WO2017002924A1 - Nonwoven fabric and production method for same - Google Patents

Nonwoven fabric and production method for same Download PDF

Info

Publication number
WO2017002924A1
WO2017002924A1 PCT/JP2016/069462 JP2016069462W WO2017002924A1 WO 2017002924 A1 WO2017002924 A1 WO 2017002924A1 JP 2016069462 W JP2016069462 W JP 2016069462W WO 2017002924 A1 WO2017002924 A1 WO 2017002924A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
temperature
fiber
tip
polymer
Prior art date
Application number
PCT/JP2016/069462
Other languages
French (fr)
Japanese (ja)
Inventor
育久 白石
泰弘 城谷
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2017526434A priority Critical patent/JP6617148B2/en
Priority to CN201680038212.6A priority patent/CN107709646B/en
Priority to US15/739,920 priority patent/US20180187353A1/en
Priority to KR1020187002761A priority patent/KR102403836B1/en
Priority to EP16818032.1A priority patent/EP3318667B1/en
Publication of WO2017002924A1 publication Critical patent/WO2017002924A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/084Heating filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • D01D5/0985Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • D01F6/64Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters from polycarbonates
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/74Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles

Definitions

  • the present invention relates to a nonwoven fabric and a method for producing the same.
  • Nonwoven fabrics made of ultrafine fibers produced by the melt blown method have been developed and used for various purposes.
  • Nonwoven fabrics using polymers with a glass transition temperature (Tg) of less than 50 ° C, such as polypropylene and polyethylene can handle fibers without fusing, embossing, calendering, spunlace processing, etc. It is possible to obtain an excellent nonwoven fabric.
  • Tg glass transition temperature
  • the non-woven fabric that has been subjected to post-processing as described above, at least a part of the non-woven fabric has a high density part, which may affect performance such as air permeability, so there are few high density parts. Nevertheless, development of a nonwoven fabric excellent in handleability has been desired.
  • the present invention has been made to solve the above-mentioned problems, and its purpose is to provide sufficient strength to handle alone without post-processing such as embossing, calendering, and spunlace processing. It is providing the nonwoven fabric containing the fiber which has Tg of 50 degreeC or more as a main component, and its manufacturing method.
  • the nonwoven fabric of the present invention is a nonwoven fabric containing fibers mainly composed of a polymer having a glass transition temperature of 50 ° C. or higher and having a vertical strength per 1 g / m 2 of 1 N / 5 cm or more. It is a nonwoven fabric satisfying all of 2).
  • the density is 0.01 to 0.4 g / cm 3 .
  • the ratio of the portion where the density exceeds 0.4 g / cm 3 in the cross section in the thickness direction is 3% or less.
  • the nonwoven fabric of the present invention preferably has a fiber fusion rate of 15% or more in the cross section in the thickness direction, and an average area of each part where the fibers are fused is 70 ⁇ m 2 or less.
  • the nonwoven fabric of the present invention preferably has an average fiber diameter of 1 to 10 ⁇ m.
  • the present invention is also a method for producing the above-described nonwoven fabric of the present invention, wherein (1) the nozzle tip is set to the collection distance d between the spinning nozzle tip and the collection surface of the spun fiber. As a center, a hemispherical space of 0.5 ⁇ collection distance d, and (2) on the straight line with respect to the collection distance d between the tip of the spinning nozzle and the collection surface of the spun fiber.
  • the melt blown method is carried out while maintaining the temperature at at least one of the points 1 cm from the collecting surface at a temperature higher by 10 ° C. than the glass transition temperature.
  • a non-woven fabric comprising a fiber mainly composed of a polymer having a Tg of 50 ° C. or more and having sufficient strength to handle alone without post-processing such as embossing, calendering, and spunlace processing. And a method for manufacturing the same.
  • Nonwoven fabric has a vertical strength (strength in the vertical direction (flow direction in the production of nonwoven fabric)) per 1 g / m 2 is 1 N / 5 cm or more.
  • a non-woven fabric having sufficient strength that can be handled as a non-woven fabric independently without performing post-processing such as calendering, embossing, and spun lace processing that results in a part having a high density.
  • the strength of the nonwoven fabric of the present invention is more preferably 1.2 N / 5 cm or more, and further preferably 1.5 N / 5 cm.
  • the non-woven fabric of the present invention is a non-woven fabric that is remarkably excellent in handleability even when compared with such a case.
  • the nonwoven fabric of the present invention is a nonwoven fabric having a density of 0.01 to 0.4 g / cm 3 .
  • the density of the nonwoven fabric of the present invention is preferably 0.35 g / cm 3 or less, more preferably 0.3 g / cm 3 or less, preferably 0.1 g / cm 3 or more, and More preferably, it is 11 g / cm 3 or more.
  • the proportion of the portion where the density exceeds 0.4 g / cm 3 is 3% or less. If the proportion of the portion where the density exceeds 0.4 g / cm 3 exceeds 3%, spots may occur on the nonwoven fabric, resulting in problems such as affecting the air permeability and causing spots of strength.
  • the ratio of the portion where the density exceeds 0.4 g / cm 3 is more preferably 2.5% or less, and further preferably 2% or less.
  • Whether or not the density exceeds 0.4 g / cm 3 by observing the photograph is determined by using the function for measuring the distance between two points attached to the SEM, and the density is 0.4 g / cm 3 .
  • the length is determined by examining the length occupied by the excess part.
  • FIG. 1 is a scanning electron microscope (SEM) photograph of a cross-section in the thickness direction of the nonwoven fabric of the present invention (Example 1 described later) (FIG. 1 (a) is enlarged 100 times, FIG. 1 (b). Is magnified 1000 times).
  • the non-woven fabric of the present invention is a non-woven fabric 1 containing fibers mainly composed of a polymer having a Tg of 50 ° C. or higher, and the fibers 2 are partially fused (self-bonded). It has the fused part 3.
  • the nonwoven fabric 1 of the present invention preferably has a fiber fusion rate of 15% or more, more preferably 20% or more, and further preferably 25% or more in the cross section in the thickness direction.
  • the fiber fusion rate of the nonwoven fabric is preferably 60% or less, and 50% The following is more preferable.
  • the fiber fusion rate of the nonwoven fabric described above can be calculated, for example, by the following procedure. First, using SEM, the photograph which expanded the cross section in the thickness direction of a nonwoven fabric 1000 times was image
  • disconnection which fibers are fusing with respect to the number of fiber cut surfaces (fiber cross section) from this photograph visually. Find the ratio of the number of faces. Of the total number of fiber cross sections that can be found in each region, the ratio of the number of cross sections in which two or more fibers are fused is expressed by the following formula: Fiber fusion rate (%) (cross section of two or more fused fibers) Number) / (total number of fiber cross-sections) ⁇ 100.
  • the average area of each part where the fibers are fused is preferably 70 ⁇ m 2 or less, more preferably 50 ⁇ m 2 or less.
  • FIGS. 6 to 8 show SEM photographs of cross sections in the thickness direction when a non-woven fabric produced by the melt blown method is post-processed.
  • 6 shows a case where calendering is performed as post-processing (Comparative Example 3 to be described later) (FIG. 6A is enlarged 100 times, FIG. 6B is enlarged 1000 times), and FIG. 7 is embossed as post-processing.
  • FIG. 7A is 100 times enlarged, FIG.
  • FIG. 8 is a case where spunlace processing is performed as post-processing (described later). Comparative Example 4) (FIG. 8 (a) is enlarged 100 times, and FIG. 8 (b) is enlarged 1000 times).
  • FIGS. 6B and 7B in the non-woven fabric subjected to calendering and embossing as post-processing, there are many portions where the fibers are fused to a state where it is difficult to determine the fiber diameter.
  • the average area of each part formed and fused to the fiber is over 70 ⁇ m 2 .
  • the average area of each part where the fibers are fused is 70 ⁇ m 2 or less, and as shown in FIG.
  • the nonwoven fabric of the present invention preferably has an average fiber diameter in the range of 1 to 10 ⁇ m.
  • the nonwoven fabric of the present invention preferably includes a fused portion where fibers are fused, but even in that case, when calendering is performed (see FIG. 6B), embossing is performed. Unlike the case where the processing is performed (see FIG. 7B), the fusion is such that the fiber diameter can be discriminated (FIG. 1B), and the average fiber diameter can be calculated.
  • the average fiber diameter is less than 1 ⁇ m, it is necessary to reduce the discharge amount, the productivity is lowered, the discharge pressure becomes unstable, the yarn breakage, the polymer lump May occur frequently, making it difficult to form the web.
  • the average fiber diameter of the nonwoven fabric of the present invention is more preferably in the range of 1.2 to 9.5 ⁇ m, for the reason of achieving both production stability and denseness, and preferably 1.5 to 9. A range of 0 ⁇ m is particularly preferable.
  • the nonwoven fabric of this invention contains the fiber which has a polymer whose Tg is 50 degreeC or more as a main component.
  • the fiber mainly composed of a polymer having a Tg of 50 ° C. or more is a fiber containing 50% by mass or more of a polymer having a Tg of 50 ° C. or more, and the content thereof is preferably 70% by mass or more. More preferably, it is 80 mass% or more, More preferably, it is 90 mass% or more, Most preferably, it is 100 mass%.
  • the nonwoven fabric of the present invention may contain two or more different types of polymers having a Tg of 50 ° C. or more as long as the total of polymers having a Tg of 50 ° C. or more is 50% by mass or more.
  • polystyrene resin examples include polyamide, polyphenylene sulfide, polyethylene terephthalate, and polycarbonate. From the viewpoint of both flame retardancy and heat resistance, amorphous polyetherimide (PEI). Is particularly preferred.
  • PEI amorphous polyetherimide
  • Amorphous PEI used in the present invention is a polymer containing an aliphatic, alicyclic or aromatic ether unit and a cyclic imide as a repeating unit, and has an amorphous property and melt moldability. If it does not specifically limit.
  • the main chain of amorphous PEI has a structural unit other than cyclic imide and ether bond, such as aliphatic, alicyclic or aromatic ester unit, oxycarbonyl unit, etc. It may be contained.
  • a polymer represented by the following general formula is preferably used.
  • R1 is a divalent aromatic residue having 6 to 30 carbon atoms
  • R2 is a divalent aromatic residue having 6 to 30 carbon atoms, and 2 to 20 carbons.
  • the amorphous PEI used in the present invention preferably has a melt viscosity at 330 ° C. of 100 to 3000 Pa ⁇ s.
  • the melt viscosity at 330 ° C. is preferably 200 to 2700 Pa ⁇ s, and more preferably 300 to 2500 Pa ⁇ s.
  • the amorphous PEI used in the present invention preferably has a glass transition temperature of 200 ° C. or higher.
  • the glass transition temperature is less than 200 ° C.
  • the resulting nonwoven fabric may have poor heat resistance.
  • the higher the glass transition temperature of amorphous PEI the more preferable because a nonwoven fabric excellent in heat resistance can be obtained.
  • the fusion temperature will be high when fused, and the polymer will be polymerized at the time of fusion. May cause decomposition.
  • the glass transition temperature of amorphous PEI is more preferably 200 to 230 ° C, and further preferably 205 to 220 ° C.
  • the molecular weight of the amorphous PEI used in the present invention is not particularly limited, but the weight average molecular weight (Mw) is 1000 considering the mechanical properties, dimensional stability, and process passability of the resulting fiber or nonwoven fabric. It is preferably ⁇ 80000.
  • Mw weight average molecular weight
  • the use of a polymer having a high molecular weight is preferable because it is excellent in terms of fiber strength, heat resistance and the like, but from the viewpoint of resin production cost, fiberization cost, etc., the weight average molecular weight is preferably 2000 to 50000, and 3000 to 40000. It is more preferable that
  • amorphous PEI includes 2,2-bis [4- (2,3-dicarboxyl) mainly having a structural unit represented by the following formula.
  • a condensate of phenoxy) phenyl] propane dianhydride with m-phenylenediamine or p-phenylenediamine is preferably used.
  • This PEI is commercially available from Servic Innovative Plastics under the trademark “Ultem”.
  • an antioxidant In the fiber mainly composed of a polymer having a Tg of 50 ° C. or more, which is contained in the nonwoven fabric of the present invention, an antioxidant, an antistatic agent, a radical inhibitor, a matting agent, and the like within a range not impairing the effects of the present invention.
  • An ultraviolet absorber, a flame retardant, an inorganic substance, etc. may be included.
  • inorganic substances include carbon nanotubes, fullerene, talc, wollastonite, zeolite, sericite, mica, kaolin, clay, pyrophyllite, silica, bentonite, alumina silicate and other silicates, silicon oxide, magnesium oxide, Metal oxides such as alumina, zirconium oxide, titanium oxide and iron oxide, carbonates such as calcium carbonate, magnesium carbonate and dolomite, sulfates such as calcium sulfate and barium sulfate, calcium hydroxide, magnesium hydroxide and aluminum hydroxide Hydroxides, glass beads, glass flakes, glass powders, ceramic beads, boron nitride, silicon carbide, carbon black, graphite and the like are used.
  • an end group blocking agent such as a mono- or diepoxy compound, a mono- or polycarbodiimide compound, a mono- or dioxazoline compound, or a mono- or diazirine compound may be included.
  • the nonwoven fabric of the present invention includes fibers other than fibers mainly composed of a polymer having a Tg of 50 ° C. or higher, for example, fibers made of polyethylene, polypropylene, ethylene vinyl acetate, and the like within a range not impairing the effects of the present invention. You may go out.
  • the content of the fiber mainly composed of a polymer having a Tg of 50 ° C. or higher is not particularly limited, but is preferably 50% by mass or more, more preferably 70% by mass or more, and 90% by mass or more. More preferably, it is particularly preferably 100% by mass.
  • the thickness of the nonwoven fabric of the present invention is not particularly limited, but is preferably in the range of 10 to 1000 ⁇ m, more preferably in the range of 15 to 500 ⁇ m, and in the range of 20 to 200 ⁇ m. It is particularly preferred. If the thickness of the nonwoven fabric is less than 10 ⁇ m, there is a risk that the strength will be low and it will break during processing, and if the thickness of the nonwoven fabric exceeds 1000 ⁇ m, it will be difficult to form a web. There is a fear.
  • the nonwoven fabric of the present invention preferably has an air permeability of 10 cc / cm 2 / sec or more, more preferably 20 cc / cm 2 / sec or more, and 130 cc / cm 2 / sec or less. Preferably, it is 120 cc / cm 2 / sec or less. By being in the said range, it can use suitably also for uses, such as a filter.
  • the basis weight of the nonwoven fabric of the present invention is not particularly limited, but is preferably in the range of 10 to 1000 g / m 2 , and more preferably in the range of 15 to 500 g / m 2 .
  • the basis weight of the nonwoven fabric is less than 10 g / m 2 , there is a possibility that the strength becomes low and breaks during processing, and when the basis weight of the nonwoven fabric exceeds 1000 g / m 2 , productivity is increased. From the viewpoint of
  • the present invention also provides a method for suitably producing the above-described nonwoven fabric of the present invention.
  • the nonwoven fabric of the present invention described above is a nonwoven fabric including fibers mainly composed of a polymer having a Tg of 50 ° C. or higher and having a vertical strength per 1 g / m 2 of 1 N / 5 cm or more, and has a density of 0.00. 01 to 0.4 g / cm 3 , if the ratio of the portion where the density exceeds 0.4 g / cm 3 in the cross section in the thickness direction is 3% or less, the nonwoven fabric was produced by the method for producing a nonwoven fabric of the present invention.
  • it is preferably manufactured by the method for manufacturing a nonwoven fabric of the present invention.
  • the method for producing a nonwoven fabric of the present invention is carried out by performing the melt blown method while maintaining the temperature in at least one of the following (1) and (2) at a temperature higher by 10 ° C. or more than the Tg of the main polymer. It is characterized by.
  • the polymer is held at a temperature that is 10 ° C. higher than the Tg of the polymer having the highest Tg.
  • FIG. 2 and FIG. 3 are schematic diagrams for explaining the principle of the method for producing a nonwoven fabric of the present invention.
  • FIG. 2 shows a state where the meltblown method is performed using the meltblown device 11. After the polymer fiber 13 is discharged (spun) from the spinning nozzle 12 of the meltblown device 11, the meltblown device 11 captures it with a rotating roll 14. Collected to form a web (sheets made by overlapping fibers) 15. Hot air (primary air) 16 for spinning is discharged along with the polymer fiber 13 from the spinning nozzle 12 of the melt blown device 11 and flows along the curved surface of the roll 14.
  • the inventors flow cold air as an accompanying flow 17 toward the spinning nozzle 12, so that the polymer fiber 13 discharged from the tip 12 a of the spinning nozzle 12 is on the surface of the roll 14 (spun). It was found that the web 15 having low strength and poor handleability was formed due to rapid cooling before reaching the fiber collection surface 14a. For this reason, conventionally, it has been necessary to perform post-processing such as calendering, embossing, and spunlace (hydraulic) processing to impart strength to the web to make a nonwoven fabric.
  • the temperature of the primary air discharged from the tip of the spinning nozzle actually measured by the inventors was 420 ° C., but reached the collection surface of the spun fiber.
  • the temperature of the primary air (measured using a contact-type temperature sensor) was 145 ° C.
  • the radius x centered on the tip 12a of the spinning nozzle 12 is between the tip 12a of the spinning nozzle 12 and the collecting surface 14a of the spun fiber 13.
  • the hemispherical space A of 0.5 ⁇ collection distance d around the nozzle tip and / or the tip 12a of the spinning nozzle 12 and the collection surface 14a of the spun fiber 13 are collected.
  • the temperature at a point B (not shown) of 1 cm from the collection surface on the straight line is maintained at a temperature 10 ° C. higher than the Tg of the polymer.
  • the temperature in either the space A or the point B may be maintained at a temperature higher by 10 ° C. or more than the Tg of the polymer. May be maintained at a temperature 15 ° C. or higher than the Tg of the polymer.
  • a part of the space A and the point B may overlap.
  • the nonwoven fabric of the present invention having a polymer as a main component and having fibers fused together and having sufficient strength can be produced without post-processing such as calendering, embossing, and spunlace processing (that is, The web 15 collected by the roll 14 can be used as a non-woven fabric as it is).
  • 0.5 ⁇ collection distance d is a radius x.
  • the radius x in the hemispherical space A centering on the tip 12a of the spinning nozzle 12 is preferably 3 to 12 cm, and particularly preferably 5 cm.
  • the temperature in the space A can be measured by, for example, providing a thermocouple type thermometer as a thermometer at any position on the curved surface constituting the hemisphere assumed as the boundary of the space A, for example. .
  • the temperature of the surrounding space is not particularly limited.
  • the temperature in at least one of the space A and the point B is maintained at 10 ° C. or more (more preferably in the range of 15 to 60 ° C.) than the Tg of the polymer.
  • the temperature in at least one of the space A and the point B is equal to or lower than the Tg of the polymer or less than 10 ° C. even if the temperature is higher than the Tg, the effect of preventing the spun fibers from being cooled by the accompanying flow Is insufficient, there is a risk of producing a nonwoven fabric with low strength and inferior handleability.
  • FIG. 4 is a diagram schematically showing a preferred example of the method for producing a nonwoven fabric of the present invention.
  • the tip 12a of the spinning nozzle 12 is blown toward the tip 12a of the spinning nozzle 12 so that hot air (this hot air is referred to as “secondary air”) 22 is blown toward the above-described primary air.
  • a hot air jet device 21 is provided in the vicinity.
  • the method of providing the hot air jetting device 21 is not particularly limited, the hot air jetting device 21 having a shape that continuously forms the circumference surrounding the tip 12a of the spinning nozzle 12 is used, and the blowing destination of the hot air jetting device 21 is that of the spinning nozzle 12.
  • the melt blown method can be performed while maintaining the temperature in at least one of (1) and (2) at a temperature higher by 10 ° C. or more than the Tg of the polymer as described above. It becomes.
  • a hot-air ejection apparatus 21 a conventionally well-known appropriate hot-air ejection apparatus can be especially used without a restriction
  • the temperature of the secondary air 22 ejected by the hot air ejecting device 21 so as to blow into the tip 12a of the spinning nozzle 12 is the temperature in at least one of (1) and (2) (particularly, the space (1)). Is not particularly limited as long as it can be maintained at a temperature 30 ° C. or higher than the Tg of the polymer, but is preferably 35 to 70 ° C. higher than the polymer Tg, and 35 to 60 ° C. higher than the polymer Tg. It is more preferable. When the temperature of the secondary air 22 is less than 30 ° C. higher than the Tg of the polymer, the temperature is maintained in at least one of the above (1) and (2) (particularly the space (1)).
  • the temperature in at least one of (1) and (2) can be maintained at a temperature higher by 10 ° C. or more than the Tg of the polymer. is not particularly limited if, in order not to disturb the flow of the primary air, preferably in the range of 3 ⁇ 12Nm 3 / m, and more preferably in a range of 4 ⁇ 10Nm 3 / m .
  • FIG. 5 is a diagram schematically showing another preferred example of the method for producing a nonwoven fabric of the present invention.
  • the cover 31 At least a part of the space between the tip 12 a of the spinning nozzle 12 and the collection surface 14 a of the spun fiber is covered with the cover 31.
  • the primary air discharged from the tip 12a of the spinning nozzle 12 stays in the space covered by the cover 31 as the circulating air 32, and is not covered by such a cover 31,
  • the primary air discharged from the tip 12a of the spinning nozzle 12 is not rapidly cooled by the accompanying flow.
  • the melt blown method can be performed while maintaining the temperature in at least one of (1) and (2) at a temperature higher by 10 ° C.
  • the cover 31 can be connected to the tip 12a of the spinning nozzle 12 and the spinning. It is not necessary to cover the entire area between the collected fibers 14a. As in the example shown in FIG. 5, the cover 31 is preferably provided so as to cover the entire area between the tip 12a of the spinning nozzle 12 and the collection surface 14a of the spun fiber.
  • the material for forming such a cover 31 is not particularly limited as long as it has heat resistance that does not deteriorate due to the temperature of the primary air, and examples thereof include metals such as SUS, aluminum, and copper. However, SUS is preferable from the viewpoint of durability, workability, and heat resistance.
  • the temperature in at least one of the above (1) and (2) is maintained at a temperature 10 ° C. or more higher than the Tg of the polymer, the melt blown method is performed, calendering, embossing, Except for not performing post-processing such as spunlace processing, the same processes and conditions as in the conventional meltblown method can be suitably employed.
  • the spinning conditions include a spinning temperature of 300 to 500 ° C., a hot air temperature (primary air temperature) of 300 to 500 ° C., and an air amount of 5 to 25 Nm 3 per 1 m of the nozzle length. Of course not limited.
  • Nonwoven fabric density (g / cm 3 )
  • the volume of the nonwoven fabric was measured using [basis weight of nonwoven fabric] and [nonwoven fabric thickness], and the density of the nonwoven fabric was calculated from these results.
  • the glass transition temperature was measured by measuring the temperature dependence of loss tangent (tan ⁇ ) at a frequency of 10 Hz and a heating rate of 10 ° C./min using a solid dynamic viscoelastic device “RheoSpectra DVE-V4” manufactured by Rheology. It was determined from the peak temperature.
  • the peak temperature of tan ⁇ is a temperature at which the first derivative of the amount of change with respect to the temperature of the value of tan ⁇ becomes zero.
  • Fiber fusion rate (%) (cross section of two or more fused fibers) Number) / (total number of fiber cross-sections) ⁇ 100.
  • Fiber fusion rate (%) (cross section of two or more fused fibers) Number) / (total number of fiber cross-sections) ⁇ 100.
  • each sample piece was measured at five locations with a digital thickness gauge (Toyo Seiki Seisakusho: B1 type) with a diameter of 16 mm and a load of 20 gf / cm 2. And the average value of 15 points
  • a digital thickness gauge Toyo Seiki Seisakusho: B1 type
  • Example 1 Amorphous polyetherimide having a melt viscosity of 500 Pa ⁇ s at 330 ° C. is used and extruded by an extruder.
  • Nozzle hole diameter D (diameter) 0.3 mm, L (nozzle length) / D 10, nozzle hole Supplied to a melt blown device having nozzles with a pitch of 0.75 mm, sprayed at a single-hole discharge rate of 0.09 g / min, spinning temperature of 390 ° C., hot air (primary air) temperature of 420 ° C., nozzle width of 10 Nm 3 / min per 1 m of nozzle width, A nonwoven fabric having a basis weight of 25 g / m 2 was produced.
  • a hot air blowing device such as the example shown in FIG. 4 is provided so that hot air (secondary air) is blown into the tip of the spinning nozzle of the melt blown device, and hot air (secondary air) at a temperature of 260 ° C. is 2 Nm 3 . Sprayed at the flow rate toward the tip of the spinning nozzle.
  • thermometer The temperature measured by a thermometer (AD-5601A (manufactured by A & I Co.)) was 235 ° C. (that is, the space A was 20 ° C. higher than 215 ° C., which is the glass transition temperature of amorphous PEI). °C was kept high).
  • a thermometer AD-5601A (A • 5A) provided so as to be located on the straight line 1 cm from the collection surface with respect to a linear distance d between the tip of the spinning nozzle and the collection surface of the spun fiber.
  • i) was measured at 242 ° C. (ie, point B was held 27 ° C. higher than 215 ° C., the glass transition temperature of amorphous PEI). In this way, a nonwoven fabric was obtained without post-processing.
  • FIG. 1 (a) shows an image magnified 100 times
  • FIG. 1 (a) shows an image magnified 100 times
  • the temperature measured by a thermometer located on the outer periphery of the shape is 253 ° C. (that is, the space A is kept 38 ° C.
  • the temperature measured by a thermometer provided so as to be 1 cm from the collection surface on the straight line d with respect to the collection surface of the spun fiber is 261 ° C. (that is, the point B is The non-woven fabric was obtained in the same manner as in Example 1 except that the glass transition temperature of amorphous PEI was maintained at 46 ° C. higher than 215 ° C.
  • Example 3 A nonwoven fabric was obtained in the same manner as in Example 2 except that the basis weight was 10 g / m 2 .
  • Example 4 An amorphous polycarbonate having a melt viscosity at 300 ° C. of 100 Pa ⁇ s is used and extruded by an extruder.
  • Nozzle hole diameter D (diameter) 0.3 mm, L (nozzle length) / D 10, nozzle hole pitch 0 Supplied to melt blown device with nozzle of .75mm, single hole discharge rate 0.09g / min, spinning temperature 340 ° C, hot air (primary air) temperature 370 ° C, sprayed at 10Nm 3 / min per 1m nozzle width, basis weight Produced a 25 g / m 2 nonwoven fabric.
  • a hot air blowing device such as the example shown in FIG.
  • hot air secondary air
  • hot air secondary air
  • the temperature measured by a thermometer (AD-5601A (manufactured by A & I Co., Ltd.)) was 185 ° C.
  • thermometer (AD-5601A (A • 5A) provided so as to be located on the straight line 1 cm from the collection surface with respect to a linear distance d between the tip of the spinning nozzle and the collection surface of the spun fiber.
  • the temperature measured by Andi Co. was 192 ° C. (that is, the point B was maintained 57 ° C. higher than the glass transition temperature of 135 ° C. of the amorphous polycarbonate).
  • the nonwoven fabric of the present invention is excellent in handleability despite its low density, it can be used not only in combination with various substrates and other nonwoven fabrics, but also suitably used in filters that require air permeability.

