WO2020203932A1 - Melt-blown nonwoven fabric manufacturing method and melt-blown nonwoven fabric - Google Patents

Melt-blown nonwoven fabric manufacturing method and melt-blown nonwoven fabric Download PDF

Info

Publication number
WO2020203932A1
WO2020203932A1 PCT/JP2020/014392 JP2020014392W WO2020203932A1 WO 2020203932 A1 WO2020203932 A1 WO 2020203932A1 JP 2020014392 W JP2020014392 W JP 2020014392W WO 2020203932 A1 WO2020203932 A1 WO 2020203932A1
Authority
WO
WIPO (PCT)
Prior art keywords
woven fabric
melt
blown non
resin
blown
Prior art date
Application number
PCT/JP2020/014392
Other languages
French (fr)
Japanese (ja)
Inventor
和也 永峰
貴幸 宮本
武和 前田
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2021512092A priority Critical patent/JPWO2020203932A1/ja
Priority to CN202080025557.4A priority patent/CN113950547A/en
Priority to EP20782329.5A priority patent/EP3943655B1/en
Publication of WO2020203932A1 publication Critical patent/WO2020203932A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • D01D5/0985Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/02Spinnerettes
    • D01D4/025Melt-blowing or solution-blowing dies
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D7/00Collecting the newly-spun products
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion

Definitions

  • the present invention relates to a method for producing a melt-blown non-woven fabric and a melt-blown non-woven fabric.
  • a resin discharge process that discharges molten resin from a spinning die head equipped with nozzles with multiple holes, A fiber forming process in which hot air flowing from the nozzle hole toward a conveyor provided facing the spinning die head is blown toward the nozzle hole to fibrate the discharged molten resin to form fibers.
  • a melt-blown non-woven fabric is manufactured by a so-called melt-blown method including a non-woven fabric forming step of depositing the fibers on a conveyor by a stream of hot air to form a melt-blown non-woven fabric.
  • a non-woven fabric made of ultrafine fibers and having a large specific surface area can be produced inexpensively and easily.
  • the melt-blown non-woven fabric produced by such a method has a problem in terms of strength because the fibers are weakly adhered to each other in the state of being deposited on the conveyor. For this reason, the melt blown non-woven fabric is used in a state where the strength is increased by heat compression processing with a calendar roll, which is so-called calendar processing (see, for example, Patent Document 1).
  • the calendar-processed melt-blown non-woven fabric has high strength, its surface is crushed and its breathability is reduced. Breathability is an important performance when melt blown non-woven fabric is used for filter applications and the like.
  • the present invention has been made in view of the above problems, and is a method for producing a melt-blown non-woven fabric capable of producing a melt-blown non-woven fabric having good strength without calendar processing, and a melt-blown that can be produced by the manufacturing method.
  • An object of the present invention is to provide a non-woven fabric.
  • the present invention provides the following (1) to (8).
  • a resin discharge process in which molten resin is discharged from a spinning die head equipped with nozzles having a plurality of holes.
  • a fiber forming process in which hot air flowing from the nozzle hole toward a conveyor provided facing the spinning die head is blown toward the nozzle hole to fibrate the discharged molten resin to form fibers.
  • the air volume of hot air is 1000 NL / min / m or more and 7000 NL / min / m or less.
  • the temperature of the resin in the nozzle hole is equal to or higher than the melting point of the resin (melting point + 100 ° C) or lower.
  • the shortest distance between the nozzle hole and the conveyor is 10 mm or more and 75 mm or less.
  • a method for producing a melt-blown non-woven fabric, wherein the temperature of the atmosphere between the nozzle hole and the conveyor is 110 ° C. or higher and 160 ° C. or lower.
  • the reflection intensity is as follows: Distance between ultrasonic transmitter / receiver and non-woven fabric surface: 155 mm Frequency: 360kHz Measurement temperature: 22 ° C Applied voltage: 500V Wavenumber: 5 (burst wave) Sharp ratio: 100%
  • the method for producing a melt-blown non-woven fabric according to (1) or (2) which is an average value of 100 or more measured values measured according to 100 or more points within a range of 25 mm ⁇ 40 mm.
  • the values of the reflection intensity of ultrasonic waves on both sides are different from each other.
  • the larger reflection intensity value is 1.2 times or more and 3.0 times or less than the smaller reflection intensity value.
  • the reflection intensity is as follows: Distance between ultrasonic transmitter / receiver and non-woven fabric surface: 155 mm Frequency: 360kHz Measurement temperature: 22 ° C Applied voltage: 500V Wavenumber: 5 (burst wave) Sharp ratio: 100% Number of measurement points: A melt-blown non-woven fabric which is an average value of 100 or more points measured according to 100 points or more within a range of 25 mm ⁇ 40 mm. (5) The meltblown non-woven fabric according to (4), which has a thickness of 0.1 mm or more and 0.4 mm or less. (6) The melt-blown non-woven fabric according to (4) or (5), wherein the apparent density is 50 kg / m 3 or more and 350 kg / m 3 or less.
  • meltblown non-woven fabric according to any one of (4) to (6), wherein the average pore diameter measured by a palm poromometer is 2.5 ⁇ m or more and 5.0 ⁇ m or less.
  • the average fiber diameter which is the average value of the fiber diameters of 100 or more fibers obtained from the electron microscope image, is 0.5 ⁇ m or more and 3.0 ⁇ m or less. Melt blown non-woven fabric described in.
  • the present invention it is possible to provide a method for producing a melt-blown non-woven fabric capable of producing a melt-blown non-woven fabric having good strength without performing calendar processing, and a melt-blown nonwoven fabric that can be produced by the manufacturing method.
  • FIG. 1 shows an outline of a melt blown non-woven fabric manufacturing apparatus.
  • FIG. 2 shows an outline of a spinning die head provided in a melt blown non-woven fabric manufacturing apparatus as a perspective view.
  • the manufacturing method of melt blown non-woven fabric is A resin ejection process in which molten resin is ejected from a spinning die head 10 having a plurality of nozzle holes 11. A fiber that forms fibers by blowing hot air flowing from the nozzle hole 11 toward a conveyor 12 provided facing the spinning die head 10 toward the nozzle hole 11 and fibrating the discharged molten resin.
  • the formation process and It is a method including a non-woven fabric forming step of forming a melt blown non-woven fabric by depositing fibers on a conveyor by an air flow of hot air. In addition, no calendar processing is performed after the non-woven fabric forming step.
  • the molten resin is discharged from the spinning die head 10 having a plurality of nozzle holes 11.
  • the method of supplying the molten resin to the spinning die head 10 is not particularly limited. As a typical method, a method of melting the resin supplied from the hopper 100 by passing it through an extruder 101 and supplying the melted resin to the spinning die head 10 through a kneader 104 can be mentioned.
  • the type of extruder 101 is not particularly limited as long as the resin can be melted.
  • Types of extruder 101 include, for example, single-screw extruder, same-direction meshing twin-screw extruder, same-direction non-meshing twin-screw extruder, different-direction non-meshing twin-screw extruder, multi-screw extruder and the like. Machines can be used. Among them, the single-screw extruder is preferable because the resin retention portion in the extruder is small, so that it is possible to prevent thermal deterioration of the resin during extrusion, and the equipment cost is reduced. Further, when a resin that generates residual volatile matter is used, the extruder 101 may have a vent structure.
  • a solid resin is preferable. More preferably, a pellet-shaped resin is used.
  • the pellet-shaped resin is generally supplied into the extruder 101 via a hopper 100 attached to a raw material supply port of the extruder 101.
  • the resin supplied to the extruder 101 is preferably heat-dried in advance so as not to cause hydrolysis or oxidative deterioration of the resin.
  • the amount of water in the resin is preferably 200 mass ppm or less.
  • the drying conditions are preferably 100 ° C. for 3 hours or more, although it depends on the resin.
  • the atmosphere at the time of drying is preferably an atmosphere of an inert gas such as nitrogen.
  • a method using a hopper type dryer provided with a drying mechanism in the hopper 100 that supplies pellets to the extruder 101, or using a dryer before supplying the resin to the hopper 100 in consideration of the required drying time and resin consumption time, a method using a hopper type dryer provided with a drying mechanism in the hopper 100 that supplies pellets to the extruder 101, or using a dryer before supplying the resin to the hopper 100.
  • a method of supplying the resin to the hopper 100 so as not to dry the hopper and absorb moisture, or a method of using both of them can be preferably used.
  • the method using a hopper type dryer is preferable because the resin can be kept in a dry state until just before the resin is supplied to the extruder 101.
  • the dryer in front of the hopper 100 dries quickly at a high temperature, and the hopper type dryer creates a dehumidifying atmosphere so that moisture does not enter, because moisture does not mix even at low temperatures. More preferred. If the temperature of the hopper 100 is excessively high, blocking problems and the like may occur. Therefore, specifically, after drying the resin at 120 ° C. for 3 hours or more in the dryer in front of the hopper 100, the temperature inside the hopper type dryer is set to 40 to 100 ° C. to suppress the water content of the resin. And extrusion stability are easy to achieve at the same time.
  • the extruder 101 for example, as a screw (not shown) used in a single-screw extruder or the like, a screw having a general full-flight configuration with a compression ratio of about 2 to 3 for an extruder without or with a vent is used. Can be done. It is also possible to adopt a special kneading mechanism such as barrier flight so that unmelted material does not exist.
  • the resin discharge step from each of the nozzle holes 11 a spinning die head 10 is provided, as the discharge amount of resin is 0.006 cm 3 / min or more 0.3 cm 3 / min or less, the molten resin is discharged.
  • the above discharge amount is the discharge amount from one nozzle hole 11.
  • the amount of resin discharged from one nozzle hole 11 is 0.01 cm 3 / min or more because it is easy to stably extrude the resin and it is easy to form fibers having excellent crystallization and strength.
  • 0.2 cm 3 / min or less is preferable, and 0.02 cm 3 / min or more and 0.1 cm 3 / min or less is more preferable.
  • the molten resin obtained by a melting means such as an extruder 101 is preferably supplied to a spinning die head using a gear pump 102.
  • a gear pump 102 By using the gear pump 102, fluctuations in the discharge amount in the extruder 101 are absorbed, the supply quantification is remarkably improved, and the resin discharge from the nozzle hole 11 provided in the spinning die head 10 is also stable.
  • the molten resin quantitatively supplied by the gear pump 102 or the molten resin directly supplied from the extruder 101 is supplied to the spinning die head 10 through, for example, a tubular flow path, and is supplied from a plurality of nozzle holes 11 included in the spinning die head 10. It is discharged.
  • a foreign matter removing device such as a filter 103 should be provided in the resin flow path from the gear pump 102 to the die, or in the resin flow path from the melting means such as the extruder 101 to the spinning die head 10 when the gear pump 102 or the like is not used. Is preferable. As a result, it is possible to trap the foreign matter contained in the raw material resin and the foreign matter generated by the extruder or the gear pump 102, and reduce the mixing of the foreign matter into the non-woven fabric.
  • the filter 103 as a foreign matter removing device, a screen mesh, a pleated filter, a leaf disc filter, or the like can be used.
  • the leaf disc type filter is preferable in terms of filtration accuracy, filtration area, pressure resistance, time until filter clogging due to foreign matter, and the like.
  • a sintered non-woven fabric of metal fibers can be used as the filter medium of the filter 103.
  • the molten resin discharged from the gear pump 102 is supplied to the spinning die head 10 with or without the filter 103.
  • the supply of the molten resin from the gear pump 102 or from the filter 103 to the spinning die head 10 is performed, for example, through the kneader 104.
  • the molten resin supplied to the spinning die head 10 by the method as described above is discharged from a plurality of nozzle holes 11 included in the spinning die head 10 as shown in FIG.
  • the arrangement of the plurality of nozzle holes 11 in the spinning die head 10 is not particularly limited as long as the melt blown non-woven fabric 2 having desired characteristics can be produced.
  • the plurality of nozzle holes 11 are arranged so as to form rows at appropriate intervals in the same direction as the width direction of the melt blown nonwoven fabric 2 formed on the conveyor 12 described later.
  • the distance between the nozzle holes 11 is, for example, preferably 0.10 mm or more and 1.0 mm or less, and more preferably 0.25 mm or more and 0.75 mm or less.
  • the spacing between the nozzle holes 11 may or may not be uniform, but is preferably uniform in that a homogeneous non-woven fabric can be easily produced.
  • each nozzle hole 11 is not particularly limited, but is usually circular, substantially circular, elliptical, substantially elliptical, or the like.
  • the opening diameter of each nozzle hole 11 is not particularly limited, and is appropriately selected according to the fiber diameter of the fibers constituting the non-woven fabric.
  • the resin used as a raw material for the melt-blown non-woven fabric 2 used in the resin discharge step is not particularly limited as long as it is a resin conventionally used as a raw material for the melt-blown non-woven fabric.
  • the resin include polyolefin-based resins, polystyrene-based resins, (meth) acrylic-based resins, polyester-based resins, polyamide-based resins, polycarbonate-based resins, and the like.
  • polyolefin resin examples include low-density polyethylene, high-density polyethylene, polypropylene, ethylene-propylene copolymer, poly1-butene, and poly4-methyl-1-pentene.
  • the (meth) acrylic resin examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, phenyl (meth) acrylate, and benzyl (meth) acrylate.
  • examples thereof include polymers of one or more (meth) acrylate monomers selected from the (meth) acrylates.
  • polymethyl (meth) acrylate is preferable.
  • polyester resin examples include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PNE), and polylactic acid (PLA).
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PNE polyethylene naphthalate
  • PLA polylactic acid
  • polyamide-based resin examples include nylon 6, nylon 6, 6, nylon 12, nylon 6, 12, and MXD nylon.
  • polyolefin-based resins and polyester-based resins are preferable, and polypropylene, polyethylene terephthalate, and polybutylene terephthalate are more preferable, because they have good processability when producing melt-blown non-woven fabrics.
  • the molten resin discharged from the nozzle hole 11 is stretched by the hot air and made into fibers. Further, the hot air flows from the vicinity of the nozzle hole 11 toward the conveyor 12 provided facing the spinning die head 10. Therefore, the fibers stretched by the hot air are deposited on the conveyor 12 along with the air flow of the hot air in the subsequent non-woven fabric forming step to form the melt blown non-woven fabric 2.
  • hot air can be generated by heating an inert gas such as air or nitrogen pressurized by a compressor (not shown) with a heater (not shown). Further, by colliding the hot air on the traveling direction side of the conveyor 12 and the hot air on the opposite side of the traveling direction of the conveyor 12 in the vicinity of the nozzle hole 11, the direction of the hot air flowing toward the vicinity of the nozzle hole 11 is changed from the nozzle hole 11 to the conveyor 12. Can be changed in the direction toward.
  • inert gas such as air or nitrogen pressurized by a compressor (not shown) with a heater (not shown).
  • the temperature of the hot air is preferably (melting point + 30 ° C.) or lower, (melting point + 30 ° C.) or higher, (melting point + 90 ° C.) or lower, and (melting point + 40 ° C.) or higher, (melting point + 80 ° C.) or lower. preferable.
  • the temperature of the hot air is within the above range, the resin discharged from the nozzle hole 11 can be easily stretched, and in the subsequent non-woven fabric forming step, the fibers can be easily heat-sealed on the conveyor 12.
  • the air volume of hot air is 1000 NL / min / m or more and 7,000 NL / min / m or less, preferably 2000 NL / min / m or more and 6800 NL / min / m or less, and more preferably 3000 NL / min / m or more and 6500 NL / min / m or less. ..
  • the air volume of the hot air is within the above range, the resin discharged from the nozzle hole 11 can be easily stretched, and in the subsequent non-woven fabric forming step, the fibers can be easily heat-sealed on the conveyor 12.
  • Non-woven fabric forming process In the non-woven fabric forming step, the fibers are deposited on the conveyor 12 by the air flow of hot air generated in the fiber forming step to form the melt blown non-woven fabric 2.
  • the shortest distance between the nozzle hole 11 and the conveyor 12 is set to be 10 mm or more and 75 mm or less. Further, the non-woven fabric forming step is carried out so that the temperature of the atmosphere between the nozzle hole 11 and the conveyor 12 is 110 ° C. or higher and 160 ° C. or lower.
  • the vicinity of the surface of the conveyor 12 The heat-sealing property of the resin fibers in the above can be within a good range in which a melt-blown non-woven fabric having good mechanical properties can be formed. As a result, the melt-blown non-woven fabric 2 having good strength can be produced even if the calendar processing is not performed. Further, when the calendar processing is not applied, the air permeability of the melt blown non-woven fabric is good.
  • the method of setting the temperature of the atmosphere between the nozzle hole 11 and the conveyor 12 within the above range is not particularly limited.
  • the space between the nozzle hole 11 and the conveyor 12 may be surrounded by a wall for the purpose of preventing a decrease in temperature.
  • a wall it suffices to prevent the inflow of outside air into the space between the nozzle hole 11 and the conveyor 12.
  • the material of the wall may be a heat-resistant heat insulating material such as glass wool, rock wool, or porous ceramic.
  • a heater may be provided so as to heat the space between the nozzle hole 11 and the conveyor 12. If the temperature of the space between the nozzle hole 11 and the conveyor 12 becomes too high due to the relationship between the hot air temperature and the resin temperature, a cooler is provided so as to cool the space between the nozzle hole 11 and the conveyor 12. May be good.
  • the shortest distance between the nozzle hole 11 and the conveyor 12 is appropriately set within a range of 10 mm or more and 75 mm or less in consideration of the thickness and strength of the melt blown non-woven fabric.
  • the temperature of the atmosphere between the nozzle hole 11 and the conveyor 12 is 110 ° C. or higher and 160 ° C. or lower, preferably 115 ° C. or higher and 155 ° C. or lower, and more preferably 125 ° C. or higher and 150 ° C. or lower.
  • the temperature of the atmosphere between the nozzle hole 11 and the conveyor 12 can be measured, for example, according to the following method. Specifically, the temperature of the atmosphere between the nozzle hole 11 and the conveyor 12 is measured by thermography from a position 2 m away from the front surface of the spinning die head 10 (a surface parallel to the width direction of the manufactured melt blown non-woven fabric 2). To do.
  • the temperature data of 100 pixels corresponding to 2.5 mm square in actual size is measured.
  • the average value of the obtained temperature data of 100 points is taken as the temperature of the atmosphere between the nozzle hole 11 and the conveyor 12.
  • the material of the conveyor 12 is not particularly limited as long as it has heat resistance to the same temperature conditions for producing the melt-blown non-woven fabric 2, does not excessively fuse with the melt-blown non-woven fabric 2, and can peel off the melt-blown non-woven fabric 2. Further, it is preferable that the conveyor 12 is made of a breathable material, and hot air is sucked from the surface on which the melt blown non-woven fabric of the conveyor 12 is formed by suction (not shown) toward the back surface. By doing so, it is easy to prevent the fibers made of resin from bouncing back on the conveyor 12, and it is easy to form the melt blown non-woven fabric 2 in which the fibers are well fused with each other.
  • the conveyor 12 is driven by a roller 13 and conveys the melt blown non-woven fabric 2 formed on the conveyor 12 to the winding device 14.
  • the moving speed of the conveyor 12 is appropriately determined in consideration of the discharge amount of the resin and the apparent density of the obtained melt blown non-woven fabric 2. Typically, the moving speed of the conveyor is in the range of 1.5 m / min or more and 6.0 m / min or less.
  • the melt blown non-woven fabric 2 formed in the non-woven fabric forming step is wound into a roll by the winding device 14.
  • the melt-blown non-woven fabric 2 may be cut to a predetermined length and collected as a product in a sheet-like form instead of a roll-like form.
  • the melt-blown non-woven fabric 2 having good strength can be produced even if the calendar processing is not performed.
  • the melt blown non-woven fabric 2 can be subjected to various treatments and processes conventionally performed on the non-woven fabric.
  • the melt blown non-woven fabric 2 is not subjected to calendar processing. This is because when the calendar processing is performed, the air permeability of the melt blown non-woven fabric 2 is lowered.
  • the surface state is different between the surface in contact with the conveyor 12 and the surface opposite to the surface in contact with the conveyor 12.
  • the reflection intensity of ultrasonic waves is determined by the elastic modulus and density of the surface.
  • melt-blown non-woven fabrics there is usually a difference between the front and back sides of the non-woven fabric immediately after production. The fact that the difference between the front and back sides of the non-woven fabric is reduced by the calendar processing indicates that the elastic modulus and density of at least one side are changed. This is considered to be the reason why the ventilation performance is lowered by the calendar processing.
  • the values of the reflection intensity of ultrasonic waves on both sides are different from each other.
  • the larger reflection intensity value is preferably 1.2 times or more and 3.0 times or less, and more preferably 1.2 times or more and 2.5 times the smaller reflection intensity value. It is as follows. Melt-blown non-woven fabrics in which the magnification of the reflection intensity of ultrasonic waves on both sides is within the above range tends to be excellent not only in strength but also in breathability.
  • the reflection intensity of the above ultrasonic waves is an average value of 100 or more measured values measured according to the following measurement conditions. If the reflected wave is weak, a gain may be set for the output signal as needed. (Reflection intensity measurement conditions) Distance between ultrasonic transmitter / receiver and non-woven fabric surface: 155 mm Frequency: 360kHz Measurement temperature: 22 ° C Applied voltage: 500V Wavenumber: 5 (burst wave) Sharp ratio: 100% Number of measurement points: 100 points or more within the range of 25 mm x 40 mm
  • the thickness of the melt blown non-woven fabric satisfying the above-mentioned predetermined reflectance ratio is preferably 0.1 mm or more and 0.4 mm or less, and more preferably 0.1 mm or more and 0.3 mm or less.
  • the thickness of the melt-blown non-woven fabric is within the above range, stable production of the melt-blown non-woven fabric is easy, and it is easy to obtain a homogeneous non-woven fabric after fabrication.
  • the apparent density of the melt-blown non-woven fabric satisfying the above-mentioned predetermined reflectance ratio is preferably 50 kg / m 3 or more and 350 kg / m 3 or less, and more preferably 100 kg / m 3 or more and 350 kg / m 3 or less.
  • the apparent density of the melt-blown non-woven fabric is within the above range, it is easy to achieve both good strength and good ventilation performance in the melt-blown non-woven fabric.
  • the average pore size measured by a palm poromometer of a melt-blown non-woven fabric that satisfies the above-mentioned predetermined reflectance ratio is preferably 2.5 ⁇ m or more and 5.0 ⁇ m or less, and more preferably 2.5 ⁇ m or more and 4.6 ⁇ m or less.
  • the average pore diameter of the melt-blown non-woven fabric is within the above range, it is easy to achieve both good ventilation performance and good collection performance in the melt-blown non-woven fabric.
  • the average fiber diameter which is the average value of the fiber diameters of 100 or more fibers determined from the electron microscope image, is 0.5 ⁇ m or more and 3.0 ⁇ m or less. It is preferably 0.5 ⁇ m or more and 2.5 ⁇ m or less, more preferably.
  • Tensile strength in the MD direction of the meltblown nonwoven fabric which satisfies the ratio of the predetermined reflection factor described above, preferably 2.0 N / m 2 or more 15.0 N / m 2 or less, 3.0 N / m 2 or more 10.0 N / m 2 The following is more preferable.
  • the tensile elastic modulus in the MD direction is preferably 100 MPa or more and 400 MPa or less, and more preferably 120 MPa or more and 350 MPa or less.
  • Tensile strength in the TD direction is preferably 2.0 N / m 2 or more 8.0 N / m 2 or less, 2.5 N / m 2 or more 6.0 N / m 2 or less is more preferable.
  • the tensile elastic modulus in the TD direction is preferably 50 MPa or more and 200 MPa or less, and more preferably 70 MPa or more and 130 MPa or less.
  • the tensile strength and the tensile elastic modulus are values measured according to the measuring method in the examples described later.
  • the MD direction is a direction along the direction in which the melt-blown non-woven fabric moves when the melt-blown non-woven fabric is manufactured.
  • the TD direction is a direction perpendicular to the MD direction.
  • the melt-blown non-woven fabric is scanned in the thickness direction of the melt-blown non-woven fabric according to the method described later in the examples, and the data of the fiber distribution in the plane perpendicular to the thickness direction in the melt-blown non-woven fabric is acquired.
  • the fiber occupancy rate at each position in the thickness direction of the meltblown non-woven fabric can be known.
  • the average fiber occupancy FO1 in the region 15% from the surface of one surface and the average fiber occupancy FO2 in the region 15% from the surface of the other surface are obtained.
  • the average occupancy rate of the fibers of the melt blown non-woven fabric AFO can be calculated.
  • the melt-blown non-woven fabric tends to have excellent strength and breathability by having a gradient in the fiber occupancy in the plane perpendicular to the thickness direction.
  • the occupancy rate change rate calculated by the following formula is preferably 10% or more, more preferably 12% or more and 30% or less, and further preferably 13% or more and 25% or less. ..
  • the melt-blown non-woven fabric described above can be easily produced by the above-mentioned method.
  • the meltblown non-woven fabric described above has both good strength and good breathability, and is therefore preferably used for filters. More specifically, the above-mentioned melt-blown non-woven fabric is preferably used as a filter used for extracorporeal circulation therapy, antibody drug purification, virus purification for gene therapy, and the like.
  • melt-blown non-woven fabric manufacturing apparatus 1 having the configuration shown in FIG. 1, a melt-blown non-woven fabric having a width of 600 mm was manufactured under the conditions shown in Table 1.
  • resin polyethylene terephthalate (PET, melting point 260 ° C.) was used.
  • spinning nozzle the nozzle hole diameter was 0.25 mm, the hole spacing was 0.25 mm, and the number of holes was 1200.
  • the moving speed of the conveyor was 2.9 m / min.
  • melt-blown non-woven fabric was calendar-processed under the condition of the clearance between rolls of 0.10 to 0.11 mm using the calendar rolls having the roll temperatures shown in Table 1.
  • the thickness and apparent density of the melt-blown non-woven fabrics obtained in Examples 1 to 4 and the calendar-processed melt-blown non-woven fabric obtained in Comparative Examples 1 to 7 were measured.
  • the average pore diameter, average fiber diameter, coefficient of variation, tensile strength, tensile elastic modulus, ultrasonic reflection strength, and air permeability were measured according to the following methods. The measurement results are shown in Tables 2 to 4.
  • ⁇ Average hole diameter> The mean flow pore size measured using a palm polo meter (manufactured by PMI) was adopted as the average pore size.
  • ⁇ Average fiber diameter, coefficient of variation> A scanning electron microscope observation was performed using a part of the melt blown non-woven fabric as a sample. Based on the obtained electron microscopic images, the diameters of 100 or more randomly selected fibers were measured. The average number of measured values of 100 or more was defined as the average fiber diameter. The coefficient of variation was calculated by dividing the standard deviation of the fiber diameter by the average fiber diameter.
  • the MD direction is a direction along the direction in which the melt-blown non-woven fabric moves when the melt-blown non-woven fabric is manufactured.
  • the TD direction is a direction perpendicular to the MD direction. A test piece having a width of 8 mm and a length of 40 mm was cut out from the obtained melt blown non-woven fabric.
  • Tensile strength (N / m 2 ) (load at break) / Cross-sectional area of test piece
  • Tensile elastic modulus (MPa) (load change when the distance between chucks is extended by 0 to 2% before the start of the test / test piece Cross-sectional area) / (0-2% elongation / initial length of test piece)
  • ⁇ Ultrasonic reflection intensity> In a region of 75 mm ⁇ 75 m in the melt blown non-woven fabric, 100 or more measured values of ultrasonic reflection intensity were obtained according to the following measurement conditions. The average value of the ultrasonic reflection intensity of 100 points or more is defined as the ultrasonic reflection intensity. The ultrasonic reflection intensity was measured on the surface that was in contact with the conveyor 12 and the surface that was in contact with the nozzle hole 11 when the meltblown non-woven fabric was manufactured.
  • ultrasonic waves were transmitted and received from an ultrasonic vibrator (ultrasonic transmitter / receiver) connected to a pulsar receiver (ULTRA SONIC RECEIVER JPR600C manufactured by Japan Probe Co., Ltd.) to measure the ultrasonic reflection intensity. ..
  • the pulsar receiver was connected to a high-speed digitizer (NI PIX-1033 (chassis), NI PIX-5114, manufactured by National Instruments Co., Ltd.), and the high-speed digitizer was connected to a personal computer for data processing.
  • melt blown non-woven fabrics obtained in Examples and Comparative Examples are stacked in 4 or 8 layers, and 300 mL of air is passed through a ventilation surface having an area of 642 mm 2 with a weight of 567 g, and the time required for passing the total amount of 300 mL of air. (Seconds) was measured and the air permeability was evaluated. A Gale type densometer (manufactured by TOYOSEIKI) was used to evaluate the air permeability.
  • melt-blown non-woven fabric when the surface in contact with the conveyor 12 at the time of manufacturing the melt-blown non-woven fabric is the A-side and the surface of the melt-blown non-woven fabric facing the nozzle hole 11 is the B-side, the A-sides or the B-sides are used. Are stacked so that they do not touch. In addition, air was supplied from the B side. In Example 2 and Comparative Example 1, the air permeability of the 32-layer melt-blown non-woven fabric was also evaluated.
  • melt-blown non-woven fabric of Example 2 is compared. It can be seen that the tensile strength and tensile elastic modulus of Comparative Example 2 and Comparative Example 3 are equal to or superior to the tensile strength and tensile elastic modulus of the meltblown non-woven fabrics of Comparative Example 2 and Comparative Example 3.
  • melt-blown non-woven fabric of Example 2 according to a comparison between the melt-blown non-woven fabric of Example 2 and the melt-blown non-woven fabric of Comparative Example 2, the melt-blown non-woven fabric of Example 2 which has not been calendar-processed is more ventilated than the melt-blown non-woven fabric of Comparative Example 2 which has been calendar-processed. It can be seen that it is excellent in sex.
  • Example 5 Example 6, and Comparative Examples 8 to 10
  • the melt-blown non-woven fabric was manufactured under the conditions shown in Table 5 using the melt-blown non-woven fabric manufacturing apparatus 1 having the configuration shown in FIG.
  • the resin polypropylene (PP, melting point 160 ° C.) was used.
  • the thickness, apparent density, average pore diameter, average fiber diameter, and coefficient of variation of the melt-blown non-woven fabrics obtained in Examples 5, 6 and 8 to 10 were measured in the same manner as in Example 1. The measurement results are shown in Tables 2 to 6.
  • melt-blown non-woven fabrics of Examples 5 and 6 the ratio of the reflection intensities of ultrasonic waves on both sides was measured in the same manner as in Example 1, and both were 1.2 or more and 3.0 or less. Further, since the melt blown non-woven fabrics of Comparative Examples 8 to 10 were manufactured under the condition that the distance between the nozzle hole and the conveyor exceeds 75 mm, the apparent density is remarkably low. Therefore, the melt blown non-woven fabrics of Comparative Examples 8 to 10 cannot guarantee the desired strength unless they are calendar-processed.
  • Example 2 Example 4, Comparative Example 6 and Comparative Example 7 were analyzed by X-ray CT. This analysis reveals the fiber occupancy at each position in the thickness direction of the meltblown non-woven fabric.
  • the graphs of the analysis results are shown in FIGS. 3 and 4.
  • the plus side is the direction facing the surface on the conveyor side in the thickness direction of the meltblown non-woven fabric.
  • the minus side is the direction facing the surface on the nozzle side in the thickness direction of the melt blown non-woven fabric.
  • the analysis by X-ray CT was specifically performed by the following method.
  • a micro X-ray CT scanner (MicroXCT-400) manufactured by Xradia was used. With this device, the melt-blown non-woven fabric was scanned in the thickness direction, and the distribution data of the fibers in the melt-blown non-woven fabric was acquired. From the scan data, two-dimensional data on the distribution of fibers was obtained at intervals of 0.05 mm in thickness. Then, the obtained two-dimensional data was grayscaled.
  • FIG. 4 shows a grayscale image of the central portion of the meltblown nonwoven fabric of Example 2 in the thickness direction. Pixel values were generated from the grayscaled image data. Based on the obtained pixel values, a predetermined binarization process was performed on the grayscale image. For the binarized grayscale image, the ratio of the total area of the fiber portion to the total area of the image (fiber occupancy rate (%)) was determined.
  • a histogram was obtained for the distribution of pixels for each brightness (256-step gradation (0 to 255) in an 8-bit image) of the grayscale image. In the obtained histogram with the brightness as the horizontal axis, there are two peaks. From the obtained histogram, the maximum value I max of the brightness, the minimum value I min of the brightness, and the average value ⁇ 0 of the brightness were obtained. Arbitrary threshold T was selected between I max and I min . The histogram was divided into two classes, class 1 and class 2, with the threshold value T as a boundary. Class 1 and class 2 each contain one peak. The variance ⁇ 1 2 for class 1, the mean ⁇ 1, and the frequency n 1 were determined. And variance sigma 2 2 for class 2, was determined as the average mu 2, and a frequency n 2.
  • the degree of separation S was determined according to the above method for all threshold values T between the maximum value I max and the minimum value I min .
  • the threshold value T when the degree of separation S becomes maximum was adopted as the threshold value in the binarization method.
  • Table 7 shows the average value (AFO) of the fiber occupancy (%) at each position in the thickness direction of the melt blown non-woven fabric, which was obtained from the above X-ray CT analysis results, and 15% from the surface on the nozzle hole side.
  • meltblown non-woven fabrics of Examples 2 and 4 which are excellent in strength and breathability show a high occupancy rate change rate of 10% or more.

