patent Publication No. 2000-226619 特開平10-158751号公報Japanese Patent Application Laid-Open No. 10-158751 特開2012-224877号公報Japanese Unexamined Patent Publication No. 2012-224877 特表2013-506048号公報Special Table 2013-5006048 国際公開第2000-025382号公報International Publication No. 2000-025382 特開2016-037661号公報Japanese Unexamined Patent Publication No. 2016-037661
 上述した特許文献1の技術は、二次電池の製造工程で発生したLi、Mn、Co、Ni、Feを含む酸化物の原料から有価金属を合金として回収する技術であるが、この酸化物の原料にはAlがそもそも含まれておらず、Alが含まれた酸化物から合金回収する場合には適用することはできない。つまり、原料中にAl(Al)が含まれている場合は、原料が高融点となるため、溶融することができなくなり、有価金属を合金として回収することが困難になる場合がある。 The technique of Patent Document 1 described above is a technique of recovering a valuable metal as an alloy from a raw material of an oxide containing Li, Mn, Co, Ni, and Fe generated in the manufacturing process of a secondary battery. The raw material does not contain Al in the first place, and cannot be applied when the alloy is recovered from an oxide containing Al. That is, when Al (Al 2 O 3 ) is contained in the raw material, the raw material has a high melting point, so that it cannot be melted and it may be difficult to recover the valuable metal as an alloy. ..
 また、特許文献2の技術は、CaO/Al量が記載されているが、CaO添加量が多く、Alに対するCaOの量が多いため、生産性が低く、コストを圧迫する可能性があり、Alが多く含まれた場合の合金回収を含んでいない。また、適正な還元剤比の記載も無い。 Further, in the technique of Patent Document 2, the amount of CaO / Al 2 O 3 is described, but since the amount of CaO added is large and the amount of CaO relative to Al 2 O 3 is large, the productivity is low and the cost is reduced. Possibly, does not include alloy recovery in the case of high Al 2 O 3 content. In addition, there is no description of an appropriate reducing agent ratio.
 また、特許文献3の技術は、粒状金属鉄を得るために必要な還元剤比も記載されていない。 Further, the technique of Patent Document 3 does not describe the reducing agent ratio required to obtain granular metallic iron.
 また、特許文献4の技術は、特許文献2の場合と同様に、適正な還元剤比が書かれていない上、SiO、CaO添加量が多く、SiO/Al、並びにCaO/Alの値が高くなっている。そのため、生産性が低くコストを圧迫する可能性があり、Alが多く含まれた場合の合金回収が含まれていない。 Further, in the technique of Patent Document 4, as in the case of Patent Document 2, an appropriate reducing agent ratio is not written, and the amount of SiO 2 and CaO added is large, and SiO 2 / Al 2 O 3 and CaO / The value of Al 2 O 3 is high. Therefore, the productivity is low and the cost may be reduced, and the alloy recovery when a large amount of Al 2 O 3 is contained is not included.
 また、特許文献5の技術は、原料中にAlが含まれておらず、Alが含まれた酸化物から合金回収する場合には適用することはできない。 Further, the technique of Patent Document 5 does not contain Al 2 O 3 in the raw material, and cannot be applied when the alloy is recovered from the oxide containing Al.
 さらに、特許文献6の技術は、焼却、破砕、篩分け後の篩下からCu、Cを除いた残渣をC(コークス)あるいはAlにて還元する方法であるが、還元剤として100%コークスを使用した場合、C/A(CaO/Al)やS/A(SiO/Al)が2.7程度の値となりフラックス量が多すぎるし、還元剤にAlを用いた場合でも、C+A(SiO+CaO)=1.72程度となり、この場合もフラックス量が多すぎる。そのため、特許文献6の技術でも、生産性が低く、コストを圧迫する可能性がある。 Further, the technique of Patent Document 6 is a method of reducing the residue obtained by removing Cu and C from under the sieve after incineration, crushing and sieving with C (coke) or Al, but 100% coke is used as a reducing agent. When used, C / A (CaO / Al 2 O 3 ) and S / A (SiO 2 / Al 2 O 3 ) had values of about 2.7, and the amount of flux was too large, and Al was used as the reducing agent. Even in this case, C + A (SiO 2 + CaO) = 1.72, and the flux amount is too large in this case as well. Therefore, even with the technique of Patent Document 6, the productivity is low and the cost may be reduced.
 つまり、上述した特許文献1~特許文献6の技術は、二次電池の回収物を溶融させつつ還元させて有価金属を回収するものであり、回収物を溶融させるためにフラックスを添加するものとなっている。ただ、回収物がAlを含むスラグである場合、溶融に向けてフラックスを添加する場合であっても、フラックスの添加量が多すぎると、混合物中の回収対象であるCoやNiの量が減り、直接的に生産性を悪化させる。そのため、CoやNiの合金の回収は可能であるものの、生産性が悪化する結果となり、コストを圧迫して乾式精錬の特徴である比較的安価という長所が消されてしまう懸念があった。 That is, the techniques of Patent Documents 1 to 6 described above are for recovering valuable metals by reducing the recovered material of the secondary battery while melting it, and adding flux to melt the recovered product. It has become. However, when the recovered product is slag containing Al 2 O 3 , even when flux is added for melting, if the amount of flux added is too large, Co and Ni to be recovered in the mixture The amount is reduced and the productivity is directly deteriorated. Therefore, although it is possible to recover the alloys of Co and Ni, there is a concern that the productivity will be deteriorated, the cost will be reduced, and the advantage of relatively low cost, which is a characteristic of pyrometallurgy, will be erased.
 本発明は、上述の問題に鑑みてなされたものであり、Alを含む回収物からCoやNiといった有価金属を安価に且つ効率よく回収する有価金属の回収方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for recovering valuable metals such as Co and Ni from a recovered product containing Al 2 O 3 at low cost and efficiently. And.
 上記課題を解決するため、本発明の有価金属の回収方法は以下の技術的手段を講じている。
 即ち、本発明の有価金属の回収方法は、使用済み二次電池に対して、加熱、破砕、篩別、磁選の処理を加えることで有価金属を含む回収物を得て、得られた前記回収物を還元剤と混合して加熱することにより、混合物中の有価金属を還元により金属化すると共に溶融することで前記混合物から金属と酸化物とを分離し、冷却後金属を酸化物から選別して回収する有価金属の回収方法において、前記混合物の加熱温度を1400℃以上とし、前記回収物に還元剤を混合する際は、前記混合物中で有価金属と化合している酸素量をO[mol/kg]、前記混合物中に含まれる還元剤の還元剤含有量をR[mol/kg]とした場合、0<O/R≦0.97が成立するようにし、かつ、前記混合物中に含まれるAl、SiO、CaOの濃度[wt%]の比x、yが以下の式(1)~式(4)を満たすように、前記回収物に還元剤を混合して有価金属を回収することを特徴とする。
In order to solve the above problems, the method for recovering valuable metals of the present invention takes the following technical measures.
That is, in the method for recovering valuable metals of the present invention, a recovered product containing valuable metals is obtained by subjecting a used secondary battery to treatments of heating, crushing, sieving, and magnetic separation, and the obtained recovered product is obtained. By mixing the product with a reducing agent and heating it, the valuable metal in the mixture is metallized by reduction and melted to separate the metal and oxide from the mixture, and after cooling, the metal is sorted from the oxide. In the method for recovering the valuable metal to be recovered, the heating temperature of the mixture is set to 1400 ° C. or higher, and when the reducing agent is mixed with the recovered product, the amount of oxygen compounded with the valuable metal in the mixture is O [mol. / Kg], where the reducing agent content of the reducing agent contained in the mixture is R [mol / kg], 0 <O / R ≦ 0.97 is established, and the reducing agent is contained in the mixture. A reducing agent is mixed with the recovered material so that the ratios x and y of the concentrations [wt%] of Al 2 O 3 , SiO 2 , and CaO satisfy the following formulas (1) to (4), and the valuable metal. It is characterized by collecting.
Figure JPOXMLDOC01-appb-M000003
 また、本発明の有価金属の別の回収方法は、使用済み二次電池に対して、加熱、破砕、篩別、磁選の処理を加えることで有価金属を含む回収物を得て、得られた前記回収物を還元剤と混合して加熱することにより、混合物中の有価金属を還元により金属化すると共に溶融することで前記混合物から金属と酸化物とを分離し、冷却後金属を酸化物から選別して回収する有価金属の回収方法において、前記回収物に還元剤を混合する際は、前記混合物中で有価金属と化合している酸素量をO[mol/kg]、前記混合物中に含まれる還元剤の還元剤含有量をR[mol/kg]とした場合、0<O/R≦0.97が成立するようにし、かつ、前記混合物中に含まれるAlに対するSiOの濃度[wt%]の比x、Alに対するCaOの濃度[wt%]の比yが以下の式(1)~式(4)を満たすように、前記回収物に還元剤を混合し、さらに、前記還元剤が混合された回収物を加熱する際は、前記混合物を加熱する加熱温度をT[℃]、前記混合物を加熱する時間をt[min]とした場合、以下の式(5)が成立するように、前記回収物を加熱することを特徴とする。
Figure JPOXMLDOC01-appb-M000004
 
