WO2020203916A1 - Vehicle drive device - Google Patents

Vehicle drive device Download PDF

Info

Publication number
WO2020203916A1
WO2020203916A1 PCT/JP2020/014364 JP2020014364W WO2020203916A1 WO 2020203916 A1 WO2020203916 A1 WO 2020203916A1 JP 2020014364 W JP2020014364 W JP 2020014364W WO 2020203916 A1 WO2020203916 A1 WO 2020203916A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
gear
rotor
electric machine
hydraulic pump
Prior art date
Application number
PCT/JP2020/014364
Other languages
French (fr)
Japanese (ja)
Inventor
井上亮平
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Publication of WO2020203916A1 publication Critical patent/WO2020203916A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/06Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of change-speed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/06Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with parallel axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/037Gearboxes for accommodating differential gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the present invention is driven by a rotary electric machine which is a driving force source for wheels, a counter gear mechanism, a differential gear mechanism, a case accommodating them, and a driving force transmitted through a power transmission path connecting the rotary electric machine and wheels.
  • the present invention relates to a hydraulic pump and a drive device for a vehicle.
  • Patent Document 1 An example of such a vehicle drive device is disclosed in Patent Document 1 below.
  • the reference numerals in Patent Document 1 are quoted in parentheses.
  • the hydraulic pump (51) stores oil in the case (40).
  • the oil stored in the section (70) is pumped up and supplied to the oil passages (91, 97, etc.).
  • the oil supplied to the oil passages (91, 97, etc.) is used as a cooling target for the rotor (14) of the rotary electric machine (10) and a lubrication target for the counter gear mechanism (20), the differential gear mechanism (30), etc. After flowing, it is stored again in the storage unit (70) in the case (40).
  • the rotating members such as the rotor of the hydraulic pump (51) are always lubricated by the oil. It has become.
  • the hydraulic pump (51) stores the oil in the oil passages (91, 97, etc.) in the case (40). Backflow to 70). Therefore, when the reversal of the rotary electric machine (10) is maintained for more than a certain period of time, there is almost no oil in the oil passages (91, 97, etc.). As a result, the oil does not flow from the oil passages (91, 97, etc.) to the hydraulic pump (51), resulting in insufficient lubrication of the rotating members of the hydraulic pump (51).
  • the rotating member of the hydraulic pump is appropriate even during the reversal of the rotary electric machine while suppressing an increase in the manufacturing cost of the vehicle drive device and an increase in the size of the vehicle drive device.
  • a vehicle drive device that can be lubricated is desired.
  • the characteristic configuration of the vehicle drive device is The rotating electric machine that is the driving force source for the wheels, With the input member driven and connected to the rotary electric machine, A pair of output members that are driven and connected to the wheels, respectively.
  • a transmission mechanism that drives and connects the input member and the pair of output members, A case for accommodating the rotary electric machine and the transmission mechanism, and A hydraulic pump driven by a driving force transmitted through a power transmission path connecting the rotary electric machine and the wheels is provided.
  • the power transmission path is configured to constantly transmit a driving force between the rotary electric machine and the hydraulic pump.
  • An oil storage unit for storing oil is provided in the case. At least a part of the rotating member of the hydraulic pump is arranged in the oil storage part.
  • the rotating member of the hydraulic pump is in constant contact with the oil stored in the oil storage section. Therefore, the oil stored in the oil storage unit can be supplied to the rotating member of the pump regardless of the rotation direction of the rotary electric machine. Therefore, in a configuration in which the power transmission path connecting the rotary electric machine and the wheels constantly transmits the driving force between the rotary electric machine and the hydraulic pump, an oil passage or the like that supplies oil to the rotating member of the hydraulic pump during the reversal of the rotary electric machine. Even if the oil supply mechanism is not provided, the rotating member of the hydraulic pump can be properly lubricated.
  • the hydraulic pressure is suppressed even during the reversal of the rotary electric machine while suppressing the increase in the manufacturing cost of the vehicle drive device and the increase in size of the vehicle drive device.
  • the rotating members of the pump can be properly lubricated.
  • Sectional drawing along the axial direction of the vehicle drive device which concerns on 1st Embodiment Skeleton diagram of the vehicle drive device according to the first embodiment Sectional drawing orthogonal to the axial direction of the vehicle drive device which concerns on 1st Embodiment Enlarged sectional view around the hydraulic pump of the vehicle drive device according to the first embodiment.
  • the vehicle drive device 100 includes a rotary electric machine 1, a case 2, an input member 3, a transmission mechanism T, and a first output member 61 and a second output member 62.
  • the transmission mechanism T includes an input gear 32 included in the input member 3, a counter gear mechanism 4, and a differential gear mechanism 5.
  • the rotary electric machine 1 is arranged on the first axis A1 as its rotation axis.
  • the input member 3 is also arranged on the first axis A1.
  • the counter gear mechanism 4 is arranged on the second axis A2 as its rotation axis.
  • the differential gear mechanism 5 is arranged on the third axis A3 as its rotation axis.
  • the first output member 61 and the second output member 62 are also arranged on the third axis A3.
  • the first axis A1, the second axis A2, and the third axis A3 are virtual axes that are different from each other and are arranged in parallel with each other.
  • the direction parallel to the above axes A1 to A3 is referred to as the "axial direction L" of the vehicle drive device 100.
  • the side on which the rotary electric machine 1 is arranged with respect to the input member 3 is referred to as the "axial first side L1", and the opposite side is referred to as the "axial second side L2".
  • the direction orthogonal to each of the first axis A1, the second axis A2, and the third axis A3 is defined as the "radial direction R" with respect to each axis.
  • the case 2 houses the rotary electric machine 1, the input gear 32 as the transmission mechanism T, the counter gear mechanism 4, and the differential gear mechanism 5.
  • the case 2 has a peripheral wall portion 21, a first side wall portion 22, a second side wall portion 23, and a partition wall portion 24.
  • the peripheral wall portion 21 is formed in a tubular shape that surrounds the rotary electric machine 1, the input member 3, the counter gear mechanism 4, the differential gear mechanism 5, and the outer sides of the first output member 61 and the second output member 62 in the radial direction R.
  • the first side wall portion 22 and the second side wall portion 23 are formed so as to extend along the radial direction R.
  • the first side wall portion 22 is fixed to the end portion of the peripheral wall portion 21 on the axial first side L1 so as to close the opening of the peripheral wall portion 21 on the axial first side L1.
  • the second side wall portion 23 is fixed to the end portion of the peripheral wall portion 21 on the axial second side L2 so as to close the opening of the peripheral wall portion 21 on the axial second side L2.
  • the partition wall portion 24 is a space inside the peripheral wall portion 21 in the radial direction R, and is formed so as to partition the space between the first side wall portion 22 and the second side wall portion 23 in the axial direction L.
  • the rotary electric machine 1 is arranged between the first side wall portion 22 and the partition wall portion 24.
  • An input member 3, a counter gear mechanism 4, and a differential gear mechanism 5 are arranged between the second side wall portion 23 and the partition wall portion 24.
  • the rotary electric machine 1 functions as a driving force source for the pair of wheels W.
  • the rotary electric machine 1 has a stator 11 and a rotor 12.
  • "rotary electric machine” is used as a concept including any of a motor (electric motor), a generator (generator), and, if necessary, a motor / generator that functions as both a motor and a generator.
  • the stator 11 has a stator core 111 fixed to a non-rotating member (for example, case 2).
  • the rotor 12 has a rotor core 121 that can rotate with respect to the stator 11, and a rotor shaft 122 that is connected so as to rotate integrally with the rotor core 121.
  • the rotary electric machine 1 is a rotating field type rotary electric machine. Therefore, a coil is wound around the stator core 111 so that coil end portions 112 projecting from the stator core 111 on both sides in the axial direction L (the first side L1 in the axial direction and the second side L2 in the axial direction) are formed. ing.
  • a permanent magnet 123 is provided on the rotor core 121.
  • the rotary electric machine 1 is an inner rotor type rotary electric machine. Therefore, the rotor core 121 is arranged inside the stator core 111 in the radial direction R. The rotor shaft 122 is connected to the inner peripheral surface of the rotor core 121.
  • the rotor shaft 122 is a rotating member that rotates around the first shaft A1.
  • the rotor shaft 122 is formed so as to extend along the axial direction L.
  • the rotor shaft 122 is rotatably supported with respect to the case 2 via the first rotor bearing B1a and the second rotor bearing B1b.
  • the end portion of the rotor shaft 122 on the first side L1 in the axial direction is rotatably supported with respect to the first side wall portion 22 of the case 2 via the first rotor bearing B1a.
  • the end portion of the rotor shaft 122 on the second side L2 in the axial direction is rotatably supported with respect to the partition wall portion 24 of the case 2 via the second rotor bearing B1b.
  • the input member 3 is drive-connected to the rotary electric machine 1.
  • the input member 3 includes an input shaft 31 and an input gear 32.
  • the input shaft 31 is a rotating member that rotates around the first shaft A1.
  • the input shaft 31 is formed so as to extend along the axial direction L.
  • the input shaft 31 is inserted into a through hole that penetrates the partition wall portion 24 of the case 2 in the axial direction L.
  • the end of the input shaft 31 on the first axial side L1 is connected to the end of the rotor shaft 122 on the second axial side L2.
  • the end of the axial first side L1 of the input shaft 31 is the end of the axial second side L2 of the rotor shaft 122 so that the input shaft 31 is located inside the radial direction R of the rotor shaft 122. It is inserted into the portions and these ends are connected by spline engagement.
  • the input shaft 31 is rotatably supported with respect to the case 2 via the first input bearing B3a and the second input bearing B3b.
  • the portion of the input shaft 31 on the first side L1 in the axial direction with respect to the central portion in the axial direction L, and the portion L2 on the second side in the axial direction with respect to the connecting portion with the rotor shaft 122 is the second portion. It is rotatably supported with respect to the partition wall portion 24 of the case 2 via the 1 input bearing B3a. Then, the end portion of the input shaft 31 on the second side L2 in the axial direction is rotatably supported with respect to the second side wall portion 23 of the case 2 via the second input bearing B3b.
  • the input gear 32 corresponds to the "first gear”.
  • the input gear 32 transmits the driving force from the rotary electric machine 1 to the counter gear mechanism 4.
  • the input gear 32 is connected to the input shaft 31 so as to rotate integrally with the input shaft 31.
  • the input gear 32 is integrally formed with the input shaft 31. Further, in the present embodiment, the input gear 32 is arranged between the first input bearing B3a and the second input bearing B3b.
  • the counter gear mechanism 4 is arranged between the input member 3 and the differential gear mechanism 5 in the power transmission path P connecting the rotary electric machine 1 and the pair of wheels W.
  • the counter gear mechanism 4 has a counter shaft 41, a first counter gear 42, and a second counter gear 43.
  • the counter shaft 41 is a rotating member that rotates around the second shaft A2.
  • the counter shaft 41 is formed so as to extend along the axial direction L.
  • the counter shaft 41 is rotatably supported with respect to the case 2 via the first counter bearing B4a and the second counter bearing B4b.
  • the end portion of the counter shaft 41 on the first side L1 in the axial direction is rotatably supported with respect to the partition wall portion 24 of the case 2 via the first counter bearing B4a.
  • the end portion of the counter shaft 41 on the second side L2 in the axial direction is rotatably supported with respect to the second side wall portion 23 of the case 2 via the second counter bearing B4b.
  • the first counter gear 42 is an input element of the counter gear mechanism 4.
  • the first counter gear 42 meshes with the input gear 32 of the input member 3. That is, the first counter gear 42 corresponds to the "second gear” that meshes with the first gear.
  • the first counter gear 42 is connected to the counter shaft 41 so as to rotate integrally with the counter shaft 41.
  • the first counter gear 42 is connected to the counter shaft 41 by spline engagement.
  • the first counter gear 42 is arranged between the first counter bearing B4a and the second counter bearing B4b, and is arranged on the second side L2 in the axial direction with respect to the second counter gear 43. ..
  • the second counter gear 43 is an output element of the counter gear mechanism 4.
  • the second counter gear 43 is connected to the counter shaft 41 so as to rotate integrally with the counter shaft 41. That is, the second counter gear 43 corresponds to a "third gear” that rotates integrally with the second gear.
  • the second counter gear 43 is integrally formed with the counter shaft 41. Further, in the present embodiment, the second counter gear 43 is formed to have a smaller diameter than the first counter gear 42.
  • the second counter gear 43 is located between the first counter bearing B4a and the second counter bearing B4b, and is arranged on the first side L1 in the axial direction with respect to the first counter gear 42.
  • the differential gear mechanism 5 distributes the driving force transmitted from the rotary electric machine 1 side to the first output member 61 and the second output member 62.
  • the differential gear mechanism 5 includes a differential input gear 51, a differential case 52, a pinion shaft 53, a pair of pinion gears 54, and a first side gear 55 and a second side gear 56.
  • the pair of pinion gears 54, and the first side gear 55 and the second side gear 56 are all bevel gears.
  • the differential input gear 51 is an input element of the differential gear mechanism 5.
  • the differential input gear 51 meshes with the second counter gear 43 of the counter gear mechanism 4. That is, the differential input gear 51 corresponds to the "fourth gear” that meshes with the third gear.
  • the differential input gear 51 is connected to the differential case 52 so as to rotate integrally with the differential case 52.
  • the differential case 52 is a rotating member that rotates around the third axis A3.
  • the differential case 52 is rotatably supported with respect to the case 2 via the first differential bearing B5a and the second differential bearing B5b.
  • the end portion of the differential case 52 on the first side L1 in the axial direction is rotatably supported with respect to the partition wall portion 24 of the case 2 via the first differential bearing B5a.
  • the end portion of the second side L2 in the axial direction of the differential case 52 is rotatably supported with respect to the second side wall portion 23 of the case 2 via the second differential bearing B5b.
  • the differential case 52 is a hollow member.
  • a pinion shaft 53, a pair of pinion gears 54, and a first side gear 55 and a second side gear 56 are housed inside the differential case 52.
  • the pinion shaft 53 extends along the radial direction R with respect to the third axis A3.
  • the pinion shaft 53 is inserted into a pair of pinion gears 54 and rotatably supports them.
  • the pinion shaft 53 is arranged so as to penetrate the differential case 52.
  • the pinion shaft 53 is locked to the differential case 52 by the locking member 53a and rotates integrally with the differential case 52.
  • the locking member 53a is a rod-shaped pin that is inserted into both the differential case 52 and the pinion shaft 53.
  • the pair of pinion gears 54 are attached to the pinion shaft 53 in a state where they face each other at intervals along the radial direction R with respect to the third axis A3.
  • the pair of pinion gears 54 are configured to be rotatable (rotating) about the pinion shaft 53 and rotating (revolving) about the third axis A3.
  • the first side gear 55 and the second side gear 56 are rotating elements after distribution of the driving force in the differential gear mechanism 5.
  • the first side gear 55 and the second side gear 56 are arranged so as to face each other with the pinion shaft 53 interposed therebetween at intervals in the axial direction L.
  • the first side gear 55 is arranged on the first side L1 in the axial direction with respect to the second side gear 56.
  • the first side gear 55 and the second side gear 56 are configured to rotate in the circumferential direction in the internal space of the differential case 52, respectively.
  • the first side gear 55 and the second side gear 56 mesh with a pair of pinion gears 54.
  • the first side gear 55 is connected so as to rotate integrally with the first output member 61.
  • the second side gear 56 is connected so as to rotate integrally with the second output member 62.
  • Each of the first output member 61 and the second output member 62 is drive-connected to the wheel W.
  • Each of the first output member 61 and the second output member 62 transmits the driving force distributed by the differential gear mechanism 5 to the wheel W.
  • the first output member 61 includes the first axle 611 and the relay member 612.
  • Each of the first axle 611 and the relay member 612 is a rotating member that rotates around the third axle A3.
  • the first axle 611 is drive-connected to the wheel W on the first side L1 in the axial direction.
  • the relay member 612 is a shaft member extending in the axial direction L.
  • the relay member 612 is inserted into a through hole that penetrates the partition wall portion 24 of the case 2 in the axial direction L.
  • the relay member 612 is rotatably supported with respect to the first side wall portion 22 of the case 2 via the output bearing B6.
  • the end portion of the relay member 612 on the first side L1 in the axial direction is exposed to the outside of the case 2 through a through hole penetrating the first side wall portion 22 of the case 2 in the axial direction L.
  • the end of the relay member 612 on the first side L1 in the axial direction is connected so as to rotate integrally with the first axle 611.
  • the relay member 612 is formed in a tubular shape in which the end surface of the first side L1 in the axial direction is open. Then, corresponding splines are formed on the inner peripheral surface of the relay member 612 and the outer peripheral surface of the end portion of the second side L2 in the axial direction of the first axle 611, and these splines engage with each other. As a result, the relay member 612 and the first axle 611 are connected so as to rotate integrally.
  • the end of the relay member 612 on the second side L2 in the axial direction is connected so as to rotate integrally with the first side gear 55 of the differential gear mechanism 5.
  • corresponding splines are formed on the outer peripheral surface of the end portion of the second side L2 in the axial direction of the relay member 612 and the inner peripheral surface of the first side gear 55, and the splines are engaged with each other. By engaging, the relay member 612 and the first side gear 55 are connected so as to rotate integrally.
  • the second output member 62 includes the second axle 621.
  • the second axle 621 is a rotating member that rotates around the third axle A3.
  • the second axle 621 is drive-connected to the wheel W on the second side L2 in the axial direction.
  • the second axle 621 is connected so as to rotate integrally with the second side gear 56.
  • corresponding splines are formed on the outer peripheral surface of the end portion of the first side L1 in the axial direction of the second axle 621 and the inner peripheral surface of the second side gear 56, and the splines are formed on each other. By engaging, the second axle 621 and the second side gear 56 are connected so as to rotate integrally.