Abstract

Provided are: a melt-blown nonwoven fabric manufacturing method that enables manufacturing of a melt-blown nonwoven fabric having high strength without performing a calendering process; and a melt-blown nonwoven fabric that can be manufactured by the manufacturing method. This melt-blown nonwoven fabric manufacturing method includes setting, in the respective suitable ranges, the temperature of a resin to be discharged from a spinning die head, the amount and the temperature of hot air to be blown to a nozzle hole from which the resin is discharged, the amount of the resin discharged from the nozzle hole, and a distance between the nozzle hole and a conveyor for conveying a melt-blown nonwoven fabric.

Description

メルトブローン不織布の製造方法、及びメルトブローン不織布Manufacturing method of melt-blown non-woven fabric and melt-blown non-woven fabric
 本発明は、メルトブローン不織布の製造方法、及びメルトブローン不織布に関する。 The present invention relates to a method for producing a melt-blown non-woven fabric and a melt-blown non-woven fabric.
 複数の孔を有するノズルを設置したスピニングダイヘッドから溶融した樹脂を吐出する、樹脂吐出工程と、
 ノズル孔からスピニングダイヘッドに対向して設けられたコンベアに向かって流れる熱風を、ノズル孔に向けて吹きつけ、吐出された溶融状態の樹脂を線維化させて繊維を形成する、繊維形成工程と、
 熱風の気流により、コンベア上に前記繊維を堆積させてメルトブローン不織布を形成する、不織布形成工程と、を含む所謂メルトブローン法により、メルトブローン不織布が製造されている。
A resin discharge process that discharges molten resin from a spinning die head equipped with nozzles with multiple holes,
A fiber forming process in which hot air flowing from the nozzle hole toward a conveyor provided facing the spinning die head is blown toward the nozzle hole to fibrate the discharged molten resin to form fibers.
A melt-blown non-woven fabric is manufactured by a so-called melt-blown method including a non-woven fabric forming step of depositing the fibers on a conveyor by a stream of hot air to form a melt-blown non-woven fabric.
 このような方法によれば、極細繊維からなり、比表面積の大きな不織布を安価且つ容易に製造することができる。かかる方法で製造されるメルトブローン不織布について、コンベア上に堆積したままの状態では繊維同士の接着が弱く、強度の点で問題がある。このため、メルトブローン不織布は、所謂カレンダー加工と呼ばれる、カレンダーロールによる熱圧縮加工により強度を高められた状態で使用されている(例えば、特許文献1を参照)。 According to such a method, a non-woven fabric made of ultrafine fibers and having a large specific surface area can be produced inexpensively and easily. The melt-blown non-woven fabric produced by such a method has a problem in terms of strength because the fibers are weakly adhered to each other in the state of being deposited on the conveyor. For this reason, the melt blown non-woven fabric is used in a state where the strength is increased by heat compression processing with a calendar roll, which is so-called calendar processing (see, for example, Patent Document 1).
特開平06-136656号公報Japanese Patent Application Laid-Open No. 06-136656
 しかしながら、カレンダー加工を施されたメルトブローン不織布は、強度こそ高いものの、その表面が押しつぶされることにより通気性が低下してしまう。通気性は、メルトブローン不織布をフィルター用途等に用いる場合に重要な性能である。 However, although the calendar-processed melt-blown non-woven fabric has high strength, its surface is crushed and its breathability is reduced. Breathability is an important performance when melt blown non-woven fabric is used for filter applications and the like.
 本発明は、上記の課題に鑑みなされたものであって、カレンダー加工が施されなくても、良好な強度を有するメルトブローン不織布を製造できるメルトブローン不織布の製造方法と、当該製造方法により製造され得るメルトブローン不織布とを提供することとを目的とする。 The present invention has been made in view of the above problems, and is a method for producing a melt-blown non-woven fabric capable of producing a melt-blown non-woven fabric having good strength without calendar processing, and a melt-blown that can be produced by the manufacturing method. An object of the present invention is to provide a non-woven fabric.
 本発明者らは、上記課題を解決するために鋭意検討した結果、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventors have completed the present invention.
 すなわち、本発明は、以下の(1)~(8)を提供する。
(1)複数の孔を有するノズルを設置したスピニングダイヘッドから溶融した樹脂を吐出する、樹脂吐出工程と、
 ノズル孔からスピニングダイヘッドに対向して設けられたコンベアに向かって流れる熱風を、ノズル孔に向けて吹きつけ、吐出された溶融状態の樹脂を線維化させて繊維を形成する、繊維形成工程と、
 熱風の気流により、コンベア上に繊維を堆積させてメルトブローン不織布を形成する、不織布形成工程と、を含み、
 不織布形成工程後に、カレンダー加工が行われず、
 熱風の温度が、樹脂の融点以上、(融点+100℃)以下であり、
 熱風の風量が、1000NL/分/m以上7000NL/分/m以下であり、
 ノズル孔1つ当たりの樹脂の吐出量が、0.006cm/分以上0.3cm/分以下であり、
 ノズル孔における樹脂の温度が、樹脂の融点以上、(融点+100℃)以下であり、
 ノズル孔と、コンベアとの間の最短距離が、10mm以上75mm以下であり、
 ノズル孔と、コンベアとの間の雰囲気の温度が、110℃以上160℃以下である、メルトブローン不織布の製造方法。
(2)樹脂が、ポリエステル系樹脂、又はポリオレフィン系樹脂である、(1)に記載のメルトブローン不織布の製造方法。
(3)メルトブローン不織布の両面それぞれの超音波の反射強度の値が、互いに相違し、
 大きい方の反射強度の値が、小さい方の反射強度の値の1.2倍以上3.0倍以下であり、
 反射強度が、下記測定条件:
超音波送受信機と不織布表面との距離:155mm
周波数:360kHz
測定温度:22℃
印加電圧:500V
波数:5(バースト波)
シャープ比:100%
測定点数:25mm×40mmの範囲内で100点以上
に従って測定される、100点以上の測定値の平均値である、(1)又は(2)に記載のメルトブローン不織布の製造方法。
(4)両面それぞれの超音波の反射強度の値が、互いに相違し、
 大きい方の反射強度の値が、小さい方の反射強度の値の1.2倍以上3.0倍以下であり、
 反射強度が、下記測定条件:
超音波送受信機と不織布表面との距離:155mm
周波数:360kHz
測定温度:22℃
印加電圧:500V
波数:5(バースト波)
シャープ比:100%
測定点数:25mm×40mmの範囲内で100点以上
に従って測定される、100点以上の測定値の平均値である、メルトブローン不織布。
(5)厚さが0.1mm以上0.4mm以下である、(4)に記載のメルトブローン不織布。
(6)見かけ密度が50kg/m以上350kg/m以下である、(4)又は(5)に記載のメルトブローン不織布。
(7)パームポロメーターにより測定される平均孔径が2.5μm以上5.0μm以下である、(4)~(6)のいずれか1つに記載のメルトブローン不織布。
(8)電子顕微鏡画像から求められた100本以上の繊維の繊維径の平均値である平均繊維径が0.5μm以上3.0μm以下である、(4)~(7)のいずれか1つに記載のメルトブローン不織布。
That is, the present invention provides the following (1) to (8).
(1) A resin discharge process in which molten resin is discharged from a spinning die head equipped with nozzles having a plurality of holes.
A fiber forming process in which hot air flowing from the nozzle hole toward a conveyor provided facing the spinning die head is blown toward the nozzle hole to fibrate the discharged molten resin to form fibers.
Including a non-woven fabric forming step of depositing fibers on a conveyor to form a melt-blown non-woven fabric by a stream of hot air.
After the non-woven fabric forming process, no calendar processing is performed,
The temperature of the hot air is above the melting point of the resin and below (melting point + 100 ° C).
The air volume of hot air is 1000 NL / min / m or more and 7000 NL / min / m or less.
Discharge rate of the resin per one nozzle hole, and a 0.006 cm 3 / min or more 0.3 cm 3 / min or less,
The temperature of the resin in the nozzle hole is equal to or higher than the melting point of the resin (melting point + 100 ° C) or lower.
The shortest distance between the nozzle hole and the conveyor is 10 mm or more and 75 mm or less.
A method for producing a melt-blown non-woven fabric, wherein the temperature of the atmosphere between the nozzle hole and the conveyor is 110 ° C. or higher and 160 ° C. or lower.
(2) The method for producing a melt-blown non-woven fabric according to (1), wherein the resin is a polyester-based resin or a polyolefin-based resin.
(3) The values of ultrasonic reflection intensity on both sides of the melt blown non-woven fabric are different from each other.
The larger reflection intensity value is 1.2 times or more and 3.0 times or less than the smaller reflection intensity value.
The reflection intensity is as follows:
Distance between ultrasonic transmitter / receiver and non-woven fabric surface: 155 mm
Frequency: 360kHz
Measurement temperature: 22 ° C
Applied voltage: 500V
Wavenumber: 5 (burst wave)
Sharp ratio: 100%
The method for producing a melt-blown non-woven fabric according to (1) or (2), which is an average value of 100 or more measured values measured according to 100 or more points within a range of 25 mm × 40 mm.
(4) The values of the reflection intensity of ultrasonic waves on both sides are different from each other.
The larger reflection intensity value is 1.2 times or more and 3.0 times or less than the smaller reflection intensity value.
The reflection intensity is as follows:
Distance between ultrasonic transmitter / receiver and non-woven fabric surface: 155 mm
Frequency: 360kHz
Measurement temperature: 22 ° C
Applied voltage: 500V
Wavenumber: 5 (burst wave)
Sharp ratio: 100%
Number of measurement points: A melt-blown non-woven fabric which is an average value of 100 or more points measured according to 100 points or more within a range of 25 mm × 40 mm.
(5) The meltblown non-woven fabric according to (4), which has a thickness of 0.1 mm or more and 0.4 mm or less.
(6) The melt-blown non-woven fabric according to (4) or (5), wherein the apparent density is 50 kg / m 3 or more and 350 kg / m 3 or less.
(7) The meltblown non-woven fabric according to any one of (4) to (6), wherein the average pore diameter measured by a palm poromometer is 2.5 μm or more and 5.0 μm or less.
(8) Any one of (4) to (7), wherein the average fiber diameter, which is the average value of the fiber diameters of 100 or more fibers obtained from the electron microscope image, is 0.5 μm or more and 3.0 μm or less. Melt blown non-woven fabric described in.
 本発明によれば、カレンダー加工が施されなくても、良好な強度を有するメルトブローン不織布を製造できるメルトブローン不織布の製造方法と、当該製造方法により製造され得るメルトブローン不織布とを提供することができる。 According to the present invention, it is possible to provide a method for producing a melt-blown non-woven fabric capable of producing a melt-blown non-woven fabric having good strength without performing calendar processing, and a melt-blown nonwoven fabric that can be produced by the manufacturing method.
メルトブローン不織布の製造装置の構成の概略を示す図である。It is a figure which shows the outline of the structure of the manufacturing apparatus of the melt blown non-woven fabric. メルトブローン不織布の製造装置が備えるスピニングダイヘッドの概略を示す斜視図である。It is a perspective view which shows the outline of the spinning die head provided in the melt blown non-woven fabric manufacturing apparatus. X線CTにより分析された、実施例2及び実施例4のメルトブローン不織布の厚さ方向の位置と、繊維の占有率との関係を示すグラフである。It is a graph which shows the relationship between the position in the thickness direction of the melt blown non-woven fabric of Example 2 and Example 4 analyzed by X-ray CT, and the occupancy rate of a fiber. X線CTにより分析された、比較例6及び比較例7のメルトブローン不織布の厚さ方向の位置と、繊維の占有率との関係を示すグラフである。It is a graph which shows the relationship between the position in the thickness direction of the melt blown non-woven fabric of Comparative Example 6 and Comparative Example 7 and the occupancy rate of a fiber analyzed by X-ray CT. X線CT分析により取得された、実施例2のメルトブローン不織布の厚さ方向中央部におけるグレースケール画像である。It is a grayscale image in the central portion in the thickness direction of the meltblown nonwoven fabric of Example 2 acquired by X-ray CT analysis.
≪メルトブローン不織布の製造方法≫
 以下、メルトブローン不織布の製造方法について、必要に応じて図面を参照しつつ説明する。図1に、メルトブローン不織布の製造装置についての概略を示す。図2に、メルトブローン不織布の製造装置が備えるスピニングダイヘッドの概略を、斜視図として示す。
≪Manufacturing method of melt blown non-woven fabric≫
Hereinafter, a method for producing a melt-blown non-woven fabric will be described with reference to the drawings as necessary. FIG. 1 shows an outline of a melt blown non-woven fabric manufacturing apparatus. FIG. 2 shows an outline of a spinning die head provided in a melt blown non-woven fabric manufacturing apparatus as a perspective view.
 メルトブローン不織布の製造方法は、
 複数のノズル孔11を有するスピニングダイヘッド10から溶融した樹脂を吐出する、樹脂吐出工程と、
 ノズル孔11からスピニングダイヘッド10に対向して設けられたコンベア12に向かって流れる熱風を、ノズル孔11に向けて吹きつけ、吐出された溶融状態の樹脂を線維化させて繊維を形成する、繊維形成工程と、
 熱風の気流により、コンベア上に繊維を堆積させてメルトブローン不織布を形成する、不織布形成工程と、を含む方法である。
 また、不織布形成工程後に、カレンダー加工が行われない。
The manufacturing method of melt blown non-woven fabric is
A resin ejection process in which molten resin is ejected from a spinning die head 10 having a plurality of nozzle holes 11.
A fiber that forms fibers by blowing hot air flowing from the nozzle hole 11 toward a conveyor 12 provided facing the spinning die head 10 toward the nozzle hole 11 and fibrating the discharged molten resin. The formation process and
It is a method including a non-woven fabric forming step of forming a melt blown non-woven fabric by depositing fibers on a conveyor by an air flow of hot air.
In addition, no calendar processing is performed after the non-woven fabric forming step.
<樹脂吐出工程>
 樹脂吐出工程では、複数のノズル孔11を有するスピニングダイヘッド10から溶融した樹脂を吐出する。
<Resin discharge process>
In the resin discharge step, the molten resin is discharged from the spinning die head 10 having a plurality of nozzle holes 11.
 スピニングダイヘッド10に溶融した樹脂を供給する方法は特に限定されない。典型的な方法としては、ホッパー100から供給される樹脂を、押出機101を通過させることにより溶融させ、溶融した樹脂を混練機104を通じて、スピニングダイヘッド10に供給する方法が挙げられる。 The method of supplying the molten resin to the spinning die head 10 is not particularly limited. As a typical method, a method of melting the resin supplied from the hopper 100 by passing it through an extruder 101 and supplying the melted resin to the spinning die head 10 through a kneader 104 can be mentioned.
 押出機101の種類は、樹脂を溶融させることが可能である限り特に限定されない。押出機101の種類として、例えば単軸押出機、同方向噛合型2軸押出機、同方向非噛合型2軸押出機、異方向非噛合型2軸押出機、多軸押出機等の各種押出機を用いることができる。その中でも、単軸押出機が押出機内における樹脂滞留部が少ないため押出中における樹脂の熱劣化を防ぐことが可能になること、また設備費が安価になることから好ましい。また、残存揮発物が発生する樹脂を使用する場合は押出機101がベント構造を有してもよい。 The type of extruder 101 is not particularly limited as long as the resin can be melted. Types of extruder 101 include, for example, single-screw extruder, same-direction meshing twin-screw extruder, same-direction non-meshing twin-screw extruder, different-direction non-meshing twin-screw extruder, multi-screw extruder and the like. Machines can be used. Among them, the single-screw extruder is preferable because the resin retention portion in the extruder is small, so that it is possible to prevent thermal deterioration of the resin during extrusion, and the equipment cost is reduced. Further, when a resin that generates residual volatile matter is used, the extruder 101 may have a vent structure.
 押出機101に投入される樹脂の原料の形態としては、固体状態の樹脂が好ましい。より好ましくはペレット形状の樹脂が使用される。ペレット形状の樹脂は、一般に押出機101の原料供給口に取り付けられたホッパー100を介して押出機101内に供給される。 As the raw material form of the resin to be put into the extruder 101, a solid resin is preferable. More preferably, a pellet-shaped resin is used. The pellet-shaped resin is generally supplied into the extruder 101 via a hopper 100 attached to a raw material supply port of the extruder 101.
 押出機101に供給される樹脂は、樹脂の加水分解や酸化劣化を生じさせないために事前に加熱乾燥されるのが好ましい。樹脂中の水分量としては200質量ppm以下が好ましい。乾燥条件としては、樹脂にもよるが100℃で3時間以上が好ましい。 The resin supplied to the extruder 101 is preferably heat-dried in advance so as not to cause hydrolysis or oxidative deterioration of the resin. The amount of water in the resin is preferably 200 mass ppm or less. The drying conditions are preferably 100 ° C. for 3 hours or more, although it depends on the resin.
 乾燥の際には乾燥される雰囲気中の酸素を取り除いたり、樹脂中の酸素を除去したりすることが好ましい。乾燥時の雰囲気は、窒素等の不活性ガス雰囲気であるのが好ましい。
 乾燥は必要乾燥時間、樹脂消費時間を鑑みて、押出機101にペレットを供給するホッパー100に乾燥機構を設けるホッパー型乾燥機を用いる方法や、ホッパー100に樹脂を供給する前に乾燥機を用いて乾燥し、吸湿しないようホッパー100に樹脂を供給する方法や、又はその両方を用いる方法等を好適に使用することができる。
At the time of drying, it is preferable to remove oxygen in the atmosphere to be dried or remove oxygen in the resin. The atmosphere at the time of drying is preferably an atmosphere of an inert gas such as nitrogen.
For drying, in consideration of the required drying time and resin consumption time, a method using a hopper type dryer provided with a drying mechanism in the hopper 100 that supplies pellets to the extruder 101, or using a dryer before supplying the resin to the hopper 100. A method of supplying the resin to the hopper 100 so as not to dry the hopper and absorb moisture, or a method of using both of them can be preferably used.
 これらの方法のうち、ホッパー型乾燥機を用いる方法が押出機101に樹脂が供給される直前まで、樹脂の乾燥状態を保つことができるため好ましい。
 ホッパー100前にも乾燥機を用いることでホッパー100前の乾燥機で高温で迅速に乾燥し、ホッパー型乾燥機において水分が入らない様に除湿雰囲気とすることが、低温でも水分が混入しないためさらに好ましい。
 なお、ホッパー100において過度に高温とするとブロッキングの問題等が生じるおそれがある。このため、具体的には、ホッパー100前の乾燥機で120℃で3時間以上樹脂を乾燥させた後、ホッパー型乾燥機内の温度を40~100℃とすることで、樹脂の水分量を抑制と押出安定性とを両立しやすい。
Of these methods, the method using a hopper type dryer is preferable because the resin can be kept in a dry state until just before the resin is supplied to the extruder 101.
By using a dryer in front of the hopper 100, the dryer in front of the hopper 100 dries quickly at a high temperature, and the hopper type dryer creates a dehumidifying atmosphere so that moisture does not enter, because moisture does not mix even at low temperatures. More preferred.