Abstract

Provided is a nonwoven fabric that includes fibers the principal component of which is a polymer with a glass transition temperature of 50°C or above, and that has a longitudinal strength of 1 N/5 cm or greater per 1 g/m2, the nonwoven fabric satisfying both of the following conditions (1) and (2) and making it possible to provide a nonwoven fabric that has ample strength to be handled independently and that contains fibers having as the principal component a polymer with a Tg of 50°C or above, without performing any post-processing step such as an embossing step, calendaring step and spun lace step. Also provided is a production method for such nonwoven fabric. Condition (1): the density is 0.01-0.4 g/cm3. Condition (2): the proportion of sections having density exceeding 0.4 g/cm3 in a cross section taken in the thickness direction is 3% or less.

Description

不織布およびその製造方法Nonwoven fabric and method for producing the same
 本発明は、不織布およびその製造方法に関する。 The present invention relates to a nonwoven fabric and a method for producing the same.
 近年、メルトブローン法などにより製造される極細繊維からなる不織布が開発され、様々な用途に利用されている。ポリプロピレンやポリエチレンのようにガラス転移温度(Tg)が50℃未満のポリマーを用いた不織布では、エンボス加工、カレンダー加工、スパンレース加工などの後加工を施すことなく、繊維同士が融着した取り扱い性に優れた不織布を得ることが可能である。 In recent years, nonwoven fabrics made of ultrafine fibers produced by the melt blown method have been developed and used for various purposes. Nonwoven fabrics using polymers with a glass transition temperature (Tg) of less than 50 ° C, such as polypropylene and polyethylene, can handle fibers without fusing, embossing, calendering, spunlace processing, etc. It is possible to obtain an excellent nonwoven fabric.
 しかし、Tgが50℃以上のポリマーを用いた不織布では、後加工により繊維同士を融着もしくは三次元交絡させなければ、不織布としての強度が弱いために取り扱い性が悪く、また、毛羽が生じやすい等の問題点があった。 However, in a non-woven fabric using a polymer having a Tg of 50 ° C. or higher, if the fibers are not fused or three-dimensionally entangled by post-processing, the strength as the non-woven fabric is weak and the handleability is poor, and fluff is likely to occur. There was a problem such as.
 そこで、このような不織布に対しては、通常、後加工を施すことによって、問題点を解決する方法がとられてきた(たとえば特開2012-41644号公報(特許文献1))。 Therefore, for such a nonwoven fabric, a method for solving the problem has been usually taken by performing post-processing (for example, JP 2012-41644 A (Patent Document 1)).
 しかし、上記のような後加工を施された不織布では、不織布の少なくとも一部に密度の高い部分ができる結果、通気度などの性能に影響を与える可能性があるため、高密度部分が少ないにもかかわらず、取り扱い性に優れた不織布の開発が望まれていた。 However, in the non-woven fabric that has been subjected to post-processing as described above, at least a part of the non-woven fabric has a high density part, which may affect performance such as air permeability, so there are few high density parts. Nevertheless, development of a nonwoven fabric excellent in handleability has been desired.
特開2012-41644号公報JP 2012-41644 A
 本発明は、上記課題を解決するためになされたものであって、その目的とするところは、エンボス加工、カレンダー加工、スパンレース加工などの後加工を施すことなく、単独で取り扱うに十分な強度を有する、Tgが50℃以上のポリマーを主成分とする繊維を含む不織布およびその製造方法を提供することである。 The present invention has been made to solve the above-mentioned problems, and its purpose is to provide sufficient strength to handle alone without post-processing such as embossing, calendering, and spunlace processing. It is providing the nonwoven fabric containing the fiber which has Tg of 50 degreeC or more as a main component, and its manufacturing method.
 本発明の不織布は、ガラス転移温度が50℃以上のポリマーを主成分とする繊維を含み、1g/mあたりのタテ強力が1N/5cm以上である不織布であって、以下の(1)(2)を全て満足する不織布である。
(1)密度が0.01~0.4g/cmであること。
(2)厚み方向の断面において密度が0.4g/cmを超える部分の割合が3%以下であること。
The nonwoven fabric of the present invention is a nonwoven fabric containing fibers mainly composed of a polymer having a glass transition temperature of 50 ° C. or higher and having a vertical strength per 1 g / m 2 of 1 N / 5 cm or more. It is a nonwoven fabric satisfying all of 2).
(1) The density is 0.01 to 0.4 g / cm 3 .
(2) The ratio of the portion where the density exceeds 0.4 g / cm 3 in the cross section in the thickness direction is 3% or less.
 本発明の不織布は、厚み方向の断面において繊維融着率が15%以上、かつ、繊維が融着した各部分の面積の平均が70μm以下であることが好ましい。 The nonwoven fabric of the present invention preferably has a fiber fusion rate of 15% or more in the cross section in the thickness direction, and an average area of each part where the fibers are fused is 70 μm 2 or less.
 本発明の不織布は、平均繊維径が1~10μmであることが好ましい。
 本発明はまた、上述した本発明の不織布を製造する方法であって、(1)紡糸ノズルの先端と紡糸された繊維の捕集面との間の捕集距離dに対して、ノズル先端を中心として、0.5×捕集距離dの半球状の空間、ならびに、(2)紡糸ノズルの先端と紡糸された繊維の捕集面との間の捕集距離dに対して当該直線上で捕集面から1cmの点のうちの少なくともいずれかにおける温度をガラス転移温度より10℃以上高い温度に保持してメルトブローン法を行なう、不織布の製造方法についても提供する。
The nonwoven fabric of the present invention preferably has an average fiber diameter of 1 to 10 μm.
The present invention is also a method for producing the above-described nonwoven fabric of the present invention, wherein (1) the nozzle tip is set to the collection distance d between the spinning nozzle tip and the collection surface of the spun fiber. As a center, a hemispherical space of 0.5 × collection distance d, and (2) on the straight line with respect to the collection distance d between the tip of the spinning nozzle and the collection surface of the spun fiber There is also provided a method for producing a nonwoven fabric, in which the melt blown method is carried out while maintaining the temperature at at least one of the points 1 cm from the collecting surface at a temperature higher by 10 ° C. than the glass transition temperature.
 本発明によれば、エンボス加工、カレンダー加工、スパンレース加工などの後加工を施すことなく、単独で取り扱うに十分な強度を有する、Tgが50℃以上のポリマーを主成分とする繊維を含む不織布およびその製造方法を提供することができる。 According to the present invention, a non-woven fabric comprising a fiber mainly composed of a polymer having a Tg of 50 ° C. or more and having sufficient strength to handle alone without post-processing such as embossing, calendering, and spunlace processing. And a method for manufacturing the same.
本発明の不織布の厚み方向の断面のSEM写真である。It is a SEM photograph of the section of the thickness direction of the nonwoven fabric of the present invention. 本発明の不織布の製造方法の原理を説明するための模式図である。It is a schematic diagram for demonstrating the principle of the manufacturing method of the nonwoven fabric of this invention. 本発明の不織布の製造方法の原理を説明するための模式図である。It is a schematic diagram for demonstrating the principle of the manufacturing method of the nonwoven fabric of this invention. 本発明の不織布の製造方法の好ましい一例を模式的に示す図である。It is a figure which shows typically a preferable example of the manufacturing method of the nonwoven fabric of this invention. 本発明の不織布の製造方法の好ましい他の例を模式的に示す図である。It is a figure which shows typically the other preferable example of the manufacturing method of the nonwoven fabric of this invention. Tgが50℃以上のポリマーを用いメルトブローン法で不織布化した後、後加工としてカレンダー加工を行なった場合の厚み方向の断面のSEM写真である。It is a SEM photograph of the section of the thickness direction at the time of carrying out calendering as post-processing, after making a nonwoven fabric by the melt blown method using the polymer whose Tg is 50 ° C or more. Tgが50℃以上のポリマーを用いメルトブローン法で不織布化した後、後加工としてエンボス加工を行なった場合の厚み方向の断面のSEM写真である。It is a SEM photograph of the section of the thickness direction at the time of embossing as post-processing, after making a nonwoven fabric by the melt blown method using the polymer whose Tg is 50 ° C or more. Tgが50℃以上のポリマーを用いメルトブローン法で不織布化した後、後加工としてスパンレース加工を行なった場合の厚み方向の断面のSEM写真である。It is a SEM photograph of the section of the thickness direction at the time of performing spunlace processing as post-processing, after making a nonwoven fabric by the melt blown method using the polymer whose Tg is 50 ° C or more.
 〔1〕不織布
 本発明の不織布は、1g/mあたりのタテ強力(タテ方向(不織布製造における流れ方向)の強度)が1N/5cm以上である。本発明によれば、部分的に密度の高い箇所を生じてしまうカレンダー加工、エンボス加工、スパンレース加工などの後加工を施すことなく、単独で不織布として取り扱うことができる十分な強度を備えた不織布を得ることができる。本発明の不織布の強度は、1.2N/5cm以上であることがより好ましく、1.5N/5cmであることが更に好ましい。従来のメルトブローン法で不織布化し、カレンダー加工、エンボス加工、スパンレース加工などの後加工を行なわなかった場合(後述する比較例1)には、この1g/mあたりのタテ強力が格段に劣ることになり、本発明の不織布は、このような場合と比較しても格段に取扱い性が優れる不織布である。
[1] Nonwoven fabric The nonwoven fabric of the present invention has a vertical strength (strength in the vertical direction (flow direction in the production of nonwoven fabric)) per 1 g / m 2 is 1 N / 5 cm or more. According to the present invention, a non-woven fabric having sufficient strength that can be handled as a non-woven fabric independently without performing post-processing such as calendering, embossing, and spun lace processing that results in a part having a high density. Can be obtained. The strength of the nonwoven fabric of the present invention is more preferably 1.2 N / 5 cm or more, and further preferably 1.5 N / 5 cm. When non-woven fabric is formed by the conventional meltblown method and post-processing such as calendering, embossing, and spunlace processing is not performed (Comparative Example 1 described later), the vertical strength per 1 g / m 2 is remarkably inferior. Thus, the non-woven fabric of the present invention is a non-woven fabric that is remarkably excellent in handleability even when compared with such a case.
 また、本発明の不織布は、密度が0.01~0.4g/cmの不織布である。密度が0.01g/cm以上であることによって、不織布として好ましい形態や性質を保持することができ、0.4g/cm以下であることによって、高い通気性など所望の性能を得やすい不織布とすることができる。本発明の不織布の密度は、0.35g/cm以下であることが好ましく、0.3g/cm以下であることが更に好ましく、0.1g/cm以上であることが好ましく、0.11g/cm以上であることが更に好ましい。 The nonwoven fabric of the present invention is a nonwoven fabric having a density of 0.01 to 0.4 g / cm 3 . When the density is 0.01 g / cm 3 or more, the preferred form and properties of the nonwoven fabric can be maintained, and when the density is 0.4 g / cm 3 or less, the nonwoven fabric easily obtains desired performance such as high air permeability. It can be. The density of the nonwoven fabric of the present invention is preferably 0.35 g / cm 3 or less, more preferably 0.3 g / cm 3 or less, preferably 0.1 g / cm 3 or more, and More preferably, it is 11 g / cm 3 or more.
 さらに本発明の不織布は、密度が0.4g/cmを超える部分の割合が3%以下である。密度が0.4g/cmを超える部分の割合が3%を超える場合、不織布に斑が生じる結果、通気度に影響を与えたり、強度斑を生じるなどの不具合が起こる場合がある。密度が0.4g/cmを超える部分の割合は、2.5%以下であることがより好ましく、2%以下であることが更に好ましい。 Furthermore, in the nonwoven fabric of the present invention, the proportion of the portion where the density exceeds 0.4 g / cm 3 is 3% or less. If the proportion of the portion where the density exceeds 0.4 g / cm 3 exceeds 3%, spots may occur on the nonwoven fabric, resulting in problems such as affecting the air permeability and causing spots of strength. The ratio of the portion where the density exceeds 0.4 g / cm 3 is more preferably 2.5% or less, and further preferably 2% or less.
 上述した不織布における密度が0.4g/cmを超える箇所の割合は、SEMを用いて、不織布の厚み方向における断面を100倍に拡大した写真を撮影し、この写真を目視で幅方向に10mmの直線を観察し、この直線のうちに、密度0.4g/cmを超える箇所が占める長さを測定し、以下の式
  密度0.4g/cmを超える箇所の割合(%)
 =密度0.4g/cmを超える箇所の長さ(mm)/10(mm)×100
でその割合を求める。なお、写真を観察して、密度が0.4g/cmを超えているか否かは、SEMに付属している2点間距離測定の機能を使用し、密度が0.4g/cmを超える箇所が占める長さを調べるというようにして判別する。
The ratio of the location where the density in the above-mentioned nonwoven fabric exceeds 0.4 g / cm 3 was taken using a SEM, a photograph in which the cross section in the thickness direction of the nonwoven fabric was magnified 100 times, and this photograph was visually observed 10 mm in the width direction. In this straight line, the length occupied by the location exceeding the density of 0.4 g / cm 3 is measured, and the ratio of the location exceeding the density 0.4 g / cm 3 of the following formula (%)
= Length (mm) / 10 (mm) × 100 at a location exceeding density 0.4 g / cm 3
Find the ratio. Whether or not the density exceeds 0.4 g / cm 3 by observing the photograph is determined by using the function for measuring the distance between two points attached to the SEM, and the density is 0.4 g / cm 3 . The length is determined by examining the length occupied by the excess part.
 ここで、図1は、本発明の不織布(後述する実施例1)の厚み方向の断面の走査型電子顕微鏡(SEM)写真である(図1(a)は100倍拡大、図1(b)は1000倍拡大)。図1に示されるように、本発明の不織布は、Tgが50℃以上のポリマーを主成分とする繊維を含む不織布1でありながら、繊維2同士が部分的に融着(自己融着)した融着部3を有するものである。ここで、本発明の不織布1は、厚み方向の断面において、繊維融着率が15%以上であることが好ましく、より好ましくは20%以上であり、更に好ましくは25%以上である。繊維融着率が15%未満である場合には、繊維同士が融着している部分が不織布中に占める割合が低すぎて強度が不十分となり、単独では取扱いができないなど取り扱い性に不具合の生じる場合がある。また、繊維融着率が高すぎるとペーパーライクなシートになったり、通気度に影響を与えるなどの可能性があるため、不織布の繊維融着率は60%以下であることが好ましく、50%以下であることがより好ましい。 Here, FIG. 1 is a scanning electron microscope (SEM) photograph of a cross-section in the thickness direction of the nonwoven fabric of the present invention (Example 1 described later) (FIG. 1 (a) is enlarged 100 times, FIG. 1 (b). Is magnified 1000 times). As shown in FIG. 1, the non-woven fabric of the present invention is a non-woven fabric 1 containing fibers mainly composed of a polymer having a Tg of 50 ° C. or higher, and the fibers 2 are partially fused (self-bonded). It has the fused part 3. Here, the nonwoven fabric 1 of the present invention preferably has a fiber fusion rate of 15% or more, more preferably 20% or more, and further preferably 25% or more in the cross section in the thickness direction. If the fiber fusion rate is less than 15%, the proportion of the fibers that are fused to each other in the nonwoven fabric is too low and the strength is insufficient, and handling alone is not possible, such as being unable to handle alone. May occur. Further, if the fiber fusion rate is too high, it may become a paper-like sheet or affect air permeability. Therefore, the fiber fusion rate of the nonwoven fabric is preferably 60% or less, and 50% The following is more preferable.