 前記いずれの回収方法においても、前記還元剤として、炭素質還元剤、金属Al、または金属Siの少なくとも1種類以上を用いることが好ましい。
Figure JPOXMLDOC01-appb-M000003
Further, another method for recovering the valuable metal of the present invention was obtained by subjecting a used secondary battery to a treatment of heating, crushing, sieving, and magnetic separation to obtain a recovered product containing the valuable metal. By mixing the recovered product with a reducing agent and heating it, the valuable metal in the mixture is metallized by reduction and melted to separate the metal and oxide from the mixture, and after cooling, the metal is separated from the oxide. In the method for recovering valuable metals to be sorted and recovered, when a reducing agent is mixed with the recovered product, the amount of oxygen compounded with the valuable metal in the mixed product is O [mol / kg], which is contained in the mixed product. When the reducing agent content of the reducing agent is R [mol / kg], 0 <O / R ≦ 0.97 is established, and the SiO 2 of SiO 2 with respect to Al 2 O 3 contained in the mixture is satisfied. A reducing agent is mixed with the recovered product so that the ratio x of the concentration [wt%] and the ratio y of the concentration [wt%] of CaO to Al 2 O 3 satisfy the following formulas (1) to (4). Further, when heating the recovered product mixed with the reducing agent, when the heating temperature for heating the mixture is T [° C.] and the time for heating the mixture is t [min], the following formula ( It is characterized in that the recovered product is heated so that 5) is established.
Figure JPOXMLDOC01-appb-M000004

