WO2017170791A1 - Heat-resistant fiber structure - Google Patents

Heat-resistant fiber structure Download PDF

Info

Publication number
WO2017170791A1
WO2017170791A1 PCT/JP2017/013100 JP2017013100W WO2017170791A1 WO 2017170791 A1 WO2017170791 A1 WO 2017170791A1 JP 2017013100 W JP2017013100 W JP 2017013100W WO 2017170791 A1 WO2017170791 A1 WO 2017170791A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
fibers
heat
fiber structure
web
Prior art date
Application number
PCT/JP2017/013100
Other languages
French (fr)
Japanese (ja)
Inventor
小泉 聡
純人 清岡
康朗 新井田
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to KR1020187029062A priority Critical patent/KR20180123087A/en
Priority to US16/089,934 priority patent/US20190055684A1/en
Priority to EP17775325.8A priority patent/EP3438338A4/en
Priority to KR1020217008355A priority patent/KR102592387B1/en
Priority to JP2018509395A priority patent/JP7141334B2/en
Priority to CN201780021614.XA priority patent/CN108884616A/en
Publication of WO2017170791A1 publication Critical patent/WO2017170791A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5412Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4334Polyamides
    • D04H1/4342Aromatic polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5418Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/558Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in combination with mechanical or physical treatments other than embossing
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial

Definitions

  • the present invention relates to a heat-resistant fiber structure that is composed of heat-resistant fibers and is used as a heat insulating material or a sound absorbing material, and a method for manufacturing the same.
  • fiber materials such as fiber structures used for these applications, low density is required from the viewpoint of light weight, and strength such as bending stress and tensile strength is also required. Powerfulness at is important. For example, strength at high temperatures is strongly demanded in sound absorbing heat insulating materials incorporated in aircraft wall surfaces and filter applications incorporated in automobile engine parts.
  • a heat insulating sound absorbing material in which a cotton-like material mixed with a binder is matted has been proposed. More specifically, for example, a high heat-resistant inorganic fiber and a flame-retardant organic fiber having a heat melting temperature or a thermal decomposition temperature of 350 ° C. or higher are uniformly mixed, and the resulting cotton-like material is heat-resistant.
  • a heat-insulating sound-absorbing material is disclosed in which the resin binder is applied and a cotton-like material is heat-treated to form a mat. And it is described by using such a heat insulation sound-absorbing material that a heat insulation sound-absorbing material with high safety can be provided by high heat insulation and sound absorption.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a heat-resistant fiber structure having heat resistance and excellent strength such as bending stress and tensile strength.
  • the heat-resistant fiber structure of the present invention is a fiber structure containing heat-resistant fibers having a glass transition temperature of 100 ° C. or higher, and the heat-resistant fibers are bonded to each other.
  • the heat-resistant fiber structure of the present invention (hereinafter simply referred to as “fiber structure”) is composed of a plurality of heat-resistant fibers bonded to each other. And unlike the said conventional fiber structure, the fiber structure of this invention does not use a low-melting-point binder fiber, but has excellent heat resistance and strength by directly bonding heat-resistant fibers to each other. It has the characteristic of providing.
  • adheresion refers to a state in which fibers are softened by heating and the fibers are deformed and meshed by the overlapping force at the intersection, or the fibers are fused and integrated.
  • Heat resistant fiber As the heat-resistant fiber constituting the fiber structure, a fiber having a glass transition temperature Tg of 100 ° C. or higher is used.
  • the glass transition temperature (the temperature at which a polymer starts microscopic molecular motion) is used as an index of heat resistance.
  • a resin having a glass transition point of 100 ° C. or higher is called an engineering plastic. It is preferably used for applications requiring heat resistance.
  • the fiber using this resin as a raw material is called heat resistant fiber.
  • This heat-resistant fiber is a fiber that is softened by high-temperature superheated steam (150 ° C. to 600 ° C.) and can be self-adhesive.
  • polyamide fiber, meta-aramid fiber, para-aramid fiber, melamine fiber, polybenzoxazole fiber, Polybenzimidazole fiber, polybenzothiazole fiber, polyarylate fiber, polyethersulfone fiber, liquid crystal polyester fiber, polyimide fiber, polyetherimide fiber, polyetheretherketone fiber, polyetherketone fiber, polyetherketoneketone fiber, polyamideimide A fiber etc. can be mentioned. None of these fibers may be used alone or as a mixture of two or more.
  • polyamide fibers are preferably used from the viewpoint of low water absorption and chemical resistance
  • polyetherimide fibers are used from the viewpoint of flame retardancy and low smoke generation. preferable.
  • polyamide fiber for example, a fiber made of a semi-aromatic polyamide which is a polyamide obtained from an aliphatic diamine and a dicarboxylic acid mainly containing an aromatic component is used.
  • the dicarboxylic acid mainly composed of an aromatic component means that at least 60 mol% or more is an aromatic dicarboxylic acid.
  • Preferred examples include terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid and the like.
  • the polyetherimide fiber an amorphous polyetherimide fiber having no melting point is used, and the glass transition temperature Tg may be 200 ° C. or higher, even if the fineness is 200 ° C. Those that retain heat resistance under high temperature conditions are preferred.
  • Such heat resistance can be judged from the dry heat shrinkage at 200 ° C., and the amorphous polyetherimide fiber used as the heat resistant fiber of the present invention is dry heat shrinkage at 200 ° C. May be 5.0% or less, and specifically, the dry heat shrinkage is preferably -1.0 to 5.0%.
  • the amorphous polyetherimide fiber is derived from a polymer and is excellent in flame retardancy.
  • the limiting oxygen index value may be 25 or more, preferably 28 or more, More preferably, it may be 30 or more.
  • the amorphous polyetherimide fiber may have a single fiber fineness of 15.0 dtex or less.
  • the single fiber fineness is preferably 0.1 to 12.0 dtex, and more preferably 0.5 to 10.0 dtex.
  • the amorphous polyetherimide fiber has a fiber strength at room temperature of 2.0 cN / dtex or more.
  • the fiber strength is less than 2.0 cN / dtex, the process passability when making a fabric such as paper, non-woven fabric, or woven fabric may be deteriorated. More preferably, it is 2.3 to 4.0 cN / dtex, and further preferably 2.5 to 4.0 cN / dtex.
  • the cross-sectional shape of the heat-resistant fiber is a general cross-sectional shape such as a round cross-section or an irregular cross-section (flat, elliptical, polygonal, 3-14 leaf shape). , T-shape, H-shape, V-shape, dogbone (I-shape, etc.), and may be a hollow cross-section.
  • the average fineness of the heat-resistant fiber can be selected, for example, from the range of 0.01 to 100 dtex, preferably 0.1 to 50 dtex, more preferably 0.5 to 30 dtex (particularly 1 to 10 dtex) depending on the application. . When the average fineness is within this range, the balance between the strength of the fiber and the expression of adhesiveness is excellent.
  • the average fiber length of the heat resistant fiber can be selected, for example, from a range of 10 to 100 mm, preferably 20 to 80 mm, more preferably 25 to 75 mm (especially 35 to 55 mm). When the average fiber length is within this range, the fibers are sufficiently entangled, so that the mechanical strength of the fiber structure is improved.
  • the crimp rate of the heat resistant fiber is, for example, 1 to 50%, preferably 3 to 40%, more preferably 5 to 30% (particularly 10 to 20%).
  • the number of crimps is, for example, 1 to 100 pieces / inch, preferably 5 to 50 pieces / inch, and more preferably 10 to 30 pieces / inch.
  • the fiber structure of the present invention includes the above-described heat-resistant fiber and has a structure in which the heat-resistant fibers are bonded to each other, and the shape can be selected according to the use, but is usually a sheet or plate shape. It is.
  • a non-woven fiber web is formed. It is necessary that the arrangement state and adhesion state of the fibers to be adjusted are appropriately adjusted. That is, it is desirable that the fibers constituting the fiber web are arranged so as to intersect each other while being arranged substantially parallel to the surface of the fiber web (non-woven fiber).
  • the fiber structure of the present invention is bonded at the intersection where the fibers intersect.
  • a fiber structure (molded body) that requires high hardness and strength is a bundle-like adhesive that is bonded in a bundle of several to several tens when fibers other than the intersections are arranged substantially in parallel. Fibers may be formed.
  • a structure in which "scram” is assembled by partially forming a structure in which these fibers are bonded at the intersection of single fibers, the intersection of bundle fibers, or the intersection of single fibers and bundle fibers (Structure in which the fibers are bonded at the intersection and entangled like a mesh, or the structure in which the fibers are bonded at the intersection and constrain the adjacent fibers to each other), and the desired bending behavior, surface hardness, etc. can be expressed. .
  • arranged substantially parallel to the surface of the fiber web means that a portion where a large number of fibers are locally arranged along the thickness direction is not repeatedly present. Indicates. More specifically, when an arbitrary cross section of the fiber web of the fiber structure is observed with a microscope, the existence ratio (number of fibers) continuously extending in the thickness direction over 30% of the thickness of the fiber web. The ratio) is 10% or less (particularly 5% or less) with respect to all the fibers in the cross section.
  • Fibers are arranged in parallel to the fiber web surface because if there are many fibers oriented along the thickness direction (perpendicular to the web surface), the fiber arrangement may be disturbed in the periphery. This is because an unnecessarily large void is generated in the woven fiber, and the bending strength and surface hardness of the fiber structure are reduced. Therefore, it is preferable to reduce this gap as much as possible. For this purpose, it is desirable to arrange the fibers as parallel to the fiber web surface as possible.
  • the fibrous structure of the present invention is a sheet-like or plate-like molded body
  • a load is applied in the thickness direction of the fibrous structure
  • the void is crushed by the load.
  • the surface of the molded body is easily deformed.
  • this load is applied to the entire surface of the molded body, the thickness tends to be reduced as a whole. Therefore, this problem can be avoided if the fiber structure itself is made of a resin filling without voids, but this reduces the air permeability, ensuring that it is difficult to bend when bent (folding resistance) and lightweight. It becomes difficult to do.
  • the fiber structure of the present invention is arranged such that the directions of the fibers are arranged in parallel along the surface direction of the web and dispersed (or the fiber directions are directed in a random direction), so that the fibers intersect each other, and the intersections thereof.
  • a small gap is generated to ensure light weight.
  • an appropriate air permeability and surface hardness are secured.
  • a bundle of fibers bonded in parallel in the fiber length direction is formed in a place where the fibers are aligned in parallel without intersecting with other fibers, it is higher than the case where the fibers are composed of only single fibers. Bending strength can be mainly secured.
  • the fiber adhesion rate due to adhesion of heat-resistant fibers is preferably 10 to 85%, more preferably 25 to 75%, and more preferably 40 to 65%. Further preferred.
  • this fiber adhesion rate can be measured by the method described in the examples described later, and indicates the ratio of the number of cross sections of two or more fibers bonded to the total number of cross sections of the non-woven fiber cross section. Therefore, a low fiber adhesion rate means that the proportion of the plurality of fibers adhering to each other (the proportion of the fibers that are converged and adhered) is small.
  • the heat-resistant fibers constituting the non-woven fiber structure are bonded at the contact points of the respective fibers, but in order to develop a large bending stress with as few contacts as possible, this bonding point has a thickness of It is preferable to distribute uniformly along the direction from the surface of the fiber structure to the inside (center portion) and the back surface.
  • the adhesion points are concentrated on the surface or inside, it is not only difficult to secure a sufficient bending stress, but also the form stability in a portion where the adhesion points are small.
  • the central portion of the three regions divided in three in the thickness direction is in the above range (10 to 85%).
  • the uniformity of the fiber adhesion rate in each region is preferably 20% or less (for example, 0.1 to 20%), preferably 15% or less (for example, 0.5 to 15%), more preferably 10% or less (for example, 1 to 10%).
  • the fiber structure of the present invention is excellent in hardness, bending strength, folding resistance and toughness because the fiber adhesion rate has such uniformity in the thickness direction.
  • region divided into three in the thickness direction means each region divided into three equal parts by slicing in a direction perpendicular to the thickness direction of the plate-like fiber structure. To do.
  • the fiber structure of the present invention not only the adhesion by the heat-resistant fiber is uniformly dispersed and the point adhesion is performed, but also the point adhesion of these point adhesion is short (for example, several tens to several hundreds ⁇ m). ) In the network structure. With such a structure, the fiber structure of the present invention has a high followability to strain due to the flexibility of the fiber structure even when an external force is applied, and at each adhesion point of finely dispersed fibers. Since the external force is dispersed and reduced, it can be estimated that high bending stress and tensile strength are expressed.
  • the conventional fiber structure in which heat resistant fibers are bonded to each other through binder fibers has a small number of bonding points because the amount of binder fibers is limited to ensure heat resistance, and the binder fibers. Even if the amount of adhesive is increased and the adhesion point is increased, heat resistance cannot be obtained, and furthermore, it is difficult to uniformly disperse the adhesive in the thickness direction of the fiber structure. Can be estimated.
  • the existence frequency of single fibers (single fiber end faces) in the cross section in the thickness direction is not particularly limited.
  • the existence frequency of single fibers existing at an arbitrary 1 mm 2 of the cross section may be 100 fibers / mm 2 or more (for example, 100 to 300 fibers), but in particular, mechanical characteristics are required rather than light weight.
  • the frequency of single fibers is, for example, 100 / mm 2 or less, preferably 60 / mm 2 or less (for example, 1 to 60 / mm 2 ), and more preferably 25 / mm 2. It may be the following (for example, 3 to 25 pieces / mm 2 ).
  • the fibers bonded in a bundle shape are thin in the thickness direction of the molded body and have a wide shape in the surface direction (length direction or width direction).
  • the presence frequency of single fibers is measured as follows. That is, the range corresponding to 1 mm 2 selected from the scanning electron microscope (SEM) photograph of the cross section of the compact is observed, and the number of single fiber cross sections is counted. Arbitrary several places (for example, 10 places selected at random) are observed in the same manner, and the average value per unit area of the single fiber end face is defined as the existence frequency of single fibers. At this time, all the number of fibers in a single fiber state are counted in the cross section. That is, in addition to fibers that are completely in a single fiber state, even if fibers are bonded to each other, fibers that are in a single fiber state apart from the bonded portion in the cross section are counted as single fibers.
  • the heat-resistant fiber in the fiber structure can suppress the loss of the fiber structure due to the loss of the fiber by not connecting the both ends in the thickness direction (the fiber does not penetrate the fiber structure in the thickness direction).
  • a manufacturing method for arranging the heat-resistant fibers in this way is not particularly limited, but a means for laminating a plurality of fiber molded bodies entangled with the heat-resistant fibers and bonding them with superheated steam is simple and reliable.
  • the fiber which connects the both ends of the thickness direction of a fiber structure can be reduced significantly by adjusting the relationship between fiber length and the thickness of a fiber structure.
  • the thickness of the fiber structure is 10% or more (for example, 10 to 1000%), preferably 40% or more (for example, 40 to 800%), more preferably 60% with respect to the fiber length. Or more (for example, 60 to 700%), more preferably 100% or more (for example, 100 to 600%).
  • the thickness and fiber length of the fiber structure are within such ranges, the mechanical structure such as bending stress of the fiber structure is not lowered, and the loss of the fiber structure due to the fiber dropping or the like can be suppressed.
  • the density and mechanical properties of the fiber structure of the present invention are affected by the ratio and the presence state of the bundle-like adhesive fibers.
  • the fiber adhesion rate indicating the degree of adhesion can be easily measured based on the number of bonded fiber cross sections in a predetermined region by taking a photograph of an enlarged cross section of the fiber structure using SEM.
  • the fibers are bonded in a bundle shape, the fibers are bonded in a bundle shape or at an intersection, and therefore, when the density is particularly high, it is difficult to observe as a single fiber.
  • the fiber filling rate in the cross section in the thickness direction is, for example, 20 to 80%, preferably 20 to 60%, and more preferably 30 to 50%. If the fiber filling rate is too small, there are too many voids in the fiber structure, making it difficult to ensure the desired surface hardness and bending stress. On the other hand, if it is too large, the surface hardness and bending stress can be sufficiently secured, but it becomes very heavy and the air permeability tends to decrease.
  • the fiber structure of the present invention (particularly, the fiber structure in which fibers are bonded in a bundle and the frequency of single fibers is 100 / mm 2 or less) is plate-like (board-like), depending on the load. It is preferable to have a surface hardness that hardly causes deformation such as formation of a concave shape.
  • the hardness by an A-type durometer hardness test (a test in accordance with the “hardness test method for vulcanized rubber and thermoplastic rubber” of JIS K6253) is, for example, A50 or more, preferably A60 or more. More preferably, it is A70 or more. If this hardness is too small, it is likely to be deformed by a load applied to the surface.
  • a fiber structure including such bundle-like adhesive fibers has a low frequency of bundle-like adhesive fibers, and each fiber (bundle) in order to balance bending strength, surface hardness, lightness, and air permeability at a high level. It is preferable that the fibers are bonded at a high frequency at the intersection of the filamentous fibers and / or single fibers). However, if the fiber adhesion rate is too high, the distances between the bonded points are too close to each other, the flexibility is lowered, and it becomes difficult to eliminate distortion due to external stress. For this reason, as described above, the fiber structure of the present invention preferably has a fiber adhesion rate of 85% or less.
  • the fiber adhesion rate When the fiber adhesion rate is not too high, a passage by a fine gap can be secured in the fiber structure, and the lightness and air permeability can be improved. Therefore, in order to develop a large bending stress, surface hardness and air permeability with as few contacts as possible, the fiber adhesion rate increases in the thickness direction from the surface of the fiber structure to the inside (center) and back. It is preferable to distribute uniformly along.
  • the fiber adhesion rate in the central portion is in the above-described range. It is preferable that all of the front surface, the central portion, and the back surface are in the above-described range. Further, the difference between the maximum value and the minimum value of the fiber adhesion rate in each region may be 20% or less (for example, 0.1 to 20%), preferably 15% or less (for example, 0.5 to 15).
  • the fiber adhesion rate is uniform in the thickness direction, the bending stress, tensile strength, folding resistance, toughness and the like are excellent.
  • the fiber adhesion rate in this invention is measured by the method as described in the Example mentioned later.
  • One feature of the fiber structure of the present invention is that it exhibits a bending behavior that cannot be obtained with a conventional fiber structure in which heat-resistant fibers are bonded via binder fibers.
  • the bending stress is measured from the repulsive force and bending amount of the sample when the sample is gradually bent according to JIS K7171 “Plastics-Determination of bending characteristics”. Used as an indicator of behavior. That is, the larger the bending stress, the harder the fiber structure, and the more the bending amount (displacement) until the measurement object breaks, the better the bent body.
  • the bending stress in at least one direction is 0.05 MPa or more (for example, 0.05 to 100 MPa), preferably 0.1 to 30 MPa, more preferably 0. It may be 2 to 10 MPa. If this bending stress is too small, it is easily broken by its own weight or a slight load when used as a board material. Further, if the bending stress is too high, it becomes too hard, and if it is bent beyond the peak of the stress, it is easily broken and broken. In addition, in order to obtain the hardness exceeding 100 MPa, it is necessary to increase the density of the fiber structure, and it is difficult to ensure light weight.
  • the fiber structure of the present invention can ensure excellent lightness due to voids generated between fibers. Further, unlike the resin foam such as sponge, these voids are continuous rather than independent voids, and thus have air permeability. Such a structure is a structure that is extremely difficult to produce by conventional hardening methods such as a method of impregnating a resin and a method of forming a film-like structure by closely adhering surface portions. .
  • the fiber structure of the present invention has a low density.
  • the apparent density is, for example, 0.03 to 0.7 g / cm 3 , and particularly in applications that require lightweight, 0.05 to 0.5 g / cm 3 , preferably 0.08 to 0.4 g / cm 3 , and more preferably 0.1 to 0.35 g / cm 3 .
  • the apparent density is, for example, 0.2 to 0.7 g / cm 3 , preferably 0.25 to 0.65 g / cm 3 , more preferably 0.3 to It may be 0.6 g / cm 3 . If the apparent density is too low, it is lightweight, but it is difficult to ensure sufficient bending hardness and surface hardness.
  • the fibers are entangled and close to a general nonwoven fiber structure bonded at the intersection point, while when the density is increased, the fibers are bonded in a bundle shape and are close to a porous molded body. It becomes.
  • Appent density means the density calculated based on the fabric weight and thickness measured based on the prescription
  • Basis weight of the fibrous structure of the present invention can be selected from 50 ⁇ 10000g / m 2 approximately in the range of preferably 150 ⁇ 8000g / m 2, more preferably 300 ⁇ 6000g / m 2 approximately.
  • a basis weight for example, 1000 ⁇ 10000g / m 2, preferably 1500 ⁇ 8000g / m 2, further preferably about 2000 ⁇ 6000g / m 2. If the basis weight is too small, it is difficult to ensure the hardness, and if the basis weight is too large, the web is too thick and the superheated steam cannot sufficiently enter the web during processing with superheated steam. It becomes difficult to obtain a uniform fiber structure.
  • the thickness is not particularly limited, but can be selected from the range of about 1 to 100 mm, for example, 2 to 50 mm, preferably 3 to 20 mm, more preferably Is 5 to 150 mm. If the thickness is too thin, it will be difficult to ensure the hardness, and if it is too thick, the mass will also become heavy, so the handling properties as a sheet will be reduced.
  • the air permeability of the fiber structure of the present invention is 0.1 cm 3 / cm 2 / sec or more (for example, 0.1 to 300 cm 3 / cm 2 / sec), preferably 0.5 to 3 in terms of air permeability according to the Frazier method. 250 cm 3 / cm 2 / sec (for example, 1 to 250 cm 3 / cm 2 / sec), more preferably 5 to 200 cm 3 / cm 2 / sec, and usually 1 to 100 cm 3 / cm 2 / sec. If the air permeability is too small, it is necessary to apply pressure from the outside in order to allow air to pass through the fiber structure, making it difficult for natural air to enter and exit. On the other hand, if the air permeability is too high, the air permeability increases, but the fiber voids in the fiber structure become too large, and the bending stress decreases.
  • the fiber structure of the present invention has a non-woven fiber structure, it has high heat insulation and low thermal conductivity of 0.1 W / m ⁇ K or less, for example, 0.03 to 0.1 W / m. ⁇ K, preferably 0.05 to 0.08 W / m ⁇ K.
  • the heat-resistant fiber described above is formed into a web.
  • a conventional method for example, a direct method such as a spunbond method or a meltblowing method, a card method using meltblown fibers or staple fibers, a dry method such as an airlay method, or the like can be used.
  • a card method using melt blown fibers or staple fibers particularly a card method using staple fibers is widely used.
  • the web obtained using staple fibers include a random web, a semi-random web, a parallel web, and a cross-wrap web. Of these webs, a semi-random web and a parallel web are preferred when the proportion of bundled adhesive fibers is increased.
  • the means for bonding the fibers may be a conventional hot air treatment or hot pressing, or the fibers may be bonded by superheated steam.
  • the fiber web obtained in the above process is sent to the next process by a belt conveyor and exposed to a superheated steam (high pressure steam) flow, whereby the fiber structure having the nonwoven fiber structure of the present invention. Is obtained. That is, the fiber web conveyed by the belt conveyor passes through the superheated steam flow ejected from the nozzle of the steam spraying device, and the heat-resistant fibers are three-dimensionally bonded to each other by the sprayed superheated steam (thermal bonding). Is done.
  • the heat-resistant fibers can be bonded to each other to obtain a fiber network, so that the inside of the fiber structure in the thickness direction is uniform and It becomes possible to process bulky.
  • the temperature of the superheated steam sprayed onto the heat resistant fiber is preferably in the range of 150 to 600 ° C. This is because if the temperature is lower than 150 ° C, the energy given to the heat-resistant fibers is insufficient, and the adhesion between the fibers may be insufficient. This is because the uniformity of the fiber adhesion rate may be lowered.
  • the belt conveyor to be used is not particularly limited as long as it can be processed with superheated steam while compressing the fiber web used for processing to a desired density, and an endless conveyor is preferably used.
  • it may be a general single belt conveyor, or may be transported by combining two belt conveyors as necessary and sandwiching the web between both belts.
  • a steam injection device for supplying superheated steam to the web is installed in one conveyor and supplies superheated steam to the web through a conveyor net.
  • a suction box may be attached to the opposite conveyor. The suction box can suck and discharge excess superheated steam that has passed through the web.
  • a suction box is installed in the downstream part of the conveyor on the side where the superheated steam injection device is installed, and this suction box is installed.
  • a superheated steam spraying device may be installed in the opposite conveyor.
  • the endless belt used for the conveyor is not particularly limited as long as it does not interfere with web transport and overheated steam treatment.
  • the surface shape of the belt may be transferred to the surface of the fiber web depending on the conditions.
  • a fine mesh net is used in the case of a fiber structure having a flat surface.
  • the upper limit is 90 mesh, and a fine net having a mesh larger than this has low air permeability and makes it difficult for steam to pass through.
  • the mesh belt is made of metal, heat-treated polyester resin, polyphenylene sulfide resin, polyarylate resin (fully aromatic polyester resin), aromatic polyamide from the viewpoint of heat resistance against superheated steam treatment.
  • a heat resistant resin such as a resin is preferable.
  • the superheated steam injected from the steam injection device is an air stream, unlike the hydroentanglement process or the needle punching process, the superheated steam enters the web without greatly moving the fibers in the web as the object to be processed. It is considered that due to the entry and superheating action of the steam flow into the web, the superheated steam flow effectively covers the surface of each heat-resistant fiber present in the web in a superheated state, thereby enabling uniform thermal bonding. In addition, since this process is performed in a very short time under a high-speed air stream, the heat conduction of the superheated steam to the fiber surface is sufficient, but the process is completed before the heat conduction to the inside of the fiber is sufficiently performed.
  • the web to be processed is placed between a conveyor belt or rollers with a desired apparent density ( For example, it is important to expose to superheated steam in a compressed state of 0.03 to 0.7 g / cm 3 ).
  • a relatively high-density fiber structure is to be obtained, it is necessary to compress the fiber web with sufficient pressure when processing with superheated steam.
  • the back side of the endless belt on the opposite side of the nozzle across the web is made of a stainless steel plate or the like so that the steam cannot pass through. Since it reflects here, it adhere
  • a suction box may be arranged to discharge excess steam to the outside.
  • the nozzle for injecting superheated steam may be a plate or die in which predetermined orifices are continuously arranged in the width direction, and the orifices may be arranged in the width direction of the web to be supplied. There may be one or more orifice rows, and a plurality of rows may be arranged in parallel. A plurality of nozzle dies having a single orifice array may be installed in parallel.
  • the thickness of the plate may be 0.5 to 1 mm.
  • the orifice diameter and pitch are not particularly limited as long as the target fiber fixation is possible, but the orifice diameter is usually 0.05 to 2 mm, preferably 0.1 to 1 mm, more preferably. 0.2 to 0.5 mm.
  • the pitch of the orifices is usually 0.5 to 3 mm, preferably 1 to 2.5 mm, more preferably 1 to 1.5 mm. If the orifice diameter is too small, the processing accuracy of the nozzle becomes low and the processing becomes difficult, and the operational problem that clogging is likely to occur easily occurs. On the other hand, if it is too large, the steam injection force is reduced.
  • the superheated steam is not particularly limited as long as the heat-resistant fiber can be fixed, and may be set depending on the material and form of the fiber used.
  • the pressure is, for example, 0.1 to 2 MPa, preferably 0.2 to 1. 0.5 MPa, more preferably 0.3 to 1 MPa. If the pressure of the steam is too high or too strong, the fibers forming the web may move and cause turbulence, or the fibers may melt too much to partially retain the fiber shape. Also, if the pressure is too weak, it may not be possible to give the web the amount of heat necessary for fiber bonding, or superheated steam may not penetrate the web, and fiber adhesion spots may occur in the thickness direction. It may be difficult to control the uniform jet of steam.
  • the fiber structure having a non-woven fiber structure obtained in this way has a very high bending stress and surface hardness while having a low density comparable to that of a general nonwoven fabric, and also has air permeability, sound absorption, In addition to heat insulation, it has heat resistance. Therefore, using such performance, it can be applied to applications requiring heat resistance such as automobile interior materials, aircraft inner walls, building material boards, and the like.
  • Example 1 ⁇ Production of fiber structure>
  • Semi-aromatic polyamide resin consisting of diamine having 9 carbon atoms and terephthalic acid (trade name: GENESTAR, melting point: 265 ° C., glass transition temperature: 125 ° C., thermal decomposition temperature: 400 ° C. ) was used (fineness: 1.7 dtex, fiber length: 51 mm).
  • a card web having a basis weight of 50 g / m 2 was prepared by a card method, and twelve sheets of this web were stacked to obtain a card web having a total basis weight of 600 g / m 2 .
  • the card web was transferred to a belt conveyor equipped with a 50 mesh, 500 mm wide stainless steel endless net.
  • this belt conveyor consists of a pair of conveyor of a lower conveyor and an upper conveyor, and the vapor
  • a metal roll for adjusting the web thickness (hereinafter sometimes abbreviated as “web thickness adjusting roll”) is provided on each conveyor upstream of the nozzle.
  • the lower conveyor has a flat upper surface (that is, the surface through which the web passes), and one upper conveyor has a lower surface bent along a web thickness adjusting roll.
  • the adjusting roll is arranged to make a pair with the web thickness adjusting roll of the lower conveyor.
  • the upper conveyor can be moved up and down, so that the web thickness adjusting rolls of the upper conveyor and the lower conveyor can be adjusted to a predetermined interval.
  • the upstream side of the upper conveyor is inclined at an angle of 30 degrees (relative to the lower surface on the downstream side of the upper conveyor) with respect to the downstream portion with respect to the web thickness adjusting roll, and the downstream portion is parallel to the lower conveyor. It is bent so that it may be arranged.
  • Each of these belt conveyors rotates in the same direction at the same speed, and the two conveyor belts and the web thickness adjusting rolls can be pressurized while maintaining a predetermined clearance.
  • This is for adjusting the web thickness before steaming by operating like a so-called calendar process. That is, the card web fed from the upstream side travels on the lower conveyor, but the interval with the upper conveyor is gradually narrowed before reaching the web thickness adjusting roll. And when this space
  • the roll for adjusting the web thickness was adjusted to have a linear pressure of 50 kg / cm.
  • the steam web is introduced into the steam jetting device provided in the lower conveyor, and steam treatment is performed by ejecting superheated steam at 300 ° C. in the thickness direction of the card web (perpendicularly) from this device.
  • the fiber structure which has the nonwoven fiber structure in a present Example was obtained.
  • a nozzle is installed in the lower conveyor so as to blow superheated steam toward the web via a conveyor net, and a suction device is installed on the upper conveyor.
  • another jetting device which is a combination in which the arrangement of the nozzle and the suction device is reversed, is installed on the downstream side in the web traveling direction of the jetting device, and superheated steam treatment is performed on both the front and back sides of the web. gave.
  • the hole diameter of the steam injection nozzle was 0.3 mm, and the steam injection device in which the nozzles were arranged in a line at a 1 mm pitch along the width direction of the conveyor was used.
  • the processing speed was 3 m / min, and the interval (distance) between the upper and lower conveyor belts on the nozzle side and the suction side was 5 mm.
  • the nozzles were arranged on the back side of the conveyor belt so as to be almost in contact with the belt.
  • the ratio of the number of cross-sections in a state where two or more fibers are bonded out of the total number of cross-sections of fibers that can be recognized in each region is expressed as a percentage based on the following formula (1).
  • the part which fibers contact there is a part which is simply contacting without bonding, and a part which is bonded by bonding, but by cutting the fiber structure for microscopic photography, the fiber In the cut surface of the structure, the fibers that are simply in contact with each other were separated by the stress of each fiber. Therefore, in the cross-sectional photograph, the contacting fibers are assumed to be bonded.
  • ⁇ Measurement of tensile strength> In accordance with the provisions of JIS L1913 (general non-woven fabric test method), a test piece (width 30 mm, length 150 mm) is prepared from the produced fiber structure, the grip interval is 100 mm, and the test speed is 10 mm / min. Tensile strength (N / 30 mm) was measured. The results are shown in Table 1.
  • Example 2 ⁇ Production of fiber structure>
  • amorphous polyetherimide fiber manufactured by Kuraray Co., Ltd., trade name: KURAKIISSS, glass transition temperature: 215 ° C., thermal decomposition temperature: 540 ° C., fineness: 8.9 dtex, fiber length 51 mm
  • a card web having a basis weight of 100 g / m 2 was prepared by a card method, and formed into a sheet using a hydroentanglement method.
  • the laminated body was transferred to a belt conveyor equipped with a 50 mesh, 500 mm wide stainless steel endless net.
  • the curd web is introduced into the steam injection device provided in the lower conveyor, and superheated steam at 330 ° C. is passed from the device toward the thickness direction of the card web. (Perpendicularly) and steam treatment was performed to obtain a fiber structure having a nonwoven fiber structure in this example.
  • Example 3 ⁇ Production of fiber structure>
  • Nine card webs used in Example 1 were laminated and subjected to a hot press treatment at 260 ° C. for 1 minute using a hot press apparatus to obtain a fiber structure.
  • a card web having a basis weight of 50 g / m 2 was prepared by using the mixed cotton fiber by a card method, and six sheets of this web were stacked to obtain a card web having a total basis weight of 300 g / m 2 .
  • the fiber structure of this comparative example was obtained by heat-processing this card
  • the fiber structures of Examples 1 to 3 in which heat-resistant fibers having a glass transition temperature of 100 ° C. or higher are thermally bonded to each other are compared in which the heat-resistant fibers are bonded to each other through a binder. It is superior to the fiber structure of Example 1 in bending stress and tensile strength. In particular, in the fiber structures of Examples 1 and 2 with high uniformity of fiber adhesion, the values of bending stress and tensile strength are significantly higher than those of Comparative Example 1, and the strength is very excellent. I can say that.
  • the bending stress of the fiber structure of Comparative Example 1 is 0, but such a fiber structure is soft enough to bend by its own weight, and the bending stress is below the measurement limit, For example, even when it is constructed as a heat insulating material, it is inferior in handleability because it hangs down without being along a wall surface or a ceiling surface.
  • the bending stress of Example 3 is 0.4 MPa, which is superior to that of Comparative Example 1. If the bending stress is about 0.4 MPa, construction can be performed without sagging from the wall surface. It can be said that it is greatly improved from the viewpoint of.
  • Example 3 Compared with Comparative Example 1, it can be said that the maintenance ratio of tensile strength (tensile strength at 180 ° C./tensile strength at normal temperature) is large and excellent in heat resistance. .
  • Comparative Example 1 since the fibers are bonded to each other with a binder, the fiber adhesion rate is remarkably reduced as shown in Table 1. As a result, the bending stress and It can be said that the tensile strength is extremely low.
  • the present invention is composed of heat resistant fibers and is suitable for heat resistant fiber structures used as heat insulating materials and sound absorbing materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Inorganic Fibers (AREA)
  • Woven Fabrics (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

A heat-resistant fiber structure comprises heat-resistant fibers with a glass transition temperature of at least 100°C and is configured by attaching the heat-resistant fibers to each other.