 上述した不織布の繊維融着率は、たとえば以下の手順で算出することができる。まず、SEMを用いて、不織布の厚み方向における断面を1000倍に拡大した写真を撮影し、この写真から目視で繊維切断面(繊維断面)の数に対して繊維同士が融着している切断面の数の割合を求める。各領域に見出せる全繊維断面数のうち、2本以上の繊維が融着した状態の断面の数の占める割合を以下の式
  繊維融着率(%)=(2本以上融着した繊維の断面数)/(全繊維断面数)×100に基づいて百分率で表わす。ただし、各写真について、断面の見える繊維は全て計数し、繊維断面数100以下の場合は、観察する写真を追加して全繊維断面数が100を超えるようにする。また、繊維同士が接触する部分には、融着することなく単に接触している部分と、融着により接着している部分とがあるが、SEM写真撮影のために不織布を切断することにより、その断面においては各繊維が有する応力によって、単に接触している繊維同士は分離する。したがって、SEM写真において、接触している繊維同士が融着していると判断できる。
The fiber fusion rate of the nonwoven fabric described above can be calculated, for example, by the following procedure. First, using SEM, the photograph which expanded the cross section in the thickness direction of a nonwoven fabric 1000 times was image | photographed, and the cut | disconnection which fibers are fusing with respect to the number of fiber cut surfaces (fiber cross section) from this photograph visually. Find the ratio of the number of faces. Of the total number of fiber cross sections that can be found in each region, the ratio of the number of cross sections in which two or more fibers are fused is expressed by the following formula: Fiber fusion rate (%) = (cross section of two or more fused fibers) Number) / (total number of fiber cross-sections) × 100. However, for each photograph, all the fibers with a visible cross section are counted, and when the number of fiber cross sections is 100 or less, a photograph to be observed is added so that the total fiber cross section exceeds 100. In addition, in the part where the fibers are in contact with each other, there are a part that is simply in contact without fusing and a part that is adhered by fusing, but by cutting the nonwoven fabric for SEM photography, In the cross section, the fibers that are simply in contact with each other are separated by the stress of each fiber. Therefore, in the SEM photograph, it can be determined that the fibers in contact are fused.
 本発明の不織布はまた、繊維が融着した各部分の面積の平均が70μm以下であることが好ましく、より好ましくは50μm以下である。ここで、従来例として、図6~図8は、メルトブローン法で作成した不織布を、後加工を行なった場合の厚み方向の断面のSEM写真をそれぞれ示す。図6は、後加工としてカレンダー加工を行なった場合(後述する比較例3)(図6(a)は100倍拡大、図6(b)は1000倍拡大)、図7は、後加工としてエンボス加工を行なった場合(後述する比較例2)(図7(a)は100倍拡大、図7(b)は1000倍拡大)、図8は、後加工としてスパンレース加工を行なった場合(後述する比較例4)(図8(a)は100倍拡大、図8(b)は1000倍拡大)をそれぞれ示している。図6(b)、図7(b)で顕著なように、後加工としてカレンダー加工、エンボス加工を行なった不織布では、繊維径の判別も困難な状態にまで繊維同士が融着した部分が多く形成され、その繊維が融着した各部分の面積の平均は70μmを超える。本発明の不織布は、繊維が融着した各部分の面積の平均が70μm以下であることで、図6(b)、図7(b)で顕著なように、後加工としてカレンダー加工、エンボス加工を行なった不織布とは区別される。その一方で、図8に示されるようにスパンレース加工を行なった不織布では、繊維同士が融着した部分が少な過ぎて、繊維融着率は15%未満となる。このように、厚み方向の断面において繊維融着率が15%以上、かつ、繊維が融着した各部分の面積の平均が70μm以下であることによって、本発明の不織布は、カレンダー加工、エンボス加工、スパンレース加工などの後加工を行なった不織布と明確に区別することができるものである。 In the nonwoven fabric of the present invention, the average area of each part where the fibers are fused is preferably 70 μm 2 or less, more preferably 50 μm 2 or less. Here, as a conventional example, FIGS. 6 to 8 show SEM photographs of cross sections in the thickness direction when a non-woven fabric produced by the melt blown method is post-processed. 6 shows a case where calendering is performed as post-processing (Comparative Example 3 to be described later) (FIG. 6A is enlarged 100 times, FIG. 6B is enlarged 1000 times), and FIG. 7 is embossed as post-processing. When processing is performed (Comparative Example 2 to be described later) (FIG. 7A is 100 times enlarged, FIG. 7B is 1000 times enlarged), FIG. 8 is a case where spunlace processing is performed as post-processing (described later). Comparative Example 4) (FIG. 8 (a) is enlarged 100 times, and FIG. 8 (b) is enlarged 1000 times). As is remarkable in FIGS. 6B and 7B, in the non-woven fabric subjected to calendering and embossing as post-processing, there are many portions where the fibers are fused to a state where it is difficult to determine the fiber diameter. The average area of each part formed and fused to the fiber is over 70 μm 2 . In the nonwoven fabric of the present invention, the average area of each part where the fibers are fused is 70 μm 2 or less, and as shown in FIG. 6 (b) and FIG. Differentiated from processed non-woven fabric. On the other hand, as shown in FIG. 8, in the nonwoven fabric subjected to spunlace processing, there are too few portions where the fibers are fused, and the fiber fusion rate is less than 15%. Thus, in the cross section in the thickness direction, the fiber fusion rate is 15% or more, and the average area of each part where the fibers are fused is 70 μm 2 or less. It can be clearly distinguished from non-woven fabric that has undergone post-processing such as processing and spunlace processing.
 本発明の不織布は、平均繊維径が、1~10μmの範囲内であることが好ましい。上述のように本発明の不織布は、繊維同士が融着した融着部を含むことが好ましいが、その場合であっても、カレンダー加工を行なった場合(図6(b)を参照)、エンボス加工を行なった場合(図7(b)を参照)とは異なり、繊維径が判別できる程度の融着であり(図1(b))、平均繊維径を算出することができる。本発明の不織布において、平均繊維径が1μm未満である場合には、吐出量を低減する必要があり、生産性が低下してしまう、また、吐出圧力が不安定になり、糸切れ、ポリマー塊が多発し、ウェブの形成が困難となるという虞がある。また本発明の不織布において、平均繊維径が10μmを超える場合には、緻密性に劣ってしまう虞がある。中でも、生産安定性と緻密性とを両立させるという理由からは、本発明の不織布の平均繊維径は、1.2~9.5μmの範囲内であることがより好ましく、1.5~9.0μmの範囲内であることが特に好ましい。 The nonwoven fabric of the present invention preferably has an average fiber diameter in the range of 1 to 10 μm. As described above, the nonwoven fabric of the present invention preferably includes a fused portion where fibers are fused, but even in that case, when calendering is performed (see FIG. 6B), embossing is performed. Unlike the case where the processing is performed (see FIG. 7B), the fusion is such that the fiber diameter can be discriminated (FIG. 1B), and the average fiber diameter can be calculated. In the nonwoven fabric of the present invention, when the average fiber diameter is less than 1 μm, it is necessary to reduce the discharge amount, the productivity is lowered, the discharge pressure becomes unstable, the yarn breakage, the polymer lump May occur frequently, making it difficult to form the web. Moreover, in the nonwoven fabric of this invention, when an average fiber diameter exceeds 10 micrometers, there exists a possibility that it may be inferior to denseness. Among them, the average fiber diameter of the nonwoven fabric of the present invention is more preferably in the range of 1.2 to 9.5 μm, for the reason of achieving both production stability and denseness, and preferably 1.5 to 9. A range of 0 μm is particularly preferable.
 本発明の不織布は、Tgが50℃以上のポリマーを主成分とする繊維を含む。
 本発明において、Tgが50℃以上のポリマーを主成分とする繊維とは、Tgが50℃以上のポリマーを50質量%以上含む繊維であって、その含有量は好ましくは70質量%以上であり、より好ましくは80質量%以上であり、更に好ましくは90質量%以上であり、特に好ましくは100質量%である。
The nonwoven fabric of this invention contains the fiber which has a polymer whose Tg is 50 degreeC or more as a main component.
In the present invention, the fiber mainly composed of a polymer having a Tg of 50 ° C. or more is a fiber containing 50% by mass or more of a polymer having a Tg of 50 ° C. or more, and the content thereof is preferably 70% by mass or more. More preferably, it is 80 mass% or more, More preferably, it is 90 mass% or more, Most preferably, it is 100 mass%.
 また、本発明の不織布は、Tgが50℃以上のポリマーの合計が50質量%以上であれば、Tgが50℃以上の、異なる2種類以上のポリマーを含んでいてもよい。 Further, the nonwoven fabric of the present invention may contain two or more different types of polymers having a Tg of 50 ° C. or more as long as the total of polymers having a Tg of 50 ° C. or more is 50% by mass or more.
 本発明で用いるTgが50℃以上のポリマーとしては、ポリアミド、ポリフェニレンスルフィド、ポリエチレンテレフタレート、ポリカーボネート等が挙げられるが、難燃性、耐熱性等を併せ持つ観点から、非晶性ポリエーテルイミド(PEI)が特に好ましい。 Examples of the polymer having a Tg of 50 ° C. or higher used in the present invention include polyamide, polyphenylene sulfide, polyethylene terephthalate, and polycarbonate. From the viewpoint of both flame retardancy and heat resistance, amorphous polyetherimide (PEI). Is particularly preferred.
 本発明で用いる非晶性PEIとは、脂肪族、脂環族または芳香族系のエーテル単位と環状イミドを繰り返し単位として含有するポリマーであり、非晶性、溶融成形性を有すものであれば特に限定されない。また、本発明の効果を阻害しない範囲であれば、非晶性PEIの主鎖に環状イミド、エーテル結合以外の構造単位、たとえば脂肪族、脂環族または芳香族エステル単位、オキシカルボニル単位などが含有されていてもよい。 Amorphous PEI used in the present invention is a polymer containing an aliphatic, alicyclic or aromatic ether unit and a cyclic imide as a repeating unit, and has an amorphous property and melt moldability. If it does not specifically limit. In addition, within the range that does not inhibit the effect of the present invention, the main chain of amorphous PEI has a structural unit other than cyclic imide and ether bond, such as aliphatic, alicyclic or aromatic ester unit, oxycarbonyl unit, etc. It may be contained.
 本発明に用いられる非晶性PEIとしては、下記一般式で示されるポリマーが好適に使用される。但し、式中R1は、6~30個の炭素原子を有する2価の芳香族残基、R2は、6~30個の炭素原子を有する2価の芳香族残基、2~20個の炭素原子を有するアルキレン基、2~20個の炭素原子を有するシクロアルキレン基、および2~8個の炭素原子を有するアルキレン基で連鎖停止されたポリジオルガノシロキサン基からなる群より選択された2価の有機基である。 As the amorphous PEI used in the present invention, a polymer represented by the following general formula is preferably used. In which R1 is a divalent aromatic residue having 6 to 30 carbon atoms, and R2 is a divalent aromatic residue having 6 to 30 carbon atoms, and 2 to 20 carbons. A divalent selected from the group consisting of an alkylene group having an atom, a cycloalkylene group having 2 to 20 carbon atoms, and a polydiorganosiloxane group chain-terminated with an alkylene group having 2 to 8 carbon atoms. Organic group.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 また本発明に用いられる非晶性PEIは、330℃における溶融粘度は100~3000Pa・sであることが好ましい。非晶性PEIの330℃における溶融粘度が100Pa・s未満であると、紡糸時に、風綿や、繊維を形成できなかったために発生するショットと呼ばれる樹脂粒が多発する場合がある。また非晶性PEIの330℃における溶融粘度が3000Pa・sを超えると、極細繊維化が困難であったり、重合時にオリゴマーが発生したり、重合時や造粒時にトラブルが発生する場合がある。330℃における溶融粘度は、200~2700Pa・sであることが好ましく、300~2500Pa・sであることがより好ましい。 The amorphous PEI used in the present invention preferably has a melt viscosity at 330 ° C. of 100 to 3000 Pa · s. When the melt viscosity of amorphous PEI at 330 ° C. is less than 100 Pa · s, there may be frequent occurrence of resin particles called shots that occur because spinning or fibers cannot be formed during spinning. When the melt viscosity at 330 ° C. of amorphous PEI exceeds 3000 Pa · s, it may be difficult to make ultrafine fibers, oligomers may be generated during polymerization, and troubles may occur during polymerization or granulation. The melt viscosity at 330 ° C. is preferably 200 to 2700 Pa · s, and more preferably 300 to 2500 Pa · s.
 本発明に用いられる非晶性PEIは、そのガラス転移温度が200℃以上であることが好ましい。ガラス転移温度が200℃未満の場合は、得られる不織布の耐熱性が劣る場合がある。また、非晶性PEIのガラス転移温度が高いほど、耐熱性に優れた不織布が得られるので好ましいが、高すぎると融着させる場合に、その融着温度も高くなってしまい、融着時にポリマーの分解を引き起こす可能性がある。非晶性PEIのガラス転移温度は、200~230℃であることがより好ましく、205~220℃であることが更に好ましい。 The amorphous PEI used in the present invention preferably has a glass transition temperature of 200 ° C. or higher. When the glass transition temperature is less than 200 ° C., the resulting nonwoven fabric may have poor heat resistance. Further, the higher the glass transition temperature of amorphous PEI, the more preferable because a nonwoven fabric excellent in heat resistance can be obtained. However, if it is too high, the fusion temperature will be high when fused, and the polymer will be polymerized at the time of fusion. May cause decomposition. The glass transition temperature of amorphous PEI is more preferably 200 to 230 ° C, and further preferably 205 to 220 ° C.
 本発明に用いられる非晶性PEIの分子量は特に限定されるものではないが、得られる繊維や不織布の機械的特性や寸法安定性、工程通過性を考慮すると、重量平均分子量(Mw)が1000~80000であることが好ましい。高分子量のものを用いると、繊維強度、耐熱性などの点で優れるので好ましいが、樹脂製造コストや繊維化コストなどの観点から、重量平均分子量が2000~50000であることが好ましく、3000~40000であることがより好ましい。 The molecular weight of the amorphous PEI used in the present invention is not particularly limited, but the weight average molecular weight (Mw) is 1000 considering the mechanical properties, dimensional stability, and process passability of the resulting fiber or nonwoven fabric. It is preferably ˜80000. The use of a polymer having a high molecular weight is preferable because it is excellent in terms of fiber strength, heat resistance and the like, but from the viewpoint of resin production cost, fiberization cost, etc., the weight average molecular weight is preferably 2000 to 50000, and 3000 to 40000. It is more preferable that