In any of the above recovery methods, it is preferable to use at least one kind of carbonaceous reducing agent, metal Al, or metal Si as the reducing agent.
 好ましくは、前記還元剤として、粒度75μm以下の積算体積が65%以上に調整されたものを用いるとよい。 Preferably, as the reducing agent, one having a particle size of 75 μm or less and having an integrated volume adjusted to 65% or more is used.
 本発明の有価金属の回収方法によれば、Alを含む回収物からCoやNiといった有価金属を安価に且つ効率よく回収することができる。 According to the method for recovering valuable metals of the present invention, valuable metals such as Co and Ni can be recovered inexpensively and efficiently from the recovered product containing Al 2 O 3 .
O/Rの値と、混合物の加熱温度とがそれぞれ異なる場合に有価金属の回収結果がどのように変動するかを示した図である。It is a figure which showed how the recovery result of a valuable metal fluctuates when the value of O / R and the heating temperature of a mixture are different from each other. S/Aの値と、C/Aの値とがそれぞれ異なる場合に有価金属の回収結果がどのように変動するかを示した図である。It is a figure which showed how the recovery result of a valuable metal fluctuates when the value of S / A and the value of C / A are different from each other. 加熱温度及び加熱時間から得られるパラメータと歩留まりとの関係を示した図である。It is a figure which showed the relationship between the parameter obtained from the heating temperature and the heating time, and the yield.
 以下、本発明に係る有価金属の回収方法の実施形態を、図面に基づき詳しく説明する。
 図1に示すように、本実施形態の有価金属の回収方法は、使用済み二次電池の回収物から還元反応を利用して有価金属を単体金属や合金の状態で回収するものとなっている。
 具体的には、本実施形態の回収方法は、使用済み二次電池に対して、加熱、破砕、篩別、磁選の処理を加えることで得られる有価金属を含む回収物を回収対象としている。そして、回収対象の回収物を還元剤と混合して加熱することにより、混合物中の有価金属を還元により金属化すると共に溶融することで、混合物から金属と酸化物とを分離し、冷却後金属を酸化物から選別して回収するものとなっている。
Hereinafter, embodiments of the method for recovering valuable metals according to the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the method for recovering valuable metals in the present embodiment is to recover valuable metals from the recovered material of a used secondary battery in the state of a single metal or an alloy by utilizing a reduction reaction. ..
Specifically, the recovery method of the present embodiment targets a recovery product containing a valuable metal obtained by subjecting a used secondary battery to a treatment of heating, crushing, sieving, and magnetic separation. Then, by mixing the recovered product to be recovered with a reducing agent and heating it, the valuable metal in the mixture is metallized by reduction and melted to separate the metal and the oxide from the mixture, and the metal after cooling. Is selected from oxides and recovered.
 また、本実施形態の回収方法は、回収物に還元剤を混合する際、混合物中で有価金属と化合している酸素量をO[mol/kg]、混合物中に含まれる還元剤の還元剤含有量をR[mol/kg]とした場合、0<O/R≦0.97が成立するようにし、かつ、混合物中に含まれるAl、SiO、CaOの濃度[wt%]の比x、yが前記した式(1)~式(4)を満たすように、回収物に還元剤を混合した上で、
(i)混合物の加熱温度を1400℃以上とするか、或いは
(ii)混合物を加熱する加熱温度をT[℃]、混合物を加熱する時間をt[min]とした場合、前記した式(5)が成立するように、混合物を加熱する
 ことによって有価金属を回収することを特徴とする。
 なお、上記(ii)の場合において、加熱温度Tは1400℃以上であることが好ましい。
Further, in the recovery method of the present embodiment, when the reducing agent is mixed with the recovered product, the amount of oxygen compounded with the valuable metal in the mixture is O [mol / kg], and the reducing agent of the reducing agent contained in the mixture is used. When the content is R [mol / kg], 0 <O / R ≦ 0.97 is established, and the concentrations of Al 2 O 3 , SiO 2 , and Ca O contained in the mixture [wt%]. A reducing agent is mixed with the recovered product so that the ratios x and y of the above satisfy the above formulas (1) to (4).
When (i) the heating temperature of the mixture is 1400 ° C. or higher, or (ii) the heating temperature for heating the mixture is T [° C.] and the time for heating the mixture is t [min], the above formula (5) ) Is established, and the valuable metal is recovered by heating the mixture.
In the case of (ii) above, the heating temperature T is preferably 1400 ° C. or higher.
 次に、本実施形態の回収方法に用いられる回収物や還元剤、またこれらを用いて行われる各工程の内容について詳しく説明する。
 上述した回収方法の実施対象である回収物は、ニッケル及びコバルトをなどの有価金属を含む使用済み二次電池を、加熱、破砕、篩別等することで得られるものである。すなわち、二次電池には正極材にコバルト酸リチウム、ニッケル酸リチウムなどが用いられる場合があり、Li、Mn、Co、Niなどの有価金属が含まれている。また、二次電池には銅などの金属が用いられている場合もあるため、使用済みの二次電池に対して加熱、破砕、篩別等を適宜行って、Li、Mn、Co、Niなどの有価金属が回収されやすくされた回収物を作製する。
Next, the recovered product and the reducing agent used in the recovery method of the present embodiment, and the contents of each step performed using these will be described in detail.
The recovered product, which is the target of the recovery method described above, is obtained by heating, crushing, sieving, or the like a used secondary battery containing a valuable metal such as nickel and cobalt. That is, in the secondary battery, lithium cobalt oxide, lithium nickel oxide, or the like may be used as the positive electrode material, and valuable metals such as Li, Mn, Co, and Ni are contained. Further, since a metal such as copper may be used for the secondary battery, the used secondary battery is appropriately heated, crushed, sieved, etc., and Li, Mn, Co, Ni, etc. To prepare a recovered product in which the valuable metal of the above is easily recovered.
 具体的には、回収物に対してまず加熱を行って、セパレータなどとして二次電池に含まれる合成樹脂等の可燃材料を燃焼させる。このようにすれば余計な合成樹脂等が焼失し、Li、Mn、Co、Ni、Fe、Cuなどの金属が酸化物ないし金属の状態で残るため、有価金属が回収しやすくなる。
 なお、Li、Mn、Co、Ni、Fe、Cuなどの酸化物ないし金属は大きな塊となっている場合もあるため、適宜、破砕や選別を行って後述する還元剤と反応しやすいように粒度調整することも必要となる。また、Co、Ni、及びFeなどのように磁石に磁着する金属の場合は、適宜磁選を行えば、磁着しない金属を有価金属ではない金属の酸化物やゴミ類として取り除くことができるので、有価金属の回収効率を高めることも可能となる。
Specifically, the recovered material is first heated to burn a combustible material such as a synthetic resin contained in a secondary battery as a separator or the like. In this way, excess synthetic resin and the like are burnt down, and metals such as Li, Mn, Co, Ni, Fe, and Cu remain in the state of oxides or metals, so that valuable metals can be easily recovered.
Since oxides or metals such as Li, Mn, Co, Ni, Fe, and Cu may be in large lumps, the particle size is appropriately crushed or sorted so as to easily react with the reducing agent described later. It also needs to be adjusted. Further, in the case of metals that are magnetized to magnets such as Co, Ni, and Fe, the non-magnetized metals can be removed as oxides and dust of metals that are not valuable metals by performing appropriate magnetic selection. It is also possible to improve the recovery efficiency of valuable metals.
 還元剤は、自らが酸化されることで、酸化物中で有価金属に結合した酸素を取り除く目的で回収物に混合される。還元剤は、小径の粒子状(粉状)に形成されており、同様に小径の粒子状(粉状)に形成された回収物と均質に混合された上で、所望の温度まで加熱されることで、還元反応を起こすようになっている。還元反応が発生すると、回収物中に含まれる有価金属の酸化物が還元剤と反応し、有価金属の酸化物が単体の金属または合金に還元される。 The reducing agent is mixed with the recovered product for the purpose of removing oxygen bound to valuable metals in the oxide by oxidizing itself. The reducing agent is formed in the form of particles (powder) having a small diameter, and is uniformly mixed with the recovered product formed in the form of particles (powder) having a small diameter, and then heated to a desired temperature. As a result, a reduction reaction is caused. When the reduction reaction occurs, the oxide of the valuable metal contained in the recovered product reacts with the reducing agent, and the oxide of the valuable metal is reduced to a single metal or alloy.
 本発明の還元剤には、さまざまな還元剤を用いることができるが、例えば瀝青炭などの石炭や、木炭、竹炭などの炭素系の還元剤(炭素質還元剤)を好適に使用することができる。炭素系の還元剤は還元反応による反応生成物が二酸化炭素や一酸化炭素であるため、反応生成物を回収物中から容易に取り除くことができ、有価金属を単体の金属または合金として回収しやすくなるためである。 Various reducing agents can be used as the reducing agent of the present invention, and for example, coal such as bituminous coal and carbon-based reducing agent (carbon material reducing agent) such as charcoal and bamboo charcoal can be preferably used. .. Since the reaction product of the reduction reaction of the carbon-based reducing agent is carbon dioxide or carbon monoxide, the reaction product can be easily removed from the recovered product, and the valuable metal can be easily recovered as a single metal or alloy. This is to become.
 上述した還元剤に炭素を用いる場合、回収物に対する還元剤の混合比率には好適な範囲が存在している。つまり、混合物中で有価金属と化合している酸素量をO[mol/kg]、還元剤含有量をR[mol/kg]とした場合、酸素量O[mol/kg]を還元剤含有量R[mol/kg]で除した比率(O/R)が、0<O/R≦0.97という関係を満足するのが好ましい。 When carbon is used as the reducing agent described above, there is a suitable range in the mixing ratio of the reducing agent with respect to the recovered product. That is, when the amount of oxygen compounded with the valuable metal in the mixture is O [mol / kg] and the content of the reducing agent is R [mol / kg], the amount of oxygen O [mol / kg] is the content of the reducing agent. It is preferable that the ratio (O / R) divided by R [mol / kg] satisfies the relationship of 0 <O / R ≦ 0.97.
 上述した比率(O/R)が高すぎる場合、還元しようとする有価金属に化合した酸素量に対して、還元剤が少ないため、還元不足となって有価金属に化合した酸素を十分に還元できなくなる。そのため、ニッケルやコバルトなどの有価金属を全て金属化できず、有価金属の回収効率が低下してしまう。
 また、比率(O/R)が低すぎる場合、ニッケルやコバルトなどの有価金属は十分に金属化されるが、酸素量に対して還元剤が過剰となるため、還元剤が反応後も残ってしまう。このように残った還元剤は回収目的の金属の凝集を妨げるため、還元後の有価金属の粒子が微細なものとなり、後述する磁選での効率を著しく低下させ、有価金属の回収効率(回収歩留り)を低下させてしまう。
When the above-mentioned ratio (O / R) is too high, the amount of the reducing agent is small with respect to the amount of oxygen combined with the valuable metal to be reduced, so that the reduction is insufficient and the oxygen combined with the valuable metal can be sufficiently reduced. It disappears. Therefore, all the valuable metals such as nickel and cobalt cannot be metallized, and the recovery efficiency of the valuable metals is lowered.
If the ratio (O / R) is too low, valuable metals such as nickel and cobalt are sufficiently metallized, but the reducing agent is excessive with respect to the amount of oxygen, so that the reducing agent remains even after the reaction. It ends up. Since the reducing agent remaining in this way hinders the aggregation of the metal for recovery purposes, the particles of the valuable metal after reduction become fine particles, which significantly reduces the efficiency of magnetic separation described later, and the recovery efficiency of the valuable metal (recovery yield). ) Is reduced.
 そのため、上述した比率(O/R)については、0<O/R≦0.97とされるのが良く、好ましくは0.46≦O/R≦0.97、より好ましくは0.53≦O/R≦0.97とされるのが良い。
 本発明の有価金属の回収方法は、上述した還元剤を回収物に混合すると共に混合物を加熱して還元し、還元後の混合物を溶融状態にすることが必要となる。このような溶融を行うことで、単体金属や合金の有価金属を、酸化物から分別することが容易になる。
Therefore, the ratio (O / R) described above is preferably 0 <O / R ≦ 0.97, preferably 0.46 ≦ O / R ≦ 0.97, and more preferably 0.53 ≦. It is preferable that O / R ≦ 0.97.
In the method for recovering valuable metals of the present invention, it is necessary to mix the above-mentioned reducing agent with the recovered product and heat and reduce the mixture to bring the reduced mixture into a molten state. By performing such melting, it becomes easy to separate the elemental metal or the valuable metal of the alloy from the oxide.
 上述した混合物を溶融させるには、まず加熱温度を1400℃以上に保持することが好ましい。加熱温度を1400℃以上に保持すれば、還元反応によって生成した単体金属や合金の有価金属を十分溶融することができ、冷却後に溶融した有価金属が塊となって、酸化物から分別することが容易となる。
 上述した還元後の混合物を溶融状態にさせるには、回収物の組成も重要となる。
In order to melt the above-mentioned mixture, it is preferable to first maintain the heating temperature at 1400 ° C. or higher. If the heating temperature is maintained at 1400 ° C. or higher, the elemental metal or the valuable metal of the alloy produced by the reduction reaction can be sufficiently melted, and the valuable metal melted after cooling can be agglomerated and separated from the oxide. It will be easy.
The composition of the recovered product is also important in order to bring the above-mentioned reduced mixture into a molten state.
 具体的には、上述した回収物には、Al、SiO、CaOなどの酸化物が含まれており、これらの中でもAlが存在すると、混合物を溶融状態にすることが困難になる。
 そこで、本発明の有価金属の回収方法では、混合物中のAl濃度[wt%]、SiO濃度[wt%]、CaO濃度[wt%]が以下の式(1)~式(4)を満たすように、回収物あるいは混合物の組成を調整する。
Specifically, the above-mentioned recovered product contains oxides such as Al 2 O 3 , SiO 2 , and CaO, and if Al 2 O 3 is present among them, the mixture may be melted. It will be difficult.
Therefore, in the method for recovering valuable metals of the present invention, the Al 2 O 3 concentration [wt%], the SiO 2 concentration [wt%], and the Ca O concentration [wt%] in the mixture are the following formulas (1) to (4). ), The composition of the recovered product or mixture is adjusted.
Figure JPOXMLDOC01-appb-M000005
 上述した式(1)~式(4)は、SiO及びCaOなどで構成される回収物中に、溶融を抑制するAlがどの程度含まれるかを混合物中でのSiO-Al間およびCaO-Al間の濃度比x、yで示したものであり、実験より導かれるものである。なお、式(1)~式(4)の根拠については、後ほど実験例を用いて説明する。
Figure JPOXMLDOC01-appb-M000005
In the above-mentioned formulas (1) to (4), the amount of Al 2 O 3 that suppresses melting is contained in the recovered product composed of SiO 2 and CaO, and the amount of SiO 2- Al in the mixture is determined. 2 O 3 and between CaO-Al 2 O 3 concentration ratio between the x, have the meanings indicated in y, those derived from experiments. The grounds for the formulas (1) to (4) will be described later using an experimental example.
 上述した式(1)~式(4)が成立しない場合であっても、回収物としてAl、SiO、CaOなどの組成が異なるものがある場合は、回収物を組成が異なるものに切り替えるか、組成が異なるものを一部混合して用いることで、式(1)~式(4)を満足するようにすることができる。
 また、回収物としてAl、SiO、CaOなどの組成が異なるものを用意できない場合には、必要に応じてAl、SiO、CaOなどの酸化物、あるいはこれらを含むフラックスなどを回収物に適量添加することで、式(1)~式(4)を満足するようにすることもできる。
Even if the above formulas (1) to (4) do not hold, if there are recovered products with different compositions such as Al 2 O 3 , SiO 2 , and CaO, the recovered products have different compositions. By switching to, or by using a mixture of partially different compositions, the equations (1) to (4) can be satisfied.
Further, when the composition of such Al 2 O 3, SiO 2, CaO as recovered material can not provide a different optionally comprises oxide such as Al 2 O 3, SiO 2, CaO , or these fluxes By adding an appropriate amount of the above to the recovered product, the formulas (1) to (4) can be satisfied.
 上述した本実施形態の有価金属の回収方法によれば、Alを含む回収物からCoやNiといった有価金属を安価に且つ効率よく回収することができる。
 このように、加熱温度を1400℃以上にして混合物を溶融状態にすることで、冷却後の有価金属の回収が従来より安価で且つ効率よくなるものの、回収率、つまり歩留まりを一層高める方法があれば、より好ましい。
 