If the temperature of the hopper 100 is excessively high, blocking problems and the like may occur. Therefore, specifically, after drying the resin at 120 ° C. for 3 hours or more in the dryer in front of the hopper 100, the temperature inside the hopper type dryer is set to 40 to 100 ° C. to suppress the water content of the resin. And extrusion stability are easy to achieve at the same time.
 押出機101について、例えば、単軸押出機等で使用するスクリュ(不図示)としては、ベント無し又は有りの押出機用の圧縮比2~3程度の一般的なフルフライト構成のスクリュを用いることができる。なお、未溶融物が存在しないようにバリアフライト等の特殊な混練機構を採用することもできる。 Regarding the extruder 101, for example, as a screw (not shown) used in a single-screw extruder or the like, a screw having a general full-flight configuration with a compression ratio of about 2 to 3 for an extruder without or with a vent is used. Can be done. It is also possible to adopt a special kneading mechanism such as barrier flight so that unmelted material does not exist.
 樹脂吐出工程では、スピニングダイヘッド10が備えるそれぞれのノズル孔11から、樹脂の吐出量が0.006cm/分以上0.3cm/分以下であるように、溶融した樹脂が吐出される。上記の吐出量は、1つのノズル孔11からの吐出量である。
 1つのノズル孔11からの樹脂の吐出量は、樹脂の安定的な押し出しが容易である点と、良好に結晶化した強度に優れる繊維を形成しやすい点とから、0.01cm/分以上0.2cm/分以下が好ましく、0.02cm/分以上0.1cm/分以下がより好ましい。
The resin discharge step, from each of the nozzle holes 11 a spinning die head 10 is provided, as the discharge amount of resin is 0.006 cm 3 / min or more 0.3 cm 3 / min or less, the molten resin is discharged. The above discharge amount is the discharge amount from one nozzle hole 11.
The amount of resin discharged from one nozzle hole 11 is 0.01 cm 3 / min or more because it is easy to stably extrude the resin and it is easy to form fibers having excellent crystallization and strength. 0.2 cm 3 / min or less is preferable, and 0.02 cm 3 / min or more and 0.1 cm 3 / min or less is more preferable.
 また、樹脂吐出工程では、ノズル孔11における樹脂の温度が、樹脂の融点以上、(融点+100℃)以下であるように、溶融した樹脂が吐出される。
 このため、押出機101の、シリンダー温度、樹脂滞留時間、押出量等の押出条件は、吐出量、及び吐出される樹脂の温度についての上記条件が満たされるように調整される。
 続く、繊維形成工程において、吐出された樹脂を良好に繊維化しやすいことから、ノズル孔11における樹脂の温度は、樹脂の融点以上、(融点+70℃)以下が好ましい。
Further, in the resin discharge step, the molten resin is discharged so that the temperature of the resin in the nozzle hole 11 is equal to or higher than the melting point of the resin (melting point + 100 ° C.) or lower.
Therefore, the extrusion conditions of the extruder 101, such as the cylinder temperature, the resin residence time, and the extrusion amount, are adjusted so as to satisfy the above conditions regarding the discharge amount and the temperature of the discharged resin.
In the subsequent fiber forming step, the temperature of the resin in the nozzle hole 11 is preferably equal to or higher than the melting point of the resin (melting point + 70 ° C.) or lower because the discharged resin can be easily fiberized.
 押出機101等の溶融手段により得られた溶融樹脂は、好ましくは、ギアポンプ102を用いてスピニングダイヘッドに供給される。ギアポンプ102を用いることで押出機101における吐出量変動を吸収し、供給定量性が著しく向上し、スピニングダイヘッド10が備えるノズル孔11からの樹脂の吐出も安定する。
 ギアポンプ102により定量的に供給される溶融樹脂、又は押出機101から直接供給される溶融樹脂は、例えば管状の流路を通りスピニングダイヘッド10に供給され、スピニングダイヘッド10が備える複数のノズル孔11から吐出される。
The molten resin obtained by a melting means such as an extruder 101 is preferably supplied to a spinning die head using a gear pump 102. By using the gear pump 102, fluctuations in the discharge amount in the extruder 101 are absorbed, the supply quantification is remarkably improved, and the resin discharge from the nozzle hole 11 provided in the spinning die head 10 is also stable.
The molten resin quantitatively supplied by the gear pump 102 or the molten resin directly supplied from the extruder 101 is supplied to the spinning die head 10 through, for example, a tubular flow path, and is supplied from a plurality of nozzle holes 11 included in the spinning die head 10. It is discharged.
 ギアポンプ102からダイまでの樹脂流路中、又はギアポンプ102等を介さない場合は押出機101等の溶融手段からスピニングダイヘッド10までの樹脂流路中に、フィルター103のような異物除去装置を設けることが好ましい。
 これにより、原料樹脂中に含まれていた異物や押出機やギアポンプ102で発生した異物をトラップし、不織布中への異物の混入を低減することが可能となる。
A foreign matter removing device such as a filter 103 should be provided in the resin flow path from the gear pump 102 to the die, or in the resin flow path from the melting means such as the extruder 101 to the spinning die head 10 when the gear pump 102 or the like is not used. Is preferable.
As a result, it is possible to trap the foreign matter contained in the raw material resin and the foreign matter generated by the extruder or the gear pump 102, and reduce the mixing of the foreign matter into the non-woven fabric.
 異物除去装置としてのフィルター103としては、スクリーンメッシュ、プリーツ型フィルター、リーフディスク型フィルター等を用いることができる。これらの中では、リーフディスク型フィルターが濾過精度、濾過面積、耐圧性能、異物によるフィルター目詰まりまでの時間の点等から好ましい。フィルター103の濾材としては、例えば、金属繊維の焼結不織布を用いることができる。 As the filter 103 as a foreign matter removing device, a screen mesh, a pleated filter, a leaf disc filter, or the like can be used. Among these, the leaf disc type filter is preferable in terms of filtration accuracy, filtration area, pressure resistance, time until filter clogging due to foreign matter, and the like. As the filter medium of the filter 103, for example, a sintered non-woven fabric of metal fibers can be used.
 ギアポンプ102から吐出される溶融樹脂は、フィルター103を介するか又は介さず、スピニングダイヘッド10へ供給される。ギアポンプ102から、又はフィルター103からの溶融樹脂のスピニングダイヘッド10への供給は、例えば、混練機104を通じて行われる。 The molten resin discharged from the gear pump 102 is supplied to the spinning die head 10 with or without the filter 103. The supply of the molten resin from the gear pump 102 or from the filter 103 to the spinning die head 10 is performed, for example, through the kneader 104.
 上記のような方法でスピニングダイヘッド10へ供給された溶融樹脂は、図2に示されるようにスピニングダイヘッド10が備える複数のノズル孔11から吐出される。
 複数のノズル孔11の、スピニングダイヘッド10における配置は、所望する特性のメルトブローン不織布2を製造できる限り特に限定されない。典型的には、複数のノズル孔11は、後述するコンベア12上に形成されるメルトブローン不織布2の幅方向と同一の方向に、適切な間隔をあけて列を形成性するように配置される。ノズル孔11間の間隔は、例えば、0.10mm以上1.0mm以下が好ましく、0.25mm以上0.75mm以下がより好ましい。ノズル孔11間の間隔は、均等であってもよく、均等でなくてもよいが、均質な不織布を製造しやすい点で均等であるのが好ましい。
The molten resin supplied to the spinning die head 10 by the method as described above is discharged from a plurality of nozzle holes 11 included in the spinning die head 10 as shown in FIG.
The arrangement of the plurality of nozzle holes 11 in the spinning die head 10 is not particularly limited as long as the melt blown non-woven fabric 2 having desired characteristics can be produced. Typically, the plurality of nozzle holes 11 are arranged so as to form rows at appropriate intervals in the same direction as the width direction of the melt blown nonwoven fabric 2 formed on the conveyor 12 described later. The distance between the nozzle holes 11 is, for example, preferably 0.10 mm or more and 1.0 mm or less, and more preferably 0.25 mm or more and 0.75 mm or less. The spacing between the nozzle holes 11 may or may not be uniform, but is preferably uniform in that a homogeneous non-woven fabric can be easily produced.
 各ノズル孔11の開口の形状は特に限定されないが、通常は円形、略円形、楕円形、略楕円形等である。各ノズル孔11の開口径は、特に限定されず、不織布を構成する繊維の繊維径に応じて適宜選択される。 The shape of the opening of each nozzle hole 11 is not particularly limited, but is usually circular, substantially circular, elliptical, substantially elliptical, or the like. The opening diameter of each nozzle hole 11 is not particularly limited, and is appropriately selected according to the fiber diameter of the fibers constituting the non-woven fabric.
 樹脂吐出工程で用いられる、メルトブローン不織布2の原料である樹脂は、従来よりメルトブローン不織布の原料として使用されている樹脂であれば特に限定されない。
 樹脂としては、例えば、ポリオレフィン系樹脂、ポリスチレン系樹脂、(メタ)アクリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、及びポリカーボネート系樹脂等が挙げられる。
The resin used as a raw material for the melt-blown non-woven fabric 2 used in the resin discharge step is not particularly limited as long as it is a resin conventionally used as a raw material for the melt-blown non-woven fabric.
Examples of the resin include polyolefin-based resins, polystyrene-based resins, (meth) acrylic-based resins, polyester-based resins, polyamide-based resins, polycarbonate-based resins, and the like.
 ポリオレフィン系樹脂としては、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリ1-ブテン、及びポリ4-メチル-1-ペンテン等が挙げられる。(メタ)アクリル系樹脂としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、フェニル(メタ)アクリレート、及びベンジル(メタ)アクリレート等の(メタ)アクリレート類から選択される1種以上の(メタ)アクリレートモノマーの重合体が挙げられる。(メタ)アクリル系樹脂としては、ポリメチル(メタ)アクリレートが好ましい。ポリエステル系樹脂としては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PNE)、及びポリ乳酸(PLA)等が挙げられる。ポリアミド系樹脂としては、ナイロン6、ナイロン6,6、ナイロン12、ナイロン6,12、及びMXDナイロン等が挙げられる。 Examples of the polyolefin resin include low-density polyethylene, high-density polyethylene, polypropylene, ethylene-propylene copolymer, poly1-butene, and poly4-methyl-1-pentene. Examples of the (meth) acrylic resin include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, phenyl (meth) acrylate, and benzyl (meth) acrylate. Examples thereof include polymers of one or more (meth) acrylate monomers selected from the (meth) acrylates. As the (meth) acrylic resin, polymethyl (meth) acrylate is preferable. Examples of the polyester resin include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PNE), and polylactic acid (PLA). Examples of the polyamide-based resin include nylon 6, nylon 6, 6, nylon 12, nylon 6, 12, and MXD nylon.
 これらの樹脂の中では、メルトブローン不織布を製造する際の加工性が良好である点でポリオレフィン系樹脂及びポリエステル系樹脂が好ましく、より好ましくはポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレートが好ましい。 Among these resins, polyolefin-based resins and polyester-based resins are preferable, and polypropylene, polyethylene terephthalate, and polybutylene terephthalate are more preferable, because they have good processability when producing melt-blown non-woven fabrics.
<繊維形成工程>
 繊維形成工程では、ノズル孔11からスピニングダイヘッド10に対向して設けられたコンベア12に向かって流れる熱風を、ノズル孔11に向けて吹きつけ、吐出された溶融状態の樹脂を線維化させて繊維を形成する。
<Fiber formation process>
In the fiber forming step, hot air flowing from the nozzle hole 11 toward the conveyor 12 provided facing the spinning die head 10 is blown toward the nozzle hole 11 to fibrate the discharged molten resin to form fibers. To form.
 ノズル孔11付近に熱風が吹きつけられることによって、ノズル孔11から吐出された溶融状態の樹脂が熱風により延伸され繊維化される。
 また、熱風は、ノズル孔11付近から、スピニングダイヘッド10に対向して設けられたコンベア12に向かって流れる。このため、熱風によって延伸された繊維は、続く不織布形成工程において、熱風の気流にのってコンベア12上に堆積してメルトブローン不織布2を形成する。
When hot air is blown near the nozzle hole 11, the molten resin discharged from the nozzle hole 11 is stretched by the hot air and made into fibers.
Further, the hot air flows from the vicinity of the nozzle hole 11 toward the conveyor 12 provided facing the spinning die head 10. Therefore, the fibers stretched by the hot air are deposited on the conveyor 12 along with the air flow of the hot air in the subsequent non-woven fabric forming step to form the melt blown non-woven fabric 2.
 熱風を吹きつける方法は特に限定されない。典型的には、コンプレッサー(不図示)により加圧された空気や窒素等の不活性気体を、ヒーター(不図示)により加熱することにより熱風を発生させることができる。
 また、コンベア12の進行方向側と、コンベア12の進行方向逆側の熱風を、ノズル孔11付近で衝突させることにより、ノズル孔11付近に向かう熱風の気流の方向を、ノズル孔11からコンベア12に向かう方向に変えることができる。
The method of blowing hot air is not particularly limited. Typically, hot air can be generated by heating an inert gas such as air or nitrogen pressurized by a compressor (not shown) with a heater (not shown).
Further, by colliding the hot air on the traveling direction side of the conveyor 12 and the hot air on the opposite side of the traveling direction of the conveyor 12 in the vicinity of the nozzle hole 11, the direction of the hot air flowing toward the vicinity of the nozzle hole 11 is changed from the nozzle hole 11 to the conveyor 12. Can be changed in the direction toward.
 熱風の温度は、樹脂の融点以上、(融点+100℃)以下であり、(融点+30℃)以上、(融点+90℃)以下が好ましく、(融点+40℃)以上、(融点+80℃)以下がより好ましい。
 熱風の温度が上記の範囲内であると、ノズル孔11から吐出される樹脂の延伸を良好に行いやすく、続く不織布形成工程において、コンベア12上で繊維同士を良好に熱融着させやすい。
The temperature of the hot air is preferably (melting point + 30 ° C.) or lower, (melting point + 30 ° C.) or higher, (melting point + 90 ° C.) or lower, and (melting point + 40 ° C.) or higher, (melting point + 80 ° C.) or lower. preferable.
When the temperature of the hot air is within the above range, the resin discharged from the nozzle hole 11 can be easily stretched, and in the subsequent non-woven fabric forming step, the fibers can be easily heat-sealed on the conveyor 12.
 熱風の風量は、1000NL/分/m以上7000NL/分/m以下であり、2000NL/分/m以上6800NL/分/m以下が好ましく、3000NL/分/m以上6500NL/分/m以下がより好ましい。
 熱風の風量が上記の範囲内であると、ノズル孔11から吐出される樹脂の延伸を良好に行いやすく、続く不織布形成工程において、コンベア12上で繊維同士を良好に熱融着させやすい。
The air volume of hot air is 1000 NL / min / m or more and 7,000 NL / min / m or less, preferably 2000 NL / min / m or more and 6800 NL / min / m or less, and more preferably 3000 NL / min / m or more and 6500 NL / min / m or less. ..
When the air volume of the hot air is within the above range, the resin discharged from the nozzle hole 11 can be easily stretched, and in the subsequent non-woven fabric forming step, the fibers can be easily heat-sealed on the conveyor 12.
<不織布形成工程>
 不織布形成工程では、繊維形成工程で生じさせた熱風の気流により、コンベア12上に繊維を堆積させてメルトブローン不織布2を形成する。
<Non-woven fabric forming process>
In the non-woven fabric forming step, the fibers are deposited on the conveyor 12 by the air flow of hot air generated in the fiber forming step to form the melt blown non-woven fabric 2.
 不織布形成工程において、ノズル孔11とコンベア12との間の最短距離は、10mm以上75mm以下であるように設定される。
 また、ノズル孔11とコンベア12との間の雰囲気の温度が、110℃以上160℃以下であるように、不織布形成工程が実施される。
 ノズル孔11とコンベア12との間の最短距離を上記の範囲内とすることと、ノズル孔11とコンベア12との間の雰囲気の温度を上記の範囲内とすることとにより、コンベア12表面付近での、樹脂の繊維の熱融着性を、機械的性質が良好なメルトブローン不織布を形成可能である良好な範囲内とすることができる。
 その結果、カレンダー加工が施されなくても、良好な強度を有するメルトブローン不織布2を製造できる。また、カレンダー加工が施されない場合、メルトブローン不織布の通気性が良好である。
In the non-woven fabric forming step, the shortest distance between the nozzle hole 11 and the conveyor 12 is set to be 10 mm or more and 75 mm or less.
Further, the non-woven fabric forming step is carried out so that the temperature of the atmosphere between the nozzle hole 11 and the conveyor 12 is 110 ° C. or higher and 160 ° C. or lower.
By setting the shortest distance between the nozzle hole 11 and the conveyor 12 within the above range and setting the temperature of the atmosphere between the nozzle hole 11 and the conveyor 12 within the above range, the vicinity of the surface of the conveyor 12 The heat-sealing property of the resin fibers in the above can be within a good range in which a melt-blown non-woven fabric having good mechanical properties can be formed.
As a result, the melt-blown non-woven fabric 2 having good strength can be produced even if the calendar processing is not performed. Further, when the calendar processing is not applied, the air permeability of the melt blown non-woven fabric is good.
 ノズル孔11とコンベア12との間の雰囲気の温度を上記の範囲内の温度とする方法は特に限定されない。例えば、ノズル孔11とコンベア12との間の空間を、温度の低下を防ぐ目的で壁により囲ってもよい。かかる壁としては、ノズル孔11とコンベア12との間の空間への外気の流入を防ぐことができればよい。かかる壁の材質としては、ガラスウール、ロックウール、多孔質セラミック等の耐熱性の断熱材であってもよい。また、ノズル孔11とコンベア12との間の空間を加熱するようにヒーターを設けてもよい。熱風温度と、樹脂温度との関係で、ノズル孔11とコンベア12との間の空間の温度が高くなりすぎる場合、ノズル孔11とコンベア12との間の空間を冷却するようにクーラーを設けてもよい。 The method of setting the temperature of the atmosphere between the nozzle hole 11 and the conveyor 12 within the above range is not particularly limited. For example, the space between the nozzle hole 11 and the conveyor 12 may be surrounded by a wall for the purpose of preventing a decrease in temperature. As such a wall, it suffices to prevent the inflow of outside air into the space between the nozzle hole 11 and the conveyor 12. The material of the wall may be a heat-resistant heat insulating material such as glass wool, rock wool, or porous ceramic. Further, a heater may be provided so as to heat the space between the nozzle hole 11 and the conveyor 12. If the temperature of the space between the nozzle hole 11 and the conveyor 12 becomes too high due to the relationship between the hot air temperature and the resin temperature, a cooler is provided so as to cool the space between the nozzle hole 11 and the conveyor 12. May be good.
 ノズル孔11とコンベア12との間の最短距離は、メルトブローン不織布の厚さや強度を勘案して、10mm以上75mm以下の範囲内で適宜設定される。ノズル孔11とコンベア12との間の最短距離が長いほど、得られるメルトブローン不織布2について、厚さが増し、見かけ密度と引張強度とが低下する傾向がある。
 ノズル孔11とコンベア12との間の最短距離が75mmを超えると、得られるメルトブローン不織布の見かけ密度が著しく小さくなり、カレンダー加工を行わなければ、メルトブローン不織布についての所望する強度を保てない。