 本発明において、非晶性、溶融成形性、コストの観点から、非晶性PEIとしては、下記式で示される構造単位を主として有する、2,2-ビス[4-(2,3-ジカルボキシフェノキシ)フェニル]プロパン二無水物とm-フェニレンジアミン、またはp-フェニレンジアミンとの縮合物が好ましく使用される。このPEIは、「ウルテム」の商標でサービックイノベイティブプラスチックス社から市販されている。 In the present invention, from the viewpoint of amorphousness, melt moldability, and cost, amorphous PEI includes 2,2-bis [4- (2,3-dicarboxyl) mainly having a structural unit represented by the following formula. A condensate of phenoxy) phenyl] propane dianhydride with m-phenylenediamine or p-phenylenediamine is preferably used. This PEI is commercially available from Servic Innovative Plastics under the trademark “Ultem”.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 本発明の不織布に含まれる、Tgが50℃以上のポリマーを主成分とする繊維には、本発明の効果を損なわない範囲で、酸化防止剤、帯電防止剤、ラジカル抑制剤、艶消し剤、紫外線吸収剤、難燃剤、無機物などを含んでいてもよい。かかる無機物の具体例としては、カーボンナノチューブ、フラーレン、タルク、ワラステナイト、ゼオライト、セリサイト、マイカ、カオリン、クレー、パイロフィライト、シリカ、ベントナイト、アルミナシリケートなどの珪酸塩、酸化珪素、酸化マグネシウム、アルミナ、酸化ジルコニウム、酸化チタン、酸化鉄などの金属酸化物、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウムなどの水酸化物、ガラスビーズ、ガラスフレーク、ガラス粉、セラミックビーズ、窒化ホウ素、炭化珪素、カーボンブラック、黒鉛などが用いられる。さらには、繊維の耐加水分解性を改良する目的で、モノまたはジエポキシ化合物、モノまたはポリカルボジイミド化合物、モノまたはジオキサゾリン化合物、モノまたはジアジリン化合物などの末端基封鎖剤を含んでいてもよい。 In the fiber mainly composed of a polymer having a Tg of 50 ° C. or more, which is contained in the nonwoven fabric of the present invention, an antioxidant, an antistatic agent, a radical inhibitor, a matting agent, and the like within a range not impairing the effects of the present invention. An ultraviolet absorber, a flame retardant, an inorganic substance, etc. may be included. Specific examples of such inorganic substances include carbon nanotubes, fullerene, talc, wollastonite, zeolite, sericite, mica, kaolin, clay, pyrophyllite, silica, bentonite, alumina silicate and other silicates, silicon oxide, magnesium oxide, Metal oxides such as alumina, zirconium oxide, titanium oxide and iron oxide, carbonates such as calcium carbonate, magnesium carbonate and dolomite, sulfates such as calcium sulfate and barium sulfate, calcium hydroxide, magnesium hydroxide and aluminum hydroxide Hydroxides, glass beads, glass flakes, glass powders, ceramic beads, boron nitride, silicon carbide, carbon black, graphite and the like are used. Furthermore, for the purpose of improving the hydrolysis resistance of the fiber, an end group blocking agent such as a mono- or diepoxy compound, a mono- or polycarbodiimide compound, a mono- or dioxazoline compound, or a mono- or diazirine compound may be included.
 また、本発明の不織布は、本発明の効果を損なわない範囲で、Tgが50℃以上のポリマーを主成分とする繊維以外の繊維、たとえば、ポリエチレン、ポリプロピレン、エチレン酢酸ビニル等からなる繊維を含んでいてもよい。Tgが50℃以上のポリマーを主成分とする繊維の含有量は、特に制限はないが、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが更に好ましく、100質量%であることが特に好ましい。 In addition, the nonwoven fabric of the present invention includes fibers other than fibers mainly composed of a polymer having a Tg of 50 ° C. or higher, for example, fibers made of polyethylene, polypropylene, ethylene vinyl acetate, and the like within a range not impairing the effects of the present invention. You may go out. The content of the fiber mainly composed of a polymer having a Tg of 50 ° C. or higher is not particularly limited, but is preferably 50% by mass or more, more preferably 70% by mass or more, and 90% by mass or more. More preferably, it is particularly preferably 100% by mass.
 本発明の不織布の厚みは、特に制限されるものではないが、10~1000μmの範囲内であることが好ましく、15~500μmの範囲内であることがより好ましく、20~200μmの範囲内であることが特に好ましい。不織布の厚みが10μm未満である場合には、強力が低くなり加工時に破断してしまうというような虞があり、また、不織布の厚みが1000μmを超える場合には、ウェブの形成が困難となるというような虞がある。 The thickness of the nonwoven fabric of the present invention is not particularly limited, but is preferably in the range of 10 to 1000 μm, more preferably in the range of 15 to 500 μm, and in the range of 20 to 200 μm. It is particularly preferred. If the thickness of the nonwoven fabric is less than 10 μm, there is a risk that the strength will be low and it will break during processing, and if the thickness of the nonwoven fabric exceeds 1000 μm, it will be difficult to form a web. There is a fear.
 また本発明の不織布は、通気度が10cc/cm/sec以上であることが好ましく、20cc/cm/sec以上であることがより好ましく、また、130cc/cm/sec以下であることが好ましく、120cc/cm/sec以下であることがより好ましい。上記範囲内にあることによって、フィルター等の用途にも好適に用いることができる。 The nonwoven fabric of the present invention preferably has an air permeability of 10 cc / cm 2 / sec or more, more preferably 20 cc / cm 2 / sec or more, and 130 cc / cm 2 / sec or less. Preferably, it is 120 cc / cm 2 / sec or less. By being in the said range, it can use suitably also for uses, such as a filter.
 また本発明の不織布の坪量は、特に制限されるものではないが、10~1000g/mの範囲内であることが好ましく、15~500g/mの範囲内であることがより好ましい。不織布の坪量が10g/m未満である場合には、強力が低くなり加工時に破断してしまう可能性があり、また、不織布の坪量が1000g/mを超える場合には、生産性の観点から好ましくない。 The basis weight of the nonwoven fabric of the present invention is not particularly limited, but is preferably in the range of 10 to 1000 g / m 2 , and more preferably in the range of 15 to 500 g / m 2 . When the basis weight of the nonwoven fabric is less than 10 g / m 2 , there is a possibility that the strength becomes low and breaks during processing, and when the basis weight of the nonwoven fabric exceeds 1000 g / m 2 , productivity is increased. From the viewpoint of
 〔2〕不織布の製造方法
 本発明は、上述した本発明の不織布を好適に製造する方法についても提供する。なお、上述した本発明の不織布は、Tgが50℃以上のポリマーを主成分とする繊維を含み、1g/mあたりのタテ強力が1N/5cm以上である不織布であって、密度が0.01~0.4g/cm、厚み方向の断面において密度が0.4g/cmを超える部分の割合が3%以下であれば、本発明の不織布の製造方法によって製造されたものであっても本発明の不織布の製造方法によって製造されたものでなくともよいが、本発明の不織布の製造方法によって製造されたものであることが好ましい。
[2] Method for Producing Nonwoven Fabric The present invention also provides a method for suitably producing the above-described nonwoven fabric of the present invention. In addition, the nonwoven fabric of the present invention described above is a nonwoven fabric including fibers mainly composed of a polymer having a Tg of 50 ° C. or higher and having a vertical strength per 1 g / m 2 of 1 N / 5 cm or more, and has a density of 0.00. 01 to 0.4 g / cm 3 , if the ratio of the portion where the density exceeds 0.4 g / cm 3 in the cross section in the thickness direction is 3% or less, the nonwoven fabric was produced by the method for producing a nonwoven fabric of the present invention. Although not necessarily manufactured by the method for manufacturing a nonwoven fabric of the present invention, it is preferably manufactured by the method for manufacturing a nonwoven fabric of the present invention.
 本発明の不織布の製造方法は、以下の(1)、(2)のうちの少なくともいずれかにおける温度を主成分となるポリマーのTgより10℃以上高い温度に保持して、メルトブローン法を行なうことを特徴とする。 The method for producing a nonwoven fabric of the present invention is carried out by performing the melt blown method while maintaining the temperature in at least one of the following (1) and (2) at a temperature higher by 10 ° C. or more than the Tg of the main polymer. It is characterized by.
 (1)紡糸ノズルの先端と紡糸された繊維の捕集面との間の捕集距離dに対して、ノズル先端を中心として、0.5×捕集距離dの半球状の空間、
 (2)紡糸ノズルの先端と紡糸された繊維の捕集面との間の捕集距離dに対して当該直線上で捕集面から1cmの点。
(1) A hemispherical space of 0.5 × collection distance d around the nozzle tip, with respect to the collection distance d between the tip of the spinning nozzle and the collection surface of the spun fiber,
(2) A point 1 cm from the collection surface on the straight line with respect to the collection distance d between the tip of the spinning nozzle and the collection surface of the spun fiber.
 なお、Tgが50℃以上の、異なる2種類以上のポリマーを使用する場合は、最もTgの高いポリマーのTgより10℃以上高い温度に保持することとする。 When two or more different polymers having a Tg of 50 ° C. or higher are used, the polymer is held at a temperature that is 10 ° C. higher than the Tg of the polymer having the highest Tg.
 ここで、図2および図3は、本発明の不織布の製造方法の原理を説明するための模式図である。図2は、メルトブローン装置11を用いて、メルトブローン法を行なっている様子を示しており、メルトブローン装置11の紡糸ノズル12から、ポリマー繊維13が吐出(紡糸)された後、回転するロール14で捕集され、ウェブ(繊維を重ね合せてシート状にしたもの)15が形成される。メルトブローン装置11の紡糸ノズル12からは、紡糸のための熱風(一次エアー)16がポリマー繊維13と共に排出され、ロール14の曲面に沿って流れる。本発明者らは、その際に、紡糸ノズル12に向かって冷たい空気が随伴流17として流れ込むことで、紡糸ノズル12の先端12aから吐出されたポリマー繊維13が、ロール14の表面(紡糸された繊維の捕集面)14aに到達するまでの間に急速に冷却されてしまうことにより、強度も低く取扱い性が悪いウェブ15が形成されていたことを見出した。このため、従来は、カレンダー加工、エンボス加工、スパンレース(水絡)加工などの後加工を行ないウェブに強力を付与して、不織布とする必要があった。実際に発明者らが測定した紡糸ノズルの先端から排出される一次エアーの温度(接触型温度センサーを用いて測定)は420℃であったのに対し、紡糸された繊維の捕集面に到達した一次エアーの温度(接触型温度センサーを用いて測定)は145℃であった。 Here, FIG. 2 and FIG. 3 are schematic diagrams for explaining the principle of the method for producing a nonwoven fabric of the present invention. FIG. 2 shows a state where the meltblown method is performed using the meltblown device 11. After the polymer fiber 13 is discharged (spun) from the spinning nozzle 12 of the meltblown device 11, the meltblown device 11 captures it with a rotating roll 14. Collected to form a web (sheets made by overlapping fibers) 15. Hot air (primary air) 16 for spinning is discharged along with the polymer fiber 13 from the spinning nozzle 12 of the melt blown device 11 and flows along the curved surface of the roll 14. At that time, the inventors flow cold air as an accompanying flow 17 toward the spinning nozzle 12, so that the polymer fiber 13 discharged from the tip 12 a of the spinning nozzle 12 is on the surface of the roll 14 (spun). It was found that the web 15 having low strength and poor handleability was formed due to rapid cooling before reaching the fiber collection surface 14a. For this reason, conventionally, it has been necessary to perform post-processing such as calendering, embossing, and spunlace (hydraulic) processing to impart strength to the web to make a nonwoven fabric. The temperature of the primary air discharged from the tip of the spinning nozzle actually measured by the inventors (measured using a contact-type temperature sensor) was 420 ° C., but reached the collection surface of the spun fiber. The temperature of the primary air (measured using a contact-type temperature sensor) was 145 ° C.
 本発明の不織布の製造方法では、図3に示すように、紡糸ノズル12の先端12aを中心とする半径xが紡糸ノズル12の先端12aと紡糸された繊維13の捕集面14aとの間の捕集距離dに対して、ノズル先端を中心として、0.5×捕集距離dの半球状の空間A、および/または、紡糸ノズル12の先端12aと紡糸された繊維13の捕集面14aとの間の直線距離dに対し当該直線上で捕集面から1cmの点B(図示せず)、における温度をポリマーのTgより10℃高い温度に保持する。ここで、本発明の不織布の製造方法において、空間A、点Bのいずれかにおける温度をポリマーのTgより10℃以上高い温度に保持していればよいが、空間Aおよび点Bの両方における温度をポリマーのTgより15℃以上高い温度に保持していてもよい。また、図3に示す例のように、空間A、点Bの一部が重複していてもよい。 In the nonwoven fabric manufacturing method of the present invention, as shown in FIG. 3, the radius x centered on the tip 12a of the spinning nozzle 12 is between the tip 12a of the spinning nozzle 12 and the collecting surface 14a of the spun fiber 13. With respect to the collection distance d, the hemispherical space A of 0.5 × collection distance d around the nozzle tip and / or the tip 12a of the spinning nozzle 12 and the collection surface 14a of the spun fiber 13 are collected. The temperature at a point B (not shown) of 1 cm from the collection surface on the straight line is maintained at a temperature 10 ° C. higher than the Tg of the polymer. Here, in the method for producing a nonwoven fabric of the present invention, the temperature in either the space A or the point B may be maintained at a temperature higher by 10 ° C. or more than the Tg of the polymer. May be maintained at a temperature 15 ° C. or higher than the Tg of the polymer. In addition, as in the example illustrated in FIG. 3, a part of the space A and the point B may overlap.
 上述の空間Aおよび点Bのうちの少なくともいずれかにおける温度をTgより10℃以上高い温度に保持することで、上述のような随伴流による一次エアーの冷却を防止し、Tgが50℃以上のポリマーを主成分とし、繊維同士が融着されて、十分な強度を有する本発明の不織布を、カレンダー加工、エンボス加工、スパンレース加工などの後加工を行なうことなく製造することができる(すなわち、ロール14で捕集されたウェブ15をそのまま不織布とすることができる)。 By maintaining the temperature in at least one of the above-described space A and point B at a temperature that is 10 ° C. or more higher than Tg, cooling of the primary air by the accompanying flow as described above is prevented, and Tg is 50 ° C. or more. The nonwoven fabric of the present invention having a polymer as a main component and having fibers fused together and having sufficient strength can be produced without post-processing such as calendering, embossing, and spunlace processing (that is, The web 15 collected by the roll 14 can be used as a non-woven fabric as it is).
 ここで、紡糸ノズル12の先端12aと紡糸された繊維13の捕集面14aとの面の捕集距離dに対して、ノズル先端を中心として、0.5×捕集距離dを半径xとする半球状の空間Aの温度がTgより10℃以上高い場合には、その周りの空間の温度は特に限定されない。紡糸ノズル12の先端12aを中心とする半球状の空間Aにおける半径xは、3~12cmであることが好ましく、5cmであることが特に好ましい。当該空間Aにおける温度は、たとえば、空間Aの境界として想定される半球を構成する曲面上のいずれかの位置に、温度計としてたとえば熱電対タイプの温度計を設けることで、測定することができる。 Here, with respect to the collection distance d of the surface between the tip 12a of the spinning nozzle 12 and the collection surface 14a of the spun fiber 13, about the nozzle tip, 0.5 × collection distance d is a radius x. When the temperature of the hemispherical space A is 10 ° C. or more higher than Tg, the temperature of the surrounding space is not particularly limited. The radius x in the hemispherical space A centering on the tip 12a of the spinning nozzle 12 is preferably 3 to 12 cm, and particularly preferably 5 cm. The temperature in the space A can be measured by, for example, providing a thermocouple type thermometer as a thermometer at any position on the curved surface constituting the hemisphere assumed as the boundary of the space A, for example. .