 というのも、磁選により磁着物と非磁着物とを確実に分離する場合には、磁着物や非磁着物の粒度が重要になる。例えば、コバルトなどの酸化物中の酸素量に対してグラファイトなどの還元剤の量が多すぎる状態(O/Rが非常に小さい状態)で混合物を還元すると、コバルトなどが還元されてメタル化するが、還元剤の量が元々酸素量より過剰なので、反応に使われなかった還元剤が回収物中に残留する。還元剤であるグラファイトなどが回収物中に存在していると金属の凝集が阻害されるため、残留している還元剤により金属同士の凝集が阻害される。その結果、溶融してあまり時間が経っていない場合などでは回収物は数十μm以下の粒径とされた極めて微細なメタルが含まれた状態で回収される。
 
 ところが、このように粒径が数十μm以下、正確には粒径が1mm以下のメタルは、磁選の際に分離が困難であり、良好な磁選効率で回収することができず、メタルの回収率が大きく低下してしまう。
 そこで、本発明の有価金属の回収方法では、メタルの凝集をより進め、粒径が1mmを超える粒子まで成長させてからメタルを回収している。具体的には、加熱温度が高く、加熱時間が長いほど、メタルの凝集は進行する。そこで、本発明では、加熱温度をT[℃]、加熱時間をt[min]とした場合に、前記した式(5)の関係が成立するように加熱を行うことで、有価金属を一層高歩留まりで回収可能とした。
According to the method for recovering valuable metals of the present embodiment described above, valuable metals such as Co and Ni can be recovered inexpensively and efficiently from the recovered product containing Al 2 O 3 .
In this way, by setting the heating temperature to 1400 ° C. or higher and melting the mixture, recovery of valuable metals after cooling becomes cheaper and more efficient than before, but if there is a method for further increasing the recovery rate, that is, the yield. , More preferred.

This is because the grain size of the magnetic or non-magnetic material is important when the magnetic material and the non-magnetic material are surely separated by magnetic selection. For example, when the mixture is reduced in a state where the amount of the reducing agent such as graphite is too large (the state where the O / R is very small) with respect to the amount of oxygen in the oxide such as cobalt, the cobalt and the like are reduced and metallized. However, since the amount of the reducing agent is originally larger than the amount of oxygen, the reducing agent not used in the reaction remains in the recovered product. If graphite or the like, which is a reducing agent, is present in the recovered product, the aggregation of metals is inhibited, so that the residual reducing agent inhibits the aggregation of metals. As a result, when it has been melted for a short time, the recovered product is recovered in a state of containing extremely fine metal having a particle size of several tens of μm or less.