Description

耐熱性繊維構造体Heat resistant fiber structure
 本発明は、耐熱性繊維により構成され、断熱材や吸音材として使用される耐熱性繊維構造体及びその製造方法に関する。 The present invention relates to a heat-resistant fiber structure that is composed of heat-resistant fibers and is used as a heat insulating material or a sound absorbing material, and a method for manufacturing the same.
 従来、耐熱性繊維を用いた繊維材料は、車両または航空機、建築などの分野において、断熱材、吸音材等に使用されている。 Conventionally, fiber materials using heat-resistant fibers have been used as heat insulating materials, sound absorbing materials, etc. in the fields of vehicles, aircraft, architecture, and the like.
 これらの用途に用いられる繊維構造体などの繊維材料においては、軽量性の観点から低密度であることが求められ、また、曲げ応力や引張強さなどの強力も要求され、特に、高温条件下での強力が重要となる。例えば、航空機の壁面に組み込まれる吸音断熱材や、自動車のエンジン部分に組み込まれるフィルター用途などにおいて、高温時の強力が強く要望されている。 In fiber materials such as fiber structures used for these applications, low density is required from the viewpoint of light weight, and strength such as bending stress and tensile strength is also required. Powerfulness at is important. For example, strength at high temperatures is strongly demanded in sound absorbing heat insulating materials incorporated in aircraft wall surfaces and filter applications incorporated in automobile engine parts.
 また、バインダーを混綿した綿状素材をマット化した断熱吸音材が提案されている。より具体的には、例えば、高耐熱性の無機繊維と、熱溶融温度または熱分解温度が350℃以上である難燃性の有機繊維とを均一に混綿し、得た綿状素材に耐熱性の樹脂バインダーを施し、綿状素材を熱処理することによって全体をマット化した断熱吸音材が開示されている。そして、このような断熱吸音材を使用することにより、高い断熱性および吸音性によって安全性の高い断熱吸音材を提供することができると記載されている。 Also, a heat insulating sound absorbing material in which a cotton-like material mixed with a binder is matted has been proposed. More specifically, for example, a high heat-resistant inorganic fiber and a flame-retardant organic fiber having a heat melting temperature or a thermal decomposition temperature of 350 ° C. or higher are uniformly mixed, and the resulting cotton-like material is heat-resistant. A heat-insulating sound-absorbing material is disclosed in which the resin binder is applied and a cotton-like material is heat-treated to form a mat. And it is described by using such a heat insulation sound-absorbing material that a heat insulation sound-absorbing material with high safety can be provided by high heat insulation and sound absorption.
特許4951507号公報Japanese Patent No. 4951507
 しかし、上記特許文献1に記載の断熱吸音材においては、高い断熱性と吸音性を有する屈曲可能な断熱吸音材が得られるとされているものの、繊維同士をバインダーで接着する構成であるため、強力については十分とはいえず、特に、高温条件下においては、バインダーが溶解するため、強力が低下するという問題があった。 However, in the heat insulating sound absorbing material described in Patent Document 1, although it is said that a bendable heat insulating sound absorbing material having high heat insulating properties and sound absorbing properties is obtained, the fibers are bonded to each other with a binder. The strength is not sufficient, and particularly under high temperature conditions, the binder dissolves, and thus there is a problem that the strength decreases.
 また、バインダーを介して繊維同士を接着した繊維構造体の場合、強力を高めるためにはバインダーの量を増やす必要があるが、バインダーの含有率が高くなると耐熱性繊維の含有率が低下するため、耐熱性が得られず、強力と耐熱性を両立することは困難でるという問題があった。 In addition, in the case of a fiber structure in which fibers are bonded via a binder, it is necessary to increase the amount of the binder in order to increase the strength, but the content of heat-resistant fibers decreases as the binder content increases. There was a problem that heat resistance was not obtained and it was difficult to achieve both strength and heat resistance.
 そこで、本発明は、上述の問題に鑑みてなされたものであり、耐熱性を有するとともに、曲げ応力や引張強さなどの強力に優れた耐熱性繊維構造体を提供することを目的とする。 Therefore, the present invention has been made in view of the above-described problems, and an object thereof is to provide a heat-resistant fiber structure having heat resistance and excellent strength such as bending stress and tensile strength.
発明を解決するための手段Means for Solving the Invention
 上記目的を達成するために、本発明の耐熱性繊維構造体は、ガラス転移温度が100℃以上の耐熱性繊維を含む繊維構造体であって、耐熱性繊維同士が接着していることを特徴とする。 In order to achieve the above object, the heat-resistant fiber structure of the present invention is a fiber structure containing heat-resistant fibers having a glass transition temperature of 100 ° C. or higher, and the heat-resistant fibers are bonded to each other. And
 本発明によれば、耐熱性を有するとともに、曲げ応力や引張強さなどの強力に優れた耐熱性繊維構造体を提供することができる。 According to the present invention, it is possible to provide a heat resistant fiber structure having heat resistance and excellent strength such as bending stress and tensile strength.
 本発明の耐熱性繊維構造体(以下、単に「繊維構造体」と言う。)は、互いに接着された複数の耐熱性繊維により構成されるものである。そして、本発明の繊維構造体は、上記従来の繊維構造体とは異なり、低融点のバインダー繊維を使用せず、耐熱性繊維同士を、直接、接着させることにより、優れた耐熱性と強力を備えるという特性を有する。 The heat-resistant fiber structure of the present invention (hereinafter simply referred to as “fiber structure”) is composed of a plurality of heat-resistant fibers bonded to each other. And unlike the said conventional fiber structure, the fiber structure of this invention does not use a low-melting-point binder fiber, but has excellent heat resistance and strength by directly bonding heat-resistant fibers to each other. It has the characteristic of providing.
 なお、ここで言う「接着」とは、加熱により繊維が軟化し、繊維同士がその交点で重なり合う力によって変形して噛み合うか、または、繊維同士が融けて一体化した状態のことを言う。 The term “adhesion” as used herein refers to a state in which fibers are softened by heating and the fibers are deformed and meshed by the overlapping force at the intersection, or the fibers are fused and integrated.
 <耐熱性繊維>
 繊維構造体を構成する耐熱性繊維としては、ガラス転移温度Tが100℃以上である繊維が使用される。
<Heat resistant fiber>
As the heat-resistant fiber constituting the fiber structure, a fiber having a glass transition temperature Tg of 100 ° C. or higher is used.
 ここで、一般に、耐熱性の指標として、ガラス転移温度(高分子がミクロな分子運動を始める温度)が使用されているが、このガラス転移点が100℃以上の樹脂は、エンジニアリングプラスチックと呼ばれ、耐熱性の要求される用途に好適に使用される。そして、この樹脂を原料に用いた繊維を耐熱性繊維と呼ぶ。 Here, in general, the glass transition temperature (the temperature at which a polymer starts microscopic molecular motion) is used as an index of heat resistance. A resin having a glass transition point of 100 ° C. or higher is called an engineering plastic. It is preferably used for applications requiring heat resistance. And the fiber using this resin as a raw material is called heat resistant fiber.
 この耐熱性繊維は、高温の過熱蒸気(150℃~600℃)により軟化して、自己接着が可能な繊維であり、例えば、ポリアミド繊維、メタアラミド繊維、パラアラミド繊維、メラミン繊維、ポリベンゾオキサゾール繊維、ポリベンゾイミダゾール繊維、ポリベンゾチアゾール繊維、ポリアリレート繊維、ポリエーテルスルホン繊維、液晶ポリエステル繊維、ポリイミド繊維、ポリエーテルイミド繊維、ポリエーテルエーテルケトン繊維、ポリエーテルケトン繊維、ポリエーテルケトンケトン繊維、ポリアミドイミド繊維等を挙げることができる。ない、これらの繊維は、単独で使用してもよく、2種以上の混合体として使用してもよい。 This heat-resistant fiber is a fiber that is softened by high-temperature superheated steam (150 ° C. to 600 ° C.) and can be self-adhesive. For example, polyamide fiber, meta-aramid fiber, para-aramid fiber, melamine fiber, polybenzoxazole fiber, Polybenzimidazole fiber, polybenzothiazole fiber, polyarylate fiber, polyethersulfone fiber, liquid crystal polyester fiber, polyimide fiber, polyetherimide fiber, polyetheretherketone fiber, polyetherketone fiber, polyetherketoneketone fiber, polyamideimide A fiber etc. can be mentioned. None of these fibers may be used alone or as a mixture of two or more.
 なお、これらの繊維のうち、低吸水性、及び耐薬品性の観点から、ポリアミド繊維を使用することが好ましく、難燃性、及び低発煙性の観点から、ポリエーテルイミド繊維を使用することが好ましい。 Of these fibers, polyamide fibers are preferably used from the viewpoint of low water absorption and chemical resistance, and polyetherimide fibers are used from the viewpoint of flame retardancy and low smoke generation. preferable.
 ポリアミド繊維としては、例えば、脂肪族ジアミンと芳香族成分を主とするジカルボン酸とから得られるポリアミドである半芳香族ポリアミドからなる繊維が使用される。脂肪族ジアミンは下記一般式(1)で示され、n=4~12のものが好ましく、n=6およびn=9がより好ましく、n=9が特に好ましい。 As the polyamide fiber, for example, a fiber made of a semi-aromatic polyamide which is a polyamide obtained from an aliphatic diamine and a dicarboxylic acid mainly containing an aromatic component is used. The aliphatic diamine is represented by the following general formula (1), preferably n = 4 to 12, more preferably n = 6 and n = 9, and particularly preferably n = 9.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 芳香族成分を主とするジカルボン酸とは、少なくとも60モル%以上が芳香族ジカルボン酸であるものをいう。好ましい例としては、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等である。脂肪族ジアミンと芳香族ジカルボン酸の組合せ例としては脂肪族ジアミン(上記一般式(1)のn=9)とテレフタル酸の組み合わせが好ましい。 The dicarboxylic acid mainly composed of an aromatic component means that at least 60 mol% or more is an aromatic dicarboxylic acid. Preferred examples include terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid and the like. As an example of a combination of an aliphatic diamine and an aromatic dicarboxylic acid, a combination of an aliphatic diamine (n = 9 in the above general formula (1)) and terephthalic acid is preferable.
 また、ポリエーテルイミド繊維としては、融点を持たない非晶性のポリエーテルイミド繊維が使用され、ガラス転移温度Tが200℃以上であってもよく、細繊度であっても、200℃などの高温条件下で耐熱性を保持するものが好ましい。このような耐熱性は、200℃における乾熱収縮率により判断することが可能であり、本発明の耐熱性繊維として使用される非晶性ポリエーテルイミド系繊維は、200℃における乾熱収縮率が5.0%以下であってもよく、具体的には、乾熱収縮率が-1.0~5.0%であることが好ましい。 Further, as the polyetherimide fiber, an amorphous polyetherimide fiber having no melting point is used, and the glass transition temperature Tg may be 200 ° C. or higher, even if the fineness is 200 ° C. Those that retain heat resistance under high temperature conditions are preferred. Such heat resistance can be judged from the dry heat shrinkage at 200 ° C., and the amorphous polyetherimide fiber used as the heat resistant fiber of the present invention is dry heat shrinkage at 200 ° C. May be 5.0% or less, and specifically, the dry heat shrinkage is preferably -1.0 to 5.0%.
 また、非晶性ポリエーテルイミド系繊維は、ポリマーに由来して難燃性にも優れており、例えば、限界酸素指数値(LOI値)が25以上であってもよく、好ましくは28以上、より好ましくは30以上であってもよい。 Further, the amorphous polyetherimide fiber is derived from a polymer and is excellent in flame retardancy. For example, the limiting oxygen index value (LOI value) may be 25 or more, preferably 28 or more, More preferably, it may be 30 or more.
 更に、非晶性ポリエーテルイミド系繊維は、単繊維繊度が15.0dtex以下であってもよい。製造コスト、取り扱い性の観点からは、好ましくは単繊維繊度が0.1~12.0dtexであり、0.5~10.0dtexであると更に好ましい。 Further, the amorphous polyetherimide fiber may have a single fiber fineness of 15.0 dtex or less. From the viewpoint of production cost and handleability, the single fiber fineness is preferably 0.1 to 12.0 dtex, and more preferably 0.5 to 10.0 dtex.
 また、非晶性ポリエーテルイミド系繊維は、室温における繊維強度が2.0cN/dtex以上であることが好ましい。繊維強度が2.0cN/dtex未満の場合、紙や不織布や織物などの布帛にする際の工程通過性が悪化する場合があり、また使用用途に制限がかかるので好ましくない。より好ましくは2.3~4.0cN/dtex、2.5~4.0cN/dtexであると更に好ましい。 Further, it is preferable that the amorphous polyetherimide fiber has a fiber strength at room temperature of 2.0 cN / dtex or more. When the fiber strength is less than 2.0 cN / dtex, the process passability when making a fabric such as paper, non-woven fabric, or woven fabric may be deteriorated. More preferably, it is 2.3 to 4.0 cN / dtex, and further preferably 2.5 to 4.0 cN / dtex.
 また、耐熱性繊維の横断面形状(繊維の長さ方向に垂直な断面形状)は、一般的な断面形状である丸型断面や異型断面(偏平状、楕円状、多角形状、3~14葉状、T字状、H字状、V字状、ドッグボーン(I字状)など)に限定されず、中空断面状などであってもよい。 The cross-sectional shape of the heat-resistant fiber (cross-sectional shape perpendicular to the length direction of the fiber) is a general cross-sectional shape such as a round cross-section or an irregular cross-section (flat, elliptical, polygonal, 3-14 leaf shape). , T-shape, H-shape, V-shape, dogbone (I-shape, etc.), and may be a hollow cross-section.
 耐熱性繊維の平均繊度は、用途に応じて、例えば、0.01~100dtexの範囲から選択でき、好ましくは0.1~50dtex、さらに好ましくは0.5~30dtex(特に1~10dtex)である。平均繊度がこの範囲にあると、繊維の強度と接着性の発現とのバランスに優れる。 The average fineness of the heat-resistant fiber can be selected, for example, from the range of 0.01 to 100 dtex, preferably 0.1 to 50 dtex, more preferably 0.5 to 30 dtex (particularly 1 to 10 dtex) depending on the application. . When the average fineness is within this range, the balance between the strength of the fiber and the expression of adhesiveness is excellent.
 耐熱性繊維の平均繊維長は、例えば、10~100mmの範囲から選択でき、好ましくは20~80mm、さらに好ましくは25~75mm(特に35~55mm)である。平均繊維長がこの範囲にあると、繊維が充分に絡み合うため、繊維構造体の機械的強度が向上する。 The average fiber length of the heat resistant fiber can be selected, for example, from a range of 10 to 100 mm, preferably 20 to 80 mm, more preferably 25 to 75 mm (especially 35 to 55 mm). When the average fiber length is within this range, the fibers are sufficiently entangled, so that the mechanical strength of the fiber structure is improved.
 耐熱性繊維の捲縮率は、例えば、1~50%、好ましくは3~40%、さらに好ましくは5~30%(特に10~20%)である。また、捲縮数は、例えば、1~100個/インチ、好ましくは5~50個/インチ、さらに好ましくは10~30個/インチである。 The crimp rate of the heat resistant fiber is, for example, 1 to 50%, preferably 3 to 40%, more preferably 5 to 30% (particularly 10 to 20%). The number of crimps is, for example, 1 to 100 pieces / inch, preferably 5 to 50 pieces / inch, and more preferably 10 to 30 pieces / inch.
 <繊維構造体>
 本発明の繊維構造体は、上述の耐熱性繊維を含み、耐熱性繊維同士が接着している構造を有しており、その形状は用途に応じて選択できるが、通常、シート状又は板状である。
<Fiber structure>
The fiber structure of the present invention includes the above-described heat-resistant fiber and has a structure in which the heat-resistant fibers are bonded to each other, and the shape can be selected according to the use, but is usually a sheet or plate shape. It is.
 また、本発明の繊維構造体において、高い表面硬さ及び曲げ硬さを有するとともに、軽量性と通気性とをバランスよく備えた不織繊維構造を有するためには、不織繊維のウェブを構成する繊維の配列状態及び接着状態が適度に調整されている必要がある。すなわち、繊維ウェブを構成する繊維が、概ね繊維ウェブ(不織繊維)面に対して平行に配列しながら、お互いに交差するように配列させるのが望ましい。 Further, in the fiber structure of the present invention, in order to have a non-woven fiber structure having a high surface hardness and bending hardness, and having a good balance between lightness and air permeability, a non-woven fiber web is formed. It is necessary that the arrangement state and adhesion state of the fibers to be adjusted are appropriately adjusted. That is, it is desirable that the fibers constituting the fiber web are arranged so as to intersect each other while being arranged substantially parallel to the surface of the fiber web (non-woven fiber).
 さらに、本発明の繊維構造体は、各繊維が交差した交点で接着しているのが好ましい。特に、高い硬度及び強度が要求される繊維構造体(成形体)は、交点以外の繊維が略平行に配列している状態において、数本~数十本程度で束状に接着した束状接着繊維を形成していてもよい。これらの繊維が、単繊維同士の交点、束状繊維同士の交点、又は単繊維と束状繊維との交点において接着した構造を部分的に形成することにより、「スクラム」を組んだような構造(繊維が交点部で接着し、網目のように絡み合った構造、又は交点で繊維が接着し隣接する繊維を互いに拘束する構造)とし、目的とする曲げ挙動や表面硬度などを発現させることができる。本発明では、このような構造が、繊維ウェブの面方向及び厚さ方向に沿って概ね均一に分布するような形態とすることが望ましい。 Furthermore, it is preferable that the fiber structure of the present invention is bonded at the intersection where the fibers intersect. In particular, a fiber structure (molded body) that requires high hardness and strength is a bundle-like adhesive that is bonded in a bundle of several to several tens when fibers other than the intersections are arranged substantially in parallel. Fibers may be formed. A structure in which "scram" is assembled by partially forming a structure in which these fibers are bonded at the intersection of single fibers, the intersection of bundle fibers, or the intersection of single fibers and bundle fibers (Structure in which the fibers are bonded at the intersection and entangled like a mesh, or the structure in which the fibers are bonded at the intersection and constrain the adjacent fibers to each other), and the desired bending behavior, surface hardness, etc. can be expressed. . In the present invention, it is desirable that such a structure be distributed substantially uniformly along the surface direction and the thickness direction of the fiber web.
 なお、ここでいう「概ね繊維ウェブ面に対し平行に配列している」とは、局部的に多数の繊維が厚さ方向に沿って配列している部分が繰り返し存在するようなことがない状態を示す。より具体的には、繊維構造体の繊維ウェブにおける任意の断面を顕微鏡観察した際に、繊維ウェブでの厚さの30%以上に亘り、厚さ方向に連続して延びる繊維の存在割合(本数割合)が、その断面における全繊維に対して10%以下(特に、5%以下)である状態をいう。 Here, “arranged substantially parallel to the surface of the fiber web” means that a portion where a large number of fibers are locally arranged along the thickness direction is not repeatedly present. Indicates. More specifically, when an arbitrary cross section of the fiber web of the fiber structure is observed with a microscope, the existence ratio (number of fibers) continuously extending in the thickness direction over 30% of the thickness of the fiber web. The ratio) is 10% or less (particularly 5% or less) with respect to all the fibers in the cross section.
 繊維を繊維ウェブ面に対して平行に配列するのは、厚さ方向(ウェブ面に対して垂直な方向)に沿って配向している繊維が多く存在すると周辺に繊維配列の乱れが生じて不織繊維内に必要以上に大きな空隙を生じ、繊維構造体の曲げ強度や表面硬さが低減するためである。従って、できるだけこの空隙を少なくすることが好ましく、このために繊維を可能な限り繊維ウェブ面に対して平行に配列させるのが望ましい。 Fibers are arranged in parallel to the fiber web surface because if there are many fibers oriented along the thickness direction (perpendicular to the web surface), the fiber arrangement may be disturbed in the periphery. This is because an unnecessarily large void is generated in the woven fiber, and the bending strength and surface hardness of the fiber structure are reduced. Therefore, it is preferable to reduce this gap as much as possible. For this purpose, it is desirable to arrange the fibers as parallel to the fiber web surface as possible.
 特に、本発明の繊維構造体がシート状又は板状の成形体である場合に、繊維構造体の厚さ方向に荷重がかかった場合、大きな空隙部が存在すると、この空隙部が荷重により潰れて成形体表面が変形し易くなる。さらに、この荷重が成形体全面にかかると全体的に厚さが小さくなり易くなる。そこで、繊維構造体自体を空隙のない樹脂充填物とすればこのような問題を回避できるが、これでは通気度が低下し、曲げたときの折れ難さ(耐折性)、軽量性を確保するのが困難となる。 In particular, when the fibrous structure of the present invention is a sheet-like or plate-like molded body, when a load is applied in the thickness direction of the fibrous structure, if there is a large void, the void is crushed by the load. As a result, the surface of the molded body is easily deformed. Further, when this load is applied to the entire surface of the molded body, the thickness tends to be reduced as a whole. Therefore, this problem can be avoided if the fiber structure itself is made of a resin filling without voids, but this reduces the air permeability, ensuring that it is difficult to bend when bent (folding resistance) and lightweight. It becomes difficult to do.
 一方で、荷重による厚さ方向への変形を小さくするために、繊維を細くし、より密に繊維を充填することが考えられるが、細い繊維のみで軽量性と通気性とを確保しようとすると、各々の繊維の剛性が低くなり、逆に曲げ応力が低下する。曲げ応力を確保するためには、繊維径をある程度太くすることが必要であるが、単純に太い繊維を混合したのでは、太い繊維同士の交点付近で、大きな空隙ができやすく、厚さ方向へ変形し易くなる。 On the other hand, in order to reduce the deformation in the thickness direction due to the load, it is conceivable to make the fibers thinner and more densely filled with the fibers, but when trying to ensure lightweight and breathability with only thin fibers , The rigidity of each fiber is lowered, and the bending stress is reduced. In order to ensure bending stress, it is necessary to increase the fiber diameter to some extent. However, if thick fibers are simply mixed, large voids are likely to be formed near the intersections of the thick fibers in the thickness direction. It becomes easy to deform.