  • the vehicle drive device 100 includes a hydraulic pump 7.
  • the hydraulic pump 7 is a so-called mechanical hydraulic pump driven by a driving force transmitted through a power transmission path P connecting the rotary electric machine 1 and the pair of wheels W.
  • the power transmission path P is configured to constantly transmit a driving force between the rotary electric machine 1 and the hydraulic pump 7. That is, an engaging device or the like for switching the transmission state of the driving force is not provided between the rotary electric machine 1 and the hydraulic pump 7 in the power transmission path P, and the hydraulic pump 7 is always interlocked with the rotary electric machine 1. There is.
  • the hydraulic pump 7 includes a pump input gear 71, a pump drive shaft 72, an inner rotor 73 and an outer rotor 74 as a pump rotor, a pump cover 75 as a pump case, and a pump housing. It has 78 and.
  • the hydraulic pump 7 is configured as an internal gear pump (for example, a trochoidal pump).
  • the pump input gear 71 is an input element of the hydraulic pump 7.
  • the pump input gear 71 meshes with a pump drive gear 57 provided so as to rotate integrally with the differential input gear 51 of the differential gear mechanism 5.
  • the pump drive gear 57 is connected to the differential case 52 so as to rotate integrally.
  • the pump drive shaft 72 is connected so as to rotate integrally with the pump input gear 71.
  • the pump input gear 71 is arranged at the end of the second side L2 in the axial direction of the pump drive shaft 72.
  • the inner rotor 73 is connected so as to rotate integrally with the pump drive shaft 72.
  • the inner rotor 73 is connected to the end of the pump drive shaft 72 on the first side L1 in the axial direction.
  • the outer rotor 74 is arranged so as to surround the outer side in the radial direction R with respect to the inner rotor 73.
  • the pump drive shaft 72, the inner rotor 73, and the outer rotor 74 correspond to the “rotating member RT” of the hydraulic pump 7.
  • the pump drive shaft 72 is arranged along the rotation axis of the inner rotor 73 and the outer rotor 74 as the pump rotor, and rotates integrally with the inner rotor 73 which is a part of the pump rotor. Is connected to.
  • the internal teeth formed on the inner peripheral surface of the outer rotor 74 mesh with the external teeth formed on the outer peripheral surface of the inner rotor 73, and the outer rotor 74 rotates as the inner rotor 73 rotates.
  • the space sandwiched between the outer teeth of the inner rotor 73 and the inner teeth of the outer rotor 74 is the pump chamber 79. That is, the rotation axes of the inner rotor 73 and the outer rotor 74 are eccentric, and the radial distance R of the space sandwiched between the outer teeth of the inner rotor 73 and the inner teeth of the outer rotor 74 depends on the position in the circumferential direction. It's different.
  • the space sandwiched between the outer teeth of the inner rotor 73 and the inner teeth of the outer rotor 74 is, when viewed at each position in the circumferential direction, after the interval in the radial direction R gradually increases due to the rotation of the inner rotor 73 and the outer rotor 74. It changes so that it gradually shrinks.
  • the space sandwiched between the outer teeth of the inner rotor 73 and the inner teeth of the outer rotor 74 becomes a pump chamber 79 whose volume changes due to the rotation of the inner rotor 73 and the outer rotor 74.
  • the pump cover 75 and the pump housing 78 as the pump case are provided so as to cover the inner rotor 73 and the outer rotor 74.
  • the pump housing 78 is formed with a columnar recess for accommodating the inner rotor 73 and the outer rotor 74.
  • the pump cover 75 is arranged so as to cover the opening portion of the recess of the pump housing 78. Further, the pump cover 75 is fixed to the pump housing 78 by using a fastening member such as a bolt.
  • the space surrounded by the pump housing 78 and the pump cover 75 serves as a pump rotor accommodating chamber in which the inner rotor 73 and the outer rotor 74 are accommodated.
  • the suction port and the discharge port of the hydraulic pump 7 are formed so as to open into the pump rotor accommodating chamber and communicate with the pump chamber 79.
  • the inner surfaces of the pump housing 78 and the pump cover 75 formed so as to surround the pump rotor accommodating chamber correspond to the "inner surface of the pump case".
  • the pump housing 78 is integrally formed with the case 2.
  • the hydraulic pump 7 includes a pump shaft support portion 75A that supports the outer peripheral surface of the pump drive shaft 72 from the outside in the radial direction R.
  • the pump shaft support portion 75A is provided on the pump cover 75.
  • the pump cover 75 includes a tubular portion arranged so as to surround the outside of the pump drive shaft 72 in the radial direction R, and the tubular portion serves as a pump shaft support portion 75A. ..
  • the inner peripheral surface of the pump shaft support portion 75A faces the outer peripheral surface of the pump drive shaft 72 with a gap in the radial direction R.
  • the pump shaft support portion 75A rotatably supports the outer peripheral surface of the pump drive shaft 72 from the outside in the radial direction R.
  • the pump shaft support portion 75A is provided with a through hole that penetrates the pump cover 75 in the axial direction L, and the pump drive shaft 72 is inserted through the through hole.
  • the shaft support gap 77 which is the gap between the outer peripheral surface of the pump drive shaft 72 and the pump shaft support portion 75A, communicates with the oil storage portion S.
  • the pump drive shaft 72 is arranged below the oil level position OL of the oil storage unit S in the steady circulation state in which the circulation state of the oil F in the case 2 is in the steady state. .. Therefore, the pump drive shaft 72 is basically located in the oil F of the oil storage unit S. A gap through which the oil F can pass is also formed between the pump input gear 71 and the pump shaft support portion 75A in the axial direction L.
  • the shaft support gap 77 communicates with the oil storage portion S via a gap in the axial direction L between the pump input gear 71 and the pump shaft support portion 75A. Therefore, the oil F of the oil storage portion S is always supplied to the shaft support gap 77. As a result, the shaft support gap 77 of the pump drive shaft 72, which requires the most lubrication among the hydraulic pumps 7, can be appropriately lubricated.
  • the gap between the inner rotor 73 and the outer rotor 74 and the inner surfaces of the pump cover 75 and the pump housing 78 is set as the rotor gap 80, and between the shaft support gap 77 and the pump chamber 79 in the rotor gap 80.
  • a seal structure 76 is provided.
  • the pump cover 75 and the pump housing 78 form a columnar pump rotor accommodating chamber for accommodating the inner rotor 73 and the outer rotor 74. Therefore, the rotor gap 80 is formed along substantially the entire inner surface surrounding the cylindrical pump rotor accommodating chamber.
  • the rotor gap 80 is formed along a portion formed along the surface of the inner rotor 73 and the outer rotor 74 on the first side L1 in the axial direction, and along the surface of the inner rotor 73 and the outer rotor 74 on the second side L2 in the axial direction. It has a portion formed by the outer rotor 74 and a portion formed along the outer peripheral surface of the outer rotor 74.
  • the shaft support gap 77 is also arranged so as to project from the inner rotor 73 and the outer rotor 74 on the second side L2 in the axial direction. Is formed in. Further, the pump chamber 79 is arranged outside the pump drive shaft 72 in the radial direction R. Therefore, in the present embodiment, the seal structure 76 is radially R than the connecting portion with the shaft support gap 77 in the rotor gap 80 formed along the surface of the inner rotor 73 and the outer rotor 74 on the second side L2 in the axial direction.
  • the seal structure 76 can be, for example, a structure in which the gap interval (in this example, the interval in the axial direction L) is formed to be narrower than that of other portions.
  • a member such as a seal ring may be separately arranged as the seal structure 76.
  • the seal structure 76 may be provided so as to be in close contact with at least one of the inner rotor 73 and the outer rotor 74 so that the rotor gap 80 becomes zero.
  • the hydraulic pump 7 pumps up the oil F stored in the oil storage unit S (see FIG. 3) and supplies it to the oil passage 9.
  • the oil passage 9 is connected to the discharge port of the hydraulic pump 7.
  • the oil passage 9 includes a first lubricating oil passage 23a and a second lubricating oil passage 23b formed in the second side wall portion 23 of the case 2.
  • the oil F supplied to the oil passage 9 flows to the lubrication target of the input member 3, the counter gear mechanism 4, the differential gear mechanism 5, and the like, and then is stored in the oil storage unit S again. In this way, the oil F circulates in the case 2 during the normal rotation of the rotary electric machine 1.
  • the forward rotation of the rotary electric machine 1 means that the rotor shaft 122 of the rotary electric machine 1 rotates in the direction of advancing the vehicle on which the vehicle drive device 100 is mounted.
  • the hydraulic pump 7 causes the oil F in the oil passage 9 to flow back to the oil storage unit S.
  • the reversal of the rotary electric machine 1 means that the rotor shaft 122 of the rotary electric machine 1 rotates in the direction in which the vehicle on which the vehicle drive device 100 is mounted is moved backward.
  • the oil storage unit S is a space provided in the case 2 for storing the oil F.
  • the oil storage portion S is a space surrounded by the inner surface of the lower portion of the case 2.
  • the entire portion of the internal space of the case 2 that may be below the oil level is referred to as the oil storage portion S.
  • a strainer 8 is provided in the oil storage unit S.
  • the strainer 8 is a filter that removes foreign substances contained in the oil F when the hydraulic pump 7 pumps the oil F stored in the oil storage unit S.
  • the strainer 8 includes a suction port 81 for sucking the oil F stored in the oil storage unit S, a filter (not shown) for filtering the oil F sucked through the suction port 81, and the like.
  • vertical direction V the vertical direction of the vehicle drive device 100 mounted on the vehicle.
  • the upper position of the vertical direction V is represented by using “upper” such as upper and upper ends, and the lower position of the vertical direction V is “lower” such as lower and lower ends. Is expressed using.
  • the hydraulic pump 7 is arranged so that at least a part of the rotating member RT is located in the oil storage portion S.
  • the entire hydraulic pump 7 is located below the oil level position OL of the oil storage unit S.
  • the oil level position OL is the height of the oil level of the oil storage unit S in the steady circulation state in which the circulation state of the oil F in the case 2 is a steady state.
  • the steady circulation state is a state in which the rotary electric machine 1 rotates in the normal direction and the hydraulic pump 7 is driven, and the oil level position OL is stable.
  • the height of the oil level of the oil storage unit S varies depending on the state of the vehicle drive device 100.
  • the lowest oil level height in this fluctuation range is the oil level position OL.
  • the pump drive shaft 72 is arranged below the oil level position OL of the oil storage unit S. More specifically, at least the lower end of the pump drive shaft 72 is oil so that the oil F can be supplied to the inner rotor 73 and the outer rotor 74 covered by the pump cover 75 through the gap between the pump cover 75 and the pump drive shaft 72. It is preferable that it is arranged below the surface position OL.
  • the pump drive shaft 72 which requires the most lubrication among the rotating members RT of the hydraulic pump 7, can be appropriately lubricated.
  • the hydraulic pump 7 is arranged at a position overlapping the differential input gear 51 of the differential gear mechanism 5 in the axial direction along the axial direction L of the first output member 61 and the second output member 62. ing.
  • "overlapping in a specific direction” means that the virtual straight line is 2 when the virtual straight line parallel to the line-of-sight direction is moved in each direction orthogonal to the virtual straight line. It means that there is at least a part of the area where both of the two elements intersect.
  • the hydraulic pump 7 is arranged so that the arrangement area of the hydraulic pump 7 in the axial direction L and the arrangement area of the rotary electric machine 1 in the axial direction L overlap. .. That is, the hydraulic pump 7 is arranged so that at least a part of the arrangement area of the hydraulic pump 7 in the axial direction L is included in the arrangement area of the rotary electric machine 1 in the axial direction L. In the illustrated example, a part of the hydraulic pump 7 is arranged on the second side L2 in the axial direction with respect to the rotary electric machine 1. Then, a part of the axial first side L1 in the axial direction L arrangement region of the hydraulic pump 7 is included in the axial direction L arrangement region of the rotary electric machine 1.
  • the input member 3, the counter gear mechanism 4, and the differential gear mechanism 5 have the first axis A1 and the third axis in the horizontal direction in the axial view along the axial direction L.
  • the second axis A2 is arranged so as to be located between the A3 and the second axis A2.
  • the first axis A1 is located between the second axis A2 and the third axis A3 in the vertical direction V. Is located in.
  • the input member 3 and the counter gear mechanism 4 are arranged above the oil level position OL.
  • the differential gear mechanism 5 is arranged so that the lower end of the differential input gear 51 is located below the oil level position OL.
  • the lower end of the pump drive gear 57 is also arranged so as to be located below the oil level position OL.
  • the lower end of the stator 11 of the rotary electric machine 1 is located below the oil level position OL.
  • the stator 11 can be cooled by the oil F stored in the oil storage unit S while the vehicle on which the vehicle drive device 100 is mounted is running.
  • the lower end of the rotor 12 of the rotary electric machine 1 is located above the oil level position OL. As a result, the agitation resistance of the oil F by the rotor 12 can be reduced while the vehicle on which the vehicle drive device 100 is mounted is running.
  • the vehicle drive device 100 according to the second embodiment will be described with reference to FIG.
  • the positional relationship of the counter gear mechanism 4 and the differential gear mechanism 5 in the vertical direction V is different from that of the first embodiment.
  • the connection mode of the hydraulic pump 7 is different from that of the first embodiment.
  • the differences from the first embodiment will be mainly described. The points not particularly described are the same as those in the first embodiment.
  • the input member 3, the counter gear mechanism 4, and the differential gear mechanism 5 have a third axis between the first axis A1 and the second axis A2 in the vertical direction V. It is arranged so that A3 is located. That is, in the present embodiment, the axis of the counter gear mechanism 4 (second axis A2) is arranged below the axis of the differential gear mechanism 5 (third axis A3).
  • the hydraulic pump 7 is located at a position that does not overlap with the differential input gear 51 of the differential gear mechanism 5 in the axial view along the axial direction L of the first output member 61 and the second output member 62. Have been placed.
  • the hydraulic pump 7 is arranged so that the pump input gear 71 meshes with the first counter gear 42 of the counter gear mechanism 4. That is, in the present embodiment, the hydraulic pump 7 is driven by the rotation of the counter gear mechanism 4. Therefore, in this embodiment, the pump drive gear 57 is not provided.
  • the pump drive gear provided so that the pump input gear 71 of the hydraulic pump 7 rotates integrally with the differential input gear 51 of the differential gear mechanism 5.
  • the configuration that meshes with 57 has been described as an example.
  • the configuration is not limited to such a configuration, and for example, the pump input gear 71 may be configured to mesh with the differential input gear 51 of the differential gear mechanism 5.
  • the pump input gear 71 and the second counter gear 43 of the counter gear mechanism 4 are arranged so as to mesh with the differential input gear 51 at different positions in the circumferential direction of the differential input gear 51.
  • the pump input gear 71 meshes with the first counter gear 42 of the counter gear mechanism 4 and the hydraulic pump 7 is driven by the rotation of the first counter gear 42
  • the pump input gear 71 is provided so as to rotate integrally with the second counter gear 43 or the second counter gear 43 of the counter gear mechanism 4. It may mesh with the pump drive gear.
  • the pump input gear 71 is not provided, the pump drive shaft 72 is connected so as to rotate integrally with the counter shaft 41 of the counter gear mechanism 4, and the hydraulic pump 7 is driven by the rotation of the counter shaft 41. Is also good.
  • the configuration in which the oil storage portion S is formed by the inner surface of the case 2 has been described as an example.
  • the oil storage portion S may be configured by, for example, a member different from the case 2 fixed to the inner surface of the case 2 without being limited to such a configuration.
  • the seal structure 76 between the shaft support gap 77 and the pump chamber 79 in the rotor gap 80 which is the gap between the inner rotor 73 and the outer rotor 74 and the inner surfaces of the pump cover 75 and the pump housing 78.
  • the configuration in which is provided is described as an example.
  • such a seal structure 76 is not essential, and the seal structure 76 may not be provided between the shaft support gap 77 in the rotor gap 80 and the pump chamber 79.
  • a seal structure may be provided at another location in the rotor gap 80.
  • the hydraulic pump 7 is configured as an inscribed gear pump.
  • the present invention is not limited to this, and the hydraulic pump 7 may be configured as another type of pump.
  • it may be configured as a vane pump or a circumscribed gear pump.
  • the hydraulic pump 7 is a vane pump, one rotor provided with a vane is the pump rotor.
  • the transmission mechanism T is a gear mechanism including an input gear 32 included in the input member 3, a counter gear mechanism 4, and a differential gear mechanism 5
  • the present invention is not limited to this, and as the transmission mechanism T, various types of mechanisms capable of transmitting power can be used.
  • it may be configured not to include either the counter gear mechanism 4 or the differential gear mechanism 5, or it may be configured to include a gear mechanism other than these.
  • a transmission mechanism other than the gear mechanism for example, a transmission mechanism using a chain or a belt, or a transmission mechanism using a fluid may be provided.
  • the vehicle drive device (100) The rotating electric machine (1), which is the driving force source for the wheels (W), With the input member (3) driven and connected to the rotary electric machine (1), A pair of output members (61, 62) that are driven and connected to the wheel (W), respectively.
  • a transmission mechanism (T) that drives and connects the input member (3) and the pair of output members (61, 62), and A case (2) accommodating the rotary electric machine (1) and the transmission mechanism (T), and A hydraulic pump (7) driven by a driving force transmitted through a power transmission path (P) connecting the rotary electric machine (1) and the wheels (W) is provided.
  • the power transmission path (P) is configured to constantly transmit a driving force between the rotary electric machine (1) and the hydraulic pump (7).