 また、紡糸ノズル12の先端12aと紡糸された繊維13の捕集面14aとの間の直線距離dに対し当該直線上で捕集面から1cmの点Bが10℃以上高い場合にも、その周りの空間の温度は特に限定されない。 In addition, when the point B 1 cm above the collection surface on the straight line is higher than the linear distance d between the tip 12a of the spinning nozzle 12 and the collection surface 14a of the spun fiber 13 by 10 ° C. or more, The temperature of the surrounding space is not particularly limited.
 本発明の不織布の製造方法において、空間Aおよび点Bの少なくともいずれかにおける温度は、ポリマーのTgよりも10℃以上(より好ましくは15~60℃の範囲内)となるように保持される。空間Aおよび点Bの少なくともいずれかにおける温度がポリマーのTg以下であるか、または、当該Tgより高くても10℃未満である場合には、随伴流による紡糸された繊維の冷却を防止する効果が不十分であり、強度が低く、取扱い性に劣る不織布が製造されてしまう虞がある。 In the method for producing a nonwoven fabric of the present invention, the temperature in at least one of the space A and the point B is maintained at 10 ° C. or more (more preferably in the range of 15 to 60 ° C.) than the Tg of the polymer. When the temperature in at least one of the space A and the point B is equal to or lower than the Tg of the polymer or less than 10 ° C. even if the temperature is higher than the Tg, the effect of preventing the spun fibers from being cooled by the accompanying flow Is insufficient, there is a risk of producing a nonwoven fabric with low strength and inferior handleability.
 図4は、本発明の不織布の製造方法の好ましい一例を模式的に示す図である。図4に示す例では、紡糸ノズル12の先端12aに向かって熱風(上述の一次エアーに対し、この熱風を「二次エアー」と呼称する)22を吹き込むように、紡糸ノズル12の先端12aの近傍に、熱風噴出装置21を設ける。熱風噴出装置21の設け方は特に制限されるものではないが、紡糸ノズル12の先端12aを囲む円周を連続的に形成するような形状の熱風噴出装置21を、吹き出し先が紡糸ノズル12の先端12aに向かうように配置するように設けられていてもよいし、吹き出し先が紡糸ノズル12の先端12aとなるように当該先端12aを中心にして複数個の熱風噴出装置21が設けられていてもよい。たとえばこのようにすることで、上述のように、前記(1)、(2)のうちの少なくともいずれかにおける温度をポリマーのTgより10℃以上高い温度に保持して、メルトブローン法を行なうこと可能となる。なお、熱風噴出装置21としては、従来公知の適宜の熱風噴出装置を特に制限なく用いることができる。 FIG. 4 is a diagram schematically showing a preferred example of the method for producing a nonwoven fabric of the present invention. In the example shown in FIG. 4, the tip 12a of the spinning nozzle 12 is blown toward the tip 12a of the spinning nozzle 12 so that hot air (this hot air is referred to as “secondary air”) 22 is blown toward the above-described primary air. A hot air jet device 21 is provided in the vicinity. Although the method of providing the hot air jetting device 21 is not particularly limited, the hot air jetting device 21 having a shape that continuously forms the circumference surrounding the tip 12a of the spinning nozzle 12 is used, and the blowing destination of the hot air jetting device 21 is that of the spinning nozzle 12. It may be provided so as to be directed toward the tip 12a, or a plurality of hot air ejection devices 21 are provided around the tip 12a so that the blowing destination is the tip 12a of the spinning nozzle 12. Also good. For example, as described above, the melt blown method can be performed while maintaining the temperature in at least one of (1) and (2) at a temperature higher by 10 ° C. or more than the Tg of the polymer as described above. It becomes. In addition, as a hot-air ejection apparatus 21, a conventionally well-known appropriate hot-air ejection apparatus can be especially used without a restriction | limiting.
 熱風噴出装置21により紡糸ノズル12の先端12aに吹き込むように噴出する二次エアー22の温度は、前記(1)、(2)のうちの少なくともいずれか(特に前記(1)の空間)における温度をポリマーのTgより30℃以上高い温度に保持し得るのであれば特に制限されないが、ポリマーのTgより35~70℃高い温度であることが好ましく、ポリマーのTgより35~60℃高い温度であることがより好ましい。二次エアー22の温度がポリマーのTgよりも30℃未満高い場合には、上述の前記(1)、(2)のうちの少なくともいずれか(特に前記(1)の空間)における温度の保持が困難となり、また、繊維融着が少なく、不織布強力が弱いという傾向にある。また二次エアー22の温度がポリマーのTgよりも70℃を超えて高い場合には、繊維融着が多くなりペーパーライクな不織布になるという傾向にある。また二次エアー22の流量についても、前記(1)、(2)のうちの少なくともいずれか(特に前記(1)の空間)における温度をポリマーのTgより10℃以上高い温度に保持し得るのであれば特に制限されないが、一次エアーの流れを乱さないようにするために、3~12Nm/mの範囲内であることが好ましく、4~10Nm/mの範囲内であることがより好ましい。 The temperature of the secondary air 22 ejected by the hot air ejecting device 21 so as to blow into the tip 12a of the spinning nozzle 12 is the temperature in at least one of (1) and (2) (particularly, the space (1)). Is not particularly limited as long as it can be maintained at a temperature 30 ° C. or higher than the Tg of the polymer, but is preferably 35 to 70 ° C. higher than the polymer Tg, and 35 to 60 ° C. higher than the polymer Tg. It is more preferable. When the temperature of the secondary air 22 is less than 30 ° C. higher than the Tg of the polymer, the temperature is maintained in at least one of the above (1) and (2) (particularly the space (1)). It tends to be difficult, and there is little fiber fusion and the nonwoven fabric strength tends to be weak. Further, when the temperature of the secondary air 22 is higher than the polymer Tg by more than 70 ° C., the fiber fusion tends to increase and the paper-like nonwoven fabric tends to be formed. Also, with respect to the flow rate of the secondary air 22, the temperature in at least one of (1) and (2) (especially the space in (1) above) can be maintained at a temperature higher by 10 ° C. or more than the Tg of the polymer. is not particularly limited if, in order not to disturb the flow of the primary air, preferably in the range of 3 ~ 12Nm 3 / m, and more preferably in a range of 4 ~ 10Nm 3 / m .
 図5は、本発明の不織布の製造方法の好ましい他の例を模式的に示す図である。図5に示す例では、紡糸ノズル12の先端12aと紡糸された繊維の捕集面14aとの間の空間の少なくとも一部を、カバー31で覆うようにする。これによって紡糸ノズル12の先端12aから排出された一次エアーは、カバー31に覆われた空間内を循環エアー32として滞留することになり、このようなカバー31で覆われていない場合のように、紡糸ノズル12の先端12aから排出された一次エアーが、随伴流により急速に冷却されてしまうようなことがない。このようにすることでも、上述のように、前記(1)、(2)のうちの少なくともいずれかにおける温度をポリマーのTgより10℃以上高い温度に保持して、メルトブローン法を行なうこと可能となる。なお、前記(1)、(2)のうちの少なくともいずれかにおける温度をポリマーのTgより10℃以上高い温度に保持することができるのであれば、カバー31は、紡糸ノズル12の先端12aと紡糸された繊維の捕集面14aとの間の全体にわたって覆っている必要はない。図5に示す例のように、カバー31は、紡糸ノズル12の先端12aと紡糸された繊維の捕集面14aとの間の全体にわたって覆っているように設けられることが好ましい。このようなカバー31を形成する材料としては、一次エアーの温度により劣化しない程度の耐熱性を有しているのであれば特に制限されるものではなく、たとえばSUS、アルミニウム、銅などの金属が挙げられるが、耐久性、加工性、耐熱性の点から、SUSが好ましい。 FIG. 5 is a diagram schematically showing another preferred example of the method for producing a nonwoven fabric of the present invention. In the example shown in FIG. 5, at least a part of the space between the tip 12 a of the spinning nozzle 12 and the collection surface 14 a of the spun fiber is covered with the cover 31. As a result, the primary air discharged from the tip 12a of the spinning nozzle 12 stays in the space covered by the cover 31 as the circulating air 32, and is not covered by such a cover 31, The primary air discharged from the tip 12a of the spinning nozzle 12 is not rapidly cooled by the accompanying flow. Even in this manner, as described above, the melt blown method can be performed while maintaining the temperature in at least one of (1) and (2) at a temperature higher by 10 ° C. or more than the Tg of the polymer. Become. If the temperature in at least one of the above (1) and (2) can be maintained at a temperature higher by 10 ° C. or more than the Tg of the polymer, the cover 31 can be connected to the tip 12a of the spinning nozzle 12 and the spinning. It is not necessary to cover the entire area between the collected fibers 14a. As in the example shown in FIG. 5, the cover 31 is preferably provided so as to cover the entire area between the tip 12a of the spinning nozzle 12 and the collection surface 14a of the spun fiber. The material for forming such a cover 31 is not particularly limited as long as it has heat resistance that does not deteriorate due to the temperature of the primary air, and examples thereof include metals such as SUS, aluminum, and copper. However, SUS is preferable from the viewpoint of durability, workability, and heat resistance.
 本発明の不織布の製造方法において、前記(1)、(2)のうちの少なくともいずれかにおける温度をポリマーのTgより10℃以上高い温度に保持してメルトブローン法を行ない、カレンダー加工、エンボス加工、スパンレース加工などの後加工を行なわないこと以外は、従来のメルトブローン法と同様の工程、条件などを好適に採用することができる。紡糸条件としては、たとえば紡糸温度300~500℃、熱風温度(一次エアー温度)300~500℃、ノズル長1mあたり、エアー量5~25Nmで行なうことが好適な例として挙げられるが、これに限定されるものでは勿論ない。 In the method for producing a nonwoven fabric of the present invention, the temperature in at least one of the above (1) and (2) is maintained at a temperature 10 ° C. or more higher than the Tg of the polymer, the melt blown method is performed, calendering, embossing, Except for not performing post-processing such as spunlace processing, the same processes and conditions as in the conventional meltblown method can be suitably employed. Examples of the spinning conditions include a spinning temperature of 300 to 500 ° C., a hot air temperature (primary air temperature) of 300 to 500 ° C., and an air amount of 5 to 25 Nm 3 per 1 m of the nozzle length. Of course not limited.
 以下、実施例により本発明を具体的に説明するが、本発明は何らこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.
 〔不織布の密度(g/cm)〕
 〔不織布の坪量〕と〔不織布厚み〕を用いて不織布の体積を測定し、これらの結果から不織布の密度を算出した。
[Nonwoven fabric density (g / cm 3 )]
The volume of the nonwoven fabric was measured using [basis weight of nonwoven fabric] and [nonwoven fabric thickness], and the density of the nonwoven fabric was calculated from these results.
 〔密度が0.4g/cmを超える箇所の割合(%)〕
 走査型電子顕微鏡を用いて、不織布の厚み方向における断面を100倍に拡大した写真を撮影し、この写真を目視で幅方向に10mmの直線を観察し、この直線のうちに、密度0.4g/cmを超える箇所が占める長さを測定し、以下の式
  密度0.4g/cmを超える箇所の割合(%)
 =密度0.4g/cmを超える箇所の長さ(mm)/10(mm)×100
でその割合を求める。なお、写真を観察して、密度が0.4g/cmを超えているか否かはSEMに付属している2点間距離測定の機能を使用し、密度0.4g/cmを超えている箇所の長さを調べる、というようにして判別する。
[Proportion (%) where the density exceeds 0.4 g / cm 3 ]
Using a scanning electron microscope, a photograph in which the cross section in the thickness direction of the nonwoven fabric was magnified 100 times was photographed, and a straight line of 10 mm in the width direction was visually observed, and the density of 0.4 g was included in this straight line. Measure the length occupied by locations exceeding / cm 3 , and the following formula: Ratio of locations exceeding density 0.4 g / cm 3 (%)
= Length (mm) / 10 (mm) × 100 at a location exceeding density 0.4 g / cm 3
Find the ratio. Incidentally, by observing the photographs, density whether exceeds 0.4 g / cm 3 using a function between two points a distance measurement that comes with SEM, beyond the density 0.4 g / cm 3 It is determined by examining the length of the location.
 〔タテ強力(タテ方向(流れ方向)における強度)(N/5cm)〕
 不織布を幅5cmにカットし、島津製作所製オートグラフを使用し、JIS L 1906に準じ、引張り速度10cm/分で伸長し、切断時の荷重値をタテ強力とした。
[Vertical strength (strength in the vertical direction (flow direction)) (N / 5cm)]
The nonwoven fabric was cut into a width of 5 cm, and an autograph manufactured by Shimadzu Corporation was used, and the nonwoven fabric was stretched at a pulling rate of 10 cm / min according to JIS L 1906.
 〔溶融粘度〕
 東洋精機キャピログラフ1B型を用いて、温度330℃、剪断速度r=1200sec-1の条件下で測定した。
[Melt viscosity]
Using a Toyo Seiki Capillograph Model 1B, measurement was performed under conditions of a temperature of 330 ° C. and a shear rate of r = 1200 sec −1 .
 〔ガラス転移温度(℃)〕
 ガラス転移温度は、レオロジ社製の固体動的粘弾性装置「レオスペクトラDVE-V4」を用い、周波数10Hz、昇温速度10℃/minで損失正接(tanδ)の温度依存性を測定し、そのピーク温度から求めた。ここで、tanδのピーク温度とは、tanδの値の温度に対する変化量の第一次微分値がゼロとなる温度のことである。
[Glass transition temperature (℃)]
The glass transition temperature was measured by measuring the temperature dependence of loss tangent (tan δ) at a frequency of 10 Hz and a heating rate of 10 ° C./min using a solid dynamic viscoelastic device “RheoSpectra DVE-V4” manufactured by Rheology. It was determined from the peak temperature. Here, the peak temperature of tan δ is a temperature at which the first derivative of the amount of change with respect to the temperature of the value of tan δ becomes zero.
 〔繊維融着率(%)〕
 走査型電子顕微鏡を用いて、不織布の厚み方向における断面を1000倍に拡大した写真を撮影し、この写真から目視で繊維切断面(繊維断面)の数に対して繊維同士が融着している切断面の数の割合を求めた。各領域に見出せる全繊維断面数のうち、2本以上の繊維が融着した状態の断面の数の占める割合を以下の式
  繊維融着率(%)=(2本以上融着した繊維の断面数)/(全繊維断面数)×100に基づいて百分率で表わした。ただし、各写真について、断面の見える繊維は全て計数し、繊維断面数100以下の場合は、観察する写真を追加して全繊維断面数が100を超えるようにした。
[Fiber fusion rate (%)]
Using a scanning electron microscope, a photograph in which the cross section in the thickness direction of the nonwoven fabric was enlarged 1000 times was taken, and fibers were fused to the number of fiber cut surfaces (fiber cross sections) visually from this photograph. The ratio of the number of cut surfaces was determined. Of the total number of fiber cross sections that can be found in each region, the ratio of the number of cross sections in which two or more fibers are fused is expressed by the following formula: Fiber fusion rate (%) = (cross section of two or more fused fibers) Number) / (total number of fiber cross-sections) × 100. However, for each photograph, all the fibers with a visible cross section were counted, and when the number of fiber cross sections was 100 or less, a photograph to be observed was added so that the total fiber cross section exceeded 100.
 〔繊維が融着した各部分の面積の平均〕
 走査型電子顕微鏡を用いて、不織布の厚み方向における断面を1000倍に拡大した写真を撮影し、この写真から、繊維が融着した部分の面積を算出し、その総計を繊維が融着した部分の個数で除して、平均値を求めた。
[Average of area of each part where fibers are fused]