 そこで、本発明の繊維構造体は、繊維の方向をウェブの面方向に沿って平行に並べ、分散させる(又は繊維方向をランダム方向に向ける)ことにより、繊維同士がお互いに交差し、その交点で接着することにより、小さな空隙を生じて軽量性を確保している。さらに、このような繊維構造が連続することにより、適度な通気度及び表面硬さも確保している。特に、他の繊維と交差せず概ね平行に並んでいる箇所において、繊維長さ方向に並行に接着した束状繊維を形成させた場合には、単繊維のみから構成される場合に比べて高い曲げ強度を主に確保できる。硬さ及び強度が高い繊維構造体を望む場合には、繊維一本一本が交差する交点で接着しながら、交点と交点との間で、各繊維が束状に並ぶ部分において、数本の束状繊維を形成することが好ましい。このような構造は、成形体断面を観察したときの単繊維の存在状態から確認できる。 Therefore, the fiber structure of the present invention is arranged such that the directions of the fibers are arranged in parallel along the surface direction of the web and dispersed (or the fiber directions are directed in a random direction), so that the fibers intersect each other, and the intersections thereof. By adhering with, a small gap is generated to ensure light weight. Furthermore, since such a fiber structure is continuous, an appropriate air permeability and surface hardness are secured. In particular, when a bundle of fibers bonded in parallel in the fiber length direction is formed in a place where the fibers are aligned in parallel without intersecting with other fibers, it is higher than the case where the fibers are composed of only single fibers. Bending strength can be mainly secured. When a fiber structure having high hardness and strength is desired, several fibers are bonded at the intersection between the intersection points while the fibers are bonded at the intersection where the fibers are crossed. It is preferable to form bundle fibers. Such a structure can be confirmed from the existence state of the single fiber when the cross section of the compact is observed.
 また、本発明の繊維構造体においては、耐熱性繊維の接着による繊維接着率が10~85%であることが好ましく、25~75%であることがより好ましく、40~65%であることが更に好ましい。 In the fiber structure of the present invention, the fiber adhesion rate due to adhesion of heat-resistant fibers is preferably 10 to 85%, more preferably 25 to 75%, and more preferably 40 to 65%. Further preferred.
 これは、繊維接着率が10%未満の場合は、硬さ、曲げ応力、及び引張強さが低下するという不都合が生じる場合があり、85%よりも大きい場合は、繊維間の空隙が小さくなるため、見掛け密度が大きくなりすぎて軽量性が損なわれるという不都合が生じる場合があるためである。即ち、繊維接着率を10~85%に設定することにより、軽量性を損なうことなく、曲げ応力や引張強さなどの強力を一層向上させることが可能になる。 This may cause inconvenience that the hardness, bending stress, and tensile strength are reduced when the fiber adhesion is less than 10%, and the gap between the fibers becomes smaller when it is greater than 85%. For this reason, there is a case where the apparent density becomes too large and the lightness is impaired. That is, by setting the fiber adhesion rate to 10 to 85%, it becomes possible to further improve the strength such as bending stress and tensile strength without impairing the lightness.
 なお、この繊維接着率は、後述する実施例に記載の方法で測定でき、不織繊維断面における全繊維の断面数に対して、2本以上接着した繊維の断面数の割合を示す。従って、繊維接着率が低いことは、複数の繊維同士が接着する割合(集束して接着した繊維の割合)が少ないことを意味する。 In addition, this fiber adhesion rate can be measured by the method described in the examples described later, and indicates the ratio of the number of cross sections of two or more fibers bonded to the total number of cross sections of the non-woven fiber cross section. Therefore, a low fiber adhesion rate means that the proportion of the plurality of fibers adhering to each other (the proportion of the fibers that are converged and adhered) is small.
 また、不織繊維構造を構成する耐熱性繊維は、各々の繊維の接点で接着されているが、可能な限り少ない接点数で大きな曲げ応力を発現するためには、この接着点が、厚さ方向に沿って、繊維構造体の表面から内部(中央部)、そして裏面に至るまで、均一に分布していることが好ましい。接着点が表面又は内部などに集中すると、充分な曲げ応力を確保するのが困難となるだけでなく、接着点の少ない部分における形態安定性が低下する。従って、形態安定性を低下させることなく、曲げ応力をより一層向上させるとの観点から、繊維構造体の厚さ方向の断面において、厚さ方向に3等分した3つの領域のうち、中央部(中心の部分)における繊維接着率が、いずれも上述の範囲(10~85%)にあることが好ましい。 In addition, the heat-resistant fibers constituting the non-woven fiber structure are bonded at the contact points of the respective fibers, but in order to develop a large bending stress with as few contacts as possible, this bonding point has a thickness of It is preferable to distribute uniformly along the direction from the surface of the fiber structure to the inside (center portion) and the back surface. When the adhesion points are concentrated on the surface or inside, it is not only difficult to secure a sufficient bending stress, but also the form stability in a portion where the adhesion points are small. Therefore, from the viewpoint of further improving the bending stress without reducing the form stability, in the cross section in the thickness direction of the fiber structure, the central portion of the three regions divided in three in the thickness direction It is preferable that the fiber adhesion rate in the (center portion) is in the above range (10 to 85%).
 さらに、各領域における繊維接着率の均一性(即ち、繊維接着率の最大値と最小値との差)は、20%以下(例えば、0.1~20%)が好ましく、15%以下(例えば、0.5~15%)がより好ましく、10%以下(例えば、1~10%)が更に好ましい。 Further, the uniformity of the fiber adhesion rate in each region (that is, the difference between the maximum value and the minimum value of the fiber adhesion rate) is preferably 20% or less (for example, 0.1 to 20%), preferably 15% or less (for example, 0.5 to 15%), more preferably 10% or less (for example, 1 to 10%).
 本発明の繊維構造体は、繊維接着率が、厚さ方向において、このような均一性を有しているため、硬さや曲げ強度、耐折性や靱性において優れている。 The fiber structure of the present invention is excellent in hardness, bending strength, folding resistance and toughness because the fiber adhesion rate has such uniformity in the thickness direction.
 なお、本発明において、「厚さ方向に三等分した領域」とは、板状の繊維構造体の厚さ方向に対して直交する方向にスライスして三等分した各領域のことを意味する。 In the present invention, “region divided into three in the thickness direction” means each region divided into three equal parts by slicing in a direction perpendicular to the thickness direction of the plate-like fiber structure. To do.
 このように、本発明の繊維構造体では、耐熱性繊維による接着が均一に分散して点接着しているだけでなく、これらの点接着が短い接着点距離(例えば、数十~数百μm)で緻密にネットワーク構造を張り巡らしている。このような構造により、本発明の繊維構造体は、外力が作用しても、繊維構造が有する柔軟性により、歪みに対して追従性が高くなるとともに、微細に分散した繊維の各接着点に外力が分散して小さくなるため、高い曲げ応力や引張強さを発現していると推定できる。これに対して、バインダー繊維を介して耐熱性繊維同士を接着する従来の繊維構造体は、耐熱性を確保するためにバインダー繊維の量が制限されるため接着点の数が少なく、またバインダー繊維の量を増やして接着点を増やしたとしても耐熱性が得られず、さらに繊維構造体の厚さ方向の接着を均一に分散させることも難しいため、歪みが発生し易く、曲げ応力や引張強さが低下すると推定できる。 As described above, in the fiber structure of the present invention, not only the adhesion by the heat-resistant fiber is uniformly dispersed and the point adhesion is performed, but also the point adhesion of these point adhesion is short (for example, several tens to several hundreds μm). ) In the network structure. With such a structure, the fiber structure of the present invention has a high followability to strain due to the flexibility of the fiber structure even when an external force is applied, and at each adhesion point of finely dispersed fibers. Since the external force is dispersed and reduced, it can be estimated that high bending stress and tensile strength are expressed. On the other hand, the conventional fiber structure in which heat resistant fibers are bonded to each other through binder fibers has a small number of bonding points because the amount of binder fibers is limited to ensure heat resistance, and the binder fibers. Even if the amount of adhesive is increased and the adhesion point is increased, heat resistance cannot be obtained, and furthermore, it is difficult to uniformly disperse the adhesive in the thickness direction of the fiber structure. Can be estimated.
 本発明の繊維構造体においては、厚さ方向の断面における単繊維(単繊維端面)の存在頻度は特に限定されない。例えば、その断面の任意の1mmに存在する単繊維の存在頻度が100個/mm以上(例えば、100~300個)であってもよいが、特に、軽量性よりも機械的特性が要求される場合には、単繊維の存在頻度は、例えば、100個/mm以下、好ましくは60個/mm以下(例えば、1~60個/mm)、さらに好ましくは25個/mm以下(例えば、3~25個/mm)であってもよい。単繊維の存在頻度が多すぎると、繊維の接着が少なく、繊維構造体からなる成形体の強度が低下する。なお、単繊維の存在頻度が100個/mmを超えると繊維の束状接着が少なくなるため、高い曲げ強度の確保が困難となる。さらに、板状成形体の場合、束状に接着された繊維が成形体の厚さ方向に薄く、面方向(長さ方向又は幅方向)に幅広い形を有するのが好ましい。 In the fiber structure of the present invention, the existence frequency of single fibers (single fiber end faces) in the cross section in the thickness direction is not particularly limited. For example, the existence frequency of single fibers existing at an arbitrary 1 mm 2 of the cross section may be 100 fibers / mm 2 or more (for example, 100 to 300 fibers), but in particular, mechanical characteristics are required rather than light weight. In such a case, the frequency of single fibers is, for example, 100 / mm 2 or less, preferably 60 / mm 2 or less (for example, 1 to 60 / mm 2 ), and more preferably 25 / mm 2. It may be the following (for example, 3 to 25 pieces / mm 2 ). When the presence frequency of the single fiber is too high, the adhesion of the fiber is small, and the strength of the molded body made of the fiber structure is lowered. If the frequency of single fibers exceeds 100 / mm 2 , fiber bundle adhesion decreases, making it difficult to ensure high bending strength. Furthermore, in the case of a plate-shaped molded body, it is preferable that the fibers bonded in a bundle shape are thin in the thickness direction of the molded body and have a wide shape in the surface direction (length direction or width direction).
 なお、本発明においては、単繊維の存在頻度は、次のようにして測定する。すなわち、成形体断面の走査型電子顕微鏡(SEM)写真の中から選んだ1mmに相当する範囲を観察し、単繊維断面の数を数える。写真の中から任意の数箇所(例えば、無作為に選択した10箇所)について同様に観察し、単繊維端面の単位面積当たりの平均値を単繊維の存在頻度とする。この際、断面において、単繊維の状態である繊維の数を全て数える。すなわち、完全に単繊維の状態である繊維以外に、数本の繊維が接着した繊維であっても、断面において接着部分から離れて単繊維の状態にある繊維は単繊維として数える。 In the present invention, the presence frequency of single fibers is measured as follows. That is, the range corresponding to 1 mm 2 selected from the scanning electron microscope (SEM) photograph of the cross section of the compact is observed, and the number of single fiber cross sections is counted. Arbitrary several places (for example, 10 places selected at random) are observed in the same manner, and the average value per unit area of the single fiber end face is defined as the existence frequency of single fibers. At this time, all the number of fibers in a single fiber state are counted in the cross section. That is, in addition to fibers that are completely in a single fiber state, even if fibers are bonded to each other, fibers that are in a single fiber state apart from the bonded portion in the cross section are counted as single fibers.
 繊維構造体中の耐熱性繊維は、厚さ方向の両端を結ばないことにより(厚さ方向で繊維が繊維構造体を貫通しないことにより)、繊維の抜けなどによる繊維構造体の欠落が抑制できる。耐熱性繊維をこのように配置するための製造方法は特に限定されないが、耐熱性繊維を交絡させた繊維成形体を複数積層して、過熱蒸気で接着する手段が簡便かつ確実である。また、繊維長と繊維構造体の厚さの関係を調整することにより、繊維構造体の厚さ方向の両端を結ぶ繊維を大幅に低減できる。このような観点から、繊維構造体の厚さは、繊維長に対して10%以上(例えば、10~1000%)、好ましくは40%以上(例えば、40~800%)、より好ましくは60%以上(例えば、60~700%)、更に好ましくは100%以上(例えば、100~600%)である。繊維構造体の厚さと繊維長とがこのような範囲にあると、繊維構造体の曲げ応力などの機械的強度が低下することなく、繊維の抜けなどによる繊維構造体の欠落が抑制できる。 The heat-resistant fiber in the fiber structure can suppress the loss of the fiber structure due to the loss of the fiber by not connecting the both ends in the thickness direction (the fiber does not penetrate the fiber structure in the thickness direction). . A manufacturing method for arranging the heat-resistant fibers in this way is not particularly limited, but a means for laminating a plurality of fiber molded bodies entangled with the heat-resistant fibers and bonding them with superheated steam is simple and reliable. Moreover, the fiber which connects the both ends of the thickness direction of a fiber structure can be reduced significantly by adjusting the relationship between fiber length and the thickness of a fiber structure. From such a viewpoint, the thickness of the fiber structure is 10% or more (for example, 10 to 1000%), preferably 40% or more (for example, 40 to 800%), more preferably 60% with respect to the fiber length. Or more (for example, 60 to 700%), more preferably 100% or more (for example, 100 to 600%). When the thickness and fiber length of the fiber structure are within such ranges, the mechanical structure such as bending stress of the fiber structure is not lowered, and the loss of the fiber structure due to the fiber dropping or the like can be suppressed.
 このように本発明の繊維構造体の密度や機械的特性は、束状接着繊維の割合や存在状態に影響を受ける。接着の度合いを示す繊維接着率は、SEMを用いて、繊維構造体の断面を拡大した写真を撮影し、所定の領域において、接着した繊維断面の数に基づいて簡便に測定できる。しかし、束状に繊維が接着している場合には、各繊維が束状に又は交点で接着しているため、特に密度が高い場合には、繊維単体として観察することが困難になり易い。 As described above, the density and mechanical properties of the fiber structure of the present invention are affected by the ratio and the presence state of the bundle-like adhesive fibers. The fiber adhesion rate indicating the degree of adhesion can be easily measured based on the number of bonded fiber cross sections in a predetermined region by taking a photograph of an enlarged cross section of the fiber structure using SEM. However, when the fibers are bonded in a bundle shape, the fibers are bonded in a bundle shape or at an intersection, and therefore, when the density is particularly high, it is difficult to observe as a single fiber.
 また、本発明では、この繊維接着の度合を反映する指標として、繊維構造体の断面(厚さ方向の断面)における繊維及び束状の繊維束が形成する断面の占める面積比率、すなわち繊維充填率を用いることもできる。厚さ方向の断面における繊維充填率は、例えば、20~80%、好ましくは20~60%、さらに好ましくは30~50%である。繊維充填率が小さすぎると、繊維構造体内の空隙が多すぎて、所望の表面硬さ及び曲げ応力を確保するのが困難になる。逆に、大きすぎると、表面硬さ及び曲げ応力を充分に確保できるが、非常に重くなり、通気度が低下する傾向にある。 In the present invention, as an index reflecting the degree of fiber adhesion, the area ratio occupied by the cross section formed by the fiber and the bundle of fiber bundles in the cross section (cross section in the thickness direction) of the fiber structure, that is, the fiber filling rate Can also be used. The fiber filling rate in the cross section in the thickness direction is, for example, 20 to 80%, preferably 20 to 60%, and more preferably 30 to 50%. If the fiber filling rate is too small, there are too many voids in the fiber structure, making it difficult to ensure the desired surface hardness and bending stress. On the other hand, if it is too large, the surface hardness and bending stress can be sufficiently secured, but it becomes very heavy and the air permeability tends to decrease.
 本発明の繊維構造体(特に、束状に繊維が接着し、単繊維の存在頻度が100個/mm以下である繊維構造体)は、板状(ボード状)であっても、荷重により凹形状が形成される等の変形が発生し難い表面硬さを有することが好ましい。そのような指標として、Aタイプデュロメータ硬さ試験(JIS  K6253の「加硫ゴムおよび熱可塑性ゴムの硬さ試験法」に準拠した試験)による硬度が、例えば、A50以上、好ましくはA60以上であり、より好ましくはA70以上である。この硬度が小さすぎると、表面にかかる荷重により変形し易い。 The fiber structure of the present invention (particularly, the fiber structure in which fibers are bonded in a bundle and the frequency of single fibers is 100 / mm 2 or less) is plate-like (board-like), depending on the load. It is preferable to have a surface hardness that hardly causes deformation such as formation of a concave shape. As such an index, the hardness by an A-type durometer hardness test (a test in accordance with the “hardness test method for vulcanized rubber and thermoplastic rubber” of JIS K6253) is, for example, A50 or more, preferably A60 or more. More preferably, it is A70 or more. If this hardness is too small, it is likely to be deformed by a load applied to the surface.
 このような束状接着繊維を含む繊維構造体は、曲げ強度及び表面硬さと軽量性と通気性とを高い次元でバランスさせるために、束状接着繊維の存在頻度が少なく、かつ各繊維(束状繊維及び/又は単繊維)の交点で高い頻度で接着していることが好ましい。但し、繊維接着率が高すぎると、接着している点同士の距離が近接し過ぎて柔軟性が低下し、外部応力による歪みの解消が困難となる。このため、本発明の繊維構造体は、上述のごとく、繊維接着率が85%以下であることが好ましい。繊維接着率が高すぎないことにより、繊維構造体内に細かな空隙による通路が確保でき、軽量性と通気度とを向上できる。従って、できるだけ少ない接点数で大きな曲げ応力、表面硬さ及び通気度を発現するためには、繊維接着率が繊維構造体の表面から内部(中央部)、そして裏面に至るまで、厚さ方向に沿って均一に分布しているのが好ましい。 A fiber structure including such bundle-like adhesive fibers has a low frequency of bundle-like adhesive fibers, and each fiber (bundle) in order to balance bending strength, surface hardness, lightness, and air permeability at a high level. It is preferable that the fibers are bonded at a high frequency at the intersection of the filamentous fibers and / or single fibers). However, if the fiber adhesion rate is too high, the distances between the bonded points are too close to each other, the flexibility is lowered, and it becomes difficult to eliminate distortion due to external stress. For this reason, as described above, the fiber structure of the present invention preferably has a fiber adhesion rate of 85% or less. When the fiber adhesion rate is not too high, a passage by a fine gap can be secured in the fiber structure, and the lightness and air permeability can be improved. Therefore, in order to develop a large bending stress, surface hardness and air permeability with as few contacts as possible, the fiber adhesion rate increases in the thickness direction from the surface of the fiber structure to the inside (center) and back. It is preferable to distribute uniformly along.
 また、接着点が表面や内部などに集中すると、前述の曲げ応力や形態安定性に加えて、通気度を確保するのも困難となる。そこで、本発明の繊維構造体では、厚さ方向の断面において、厚さ方向に3等分した3つの領域(表面、中央部、裏面)のうち、中央部の繊維接着率が上述した範囲にあることが好ましく、表面、中央部および裏面のいずれもが上述した範囲にあることがより好ましい。さらに、各領域における繊維接着率の最大値と最小値との差が20%以下(例えば、0.1~20%)であってもよく、好ましくは15%以下(例えば、0.5~15%)、さらに好ましくは10%以下(例えば、1~10%)である。本発明では、繊維接着率が、厚さ方向において均一であると、曲げ応力や引張強さ、耐折性や靱性などにおいて優れる。本発明における繊維接着率は、後述する実施例に記載の方法で測定する。 In addition, when the adhesion points are concentrated on the surface or inside, it becomes difficult to ensure the air permeability in addition to the bending stress and the shape stability described above. Therefore, in the fiber structure of the present invention, in the cross section in the thickness direction, among the three regions (front surface, central portion, back surface) divided into three in the thickness direction, the fiber adhesion rate in the central portion is in the above-described range. It is preferable that all of the front surface, the central portion, and the back surface are in the above-described range. Further, the difference between the maximum value and the minimum value of the fiber adhesion rate in each region may be 20% or less (for example, 0.1 to 20%), preferably 15% or less (for example, 0.5 to 15). %), More preferably 10% or less (for example, 1 to 10%). In the present invention, if the fiber adhesion rate is uniform in the thickness direction, the bending stress, tensile strength, folding resistance, toughness and the like are excellent. The fiber adhesion rate in this invention is measured by the method as described in the Example mentioned later.
 本発明の繊維構造体は、バインダー繊維を介して耐熱性繊維を接着した従来の繊維構造体では得られないような曲げ挙動を示すことも特徴の1つである。本発明では、この曲げ挙動を表すため、JIS K7171「プラスチック-曲げ特性の求め方」に準じて、サンプルを徐々に曲げたときに生ずるサンプルの反発力と曲げ量から曲げ応力を測定し、曲げ挙動の指標として用いた。すなわち、この曲げ応力が大きいほど硬い繊維構造体であり、さらに測定対象物が破壊するまでの曲げ量(変位)が大きい程よく曲がる成形体である。 One feature of the fiber structure of the present invention is that it exhibits a bending behavior that cannot be obtained with a conventional fiber structure in which heat-resistant fibers are bonded via binder fibers. In the present invention, in order to express this bending behavior, the bending stress is measured from the repulsive force and bending amount of the sample when the sample is gradually bent according to JIS K7171 “Plastics-Determination of bending characteristics”. Used as an indicator of behavior. That is, the larger the bending stress, the harder the fiber structure, and the more the bending amount (displacement) until the measurement object breaks, the better the bent body.
 本発明の繊維構造体は、少なくとも一方向(好ましくは全ての方向)における曲げ応力が0.05MPa以上(例えば、0.05~100MPa)であり、好ましくは0.1~30MPa、さらに好ましくは0.2~10MPaであってもよい。この曲げ応力が小さすぎると、ボード材として使用したときに自重やわずかな荷重により簡単に折れ易い。また、曲げ応力が高すぎると、硬くなり過ぎて、応力のピークを過ぎて折り曲げると折れて破損し易くなる。なお、100MPaを超えるような硬さを得るためには、繊維構造体の密度を高くすることが必要となり、軽量性の確保が困難になる。 In the fiber structure of the present invention, the bending stress in at least one direction (preferably all directions) is 0.05 MPa or more (for example, 0.05 to 100 MPa), preferably 0.1 to 30 MPa, more preferably 0. It may be 2 to 10 MPa. If this bending stress is too small, it is easily broken by its own weight or a slight load when used as a board material. Further, if the bending stress is too high, it becomes too hard, and if it is bent beyond the peak of the stress, it is easily broken and broken. In addition, in order to obtain the hardness exceeding 100 MPa, it is necessary to increase the density of the fiber structure, and it is difficult to ensure light weight.