  • An oil storage unit (S) for storing oil (F) is provided in the case (2). At least a part of the rotating member (RT) of the hydraulic pump (7) is arranged in the oil storage portion (S).
  • the rotating member (RT) of the hydraulic pump (7) is in constant contact with the oil (F) stored in the oil storage unit (S). Therefore, the oil (F) stored in the oil storage unit (S) can be supplied to the rotating member (RT) of the pump regardless of the rotation direction of the rotary electric machine (1). Therefore, in a configuration in which the power transmission path (P) connecting the rotary electric machine (1) and the wheels (W) constantly transmits the driving force between the rotary electric machine (1) and the hydraulic pump (7), the rotary electric machine (1) ) Is not provided with an oil supply mechanism such as an oil passage for supplying oil (F) to the rotating member (RT) of the hydraulic pump (7) during the reversal of the hydraulic pump (7).
  • an oil supply mechanism such as an oil passage for supplying oil (F) to the rotating member (RT) of the hydraulic pump (7) during the reversal of the hydraulic pump (7).
  • the rotating member (RT) is arranged along the rotation axis of the pump rotor (73, 74) and the pump rotor (73, 74), and the pump rotor (73, 74).
  • a pump drive shaft (72) connected so as to rotate integrally is included, and the pump drive shaft (72) has a steady state of oil (F) circulation in the case (2).
  • the oil storage portion (S) is arranged below the oil level position (OL) in the steady circulation state.
  • the pump drive shaft (72) of the hydraulic pump (7) is basically located in the oil (F) of the oil storage unit (S). Therefore, it becomes easy to appropriately lubricate the pump drive shaft (72), which requires the most lubrication among the rotating members (RT) of the hydraulic pump (7).
  • the rotating member (RT) is arranged along the rotation axis of the pump rotor (73, 74) and the pump rotor (73, 74) and is integrated with the pump rotor (73, 74).
  • a pump drive shaft (72) connected so as to rotate in a radial manner is included, and the hydraulic pump (7) supports a pump shaft supporting the outer peripheral surface of the pump drive shaft (72) from the outside in the radial direction.
  • a shaft support gap (77) which is further provided with a portion (75A) and is a gap between the outer peripheral surface of the pump drive shaft (72) and the pump shaft support portion (75A), communicates with the oil storage portion (S). It is preferable to do so.
  • the oil (F) of the oil storage portion (S) can be easily applied to the shaft support gap (77), which is the gap between the outer peripheral surface of the pump drive shaft (72) and the pump shaft support portion (75A). Can be supplied. Therefore, the shaft support gap (77) of the pump drive shaft (72), which requires the most lubrication among the hydraulic pumps (7), can be appropriately lubricated.
  • the hydraulic pump (7) is a pump that covers the pump rotors (73, 74).
  • a case (75, 78) is further provided, and a space where a volume change occurs due to rotation of the pump rotor (73, 74) is defined as a pump chamber (79), and the pump rotor (73, 74) and the pump case (75, 78) are provided.
  • ) Is defined as a rotor gap (80), and a seal structure (76) is provided between the shaft support gap (77) and the pump chamber (79) in the rotor gap (80). Is suitable.
  • the shaft support gap (77) is formed while appropriately lubricating the shaft support gap (77), which is the gap between the outer peripheral surface of the pump drive shaft (72) and the pump shaft support portion (75A). It is possible to regulate that the lubricating oil (F) reaches the pump chamber (79) through the rotor gap (80).
  • the transmission mechanism (T) includes a first gear (32) included in the input member (3), a second gear (42) that meshes with the first gear (32), and the second gear (42).
  • a counter gear mechanism (4) having a third gear (43) that rotates integrally with the third gear, and a fourth gear (51) that meshes with the third gear (43), and the rotation of the fourth gear (51).
  • the driving force of the rotary electric machine (1) can be appropriately transmitted to the pair of output members (61, 62).
  • the hydraulic pump (7) overlaps with the fourth gear (51) of the differential gear mechanism (5) in an axial view along the axial direction (L) of the output members (61, 62).
  • the hydraulic pump (7) is arranged so as to overlap the axial direction (L) arrangement area of the hydraulic pump (7) and the rotary electric machine (1) in the axial direction (L) arrangement area. Is suitable.
  • the fourth gear (51) is generally the portion of the differential gear mechanism (5) having the largest radial dimension (R).
  • the hydraulic pump (7) is arranged by utilizing the space overlapping the fourth gear (51) in the axial direction. As a result, it is possible to suppress the increase in size of the vehicle drive device (100) in the radial direction (R) due to the arrangement of the hydraulic pump (7).
  • the hydraulic pump (7) is arranged by utilizing the space where the arrangement area in the axial direction (L) overlaps with the rotary electric machine (1). As a result, it is possible to suppress the increase in size of the vehicle drive device (100) in the axial direction (L) due to the arrangement of the hydraulic pump (7).
  • the hydraulic pump (7) includes a pump input gear (71) which is an input element of the hydraulic pump (7).
  • the pump input gear (71) is a pump drive gear (57) provided so as to rotate integrally with the fourth gear (51) of the differential gear mechanism (5) or the fourth gear (51). ) Is meshed with.
  • the differential gear mechanism (5) is generally arranged so that the lower end of the fourth gear (51) is located at the lower part of the case (2). Therefore, according to this configuration, the pump input gear (71) of the hydraulic pump (7) that meshes with the fourth gear (51) or the pump drive gear (57) that rotates integrally with the fourth gear (51). It becomes easy to arrange it in the lower part of the case (2). Therefore, at least a part of the rotating member (RT) of the hydraulic pump (7) is arranged in the oil storage portion (S) which is often arranged in the lower part of the case (2), and the rotary electric machine (1) It becomes easy to lubricate the rotating member (RT) of the hydraulic pump (7) during the reversal.
  • the axis (A2) of the counter gear mechanism (4) is arranged below the axis (A3) of the differential gear mechanism (5). It is preferable that the hydraulic pump (7) is driven by the rotation of the counter gear mechanism (4).
  • the axis (A2) of the counter gear mechanism (4) is arranged below the axis (A3) of the differential gear mechanism (5). Therefore, the counter gear mechanism (4) is arranged at a relatively low position in the case (2). This makes it easy to dispose the hydraulic pump (7) driven by the rotation of the counter gear mechanism (4) at the lower part of the case (2). Therefore, at least a part of the rotating member (RT) of the hydraulic pump (7) is arranged in the oil storage portion (S) which is often arranged in the lower part of the case (2), and the rotary electric machine (1) It becomes easy to lubricate the rotating member (RT) of the hydraulic pump (7) during the reversal.
  • the technology according to the present disclosure includes a rotary electric machine which is a driving force source for wheels, a counter gear mechanism, a differential gear mechanism, a case for accommodating them, and a driving force transmitted through a power transmission path connecting the rotary electric machine and wheels. It can be used for a vehicle drive device equipped with a hydraulic pump driven by.
  • Vehicle drive device 1 Rotating electric machine 2: Case 3: Input member 32: Input gear (first gear) 4: Counter gear mechanism 42: 1st counter gear (2nd gear) 43: 2nd counter gear (3rd gear) 5: Differential gear mechanism 51: Differential input gear (4th gear) 61: 1st output member 62: 2nd output member 7: Hydraulic pump 71: Pump input gear 72: Pump drive shaft 73: Inner rotor (pump rotor) 74: Outer rotor (pump rotor) 75: Pump cover (pump case) 75A: Pump shaft support 76: Seal structure 77: Shaft support gap 78: Pump housing (pump case) 79: Pump chamber 80: Rotor gap F: Oil S: Oil storage unit T: Transmission mechanism RT: Rotating member W: Wheel P: Power transmission path

Abstract

A vehicle drive device equipped with a rotary electric machine (1), an input member (3) drivably coupled to the rotary electric machine (1), a pair of output members (61, 62), a transmission mechanism (T) for drivably coupling the input member (3) and the pair of output members (61, 62), a case (2) for accommodating the rotary electric machine (1) and the transmission mechanism (T), and a hydraulic pump (7) driven by driving force transmitted through a power transmission path (P) connecting the rotary electric machine (1) and a wheel (W), wherein the power transmission path (P) is configured so as to continuously transmit driving force between the rotary electric machine (1) and the hydraulic pump (7), and at least a portion of a rotation member (RT) of the hydraulic pump (7) is arranged within an oil storage section (S) inside the case (2).

Description

車両用駆動装置Vehicle drive
 本発明は、車輪の駆動力源となる回転電機と、カウンタギヤ機構と、差動歯車機構と、それらを収容するケースと、回転電機と車輪とを結ぶ動力伝達経路を伝わる駆動力により駆動される油圧ポンプと、を備えた車両用駆動装置に関する。 The present invention is driven by a rotary electric machine which is a driving force source for wheels, a counter gear mechanism, a differential gear mechanism, a case accommodating them, and a driving force transmitted through a power transmission path connecting the rotary electric machine and wheels. The present invention relates to a hydraulic pump and a drive device for a vehicle.
 このような車両用駆動装置の一例が、下記の特許文献1に開示されている。以下、この背景技術の説明では、特許文献1における符号を括弧内に引用する。 An example of such a vehicle drive device is disclosed in Patent Document 1 below. Hereinafter, in the description of this background technique, the reference numerals in Patent Document 1 are quoted in parentheses.
 特許文献1の車両用駆動装置(1)においては、回転電機(10)を正転(車両を前進させる方向に回転)させた場合、油圧ポンプ(51)は、ケース(40)内の油貯留部(70)に貯留された油を汲み上げて油路(91,97等)に供給する。油路(91,97等)に供給された油は、回転電機(10)のロータ(14)等の冷却対象、及びカウンタギヤ機構(20)や差動歯車機構(30)等の潤滑対象に流動した後、再びケース(40)内の貯留部(70)に貯留される。このように、回転電機(10)の正転中は、ケース(40)内において油が循環しているため、当該油によって油圧ポンプ(51)のロータ等の回転部材は常に潤滑された状態となっている。 In the vehicle drive device (1) of Patent Document 1, when the rotary electric machine (10) is rotated in the normal direction (rotated in the direction in which the vehicle is advanced), the hydraulic pump (51) stores oil in the case (40). The oil stored in the section (70) is pumped up and supplied to the oil passages (91, 97, etc.). The oil supplied to the oil passages (91, 97, etc.) is used as a cooling target for the rotor (14) of the rotary electric machine (10) and a lubrication target for the counter gear mechanism (20), the differential gear mechanism (30), etc. After flowing, it is stored again in the storage unit (70) in the case (40). As described above, since the oil circulates in the case (40) during the normal rotation of the rotary electric machine (10), the rotating members such as the rotor of the hydraulic pump (51) are always lubricated by the oil. It has become.
国際公開第2018/061443号(図1及び図6)International Publication No. 2018/061443 (Figs. 1 and 6)
 一方、回転電機(10)を逆転(車両を後進させる方向に回転)させた場合、油圧ポンプ(51)は、油路(91,97等)内の油をケース(40)内の貯留部(70)に逆流させる。そのため、回転電機(10)の逆転が一定の時間を超えて維持された場合、油路(91,97等)内に油が殆ど存在しない状態となる。その結果、油路(91,97等)から油圧ポンプ(51)へ油が流動せず、油圧ポンプ(51)の回転部材の潤滑が不足した状態となる。 On the other hand, when the rotary electric machine (10) is reversed (rotated in the direction of moving the vehicle backward), the hydraulic pump (51) stores the oil in the oil passages (91, 97, etc.) in the case (40). Backflow to 70). Therefore, when the reversal of the rotary electric machine (10) is maintained for more than a certain period of time, there is almost no oil in the oil passages (91, 97, etc.). As a result, the oil does not flow from the oil passages (91, 97, etc.) to the hydraulic pump (51), resulting in insufficient lubrication of the rotating members of the hydraulic pump (51).
 特許文献1の車両用駆動装置(1)では、油圧ポンプ(51)が回転電機(10)と常時連動しているため、回転電機(10)の逆転中に油圧ポンプ(51)の回転を停止することができない構成となっている。このような構成において、回転電機(10)の逆転中における油圧ポンプ(51)の回転部材の潤滑不足を回避するための手段としては、油圧ポンプ(51)の回転部材に油を供給する油路等の油供給機構を設けることが考えられる。しかしながら、このような油供給機構の設置は、車両用駆動装置(1)の製造コストの増加や車両用駆動装置(1)の大型化の要因となる。 In the vehicle drive device (1) of Patent Document 1, since the hydraulic pump (51) is always linked with the rotary electric machine (10), the rotation of the hydraulic pump (51) is stopped during the reversal of the rotary electric machine (10). It is a configuration that cannot be done. In such a configuration, as a means for avoiding insufficient lubrication of the rotating member of the hydraulic pump (51) during reversal of the rotary electric machine (10), an oil passage for supplying oil to the rotating member of the hydraulic pump (51). It is conceivable to provide an oil supply mechanism such as. However, the installation of such an oil supply mechanism causes an increase in the manufacturing cost of the vehicle drive device (1) and an increase in the size of the vehicle drive device (1).
 そこで、油圧ポンプが回転電機と常時連動している構成において、車両用駆動装置の製造コストの増加や車両用駆動装置の大型化を抑制しつつ、回転電機の逆転中でも油圧ポンプの回転部材を適切に潤滑できる車両用駆動装置が望まれる。 Therefore, in a configuration in which the hydraulic pump is always linked with the rotary electric machine, the rotating member of the hydraulic pump is appropriate even during the reversal of the rotary electric machine while suppressing an increase in the manufacturing cost of the vehicle drive device and an increase in the size of the vehicle drive device. A vehicle drive device that can be lubricated is desired.
 上記に鑑みた、車両用駆動装置の特徴構成は、
 車輪の駆動力源となる回転電機と、
 前記回転電機に駆動連結された入力部材と、
 それぞれ前記車輪に駆動連結される一対の出力部材と、
 前記入力部材と一対の前記出力部材とを駆動連結する伝達機構と、
 前記回転電機、及び前記伝達機構を収容するケースと、
 前記回転電機と前記車輪とを結ぶ動力伝達経路を伝わる駆動力により駆動される油圧ポンプと、を備え、
 前記動力伝達経路は、前記回転電機と前記油圧ポンプとの間で、駆動力を常時伝達するように構成され、
 前記ケース内に、油が貯留される油貯留部が設けられ、
 前記油圧ポンプの回転部材の少なくとも一部が、前記油貯留部内に配置されている点にある。
In view of the above, the characteristic configuration of the vehicle drive device is
The rotating electric machine that is the driving force source for the wheels,
With the input member driven and connected to the rotary electric machine,
A pair of output members that are driven and connected to the wheels, respectively.
A transmission mechanism that drives and connects the input member and the pair of output members,
A case for accommodating the rotary electric machine and the transmission mechanism, and
A hydraulic pump driven by a driving force transmitted through a power transmission path connecting the rotary electric machine and the wheels is provided.
The power transmission path is configured to constantly transmit a driving force between the rotary electric machine and the hydraulic pump.
An oil storage unit for storing oil is provided in the case.
At least a part of the rotating member of the hydraulic pump is arranged in the oil storage part.
 この特徴構成によれば、油圧ポンプの回転部材の少なくとも一部が、油貯留部に貯留された油に定常的に接触することになる。そのため、回転電機の回転方向に関わらず、油貯留部に貯留された油をポンプの回転部材に供給することができる。したがって、回転電機と車輪とを結ぶ動力伝達経路が回転電機と油圧ポンプとの間で駆動力を常時伝達する構成において、回転電機の逆転中に油圧ポンプの回転部材に油を供給する油路等の油供給機構を備えていなくても、油圧ポンプの回転部材を適切に潤滑することができる。つまり、本構成によれば、油圧ポンプが回転電機と常時連動している構成において、車両用駆動装置の製造コストの増加や車両用駆動装置の大型化を抑制しつつ、回転電機の逆転中でも油圧ポンプの回転部材を適切に潤滑できる。 According to this characteristic configuration, at least a part of the rotating member of the hydraulic pump is in constant contact with the oil stored in the oil storage section. Therefore, the oil stored in the oil storage unit can be supplied to the rotating member of the pump regardless of the rotation direction of the rotary electric machine. Therefore, in a configuration in which the power transmission path connecting the rotary electric machine and the wheels constantly transmits the driving force between the rotary electric machine and the hydraulic pump, an oil passage or the like that supplies oil to the rotating member of the hydraulic pump during the reversal of the rotary electric machine. Even if the oil supply mechanism is not provided, the rotating member of the hydraulic pump can be properly lubricated. That is, according to this configuration, in the configuration in which the hydraulic pump is always linked with the rotary electric machine, the hydraulic pressure is suppressed even during the reversal of the rotary electric machine while suppressing the increase in the manufacturing cost of the vehicle drive device and the increase in size of the vehicle drive device. The rotating members of the pump can be properly lubricated.
第1の実施形態に係る車両用駆動装置の軸方向に沿う断面図Sectional drawing along the axial direction of the vehicle drive device which concerns on 1st Embodiment 第1の実施形態に係る車両用駆動装置のスケルトン図Skeleton diagram of the vehicle drive device according to the first embodiment 第1の実施形態に係る車両用駆動装置の軸方向に直交する断面図Sectional drawing orthogonal to the axial direction of the vehicle drive device which concerns on 1st Embodiment 第1の実施形態に係る車両用駆動装置の油圧ポンプ周辺の拡大断面図Enlarged sectional view around the hydraulic pump of the vehicle drive device according to the first embodiment. 第2の実施形態に係る車両用駆動装置の軸方向に直交する断面図Cross-sectional view orthogonal to the axial direction of the vehicle drive device according to the second embodiment.