However, such a metal having a particle size of several tens of μm or less, to be exact, a particle size of 1 mm or less is difficult to separate at the time of magnetic separation and cannot be recovered with good magnetic selection efficiency, so that the metal can be recovered. The rate drops significantly.
Therefore, in the method for recovering valuable metals of the present invention, the agglomeration of the metal is further promoted, and the metal is recovered after growing into particles having a particle size of more than 1 mm. Specifically, the higher the heating temperature and the longer the heating time, the more the metal aggregates. Therefore, in the present invention, when the heating temperature is T [° C.] and the heating time is t [min], the valuable metal is further increased by heating so that the relationship of the above formula (5) is established. It was made possible to collect by yield.
 次に、実施例及び比較例を用いて、本発明の有価金属の回収方法が有する作用効果について詳しく説明する。
 実施例及び比較例は、リチウムイオンバッテリ(LIB)の廃電池に対して焼却、粉砕、篩分を行い、篩下に分別されたものを回収物として、有価金属の回収を行うと共に、回収率の算出を行ったものである。より詳しくは、実施例及び比較例は、以下の実験1~実験3に従って行った。
Next, the effects of the method for recovering valuable metals of the present invention will be described in detail with reference to Examples and Comparative Examples.
In Examples and Comparative Examples, a waste battery of a lithium ion battery (LIB) is incinerated, crushed, and sieved, and the material separated under the sieve is used as a recovered product to recover valuable metals and a recovery rate. Is calculated. More specifically, Examples and Comparative Examples were carried out according to Experiments 1 to 3 below.
[実験1]
 実験1の実施例及び比較例は、回収物に混合する還元剤に粉末状石炭を用いたものとなっている。なお、この粉末状石炭には、瀝青炭をボールミルにて粉砕し、レーザー回折・散乱法による粒度が75μm以下となるものの積算体積が65%以上に調整されたものを用いている。この混合物については、高周波にてグラファイト坩堝(内径40mmφ)を加熱し、坩堝からの輻射加熱により混合物(塊成物)を加熱した。また、坩堝内にR熱電対を設置し、R熱電対にて坩堝内の温度を監視した。なお、坩堝内はArなどの不活性ガスあるいはNガスを充填した不活性な雰囲気に保持し、坩堝内の混合物へ直接雰囲気ガスを吹き付けないように配慮した。
[Experiment 1]
In the examples and comparative examples of Experiment 1, powdered coal was used as the reducing agent to be mixed with the recovered product. As this powdered coal, bituminous coal is crushed by a ball mill to have a particle size of 75 μm or less by a laser diffraction / scattering method, but the integrated volume is adjusted to 65% or more. For this mixture, a graphite crucible (inner diameter 40 mmφ) was heated at a high frequency, and the mixture (agglomerate) was heated by radiant heating from the crucible. In addition, an R thermocouple was installed in the crucible, and the temperature inside the crucible was monitored by the R thermocouple. Incidentally, the crucible is held in an inert atmosphere filled with an inert gas or N 2 gas, such as Ar, with consideration to not spray directly atmospheric gas into the mixture in the crucible.
 また、混合物の加熱は、所定の加熱温度(1300℃、1350℃、1375℃、1400℃)のいずれかに加熱するものとし、約100℃/minの昇温速度で昇温し、所定の加熱温度に到達した後は所定の加熱温度のまま6分間に亘って坩堝内を加熱状態に保持した。
 上述した実施例及び比較例については、加熱後の混合物から得られた1mm以上の有価金属を対象として、回収の歩留(回収率)を算出した。具体的には、この回収率は、「回収された有価金属の総重量」を、「混合物中に最初から含まれていたCo、Ni、Mn、Cu、及びFeの重量の総和」で除した比率であり、算出された比率を百分率で表したものである。
Further, the mixture is heated to any of the predetermined heating temperatures (1300 ° C., 1350 ° C., 1375 ° C., 1400 ° C.), and the temperature is raised at a heating rate of about 100 ° C./min to determine the predetermined heating. After reaching the temperature, the inside of the crucible was kept in a heated state for 6 minutes at a predetermined heating temperature.
For the above-mentioned Examples and Comparative Examples, the yield (recovery rate) of recovery was calculated for valuable metals of 1 mm or more obtained from the mixture after heating. Specifically, this recovery rate is obtained by dividing the "total weight of the recovered valuable metal" by the "total weight of Co, Ni, Mn, Cu, and Fe contained in the mixture from the beginning". It is a ratio, which is the calculated ratio expressed as a percentage.
 つまり、上述した回収率を算出するには、まず「回収された有価金属の総重量」を求めることが必要となる。
 すなわち、加熱後の混合物から得られた反応生成物に対し粉砕後、磁選を行う。この磁選において磁着側に選別された反応生成物を、1mmの目開きで篩分けし、篩上に残った反応生成物の重量を秤量することにより、上述した「回収された有価金属の総重量」を求めることができる。なお、本実施例においては磁選により回収を行ったが、回収方法は磁選に限らず、他の一般的な回収技術を採用することが可能である。
That is, in order to calculate the above-mentioned recovery rate, it is first necessary to obtain the "total weight of the recovered valuable metals".
That is, the reaction product obtained from the heated mixture is pulverized and then subjected to magnetic separation. The reaction products selected on the magnetized side in this magnetic selection are sieved with a mesh size of 1 mm, and the weight of the reaction products remaining on the sieve is weighed to obtain the above-mentioned “total recovered valuable metals”. "Weight" can be calculated. In this embodiment, recovery was performed by magnetic separation, but the recovery method is not limited to magnetic selection, and other general recovery techniques can be adopted.
 一方、「混合物中に最初から含まれていたCo、Ni、Mn、Cu、及びFeの重量の総和」を求める場合には、加熱前の混合物について、混合物の原料すべてについて原則として分析を行う。つまり、混合物が回収物と還元剤とで構成される場合は回収物と還元剤とのそれぞれについてICP(誘導結合プラズマ発光分析法)で分析を行う。また、混合物が回収物と還元剤とに加えてフラックスなどを含む場合や、複数種の回収物を混合して用いる場合には、フラックスについてもICP分析を行ったり、すべての回収物についてICP分析を行ったりする。 On the other hand, when "the total weight of Co, Ni, Mn, Cu, and Fe contained in the mixture from the beginning" is obtained, in principle, all the raw materials of the mixture are analyzed for the mixture before heating. That is, when the mixture is composed of a recovered product and a reducing agent, each of the recovered product and the reducing agent is analyzed by ICP (inductively coupled plasma emission spectrometry). In addition, when the mixture contains flux in addition to the recovered product and the reducing agent, or when a plurality of types of recovered products are mixed and used, ICP analysis is also performed on the flux, and ICP analysis is performed on all recovered products. Or do.
 このようにしてICPで分析を行い、混合物の原料中に含まれるCo、Ni、Mn、Cu、及びFeの定量分析を行い、混合物中に最初から含まれていたCo、Ni、Mn、Cu、及びFeの濃度(重量)を求める。このようにして求められた混合物中に最初から含まれていたCo、Ni、Mn、Cu、及びFeの重量を、電子天秤で秤量した混合物の重量で除して、混合物中のCo、Ni、Mn、Cu、及びFeの重量濃度(重量割合)を算出する。 In this way, analysis was performed by ICP, quantitative analysis of Co, Ni, Mn, Cu, and Fe contained in the raw material of the mixture was performed, and Co, Ni, Mn, Cu, which were originally contained in the mixture. And Fe concentration (weight) is determined. The weights of Co, Ni, Mn, Cu, and Fe contained in the mixture thus obtained from the beginning are divided by the weight of the mixture weighed by the electronic balance, and the Co, Ni, in the mixture is divided. The weight concentration (weight ratio) of Mn, Cu, and Fe is calculated.
 最後に、算出された混合物中のCo、Ni、Mn、Cu、及びFeの重量濃度に、坩堝に投入された混合物重量を乗じて、坩堝中の混合物に含まれるCo、Ni、Mn、Cu、及びFeの各重量を算出し、算出された各重量の和を「回収された有価金属の総重量」として求めた。
 このようにして求められた「混合物中に最初から含まれていたCo、Ni、Mn、Cu、及びFeの重量の総和」で、上述した「回収された有価金属の総重量」を除したものの百分率が、回収率(歩留まり)である。
Finally, the calculated weight concentrations of Co, Ni, Mn, Cu, and Fe in the mixture are multiplied by the weight of the mixture charged into the pit, and the Co, Ni, Mn, Cu, contained in the mixture in the pit are multiplied. And Fe were calculated, and the sum of the calculated weights was calculated as the "total weight of recovered valuable metals".
The "total weight of Co, Ni, Mn, Cu, and Fe contained in the mixture from the beginning" obtained in this way minus the above-mentioned "total weight of the recovered valuable metal". The percentage is the recovery rate (yield).
 なお、下記の実験1、2については、回収率(歩留り)が0%より大きい場合を合格として、0%<歩留まり<80%となる条件を「△」で示し、歩留り≧80%となる条件を「○」で示した。また、1mm以上の金属が全く得られない条件を不合格とし、「×」で示した。また、下記の実験3については、回収率(歩留り)が80%より小さい場合を不合格として、0%<歩留り<80%となる条件を「×」で示し、歩留り≧80%となる条件を合格として「○」で示した。 Regarding Experiments 1 and 2 below, the condition that the recovery rate (yield) is larger than 0% is accepted, the condition that 0% <yield <80% is indicated by "Δ", and the condition that the yield is ≥80% Is indicated by "○". Further, the condition that no metal of 1 mm or more could be obtained was rejected and indicated by "x". In Experiment 3 below, if the recovery rate (yield) is less than 80%, it is rejected, and the condition that 0% <yield <80% is indicated by "x", and the condition that the yield ≥ 80% It is indicated by "○" as a pass.
 実験1に関する実験結果を表1に示す。 Table 1 shows the experimental results related to Experiment 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上述した表1の「O/R」の欄を見ると、混合物中で有価金属と化合している酸素量をO[mol/kg]、混合物中に含まれる還元剤の還元剤含有量をR[mol/kg]とした場合、O/Rの値が0.14~0.97の場合は回収率の評価が「○」または「△」となり、O/Rの値が1.03より大きい場合は回収率の評価が「×」となることがわかる。
 また、表1の「温度」の欄を見ると、加熱温度が1400℃の場合は回収率の評価が「○」または「△」となり、加熱温度が1300℃、1350℃、または1375℃の場合は回収率の評価が「×」となることがわかる。
Looking at the column of "O / R" in Table 1 described above, the amount of oxygen compounded with the valuable metal in the mixture is O [mol / kg], and the reducing agent content of the reducing agent contained in the mixture is R. When [mol / kg] is set and the O / R value is 0.14 to 0.97, the recovery rate is evaluated as “○” or “Δ”, and the O / R value is larger than 1.03. In that case, it can be seen that the evaluation of the recovery rate is “x”.
Looking at the "Temperature" column in Table 1, when the heating temperature is 1400 ° C, the evaluation of the recovery rate is "○" or "Δ", and when the heating temperature is 1300 ° C, 1350 ° C, or 1375 ° C. It can be seen that the evaluation of the recovery rate is "x".
 なお、表1の「O/R」及び「温度」の結果を、横軸に「O/R」の値、縦軸に「温度」の値をとって、グラフ上に「○」、「△」、及び「×」の結果をプロットすると、図1として示すことができる。
 すなわち、図1に示すように、回収率の評価が「○」または「△」となるのは、加熱温度が1400℃以上であって、「O/R」の値が0.14~0.97となる場合に限られることが理解できる。
The results of "O / R" and "Temperature" in Table 1 are shown on the graph as "○" and "△" with the "O / R" value on the horizontal axis and the "Temperature" value on the vertical axis. , And the results of "x" can be plotted as FIG.
That is, as shown in FIG. 1, the evaluation of the recovery rate is “◯” or “Δ” when the heating temperature is 1400 ° C. or higher and the value of “O / R” is 0.14 to 0. It can be understood that it is limited to the case of 97.
 表1及び図1の結果から、上述したO/Rを0.14~0.97、より好ましくはO/Rを0.56~0.97とすることで、良好な歩留まりで有価金属を回収することが可能となると判断される。 From the results of Table 1 and FIG. 1, by setting the above-mentioned O / R to 0.14 to 0.97, more preferably the O / R to 0.56 to 0.97, valuable metals can be recovered with a good yield. It is judged that it will be possible to do so.