 本発明の繊維構造体は、繊維間に生ずる空隙により優れた軽量性を確保できる。また、これらの空隙は、スポンジのような樹脂発泡体と異なり各々が独立した空隙ではなく連続しているため、通気性を有している。このような構造は、樹脂を含浸する方法や、表面部分を密に接着させてフィルム状構造を形成する方法など、これまでの一般的な硬質化手法では製造することが極めて困難な構造である。 The fiber structure of the present invention can ensure excellent lightness due to voids generated between fibers. Further, unlike the resin foam such as sponge, these voids are continuous rather than independent voids, and thus have air permeability. Such a structure is a structure that is extremely difficult to produce by conventional hardening methods such as a method of impregnating a resin and a method of forming a film-like structure by closely adhering surface portions. .
 すなわち、本発明の繊維構造体は低密度であり、具体的には、見掛け密度が、例えば、0.03~0.7g/cmであり、特に、軽量性を要求される用途では、例えば、0.05~0.5g/cm、好ましくは0.08~0.4g/cm、さらに好ましくは0.1~0.35g/cmである。軽量性よりも硬さが要求される用途では、見掛け密度は、例えば、0.2~0.7g/cm、好ましくは0.25~0.65g/cm、さらに好ましくは0.3~0.6g/cmであってもよい。見かけ密度が低すぎると、軽量性を有するものの、十分な曲げ硬さ及び表面硬さを確保するのが難しく、逆に高すぎると、硬さは確保できるものの、軽量性が低下する。なお、見掛け密度が低下すると、繊維が交絡し、交点で接着した一般的な不織繊維構造に近くなり、一方、密度が高くなると、繊維が束状に接着し、多孔質成形体に近い構造となる。 That is, the fiber structure of the present invention has a low density. Specifically, the apparent density is, for example, 0.03 to 0.7 g / cm 3 , and particularly in applications that require lightweight, 0.05 to 0.5 g / cm 3 , preferably 0.08 to 0.4 g / cm 3 , and more preferably 0.1 to 0.35 g / cm 3 . In applications where hardness is required rather than light weight, the apparent density is, for example, 0.2 to 0.7 g / cm 3 , preferably 0.25 to 0.65 g / cm 3 , more preferably 0.3 to It may be 0.6 g / cm 3 . If the apparent density is too low, it is lightweight, but it is difficult to ensure sufficient bending hardness and surface hardness. Conversely, if it is too high, the hardness can be ensured, but the lightness is reduced. In addition, when the apparent density is lowered, the fibers are entangled and close to a general nonwoven fiber structure bonded at the intersection point, while when the density is increased, the fibers are bonded in a bundle shape and are close to a porous molded body. It becomes.
 なお、ここで言う「見掛け密度」とは、JIS L1913(一般不織布試験方法)の規定に準拠して測定された目付と厚みに基づいて計算される密度のことを言う。 In addition, "apparent density" said here means the density calculated based on the fabric weight and thickness measured based on the prescription | regulation of JISL1913 (general nonwoven fabric test method).
 本発明の繊維構造体の目付は、例えば、50~10000g/m程度の範囲から選択でき、好ましくは150~8000g/m、さらに好ましくは300~6000g/m程度である。軽量性よりも硬さが要求される用途では、目付は、例えば、1000~10000g/m、好ましくは1500~8000g/m、さらに好ましくは2000~6000g/m程度であってもよい。目付が小さすぎると、硬さを確保することが難しく、また、目付が大きすぎると、ウェブが厚すぎて過熱蒸気による加工において、過熱蒸気が十分にウェブ内部に入り込めず、厚さ方向に均一な繊維構造体とするのが困難になる。 Basis weight of the fibrous structure of the present invention, for example, can be selected from 50 ~ 10000g / m 2 approximately in the range of preferably 150 ~ 8000g / m 2, more preferably 300 ~ 6000g / m 2 approximately. In applications where hardness than light weight is required and a basis weight, for example, 1000 ~ 10000g / m 2, preferably 1500 ~ 8000g / m 2, further preferably about 2000 ~ 6000g / m 2. If the basis weight is too small, it is difficult to ensure the hardness, and if the basis weight is too large, the web is too thick and the superheated steam cannot sufficiently enter the web during processing with superheated steam. It becomes difficult to obtain a uniform fiber structure.
 本発明の繊維構造体が、板状又はシート状である場合、その厚さは特に限定されないが、1~100mm程度の範囲から選択でき、例えば、2~50mm、好ましくは3~20mm、さらに好ましくは5~150mmである。厚さが薄すぎると、硬さの確保が難しくなり、厚すぎると、これも質量が重くなるため、シートとしての取扱性が低下する。 When the fiber structure of the present invention is in the form of a plate or sheet, the thickness is not particularly limited, but can be selected from the range of about 1 to 100 mm, for example, 2 to 50 mm, preferably 3 to 20 mm, more preferably Is 5 to 150 mm. If the thickness is too thin, it will be difficult to ensure the hardness, and if it is too thick, the mass will also become heavy, so the handling properties as a sheet will be reduced.
 本発明の繊維構造体は、不織繊維構造を有しているため、通気性が高い。本発明の繊維構造体の通気度は、フラジール形法による通気度で0.1cm/cm/秒以上(例えば、0.1~300cm/cm/秒)、好ましくは0.5~250cm/cm/秒(例えば、1~250cm/cm/秒)、さらに好ましくは5~200cm/cm/秒であり、通常、1~100cm/cm/秒である。通気度が小さすぎると、繊維構造体に空気を通過させるために外部から圧力を加える必要が生じ、自然な空気の出入が困難となる。一方、通気度が大き過ぎると、通気性は高くなるが、繊維構造体内の繊維空隙が大きくなりすぎ、曲げ応力が低下する。 Since the fiber structure of the present invention has a non-woven fiber structure, the air permeability is high. The air permeability of the fiber structure of the present invention is 0.1 cm 3 / cm 2 / sec or more (for example, 0.1 to 300 cm 3 / cm 2 / sec), preferably 0.5 to 3 in terms of air permeability according to the Frazier method. 250 cm 3 / cm 2 / sec (for example, 1 to 250 cm 3 / cm 2 / sec), more preferably 5 to 200 cm 3 / cm 2 / sec, and usually 1 to 100 cm 3 / cm 2 / sec. If the air permeability is too small, it is necessary to apply pressure from the outside in order to allow air to pass through the fiber structure, making it difficult for natural air to enter and exit. On the other hand, if the air permeability is too high, the air permeability increases, but the fiber voids in the fiber structure become too large, and the bending stress decreases.
 本発明の繊維構造体は、不織繊維構造を有しているため、断熱性も高く、熱伝導率が0.1W/m・K以下と低く、例えば、0.03~0.1W/m・K、好ましくは0.05~0.08W/m・Kである。 Since the fiber structure of the present invention has a non-woven fiber structure, it has high heat insulation and low thermal conductivity of 0.1 W / m · K or less, for example, 0.03 to 0.1 W / m. · K, preferably 0.05 to 0.08 W / m · K.
 次に、本発明の繊維構造体の製造方法について説明する。 Next, the manufacturing method of the fiber structure of the present invention will be described.
 本発明の繊維構造体の製造方法では、まず、上述した耐熱性繊維をウェブ化する。ウェブの形成方法としては、慣用の方法、例えば、スパンボンド法、メルトブロ一法などの直接法、メルトブロー繊維やステープル繊維などを用いたカード法、エアレイ法などの乾式法などを利用できる。これらの方法のうち、メルトブロー繊維やステープル繊維を用いたカード法、特にステープル繊維を用いたカード法が汎用される。ステープル繊維を用いて得られたウェブとしては、例えば、ランダムウェブ、セミランダムウェブ、パラレルウェブ、クロスラップウェブなどが挙げられる。これらのウェブのうち、束状接着繊維の割合を多くする場合には、セミランダムウェブ、パラレルウェブが好ましい。 In the method for producing a fiber structure of the present invention, first, the heat-resistant fiber described above is formed into a web. As a method for forming the web, a conventional method, for example, a direct method such as a spunbond method or a meltblowing method, a card method using meltblown fibers or staple fibers, a dry method such as an airlay method, or the like can be used. Among these methods, a card method using melt blown fibers or staple fibers, particularly a card method using staple fibers is widely used. Examples of the web obtained using staple fibers include a random web, a semi-random web, a parallel web, and a cross-wrap web. Of these webs, a semi-random web and a parallel web are preferred when the proportion of bundled adhesive fibers is increased.
 得られた繊維ウェブの繊維同士を接着させる工程においては、繊維同士を接着させる手段は従来の熱風処理や熱プレスであってもよく、また過熱蒸気により繊維同士を接着してもよい。過熱蒸気を用いる場合、上記工程で得られた繊維ウェブは、ベルトコンベアにより次工程へ送られ、過熱蒸気(高圧スチーム)流に晒されることにより、本発明の不織繊維構造を有する繊維構造体が得られる。すなわち、ベルトコンベアで運搬された繊維ウェブは、蒸気噴射装置のノズルから噴出される過熱蒸気流の中を通過し、吹き付けられた過熱蒸気により耐熱性繊維同士が三次元的に接着(熱接着)される。 In the step of bonding the fibers of the obtained fiber web, the means for bonding the fibers may be a conventional hot air treatment or hot pressing, or the fibers may be bonded by superheated steam. In the case of using superheated steam, the fiber web obtained in the above process is sent to the next process by a belt conveyor and exposed to a superheated steam (high pressure steam) flow, whereby the fiber structure having the nonwoven fiber structure of the present invention. Is obtained. That is, the fiber web conveyed by the belt conveyor passes through the superheated steam flow ejected from the nozzle of the steam spraying device, and the heat-resistant fibers are three-dimensionally bonded to each other by the sprayed superheated steam (thermal bonding). Is done.
 このような過熱蒸気(150℃~600℃)による加熱処理を行うことにより、耐熱性繊維同士が接着されて繊維のネットワークを得ることができるため、繊維構造体の厚み方向における内部まで均一、かつ嵩高に処理することが可能になる。 By performing the heat treatment with such superheated steam (150 ° C. to 600 ° C.), the heat-resistant fibers can be bonded to each other to obtain a fiber network, so that the inside of the fiber structure in the thickness direction is uniform and It becomes possible to process bulky.
 なお、耐熱性繊維に噴射される過熱蒸気の温度は、150~600℃の範囲が好ましい。これは、温度が150℃より低いと耐熱性繊維に与えるエネルギーが不足し、繊維同士の接着が不十分になる場合があり、600℃より大きいと噴射装置に近い繊維に伝熱するエネルギーが大きくなりすぎ、繊維接着率の均一性が低下する場合があるためである。 Note that the temperature of the superheated steam sprayed onto the heat resistant fiber is preferably in the range of 150 to 600 ° C. This is because if the temperature is lower than 150 ° C, the energy given to the heat-resistant fibers is insufficient, and the adhesion between the fibers may be insufficient. This is because the uniformity of the fiber adhesion rate may be lowered.
 使用するベルトコンベアは、基本的には加工に用いる繊維ウェブを目的の密度に圧縮しつつ、過熱蒸気による処理が可能であれば、特に限定されるものではなく、エンドレスコンベアが好適に用いられる。なお、一般的な単独のベルトコンベアであってもよく、必要に応じて2台のベルトコンベアを組み合わせて、両ベルト間にウェブを挟むようにして運搬してもよい。このように運搬することにより、ウェブを処理する際に、処理に用いる過熱蒸気、コンベアの振動などの外力に起因して、運搬してきたウェブの形態が変形してしまうという不都合を抑制できる。また、処理後の不織繊維の密度や厚さをこのベルトの間隔を調整することにより制御することも可能となる。 The belt conveyor to be used is not particularly limited as long as it can be processed with superheated steam while compressing the fiber web used for processing to a desired density, and an endless conveyor is preferably used. In addition, it may be a general single belt conveyor, or may be transported by combining two belt conveyors as necessary and sandwiching the web between both belts. By carrying in this way, when the web is processed, it is possible to suppress the inconvenience that the form of the carried web is deformed due to an external force such as superheated steam used for the processing or vibration of the conveyor. It is also possible to control the density and thickness of the treated non-woven fibers by adjusting the distance between the belts.
 ウェブに過熱蒸気を供給するための蒸気噴射装置は、2台のベルトコンベアを組み合わせた場合、一方のコンベア内に装着され、コンベアネットを通してウェブに過熱蒸気を供給する。反対側のコンベアには、サクションボックスを装着してもよい。サクションボックスによって、ウェブを通過した過剰の過熱蒸気を吸引排出できる。また、ウェブの表及び裏の両側に対して、同時に過熱蒸気による処理を行うために、さらに過熱蒸気噴射装置が装着された側のコンベアの下流部にサクションボックスを装着し、このサクションボックスが装着された反対側のコンベア内に過熱蒸気噴射装置を設置してもよい。下流部の過熱蒸気噴射装置及びサクションボックスがない場合に、繊維ウェブの表と裏を蒸気処理する場合は、一度処理した繊維ウェブの表裏を反転させて再度処理装置内を通過させることで代用できる。 * When two belt conveyors are combined, a steam injection device for supplying superheated steam to the web is installed in one conveyor and supplies superheated steam to the web through a conveyor net. A suction box may be attached to the opposite conveyor. The suction box can suck and discharge excess superheated steam that has passed through the web. In addition, in order to perform superheated steam treatment on both the front and back sides of the web at the same time, a suction box is installed in the downstream part of the conveyor on the side where the superheated steam injection device is installed, and this suction box is installed. A superheated steam spraying device may be installed in the opposite conveyor. When the front and back of the fiber web are steam-treated when there is no downstream superheated steam injection device and suction box, it can be substituted by reversing the front and back of the fiber web once treated and passing through the treatment device again. .
 コンベアに用いるエンドレスベルトは、ウェブの運搬や過熱蒸気処理の妨げにならない限り、特に、限定されるものではない。ただし、過熱蒸気処理をした場合、その条件により繊維ウェブの表面にベルトの表面形状が転写される場合があるので、用途に応じて適宜選択することが好ましい。特に、表面の平坦な繊維構造体の場合には、メッシュの細かいネットを使用する。なお、90メッシュが上限であり、これ以上のメッシュの細かなネットは、通気性が低く、蒸気が通過し難くなる。メッシュベルトの材質は、過熱蒸気処理に対する耐熱性などの観点より、金属、耐熱処理を施したポリエステル系樹脂、ポリフェニレンサルファイド系樹脂、ポリアリレート系樹脂(全芳香族系ポリエステル系樹脂)、芳香族ポリアミド系樹脂などの耐熱性樹脂などが好ましい。 The endless belt used for the conveyor is not particularly limited as long as it does not interfere with web transport and overheated steam treatment. However, when the superheated steam treatment is performed, the surface shape of the belt may be transferred to the surface of the fiber web depending on the conditions. In particular, in the case of a fiber structure having a flat surface, a fine mesh net is used. The upper limit is 90 mesh, and a fine net having a mesh larger than this has low air permeability and makes it difficult for steam to pass through. The mesh belt is made of metal, heat-treated polyester resin, polyphenylene sulfide resin, polyarylate resin (fully aromatic polyester resin), aromatic polyamide from the viewpoint of heat resistance against superheated steam treatment. A heat resistant resin such as a resin is preferable.
 蒸気噴射装置から噴射される過熱蒸気は、気流であるため、水流絡合処理やニードルパンチ処理とは異なり、被処理体であるウェブ中の繊維を大きく移動させることなくウェブ内部へ進入する。このウェブ中への蒸気流の進入作用及び過熱作用により、過熱蒸気流がウェブ内に存在する各耐熱性繊維の表面を過熱状態で効率的に覆い、均一な熱接着が可能になると考えられる。また、この処理は高速気流下で極めて短時間に行われるため、過熱蒸気の繊維表面への熱伝導は十分であるが、繊維内部への熱伝導が十分になされる前に処理が終了してしまい、そのため過熱蒸気の圧力や熱により、処理される繊維ウェブ全体が潰れるという不都合や、その厚さが損なわれるような変形も起こりにくい。その結果、繊維ウェブに大きな変形が生じることなく、表面及び厚さ方向における接着の程度が概ね均一になるように熱接着が完了する。 Since the superheated steam injected from the steam injection device is an air stream, unlike the hydroentanglement process or the needle punching process, the superheated steam enters the web without greatly moving the fibers in the web as the object to be processed. It is considered that due to the entry and superheating action of the steam flow into the web, the superheated steam flow effectively covers the surface of each heat-resistant fiber present in the web in a superheated state, thereby enabling uniform thermal bonding. In addition, since this process is performed in a very short time under a high-speed air stream, the heat conduction of the superheated steam to the fiber surface is sufficient, but the process is completed before the heat conduction to the inside of the fiber is sufficiently performed. Therefore, the inconvenience that the whole fiber web to be treated is crushed by the pressure and heat of the superheated steam and the deformation that damages the thickness thereof hardly occur. As a result, thermal bonding is completed so that the degree of bonding in the surface and thickness direction is substantially uniform without causing large deformation in the fiber web.
 さらに、表面硬さや曲げ強度の高い繊維構造体を得る場合には、ウェブに過熱蒸気を供給して処理する際に、処理されるウェブを、コンベアベルト又はローラーの間で、目的の見かけ密度(例えば、0.03~0.7g/cm)に圧縮した状態で過熱蒸気に晒すことが重要である。特に、相対的に高密度の繊維構造体を得ようとする場合には、過熱蒸気で処理する際に、十分な圧力で繊維ウェブを圧縮する必要がある。さらに、ローラー間又はコンベア間に適度なクリアランスを確保することで、目的の厚さや密度に調整することも可能である。コンベアの場合には、一気にウェブを圧縮することが困難であるため、ベルトの張力をできるだけ高く設定し、蒸気処理地点の上流から徐々にクリアランスを狭めていくことが好ましい。さらに、蒸気圧力、処理速度を調整することにより所望の曲げ硬さ、表面硬度、軽量性、通気度を有する繊維構造体に加工する。 Furthermore, when obtaining a fiber structure having a high surface hardness and bending strength, when the superheated steam is supplied to the web for processing, the web to be processed is placed between a conveyor belt or rollers with a desired apparent density ( For example, it is important to expose to superheated steam in a compressed state of 0.03 to 0.7 g / cm 3 ). In particular, when a relatively high-density fiber structure is to be obtained, it is necessary to compress the fiber web with sufficient pressure when processing with superheated steam. Furthermore, it is also possible to adjust to a target thickness and density by securing an appropriate clearance between rollers or between conveyors. In the case of a conveyor, since it is difficult to compress the web at a stretch, it is preferable to set the belt tension as high as possible and gradually narrow the clearance from the upstream of the steam treatment point. Furthermore, it is processed into a fiber structure having desired bending hardness, surface hardness, lightness, and air permeability by adjusting the steam pressure and the processing speed.
 この際、硬度を上げたい場合には、ウェブを挟んでノズルと反対側のエンドレスベルトの裏側をステンレス板などにし、蒸気が通過できない構造とすれば、被処理体であるウェブを通過した蒸気がここで反射するので、蒸気の保温効果によって、より強固に接着される。逆に、軽度の接着が必要な場合には、サクションボックスを配置し、余分な蒸気を室外へ排出してもよい。 At this time, if it is desired to increase the hardness, the back side of the endless belt on the opposite side of the nozzle across the web is made of a stainless steel plate or the like so that the steam cannot pass through. Since it reflects here, it adhere | attaches more firmly according to the heat retention effect of vapor | steam. On the other hand, when light adhesion is required, a suction box may be arranged to discharge excess steam to the outside.
 過熱蒸気を噴射するためのノズルは、所定のオリフィスが幅方向に連続的に並んだプレートやダイスを用い、これを供給されるウェブの幅方向にオリフィスが並ぶように配置すればよい。オリフィス列は一列以上あればよく、複数列が並行した配列であってもよい。また、一列のオリフィス列を有するノズルダイを複数台並列に設置してもよい。 The nozzle for injecting superheated steam may be a plate or die in which predetermined orifices are continuously arranged in the width direction, and the orifices may be arranged in the width direction of the web to be supplied. There may be one or more orifice rows, and a plurality of rows may be arranged in parallel. A plurality of nozzle dies having a single orifice array may be installed in parallel.
 プレートにオリフィスを開けたタイプのノズルを使用する場合、プレートの厚さは、0.5~1mmであってもよい。オリフィスの径やピッチに関しては、目的とする繊維固定が可能な条件であれば特に制限はないが、オリフィスの直径は、通常、0.05~2mm、好ましくは0.1~1mm、さらに好ましくは0.2~0.5mmである。オリフィスのピッチは、通常、0.5~3mm、好ましくは1~2.5mm、さらに好ましくは1~1.5mmである。オリフィスの径が小さすぎると、ノズルの加工精度が低くなり、加工が困難になるという設備的な問題点と、目詰まりを起こしやすくなるという運転上の問題点が生じ易い。逆に、大きすぎると、蒸気噴射力が低下する。一方、ピッチが小さすぎると、ノズル孔が密になりすぎるため、ノズル自体の強度が低下する。一方、ピッチが大きすぎると、高温水蒸気がウェブに十分に当たらないケースが生じるため、ウェブ強度が低下する。 When using a nozzle with an orifice in the plate, the thickness of the plate may be 0.5 to 1 mm. The orifice diameter and pitch are not particularly limited as long as the target fiber fixation is possible, but the orifice diameter is usually 0.05 to 2 mm, preferably 0.1 to 1 mm, more preferably. 0.2 to 0.5 mm. The pitch of the orifices is usually 0.5 to 3 mm, preferably 1 to 2.5 mm, more preferably 1 to 1.5 mm. If the orifice diameter is too small, the processing accuracy of the nozzle becomes low and the processing becomes difficult, and the operational problem that clogging is likely to occur easily occurs. On the other hand, if it is too large, the steam injection force is reduced. On the other hand, if the pitch is too small, the nozzle holes become too dense and the strength of the nozzle itself is reduced. On the other hand, when the pitch is too large, there is a case where the high-temperature steam does not sufficiently hit the web, so that the web strength is lowered.
 過熱蒸気についても、耐熱性繊維の固定が実現できれば特に限定はなく、使用する繊維の材質や形態により設定すればよいが、圧力は、例えば、0.1~2MPa、好ましくは0.2~1.5MPa、さらに好ましくは0.3~1MPaである。蒸気の圧力が高すぎる、または強すぎる場合には、ウェブを形成する繊維が動いて地合の乱れを生じる、あるいは繊維が溶融しすぎて部分的に繊維形状を保持できなくなる可能性がある。また、圧力が弱すぎると、繊維の接着に必要な熱量をウェブに与えることができなくなる場合や、過熱蒸気がウェブを貫通できず、厚さ方向に繊維接着斑を生ずる場合があり、ノズルからの蒸気の均一噴出の制御が困難になる場合がある。 The superheated steam is not particularly limited as long as the heat-resistant fiber can be fixed, and may be set depending on the material and form of the fiber used. The pressure is, for example, 0.1 to 2 MPa, preferably 0.2 to 1. 0.5 MPa, more preferably 0.3 to 1 MPa. If the pressure of the steam is too high or too strong, the fibers forming the web may move and cause turbulence, or the fibers may melt too much to partially retain the fiber shape. Also, if the pressure is too weak, it may not be possible to give the web the amount of heat necessary for fiber bonding, or superheated steam may not penetrate the web, and fiber adhesion spots may occur in the thickness direction. It may be difficult to control the uniform jet of steam.