1.第1の実施形態
 以下では、第1の実施形態に係る車両用駆動装置100について、図面を参照して説明する。図1及び図2に示すように、車両用駆動装置100は、回転電機1と、ケース2と、入力部材3と、伝達機構Tと、第1出力部材61及び第2出力部材62と、を備えている。本実施形態では、伝達機構Tは、入力部材3が備える入力ギヤ32と、カウンタギヤ機構4と、差動歯車機構5と、を備えている。
1. 1. First Embodiment In the following, the vehicle drive device 100 according to the first embodiment will be described with reference to the drawings. As shown in FIGS. 1 and 2, the vehicle drive device 100 includes a rotary electric machine 1, a case 2, an input member 3, a transmission mechanism T, and a first output member 61 and a second output member 62. I have. In the present embodiment, the transmission mechanism T includes an input gear 32 included in the input member 3, a counter gear mechanism 4, and a differential gear mechanism 5.
 回転電機1は、その回転軸心としての第1軸A1上に配置されている。本実施形態では、入力部材3も第1軸A1上に配置されている。カウンタギヤ機構4は、その回転軸心としての第2軸A2上に配置されている。差動歯車機構5は、その回転軸心としての第3軸A3上に配置されている。本実施形態では、第1出力部材61及び第2出力部材62も第3軸A3上に配置されている。第1軸A1、第2軸A2、及び第3軸A3は、互いに異なる仮想軸であり、互いに平行に配置されている。 The rotary electric machine 1 is arranged on the first axis A1 as its rotation axis. In this embodiment, the input member 3 is also arranged on the first axis A1. The counter gear mechanism 4 is arranged on the second axis A2 as its rotation axis. The differential gear mechanism 5 is arranged on the third axis A3 as its rotation axis. In the present embodiment, the first output member 61 and the second output member 62 are also arranged on the third axis A3. The first axis A1, the second axis A2, and the third axis A3 are virtual axes that are different from each other and are arranged in parallel with each other.
 以下の説明では、上記の軸A1~A3に平行な方向を、車両用駆動装置100の「軸方向L」とする。そして、軸方向Lにおいて、入力部材3に対して回転電機1が配置される側を「軸方向第1側L1」とし、その反対側を「軸方向第2側L2」とする。また、上記の第1軸A1、第2軸A2、及び第3軸A3のそれぞれに直交する方向を、各軸を基準とした「径方向R」とする。なお、どの軸を基準とするかを区別する必要がない場合やどの軸を基準とするかが明らかである場合には、単に「径方向R」と記す場合がある。 In the following description, the direction parallel to the above axes A1 to A3 is referred to as the "axial direction L" of the vehicle drive device 100. Then, in the axial direction L, the side on which the rotary electric machine 1 is arranged with respect to the input member 3 is referred to as the "axial first side L1", and the opposite side is referred to as the "axial second side L2". Further, the direction orthogonal to each of the first axis A1, the second axis A2, and the third axis A3 is defined as the "radial direction R" with respect to each axis. When it is not necessary to distinguish which axis is used as a reference, or when it is clear which axis is used as a reference, it may be simply described as "diameter direction R".
 図1に示すように、ケース2は、回転電機1、並びに、伝達機構Tとしての入力ギヤ32、カウンタギヤ機構4、及び差動歯車機構5を収容する。本実施形態では、ケース2は、周壁部21と、第1側壁部22及び第2側壁部23と、隔壁部24と、を有している。 As shown in FIG. 1, the case 2 houses the rotary electric machine 1, the input gear 32 as the transmission mechanism T, the counter gear mechanism 4, and the differential gear mechanism 5. In the present embodiment, the case 2 has a peripheral wall portion 21, a first side wall portion 22, a second side wall portion 23, and a partition wall portion 24.
 周壁部21は、回転電機1、入力部材3、カウンタギヤ機構4、差動歯車機構5、並びに第1出力部材61及び第2出力部材62の径方向Rの外側を囲む筒状に形成されている。第1側壁部22及び第2側壁部23は、径方向Rに沿って延在するように形成されている。第1側壁部22は、周壁部21の軸方向第1側L1の開口を閉塞するように、周壁部21の軸方向第1側L1の端部に固定されている。第2側壁部23は、周壁部21の軸方向第2側L2の開口を閉塞するように、周壁部21の軸方向第2側L2の端部に固定されている。隔壁部24は、周壁部21の径方向Rの内側の空間であって、第1側壁部22と第2側壁部23との間の空間を軸方向Lに区画するように形成されている。 The peripheral wall portion 21 is formed in a tubular shape that surrounds the rotary electric machine 1, the input member 3, the counter gear mechanism 4, the differential gear mechanism 5, and the outer sides of the first output member 61 and the second output member 62 in the radial direction R. There is. The first side wall portion 22 and the second side wall portion 23 are formed so as to extend along the radial direction R. The first side wall portion 22 is fixed to the end portion of the peripheral wall portion 21 on the axial first side L1 so as to close the opening of the peripheral wall portion 21 on the axial first side L1. The second side wall portion 23 is fixed to the end portion of the peripheral wall portion 21 on the axial second side L2 so as to close the opening of the peripheral wall portion 21 on the axial second side L2. The partition wall portion 24 is a space inside the peripheral wall portion 21 in the radial direction R, and is formed so as to partition the space between the first side wall portion 22 and the second side wall portion 23 in the axial direction L.
 本実施形態では、第1側壁部22と隔壁部24との間には、回転電機1が配置されている。そして、第2側壁部23と隔壁部24との間には、入力部材3、カウンタギヤ機構4、及び差動歯車機構5が配置されている。 In the present embodiment, the rotary electric machine 1 is arranged between the first side wall portion 22 and the partition wall portion 24. An input member 3, a counter gear mechanism 4, and a differential gear mechanism 5 are arranged between the second side wall portion 23 and the partition wall portion 24.
 回転電機1は、一対の車輪Wの駆動力源として機能する。回転電機1は、ステータ11とロータ12とを有している。ここで、本願において「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。 The rotary electric machine 1 functions as a driving force source for the pair of wheels W. The rotary electric machine 1 has a stator 11 and a rotor 12. Here, in the present application, "rotary electric machine" is used as a concept including any of a motor (electric motor), a generator (generator), and, if necessary, a motor / generator that functions as both a motor and a generator.
 ステータ11は、非回転部材(例えば、ケース2)に固定されたステータコア111を有している。ロータ12は、ステータ11に対して回転可能なロータコア121と、ロータコア121と一体的に回転するように連結されたロータ軸122と、を有している。本実施形態では、回転電機1は回転界磁型の回転電機である。そのため、ステータコア111には、当該ステータコア111から軸方向Lの両側(軸方向第1側L1及び軸方向第2側L2)にそれぞれ突出するコイルエンド部112が形成されるようにコイルが巻装されている。そして、ロータコア121には、永久磁石123が設けられている。また、本実施形態では、回転電機1はインナロータ型の回転電機である。そのため、ステータコア111よりも径方向Rの内側にロータコア121が配置されている。そして、ロータコア121の内周面に、ロータ軸122が連結されている。 The stator 11 has a stator core 111 fixed to a non-rotating member (for example, case 2). The rotor 12 has a rotor core 121 that can rotate with respect to the stator 11, and a rotor shaft 122 that is connected so as to rotate integrally with the rotor core 121. In the present embodiment, the rotary electric machine 1 is a rotating field type rotary electric machine. Therefore, a coil is wound around the stator core 111 so that coil end portions 112 projecting from the stator core 111 on both sides in the axial direction L (the first side L1 in the axial direction and the second side L2 in the axial direction) are formed. ing. A permanent magnet 123 is provided on the rotor core 121. Further, in the present embodiment, the rotary electric machine 1 is an inner rotor type rotary electric machine. Therefore, the rotor core 121 is arranged inside the stator core 111 in the radial direction R. The rotor shaft 122 is connected to the inner peripheral surface of the rotor core 121.
 ロータ軸122は、第1軸A1回りに回転する回転部材である。ロータ軸122は、軸方向Lに沿って延在するように形成されている。本実施形態では、ロータ軸122は、第1ロータ軸受B1a及び第2ロータ軸受B1bを介して、ケース2に対して回転可能に支持されている。具体的には、ロータ軸122の軸方向第1側L1の端部が、第1ロータ軸受B1aを介して、ケース2の第1側壁部22に対して回転可能に支持されている。そして、ロータ軸122の軸方向第2側L2の端部が、第2ロータ軸受B1bを介して、ケース2の隔壁部24に対して回転可能に支持されている。 The rotor shaft 122 is a rotating member that rotates around the first shaft A1. The rotor shaft 122 is formed so as to extend along the axial direction L. In the present embodiment, the rotor shaft 122 is rotatably supported with respect to the case 2 via the first rotor bearing B1a and the second rotor bearing B1b. Specifically, the end portion of the rotor shaft 122 on the first side L1 in the axial direction is rotatably supported with respect to the first side wall portion 22 of the case 2 via the first rotor bearing B1a. Then, the end portion of the rotor shaft 122 on the second side L2 in the axial direction is rotatably supported with respect to the partition wall portion 24 of the case 2 via the second rotor bearing B1b.
 入力部材3は、回転電機1に駆動連結されている。入力部材3は、入力軸31と、入力ギヤ32とを備えている。 The input member 3 is drive-connected to the rotary electric machine 1. The input member 3 includes an input shaft 31 and an input gear 32.
 入力軸31は、第1軸A1回りに回転する回転部材である。入力軸31は、軸方向Lに沿って延在するように形成されている。本実施形態では、入力軸31は、ケース2の隔壁部24を軸方向Lに貫通する貫通孔に挿通されている。そして、入力軸31の軸方向第1側L1の端部が、ロータ軸122の軸方向第2側L2の端部と連結されている。図示の例では、ロータ軸122の径方向Rの内側に入力軸31が位置するように、入力軸31の軸方向第1側L1の端部がロータ軸122の軸方向第2側L2の端部に挿入され、これらの端部同士がスプライン係合によって連結されている。 The input shaft 31 is a rotating member that rotates around the first shaft A1. The input shaft 31 is formed so as to extend along the axial direction L. In the present embodiment, the input shaft 31 is inserted into a through hole that penetrates the partition wall portion 24 of the case 2 in the axial direction L. The end of the input shaft 31 on the first axial side L1 is connected to the end of the rotor shaft 122 on the second axial side L2. In the illustrated example, the end of the axial first side L1 of the input shaft 31 is the end of the axial second side L2 of the rotor shaft 122 so that the input shaft 31 is located inside the radial direction R of the rotor shaft 122. It is inserted into the portions and these ends are connected by spline engagement.
 本実施形態では、入力軸31は、第1入力軸受B3a及び第2入力軸受B3bを介して、ケース2に対して回転可能に支持されている。具体的には、入力軸31における、軸方向Lの中心部よりも軸方向第1側L1の部分であって、ロータ軸122との連結部分よりも軸方向第2側L2の部分が、第1入力軸受B3aを介して、ケース2の隔壁部24に対して回転可能に支持されている。そして、入力軸31の軸方向第2側L2の端部が、第2入力軸受B3bを介して、ケース2の第2側壁部23に対して回転可能に支持されている。 In the present embodiment, the input shaft 31 is rotatably supported with respect to the case 2 via the first input bearing B3a and the second input bearing B3b. Specifically, the portion of the input shaft 31 on the first side L1 in the axial direction with respect to the central portion in the axial direction L, and the portion L2 on the second side in the axial direction with respect to the connecting portion with the rotor shaft 122 is the second portion. It is rotatably supported with respect to the partition wall portion 24 of the case 2 via the 1 input bearing B3a. Then, the end portion of the input shaft 31 on the second side L2 in the axial direction is rotatably supported with respect to the second side wall portion 23 of the case 2 via the second input bearing B3b.
 入力ギヤ32は、「第1ギヤ」に相当する。入力ギヤ32は、回転電機1からの駆動力をカウンタギヤ機構4に伝達する。入力ギヤ32は、入力軸31と一体的に回転するように、入力軸31に連結されている。本実施形態では、入力ギヤ32は、入力軸31と一体的に形成されている。また、本実施形態では、入力ギヤ32は、第1入力軸受B3aと第2入力軸受B3bとの間に配置されている。 The input gear 32 corresponds to the "first gear". The input gear 32 transmits the driving force from the rotary electric machine 1 to the counter gear mechanism 4. The input gear 32 is connected to the input shaft 31 so as to rotate integrally with the input shaft 31. In this embodiment, the input gear 32 is integrally formed with the input shaft 31. Further, in the present embodiment, the input gear 32 is arranged between the first input bearing B3a and the second input bearing B3b.
 カウンタギヤ機構4は、回転電機1と一対の車輪Wとを結ぶ動力伝達経路Pにおいて、入力部材3と差動歯車機構5との間に配置されている。カウンタギヤ機構4は、カウンタ軸41と、第1カウンタギヤ42と、第2カウンタギヤ43とを有している。 The counter gear mechanism 4 is arranged between the input member 3 and the differential gear mechanism 5 in the power transmission path P connecting the rotary electric machine 1 and the pair of wheels W. The counter gear mechanism 4 has a counter shaft 41, a first counter gear 42, and a second counter gear 43.
 カウンタ軸41は、第2軸A2回りに回転する回転部材である。カウンタ軸41は、軸方向Lに沿って延在するように形成されている。本実施形態では、カウンタ軸41は、第1カウンタ軸受B4a及び第2カウンタ軸受B4bを介して、ケース2に対して回転可能に支持されている。具体的には、カウンタ軸41の軸方向第1側L1の端部が、第1カウンタ軸受B4aを介して、ケース2の隔壁部24に対して回転可能に支持されている。そして、カウンタ軸41の軸方向第2側L2の端部が、第2カウンタ軸受B4bを介して、ケース2の第2側壁部23に対して回転可能に支持されている。 The counter shaft 41 is a rotating member that rotates around the second shaft A2. The counter shaft 41 is formed so as to extend along the axial direction L. In the present embodiment, the counter shaft 41 is rotatably supported with respect to the case 2 via the first counter bearing B4a and the second counter bearing B4b. Specifically, the end portion of the counter shaft 41 on the first side L1 in the axial direction is rotatably supported with respect to the partition wall portion 24 of the case 2 via the first counter bearing B4a. Then, the end portion of the counter shaft 41 on the second side L2 in the axial direction is rotatably supported with respect to the second side wall portion 23 of the case 2 via the second counter bearing B4b.
 第1カウンタギヤ42は、カウンタギヤ機構4の入力要素である。第1カウンタギヤ42は、入力部材3の入力ギヤ32と噛み合っている。つまり、第1カウンタギヤ42は、第1ギヤに噛み合う「第2ギヤ」に相当する。第1カウンタギヤ42は、カウンタ軸41と一体的に回転するように、カウンタ軸41に連結されている。本実施形態では、第1カウンタギヤ42は、カウンタ軸41に対してスプライン係合によって連結されている。また、本実施形態では、第1カウンタギヤ42は、第1カウンタ軸受B4aと第2カウンタ軸受B4bとの間であって、第2カウンタギヤ43よりも軸方向第2側L2に配置されている。 The first counter gear 42 is an input element of the counter gear mechanism 4. The first counter gear 42 meshes with the input gear 32 of the input member 3. That is, the first counter gear 42 corresponds to the "second gear" that meshes with the first gear. The first counter gear 42 is connected to the counter shaft 41 so as to rotate integrally with the counter shaft 41. In the present embodiment, the first counter gear 42 is connected to the counter shaft 41 by spline engagement. Further, in the present embodiment, the first counter gear 42 is arranged between the first counter bearing B4a and the second counter bearing B4b, and is arranged on the second side L2 in the axial direction with respect to the second counter gear 43. ..
 第2カウンタギヤ43は、カウンタギヤ機構4の出力要素である。第2カウンタギヤ43は、カウンタ軸41と一体的に回転するように、カウンタ軸41に連結されている。つまり、第2カウンタギヤ43は、第2ギヤと一体的に回転する「第3ギヤ」に相当する。本実施形態では、第2カウンタギヤ43は、カウンタ軸41と一体的に形成されている。また、本実施形態では、第2カウンタギヤ43は、第1カウンタギヤ42よりも小径に形成されている。図示の例では、第2カウンタギヤ43は、第1カウンタ軸受B4aと第2カウンタ軸受B4bとの間であって、第1カウンタギヤ42よりも軸方向第1側L1に配置されている。 The second counter gear 43 is an output element of the counter gear mechanism 4. The second counter gear 43 is connected to the counter shaft 41 so as to rotate integrally with the counter shaft 41. That is, the second counter gear 43 corresponds to a "third gear" that rotates integrally with the second gear. In the present embodiment, the second counter gear 43 is integrally formed with the counter shaft 41. Further, in the present embodiment, the second counter gear 43 is formed to have a smaller diameter than the first counter gear 42. In the illustrated example, the second counter gear 43 is located between the first counter bearing B4a and the second counter bearing B4b, and is arranged on the first side L1 in the axial direction with respect to the first counter gear 42.
 差動歯車機構5は、回転電機1の側から伝達される駆動力を、第1出力部材61と第2出力部材62とに分配する。本実施形態では、差動歯車機構5は、差動入力ギヤ51と、差動ケース52と、ピニオンシャフト53と、一対のピニオンギヤ54と、第1サイドギヤ55及び第2サイドギヤ56と、を備えている。なお、本実施形態では、一対のピニオンギヤ54、並びに第1サイドギヤ55及び第2サイドギヤ56は、いずれも傘歯車である。 The differential gear mechanism 5 distributes the driving force transmitted from the rotary electric machine 1 side to the first output member 61 and the second output member 62. In the present embodiment, the differential gear mechanism 5 includes a differential input gear 51, a differential case 52, a pinion shaft 53, a pair of pinion gears 54, and a first side gear 55 and a second side gear 56. There is. In the present embodiment, the pair of pinion gears 54, and the first side gear 55 and the second side gear 56 are all bevel gears.