[実験2]
 実験2は、上述した混合物中のSiO濃度[wt%]を混合物中のAl濃度[wt%]で除した比率x(=S/A)と、混合物中のCaO濃度[wt%]を混合物中のAl濃度[wt%]で除した比率y(=C/A)とが、歩留まりに与える影響を調査したものである。
[Experiment 2]
In Experiment 2, the ratio x (= S / A) obtained by dividing the SiO 2 concentration [wt%] in the mixture by the Al 2 O 3 concentration [wt%] in the mixture and the CaO concentration [wt%] in the mixture were obtained. ] Was divided by the Al 2 O 3 concentration [wt%] in the mixture, and the effect of the ratio y (= C / A) on the yield was investigated.
 実験2に関する実験結果を表2に示す。 Table 2 shows the experimental results related to Experiment 2.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例は、混合物中でのAlの濃度が16.0wt%~17.3wt%、SiOの濃度が2.0wt%~6.3wt%、CaOの濃度が0.5wt%~2.6wt%となる組成についてのものである。この実施例の濃度を上述した比率x及び比率yを用いて示すと、混合物中のSiO濃度[wt%]を混合物中のAl濃度[wt%]で除した比率x(=S/A)が0.118~0.390になり、且つ混合物中のCaO濃度[wt%]を混合物中のAl濃度[wt%]で除した比率y(=C/A)が0.031~0.163になる結果となる。 In the examples, the concentration of Al 2 O 3 in the mixture is 16.0 wt% to 17.3 wt%, the concentration of SiO 2 is 2.0 wt% to 6.3 wt%, and the concentration of Ca O is 0.5 wt% to 2 It is about the composition of .6 wt%. When the concentration of this example is shown using the above-mentioned ratio x and ratio y, the ratio x (= S) obtained by dividing the SiO 2 concentration [wt%] in the mixture by the Al 2 O 3 concentration [wt%] in the mixture. / a) becomes 0.118 to 0.390, and the concentration of Al 2 O 3 in the mixture of CaO concentration [wt%] in the mixture ratio divided by [wt%] y (= C / a) is 0 The result is .031 to 0.163.
 また、比較例は、混合物中でのAlの濃度が16.7wt%~17.7wt%、SiOの濃度が0.6wt%~3.4wt%、CaOの濃度が0.5wt%~3.7wt%となる組成についてのものである。この比較例の濃度は、実施例と同様に比率x及び比率yを用いて示すと、比率x(=S/A)が0.036~0.201になり、且つ比率y(=C/A)が0.031~0.155の結果となる。
 さらに、表1と同様に表2の「S/A」及び「C/A」と回収率との関係をわかりやすくするために、横軸に「S/A」の値、縦軸に「C/A」の値をとって、グラフ上に「○」、「△」、及び「×」の結果をプロットすると、図2のような結果となる。
Further, in the comparative example, the concentration of Al 2 O 3 in the mixture is 16.7 wt% to 17.7 wt%, the concentration of SiO 2 is 0.6 wt% to 3.4 wt%, and the concentration of Ca O is 0.5 wt%. It is about a composition of about 3.7 wt%. When the concentration of this comparative example is shown using the ratio x and the ratio y as in the examples, the ratio x (= S / A) is 0.036 to 0.201, and the ratio y (= C / A). ) Is the result of 0.031 to 0.155.
Further, as in Table 1, in order to make it easier to understand the relationship between "S / A" and "C / A" in Table 2 and the recovery rate, the horizontal axis is the value of "S / A" and the vertical axis is "C". Taking the value of "/ A" and plotting the results of "○", "Δ", and "×" on the graph, the result is as shown in FIG.
 図2に示すように、回収率の評価が○または△となるのは、図中にグレーで網掛けされた部分である。この網掛けされた部分は、(I)~(IV)の4つの境界線から構成されている。この4つの境界線を数式で示すと、以下の式(1)~式(4)の関係が得られる。
Figure JPOXMLDOC01-appb-M000008
  以上のことから、式(1)~式(4)の関係を満足するような、x(=S/A)及びy(=C/A)であれば、回収率の評価が「○」または「△」となり、Alを含む回収物からCoやNiといった有価金属を安価に且つ効率よく回収することが可能となる。
As shown in FIG. 2, the evaluation of the recovery rate is ◯ or Δ in the gray shaded portion in the figure. This shaded portion is composed of four boundary lines (I) to (IV). When these four boundary lines are expressed by mathematical formulas, the following relationships (1) to (4) can be obtained.
Figure JPOXMLDOC01-appb-M000008
From the above, if x (= S / A) and y (= C / A) satisfy the relationship between the formulas (1) to (4), the evaluation of the recovery rate is "○" or It becomes “Δ”, and valuable metals such as Co and Ni can be recovered inexpensively and efficiently from the recovered material containing Al 2 O 3 .
 なお、上述したようにS/A(SiO/Al)及びC/A(CaO/Al)を規定するのは、次のような理由による。すなわち、使用済み二次電池には、還元され金属になるCo、Ni以外にも、酸化物としてスラグになる成分としてAl、MnO、Li、F等が含まれており、回収物は複雑な組成となる。ここで、回収物から回収目的のCo、Niなどの有価金属を得るためには、メタル並びに酸化物をいずれも溶融状態とする必要がある。 As described above, S / A (SiO 2 / Al 2 O 3 ) and C / A (CaO / Al 2 O 3 ) are defined for the following reasons. That is, the used secondary batteries, Co to become a metal is reduced, in addition to Ni, Al 2 O 3 as a component to become slag as oxide, MnO X, Li, are included F, etc., recovered material Has a complex composition. Here, in order to obtain valuable metals such as Co and Ni for recovery from the recovered material, it is necessary to put both the metal and the oxide in a molten state.
 そこで、本発明の有価物の回収方法では、S/A及びC/Aを上記した範囲にコントロールすることで、スラグ溶融性を確保して、有価金属を安価に且つ効率よく回収可能としている。
 つまり、メタル/スラグを良好に分離可能となるように、式(1)~式(3)の関係を設定する。また、フラックスを入れ過ぎると、生産性が低下しコストを圧迫するため、生産性を保持して経済性を保つために、式(4)のように(C+S)/A≦0.6となるよう添加量の上限を設定した。
Therefore, in the method for recovering valuable resources of the present invention, by controlling S / A and C / A within the above range, slag meltability is ensured and the valuable metal can be recovered inexpensively and efficiently.
That is, the relationship between the equations (1) and (3) is set so that the metal / slag can be separated well. Further, if too much flux is added, the productivity is lowered and the cost is reduced. Therefore, in order to maintain the productivity and the economic efficiency, (C + S) / A ≦ 0.6 as shown in the equation (4). The upper limit of the addition amount was set.
[実験3]
 上述した加熱温度、式(1)~式(4)などを満足した場合、Co、Niなどの有価金属を、メタルや酸化物として分離することができる。ただ、本発明の有価金属の回収方法は、有価金属を金属の塊として回収することを目的としている。言い換えれば、粒径が小さすぎて金属の塊とはならないようなもの、例えば目開き1mmで篩下となるような微細な有価金属が得られても、有価金属が金属の塊として回収できたことにはならない。このような微細な金属の粒子は磁選を用いても回収することが困難であり、良好な磁選効率で回収することができず、メタルの回収率が大きく低下させてしまう。
[Experiment 3]
When the above-mentioned heating temperature, equations (1) to (4) and the like are satisfied, valuable metals such as Co and Ni can be separated as metals and oxides. However, the method for recovering valuable metals of the present invention aims to recover valuable metals as lumps of metal. In other words, even if a fine precious metal with a particle size that is too small to form a metal lump, for example, a fine valuable metal with a mesh size of 1 mm and under a sieve, was obtained, the valuable metal could be recovered as a metal lump. It doesn't mean that. It is difficult to recover such fine metal particles even by using magnetic separation, and it is not possible to recover such fine metal particles with good magnetic selection efficiency, which greatly reduces the metal recovery rate.
 そこで、本発明の有価金属の回収方法では、微細な金属の粒子をより凝集させ、粒径が1mmを超える粒子まで成長させてからメタルとして回収する方法も提案する。粒径1mmを超える粒子として回収するのであれば、良好な磁選効率を維持することができるからである。なお、加熱温度を高くし、加熱時間を長く取れば取るほど、メタルを凝集させることができる。 Therefore, in the method for recovering valuable metals of the present invention, we also propose a method in which fine metal particles are more agglomerated, grown to particles having a particle size of more than 1 mm, and then recovered as metal. This is because good magnetic separation efficiency can be maintained if the particles are recovered as particles having a particle size of more than 1 mm. The higher the heating temperature and the longer the heating time, the more the metal can be aggregated.
 具体的には、本発明では、加熱温度をT[℃]、加熱時間をt[min]とした場合に、式(5)の関係が成立するように加熱を行うことで、有価金属を高歩留まりで回収可能としている。この式(5)の関係式は、経験的に導かれるものであり、実際のデータを満足させることを出願人は確認している。
Figure JPOXMLDOC01-appb-M000009
 上述した式(5)の関係(加熱温度T[℃]と加熱時間t[min]との関係)は実験3の結果から導かれる。
Specifically, in the present invention, when the heating temperature is T [° C.] and the heating time is t [min], the valuable metal is increased by heating so that the relationship of the formula (5) is established. It is possible to collect by yield. The applicant confirms that the relational expression of the equation (5) is empirically derived and satisfies the actual data.
Figure JPOXMLDOC01-appb-M000009
The relationship of the above-mentioned formula (5) (relationship between the heating temperature T [° C.] and the heating time t [min]) is derived from the result of Experiment 3.
 すなわち、表3に示すように、実験No.1~No.7の7つのサンプルについて、加熱温度T[℃]を1373℃~1548℃の範囲で変化させると共に、加熱時間t[min]を1.2min~23.0minの範囲で変化させて、回収物から有価金属を回収する場合の歩留まりを計測する。 That is, as shown in Table 3, Experiment No. 1 to No. For the seven samples of 7, the heating temperature T [° C.] was changed in the range of 1373 ° C. to 1548 ° C., and the heating time t [min] was changed in the range of 1.2 min to 23.0 min. Measure the yield when recovering valuable metals.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 上述した実験No.1~No.7のサンプルについて、式(6)の左辺に相当するパラメータ(温度・時間のパラメータ)、すなわち「T+5×t」のパラメータを計算すると、比較例である実験No.1~No.4は1395.9~1488.3となり、実施例である実験No.5~No.7は1491.5~1574.1となる。パラメータが1395.9~1488.3の比較例はいずれも「×」の評価となり、パラメータが1491.5~1574.1の実施例はいずれも「○」の評価となった。 The above-mentioned experiment No. 1 to No. When the parameters (temperature / time parameters) corresponding to the left side of the equation (6), that is, the parameters of "T + 5 × t" are calculated for the sample of No. 7, the experimental No. 7 which is a comparative example is calculated. 1 to No. No. 4 is 1395.9 to 1488.3, and the experimental No. 4 is an example. 5 to No. 7 is 1491.5 to 1574.1. The comparative examples having parameters of 1395.9 to 1488.3 were all evaluated as "x", and the examples having parameters of 1491.5 to 1574.1 were all evaluated as "○".
 また、表1や表2と同様に表3の「温度・時間のパラメータ」と「歩留まり」との関係をわかりやすくするために、横軸に「温度・時間のパラメータ」の値、縦軸に「歩留まり」の値をとって、グラフ上に「○」及び「×」の結果をプロットすると、図3のような結果となる。
 図3に示すように、「温度・時間のパラメータ」に対して、「歩留まり」は直線的な変化(線形変化)を示す。ここで、パラメータが1488.3の実験No.4が79.7%の歩留まりになるのに対して、パラメータが1491.5の実験No.5が85.5%の歩留まりになる。このことから、パラメータを1490以上、好ましくは1520以上とすることで、80%以上、好ましくは90%以上の「歩留まり」を得ることが可能になると考えられる。
In addition, as in Tables 1 and 2, in order to make it easier to understand the relationship between the "temperature / time parameters" and "yield" in Table 3, the horizontal axis is the value of the "temperature / time parameter" and the vertical axis is the value. Taking the value of "yield" and plotting the results of "○" and "×" on the graph, the result is as shown in FIG.
As shown in FIG. 3, the "yield" indicates a linear change (linear change) with respect to the "temperature / time parameter". Here, the experimental No. 1 with a parameter of 1488.3. Experiment No. 4 has a parameter of 1491.5, while 4 has a yield of 79.7%. 5 gives a yield of 85.5%. From this, it is considered that by setting the parameter to 1490 or more, preferably 1520 or more, it is possible to obtain a "yield" of 80% or more, preferably 90% or more.
 なお、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。特に、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。