 このようにして得られた不織繊維構造を有する繊維構造体は、一般的な不織布と同程度の低密度でありながら、極めて高い曲げ応力及び表面硬さを有するとともに、通気性、吸音性、断熱性に加え、耐熱性を有している。従って、このような性能を利用して、例えば、自動車の内装材、航空機の内壁、建材ボード等の耐熱性が求められる用途に応用できる。 The fiber structure having a non-woven fiber structure obtained in this way has a very high bending stress and surface hardness while having a low density comparable to that of a general nonwoven fabric, and also has air permeability, sound absorption, In addition to heat insulation, it has heat resistance. Therefore, using such performance, it can be applied to applications requiring heat resistance such as automobile interior materials, aircraft inner walls, building material boards, and the like.
 以下に、本発明を実施例に基づいて説明する。なお、本発明は、これらの実施例に限定されるものではなく、これらの実施例を本発明の趣旨に基づいて変形、変更することが可能であり、それらを本発明の範囲から除外するものではない。 Hereinafter, the present invention will be described based on examples. In addition, this invention is not limited to these Examples, These Examples can be changed and changed based on the meaning of this invention, and they are excluded from the scope of the present invention. is not.
 実施例における各物性値は、以下に示す方法により測定した。なお、実施例中の「部」は質量部を意味し、「%」は質量%を意味する。 Each physical property value in the examples was measured by the following methods. In the examples, “part” means mass part, and “%” means mass%.
 (実施例1)
 <繊維構造体の作製>
 耐熱性繊維として、炭素数9のジアミンとテレフタル酸からなる半芳香族ポリアミド樹脂((株)クラレ製、商品名:ジェネスタ、融点:265℃、ガラス転移温度:125℃、熱分解温度:400℃)を用いた耐熱性繊維(繊度:1.7dtex、繊維長:51mm)を準備した。次に、この耐熱性繊維を用いて、カード法により目付が50g/mのカードウェブを作製し、このウェブを12枚重ねて、合計目付600g/mのカードウェブとした。このカードウェブを、50メッシュ、幅500mmのステンレス製エンドレスネットを装備したベルトコンベアに移送した。
Example 1
<Production of fiber structure>
Semi-aromatic polyamide resin consisting of diamine having 9 carbon atoms and terephthalic acid (trade name: GENESTAR, melting point: 265 ° C., glass transition temperature: 125 ° C., thermal decomposition temperature: 400 ° C. ) Was used (fineness: 1.7 dtex, fiber length: 51 mm). Next, by using this heat resistant fiber, a card web having a basis weight of 50 g / m 2 was prepared by a card method, and twelve sheets of this web were stacked to obtain a card web having a total basis weight of 600 g / m 2 . The card web was transferred to a belt conveyor equipped with a 50 mesh, 500 mm wide stainless steel endless net.
 なお、このベルトコンベアは、下側コンベアと上側コンベアの一対のコンベアからなり、少なくとも一方のコンベアのベルト裏側に蒸気噴射ノズルが設置されている。また、ベルトを通して、通過するウェブに過熱蒸気が噴射可能である。さらに、このノズルより上流側に、ウェブ厚調整用の金属ロール(以下、「ウェブ厚調整用ロール」と略記する場合がある)が、それぞれのコンベアに設けられている。そして、下側コンベアは、上面(すなわちウェブの通過する面)がフラットな形状であり、一方の上側コンベアは、下面がウェブ厚調整用ロールに沿って屈曲した形状をなし、上側コンベアのウェブ厚調整用ロールが下側コンベアのウェブ厚調整用ロールと対をなすように配置されている。 In addition, this belt conveyor consists of a pair of conveyor of a lower conveyor and an upper conveyor, and the vapor | steam injection nozzle is installed in the belt back side of at least one conveyor. Also, superheated steam can be jetted onto the passing web through the belt. Further, a metal roll for adjusting the web thickness (hereinafter sometimes abbreviated as “web thickness adjusting roll”) is provided on each conveyor upstream of the nozzle. The lower conveyor has a flat upper surface (that is, the surface through which the web passes), and one upper conveyor has a lower surface bent along a web thickness adjusting roll. The adjusting roll is arranged to make a pair with the web thickness adjusting roll of the lower conveyor.
 また、上側コンベアは、上下に移動可能であり、これにより上側コンベアと下側コンベアのウェブ厚調整用ロール間を所定の間隔に調整できるようになっている。さらに、上側コンベアの上流側は、下流部に対してウェブ厚調整用ロールを基点に(上側コンベアの下流側の下面に対し)30度の角度で傾斜させ、下流部は下側コンベアと平行になるよう配置するように屈曲されている。なお、上側コンベアが上下する場合には、この平行関係を保ちながら移動する。 Also, the upper conveyor can be moved up and down, so that the web thickness adjusting rolls of the upper conveyor and the lower conveyor can be adjusted to a predetermined interval. Further, the upstream side of the upper conveyor is inclined at an angle of 30 degrees (relative to the lower surface on the downstream side of the upper conveyor) with respect to the downstream portion with respect to the web thickness adjusting roll, and the downstream portion is parallel to the lower conveyor. It is bent so that it may be arranged. When the upper conveyor moves up and down, it moves while maintaining this parallel relationship.
 これらのベルトコンベアは、それぞれが同速度で同方向に回転し、これら両コンベアベルト同士及びウェブ厚さ調整用ロール同士が所定のクリアランスを保ちながら加圧可能な構造となっている。これは、いわゆるカレンダー工程のように作動して蒸気処理前のウェブ厚さを調整するためのものである。すなわち、上流側より送り込まれてきたカードウェブは、下側コンベア上を走行するが、ウェブ厚調整用ロールに到達するまでの間に上側コンベアとの間隔が徐々に狭くなる。そして、この間隔がウェブ厚さよりも狭くなったときに、ウェブは上下コンベアベルトの問に挟まれ、徐々に圧縮されながら走行する。このウェブは、ウェブ厚調整用ロールに設けられたクリアランスとほぼ同等の厚さになるまで圧縮され、その厚さの状態で過熱蒸気処理がなされ、その後もコンベア下流部において厚さを維持しながら走行する仕組みになっている。ここでは、ウェブ厚さ調整用のロールが線圧50kg/cmとなるように調整した。 Each of these belt conveyors rotates in the same direction at the same speed, and the two conveyor belts and the web thickness adjusting rolls can be pressurized while maintaining a predetermined clearance. This is for adjusting the web thickness before steaming by operating like a so-called calendar process. That is, the card web fed from the upstream side travels on the lower conveyor, but the interval with the upper conveyor is gradually narrowed before reaching the web thickness adjusting roll. And when this space | interval becomes narrower than the web thickness, the web runs between the upper and lower conveyor belts and is gradually compressed. This web is compressed to a thickness substantially equal to the clearance provided on the web thickness adjusting roll, and is subjected to superheated steam treatment in the thickness state, and thereafter the thickness is maintained at the downstream portion of the conveyor. It is a mechanism to travel. Here, the roll for adjusting the web thickness was adjusted to have a linear pressure of 50 kg / cm.
 次いで、下側コンベアに備えられた蒸気噴射装置ヘカードウェブを導入し、この装置から300℃の過熱蒸気をカードウェブの厚さ方向に向けて通過するように(垂直に)噴出して蒸気処理を施し、本実施例における不織繊維構造を有する繊維構造体を得た。この蒸気噴射装置は、下側のコンベア内に、コンベアネットを介して過熱蒸気をウェブに向かって吹き付けるようにノズルが設置され、上側のコンベアにサクション装置が設置されていた。また、この噴射装置のウェブ進行方向における下流側には、ノズルとサクション装置との配置が逆転した組合せである噴射装置がもう一台設置されており、ウェブの表裏両面に対して過熱蒸気処理を施した。 Next, the steam web is introduced into the steam jetting device provided in the lower conveyor, and steam treatment is performed by ejecting superheated steam at 300 ° C. in the thickness direction of the card web (perpendicularly) from this device. The fiber structure which has the nonwoven fiber structure in a present Example was obtained. In this steam injection device, a nozzle is installed in the lower conveyor so as to blow superheated steam toward the web via a conveyor net, and a suction device is installed on the upper conveyor. Further, another jetting device, which is a combination in which the arrangement of the nozzle and the suction device is reversed, is installed on the downstream side in the web traveling direction of the jetting device, and superheated steam treatment is performed on both the front and back sides of the web. gave.
 なお、蒸気噴射ノズルの孔径は0.3mmであり、ノズルがコンベアの幅方向に沿って1mmピッチで1列に並べられた蒸気噴射装置を使用した。加工速度は3m/分であり、ノズル側とサクション側の上下コンベアベルト間の間隔(距離)は5mmとした。ノズルはコンベアベルトの裏側にベルトとほぼ接するように配置した。 In addition, the hole diameter of the steam injection nozzle was 0.3 mm, and the steam injection device in which the nozzles were arranged in a line at a 1 mm pitch along the width direction of the conveyor was used. The processing speed was 3 m / min, and the interval (distance) between the upper and lower conveyor belts on the nozzle side and the suction side was 5 mm. The nozzles were arranged on the back side of the conveyor belt so as to be almost in contact with the belt.
 <目付の測定>
 JIS L1913に準拠して、作製した繊維構造体の目付(g/m)を測定した。以上の結果を表1に示す。
<Measurement of basis weight>
Based on JIS L1913, the fabric weight (g / m < 2 >) of the produced fiber structure was measured. The results are shown in Table 1.
 <見掛け密度の測定>
 JIS L1913に準拠して、作製した繊維構造体の厚み(mm)を測定し、この厚みの値と目付の値に基づいて、見掛け密度(g/cm)を算出した。以上の結果を表1に示す。
<Measurement of apparent density>
Based on JIS L1913, the thickness (mm) of the produced fiber structure was measured, and the apparent density (g / cm 3 ) was calculated based on the thickness value and the basis weight value. The results are shown in Table 1.
 <繊維接着率の測定>
 走査型電子顕微鏡(SEM)を用いて、繊維構造体の断面を100倍に拡大した写真を撮影した。次に、撮影した繊維構造体の厚さ方向における断面写真を厚さ方向に三等分し、三等分した各領域(表面側、内部(中央部)、裏面側)において、認識可能な繊維切断面(繊維端面)の数に対して繊維同士が接着している切断面の数の割合を求めた。
<Measurement of fiber adhesion rate>
Using a scanning electron microscope (SEM), a photograph in which the cross section of the fiber structure was magnified 100 times was taken. Next, the cross-sectional photograph of the photographed fiber structure in the thickness direction is divided into three equal parts in the thickness direction, and fibers that can be recognized in each of the three divided areas (front side, inside (center part), back side) The ratio of the number of cut surfaces in which the fibers are bonded to the number of cut surfaces (fiber end surfaces) was determined.
 より具体的には、各領域において認識できる繊維の全断面数のうち、2本以上の繊維が接着した状態の断面の数の占める割合を以下の式(1)に基づいて百分率で表わした。 More specifically, the ratio of the number of cross-sections in a state where two or more fibers are bonded out of the total number of cross-sections of fibers that can be recognized in each region is expressed as a percentage based on the following formula (1).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 なお、繊維同士が接触する部分には、接着することなく単に接触している部分と、接着により接着している部分とがあるが、顕微鏡撮影のために繊維構造体を切断することにより、繊維構造体の切断面において、各繊維が有する応力によって、単に接触している繊維同士は分離した。従って、断面写真において、接触している繊維同士は、接着しているものとした。 In addition, in the part which fibers contact, there is a part which is simply contacting without bonding, and a part which is bonded by bonding, but by cutting the fiber structure for microscopic photography, the fiber In the cut surface of the structure, the fibers that are simply in contact with each other were separated by the stress of each fiber. Therefore, in the cross-sectional photograph, the contacting fibers are assumed to be bonded.
 また、各写真について、断面が確認できる繊維は全て計数し、繊維断面数100以下の場合は、観察する写真を追加して繊維の全断面数が100を超えるようにした。また、三等分した各領域についてそれぞれ繊維接着率を求め、その最大値と最小値との差(即ち、均一性)も併せて求めた。以上の結果を表1に示す。 Also, for each photograph, all the fibers whose cross section could be confirmed were counted, and when the number of fiber cross sections was 100 or less, a photograph to be observed was added so that the total cross section of the fibers exceeded 100. Moreover, the fiber adhesion rate was calculated | required about each area | region divided into three equally, and the difference (namely, uniformity) of the maximum value and minimum value was also calculated | required together. The results are shown in Table 1.
 <曲げ応力の測定>
 JIS K7171(プラスチック-曲げ特性の求め方)の規定に準拠して、作製した繊維構造体から試験片(幅が10mm、長さが100mm)を用意し、支点間距離を80mm、試験速度を10mm/分として、曲げ応力(MPa)を測定した。以上の結果を表1に示す。
<Measurement of bending stress>
In accordance with the provisions of JIS K7171 (Plastics-Determination of bending characteristics), a test piece (width: 10 mm, length: 100 mm) is prepared from the produced fiber structure, the distance between supporting points is 80 mm, and the test speed is 10 mm. Bending stress (MPa) was measured as / min. The results are shown in Table 1.
 <引張強さの測定>
 JIS L1913(一般不織布試験方法)の規定に準拠して、作製した繊維構造体から試験片(幅が30mm、長さが150mm)を用意し、つかみ間隔を100mm、試験速度を10mm/分として、引張強さ(N/30mm)を測定した。以上の結果を表1に示す。
<Measurement of tensile strength>
In accordance with the provisions of JIS L1913 (general non-woven fabric test method), a test piece (width 30 mm, length 150 mm) is prepared from the produced fiber structure, the grip interval is 100 mm, and the test speed is 10 mm / min. Tensile strength (N / 30 mm) was measured. The results are shown in Table 1.
 (実施例2)
 <繊維構造体の作製>
 耐熱性繊維として、非晶性のポリエーテルイミド繊維((株)クラレ製、商品名:KURAKISSS、ガラス転移温度:215℃、熱分解温度:540℃、繊度:8.9dtex、繊維長51mm)を準備した。次に、この耐熱性繊維を用いて、カード法により目付が100g/mのカードウェブを作製し、水流絡合法を用いてシート化した。
(Example 2)
<Production of fiber structure>
As heat-resistant fiber, amorphous polyetherimide fiber (manufactured by Kuraray Co., Ltd., trade name: KURAKIISSS, glass transition temperature: 215 ° C., thermal decomposition temperature: 540 ° C., fineness: 8.9 dtex, fiber length 51 mm) Got ready. Next, using this heat resistant fiber, a card web having a basis weight of 100 g / m 2 was prepared by a card method, and formed into a sheet using a hydroentanglement method.
 次に、このシートを10枚積層した後、積層体を50メッシュ、幅500mmのステンレス製エンドレスネットを装備したベルトコンベアに移送した。 Next, after laminating 10 sheets of this sheet, the laminated body was transferred to a belt conveyor equipped with a 50 mesh, 500 mm wide stainless steel endless net.
 次に、上述の実施例1と同様にして、下側コンベアに備えられた蒸気噴射装置ヘカードウェブを導入し、この装置から330℃の過熱蒸気をカードウェブの厚さ方向に向けて通過するように(垂直に)噴出して蒸気処理を施し、本実施例における不織繊維構造を有する繊維構造体を得た。 Next, in the same manner as in the first embodiment, the curd web is introduced into the steam injection device provided in the lower conveyor, and superheated steam at 330 ° C. is passed from the device toward the thickness direction of the card web. (Perpendicularly) and steam treatment was performed to obtain a fiber structure having a nonwoven fiber structure in this example.
 次に、上述の実施例1と同様にして、目付の測定、見掛け密度の測定、繊維接着率の測定、曲げ応力の測定、曲げ荷重の測定、及び引張強さの測定を行った。以上の結果を表1に示す。 Next, in the same manner as in Example 1 described above, basis weight measurement, apparent density measurement, fiber adhesion rate measurement, bending stress measurement, bending load measurement, and tensile strength measurement were performed. The results are shown in Table 1.
 (実施例3)
 <繊維構造体の作製>
 実施例1で用いたカードウェブを9枚積層し、熱プレス装置にて260℃で1分間、熱プレス処理を行い、繊維構造体を得た。
(Example 3)
<Production of fiber structure>
Nine card webs used in Example 1 were laminated and subjected to a hot press treatment at 260 ° C. for 1 minute using a hot press apparatus to obtain a fiber structure.
 次に、上述の実施例1と同様にして、目付の測定、見掛け密度の測定、繊維接着率の測定、曲げ応力の測定、曲げ荷重の測定、及び引張強さの測定を行った。以上の結果を表1に示す。 Next, in the same manner as in Example 1 described above, basis weight measurement, apparent density measurement, fiber adhesion rate measurement, bending stress measurement, bending load measurement, and tensile strength measurement were performed. The results are shown in Table 1.
 (比較例1)
 <繊維構造体の作製>
 実施例1で準備した半芳香族ポリアミド繊維と、バインダー繊維としてポリプロピレン/ポリエチレン芯鞘型複合繊維(宇部エクシモ(株)製、HR-NTW、芯部のガラス転移温度:-20℃、鞘部のガラス転移温度:-120℃、芯部の熱分解温度:240℃、鞘部の熱分解温度:270℃、繊度:1.7dtex、繊維長:51mm)を準備し、80/20の質量比で混綿した。次に、この混綿繊維を用いてカード法により目付が50g/mのカードウェブを作製し、このウェブを6枚重ねて、合計目付300g/mのカードウェブとした。そして、このカードウェブを熱風乾燥機にて150℃で1分間、加熱処理を行うことにより、本比較例の繊維構造体を得た。
(Comparative Example 1)
<Production of fiber structure>
Semi-aromatic polyamide fiber prepared in Example 1 and polypropylene / polyethylene core-sheath composite fiber (manufactured by Ube Eximo Co., Ltd., HR-NTW as a binder fiber, glass transition temperature of the core: −20 ° C., sheath Glass transition temperature: −120 ° C., core thermal decomposition temperature: 240 ° C., sheath thermal decomposition temperature: 270 ° C., fineness: 1.7 dtex, fiber length: 51 mm), and a mass ratio of 80/20 Mixed cotton. Next, a card web having a basis weight of 50 g / m 2 was prepared by using the mixed cotton fiber by a card method, and six sheets of this web were stacked to obtain a card web having a total basis weight of 300 g / m 2 . And the fiber structure of this comparative example was obtained by heat-processing this card | curd web for 1 minute at 150 degreeC with a hot air dryer.
 次に、上述の実施例1と同様にして、目付の測定、見掛け密度の測定、繊維接着率の測定、曲げ応力の測定、曲げ荷重の測定、及び引張強さの測定を行った。以上の結果を表1に示す。 Next, in the same manner as in Example 1 described above, basis weight measurement, apparent density measurement, fiber adhesion rate measurement, bending stress measurement, bending load measurement, and tensile strength measurement were performed. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、100℃以上のガラス転移温度を有する耐熱性繊維同士を熱接着させた実施例1~3の繊維構造体は、耐熱性繊維同士がバインダーを介して接着している比較例1の繊維構造体よりも、曲げ応力および引張強さに優れる。特に、繊維接着率の均一性が高い実施例1~2の繊維構造体においては、比較例1に比し、曲げ応力、及び引張強さの値が著しく高く、強力が非常に優れていると言える。 As shown in Table 1, the fiber structures of Examples 1 to 3 in which heat-resistant fibers having a glass transition temperature of 100 ° C. or higher are thermally bonded to each other are compared in which the heat-resistant fibers are bonded to each other through a binder. It is superior to the fiber structure of Example 1 in bending stress and tensile strength. In particular, in the fiber structures of Examples 1 and 2 with high uniformity of fiber adhesion, the values of bending stress and tensile strength are significantly higher than those of Comparative Example 1, and the strength is very excellent. I can say that.
 また、実施例1~2の繊維構造体においては、比較例1に比し、引張強さの維持率(180℃における引張強さ/常温における引張強さ)が非常に大きく、耐熱性が非常に優れていると言える。 In addition, in the fiber structures of Examples 1 and 2, compared with Comparative Example 1, the maintenance ratio of tensile strength (tensile strength at 180 ° C./tensile strength at normal temperature) is very large, and heat resistance is extremely high. It can be said that it is excellent.
 また、表1に示すように、比較例1の繊維構造体の曲げ応力は0であるが、このような繊維構造体は自重で撓んでしまうほどに柔らかく、曲げ応力が測定限界以下であり、例えば、断熱材として施工する場合であっても、壁面や天井面などに沿わずに垂れ下がってしまうため取扱い性に劣る。一方、実施例3の曲げ応力は0.4MPaであり比較例1よりも優れ、0.4MPa程度の曲げ応力を有していれば壁面から垂れ下がることなく施工できるため、実施例3においても取扱い性の観点などから大きく向上していると言える。 In addition, as shown in Table 1, the bending stress of the fiber structure of Comparative Example 1 is 0, but such a fiber structure is soft enough to bend by its own weight, and the bending stress is below the measurement limit, For example, even when it is constructed as a heat insulating material, it is inferior in handleability because it hangs down without being along a wall surface or a ceiling surface. On the other hand, the bending stress of Example 3 is 0.4 MPa, which is superior to that of Comparative Example 1. If the bending stress is about 0.4 MPa, construction can be performed without sagging from the wall surface. It can be said that it is greatly improved from the viewpoint of.
 また、実施例3の繊維構造体においては、比較例1に比し、引張強さの維持率(180℃における引張強さ/常温における引張強さ)が大きく、耐熱性に優れていると言える。 Moreover, in the fiber structure of Example 3, compared with Comparative Example 1, it can be said that the maintenance ratio of tensile strength (tensile strength at 180 ° C./tensile strength at normal temperature) is large and excellent in heat resistance. .
 一方、比較例1においては、繊維同士をバインダーで接着する構成であるため、表1に示すように、繊維接着率が著しく低くなり、結果として、実施例1~2に比し、曲げ応力や引張強さが著しく低くなっていると言える。 On the other hand, in Comparative Example 1, since the fibers are bonded to each other with a binder, the fiber adhesion rate is remarkably reduced as shown in Table 1. As a result, the bending stress and It can be said that the tensile strength is extremely low.
 以上に説明したように、本発明は、耐熱性繊維により構成され、断熱材や吸音材として使用される耐熱性繊維構造体に適している。 As described above, the present invention is composed of heat resistant fibers and is suitable for heat resistant fiber structures used as heat insulating materials and sound absorbing materials.