 差動入力ギヤ51は、差動歯車機構5の入力要素である。差動入力ギヤ51は、カウンタギヤ機構4の第2カウンタギヤ43と噛み合っている。つまり、差動入力ギヤ51は、第3ギヤに噛み合う「第4ギヤ」に相当する。差動入力ギヤ51は、差動ケース52と一体的に回転するように、差動ケース52に連結されている。 The differential input gear 51 is an input element of the differential gear mechanism 5. The differential input gear 51 meshes with the second counter gear 43 of the counter gear mechanism 4. That is, the differential input gear 51 corresponds to the "fourth gear" that meshes with the third gear. The differential input gear 51 is connected to the differential case 52 so as to rotate integrally with the differential case 52.
 差動ケース52は、第3軸A3回りに回転する回転部材である。本実施形態では、差動ケース52は、第1差動軸受B5a及び第2差動軸受B5bを介して、ケース2に対して回転可能に支持されている。具体的には、差動ケース52の軸方向第1側L1の端部が、第1差動軸受B5aを介して、ケース2の隔壁部24に対して回転可能に支持されている。そして、差動ケース52の軸方向第2側L2の端部が、第2差動軸受B5bを介して、ケース2の第2側壁部23に対して回転可能に支持されている。 The differential case 52 is a rotating member that rotates around the third axis A3. In the present embodiment, the differential case 52 is rotatably supported with respect to the case 2 via the first differential bearing B5a and the second differential bearing B5b. Specifically, the end portion of the differential case 52 on the first side L1 in the axial direction is rotatably supported with respect to the partition wall portion 24 of the case 2 via the first differential bearing B5a. Then, the end portion of the second side L2 in the axial direction of the differential case 52 is rotatably supported with respect to the second side wall portion 23 of the case 2 via the second differential bearing B5b.
 差動ケース52は、中空の部材である。差動ケース52の内部には、ピニオンシャフト53と、一対のピニオンギヤ54と、第1サイドギヤ55及び第2サイドギヤ56と、が収容されている。 The differential case 52 is a hollow member. A pinion shaft 53, a pair of pinion gears 54, and a first side gear 55 and a second side gear 56 are housed inside the differential case 52.
 ピニオンシャフト53は、第3軸A3を基準とした径方向Rに沿って延在している。ピニオンシャフト53は、一対のピニオンギヤ54に挿通され、それらを回転可能に支持している。ピニオンシャフト53は、差動ケース52を貫通するように配置されている。ピニオンシャフト53は、係止部材53aにより差動ケース52に係止され、差動ケース52と一体的に回転する。図示の例では、係止部材53aは、差動ケース52とピニオンシャフト53との双方に挿通される棒状のピンである。 The pinion shaft 53 extends along the radial direction R with respect to the third axis A3. The pinion shaft 53 is inserted into a pair of pinion gears 54 and rotatably supports them. The pinion shaft 53 is arranged so as to penetrate the differential case 52. The pinion shaft 53 is locked to the differential case 52 by the locking member 53a and rotates integrally with the differential case 52. In the illustrated example, the locking member 53a is a rod-shaped pin that is inserted into both the differential case 52 and the pinion shaft 53.
 一対のピニオンギヤ54は、第3軸A3を基準とした径方向Rに沿って互いに間隔を空けて対向した状態で、ピニオンシャフト53に取り付けられている。一対のピニオンギヤ54は、ピニオンシャフト53を中心として回転(自転)可能、かつ、第3軸A3を中心として回転(公転)可能に構成されている。 The pair of pinion gears 54 are attached to the pinion shaft 53 in a state where they face each other at intervals along the radial direction R with respect to the third axis A3. The pair of pinion gears 54 are configured to be rotatable (rotating) about the pinion shaft 53 and rotating (revolving) about the third axis A3.
 第1サイドギヤ55及び第2サイドギヤ56は、差動歯車機構5における駆動力の分配後の回転要素である。第1サイドギヤ55と第2サイドギヤ56とは、互いに軸方向Lに間隔を空けて、ピニオンシャフト53を挟んで対向するように配置されている。第1サイドギヤ55は、第2サイドギヤ56よりも軸方向第1側L1に配置されている。第1サイドギヤ55と第2サイドギヤ56とは、差動ケース52の内部空間において、それぞれ周方向に回転するように構成されている。第1サイドギヤ55及び第2サイドギヤ56は、一対のピニオンギヤ54に噛み合っている。第1サイドギヤ55は、第1出力部材61と一体的に回転するように連結されている。一方、第2サイドギヤ56は、第2出力部材62と一体的に回転するように連結されている。 The first side gear 55 and the second side gear 56 are rotating elements after distribution of the driving force in the differential gear mechanism 5. The first side gear 55 and the second side gear 56 are arranged so as to face each other with the pinion shaft 53 interposed therebetween at intervals in the axial direction L. The first side gear 55 is arranged on the first side L1 in the axial direction with respect to the second side gear 56. The first side gear 55 and the second side gear 56 are configured to rotate in the circumferential direction in the internal space of the differential case 52, respectively. The first side gear 55 and the second side gear 56 mesh with a pair of pinion gears 54. The first side gear 55 is connected so as to rotate integrally with the first output member 61. On the other hand, the second side gear 56 is connected so as to rotate integrally with the second output member 62.
 第1出力部材61及び第2出力部材62のそれぞれは、車輪Wに駆動連結されている。第1出力部材61及び第2出力部材62のそれぞれは、差動歯車機構5によって分配された駆動力を車輪Wに伝達する。 Each of the first output member 61 and the second output member 62 is drive-connected to the wheel W. Each of the first output member 61 and the second output member 62 transmits the driving force distributed by the differential gear mechanism 5 to the wheel W.
 本実施形態では、第1出力部材61は、第1車軸611と、中継部材612と、を含む。第1車軸611及び中継部材612のそれぞれは、第3軸A3回りに回転する回転部材である。第1車軸611は、軸方向第1側L1の車輪Wに駆動連結されている。中継部材612は、軸方向Lに延在する軸部材である。中継部材612は、ケース2の隔壁部24を軸方向Lに貫通する貫通孔に挿通されている。中継部材612は、出力軸受B6を介して、ケース2の第1側壁部22に対して回転可能に支持されている。 In the present embodiment, the first output member 61 includes the first axle 611 and the relay member 612. Each of the first axle 611 and the relay member 612 is a rotating member that rotates around the third axle A3. The first axle 611 is drive-connected to the wheel W on the first side L1 in the axial direction. The relay member 612 is a shaft member extending in the axial direction L. The relay member 612 is inserted into a through hole that penetrates the partition wall portion 24 of the case 2 in the axial direction L. The relay member 612 is rotatably supported with respect to the first side wall portion 22 of the case 2 via the output bearing B6.
 中継部材612の軸方向第1側L1の端部は、ケース2の第1側壁部22を軸方向Lに貫通する貫通孔を通してケース2の外部に露出している。中継部材612の軸方向第1側L1の端部は、第1車軸611と一体的に回転するように連結されている。本実施形態では、中継部材612は、その軸方向第1側L1の端面が開放した筒状に形成されている。そして、中継部材612の内周面と、第1車軸611の軸方向第2側L2の端部の外周面とのそれぞれに、対応するスプラインが形成されており、それらのスプライン同士が係合することにより、中継部材612と第1車軸611とが一体的に回転するように連結されている。 The end portion of the relay member 612 on the first side L1 in the axial direction is exposed to the outside of the case 2 through a through hole penetrating the first side wall portion 22 of the case 2 in the axial direction L. The end of the relay member 612 on the first side L1 in the axial direction is connected so as to rotate integrally with the first axle 611. In the present embodiment, the relay member 612 is formed in a tubular shape in which the end surface of the first side L1 in the axial direction is open. Then, corresponding splines are formed on the inner peripheral surface of the relay member 612 and the outer peripheral surface of the end portion of the second side L2 in the axial direction of the first axle 611, and these splines engage with each other. As a result, the relay member 612 and the first axle 611 are connected so as to rotate integrally.
 一方、中継部材612の軸方向第2側L2の端部は、差動歯車機構5の第1サイドギヤ55と一体的に回転するように連結されている。本実施形態では、中継部材612の軸方向第2側L2の端部の外周面と、第1サイドギヤ55の内周面とのそれぞれに、対応するスプライン形成されており、それらのスプライン同士が係合することにより、中継部材612と第1サイドギヤ55とが一体的に回転するように連結されている。 On the other hand, the end of the relay member 612 on the second side L2 in the axial direction is connected so as to rotate integrally with the first side gear 55 of the differential gear mechanism 5. In the present embodiment, corresponding splines are formed on the outer peripheral surface of the end portion of the second side L2 in the axial direction of the relay member 612 and the inner peripheral surface of the first side gear 55, and the splines are engaged with each other. By engaging, the relay member 612 and the first side gear 55 are connected so as to rotate integrally.
 本実施形態では、第2出力部材62は、第2車軸621を含む。第2車軸621は、第3軸A3回りに回転する回転部材である。第2車軸621は、軸方向第2側L2の車輪Wに駆動連結されている。第2車軸621は、第2サイドギヤ56と一体的に回転するように連結されている。本実施形態では、第2車軸621の軸方向第1側L1の端部の外周面と、第2サイドギヤ56の内周面とのそれぞれに、対応するスプライン形成されており、それらのスプライン同士が係合することにより、第2車軸621と第2サイドギヤ56とが一体的に回転するように連結されている。 In the present embodiment, the second output member 62 includes the second axle 621. The second axle 621 is a rotating member that rotates around the third axle A3. The second axle 621 is drive-connected to the wheel W on the second side L2 in the axial direction. The second axle 621 is connected so as to rotate integrally with the second side gear 56. In the present embodiment, corresponding splines are formed on the outer peripheral surface of the end portion of the first side L1 in the axial direction of the second axle 621 and the inner peripheral surface of the second side gear 56, and the splines are formed on each other. By engaging, the second axle 621 and the second side gear 56 are connected so as to rotate integrally.
 図1に示すように、車両用駆動装置100は、油圧ポンプ7を備えている。油圧ポンプ7は、回転電機1と一対の車輪Wとを結ぶ動力伝達経路Pを伝わる駆動力により駆動される、いわゆる機械式の油圧ポンプである。動力伝達経路Pは、回転電機1と油圧ポンプ7との間で、駆動力を常時伝達するように構成されている。つまり、動力伝達経路Pにおける回転電機1と油圧ポンプ7との間には、駆動力の伝達状態を切り替える係合装置等が設けられておらず、油圧ポンプ7が回転電機1と常時連動している。 As shown in FIG. 1, the vehicle drive device 100 includes a hydraulic pump 7. The hydraulic pump 7 is a so-called mechanical hydraulic pump driven by a driving force transmitted through a power transmission path P connecting the rotary electric machine 1 and the pair of wheels W. The power transmission path P is configured to constantly transmit a driving force between the rotary electric machine 1 and the hydraulic pump 7. That is, an engaging device or the like for switching the transmission state of the driving force is not provided between the rotary electric machine 1 and the hydraulic pump 7 in the power transmission path P, and the hydraulic pump 7 is always interlocked with the rotary electric machine 1. There is.
 図4に示すように、本実施形態では、油圧ポンプ7は、ポンプ入力ギヤ71と、ポンプ駆動軸72と、ポンプロータとしてのインナロータ73及びアウタロータ74と、ポンプケースとしてのポンプカバー75及びポンプハウジング78と、を備えている。本例では、油圧ポンプ7は、内接歯車ポンプ(例えばトロコイドポンプ)として構成されている。 As shown in FIG. 4, in the present embodiment, the hydraulic pump 7 includes a pump input gear 71, a pump drive shaft 72, an inner rotor 73 and an outer rotor 74 as a pump rotor, a pump cover 75 as a pump case, and a pump housing. It has 78 and. In this example, the hydraulic pump 7 is configured as an internal gear pump (for example, a trochoidal pump).
 ポンプ入力ギヤ71は、油圧ポンプ7の入力要素である。ポンプ入力ギヤ71は、差動歯車機構5の差動入力ギヤ51と一体的に回転するように設けられたポンプ駆動ギヤ57に噛み合っている。本実施形態では、ポンプ駆動ギヤ57は、差動ケース52と一体的に回転するように連結されている。 The pump input gear 71 is an input element of the hydraulic pump 7. The pump input gear 71 meshes with a pump drive gear 57 provided so as to rotate integrally with the differential input gear 51 of the differential gear mechanism 5. In the present embodiment, the pump drive gear 57 is connected to the differential case 52 so as to rotate integrally.
 ポンプ駆動軸72は、ポンプ入力ギヤ71と一体的に回転するように連結されている。本実施形態では、ポンプ駆動軸72の軸方向第2側L2の端部にポンプ入力ギヤ71が配置されている。インナロータ73は、ポンプ駆動軸72と一体的に回転するように連結されている。本実施形態では、ポンプ駆動軸72の軸方向第1側L1の端部にインナロータ73が連結されている。アウタロータ74は、インナロータ73に対して径方向Rの外側を囲むように配置されている。本実施形態では、ポンプ駆動軸72とインナロータ73及びアウタロータ74とが、油圧ポンプ7の「回転部材RT」に相当する。また本実施形態では、ポンプ駆動軸72は、ポンプロータとしてのインナロータ73及びアウタロータ74の回転軸心に沿って配置されていると共に、ポンプロータの一部であるインナロータ73と一体的に回転するように連結されている。 The pump drive shaft 72 is connected so as to rotate integrally with the pump input gear 71. In the present embodiment, the pump input gear 71 is arranged at the end of the second side L2 in the axial direction of the pump drive shaft 72. The inner rotor 73 is connected so as to rotate integrally with the pump drive shaft 72. In the present embodiment, the inner rotor 73 is connected to the end of the pump drive shaft 72 on the first side L1 in the axial direction. The outer rotor 74 is arranged so as to surround the outer side in the radial direction R with respect to the inner rotor 73. In the present embodiment, the pump drive shaft 72, the inner rotor 73, and the outer rotor 74 correspond to the “rotating member RT” of the hydraulic pump 7. Further, in the present embodiment, the pump drive shaft 72 is arranged along the rotation axis of the inner rotor 73 and the outer rotor 74 as the pump rotor, and rotates integrally with the inner rotor 73 which is a part of the pump rotor. Is connected to.
 アウタロータ74の内周面に形成された内歯は、インナロータ73の外周面に形成された外歯に噛み合っており、インナロータ73の回転に伴ってアウタロータ74が回転する。このインナロータ73の外歯とアウタロータ74の内歯との間に挟まれた空間がポンプ室79となっている。すなわち、インナロータ73とアウタロータ74とは、回転軸心が偏心しており、インナロータ73の外歯とアウタロータ74の内歯との間に挟まれた空間の径方向Rの間隔は、周方向の位置によって異なっている。そのため、インナロータ73の外歯とアウタロータ74の内歯との間に挟まれた空間は、周方向の各位置についてみると、インナロータ73及びアウタロータ74の回転によって径方向Rの間隔が次第に拡大した後に次第に縮小するというように変化する。これにより、インナロータ73の外歯とアウタロータ74の内歯との間に挟まれた空間は、インナロータ73及びアウタロータ74の回転によって容積変化が生じるポンプ室79となっている。 The internal teeth formed on the inner peripheral surface of the outer rotor 74 mesh with the external teeth formed on the outer peripheral surface of the inner rotor 73, and the outer rotor 74 rotates as the inner rotor 73 rotates. The space sandwiched between the outer teeth of the inner rotor 73 and the inner teeth of the outer rotor 74 is the pump chamber 79. That is, the rotation axes of the inner rotor 73 and the outer rotor 74 are eccentric, and the radial distance R of the space sandwiched between the outer teeth of the inner rotor 73 and the inner teeth of the outer rotor 74 depends on the position in the circumferential direction. It's different. Therefore, the space sandwiched between the outer teeth of the inner rotor 73 and the inner teeth of the outer rotor 74 is, when viewed at each position in the circumferential direction, after the interval in the radial direction R gradually increases due to the rotation of the inner rotor 73 and the outer rotor 74. It changes so that it gradually shrinks. As a result, the space sandwiched between the outer teeth of the inner rotor 73 and the inner teeth of the outer rotor 74 becomes a pump chamber 79 whose volume changes due to the rotation of the inner rotor 73 and the outer rotor 74.
 ポンプケースとしてのポンプカバー75及びポンプハウジング78は、インナロータ73及びアウタロータ74を覆うように設けられている。本実施形態では、ポンプハウジング78に、インナロータ73及びアウタロータ74を収容する円柱状の凹部が形成されている。そして、ポンプカバー75は、ポンプハウジング78の当該凹部の開口部分を覆うように配置されている。また、ポンプカバー75は、ボルト等の締結部材を用いてポンプハウジング78に固定されている。このようなポンプハウジング78及びポンプカバー75によって囲まれた空間が、インナロータ73及びアウタロータ74が収容されるポンプロータ収容室となっている。そして、このポンプロータ収容室に開口し、ポンプ室79と連通するように、油圧ポンプ7の吸入口と吐出口とが形成されている。なお、ポンプロータ収容室を囲むように形成された、ポンプハウジング78及びポンプカバー75の内面が、「ポンプケースの内面」に相当する。本実施形態では、ポンプハウジング78は、ケース2と一体的に形成されている。 The pump cover 75 and the pump housing 78 as the pump case are provided so as to cover the inner rotor 73 and the outer rotor 74. In the present embodiment, the pump housing 78 is formed with a columnar recess for accommodating the inner rotor 73 and the outer rotor 74. The pump cover 75 is arranged so as to cover the opening portion of the recess of the pump housing 78. Further, the pump cover 75 is fixed to the pump housing 78 by using a fastening member such as a bolt. The space surrounded by the pump housing 78 and the pump cover 75 serves as a pump rotor accommodating chamber in which the inner rotor 73 and the outer rotor 74 are accommodated. The suction port and the discharge port of the hydraulic pump 7 are formed so as to open into the pump rotor accommodating chamber and communicate with the pump chamber 79. The inner surfaces of the pump housing 78 and the pump cover 75 formed so as to surround the pump rotor accommodating chamber correspond to the "inner surface of the pump case". In this embodiment, the pump housing 78 is integrally formed with the case 2.