 
It should be noted that the embodiments disclosed this time are exemplary in all respects and are not restrictive. In particular, in the embodiments disclosed this time, matters not explicitly disclosed, such as operating conditions, operating conditions, various parameters, dimensions, weights, volumes of components, etc., deviate from the scope normally implemented by those skilled in the art. A value that can be easily assumed by a person skilled in the art is adopted.

Claims (4)

  1.  使用済み二次電池に対して、加熱、破砕、篩別、磁選の処理を加えることで有価金属を含む回収物を得て、得られた前記回収物を還元剤と混合して加熱することにより、混合物中の有価金属を還元により金属化すると共に溶融することで前記混合物から金属と酸化物とを分離し、冷却後金属を酸化物から選別して回収する有価金属の回収方法において、
     前記混合物の加熱温度を1400℃以上とし、
     前記回収物に還元剤を混合する際は、
     前記混合物中で有価金属と化合している酸素量をO[mol/kg]、前記混合物中に含まれる還元剤の還元剤含有量をR[mol/kg]とした場合、0<O/R≦0.97が成立するようにし、
     かつ、
     前記混合物中に含まれるAl、SiO、CaOの濃度[wt%]の比x、yが以下の式(1)~式(4)を満たすように、前記回収物に還元剤を混合して有価金属を回収することを特徴とする有価金属の回収方法。
    Figure JPOXMLDOC01-appb-M000001
    A recovered material containing a valuable metal is obtained by subjecting a used secondary battery to processing of heating, crushing, sieving, and magnetic separation, and the obtained recovered product is mixed with a reducing agent and heated. In a method for recovering a valuable metal, which separates a metal and an oxide from the mixture by metallizing the valuable metal in the mixture by reduction and melting the metal, and selecting and recovering the metal from the oxide after cooling.
    The heating temperature of the mixture is set to 1400 ° C. or higher.
    When mixing the reducing agent with the recovered product,
    When the amount of oxygen compounded with the valuable metal in the mixture is O [mol / kg] and the content of the reducing agent contained in the mixture is R [mol / kg], 0 <O / R. Make sure that ≤0.97 holds,
    And,
    A reducing agent is added to the recovered product so that the ratios x and y of the concentrations [wt%] of Al 2 O 3 , SiO 2 , and CaO contained in the mixture satisfy the following formulas (1) to (4). A method for recovering valuable metals, which comprises mixing and recovering valuable metals.
    Figure JPOXMLDOC01-appb-M000001
  2.  使用済み二次電池に対して、加熱、破砕、篩別、磁選の処理を加えることで有価金属を含む回収物を得て、得られた前記回収物を還元剤と混合して加熱することにより、混合物中の有価金属を還元により金属化すると共に溶融することで前記混合物から金属と酸化物とを分離し、冷却後金属を酸化物から選別して回収する有価金属の回収方法において、
     前記回収物に還元剤を混合する際は、
     前記混合物中で有価金属と化合している酸素量をO[mol/kg]、前記混合物中に含まれる還元剤の還元剤含有量をR[mol/kg]とした場合、0<O/R≦0.97が成立するようにし、
     かつ、
     前記混合物中に含まれるAlに対するSiOの濃度[wt%]の比x、Alに対するCaOの濃度[wt%]の比yが以下の式(1)~式(4)を満たすように、前記回収物に還元剤を混合し、
     さらに、前記還元剤が混合された回収物を加熱する際は、前記混合物を加熱する加熱温度をT[℃]、前記混合物を加熱する時間をt[min]とした場合、以下の式(5)が成立するように、前記回収物を加熱することを特徴とする有価金属の回収方法。
    Figure JPOXMLDOC01-appb-M000002
    A recovered material containing a valuable metal is obtained by subjecting a used secondary battery to processing of heating, crushing, sieving, and magnetic separation, and the obtained recovered product is mixed with a reducing agent and heated. In a method for recovering a valuable metal, which separates a metal and an oxide from the mixture by metallizing the valuable metal in the mixture by reduction and melting the metal, and selecting and recovering the metal from the oxide after cooling.
    When mixing the reducing agent with the recovered product,
    When the amount of oxygen compounded with the valuable metal in the mixture is O [mol / kg] and the content of the reducing agent contained in the mixture is R [mol / kg], 0 <O / R. Make sure that ≤0.97 holds,
    And,
    The ratio x of the concentration [wt%] of SiO 2 to Al 2 O 3 contained in the mixture and the ratio y of the concentration [wt%] of CaO to Al 2 O 3 are the following equations (1) to (4). A reducing agent is mixed with the recovered product so as to satisfy the above conditions.
    Further, when heating the recovered product mixed with the reducing agent, when the heating temperature for heating the mixture is T [° C.] and the time for heating the mixture is t [min], the following formula (5) ) Is satisfied, the method for recovering valuable metals, which comprises heating the recovered material.
    Figure JPOXMLDOC01-appb-M000002
  3.  前記還元剤として、炭素質還元剤、金属Al、または金属Siの少なくとも1種類以上を用いることを特徴とする請求項1又は請求項2に記載の有価金属の回収方法。 The method for recovering a valuable metal according to claim 1 or 2, wherein at least one of a carbonaceous reducing agent, metal Al, and metal Si is used as the reducing agent.
  4.  前記還元剤として、粒度75μm以下の積算体積が65%以上に調整されたものを用いることを特徴とする請求項1、請求項2又は請求項3のいずれか1項に記載の有価金属の回収方法。