The shortest distance between the nozzle hole 11 and the conveyor 12 is appropriately set within a range of 10 mm or more and 75 mm or less in consideration of the thickness and strength of the melt blown non-woven fabric. The longer the shortest distance between the nozzle hole 11 and the conveyor 12, the thicker the obtained melt blown non-woven fabric 2 tends to be, and the lower the apparent density and the tensile strength tend to be.
If the shortest distance between the nozzle hole 11 and the conveyor 12 exceeds 75 mm, the apparent density of the obtained melt-blown non-woven fabric becomes significantly small, and the desired strength of the melt-blown non-woven fabric cannot be maintained without calendar processing.
 ノズル孔11とコンベア12との間の雰囲気の温度は、上記の通り110℃以上160℃以下であり、115℃以上155℃以下が好ましく、125℃以上150℃以下がより好ましい。
 ノズル孔11とコンベア12との間の雰囲気の温度は、例えば、以下の方法に従って測定することができる。具体的には、スピニングダイヘッド10の正面(製造されるメルトブローン不織布2の幅方向に平行な面)から2m離れた位置から、サーモグラフィーにより、ノズル孔11とコンベア12との間の雰囲気の温度を計測する。より具体的には、ノズル孔11とコンベア12との間の雰囲気についての、スピニングダイヘッド10の幅方向中央位置から幅方向に±250mm離れた範囲内における、不織布直上付近の任意の位置において、サーモグラフィーにより、実寸で2.5mm角に相当するピクセル100点の温度データを計測する。得られた100点の温度データの平均値を、ノズル孔11とコンベア12との間の雰囲気の温度とする。
The temperature of the atmosphere between the nozzle hole 11 and the conveyor 12 is 110 ° C. or higher and 160 ° C. or lower, preferably 115 ° C. or higher and 155 ° C. or lower, and more preferably 125 ° C. or higher and 150 ° C. or lower.
The temperature of the atmosphere between the nozzle hole 11 and the conveyor 12 can be measured, for example, according to the following method. Specifically, the temperature of the atmosphere between the nozzle hole 11 and the conveyor 12 is measured by thermography from a position 2 m away from the front surface of the spinning die head 10 (a surface parallel to the width direction of the manufactured melt blown non-woven fabric 2). To do. More specifically, the thermography of the atmosphere between the nozzle hole 11 and the conveyor 12 at an arbitrary position near directly above the non-woven fabric within a range ± 250 mm in the width direction from the center position in the width direction of the spinning die head 10. The temperature data of 100 pixels corresponding to 2.5 mm square in actual size is measured. The average value of the obtained temperature data of 100 points is taken as the temperature of the atmosphere between the nozzle hole 11 and the conveyor 12.
 コンベア12の材質は、メルトブローン不織布2の製造に関する温同条件に対する耐熱性を有し、メルトブローン不織布2と過度に融着せず、メルトブローン不織布2を剥離可能な材質であれば特に限定されない。
 また、コンベア12は通気性を有する材料で構成され、サクション(不図示)によりコンベア12のメルトブローン不織布が形成される面から、裏面に向けて、熱風の気流が吸引されるのが好ましい。そうすることで、コンベア12上での、樹脂からなる繊維の跳ね返りを防止しやすく、繊維同士が良好に融着したメルトブローン不織布2を形成しやすい。
The material of the conveyor 12 is not particularly limited as long as it has heat resistance to the same temperature conditions for producing the melt-blown non-woven fabric 2, does not excessively fuse with the melt-blown non-woven fabric 2, and can peel off the melt-blown non-woven fabric 2.
Further, it is preferable that the conveyor 12 is made of a breathable material, and hot air is sucked from the surface on which the melt blown non-woven fabric of the conveyor 12 is formed by suction (not shown) toward the back surface. By doing so, it is easy to prevent the fibers made of resin from bouncing back on the conveyor 12, and it is easy to form the melt blown non-woven fabric 2 in which the fibers are well fused with each other.
 コンベア12は、ローラー13によって駆動され、コンベア12上に形成されたメルトブローン不織布2を巻取装置14へと搬送する。コンベア12の移動速度は、樹脂の吐出量を勘案したうえで、得られるメルトブローン不織布2の見かけ密度を考慮して適宜決定される。典型的には、コンベアの移動速度は、1.5m/分以上6.0m/分以下の範囲内である。巻取装置14により、不織布形成工程で形成されたメルトブローン不織布2はロール状に巻き取られる。
 なお、メルトブローン不織布2は、所定の長さに切断され、ロール状の形態ではなく、シート状の形態で製品として回収されてもよい。
The conveyor 12 is driven by a roller 13 and conveys the melt blown non-woven fabric 2 formed on the conveyor 12 to the winding device 14. The moving speed of the conveyor 12 is appropriately determined in consideration of the discharge amount of the resin and the apparent density of the obtained melt blown non-woven fabric 2. Typically, the moving speed of the conveyor is in the range of 1.5 m / min or more and 6.0 m / min or less. The melt blown non-woven fabric 2 formed in the non-woven fabric forming step is wound into a roll by the winding device 14.
The melt-blown non-woven fabric 2 may be cut to a predetermined length and collected as a product in a sheet-like form instead of a roll-like form.
 以上説明した方法によれば、カレンダー加工が施されなくても、良好な強度を有するメルトブローン不織布2を製造できる。
 不織布形成工程の後には、従来より不織布に対して行われる種々の処理、加工をメルトブローン不織布2に施すことができる。しかし、不織布形成工程後に、メルトブローン不織布2に対してカレンダー加工が行われない。カレンダー加工が行われる場合、メルトブローン不織布2の通気性が低下するためである。
According to the method described above, the melt-blown non-woven fabric 2 having good strength can be produced even if the calendar processing is not performed.
After the non-woven fabric forming step, the melt blown non-woven fabric 2 can be subjected to various treatments and processes conventionally performed on the non-woven fabric. However, after the non-woven fabric forming step, the melt blown non-woven fabric 2 is not subjected to calendar processing. This is because when the calendar processing is performed, the air permeability of the melt blown non-woven fabric 2 is lowered.
 前述のメルトブローン不織布の製造方法により製造されるメルトブローン不織布2では、コンベア12上に接する面と、コンベア12上に接する面とは反対の面とで表面状態が異なる。
 不織布において、超音波の反射強度は、表面の弾性率及び密度で決定される。メルトブローン不織布では、製造直後の不織布原反において表と裏とに差があるのが普通である。カレンダー加工によって不織布における表と裏との差が小さくなることは、少なくとも片面の弾性率及び密度が変化していることを表す。これが、カレンダー加工により通気性能が低下する理由であると考えられる。
In the melt-blown non-woven fabric 2 manufactured by the above-mentioned method for manufacturing a melt-blown non-woven fabric, the surface state is different between the surface in contact with the conveyor 12 and the surface opposite to the surface in contact with the conveyor 12.
In a non-woven fabric, the reflection intensity of ultrasonic waves is determined by the elastic modulus and density of the surface. In melt-blown non-woven fabrics, there is usually a difference between the front and back sides of the non-woven fabric immediately after production. The fact that the difference between the front and back sides of the non-woven fabric is reduced by the calendar processing indicates that the elastic modulus and density of at least one side are changed. This is considered to be the reason why the ventilation performance is lowered by the calendar processing.
 その結果、メルトブローン不織布2の両面について超音波の反射強度を測定する場合に、両面それぞれの超音波の反射強度の値が、互いに相違する。
 具体的には、大きい方の反射強度の値が、小さい方の反射強度の値の1.2倍以上3.0倍以下であるのが好ましく、より好ましくは1.2倍以上2.5倍以下である。両面での超音波の反射強度の倍率が上記の範囲内であるメルトブローン不織布は、強度に優れるとともに、通気性にも優れる傾向がある。
As a result, when measuring the reflection intensity of ultrasonic waves on both sides of the melt blown non-woven fabric 2, the values of the reflection intensity of ultrasonic waves on both sides are different from each other.
Specifically, the larger reflection intensity value is preferably 1.2 times or more and 3.0 times or less, and more preferably 1.2 times or more and 2.5 times the smaller reflection intensity value. It is as follows. Melt-blown non-woven fabrics in which the magnification of the reflection intensity of ultrasonic waves on both sides is within the above range tends to be excellent not only in strength but also in breathability.
 上記の超音波の反射強度は、下記測定条件に従って測定される100点以上の測定値の平均値である。なお、反射波が微弱である場合、必要に応じて出力信号に利得を設定してもよい。
(反射強度測定条件)
超音波送受信機と不織布表面との距離:155mm
周波数:360kHz
測定温度:22℃
印加電圧:500V
波数:5(バースト波)
シャープ比:100%
測定点数:25mm×40mmの範囲内で100点以上
The reflection intensity of the above ultrasonic waves is an average value of 100 or more measured values measured according to the following measurement conditions. If the reflected wave is weak, a gain may be set for the output signal as needed.
(Reflection intensity measurement conditions)
Distance between ultrasonic transmitter / receiver and non-woven fabric surface: 155 mm
Frequency: 360kHz
Measurement temperature: 22 ° C
Applied voltage: 500V
Wavenumber: 5 (burst wave)
Sharp ratio: 100%
Number of measurement points: 100 points or more within the range of 25 mm x 40 mm
 上記の所定の反射率の比を満たすメルトブローン不織布の厚さは、0.1mm以上0.4mm以下が好ましく、0.1mm以上0.3mm以下がより好ましい。メルトブローン不織布の厚さが上記の範囲内であると、メルトブローン不織布の安定した製造が容易であり、製布後に均質な不織布を得やすい。 The thickness of the melt blown non-woven fabric satisfying the above-mentioned predetermined reflectance ratio is preferably 0.1 mm or more and 0.4 mm or less, and more preferably 0.1 mm or more and 0.3 mm or less. When the thickness of the melt-blown non-woven fabric is within the above range, stable production of the melt-blown non-woven fabric is easy, and it is easy to obtain a homogeneous non-woven fabric after fabrication.
 上記の所定の反射率の比を満たすメルトブローン不織布の見かけ密度は、50kg/m以上350kg/m以下が好ましく、100kg/m以上350kg/m以下がより好ましい。メルトブローン不織布の見かけ密度が上記の範囲内であると、メルトブローン不織布において、良好な強度と、良好な通気性能とを両立しやすい。 The apparent density of the melt-blown non-woven fabric satisfying the above-mentioned predetermined reflectance ratio is preferably 50 kg / m 3 or more and 350 kg / m 3 or less, and more preferably 100 kg / m 3 or more and 350 kg / m 3 or less. When the apparent density of the melt-blown non-woven fabric is within the above range, it is easy to achieve both good strength and good ventilation performance in the melt-blown non-woven fabric.
 上記の所定の反射率の比を満たすメルトブローン不織布のパームポロメーターにより測定される平均孔径は、2.5μm以上5.0μm以下が好ましく、2.5μm以上4.6μm以下がより好ましい。メルトブローン不織布の平均孔径が上記の範囲内であると、メルトブローン不織布において、良好な通気性能と、良好な捕集性能とを両立しやすい。 The average pore size measured by a palm poromometer of a melt-blown non-woven fabric that satisfies the above-mentioned predetermined reflectance ratio is preferably 2.5 μm or more and 5.0 μm or less, and more preferably 2.5 μm or more and 4.6 μm or less. When the average pore diameter of the melt-blown non-woven fabric is within the above range, it is easy to achieve both good ventilation performance and good collection performance in the melt-blown non-woven fabric.
 上記の所定の反射率の比を満たすメルトブローン不織布について、電子顕微鏡画像から求められた100本以上の繊維の繊維径の平均値である平均繊維径が0.5μm以上3.0μm以下であるのが好ましく、0.5μm以上2.5μm以下であるのがより好ましい。 For the melt-blown non-woven fabric that satisfies the above-mentioned predetermined reflectance ratio, the average fiber diameter, which is the average value of the fiber diameters of 100 or more fibers determined from the electron microscope image, is 0.5 μm or more and 3.0 μm or less. It is preferably 0.5 μm or more and 2.5 μm or less, more preferably.
 上記の所定の反射率の比を満たすメルトブローン不織布のMD方向の引張強度は、2.0N/m以上15.0N/m以下が好ましく、3.0N/m以上10.0N/m以下がより好ましい。MD方向の引張弾性率は、100MPa以上400MPa以下が好ましく、120MPa以上350MPa以下がより好ましい。TD方向の引張強度は、2.0N/m以上8.0N/m以下が好ましく、2.5N/m以上6.0N/m以下がより好ましい。TD方向の引張弾性率は、50MPa以上200MPa以下が好ましく、70MPa以上130MPa以下がより好ましい。
 引張強度、及び引張弾性率は、後述する実施例における測定方法に従って測定される値である。
 MD方向は、メルトブローン不織布を製造する際に、メルトブローン不織布が移動する方向に沿った方向である。TD方向は、MD方向に対して垂直な方向である。
Tensile strength in the MD direction of the meltblown nonwoven fabric which satisfies the ratio of the predetermined reflection factor described above, preferably 2.0 N / m 2 or more 15.0 N / m 2 or less, 3.0 N / m 2 or more 10.0 N / m 2 The following is more preferable. The tensile elastic modulus in the MD direction is preferably 100 MPa or more and 400 MPa or less, and more preferably 120 MPa or more and 350 MPa or less. Tensile strength in the TD direction is preferably 2.0 N / m 2 or more 8.0 N / m 2 or less, 2.5 N / m 2 or more 6.0 N / m 2 or less is more preferable. The tensile elastic modulus in the TD direction is preferably 50 MPa or more and 200 MPa or less, and more preferably 70 MPa or more and 130 MPa or less.
The tensile strength and the tensile elastic modulus are values measured according to the measuring method in the examples described later.
The MD direction is a direction along the direction in which the melt-blown non-woven fabric moves when the melt-blown non-woven fabric is manufactured. The TD direction is a direction perpendicular to the MD direction.
 また、メルトブローン不織布について、実施例において後述する方法に従って、メルトブローン不織布に対してメルトブローン不織布の厚さ方向にスキャンを行い、メルトブローン不織布中の厚さ方向に対して垂直な面における繊維分布のデータを取得するX線CT解析を行うことにより、メルトブローン不織布の厚さ方向の各位置における繊維の占有率が分かる。
 上記のX線CT解析によれば、メルトブローン不織布について、一方の面の表面から15%の領域の平均繊維占有率FO1と、他方の面の表面から15%の領域の平均繊維占有率FO2と、メルトブローン不織布の繊維の平均占有率AFOとを算出することができる。
 メルトブローン不織布について、厚さ方向に対して垂直な面における繊維占有率に勾配をもつことで、強度に優れるとともに、通気性にも優れる傾向がある。具体的には、下記式で算出される占有率変化率が10%以上であるのが好ましく、12%以上30%以下であるのがより好ましく、13%以上25%以下であるのがさらに好ましい。占有率変化率が上記の範囲内であるメルトブローン不織布は、強度に優れるとともに、通気性にも優れる傾向がある。
占有率変化率(%)=(│FO1-FO2│)/AFO×100
Further, for the melt-blown non-woven fabric, the melt-blown non-woven fabric is scanned in the thickness direction of the melt-blown non-woven fabric according to the method described later in the examples, and the data of the fiber distribution in the plane perpendicular to the thickness direction in the melt-blown non-woven fabric is acquired. By performing the X-ray CT analysis, the fiber occupancy rate at each position in the thickness direction of the meltblown non-woven fabric can be known.
According to the above X-ray CT analysis, for the melt-blown non-woven fabric, the average fiber occupancy FO1 in the region 15% from the surface of one surface and the average fiber occupancy FO2 in the region 15% from the surface of the other surface are obtained. The average occupancy rate of the fibers of the melt blown non-woven fabric AFO can be calculated.
The melt-blown non-woven fabric tends to have excellent strength and breathability by having a gradient in the fiber occupancy in the plane perpendicular to the thickness direction. Specifically, the occupancy rate change rate calculated by the following formula is preferably 10% or more, more preferably 12% or more and 30% or less, and further preferably 13% or more and 25% or less. .. Meltblown non-woven fabrics having an occupancy rate change rate within the above range tend to be excellent in strength and breathability.
Occupancy rate change rate (%) = (│FO1-FO2│) / AFO x 100
 以上説明したメルトブローン不織布は、前述の方法により容易に製造され得る。上記のメルトブローン不織布は、良好な強度と良好な通気性とを兼ね備えるため、フィルター用に好適に使用される。
 より具体的には、上記のメルトブローン不織布は体外循環治療、抗体医薬品精製、遺伝子治療用のウイルス精製等に用いられるフィルターとして好ましく使用される。
The melt-blown non-woven fabric described above can be easily produced by the above-mentioned method. The meltblown non-woven fabric described above has both good strength and good breathability, and is therefore preferably used for filters.
More specifically, the above-mentioned melt-blown non-woven fabric is preferably used as a filter used for extracorporeal circulation therapy, antibody drug purification, virus purification for gene therapy, and the like.
 以下に、実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
〔実施例1~4、及び比較例1~7〕
 図1に示される構成のメルトブローン不織布の製造装置1を用いて、表1に記載の条件で幅600mmのメルトブローン不織布を製造した。樹脂としては、ポリエチレンテレフタレート(PET、融点260℃)を用いた。使用した紡糸ノズルについて、ノズル孔径が0.25mmであり、孔間隔が0.25mmであり、孔数1200であった。コンベアの移動速度は、2.9m/分であった。
[Examples 1 to 4 and Comparative Examples 1 to 7]
Using the melt-blown non-woven fabric manufacturing apparatus 1 having the configuration shown in FIG. 1, a melt-blown non-woven fabric having a width of 600 mm was manufactured under the conditions shown in Table 1. As the resin, polyethylene terephthalate (PET, melting point 260 ° C.) was used. Regarding the spinning nozzle used, the nozzle hole diameter was 0.25 mm, the hole spacing was 0.25 mm, and the number of holes was 1200. The moving speed of the conveyor was 2.9 m / min.
 実施例については、メルトブローン不織布の取得後にカレンダー加工を行わなかった。
 比較例については、表1に記載のロール温度のカレンダーロールを用いて、ロール間クリアランス0.10~0.11mmの条件にて、メルトブローン不織布のカレンダー加工を行った。
In the examples, no calendar processing was performed after the acquisition of the melt blown non-woven fabric.
As for the comparative example, the melt-blown non-woven fabric was calendar-processed under the condition of the clearance between rolls of 0.10 to 0.11 mm using the calendar rolls having the roll temperatures shown in Table 1.
 実施例1~4で得たメルトブローン不織布と、比較例1~7で得たカレンダー加工されたメルトブローン不織布とについて、厚さ、見かけ密度を測定した。また、以下の方法に従って、平均孔径、平均繊維径、変動係数、引張強度、引張弾性率、超音波反射強度、及び通気性の測定を行った。これらの測定結果を、表2~表4に記す。 The thickness and apparent density of the melt-blown non-woven fabrics obtained in Examples 1 to 4 and the calendar-processed melt-blown non-woven fabric obtained in Comparative Examples 1 to 7 were measured. In addition, the average pore diameter, average fiber diameter, coefficient of variation, tensile strength, tensile elastic modulus, ultrasonic reflection strength, and air permeability were measured according to the following methods. The measurement results are shown in Tables 2 to 4.