Using a scanning electron microscope, a photograph was taken with the cross section in the thickness direction of the nonwoven fabric magnified 1000 times, and from this photograph, the area of the portion where the fibers were fused was calculated, and the total was the portion where the fibers were fused The average value was obtained by dividing by the number of.
 〔平均繊維径(μm)〕
 不織布を走査型電子顕微鏡で拡大撮影し、任意の100本の繊維の径を測定し、平均値を算出し、平均繊維径とした。
[Average fiber diameter (μm)]
The nonwoven fabric was magnified and photographed with a scanning electron microscope, the diameter of 100 arbitrary fibers was measured, the average value was calculated, and the average fiber diameter was obtained.
 〔不織布の坪量(g/m)〕
 JIS L 1913に準じ、縦20cm×横20cmの試料片を採取し、電子天秤にて質量を測定し、試験片面積400cmで除して、単位面積当たりの質量を坪量とした。
[Basis weight of non-woven fabric (g / m 2 )]
In accordance with JIS L 1913, a sample piece of 20 cm in length and 20 cm in width was collected, the mass was measured with an electronic balance, and divided by a test piece area of 400 cm 2 , the mass per unit area was taken as the basis weight.
 〔不織布の厚み(μm)〕
 JIS L 1913に準じ、目付け測定と同試料片を用い、各試料片において、直径16mm、荷重20gf/cmのデジタル測厚計((株)東洋精機製作所製:B1型)で各5箇所測定し、15点の平均値をシートの厚みとした。
[Thickness of non-woven fabric (μm)]
In accordance with JIS L 1913, using the same sample piece as the basis weight measurement, each sample piece was measured at five locations with a digital thickness gauge (Toyo Seiki Seisakusho: B1 type) with a diameter of 16 mm and a load of 20 gf / cm 2. And the average value of 15 points | pieces was made into the thickness of a sheet | seat.
 〔不織布の通気度(cc/cm/sec)〕
 通気度JIS L1913「一般不織布試験方法」のフラジール形法に準拠して測定した。
[Air permeability of non-woven fabric (cc / cm 2 / sec)]
The air permeability was measured in accordance with the fragile method of JIS L1913 “General Nonwoven Test Method”.
 <実施例1>
 330℃での溶融粘度が500Pa・sである非晶性ポリエーテルイミドを使用し、押し出し機により押し出し、ノズル孔径D(直径)0.3mm、L(ノズル長さ)/D=10、ノズル孔ピッチ0.75mmのノズルを有するメルトブローン装置に供給し、単孔吐出量0.09g/分、紡糸温度390℃、熱風(一次エアー)温度420℃、ノズル幅1mあたり10Nm/分で吹き付けて、坪量が25g/mの不織布を製造した。この際、図4に示す例のような熱風噴出装置をメルトブローン装置の紡糸ノズルの先端に熱風(二次エアー)が吹き込むように設け、260℃の温度の熱風(二次エアー)を2Nmの流量で、紡糸ノズルの先端に向かって吹きつけた。紡糸ノズルの先端と紡糸された繊維を受け取るローラの受け面との間の直線距離dは10cmであり、紡糸ノズルの先端を中心とする半径x=5cmの半球状の外周に位置するように設けた温度計(AD-5601A(エー・アンド・アイ社製))により測定された温度は235℃であった(すなわち、空間Aは、非晶性PEIのガラス転移温度である215℃よりも20℃高く保持されていた)。また、紡糸ノズルの先端と紡糸された繊維の捕集面との間の直線距離dに対し当該直線上で捕集面から1cmに位置するように設けられた温度計(AD-5601A(エー・アンド・アイ社製))により測定された温度は242℃であった(すなわち、点Bは、非晶性PEIのガラス転移温度である215℃よりも27℃高く保持されていた)。このようにして後加工を行なうことなく、不織布を得た。得られた不織布の厚み方向の断面のSEM写真として、100倍拡大したものを図1(a)、1000倍拡大したものを図1(b)に示す。
<Example 1>
Amorphous polyetherimide having a melt viscosity of 500 Pa · s at 330 ° C. is used and extruded by an extruder. Nozzle hole diameter D (diameter) 0.3 mm, L (nozzle length) / D = 10, nozzle hole Supplied to a melt blown device having nozzles with a pitch of 0.75 mm, sprayed at a single-hole discharge rate of 0.09 g / min, spinning temperature of 390 ° C., hot air (primary air) temperature of 420 ° C., nozzle width of 10 Nm 3 / min per 1 m of nozzle width, A nonwoven fabric having a basis weight of 25 g / m 2 was produced. At this time, a hot air blowing device such as the example shown in FIG. 4 is provided so that hot air (secondary air) is blown into the tip of the spinning nozzle of the melt blown device, and hot air (secondary air) at a temperature of 260 ° C. is 2 Nm 3 . Sprayed at the flow rate toward the tip of the spinning nozzle. The linear distance d between the tip of the spinning nozzle and the receiving surface of the roller that receives the spun fiber is 10 cm, and is provided so as to be positioned on the outer circumference of a hemisphere having a radius x = 5 cm centered on the tip of the spinning nozzle. The temperature measured by a thermometer (AD-5601A (manufactured by A & I Co.)) was 235 ° C. (that is, the space A was 20 ° C. higher than 215 ° C., which is the glass transition temperature of amorphous PEI). ℃ was kept high). In addition, a thermometer (AD-5601A (A • 5A) provided so as to be located on the straight line 1 cm from the collection surface with respect to a linear distance d between the tip of the spinning nozzle and the collection surface of the spun fiber. And i)) was measured at 242 ° C. (ie, point B was held 27 ° C. higher than 215 ° C., the glass transition temperature of amorphous PEI). In this way, a nonwoven fabric was obtained without post-processing. As an SEM photograph of a cross section in the thickness direction of the obtained nonwoven fabric, FIG. 1 (a) shows an image magnified 100 times, and FIG.
 <実施例2>
 330℃での溶融粘度が900Pa・sである非晶性ポリエーテルイミドを使用し、紡糸温度を420℃、平均繊維径を3.7μm、紡糸ノズルの先端を中心とする半径x=5cmの半球状の外周に位置する温度計により測定された温度が253℃であり(すなわち、空間Aは、非晶性PEIのガラス転移温度である215℃よりも38℃高く保持)、紡糸ノズルの先端と紡糸された繊維の捕集面との間の直線距離dに対し当該直線上で捕集面から1cmに位置するように設けられた温度計により測定された温度が261℃(すなわち、点Bは、非晶性PEIのガラス転移温度である215℃よりも46℃高く保持)であったこと以外は実施例1と同様に行ない、不織布を得た。
<Example 2>
A hemisphere with an amorphous polyetherimide having a melt viscosity of 900 Pa · s at 330 ° C., a spinning temperature of 420 ° C., an average fiber diameter of 3.7 μm, and a radius x = 5 cm centered on the tip of the spinning nozzle The temperature measured by a thermometer located on the outer periphery of the shape is 253 ° C. (that is, the space A is kept 38 ° C. higher than 215 ° C., which is the glass transition temperature of amorphous PEI), and the tip of the spinning nozzle The temperature measured by a thermometer provided so as to be 1 cm from the collection surface on the straight line d with respect to the collection surface of the spun fiber is 261 ° C. (that is, the point B is The non-woven fabric was obtained in the same manner as in Example 1 except that the glass transition temperature of amorphous PEI was maintained at 46 ° C. higher than 215 ° C.
 <実施例3>
 坪量を10g/mとしたこと以外は実施例2と同様にして不織布を得た。
<Example 3>
A nonwoven fabric was obtained in the same manner as in Example 2 except that the basis weight was 10 g / m 2 .
 <実施例4>
 300℃での溶融粘度が100Pa・sである非晶性ポリカーボネートを使用し、押し出し機により押し出し、ノズル孔径D(直径)0.3mm、L(ノズル長さ)/D=10、ノズル孔ピッチ0.75mmのノズルを有するメルトブローン装置に供給し、単孔吐出量0.09g/分、紡糸温度340℃、熱風(一次エアー)温度370℃、ノズル幅1mあたり10Nm/分で吹き付けて、坪量が25g/mの不織布を製造した。この際、図4に示す例のような熱風噴出装置をメルトブローン装置の紡糸ノズルの先端に熱風(二次エアー)が吹き込むように設け、210℃の温度の熱風(二次エアー)を2Nmの流量で、紡糸ノズルの先端に向かって吹きつけた。紡糸ノズルの先端と紡糸された繊維を受け取るローラの受け面との間の直線距離dは10cmであり、紡糸ノズルの先端を中心とする半径x=5cmの半球状の外周に位置するように設けた温度計(AD-5601A(エー・アンド・アイ社製))により測定された温度は185℃であった(すなわち、空間Aは、非晶性ポリカーボネートのガラス転移温度である135℃よりも50℃高く保持されていた)。また、紡糸ノズルの先端と紡糸された繊維の捕集面との間の直線距離dに対し当該直線上で捕集面から1cmに位置するように設けられた温度計(AD-5601A(エー・アンド・アイ社製))により測定された温度は192℃であった(すなわち、点Bは、非晶性ポリカーボネートのガラス転移温度である135℃よりも57℃高く保持されていた)。
<Example 4>
An amorphous polycarbonate having a melt viscosity at 300 ° C. of 100 Pa · s is used and extruded by an extruder. Nozzle hole diameter D (diameter) 0.3 mm, L (nozzle length) / D = 10, nozzle hole pitch 0 Supplied to melt blown device with nozzle of .75mm, single hole discharge rate 0.09g / min, spinning temperature 340 ° C, hot air (primary air) temperature 370 ° C, sprayed at 10Nm 3 / min per 1m nozzle width, basis weight Produced a 25 g / m 2 nonwoven fabric. At this time, a hot air blowing device such as the example shown in FIG. 4 is provided so that hot air (secondary air) is blown into the tip of the spinning nozzle of the melt blown device, and hot air (secondary air) at a temperature of 210 ° C. is 2 Nm 3 . Sprayed at the flow rate toward the tip of the spinning nozzle. The linear distance d between the tip of the spinning nozzle and the receiving surface of the roller that receives the spun fiber is 10 cm, and is provided so as to be positioned on the outer circumference of a hemisphere having a radius x = 5 cm centered on the tip of the spinning nozzle. The temperature measured by a thermometer (AD-5601A (manufactured by A & I Co., Ltd.)) was 185 ° C. (that is, space A was 50 ° C. higher than 135 ° C., which is the glass transition temperature of amorphous polycarbonate). ℃ was kept high). In addition, a thermometer (AD-5601A (A • 5A) provided so as to be located on the straight line 1 cm from the collection surface with respect to a linear distance d between the tip of the spinning nozzle and the collection surface of the spun fiber. The temperature measured by Andi Co.) was 192 ° C. (that is, the point B was maintained 57 ° C. higher than the glass transition temperature of 135 ° C. of the amorphous polycarbonate).
 <比較例1>
 熱風噴出装置を設けなかったこと以外は実施例2と同様にして不織布を得た(紡糸ノズルの先端を中心とする半径x=5cmの半球状の外周に位置する温度計により測定された温度は41℃、紡糸ノズルの先端と紡糸された繊維の捕集面との間の直線距離dに対し当該直線上で捕集面から1cmに位置するように設けられた温度計により測定された温度は110℃)。
<Comparative Example 1>
A non-woven fabric was obtained in the same manner as in Example 2 except that no hot-air ejection device was provided (the temperature measured by a thermometer located on the outer circumference of a hemisphere having a radius x = 5 cm centered on the tip of the spinning nozzle) The temperature measured by a thermometer provided at 41 ° C. so that the linear distance d between the tip of the spinning nozzle and the collection surface of the spun fiber is 1 cm from the collection surface on the straight line is 110 ° C.).
 <比較例2>
 エンボス加工装置を用いて、比較例1で得られた不織布に、後加工としてエンボス加工を格子柄のエンボスロールにて、ロール温度180℃、線圧50kg/cm、速度1m/minという条件で行なった。得られた不織布の厚み方向の断面のSEM写真として、100倍拡大したものを図7(a)、1000倍拡大したものを図7(b)に示す。
<Comparative Example 2>
Using the embossing apparatus, the nonwoven fabric obtained in Comparative Example 1 was post-embossed with a grid pattern embossing roll under the conditions of a roll temperature of 180 ° C., a linear pressure of 50 kg / cm, and a speed of 1 m / min. It was. As an SEM photograph of a cross section in the thickness direction of the obtained nonwoven fabric, FIG. 7 (a) shows an image magnified 100 times, and FIG. 7 (b) shows an image magnified 1000 times.
 <比較例3>
 カレンダー加工装置(鉄ロール)を用いて、比較例1で得られた不織布に、後加工としてカレンダー加工を、ロール温度180℃、線圧216kg/cm、速度3.2m/minという条件で行なった。得られた不織布の厚み方向の断面のSEM写真として、100倍拡大したものを図6(a)、1000倍拡大したものを図6(b)に示す。
<Comparative Example 3>
Using a calendering device (iron roll), the nonwoven fabric obtained in Comparative Example 1 was calendered as post-processing under the conditions of a roll temperature of 180 ° C., a linear pressure of 216 kg / cm, and a speed of 3.2 m / min. . As an SEM photograph of the cross section in the thickness direction of the obtained nonwoven fabric, FIG. 6 (a) shows an image magnified 100 times, and FIG. 6 (b) shows an image magnified 1000 times.
 <比較例4>
 水流絡合加工装置を用いて、比較例1で得られた不織布に、後加工として水流絡合加工を、速度5.0m/minで、孔径0.1mmφノズルを使用し、0.5MPa、2.0MPa、2.5MPaの3段階で水流絡合処理を行なった。得られた不織布の厚み方向の断面のSEM写真として、100倍拡大したものを図8(a)、1000倍拡大したものを図8(b)に示す。
<Comparative Example 4>
Using the hydroentanglement apparatus, the nonwoven fabric obtained in Comparative Example 1 was subjected to hydroentanglement as post-processing at a speed of 5.0 m / min using a 0.1 mmφ hole diameter nozzle, 0.5 MPa, Hydroentanglement treatment was performed in three stages of 0.0 MPa and 2.5 MPa. As an SEM photograph of the cross section in the thickness direction of the obtained nonwoven fabric, FIG. 8 (a) shows an image magnified 100 times, and FIG. 8 (b) shows an image magnified 1000 times.
 <比較例5>
 熱風(二次エアー)の温度を240℃にしたこと以外は実施例2と同様の条件で不織布を得た。紡糸ノズルの先端を中心とする半径x=5cmの半球状の外周に位置する温度計により測定された温度は220℃、紡糸ノズルの先端と紡糸された繊維の捕集面との間の直線距離dに対し当該直線上で捕集面から1cmに位置するように設けられた温度計により測定された温度は217℃であった。
<Comparative Example 5>
A nonwoven fabric was obtained under the same conditions as in Example 2 except that the temperature of hot air (secondary air) was 240 ° C. The temperature measured by a thermometer located on the outer circumference of a hemisphere with a radius x = 5 cm centered on the tip of the spinning nozzle is 220 ° C., the linear distance between the tip of the spinning nozzle and the collection surface of the spun fiber The temperature measured by a thermometer provided so as to be located 1 cm from the collection surface on the straight line with respect to d was 217 ° C.
 結果を表1、2に示す。 The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明の不織布は、低密度であるにもかかわらず取り扱い性に優れているため、各種基材や他の不織布と組み合わせて使用できるだけでなく、通気性を求められるフィルター等にも好適に使用される。 Since the nonwoven fabric of the present invention is excellent in handleability despite its low density, it can be used not only in combination with various substrates and other nonwoven fabrics, but also suitably used in filters that require air permeability. The
 1 不織布、2 繊維、3 融着部、11 メルトブローン装置、12 紡糸ノズル、12a エアー出口、13 紡糸された非晶性ポリマー系繊維、14 ロール、14a ロール受け面、15 不織布、16 一次エアー、17 随伴流、21 熱風噴出装置、22 二次エアー、31 カバー、32 循環エアー。 DESCRIPTION OF SYMBOLS 1 Nonwoven fabric, 2 fibers, 3 melt | fusion part, 11 meltblown apparatus, 12 spinning nozzle, 12a air outlet, 13 spun amorphous polymer fiber, 14 roll, 14a roll receiving surface, 15 nonwoven fabric, 16 primary air, 17 Adjoining flow, 21 hot air jetting device, 22 secondary air, 31 cover, 32 circulating air.