 油圧ポンプ7は、ポンプ駆動軸72の外周面を径方向Rの外側から支持するポンプ軸支持部75Aを備えている。本実施形態では、ポンプ軸支持部75Aは、ポンプカバー75に設けられている。具体的には、ポンプカバー75は、ポンプ駆動軸72の径方向Rの外側を囲むように配置された筒状部を備えており、当該筒状部が、ポンプ軸支持部75Aとなっている。ポンプ軸支持部75Aの内周面は、ポンプ駆動軸72の外周面との間に径方向Rの隙間を有して対向している。これにより、ポンプ軸支持部75Aは、ポンプ駆動軸72の外周面を径方向Rの外側から回転可能に支持している。言い換えると、ポンプ軸支持部75Aは、ポンプカバー75を軸方向Lに貫通する貫通孔を備えており、当該貫通孔にポンプ駆動軸72が挿通されている。 The hydraulic pump 7 includes a pump shaft support portion 75A that supports the outer peripheral surface of the pump drive shaft 72 from the outside in the radial direction R. In the present embodiment, the pump shaft support portion 75A is provided on the pump cover 75. Specifically, the pump cover 75 includes a tubular portion arranged so as to surround the outside of the pump drive shaft 72 in the radial direction R, and the tubular portion serves as a pump shaft support portion 75A. .. The inner peripheral surface of the pump shaft support portion 75A faces the outer peripheral surface of the pump drive shaft 72 with a gap in the radial direction R. As a result, the pump shaft support portion 75A rotatably supports the outer peripheral surface of the pump drive shaft 72 from the outside in the radial direction R. In other words, the pump shaft support portion 75A is provided with a through hole that penetrates the pump cover 75 in the axial direction L, and the pump drive shaft 72 is inserted through the through hole.
 そして、本実施形態では、ポンプ駆動軸72の外周面とポンプ軸支持部75Aとの前記隙間である軸支持隙間77が、油貯留部Sに連通している。後述するように、ポンプ駆動軸72は、ケース2の中の油Fの循環状態が定常状態となっている定常循環状態での油貯留部Sの油面位置OLよりも下方に配置されている。そのため、ポンプ駆動軸72は、基本的に油貯留部Sの油Fの中に位置することになる。そして、ポンプ入力ギヤ71とポンプ軸支持部75Aとの軸方向Lの間にも、油Fが通過可能な隙間が形成されている。したがって、軸支持隙間77は、ポンプ入力ギヤ71とポンプ軸支持部75Aとの軸方向Lの隙間を介して、油貯留部Sに連通している。よって、軸支持隙間77には、常に油貯留部Sの油Fが供給される。これにより、油圧ポンプ7の中で最も潤滑が必要であるポンプ駆動軸72の軸支持隙間77を、適切に潤滑することができる。 Then, in the present embodiment, the shaft support gap 77, which is the gap between the outer peripheral surface of the pump drive shaft 72 and the pump shaft support portion 75A, communicates with the oil storage portion S. As will be described later, the pump drive shaft 72 is arranged below the oil level position OL of the oil storage unit S in the steady circulation state in which the circulation state of the oil F in the case 2 is in the steady state. .. Therefore, the pump drive shaft 72 is basically located in the oil F of the oil storage unit S. A gap through which the oil F can pass is also formed between the pump input gear 71 and the pump shaft support portion 75A in the axial direction L. Therefore, the shaft support gap 77 communicates with the oil storage portion S via a gap in the axial direction L between the pump input gear 71 and the pump shaft support portion 75A. Therefore, the oil F of the oil storage portion S is always supplied to the shaft support gap 77. As a result, the shaft support gap 77 of the pump drive shaft 72, which requires the most lubrication among the hydraulic pumps 7, can be appropriately lubricated.
 また、本実施形態では、インナロータ73及びアウタロータ74と、ポンプカバー75及びポンプハウジング78の内面との隙間をロータ隙間80として、当該ロータ隙間80における、軸支持隙間77とポンプ室79との間にシール構造76が設けられている。上記のとおり、ポンプカバー75及びポンプハウジング78は、インナロータ73及びアウタロータ74を収容する円柱状のポンプロータ収容室を形成している。したがって、ロータ隙間80は、円柱状のポンプロータ収容室を囲む内面のほぼ全体に沿って形成される。より具体的には、ロータ隙間80は、インナロータ73及びアウタロータ74の軸方向第1側L1の面に沿って形成される部分と、インナロータ73及びアウタロータ74の軸方向第2側L2の面に沿って形成される部分と、アウタロータ74の外周面に沿って形成される部分と、を有する。ポンプ駆動軸72は、インナロータ73及びアウタロータ74に対して軸方向第2側L2に突出するように配置されているため、軸支持隙間77もインナロータ73及びアウタロータ74に対して軸方向第2側L2に形成されている。また、ポンプ室79は、ポンプ駆動軸72よりも径方向Rの外側に配置されている。そこで、本実施形態では、シール構造76は、インナロータ73及びアウタロータ74の軸方向第2側L2の面に沿って形成されるロータ隙間80における、軸支持隙間77との接続部分よりも径方向Rの外側であって、ポンプ室79よりも径方向Rの内側となる径方向Rの位置において、周方向の全域に亘って連続的に設けられている。ここで、シール構造76としては、例えば、他の部分よりも隙間の間隔(本例では軸方向Lの間隔)を狭く形成した構造とすることができる。或いは、シール構造76として、シールリング等の部材を別途配置しても良い。また、シール構造76が、インナロータ73及びアウタロータ74の少なくとも一方と密着してロータ隙間80をゼロにするように設けられていても良い。このようなシール構造76を備えることにより、軸支持隙間77を適切に潤滑しつつ、当該軸支持隙間77を潤滑する油Fが、ロータ隙間80を通ってポンプ室79に到達することを規制できる。 Further, in the present embodiment, the gap between the inner rotor 73 and the outer rotor 74 and the inner surfaces of the pump cover 75 and the pump housing 78 is set as the rotor gap 80, and between the shaft support gap 77 and the pump chamber 79 in the rotor gap 80. A seal structure 76 is provided. As described above, the pump cover 75 and the pump housing 78 form a columnar pump rotor accommodating chamber for accommodating the inner rotor 73 and the outer rotor 74. Therefore, the rotor gap 80 is formed along substantially the entire inner surface surrounding the cylindrical pump rotor accommodating chamber. More specifically, the rotor gap 80 is formed along a portion formed along the surface of the inner rotor 73 and the outer rotor 74 on the first side L1 in the axial direction, and along the surface of the inner rotor 73 and the outer rotor 74 on the second side L2 in the axial direction. It has a portion formed by the outer rotor 74 and a portion formed along the outer peripheral surface of the outer rotor 74. Since the pump drive shaft 72 is arranged so as to project toward the inner rotor 73 and the outer rotor 74 on the second side L2 in the axial direction, the shaft support gap 77 is also arranged so as to project from the inner rotor 73 and the outer rotor 74 on the second side L2 in the axial direction. Is formed in. Further, the pump chamber 79 is arranged outside the pump drive shaft 72 in the radial direction R. Therefore, in the present embodiment, the seal structure 76 is radially R than the connecting portion with the shaft support gap 77 in the rotor gap 80 formed along the surface of the inner rotor 73 and the outer rotor 74 on the second side L2 in the axial direction. At the position of the radial direction R, which is outside of the pump chamber 79 and inside the radial direction R of the pump chamber 79, the pump chamber 79 is continuously provided over the entire circumferential direction. Here, the seal structure 76 can be, for example, a structure in which the gap interval (in this example, the interval in the axial direction L) is formed to be narrower than that of other portions. Alternatively, a member such as a seal ring may be separately arranged as the seal structure 76. Further, the seal structure 76 may be provided so as to be in close contact with at least one of the inner rotor 73 and the outer rotor 74 so that the rotor gap 80 becomes zero. By providing such a seal structure 76, it is possible to restrict the oil F that lubricates the shaft support gap 77 from reaching the pump chamber 79 through the rotor gap 80 while appropriately lubricating the shaft support gap 77. ..
 回転電機1が正転すると、油圧ポンプ7は、油貯留部S(図3参照)に貯溜された油Fを汲み上げて油路9に供給する。油路9は、油圧ポンプ7の吐出口に接続されている。本実施形態では、油路9は、ケース2の第2側壁部23に形成された第1潤滑油路23a及び第2潤滑油路23bを含む。油路9に供給された油Fは、入力部材3、カウンタギヤ機構4、差動歯車機構5等の潤滑対象に流動した後、再び油貯留部Sに貯留される。このように、回転電機1の正転中は、ケース2内において油Fが循環する。ここで、回転電機1の正転とは、車両用駆動装置100が搭載された車両を前進させる方向に、回転電機1のロータ軸122が回転することを指す。 When the rotary electric machine 1 rotates in the normal direction, the hydraulic pump 7 pumps up the oil F stored in the oil storage unit S (see FIG. 3) and supplies it to the oil passage 9. The oil passage 9 is connected to the discharge port of the hydraulic pump 7. In the present embodiment, the oil passage 9 includes a first lubricating oil passage 23a and a second lubricating oil passage 23b formed in the second side wall portion 23 of the case 2. The oil F supplied to the oil passage 9 flows to the lubrication target of the input member 3, the counter gear mechanism 4, the differential gear mechanism 5, and the like, and then is stored in the oil storage unit S again. In this way, the oil F circulates in the case 2 during the normal rotation of the rotary electric machine 1. Here, the forward rotation of the rotary electric machine 1 means that the rotor shaft 122 of the rotary electric machine 1 rotates in the direction of advancing the vehicle on which the vehicle drive device 100 is mounted.
 一方、回転電機1が逆転すると、油圧ポンプ7は、油路9内の油Fを油貯留部Sに逆流させる。ここで、回転電機1の逆転とは、車両用駆動装置100が搭載された車両を後進させる方向に、回転電機1のロータ軸122が回転することを指す。 On the other hand, when the rotary electric machine 1 reverses, the hydraulic pump 7 causes the oil F in the oil passage 9 to flow back to the oil storage unit S. Here, the reversal of the rotary electric machine 1 means that the rotor shaft 122 of the rotary electric machine 1 rotates in the direction in which the vehicle on which the vehicle drive device 100 is mounted is moved backward.
 図3に示すように、油貯留部Sは、ケース2内に設けられた、油Fが貯留される空間である。本実施形態では、油貯留部Sは、ケース2の下部の内面によって囲まれた空間である。なお、ここでは、ケース2の内部空間における、油面よりも下になる場合がある部分の全体を油貯留部Sとする。油貯留部S内には、ストレーナ8が設けられている。ストレーナ8は、油貯留部Sに貯留された油Fを油圧ポンプ7が汲み上げる際に、当該油Fに含まれる異物を除去する濾過器である。ストレーナ8は、油貯留部Sに貯留された油Fを吸入する吸入口81、及び吸入口81を通して吸入された油Fを濾過するフィルタ(図示を省略)等を備えている。 As shown in FIG. 3, the oil storage unit S is a space provided in the case 2 for storing the oil F. In the present embodiment, the oil storage portion S is a space surrounded by the inner surface of the lower portion of the case 2. Here, the entire portion of the internal space of the case 2 that may be below the oil level is referred to as the oil storage portion S. A strainer 8 is provided in the oil storage unit S. The strainer 8 is a filter that removes foreign substances contained in the oil F when the hydraulic pump 7 pumps the oil F stored in the oil storage unit S. The strainer 8 includes a suction port 81 for sucking the oil F stored in the oil storage unit S, a filter (not shown) for filtering the oil F sucked through the suction port 81, and the like.
 以下では、ケース2に収容された各要素の位置関係について説明する。なお、以下の説明では、車両に搭載した状態の車両用駆動装置100の鉛直方向を「上下方向V」とする。そして、上下方向Vの上側の位置は、例えば、上方、上端等のように「上」を用いて表し、上下方向Vの下側の位置は、例えば、下方、下端等のように「下」を用いて表す。 The positional relationship of each element housed in Case 2 will be described below. In the following description, the vertical direction of the vehicle drive device 100 mounted on the vehicle is referred to as "vertical direction V". The upper position of the vertical direction V is represented by using "upper" such as upper and upper ends, and the lower position of the vertical direction V is "lower" such as lower and lower ends. Is expressed using.
 図3に示すように、油圧ポンプ7は、回転部材RTの少なくとも一部が油貯留部S内に位置するように配置されている。図示の例では、油貯留部Sの油面位置OLよりも下方に、油圧ポンプ7の全体が位置している。本実施形態では、油面位置OLは、ケース2内の油Fの循環状態が定常状態となっている定常循環状態における、油貯留部Sの油面の高さである。ここで、定常循環状態とは、回転電機1が正転して油圧ポンプ7が駆動されている状態であって、油面位置OLが安定した状態である。 As shown in FIG. 3, the hydraulic pump 7 is arranged so that at least a part of the rotating member RT is located in the oil storage portion S. In the illustrated example, the entire hydraulic pump 7 is located below the oil level position OL of the oil storage unit S. In the present embodiment, the oil level position OL is the height of the oil level of the oil storage unit S in the steady circulation state in which the circulation state of the oil F in the case 2 is a steady state. Here, the steady circulation state is a state in which the rotary electric machine 1 rotates in the normal direction and the hydraulic pump 7 is driven, and the oil level position OL is stable.
 油貯留部Sの油面の高さは、車両用駆動装置100の状態によって変動する。ここでは、この変動範囲のうちで最も低い油面の高さが油面位置OLである。このような油面位置OLを基準として油圧ポンプ7の位置を決定することで、油圧ポンプ7の回転部材RTの少なくとも一部を、油貯留部Sに貯留された油Fに定常的に接触させておくことができる。好ましくは、ポンプ駆動軸72が、油貯留部Sの油面位置OLよりも下方に配置されていると好適である。より具体的には、ポンプカバー75に覆われたインナロータ73及びアウタロータ74に、ポンプカバー75とポンプ駆動軸72との隙間を通して油Fを供給できるように、ポンプ駆動軸72の少なくとも下端が、油面位置OLよりも下方に配置されていると良い。これにより、油圧ポンプ7の回転部材RTのうちで最も潤滑が必要であるポンプ駆動軸72を、適切に潤滑することができる。 The height of the oil level of the oil storage unit S varies depending on the state of the vehicle drive device 100. Here, the lowest oil level height in this fluctuation range is the oil level position OL. By determining the position of the hydraulic pump 7 with reference to such an oil level position OL, at least a part of the rotating member RT of the hydraulic pump 7 is constantly brought into contact with the oil F stored in the oil storage unit S. Can be kept. It is preferable that the pump drive shaft 72 is arranged below the oil level position OL of the oil storage unit S. More specifically, at least the lower end of the pump drive shaft 72 is oil so that the oil F can be supplied to the inner rotor 73 and the outer rotor 74 covered by the pump cover 75 through the gap between the pump cover 75 and the pump drive shaft 72. It is preferable that it is arranged below the surface position OL. As a result, the pump drive shaft 72, which requires the most lubrication among the rotating members RT of the hydraulic pump 7, can be appropriately lubricated.
 本実施形態では、油圧ポンプ7は、第1出力部材61及び第2出力部材62の軸方向Lに沿う軸方向視で、差動歯車機構5の差動入力ギヤ51と重複する位置に配置されている。ここで、2つの要素の配置に関して、「特定方向視で重複する」とは、その視線方向に平行な仮想直線を当該仮想直線と直交する各方向に移動させた場合に、当該仮想直線が2つの要素の双方に交わる領域が少なくとも一部に存在することを指す。 In the present embodiment, the hydraulic pump 7 is arranged at a position overlapping the differential input gear 51 of the differential gear mechanism 5 in the axial direction along the axial direction L of the first output member 61 and the second output member 62. ing. Here, regarding the arrangement of the two elements, "overlapping in a specific direction" means that the virtual straight line is 2 when the virtual straight line parallel to the line-of-sight direction is moved in each direction orthogonal to the virtual straight line. It means that there is at least a part of the area where both of the two elements intersect.
 また、本実施形態では、図1に示すように、油圧ポンプ7は、当該油圧ポンプ7の軸方向Lの配置領域と回転電機1の軸方向Lの配置領域とが重なるように配置されている。つまり、回転電機1の軸方向Lの配置領域内に、油圧ポンプ7の軸方向Lの配置領域の少なくとも一部が含まれるように、油圧ポンプ7が配置されている。図示の例では、回転電機1に対して軸方向第2側L2に油圧ポンプ7の一部が配置されている。そして、回転電機1の軸方向Lの配置領域内に、油圧ポンプ7の軸方向Lの配置領域における軸方向第1側L1の一部が含まれている。 Further, in the present embodiment, as shown in FIG. 1, the hydraulic pump 7 is arranged so that the arrangement area of the hydraulic pump 7 in the axial direction L and the arrangement area of the rotary electric machine 1 in the axial direction L overlap. .. That is, the hydraulic pump 7 is arranged so that at least a part of the arrangement area of the hydraulic pump 7 in the axial direction L is included in the arrangement area of the rotary electric machine 1 in the axial direction L. In the illustrated example, a part of the hydraulic pump 7 is arranged on the second side L2 in the axial direction with respect to the rotary electric machine 1. Then, a part of the axial first side L1 in the axial direction L arrangement region of the hydraulic pump 7 is included in the axial direction L arrangement region of the rotary electric machine 1.