<平均孔径>
 パームポロメーター(PMI社製)を用いて測定したミーン・フロー・ポアサイズを平均孔径として採用した。
<Average hole diameter>
The mean flow pore size measured using a palm polo meter (manufactured by PMI) was adopted as the average pore size.
<平均繊維径、変動係数>
 メルトブローン不織布の一部を試料として用い、走査電子顕微鏡観察を行った。得られた電子顕微鏡画像に基づき、無作為に選択した100本以上の繊維の直径を計測した。100以上の計測値の数平均値を平均繊維直径とした。繊維径の標準偏差を平均繊維径で除し、変動係数を求めた。
<Average fiber diameter, coefficient of variation>
A scanning electron microscope observation was performed using a part of the melt blown non-woven fabric as a sample. Based on the obtained electron microscopic images, the diameters of 100 or more randomly selected fibers were measured. The average number of measured values of 100 or more was defined as the average fiber diameter. The coefficient of variation was calculated by dividing the standard deviation of the fiber diameter by the average fiber diameter.
<引張強度、引張弾性率>
 メルトブローン不織布について、MD方向、TD方向のそれぞれについての、引張強度、及び引張弾性率を測定した。
 MD方向は、メルトブローン不織布を製造する際に、メルトブローン不織布が移動する方向に沿った方向である。TD方向は、MD方向に対して垂直な方向である。
 得られたメルトブローン不織布から、幅8mm、長さ40mmの試験片を切り出した。万能試験機(エー・アンド・デイ社製、RTG-1210)を用いて試験片の両端をチャックで固定し、チャックの間隔を20mm、引張速度を20mm/分として試験片を引張り、チャック間距離-荷重の関係をプロットし、以下の式に基づき、引張強度、及び引張弾性率をそれぞれ算出した。
引張強度(N/m)=(破断時の荷重)/試験片の断面積
引張弾性率(MPa)=(チャック間距離が試験開始前の0~2%伸びた状態の荷重変化/試験片の断面積)/(0~2%の伸び/試験片の初期長さ)
<Tensile strength, tensile elastic modulus>
For the melt-blown non-woven fabric, the tensile strength and the tensile elastic modulus were measured in each of the MD direction and the TD direction.
The MD direction is a direction along the direction in which the melt-blown non-woven fabric moves when the melt-blown non-woven fabric is manufactured. The TD direction is a direction perpendicular to the MD direction.
A test piece having a width of 8 mm and a length of 40 mm was cut out from the obtained melt blown non-woven fabric. Using a universal testing machine (A & D Co., Ltd., RTG-1210), fix both ends of the test piece with chucks, pull the test piece with a chuck spacing of 20 mm and a tensile speed of 20 mm / min, and the distance between the chucks. -The load relationship was plotted, and the tensile strength and tensile elastic modulus were calculated based on the following formulas.
Tensile strength (N / m 2 ) = (load at break) / Cross-sectional area of test piece Tensile elastic modulus (MPa) = (load change when the distance between chucks is extended by 0 to 2% before the start of the test / test piece Cross-sectional area) / (0-2% elongation / initial length of test piece)
<超音波反射強度>
 メルトブローン不織布中の75mm×75mの領域において、下記測定条件に従って100点以上の超音波反射強度の測定値を取得した。100点以上の超音波反射強度の平均値を超音波反射強度とする。超音波反射強度の測定は、メルトブローン不織布の製造時にコンベア12に接触していた面と、ノズル孔11に対向していた面とについてそれぞれ行った。
<Ultrasonic reflection intensity>
In a region of 75 mm × 75 m in the melt blown non-woven fabric, 100 or more measured values of ultrasonic reflection intensity were obtained according to the following measurement conditions. The average value of the ultrasonic reflection intensity of 100 points or more is defined as the ultrasonic reflection intensity. The ultrasonic reflection intensity was measured on the surface that was in contact with the conveyor 12 and the surface that was in contact with the nozzle hole 11 when the meltblown non-woven fabric was manufactured.
(反射強度測定条件)
超音波送受信機と不織布表面との距離:155mm
周波数:360kHz
測定温度:22℃
印加電圧:500V
波数:5(バースト波)
シャープ比:100%
測定点数:25mm×40mmの範囲内で100点以上
(Reflection intensity measurement conditions)
Distance between ultrasonic transmitter / receiver and non-woven fabric surface: 155 mm
Frequency: 360kHz
Measurement temperature: 22 ° C
Applied voltage: 500V
Wavenumber: 5 (burst wave)
Sharp ratio: 100%
Number of measurement points: 100 points or more within the range of 25 mm x 40 mm
 具体的には、パルサレシーバー(ジャパンプローブ株式会社製、ULTRA SONIC RECEIVER JPR600C)に接続された超音波振動子(超音波送受信機)から超音波を送受信して、超音波反射強度の測定を行った。パルサレシーバーは、高速デジタライザー(ナショナルインスツルメンツ株式会社製、NI PIX-1033(シャーシ)、NI PIX-5114)に接続され、高速デジタライザーはデータ処理用のパーソナルコンピューターに接続された。 Specifically, ultrasonic waves were transmitted and received from an ultrasonic vibrator (ultrasonic transmitter / receiver) connected to a pulsar receiver (ULTRA SONIC RECEIVER JPR600C manufactured by Japan Probe Co., Ltd.) to measure the ultrasonic reflection intensity. .. The pulsar receiver was connected to a high-speed digitizer (NI PIX-1033 (chassis), NI PIX-5114, manufactured by National Instruments Co., Ltd.), and the high-speed digitizer was connected to a personal computer for data processing.
<通気性>
 実施例及び比較例で得られたメルトブローン不織布を、4枚又は8枚重ねて、面積642mmの通気面から空気300mLを567gの重量を加えて通過させて、300mLの空気全量の通過に要する時間(秒)を測定し、通気性の評価を行った。通気性の評価はガーレ式デンソメータ(TOYOSEIKI製)を用いた。
 メルトブローン不織布について、メルトブローン不織布の製造時にコンベア12に接触していた面をA面とし、メルトブローン不織布のノズル孔11に対向していた面をB面とする場合に、A面同士、又はB面同士が接触しないように重ねられた。
 また、空気はB面側から供給した。
 実施例2、及び比較例1については、32枚重ねのメルトブローン不織布についても通気性の評価を行った。
<Breathability>
The melt blown non-woven fabrics obtained in Examples and Comparative Examples are stacked in 4 or 8 layers, and 300 mL of air is passed through a ventilation surface having an area of 642 mm 2 with a weight of 567 g, and the time required for passing the total amount of 300 mL of air. (Seconds) was measured and the air permeability was evaluated. A Gale type densometer (manufactured by TOYOSEIKI) was used to evaluate the air permeability.
Regarding the melt-blown non-woven fabric, when the surface in contact with the conveyor 12 at the time of manufacturing the melt-blown non-woven fabric is the A-side and the surface of the melt-blown non-woven fabric facing the nozzle hole 11 is the B-side, the A-sides or the B-sides are used. Are stacked so that they do not touch.
In addition, air was supplied from the B side.
In Example 2 and Comparative Example 1, the air permeability of the 32-layer melt-blown non-woven fabric was also evaluated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 例えば、厚さと、見かけ密度と、平均孔径と、平均繊維径とが近い、実施例2のメルトブローン不織布と、比較例2、及び比較例3のメルトブローン不織布とを比較すると、実施例2のメルトブローン不織布の引張強度、及び引張弾性率が、カレンダー加工されていないにもかかわらず、比較例2、及び比較例3のメルトブローン不織布の引張強度、及び引張弾性率よりも同等か優れていることが分かる。
 また、実施例2のメルトブローン不織布と、比較例2のメルトブローン不織布との比較によれば、カレンダー加工されていない実施例2のメルトブローン不織布は、カレンダー加工されている比較例2のメルトブローン不織布よりも通気性に優れていることが分かる。
For example, comparing the melt-blown non-woven fabric of Example 2 and the melt-blown non-woven fabric of Comparative Example 2 and Comparative Example 3 in which the thickness, the apparent density, the average pore diameter, and the average fiber diameter are close to each other, the melt-blown non-woven fabric of Example 2 is compared. It can be seen that the tensile strength and tensile elastic modulus of Comparative Example 2 and Comparative Example 3 are equal to or superior to the tensile strength and tensile elastic modulus of the meltblown non-woven fabrics of Comparative Example 2 and Comparative Example 3.
Further, according to a comparison between the melt-blown non-woven fabric of Example 2 and the melt-blown non-woven fabric of Comparative Example 2, the melt-blown non-woven fabric of Example 2 which has not been calendar-processed is more ventilated than the melt-blown non-woven fabric of Comparative Example 2 which has been calendar-processed. It can be seen that it is excellent in sex.
 表4から、実施例のメルトブローン不織布における両面の超音波の反射強度の比は、カレンダー加工されていないことによって、いずれも1.2以上3.0以下であることが分かる。
 また、表1~3から、ノズル孔-コンベア間距離が75mmを超える比較例1では、得られるメルトブローン不織布の見かけ比重が低く、また、メルトブローン不織布の強度が劣ることが分かる。
From Table 4, it can be seen that the ratio of the reflection intensities of the ultrasonic waves on both sides in the melt-blown non-woven fabric of the example is 1.2 or more and 3.0 or less because the calendar processing is not performed.
Further, from Tables 1 to 3, it can be seen that in Comparative Example 1 in which the distance between the nozzle hole and the conveyor exceeds 75 mm, the apparent specific gravity of the obtained melt-blown non-woven fabric is low, and the strength of the melt-blown non-woven fabric is inferior.
〔実施例5、実施例6、及び比較例8~10〕
 図1に示される構成のメルトブローン不織布の製造装置1を用いて、表5に記載の条件でメルトブローン不織布の製造を行った。樹脂としては、ポリプロピレン(PP、融点160℃)を用いた。
 実施例5、実施例6、及び比較例8~10で得たメルトブローン不織布について、実施例1と同様に、厚さ、見かけ密度、平均孔径、平均繊維径、及び変動係数の測定を行った。これらの測定結果を、表2~表6に記す。
[Example 5, Example 6, and Comparative Examples 8 to 10]
The melt-blown non-woven fabric was manufactured under the conditions shown in Table 5 using the melt-blown non-woven fabric manufacturing apparatus 1 having the configuration shown in FIG. As the resin, polypropylene (PP, melting point 160 ° C.) was used.
The thickness, apparent density, average pore diameter, average fiber diameter, and coefficient of variation of the melt-blown non-woven fabrics obtained in Examples 5, 6 and 8 to 10 were measured in the same manner as in Example 1. The measurement results are shown in Tables 2 to 6.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例5及び実施例6のメルトブローン不織布について、実施例1と同様に両面の超音波の反射強度の比を測定したが、いずれも1.2以上3.0以下であった。
 また、比較例8~比較例10のメルトブローン不織布は、ノズル孔-コンベア間距離が75mmを超える条件で製造されたため、見かけ密度が顕著に低い。このため、比較例8~比較例10のメルトブローン不織布は、カレンダー加工されなければ、所望する強度を担保出来ない。
For the melt-blown non-woven fabrics of Examples 5 and 6, the ratio of the reflection intensities of ultrasonic waves on both sides was measured in the same manner as in Example 1, and both were 1.2 or more and 3.0 or less.
Further, since the melt blown non-woven fabrics of Comparative Examples 8 to 10 were manufactured under the condition that the distance between the nozzle hole and the conveyor exceeds 75 mm, the apparent density is remarkably low. Therefore, the melt blown non-woven fabrics of Comparative Examples 8 to 10 cannot guarantee the desired strength unless they are calendar-processed.
 また、実施例2、実施例4、比較例6、及び比較例7のメルトブローン不織布について、X線CTによる解析行った。この解析により、メルトブローン不織布の厚さ方向の各位置における繊維の占有率が分かる。この解析結果のグラフを、図3、及び図4に示す。
 図3、及び図4のグラフにおいて、厚さ方向(μm)の軸に関して、プラス側がメルトブローン不織布の厚さ方向におけるコンベア側の面に向いた方向である。また、マイナス側が、メルトブローン不織布の厚さ方向におけるノズル側の面に向いた方向である。
Further, the melt blown non-woven fabrics of Example 2, Example 4, Comparative Example 6 and Comparative Example 7 were analyzed by X-ray CT. This analysis reveals the fiber occupancy at each position in the thickness direction of the meltblown non-woven fabric. The graphs of the analysis results are shown in FIGS. 3 and 4.
In the graphs of FIGS. 3 and 4, with respect to the axis in the thickness direction (μm), the plus side is the direction facing the surface on the conveyor side in the thickness direction of the meltblown non-woven fabric. Further, the minus side is the direction facing the surface on the nozzle side in the thickness direction of the melt blown non-woven fabric.
 X線CTによる解析は、具体的には下記の方法により行った。
 X線CT装置としては、Xradia社製マイクロX線CTスキャナー(MicroXCT-400)を用いた。同装置により、メルトブローン不織布を厚さ方向にスキャンし、メルトブローン不織布における繊維の分布データを取得した。スキャンデータから、厚さ0.05mm間隔で、繊維の分布に関する2次元データを得た。次いで、得られた、2次元データをグレースケール化した。グレースケール化された画像の一例として、実施例2のメルトブローン不織布の厚さ方向中央部のグレースケール画像を図4に示す。グレースケール化された画像のデータから画素値を生成させた。得られた画素値に基づき、グレースケール画像について所定の2値化処理を行った。2値化されたグレースケール画像について、画像の全面積に対する繊維部分の面積の合計が占める比率(繊維の占有率(%))を求めた。
The analysis by X-ray CT was specifically performed by the following method.
As the X-ray CT apparatus, a micro X-ray CT scanner (MicroXCT-400) manufactured by Xradia was used. With this device, the melt-blown non-woven fabric was scanned in the thickness direction, and the distribution data of the fibers in the melt-blown non-woven fabric was acquired. From the scan data, two-dimensional data on the distribution of fibers was obtained at intervals of 0.05 mm in thickness. Then, the obtained two-dimensional data was grayscaled. As an example of the grayscaled image, FIG. 4 shows a grayscale image of the central portion of the meltblown nonwoven fabric of Example 2 in the thickness direction. Pixel values were generated from the grayscaled image data. Based on the obtained pixel values, a predetermined binarization process was performed on the grayscale image. For the binarized grayscale image, the ratio of the total area of the fiber portion to the total area of the image (fiber occupancy rate (%)) was determined.
 以下、2値化処理について説明する。2値化処理を行うに際して、まずグレースケール化された画像について、輝度(8bit画像における256段階の諧調(0~255))毎の画素の分布についてのヒストグラムを求めた。得られた、輝度を横軸とするヒストグラムでは、2つのピークが存在する。得られたヒストグラムから、輝度の最大値Imaxと、輝度の最小値Iminと、輝度の平均値μを求めた。ImaxとIminとの間で、任意の閾値Tを選択した。閾値Tを境にして、ヒストグラムを、クラス1とクラス2との2つのクラスに分けた。クラス1とクラス2とは、それぞれ1つのピークを含む。クラス1についての分散σ と、平均μと、頻度nとを求めた。クラス2についての分散σ と、平均μと、頻度nとを求めた。 Hereinafter, the binarization process will be described. When the binarization process was performed, first, a histogram was obtained for the distribution of pixels for each brightness (256-step gradation (0 to 255) in an 8-bit image) of the grayscale image. In the obtained histogram with the brightness as the horizontal axis, there are two peaks. From the obtained histogram, the maximum value I max of the brightness, the minimum value I min of the brightness, and the average value μ 0 of the brightness were obtained. Arbitrary threshold T was selected between I max and I min . The histogram was divided into two classes, class 1 and class 2, with the threshold value T as a boundary. Class 1 and class 2 each contain one peak. The variance σ 1 2 for class 1, the mean μ 1, and the frequency n 1 were determined. And variance sigma 2 2 for class 2, was determined as the average mu 2, and a frequency n 2.
 次いで、以下の式よりクラス内分散σ と、クラス間分散σ とを求めた。
Figure JPOXMLDOC01-appb-M000007
Next, the intra-class variance σ w 2 and the inter-class variance σ b 2 were obtained from the following equations.
Figure JPOXMLDOC01-appb-M000007
 得られたクラス内分散σ と、クラス間分散σ とから下式により、分離度Sを求めた。
Figure JPOXMLDOC01-appb-M000008
From the obtained intraclass variance σ w 2 and the interclass variance σ b 2 , the degree of separation S was obtained by the following equation.
Figure JPOXMLDOC01-appb-M000008
 最大値Imaxと、最小値Iminとの間の全ての閾値Tに関して、上記の方法に従い分離度Sを求めた。分離度Sが最大となるときの閾値Tを、2値化法における閾値として採用した。 The degree of separation S was determined according to the above method for all threshold values T between the maximum value I max and the minimum value I min . The threshold value T when the degree of separation S becomes maximum was adopted as the threshold value in the binarization method.
 下記表7に、上記のX線CT解析結果から求められた、メルトブローン不織布の厚さ方向の各位置での繊維占有率(%)の平均値(AFO)と、ノズル孔側の表面から15%の範囲内の繊維占有率の平均値(FO1)と、コンベア側の面の表面から15%の範囲内の繊維占有率の平均値(FO2)と、両面(各面の表面から15%)の繊維占有率の平均値の差(│(FO1-FO2│)と、下記式で算出される占有率変化率(%)とを記す。
占有率変化率(%)=(│FO1-FO2│)/AFO×100
Figure JPOXMLDOC01-appb-T000009
Table 7 below shows the average value (AFO) of the fiber occupancy (%) at each position in the thickness direction of the melt blown non-woven fabric, which was obtained from the above X-ray CT analysis results, and 15% from the surface on the nozzle hole side. The average value of the fiber occupancy within the range of (FO1), the average value of the fiber occupancy within the range of 15% from the surface of the surface on the conveyor side (FO2), and both sides (15% from the surface of each surface). The difference between the average value of the fiber occupancy rate (│ (FO1-FO2│)) and the occupancy rate change rate (%) calculated by the following formula are described.
Occupancy rate change rate (%) = (│FO1-FO2│) / AFO x 100
Figure JPOXMLDOC01-appb-T000009
 前述の通り、強度に優れるとともに、通気性にも優れる実施例2、及び実施例4のメルトブローン不織布は、10%以上の高い占有率変化率を示す。 As described above, the meltblown non-woven fabrics of Examples 2 and 4 which are excellent in strength and breathability show a high occupancy rate change rate of 10% or more.
 1:メルトブローン不織布の製造装置
 2:メルトブローン不織布
 10:スピニングダイヘッド
 11:ノズル孔
 12:コンベア
 13:ローラー
 14:巻取装置
 100:ホッパー
 101:押出機
 102:ギアポンプ
 103:フィルター
 104:混練機
1: Melt blown non-woven fabric manufacturing equipment 2: Melt blown non-woven fabric 10: Spinning die head 11: Nozzle hole 12: Conveyor 13: Roller 14: Winding device 100: Hopper 101: Extruder 102: Gear pump 103: Filter 104: Kneader