Claims (5)

  1.  ガラス転移温度が50℃以上のポリマーを主成分とする繊維を含み、1g/mあたりのタテ強力が1N/5cm以上である不織布であって、以下の(1)~(2)を全て満足する不織布。
     (1)密度が0.01~0.4g/cmであること。
     (2)厚み方向の断面において密度が0.4g/cmを超える部分の割合が3%以下であること。
    A nonwoven fabric containing fibers mainly composed of a polymer having a glass transition temperature of 50 ° C. or more and having a vertical strength per 1 g / m 2 of 1 N / 5 cm or more, and satisfies all of the following (1) to (2) Nonwoven fabric to do.
    (1) The density is 0.01 to 0.4 g / cm 3 .
    (2) The ratio of the portion where the density exceeds 0.4 g / cm 3 in the cross section in the thickness direction is 3% or less.
  2.  厚み方向の断面において繊維融着率が15%以上、かつ、繊維が融着した各部分の面積の平均が70μm以下である、請求項1に記載の不織布。 2. The nonwoven fabric according to claim 1, wherein the fiber fusion rate is 15% or more in the cross section in the thickness direction, and the average area of each portion where the fibers are fused is 70 μm 2 or less.
  3.  平均繊維径が1~10μmである、請求項1に記載の不織布。 The nonwoven fabric according to claim 1, wherein the average fiber diameter is 1 to 10 µm.
  4.  非晶性ポリエーテルイミド系繊維を含有する、請求項1に記載の不織布。 The nonwoven fabric according to claim 1, comprising amorphous polyetherimide fiber.
  5.  請求項1~4のいずれか1項に記載の不織布を製造する方法であって、
     (1)紡糸ノズルの先端と紡糸された繊維の捕集面との間の捕集距離dに対して、ノズル先端を中心として、0.5×捕集距離dの半球状の空間、ならびに、
     (2)紡糸ノズルの先端と紡糸された繊維の捕集面との間の捕集距離dに対して当該直線上で捕集面から1cmの点
    のうちの少なくともいずれかにおける温度をガラス転移温度より10℃以上高い温度に保持してメルトブローン法を行なう、不織布の製造方法。
    A method for producing the nonwoven fabric according to any one of claims 1 to 4,
    (1) With respect to the collection distance d between the tip of the spinning nozzle and the collection surface of the spun fiber, a hemispherical space of 0.5 × collection distance d around the nozzle tip, and
    (2) The temperature at at least one of the points 1 cm from the collection surface on the straight line with respect to the collection distance d between the tip of the spinning nozzle and the collection surface of the spun fiber is the glass transition temperature. A method for producing a nonwoven fabric, wherein the melt blown method is carried out while maintaining the temperature higher by 10 ° C. or higher.
PCT/JP2016/069462 2015-06-30 2016-06-30 Nonwoven fabric and production method for same WO2017002924A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017526434A JP6617148B2 (en) 2015-06-30 2016-06-30 Nonwoven fabric and method for producing the same
CN201680038212.6A CN107709646B (en) 2015-06-30 2016-06-30 Nonwoven fabric and method for producing same
US15/739,920 US20180187353A1 (en) 2015-06-30 2016-06-30 Nonwoven fabric and method for producing the same
KR1020187002761A KR102403836B1 (en) 2015-06-30 2016-06-30 Nonwoven fabric and production method for same
EP16818032.1A EP3318667B1 (en) 2015-06-30 2016-06-30 Nonwoven fabric and production method for same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015131693 2015-06-30
JP2015-131693 2015-06-30