Claims (5)

  1.  ガラス転移温度が100℃以上の耐熱性繊維を含む繊維構造体であって、該耐熱性繊維同士が接着している耐熱性繊維構造体。 A heat-resistant fiber structure comprising heat-resistant fibers having a glass transition temperature of 100 ° C. or higher, wherein the heat-resistant fibers are bonded to each other.
  2.  前記耐熱性繊維の繊維接着率が10~85%である請求項1に記載の耐熱性繊維構造体。 The heat-resistant fiber structure according to claim 1, wherein the heat-resistant fiber has a fiber adhesion rate of 10 to 85%.
  3.  前記繊維構造体の厚さ方向の断面において、厚さ方向に3等分した3つの領域のうち、中央部における繊維接着率が10~85%である請求項1または請求項2に記載の耐熱性繊維構造体。 The heat resistance according to claim 1 or 2, wherein, in a cross section in the thickness direction of the fiber structure, a fiber adhesion rate in a central portion is 10 to 85% among three regions equally divided in the thickness direction. Fiber structure.
  4.  前記繊維接着率の均一性が20%以下である請求項2または請求項3に記載の耐熱性繊維構造体。 The heat-resistant fiber structure according to claim 2 or 3, wherein the uniformity of the fiber adhesion rate is 20% or less.
  5.  見掛け密度が0.03~0.7g/cmである請求項1~請求項4のいずれか1項に記載の耐熱性繊維構造体。 The heat resistant fiber structure according to any one of claims 1 to 4, wherein the apparent density is 0.03 to 0.7 g / cm 3 .
PCT/JP2017/013100 2016-03-30 2017-03-29 Heat-resistant fiber structure WO2017170791A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020187029062A KR20180123087A (en) 2016-03-30 2017-03-29 Heat-resistant fiber structure
US16/089,934 US20190055684A1 (en) 2016-03-30 2017-03-29 Heat-resistant fiber structure
EP17775325.8A EP3438338A4 (en) 2016-03-30 2017-03-29 Heat-resistant fiber structure
KR1020217008355A KR102592387B1 (en) 2016-03-30 2017-03-29 Heat-resistant fiber structure
JP2018509395A JP7141334B2 (en) 2016-03-30 2017-03-29 Heat-resistant fiber structure
CN201780021614.XA CN108884616A (en) 2016-03-30 2017-03-29 Heat resistant fibre structural body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016069518 2016-03-30
JP2016-069518 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017170791A1 true WO2017170791A1 (en) 2017-10-05