 図3に示すように、本実施形態では、入力部材3、カウンタギヤ機構4、及び差動歯車機構5は、軸方向Lに沿う軸方向視で、水平方向において第1軸A1と第3軸A3との間に第2軸A2が位置するように配置されている。また、本実施形態では、入力部材3、カウンタギヤ機構4、及び差動歯車機構5は、上下方向Vにおいて、第2軸A2と第3軸A3との間に第1軸A1が位置するように配置されている。図示の例では、入力部材3及びカウンタギヤ機構4は、油面位置OLよりも上方に配置されている。そして、差動歯車機構5は、差動入力ギヤ51の下端が油面位置OLよりも下方に位置するように配置されている。また、図示の例では、ポンプ駆動ギヤ57の下端も、油面位置OLよりも下方に位置するように配置されている。 As shown in FIG. 3, in the present embodiment, the input member 3, the counter gear mechanism 4, and the differential gear mechanism 5 have the first axis A1 and the third axis in the horizontal direction in the axial view along the axial direction L. The second axis A2 is arranged so as to be located between the A3 and the second axis A2. Further, in the present embodiment, in the input member 3, the counter gear mechanism 4, and the differential gear mechanism 5, the first axis A1 is located between the second axis A2 and the third axis A3 in the vertical direction V. Is located in. In the illustrated example, the input member 3 and the counter gear mechanism 4 are arranged above the oil level position OL. The differential gear mechanism 5 is arranged so that the lower end of the differential input gear 51 is located below the oil level position OL. Further, in the illustrated example, the lower end of the pump drive gear 57 is also arranged so as to be located below the oil level position OL.
 また、本実施形態では、回転電機1のステータ11の下端が、油面位置OLよりも下方に位置している。これにより、車両用駆動装置100が搭載された車両の走行中に、油貯留部Sに貯留された油Fによってステータ11を冷却することができる。また、本実施形態では、回転電機1のロータ12の下端が、油面位置OLよりも上方に位置している。これにより、車両用駆動装置100が搭載された車両の走行中に、ロータ12による油Fの撹拌抵抗を低減することができる。 Further, in the present embodiment, the lower end of the stator 11 of the rotary electric machine 1 is located below the oil level position OL. As a result, the stator 11 can be cooled by the oil F stored in the oil storage unit S while the vehicle on which the vehicle drive device 100 is mounted is running. Further, in the present embodiment, the lower end of the rotor 12 of the rotary electric machine 1 is located above the oil level position OL. As a result, the agitation resistance of the oil F by the rotor 12 can be reduced while the vehicle on which the vehicle drive device 100 is mounted is running.
2.第2の実施形態
 以下では、第2の実施形態に係る車両用駆動装置100について、図5を参照して説明する。本実施形態では、カウンタギヤ機構4と差動歯車機構5との上下方向Vの位置関係が、第1の実施形態のものと異なっている。更に、本実施形態では、油圧ポンプ7の連結態様が、第1の実施形態のものと異なっている。以下では、上記第1の実施形態との相違点を中心として説明する。なお、特に説明しない点については、上記第1の実施形態と同様とする。
2. Second Embodiment In the following, the vehicle drive device 100 according to the second embodiment will be described with reference to FIG. In the present embodiment, the positional relationship of the counter gear mechanism 4 and the differential gear mechanism 5 in the vertical direction V is different from that of the first embodiment. Further, in the present embodiment, the connection mode of the hydraulic pump 7 is different from that of the first embodiment. Hereinafter, the differences from the first embodiment will be mainly described. The points not particularly described are the same as those in the first embodiment.
 図5に示すように、本実施形態では、入力部材3、カウンタギヤ機構4、及び差動歯車機構5は、上下方向Vにおいて、第1軸A1と第2軸A2との間に第3軸A3が位置するように配置されている。つまり、本実施形態では、カウンタギヤ機構4の軸心(第2軸A2)が、差動歯車機構5の軸心(第3軸A3)よりも下方に配置されている。 As shown in FIG. 5, in the present embodiment, the input member 3, the counter gear mechanism 4, and the differential gear mechanism 5 have a third axis between the first axis A1 and the second axis A2 in the vertical direction V. It is arranged so that A3 is located. That is, in the present embodiment, the axis of the counter gear mechanism 4 (second axis A2) is arranged below the axis of the differential gear mechanism 5 (third axis A3).
 また、本実施形態では、油圧ポンプ7は、第1出力部材61及び第2出力部材62の軸方向Lに沿う軸方向視で、差動歯車機構5の差動入力ギヤ51と重複しない位置に配置されている。そして、油圧ポンプ7は、ポンプ入力ギヤ71がカウンタギヤ機構4の第1カウンタギヤ42に噛み合うように配置されている。つまり、本実施形態では、油圧ポンプ7は、カウンタギヤ機構4の回転により駆動される。そのため、本実施形態では、ポンプ駆動ギヤ57が設けられていない。 Further, in the present embodiment, the hydraulic pump 7 is located at a position that does not overlap with the differential input gear 51 of the differential gear mechanism 5 in the axial view along the axial direction L of the first output member 61 and the second output member 62. Have been placed. The hydraulic pump 7 is arranged so that the pump input gear 71 meshes with the first counter gear 42 of the counter gear mechanism 4. That is, in the present embodiment, the hydraulic pump 7 is driven by the rotation of the counter gear mechanism 4. Therefore, in this embodiment, the pump drive gear 57 is not provided.
3.その他の実施形態
(1)上記第1の実施形態では、油圧ポンプ7のポンプ入力ギヤ71が、差動歯車機構5の差動入力ギヤ51と一体的に回転するように設けられたポンプ駆動ギヤ57に噛み合う構成を例として説明した。しかし、そのような構成に限定されることなく、例えば、ポンプ入力ギヤ71が、差動歯車機構5の差動入力ギヤ51に噛み合う構成としても良い。この構成では、ポンプ入力ギヤ71とカウンタギヤ機構4の第2カウンタギヤ43とが、差動入力ギヤ51の周方向の異なる位置で差動入力ギヤ51に噛み合うように配置される。
3. 3. Other Embodiments (1) In the first embodiment, the pump drive gear provided so that the pump input gear 71 of the hydraulic pump 7 rotates integrally with the differential input gear 51 of the differential gear mechanism 5. The configuration that meshes with 57 has been described as an example. However, the configuration is not limited to such a configuration, and for example, the pump input gear 71 may be configured to mesh with the differential input gear 51 of the differential gear mechanism 5. In this configuration, the pump input gear 71 and the second counter gear 43 of the counter gear mechanism 4 are arranged so as to mesh with the differential input gear 51 at different positions in the circumferential direction of the differential input gear 51.
(2)上記第2の実施形態では、ポンプ入力ギヤ71がカウンタギヤ機構4の第1カウンタギヤ42に噛み合い、当該第1カウンタギヤ42の回転により油圧ポンプ7が駆動される構成を例として説明した。しかし、そのような構成に限定されることなく、例えば、ポンプ入力ギヤ71が、カウンタギヤ機構4の第2カウンタギヤ43、又は、第2カウンタギヤ43と一体的に回転するように設けられたポンプ駆動ギヤに噛み合っていても良い。或いは、ポンプ入力ギヤ71が設けられず、ポンプ駆動軸72がカウンタギヤ機構4のカウンタ軸41と一体的に回転するように連結され、カウンタ軸41の回転により油圧ポンプ7が駆動される構成としても良い。 (2) In the second embodiment, the configuration in which the pump input gear 71 meshes with the first counter gear 42 of the counter gear mechanism 4 and the hydraulic pump 7 is driven by the rotation of the first counter gear 42 will be described as an example. did. However, without being limited to such a configuration, for example, the pump input gear 71 is provided so as to rotate integrally with the second counter gear 43 or the second counter gear 43 of the counter gear mechanism 4. It may mesh with the pump drive gear. Alternatively, the pump input gear 71 is not provided, the pump drive shaft 72 is connected so as to rotate integrally with the counter shaft 41 of the counter gear mechanism 4, and the hydraulic pump 7 is driven by the rotation of the counter shaft 41. Is also good.
(3)上記の実施形態では、油貯留部Sがケース2の内面によって形成された構成を例として説明した。しかし、そのような構成に限定されることなく、例えば、ケース2の内面に固定された、ケース2とは別の部材によって油貯留部Sが構成されていても良い。 (3) In the above embodiment, the configuration in which the oil storage portion S is formed by the inner surface of the case 2 has been described as an example. However, the oil storage portion S may be configured by, for example, a member different from the case 2 fixed to the inner surface of the case 2 without being limited to such a configuration.
(4)上記の実施形態では、油圧ポンプ7の軸方向Lの配置領域と回転電機1の軸方向Lの配置領域とが重なっている構成を例として説明した。しかし、そのような構成に限定されることなく、油圧ポンプ7の軸方向Lの配置領域と回転電機1の軸方向Lの配置領域とが重なっていなくても良い。例えば、油圧ポンプ7が差動歯車機構5の差動入力ギヤ51よりも軸方向第2側L2に配置されていても良い。 (4) In the above embodiment, a configuration in which the arrangement area of the hydraulic pump 7 in the axial direction L and the arrangement area of the rotary electric machine 1 in the axial direction L overlap has been described as an example. However, the configuration is not limited to such a configuration, and the arrangement area of the hydraulic pump 7 in the axial direction L and the arrangement area of the rotary electric machine 1 in the axial direction L may not overlap. For example, the hydraulic pump 7 may be arranged on the second side L2 in the axial direction with respect to the differential input gear 51 of the differential gear mechanism 5.
(5)上記の実施形態では、ポンプ駆動軸72の少なくとも一部が、油貯留部Sの油面位置OLよりも下方に配置されている構成を例として説明した。しかし、そのような構成に限定されず、ポンプ駆動軸72の全体が、油貯留部Sの油面位置OLよりも上方に配置されていても良い。この場合であっても、油圧ポンプ7の回転部材RTの少なくとも一部が、油貯留部S内、具体的には油貯留部Sの油面位置OLよりも下方に配置されていることが望ましい。 (5) In the above embodiment, a configuration in which at least a part of the pump drive shaft 72 is arranged below the oil level position OL of the oil storage unit S has been described as an example. However, the present invention is not limited to such a configuration, and the entire pump drive shaft 72 may be arranged above the oil level position OL of the oil storage portion S. Even in this case, it is desirable that at least a part of the rotating member RT of the hydraulic pump 7 is arranged in the oil storage section S, specifically below the oil level position OL of the oil storage section S. ..
(6)上記の実施形態では、インナロータ73及びアウタロータ74と、ポンプカバー75及びポンプハウジング78の内面との隙間であるロータ隙間80における、軸支持隙間77とポンプ室79との間にシール構造76が設けられている構成を例として説明した。しかし、このようなシール構造76は必須ではなく、ロータ隙間80における軸支持隙間77とポンプ室79との間にシール構造76が設けられていなくても良い。或いは、ロータ隙間80における別の場所にシール構造が設けられていても良い。 (6) In the above embodiment, the seal structure 76 between the shaft support gap 77 and the pump chamber 79 in the rotor gap 80, which is the gap between the inner rotor 73 and the outer rotor 74 and the inner surfaces of the pump cover 75 and the pump housing 78. The configuration in which is provided is described as an example. However, such a seal structure 76 is not essential, and the seal structure 76 may not be provided between the shaft support gap 77 in the rotor gap 80 and the pump chamber 79. Alternatively, a seal structure may be provided at another location in the rotor gap 80.
(7)上記の実施形態では、油圧ポンプ7が内接歯車ポンプとして構成されている例について説明した。しかし、これには限定されず、油圧ポンプ7が他の形式のポンプとして構成されていても良い。例えば、ベーンポンプや外接歯車ポンプとして構成されていても良い。例えば油圧ポンプ7がベーンポンプである場合、ベーンを備えた1個のロータがポンプロータとなる。 (7) In the above embodiment, an example in which the hydraulic pump 7 is configured as an inscribed gear pump has been described. However, the present invention is not limited to this, and the hydraulic pump 7 may be configured as another type of pump. For example, it may be configured as a vane pump or a circumscribed gear pump. For example, when the hydraulic pump 7 is a vane pump, one rotor provided with a vane is the pump rotor.
(8)上記の実施形態では、伝達機構Tが、入力部材3が備える入力ギヤ32と、カウンタギヤ機構4と、差動歯車機構5と、を備えたギヤ機構である例について説明した。しかし、これには限らず、伝達機構Tとしては、動力を伝達可能な様々な形態の機構を用いることができる。例えば、カウンタギヤ機構4及び差動歯車機構5のいずれか一方を備えない構成としても良いし、これら以外のギヤ機構を備える構成としても良い。また、ギヤ機構以外の伝達機構、例えばチェーンやベルトを用いた伝達機構、或いは流体を用いた伝達機構を備えていても良い。 (8) In the above embodiment, an example in which the transmission mechanism T is a gear mechanism including an input gear 32 included in the input member 3, a counter gear mechanism 4, and a differential gear mechanism 5 has been described. However, the present invention is not limited to this, and as the transmission mechanism T, various types of mechanisms capable of transmitting power can be used. For example, it may be configured not to include either the counter gear mechanism 4 or the differential gear mechanism 5, or it may be configured to include a gear mechanism other than these. Further, a transmission mechanism other than the gear mechanism, for example, a transmission mechanism using a chain or a belt, or a transmission mechanism using a fluid may be provided.
(9)なお、上述した各実施形態で開示された構成は、矛盾が生じない限り、他の実施形態で開示された構成と組み合わせて適用することも可能である。その他の構成に関しても、本明細書において開示された実施形態は全ての点で単なる例示に過ぎない。したがって、本開示の趣旨を逸脱しない範囲内で、適宜、種々の改変を行うことが可能である。 (9) The configurations disclosed in each of the above-described embodiments can be applied in combination with the configurations disclosed in other embodiments as long as there is no contradiction. With respect to other configurations, the embodiments disclosed herein are merely exemplary in all respects. Therefore, various modifications can be made as appropriate without departing from the gist of the present disclosure.
4.上記実施形態の概要
 以下では、上記において説明した車両用駆動装置(100)の概要について説明する。
4. Outline of the above-described embodiment The outline of the vehicle drive device (100) described above will be described below.
 車両用駆動装置(100)は、
 車輪(W)の駆動力源となる回転電機(1)と、
 前記回転電機(1)に駆動連結された入力部材(3)と、
 それぞれ前記車輪(W)に駆動連結される一対の出力部材(61,62)と、
 前記入力部材(3)と一対の前記出力部材(61,62)とを駆動連結する伝達機構(T)と、
 前記回転電機(1)、及び前記伝達機構(T)を収容するケース(2)と、
 前記回転電機(1)と前記車輪(W)とを結ぶ動力伝達経路(P)を伝わる駆動力により駆動される油圧ポンプ(7)と、を備え、
 前記動力伝達経路(P)は、前記回転電機(1)と前記油圧ポンプ(7)との間で、駆動力を常時伝達するように構成され、
 前記ケース(2)内に、油(F)が貯留される油貯留部(S)が設けられ、
 前記油圧ポンプ(7)の回転部材(RT)の少なくとも一部が、前記油貯留部(S)内に配置されている。
The vehicle drive device (100)
The rotating electric machine (1), which is the driving force source for the wheels (W),
With the input member (3) driven and connected to the rotary electric machine (1),
A pair of output members (61, 62) that are driven and connected to the wheel (W), respectively.
A transmission mechanism (T) that drives and connects the input member (3) and the pair of output members (61, 62), and
A case (2) accommodating the rotary electric machine (1) and the transmission mechanism (T), and
A hydraulic pump (7) driven by a driving force transmitted through a power transmission path (P) connecting the rotary electric machine (1) and the wheels (W) is provided.
The power transmission path (P) is configured to constantly transmit a driving force between the rotary electric machine (1) and the hydraulic pump (7).
An oil storage unit (S) for storing oil (F) is provided in the case (2).
At least a part of the rotating member (RT) of the hydraulic pump (7) is arranged in the oil storage portion (S).
 この構成によれば、油圧ポンプ(7)の回転部材(RT)の少なくとも一部が、油貯留部(S)に貯留された油(F)に定常的に接触することになる。そのため、回転電機(1)の回転方向に関わらず、油貯留部(S)に貯留された油(F)をポンプの回転部材(RT)に供給することができる。したがって、回転電機(1)と車輪(W)とを結ぶ動力伝達経路(P)が回転電機(1)と油圧ポンプ(7)との間で駆動力を常時伝達する構成において、回転電機(1)の逆転中に油圧ポンプ(7)の回転部材(RT)に油(F)を供給する油路等の油供給機構を備えていなくても、油圧ポンプ(7)の回転部材(RT)を適切に潤滑することができる。つまり、本構成によれば、油圧ポンプ(7)が回転電機(1)と常時連動している構成において、車両用駆動装置(100)の製造コストの増加や車両用駆動装置(100)の大型化を抑制しつつ、回転電機(1)の逆転中でも油圧ポンプ(7)の回転部材(RT)を適切に潤滑できる。 According to this configuration, at least a part of the rotating member (RT) of the hydraulic pump (7) is in constant contact with the oil (F) stored in the oil storage unit (S). Therefore, the oil (F) stored in the oil storage unit (S) can be supplied to the rotating member (RT) of the pump regardless of the rotation direction of the rotary electric machine (1). Therefore, in a configuration in which the power transmission path (P) connecting the rotary electric machine (1) and the wheels (W) constantly transmits the driving force between the rotary electric machine (1) and the hydraulic pump (7), the rotary electric machine (1) ) Is not provided with an oil supply mechanism such as an oil passage for supplying oil (F) to the rotating member (RT) of the hydraulic pump (7) during the reversal of the hydraulic pump (7). Can be properly lubricated. That is, according to this configuration, in a configuration in which the hydraulic pump (7) is always linked with the rotary electric machine (1), the manufacturing cost of the vehicle drive device (100) is increased and the vehicle drive device (100) is large. The rotating member (RT) of the hydraulic pump (7) can be appropriately lubricated even during the reversal of the rotating electric machine (1) while suppressing the change.