Publications (1)

Publication Number Publication Date
WO2017002924A1 true WO2017002924A1 (en) 2017-01-05

Family

ID=57608157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069462 WO2017002924A1 (en) 2015-06-30 2016-06-30 Nonwoven fabric and production method for same

Country Status (7)

Country Link
US (1) US20180187353A1 (en)
EP (1) EP3318667B1 (en)
JP (1) JP6617148B2 (en)
KR (1) KR102403836B1 (en)
CN (1) CN107709646B (en)
TW (1) TWI675947B (en)
WO (1) WO2017002924A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170791A1 (en) * 2016-03-30 2017-10-05 株式会社クラレ Heat-resistant fiber structure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI588089B (en) * 2015-10-20 2017-06-21 Acelon Chem & Fiber Corp Method of preparing of graphene-natural cellulose blended meltblown nonwoven fabric
TWI621744B (en) * 2015-10-20 2018-04-21 聚泰環保材料科技股份有限公司 Method of preparing of natural graphene cellulose blended spunbond nonwoven fabric
CN113597482A (en) * 2019-03-19 2021-11-02 富士胶片株式会社 Method for producing nonwoven fabric
JPWO2020203932A1 (en) * 2019-03-29 2020-10-08

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63315655A (en) * 1987-06-16 1988-12-23 東レ株式会社 Polyphenylene sulfide melt blow nonwoven fabric and its production
JPH05279947A (en) * 1992-03-25 1993-10-26 Kuraray Co Ltd Nonwoven fabric of polycarbonate ultrafine fiber
JPH0860515A (en) * 1994-08-22 1996-03-05 Toray Ind Inc Melt-blown nonwoven fabric and method for producing the same
JP2004185860A (en) * 2002-11-29 2004-07-02 Mitsubishi Paper Mills Ltd Separator for battery
JP2008081893A (en) * 2006-09-28 2008-04-10 Tapyrus Co Ltd Melt-blown nonwoven fabric made from polyether ether ketone, method for producing the fabric, and heat-resistant battery separator made of the fabric
JP2012041644A (en) * 2010-08-17 2012-03-01 Kuraray Co Ltd Flame-retardant nonwoven fabric and molded article formed by heating the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315965A (en) * 1980-06-20 1982-02-16 Scott Paper Company Method of making nonwoven fabric and product made thereby having both stick bonds and molten bonds
JP3650505B2 (en) * 1997-02-27 2005-05-18 帝人テクノプロダクツ株式会社 Melt blown nonwoven fabric
US6613268B2 (en) * 2000-12-21 2003-09-02 Kimberly-Clark Worldwide, Inc. Method of increasing the meltblown jet thermal core length via hot air entrainment
WO2007112443A2 (en) * 2006-03-28 2007-10-04 North Carolina State University Micro and nanofiber nonwoven spunbonded fabric
JP4229293B2 (en) * 2006-06-12 2009-02-25 株式会社立花商店 Manufacturing method of cleaning web, cleaning web, image forming apparatus, and fixing device
KR20100133834A (en) * 2009-06-12 2010-12-22 웅진케미칼 주식회사 Fabric including low melting fiber
US20110076907A1 (en) * 2009-09-25 2011-03-31 Glew Charles A Apparatus and method for melt spun production of non-woven fluoropolymers or perfluoropolymers
CN102505349B (en) * 2011-10-11 2014-04-09 宁波市瑞通新材料科技有限公司 Ultrathin nonwoven fabric
JP6049967B2 (en) * 2012-10-30 2016-12-21 株式会社化繊ノズル製作所 Ultra fine fiber nonwoven manufacturing equipment
EP3015586B1 (en) 2013-06-28 2018-04-18 Kuraray Co., Ltd. Flame-retardant nonwoven fabric, molded article, and composite laminate
EP3074559B1 (en) * 2013-11-26 2020-09-02 3M Innovative Properties Company Dimensionally-stable melt blown nonwoven fibrous structures, and methods and apparatus for making same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63315655A (en) * 1987-06-16 1988-12-23 東レ株式会社 Polyphenylene sulfide melt blow nonwoven fabric and its production
JPH05279947A (en) * 1992-03-25 1993-10-26 Kuraray Co Ltd Nonwoven fabric of polycarbonate ultrafine fiber
JPH0860515A (en) * 1994-08-22 1996-03-05 Toray Ind Inc Melt-blown nonwoven fabric and method for producing the same
JP2004185860A (en) * 2002-11-29 2004-07-02 Mitsubishi Paper Mills Ltd Separator for battery
JP2008081893A (en) * 2006-09-28 2008-04-10 Tapyrus Co Ltd Melt-blown nonwoven fabric made from polyether ether ketone, method for producing the fabric, and heat-resistant battery separator made of the fabric
JP2012041644A (en) * 2010-08-17 2012-03-01 Kuraray Co Ltd Flame-retardant nonwoven fabric and molded article formed by heating the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170791A1 (en) * 2016-03-30 2017-10-05 株式会社クラレ Heat-resistant fiber structure
JPWO2017170791A1 (en) * 2016-03-30 2019-02-14 株式会社クラレ Heat resistant fiber structure
JP7141334B2 (en) 2016-03-30 2022-09-22 株式会社クラレ Heat-resistant fiber structure

Also Published As

Publication number Publication date
JPWO2017002924A1 (en) 2018-04-19
EP3318667B1 (en) 2020-05-06
KR20180022911A (en) 2018-03-06
CN107709646A (en) 2018-02-16
US20180187353A1 (en) 2018-07-05
EP3318667A4 (en) 2018-11-14
CN107709646B (en) 2021-07-16
JP6617148B2 (en) 2019-12-11
KR102403836B1 (en) 2022-05-30
TWI675947B (en) 2019-11-01
EP3318667A1 (en) 2018-05-09
TW201713809A (en) 2017-04-16

Similar Documents

Publication Publication Date Title
JP6617148B2 (en) Nonwoven fabric and method for producing the same
US9963810B2 (en) Flame retardant nonwoven fabric, formed product, and composite stack
KR102277601B1 (en) Electrically charged nonwoven fabric, filtration material using same, and method for producing electrically charged nonwoven fabric
JP7104695B2 (en) Fiber structure, molded body and sound absorbing material
JP5307776B2 (en) Heat-resistant non-woven fabric and molded product obtained by heating the same
JP6487904B2 (en) Insulating nonwoven fabric and method for producing the same, insulating material
JP6113953B2 (en) Filter materials and filter composites
JP2017160548A (en) Melt blown non-woven fabric, and sound absorption material
JP2013136856A (en) Oil absorbing sheet and oil absorbing composite sheet
JP2013136855A (en) Sound absorbing material and sound absorbing composite material
JP2020122234A (en) Nonwoven fabric comprising liquid crystal polyester fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16818032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017526434

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187002761

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016818032

Country of ref document: EP