Family

ID=59965687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013100 WO2017170791A1 (en) 2016-03-30 2017-03-29 Heat-resistant fiber structure

Country Status (7)

Country Link
US (1) US20190055684A1 (en)
EP (1) EP3438338A4 (en)
JP (1) JP7141334B2 (en)
KR (2) KR102592387B1 (en)
CN (1) CN108884616A (en)
TW (1) TWI787178B (en)
WO (1) WO2017170791A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240139040A1 (en) * 2021-03-23 2024-05-02 Jnc Corporation Nonwoven fabric and method for producing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020122205A1 (en) * 2018-12-13 2020-06-18 旭化成株式会社 Non-woven cloth, layered non-woven cloth comprising said non-woven cloth, and composite sound-absorbing material in which layered non-woven cloth is used as skin material
CN109610092B (en) * 2018-12-26 2021-04-13 四川金象赛瑞化工股份有限公司 Non-woven fabrics is used in polishing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03180588A (en) * 1989-12-06 1991-08-06 Nitto Boseki Co Ltd Polyether imide nonwoven cloth, polyether imide-inorganic fiber mixed nonwoven cloth and production thereof
CN103343423A (en) * 2013-06-27 2013-10-09 北京化工大学常州先进材料研究院 Crosslinking polyether imide fibrous membrane capable of being used as lithium ion battery separator and preparation thereof
WO2014021084A1 (en) * 2012-07-30 2014-02-06 株式会社クラレ Heat-resistant resin composite, method for producing same, and non-woven fabric for heat-resistant resin composite
WO2014208671A1 (en) * 2013-06-28 2014-12-31 株式会社クラレ Flame-retardant nonwoven fabric, molded article, and composite laminate
WO2017002924A1 (en) * 2015-06-30 2017-01-05 株式会社クラレ Nonwoven fabric and production method for same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2458038A1 (en) * 1974-12-07 1976-08-26 Freudenberg Carl Fa Heat-resistant non-woven fabrics - of organic fibres bonded by heat at their intersections, without additional binder
US4113537A (en) * 1974-12-07 1978-09-12 Firma Carl Freudenberg Heat resistant nonwoven fabric and method of manufacturing same
JPS6039463A (en) * 1983-08-09 1985-03-01 帝人株式会社 Aromatic polyamide fiber nonwoven sheet
AT391710B (en) * 1988-02-26 1990-11-26 Chemiefaser Lenzing Ag FIRE-RESISTANT HIGH-TEMPERATURE-RESISTANT POLYIMIDE FIBERS AND SHAPED BODIES THEREOF
JPH0461216A (en) * 1990-06-29 1992-02-27 Nippon Chemicon Corp Electrolytic capacitor
JPH0461217A (en) * 1990-06-29 1992-02-27 Nippon Chemicon Corp Electrolytic capacitor
US5776597A (en) * 1995-02-23 1998-07-07 Teijin Limited Speaker damper
JP4951618B2 (en) 2006-03-31 2012-06-13 株式会社クラレ Molded body having non-woven fiber structure
US20080081528A1 (en) * 2006-09-29 2008-04-03 Carter H Landis High impact strength, fire resistant woven article
JP5368709B2 (en) * 2008-01-18 2013-12-18 株式会社カネカ Polyimide fiber aggregate and use thereof, and method for producing the polyimide fiber aggregate
US8424636B2 (en) * 2011-04-29 2013-04-23 E.I. Du Pont De Nemours And Company Muffler assembly and process of manufacture
AU2012263373B2 (en) * 2011-06-02 2016-11-17 Toray Industries, Inc. Polyphenylene sulfide fibers and nonwoven fabric

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03180588A (en) * 1989-12-06 1991-08-06 Nitto Boseki Co Ltd Polyether imide nonwoven cloth, polyether imide-inorganic fiber mixed nonwoven cloth and production thereof
WO2014021084A1 (en) * 2012-07-30 2014-02-06 株式会社クラレ Heat-resistant resin composite, method for producing same, and non-woven fabric for heat-resistant resin composite
CN103343423A (en) * 2013-06-27 2013-10-09 北京化工大学常州先进材料研究院 Crosslinking polyether imide fibrous membrane capable of being used as lithium ion battery separator and preparation thereof
WO2014208671A1 (en) * 2013-06-28 2014-12-31 株式会社クラレ Flame-retardant nonwoven fabric, molded article, and composite laminate
WO2017002924A1 (en) * 2015-06-30 2017-01-05 株式会社クラレ Nonwoven fabric and production method for same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240139040A1 (en) * 2021-03-23 2024-05-02 Jnc Corporation Nonwoven fabric and method for producing same

Also Published As

Publication number Publication date
TW201736659A (en) 2017-10-16
TWI787178B (en) 2022-12-21
CN108884616A (en) 2018-11-23
KR20180123087A (en) 2018-11-14
KR102592387B1 (en) 2023-10-20
JPWO2017170791A1 (en) 2019-02-14
EP3438338A4 (en) 2019-05-01
KR20210034122A (en) 2021-03-29
US20190055684A1 (en) 2019-02-21
JP7141334B2 (en) 2022-09-22
EP3438338A1 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
CN107429456B (en) Laminated nonwoven fabric
JP4951618B2 (en) Molded body having non-woven fiber structure
TWI586863B (en) Non-woven fibrous sheet as well as manufacturing method thereof and filter
JP5318513B2 (en) Multi-layer sound-absorbing material
JP7141334B2 (en) Heat-resistant fiber structure
CN110709552A (en) Fiber structure, molded body, and sound absorbing material
EP3540109A1 (en) Acoustic and thermal insulation
JP2012211400A (en) Heat expandable nonwoven fabric, and method for manufacturing bulky nonwoven fabric using the same
US9689097B2 (en) Nonwoven composite fabric and panel made therefrom
JP2015196933A (en) Sound absorbing material structure
CN110753613B (en) Sound-absorbing material
EP3547307B1 (en) Nonwoven fabric for sound-absorbing material and sound-absorbing material using same
US20220199063A1 (en) Sound-absorbing material
JP2014047449A (en) Acoustic material
JP6004846B2 (en) Sound absorbing material
WO2017068811A1 (en) Nanofiber nonwoven cloth and sound-absorbing member using same
JPH07331573A (en) Thermal insulation material for rolling stock
KR102022309B1 (en) The method for preparing Polyester nonwoven fabric having improved strength
JP2009085251A (en) Plate spring and its manufacturing method
JP2009242995A (en) Platy formed article and use thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018509395

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187029062

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017775325

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017775325

Country of ref document: EP

Effective date: 20181029

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775325

Country of ref document: EP

Kind code of ref document: A1