     
    The recovery of the valuable metal according to any one of claims 1, 2 or 3, wherein a reducing agent having a particle size of 75 μm or less and an integrated volume adjusted to 65% or more is used. Method.

PCT/JP2020/014401 2019-04-03 2020-03-27 Method for recovering valuable metals WO2020203937A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080009023.2A CN113302005B (en) 2019-04-03 2020-03-27 Method for recovering valuable metals

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-071320 2019-04-03
JP2019071320A JP7103293B2 (en) 2019-04-03 2019-04-03 How to recover valuable metals
JP2019225023 2019-12-13
JP2019-225023 2019-12-13

Publications (1)

Publication Number Publication Date
WO2020203937A1 true WO2020203937A1 (en) 2020-10-08

Family

ID=72668890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014401 WO2020203937A1 (en) 2019-04-03 2020-03-27 Method for recovering valuable metals

Country Status (2)

Country Link
CN (1) CN113302005B (en)
WO (1) WO2020203937A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7192934B1 (en) 2021-09-01 2022-12-20 住友金属鉱山株式会社 Valuable metal manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050235775A1 (en) * 2004-04-19 2005-10-27 Daniel Cheret Battery recycling
JP2012193424A (en) * 2011-03-17 2012-10-11 Shinkoo Flex:Kk Method for recovering manganese alloy from manganese oxide waste
WO2013080266A1 (en) * 2011-11-28 2013-06-06 住友金属鉱山株式会社 Method for recovering valuable metal
CN107012332A (en) * 2017-04-18 2017-08-04 中科过程(北京)科技有限公司 A kind of method that metal is reclaimed in nickeliferous, cobalt refuse battery and cupric electron wastes collaboration
JP2019502826A (en) * 2016-01-12 2019-01-31 ユミコア Lithium-rich metallurgical slag
JP2019131871A (en) * 2018-02-01 2019-08-08 株式会社神戸製鋼所 Metal recovery method
WO2020013294A1 (en) * 2018-07-12 2020-01-16 住友金属鉱山株式会社 Method for recovering valuable metals from waste lithium ion batteries

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4099057B2 (en) * 2002-12-27 2008-06-11 三井金属鉱業株式会社 Cobalt recovery method and cobalt recovery system in lithium ion battery
JP5360135B2 (en) * 2011-06-03 2013-12-04 住友金属鉱山株式会社 Valuable metal recovery method
CN103526035B (en) * 2013-10-31 2015-08-05 长沙矿冶研究院有限责任公司 The method of valuable metal is reclaimed from waste and old lithium ion battery and/or its material
US10164302B2 (en) * 2013-12-23 2018-12-25 Umicore Process for recycling li-ion batteries

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050235775A1 (en) * 2004-04-19 2005-10-27 Daniel Cheret Battery recycling
JP2012193424A (en) * 2011-03-17 2012-10-11 Shinkoo Flex:Kk Method for recovering manganese alloy from manganese oxide waste
WO2013080266A1 (en) * 2011-11-28 2013-06-06 住友金属鉱山株式会社 Method for recovering valuable metal
JP2019502826A (en) * 2016-01-12 2019-01-31 ユミコア Lithium-rich metallurgical slag
CN107012332A (en) * 2017-04-18 2017-08-04 中科过程(北京)科技有限公司 A kind of method that metal is reclaimed in nickeliferous, cobalt refuse battery and cupric electron wastes collaboration
JP2019131871A (en) * 2018-02-01 2019-08-08 株式会社神戸製鋼所 Metal recovery method
WO2020013294A1 (en) * 2018-07-12 2020-01-16 住友金属鉱山株式会社 Method for recovering valuable metals from waste lithium ion batteries

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7192934B1 (en) 2021-09-01 2022-12-20 住友金属鉱山株式会社 Valuable metal manufacturing method
WO2023032495A1 (en) * 2021-09-01 2023-03-09 住友金属鉱山株式会社 Method for producing valuable metal
JP2023035435A (en) * 2021-09-01 2023-03-13 住友金属鉱山株式会社 Manufacturing method of valuable metal

Also Published As

Publication number Publication date
CN113302005A (en) 2021-08-24
CN113302005B (en) 2022-09-13

Similar Documents

Publication Publication Date Title
JP2019135321A (en) Method for recovering valuable metal from waste lithium-ion battery
JP7399586B2 (en) Method of recovering valuable elements
JP7077498B2 (en) Metal recovery method
JP2012138301A (en) Recovery method of valuables from lithium ion secondary battery and recovered material including valuables
JP2018078024A (en) Recovery method of valuables from lithium ion secondary battery
JP2021161454A (en) Method for recovering valuable metal from waste lithium-ion battery
KR20220148201A (en) Valuable metal concentration method included in lithium ion secondary battery
JP7103293B2 (en) How to recover valuable metals
JP2021161453A (en) Method for recovering valuable metal from waste lithium-ion battery
WO2020203937A1 (en) Method for recovering valuable metals
JP2021066903A (en) Method for recovering valuable metal
JP2021091940A (en) Valuable metal recovery method from waste battery
JP7378900B2 (en) How to recover valuable metals
KR20220139978A (en) How to recover valuable metals
JP7416153B1 (en) How to recover valuable metals
JP5532823B2 (en) Method for recovering valuable metals from waste batteries
WO2024048247A1 (en) Method for recovering valuable metals
WO2024048248A1 (en) Method for recovering valuable metals
JP7215517B2 (en) Valuable metal manufacturing method
JP7238939B2 (en) Valuable metal manufacturing method
EP4357470A1 (en) Method for producing valuable metal
JP7124923B1 (en) Valuable metal manufacturing method
EP4357469A1 (en) Method of producing valuable metal
WO2022163179A1 (en) Method for recovering valuable metal
KR20240046215A (en) Methods of producing valuable metals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20783291

Country of ref document: EP

Kind code of ref document: A1