Claims (10)

  1.  複数の孔を有するノズルを設置したスピニングダイヘッドから溶融した樹脂を吐出する、樹脂吐出工程と、
     前記ノズル孔から前記スピニングダイヘッドに対向して設けられたコンベアに向かって流れる熱風を、前記ノズル孔に向けて吹き付け、吐出された溶融状態の前記樹脂を線維化させて繊維を形成する、繊維形成工程と、
     前記熱風の気流により、前記コンベア上に前記繊維を堆積させてメルトブローン不織布を形成する、不織布形成工程と、を含み、
     前記不織布形成工程後に、カレンダー加工が行われず、
     前記熱風の温度が、前記樹脂の融点以上、(前記融点+100℃)以下であり、
     前記熱風の風量が、1000NL/分/m以上7000NL/分/m以下であり、
     前記ノズル孔1つ当たりの前記樹脂の吐出量が、0.006cm/分以上0.3cm/分以下であり、
     前記ノズル孔における前記樹脂の温度が、前記樹脂の融点以上、(前記融点+100℃)以下であり、
     前記ノズル孔と、前記コンベアとの間の最短距離が、10mm以上75mm以下であり、
     前記ノズル孔と、前記コンベアとの間の雰囲気の温度が、110℃以上160℃以下である、メルトブローン不織布の製造方法。
    A resin discharge process that discharges molten resin from a spinning die head equipped with nozzles with multiple holes,
    Hot air flowing from the nozzle hole toward the conveyor provided facing the spinning die head is blown toward the nozzle hole, and the discharged resin in a molten state is fibrotic to form fibers. Process and
    A non-woven fabric forming step of depositing the fibers on the conveyor to form a melt blown non-woven fabric by the air flow of the hot air is included.
    After the non-woven fabric forming step, no calendar processing is performed,
    The temperature of the hot air is equal to or higher than the melting point of the resin (the melting point + 100 ° C.) or lower.
    The air volume of the hot air is 1000 NL / min / m or more and 7000 NL / min / m or less.
    Discharge rate of the resin per the nozzle holes one is, it is 0.006 cm 3 / min or more 0.3 cm 3 / min or less,
    The temperature of the resin in the nozzle hole is equal to or higher than the melting point of the resin (the melting point + 100 ° C.) or lower.
    The shortest distance between the nozzle hole and the conveyor is 10 mm or more and 75 mm or less.
    A method for producing a melt-blown non-woven fabric, wherein the temperature of the atmosphere between the nozzle hole and the conveyor is 110 ° C. or higher and 160 ° C. or lower.
  2.  前記樹脂が、ポリエステル系樹脂、又はポリオレフィン系樹脂である、1に記載のメルトブローン不織布の製造方法。 The method for producing a melt-blown non-woven fabric according to 1, wherein the resin is a polyester-based resin or a polyolefin-based resin.
  3.  前記メルトブローン不織布の両面それぞれの超音波の反射強度の値が、互いに相違し、
     大きい方の前記反射強度の値が、小さい方の前記反射強度の値の1.2倍以上3.0倍以下であり、
     前記反射強度が、下記測定条件:
    超音波送受信機と不織布表面との距離:155mm
    周波数:360kHz
    測定温度:22℃
    印加電圧:500V
    波数:5(バースト波)
    シャープ比:100%
    測定点数:25mm×40mmの範囲内で100点以上
    に従って測定される、100点以上の測定値の平均値である、請求項1又は2に記載のメルトブローン不織布の製造方法。
    The values of ultrasonic reflection intensity on both sides of the melt blown non-woven fabric are different from each other.
    The larger value of the reflection intensity is 1.2 times or more and 3.0 times or less of the smaller value of the reflection intensity.
    The reflection intensity is the following measurement conditions:
    Distance between ultrasonic transmitter / receiver and non-woven fabric surface: 155 mm
    Frequency: 360kHz
    Measurement temperature: 22 ° C
    Applied voltage: 500V
    Wavenumber: 5 (burst wave)
    Sharp ratio: 100%
    The method for producing a meltblown nonwoven fabric according to claim 1 or 2, which is an average value of 100 or more measured values measured according to 100 or more points within a range of 25 mm × 40 mm.
  4.  両面それぞれの超音波の反射強度の値が、互いに相違し、
     大きい方の前記反射強度の値が、小さい方の前記反射強度の値の1.2倍以上3.0倍以下であり、
     前記反射強度が、下記測定条件:
    超音波送受信機と不織布表面との距離:155mm
    周波数:360kHz
    測定温度:22℃
    印加電圧:500V
    波数:5(バースト波)
    シャープ比:100%
    測定点数:25mm×40mmの範囲内で100点以上
    に従って測定される、100点以上の測定値の平均値である、メルトブローン不織布。
    The value of the reflection intensity of ultrasonic waves on both sides is different from each other,
    The larger value of the reflection intensity is 1.2 times or more and 3.0 times or less of the smaller value of the reflection intensity.
    The reflection intensity is the following measurement conditions:
    Distance between ultrasonic transmitter / receiver and non-woven fabric surface: 155 mm
    Frequency: 360kHz
    Measurement temperature: 22 ° C
    Applied voltage: 500V
    Wavenumber: 5 (burst wave)
    Sharp ratio: 100%
    Number of measurement points: A melt-blown non-woven fabric which is an average value of 100 or more points measured according to 100 points or more within a range of 25 mm × 40 mm.
  5.  厚さが0.1mm以上0.4mm以下である、請求項4に記載のメルトブローン不織布。 The meltblown non-woven fabric according to claim 4, which has a thickness of 0.1 mm or more and 0.4 mm or less.
  6.  見かけ密度が50kg/m以上350kg/m以下である、請求項4又は5に記載のメルトブローン不織布。 The melt-blown non-woven fabric according to claim 4 or 5, wherein the apparent density is 50 kg / m 3 or more and 350 kg / m 3 or less.
  7.  パームポロメーターにより測定される平均孔径が2.5μm以上5.0μm以下である、請求項4~6のいずれか1項に記載のメルトブローン不織布。 The melt-blown non-woven fabric according to any one of claims 4 to 6, wherein the average pore diameter measured by a palm poromometer is 2.5 μm or more and 5.0 μm or less.
  8.  電子顕微鏡画像から求められた100本以上の繊維の繊維径の平均値である平均繊維径が0.5μm以上3.0μm以下である、請求項4~7のいずれか1項に記載のメルトブローン不織布。 The melt-blown non-woven fabric according to any one of claims 4 to 7, wherein the average fiber diameter, which is the average value of the fiber diameters of 100 or more fibers obtained from an electron microscope image, is 0.5 μm or more and 3.0 μm or less. ..
  9.  メルトブローン不織布に対して前記メルトブローン不織布の厚さ方向にスキャンを行い、前記メルトブローン不織布中の厚さ方向に対して垂直な面における繊維分布のデータを取得するX線CT解析の結果から求められた、一方の面の表面から15%の領域の平均繊維占有率FO1と、他方の面の表面から15%の領域の平均繊維占有率FO2と、メルトブローン不織布の繊維の平均占有率AFOとから、下記式:
    占有率変化率(%)=(│FO1-FO2│)/AFO×100
    に基づいて算出された占有率変化率が10%以上である、メルトブローン不織布。
    It was obtained from the result of X-ray CT analysis which scans the melt-blown non-woven fabric in the thickness direction of the melt-blown non-woven fabric and acquires the data of the fiber distribution in the plane perpendicular to the thickness direction in the melt-blown non-woven fabric. From the average fiber occupancy FO1 in the region 15% from the surface of one surface, the average fiber occupancy FO2 in the region 15% from the surface of the other surface, and the average fiber occupancy AFO in the fiber of the meltblown non-woven fabric, the following formula is used. :
    Occupancy rate change rate (%) = (│FO1-FO2│) / AFO x 100
    Melt blown non-woven fabric having an occupancy rate change rate of 10% or more calculated based on.
  10.  前記メルトブローン不織布に対して前記メルトブローン不織布の厚さ方向にスキャンを行い、前記メルトブローン不織布中の厚さ方向に対して垂直な面における繊維分布のデータを取得するX線CT解析の結果から求められた、一方の面の表面から15%の領域の平均繊維占有率FO1と、他方の面の表面から15%の領域の平均繊維占有率FO2と、メルトブローン不織布の繊維の平均占有率AFOとから、下記式:
    占有率変化率(%)=(│FO1-FO2│)/AFO×100
    に基づいて算出された占有率変化率が10%以上である、請求項4~8のいずれか1項に記載のメルトブローン不織布。
    It was obtained from the result of X-ray CT analysis which scans the melt-blown non-woven fabric in the thickness direction of the melt-blown non-woven fabric and acquires the data of the fiber distribution in the plane perpendicular to the thickness direction in the melt-blown non-woven fabric. From the average fiber occupancy FO1 in the region 15% from the surface of one surface, the average fiber occupancy FO2 in the region 15% from the surface of the other surface, and the average fiber occupancy AFO in the fiber of the meltblown non-woven fabric, the following formula:
    Occupancy rate change rate (%) = (│FO1-FO2│) / AFO x 100
    The melt-blown non-woven fabric according to any one of claims 4 to 8, wherein the occupancy rate change rate calculated based on the above is 10% or more.
PCT/JP2020/014392 2019-03-29 2020-03-27 Melt-blown nonwoven fabric manufacturing method and melt-blown nonwoven fabric WO2020203932A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021512092A JPWO2020203932A1 (en) 2019-03-29 2020-03-27
CN202080025557.4A CN113950547A (en) 2019-03-29 2020-03-27 Method for producing melt-blown nonwoven fabric and melt-blown nonwoven fabric
EP20782329.5A EP3943655B1 (en) 2019-03-29 2020-03-27 Melt-blown nonwoven fabric manufacturing method and melt-blown nonwoven fabric

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019068822 2019-03-29
JP2019-068822 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203932A1 true WO2020203932A1 (en) 2020-10-08

Family

ID=72668987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014392 WO2020203932A1 (en) 2019-03-29 2020-03-27 Melt-blown nonwoven fabric manufacturing method and melt-blown nonwoven fabric

Country Status (4)

Country Link
EP (1) EP3943655B1 (en)
JP (1) JPWO2020203932A1 (en)
CN (1) CN113950547A (en)
WO (1) WO2020203932A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113502602A (en) * 2021-05-17 2021-10-15 辽宁盛京堂新材料科技有限公司 Processing device and processing technology based on antibacterial melt-blown fabric
WO2022059413A1 (en) * 2020-09-16 2022-03-24 株式会社カネカ Calendered nonwoven fabric and method for producing same
CN114687070A (en) * 2022-03-15 2022-07-01 安徽金春无纺布股份有限公司 Melt and spout compound non-woven fabric preparation facilities

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03260153A (en) * 1990-03-12 1991-11-20 Mitsui Petrochem Ind Ltd Production of pierced melt-blown nonwoven fabric and device therefor
JPH06136656A (en) 1992-10-26 1994-05-17 Unitika Ltd Paper-like non-woven fabric
JPH08144166A (en) * 1994-11-21 1996-06-04 Toyobo Co Ltd Polyamide ultrafine fiber nonwoven fabric and its production
JP2000238156A (en) * 1999-02-23 2000-09-05 Toray Ind Inc Laminated nonwoven fabric, its manufacture, thermal stencil base sheet and its manufacture
WO2019031286A1 (en) * 2017-08-10 2019-02-14 株式会社クラレ Melt blown nonwoven fabric, laminate using same, melt blown nonwoven fabric production method and melt blowing apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582907A (en) * 1994-07-28 1996-12-10 Pall Corporation Melt-blown fibrous web
AU758046B2 (en) * 1999-06-07 2003-03-13 Kuraray Co., Ltd. Porous sheet
WO2005107920A1 (en) * 2004-05-12 2005-11-17 Ambic Co., Ltd. Material for air filter
TW200829323A (en) * 2007-01-05 2008-07-16 jun-jie Chen Manufacturing method of winding type filter in multiple spray-fusing nonwoven fabric
JP6190687B2 (en) * 2013-10-02 2017-08-30 三井化学株式会社 Liquid filter
CN104695135A (en) * 2013-12-04 2015-06-10 上海杰事杰新材料(集团)股份有限公司 Biodegradable non-woven fabric and preparation method thereof
WO2017002924A1 (en) * 2015-06-30 2017-01-05 株式会社クラレ Nonwoven fabric and production method for same
JP7104695B2 (en) * 2017-06-08 2022-07-21 クラレクラフレックス株式会社 Fiber structure, molded body and sound absorbing material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03260153A (en) * 1990-03-12 1991-11-20 Mitsui Petrochem Ind Ltd Production of pierced melt-blown nonwoven fabric and device therefor
JPH06136656A (en) 1992-10-26 1994-05-17 Unitika Ltd Paper-like non-woven fabric
JPH08144166A (en) * 1994-11-21 1996-06-04 Toyobo Co Ltd Polyamide ultrafine fiber nonwoven fabric and its production
JP2000238156A (en) * 1999-02-23 2000-09-05 Toray Ind Inc Laminated nonwoven fabric, its manufacture, thermal stencil base sheet and its manufacture
WO2019031286A1 (en) * 2017-08-10 2019-02-14 株式会社クラレ Melt blown nonwoven fabric, laminate using same, melt blown nonwoven fabric production method and melt blowing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059413A1 (en) * 2020-09-16 2022-03-24 株式会社カネカ Calendered nonwoven fabric and method for producing same
CN113502602A (en) * 2021-05-17 2021-10-15 辽宁盛京堂新材料科技有限公司 Processing device and processing technology based on antibacterial melt-blown fabric
CN114687070A (en) * 2022-03-15 2022-07-01 安徽金春无纺布股份有限公司 Melt and spout compound non-woven fabric preparation facilities

Also Published As

Publication number Publication date
EP3943655B1 (en) 2023-10-11
JPWO2020203932A1 (en) 2020-10-08
CN113950547A (en) 2022-01-18
EP3943655A1 (en) 2022-01-26
EP3943655A4 (en) 2022-06-15

Similar Documents

Publication Publication Date Title
WO2020203932A1 (en) Melt-blown nonwoven fabric manufacturing method and melt-blown nonwoven fabric
TWI580833B (en) High loft spunbonded web
CN1237220C (en) High tensile strength transverse stretchign nonwoven fabric capable of transverse stretching by seven times or the more
JP5767113B2 (en) Patterned spunbond fiber web and method of making the same
TWI806888B (en) Meltblown nonwoven fabric, multilayer composite using the same, acoustic material for vehicle, production method of meltblown nonwoven fabric, and meltblowing device
JP6732975B2 (en) Spunbonded non-woven fabric containing crimped fine fibers with improved uniformity
EP2599908A1 (en) Non-woven fiber fabric, and production method and production device therefor
JP6934902B2 (en) Melt blow non-woven fabric
KR101983204B1 (en) Extrusion method and device
US10590565B2 (en) Polymeric nanofibers and nanofibrous web
DE112018003342T5 (en) DEVICE FOR PRODUCING ULTRAFINE FIBERS AND METHOD FOR PRODUCING ULTRAFINE FIBERS
US9731260B2 (en) Means for manufacturing micro-beads comprising thermoplastic polymer micro-particles
KR20160073971A (en) Melt-spun polypropylene fine-grade nanofibrous web
JP2010285720A (en) Method for producing nonwoven fabric and apparatus for production
JPH0596110A (en) Cylindrical filter and its production
JP5938730B2 (en) Sheet made of different filaments and means for producing the same
CN111566273A (en) Melt-blown nonwoven fabric, filter, and method for producing melt-blown nonwoven fabric
EP4209258A1 (en) Fiber nonwoven fabric, filter, and method for manufacturing fiber nonwoven fabric
WO2022059413A1 (en) Calendered nonwoven fabric and method for producing same
KR20230028580A (en) Melt blown nonwoven fabric and filter containing the same
DE102012004227A1 (en) Producing polymer fibers, preferably e.g. nonwoven fabric, comprises extruding polymer melt using spinning nozzle arrangement to obtain polymer fibers in free jet, stretching fibers using primary gas stream, and cooling and tempering fibers
JP2020165013A (en) Method of manufacturing fiber non-woven fabric

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021512092

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020782329

Country of ref document: EP

Effective date: 20211022