 ここで、前記回転部材(RT)には、ポンプロータ(73、74)と、前記ポンプロータ(73、74)の回転軸心に沿って配置されていると共に前記ポンプロータ(73、74)と一体的に回転するように連結されたポンプ駆動軸(72)と、が含まれ、前記ポンプ駆動軸(72)は、前記ケース(2)の中の油(F)の循環状態が定常状態となっている定常循環状態での前記油貯留部(S)の油面位置(OL)よりも下方に配置されていると好適である。 Here, the rotating member (RT) is arranged along the rotation axis of the pump rotor (73, 74) and the pump rotor (73, 74), and the pump rotor (73, 74). A pump drive shaft (72) connected so as to rotate integrally is included, and the pump drive shaft (72) has a steady state of oil (F) circulation in the case (2). It is preferable that the oil storage portion (S) is arranged below the oil level position (OL) in the steady circulation state.
 本構成によれば、油圧ポンプ(7)のポンプ駆動軸(72)が、基本的に油貯留部(S)の油(F)の中に位置することになる。したがって、油圧ポンプ(7)の回転部材(RT)のうちで最も潤滑が必要であるポンプ駆動軸(72)を、適切に潤滑することが容易となる。 According to this configuration, the pump drive shaft (72) of the hydraulic pump (7) is basically located in the oil (F) of the oil storage unit (S). Therefore, it becomes easy to appropriately lubricate the pump drive shaft (72), which requires the most lubrication among the rotating members (RT) of the hydraulic pump (7).
 また、前記回転部材(RT)には、ポンプロータ(73、74)と、前記ポンプロータ(73、74)の回転軸心に沿って配置されていると共に前記ポンプロータ(73、74)と一体的に回転するように連結されたポンプ駆動軸(72)と、が含まれ、前記油圧ポンプ(7)は、前記ポンプ駆動軸(72)の外周面を径方向の外側から支持するポンプ軸支持部(75A)を更に備え、前記ポンプ駆動軸(72)の前記外周面と前記ポンプ軸支持部(75A)との隙間である軸支持隙間(77)が、前記油貯留部(S)に連通していると好適である。 Further, the rotating member (RT) is arranged along the rotation axis of the pump rotor (73, 74) and the pump rotor (73, 74) and is integrated with the pump rotor (73, 74). A pump drive shaft (72) connected so as to rotate in a radial manner is included, and the hydraulic pump (7) supports a pump shaft supporting the outer peripheral surface of the pump drive shaft (72) from the outside in the radial direction. A shaft support gap (77), which is further provided with a portion (75A) and is a gap between the outer peripheral surface of the pump drive shaft (72) and the pump shaft support portion (75A), communicates with the oil storage portion (S). It is preferable to do so.
 本構成によれば、ポンプ駆動軸(72)の外周面とポンプ軸支持部(75A)との隙間である軸支持隙間(77)に、油貯留部(S)の油(F)を容易に供給することができる。したがって、油圧ポンプ(7)の中で最も潤滑が必要であるポンプ駆動軸(72)の軸支持隙間(77)を、適切に潤滑することができる。 According to this configuration, the oil (F) of the oil storage portion (S) can be easily applied to the shaft support gap (77), which is the gap between the outer peripheral surface of the pump drive shaft (72) and the pump shaft support portion (75A). Can be supplied. Therefore, the shaft support gap (77) of the pump drive shaft (72), which requires the most lubrication among the hydraulic pumps (7), can be appropriately lubricated.
 また、上記のように、前記軸支持隙間(77)が、前記油貯留部(S)に連通している構成において、前記油圧ポンプ(7)は、前記ポンプロータ(73、74)を覆うポンプケース(75、78)を更に備え、前記ポンプロータ(73、74)の回転によって容積変化が生じる空間をポンプ室(79)とし、前記ポンプロータ(73、74)と前記ポンプケース(75、78)の内面との隙間をロータ隙間(80)として、前記ロータ隙間(80)における、前記軸支持隙間(77)と前記ポンプ室(79)との間にシール構造(76)が設けられていると好適である。 Further, as described above, in the configuration in which the shaft support gap (77) communicates with the oil storage portion (S), the hydraulic pump (7) is a pump that covers the pump rotors (73, 74). A case (75, 78) is further provided, and a space where a volume change occurs due to rotation of the pump rotor (73, 74) is defined as a pump chamber (79), and the pump rotor (73, 74) and the pump case (75, 78) are provided. ) Is defined as a rotor gap (80), and a seal structure (76) is provided between the shaft support gap (77) and the pump chamber (79) in the rotor gap (80). Is suitable.
 本構成によれば、ポンプ駆動軸(72)の外周面と前記ポンプ軸支持部(75A)との隙間である軸支持隙間(77)を適切に潤滑しつつ、当該軸支持隙間(77)を潤滑する油(F)が、ロータ隙間(80)を通ってポンプ室(79)に到達することを規制することができる。 According to this configuration, the shaft support gap (77) is formed while appropriately lubricating the shaft support gap (77), which is the gap between the outer peripheral surface of the pump drive shaft (72) and the pump shaft support portion (75A). It is possible to regulate that the lubricating oil (F) reaches the pump chamber (79) through the rotor gap (80).
 また、前記伝達機構(T)は、前記入力部材(3)が備える第1ギヤ(32)と、前記第1ギヤ(32)に噛み合う第2ギヤ(42)、及び前記第2ギヤ(42)と一体的に回転する第3ギヤ(43)を有するカウンタギヤ機構(4)と、前記第3ギヤ(43)に噛み合う第4ギヤ(51)を有し、前記第4ギヤ(51)の回転を一対の前記出力部材(61,62)に分配する差動歯車機構(5)と、を備えている、と好適である。 Further, the transmission mechanism (T) includes a first gear (32) included in the input member (3), a second gear (42) that meshes with the first gear (32), and the second gear (42). A counter gear mechanism (4) having a third gear (43) that rotates integrally with the third gear, and a fourth gear (51) that meshes with the third gear (43), and the rotation of the fourth gear (51). Is preferably provided with a differential gear mechanism (5) that distributes the power to the pair of output members (61, 62).
 本構成によれば、回転電機(1)の駆動力を一対の出力部材(61,62)に適切に伝達することができる。 According to this configuration, the driving force of the rotary electric machine (1) can be appropriately transmitted to the pair of output members (61, 62).
 また、前記油圧ポンプ(7)は、前記出力部材(61,62)の軸方向(L)に沿う軸方向視で、前記差動歯車機構(5)の前記第4ギヤ(51)と重複するように配置されていると共に、前記油圧ポンプ(7)の前記軸方向(L)の配置領域と前記回転電機(1)の前記軸方向(L)の配置領域とが重なるように配置されていると好適である。 Further, the hydraulic pump (7) overlaps with the fourth gear (51) of the differential gear mechanism (5) in an axial view along the axial direction (L) of the output members (61, 62). The hydraulic pump (7) is arranged so as to overlap the axial direction (L) arrangement area of the hydraulic pump (7) and the rotary electric machine (1) in the axial direction (L) arrangement area. Is suitable.
 第4ギヤ(51)は、差動歯車機構(5)において径方向(R)の寸法が最も大きい部分であることが一般的である。本構成によれば、軸方向視で第4ギヤ(51)と重複するスペースを利用して、油圧ポンプ(7)が配置されている。これにより、油圧ポンプ(7)の配置による車両用駆動装置(100)の径方向(R)への大型化を抑制することができる。
 また、本構成によれば、軸方向(L)の配置領域が回転電機(1)と重なるスペースを利用して、油圧ポンプ(7)が配置されている。これにより、油圧ポンプ(7)の配置による車両用駆動装置(100)の軸方向(L)への大型化を抑制することができる。
The fourth gear (51) is generally the portion of the differential gear mechanism (5) having the largest radial dimension (R). According to this configuration, the hydraulic pump (7) is arranged by utilizing the space overlapping the fourth gear (51) in the axial direction. As a result, it is possible to suppress the increase in size of the vehicle drive device (100) in the radial direction (R) due to the arrangement of the hydraulic pump (7).
Further, according to this configuration, the hydraulic pump (7) is arranged by utilizing the space where the arrangement area in the axial direction (L) overlaps with the rotary electric machine (1). As a result, it is possible to suppress the increase in size of the vehicle drive device (100) in the axial direction (L) due to the arrangement of the hydraulic pump (7).
 また、前記油圧ポンプ(7)は、当該油圧ポンプ(7)の入力要素であるポンプ入力ギヤ(71)を備え、
 前記ポンプ入力ギヤ(71)は、前記差動歯車機構(5)の前記第4ギヤ(51)、又は前記第4ギヤ(51)と一体的に回転するように設けられたポンプ駆動ギヤ(57)に噛み合っていると好適である。
Further, the hydraulic pump (7) includes a pump input gear (71) which is an input element of the hydraulic pump (7).
The pump input gear (71) is a pump drive gear (57) provided so as to rotate integrally with the fourth gear (51) of the differential gear mechanism (5) or the fourth gear (51). ) Is meshed with.
 差動歯車機構(5)は、第4ギヤ(51)の下端がケース(2)の下部に位置するように配置されることが一般的である。そのため、本構成によれば、第4ギヤ(51)又は当該第4ギヤ(51)と一体的に回転するポンプ駆動ギヤ(57)に噛み合う油圧ポンプ(7)のポンプ入力ギヤ(71)を、ケース(2)の下部に配置することが容易となる。したがって、ケース(2)の下部に配置されることが多い油貯留部(S)内に、油圧ポンプ(7)の回転部材(RT)の少なくとも一部を配置して、回転電機(1)の逆転中に油圧ポンプ(7)の回転部材(RT)を潤滑することが容易となる。 The differential gear mechanism (5) is generally arranged so that the lower end of the fourth gear (51) is located at the lower part of the case (2). Therefore, according to this configuration, the pump input gear (71) of the hydraulic pump (7) that meshes with the fourth gear (51) or the pump drive gear (57) that rotates integrally with the fourth gear (51). It becomes easy to arrange it in the lower part of the case (2). Therefore, at least a part of the rotating member (RT) of the hydraulic pump (7) is arranged in the oil storage portion (S) which is often arranged in the lower part of the case (2), and the rotary electric machine (1) It becomes easy to lubricate the rotating member (RT) of the hydraulic pump (7) during the reversal.
 また、前記カウンタギヤ機構(4)の軸心(A2)が、前記差動歯車機構(5)の軸心(A3)よりも下方に配置され、
 前記油圧ポンプ(7)は、前記カウンタギヤ機構(4)の回転により駆動されると好適である。
Further, the axis (A2) of the counter gear mechanism (4) is arranged below the axis (A3) of the differential gear mechanism (5).
It is preferable that the hydraulic pump (7) is driven by the rotation of the counter gear mechanism (4).
 この構成によれば、カウンタギヤ機構(4)の軸心(A2)が、差動歯車機構(5)の軸心(A3)よりも下方に配置されている。そのため、カウンタギヤ機構(4)は、ケース(2)内の比較的低い位置に配置されている。これにより、カウンタギヤ機構(4)の回転により駆動される油圧ポンプ(7)を、ケース(2)の下部に配置することが容易となる。したがって、ケース(2)の下部に配置されることが多い油貯留部(S)内に、油圧ポンプ(7)の回転部材(RT)の少なくとも一部を配置して、回転電機(1)の逆転中に油圧ポンプ(7)の回転部材(RT)を潤滑することが容易となる。 According to this configuration, the axis (A2) of the counter gear mechanism (4) is arranged below the axis (A3) of the differential gear mechanism (5). Therefore, the counter gear mechanism (4) is arranged at a relatively low position in the case (2). This makes it easy to dispose the hydraulic pump (7) driven by the rotation of the counter gear mechanism (4) at the lower part of the case (2). Therefore, at least a part of the rotating member (RT) of the hydraulic pump (7) is arranged in the oil storage portion (S) which is often arranged in the lower part of the case (2), and the rotary electric machine (1) It becomes easy to lubricate the rotating member (RT) of the hydraulic pump (7) during the reversal.
 本開示に係る技術は、車輪の駆動力源となる回転電機と、カウンタギヤ機構と、差動歯車機構と、それらを収容するケースと、回転電機と車輪とを結ぶ動力伝達経路を伝わる駆動力により駆動される油圧ポンプと、を備えた車両用駆動装置に利用することができる。 The technology according to the present disclosure includes a rotary electric machine which is a driving force source for wheels, a counter gear mechanism, a differential gear mechanism, a case for accommodating them, and a driving force transmitted through a power transmission path connecting the rotary electric machine and wheels. It can be used for a vehicle drive device equipped with a hydraulic pump driven by.
100 :車両用駆動装置
1   :回転電機
2   :ケース
3   :入力部材
32  :入力ギヤ(第1ギヤ)
4   :カウンタギヤ機構
42  :第1カウンタギヤ(第2ギヤ)
43  :第2カウンタギヤ(第3ギヤ)
5   :差動歯車機構
51  :差動入力ギヤ(第4ギヤ)
61  :第1出力部材
62  :第2出力部材
7   :油圧ポンプ
71  :ポンプ入力ギヤ
72  :ポンプ駆動軸
73  :インナロータ(ポンプロータ)
74  :アウタロータ(ポンプロータ)
75  :ポンプカバー(ポンプケース)
75A :ポンプ軸支持部
76  :シール構造
77  :軸支持隙間
78  :ポンプハウジング(ポンプケース)
79  :ポンプ室
80  :ロータ隙間
F   :油
S   :油貯留部
T   :伝達機構
RT  :回転部材
W   :車輪
P   :動力伝達経路
100: Vehicle drive device 1: Rotating electric machine 2: Case 3: Input member 32: Input gear (first gear)
4: Counter gear mechanism 42: 1st counter gear (2nd gear)
43: 2nd counter gear (3rd gear)
5: Differential gear mechanism 51: Differential input gear (4th gear)
61: 1st output member 62: 2nd output member 7: Hydraulic pump 71: Pump input gear 72: Pump drive shaft 73: Inner rotor (pump rotor)
74: Outer rotor (pump rotor)
75: Pump cover (pump case)
75A: Pump shaft support 76: Seal structure 77: Shaft support gap 78: Pump housing (pump case)
79: Pump chamber 80: Rotor gap F: Oil S: Oil storage unit T: Transmission mechanism RT: Rotating member W: Wheel P: Power transmission path

Claims (8)

  1.  車輪の駆動力源となる回転電機と、
     前記回転電機に駆動連結された入力部材と、
     それぞれ前記車輪に駆動連結される一対の出力部材と、
     前記入力部材と一対の前記出力部材とを駆動連結する伝達機構と、
     前記回転電機、及び前記伝達機構を収容するケースと、
     前記回転電機と前記車輪とを結ぶ動力伝達経路を伝わる駆動力により駆動される油圧ポンプと、を備え、
     前記動力伝達経路は、前記回転電機と前記油圧ポンプとの間で、駆動力を常時伝達するように構成され、
     前記ケース内に、油が貯留される油貯留部が設けられ、
     前記油圧ポンプの回転部材の少なくとも一部が、前記油貯留部内に配置されている、車両用駆動装置。
    The rotating electric machine that is the driving force source for the wheels,
    With the input member driven and connected to the rotary electric machine,
    A pair of output members that are driven and connected to the wheels, respectively.
    A transmission mechanism that drives and connects the input member and the pair of output members,
    A case for accommodating the rotary electric machine and the transmission mechanism, and
    A hydraulic pump driven by a driving force transmitted through a power transmission path connecting the rotary electric machine and the wheels is provided.
    The power transmission path is configured to constantly transmit a driving force between the rotary electric machine and the hydraulic pump.
    An oil storage unit for storing oil is provided in the case.
    A vehicle drive device in which at least a part of a rotating member of the hydraulic pump is arranged in the oil storage unit.
  2.  前記回転部材には、ポンプロータと、前記ポンプロータの回転軸心に沿って配置されていると共に前記ポンプロータと一体的に回転するように連結されたポンプ駆動軸と、が含まれ、
     前記ポンプ駆動軸は、前記ケースの中の油の循環状態が定常状態となっている定常循環状態での前記油貯留部の油面位置よりも下方に配置されている、請求項1に記載の車両用駆動装置。
    The rotating member includes a pump rotor and a pump drive shaft that is arranged along the rotation axis of the pump rotor and is connected so as to rotate integrally with the pump rotor.
    The pump drive shaft according to claim 1, wherein the pump drive shaft is arranged below the oil level position of the oil storage portion in the steady circulation state in which the oil circulation state in the case is a steady state. Vehicle drive device.
  3.  前記回転部材には、ポンプロータと、前記ポンプロータの回転軸心に沿って配置されていると共に前記ポンプロータと一体的に回転するように連結されたポンプ駆動軸と、が含まれ、
     前記油圧ポンプは、前記ポンプ駆動軸の外周面を径方向の外側から支持するポンプ軸支持部を更に備え、
     前記ポンプ駆動軸の前記外周面と前記ポンプ軸支持部との隙間である軸支持隙間が、前記油貯留部に連通している、請求項1又は2に記載の車両用駆動装置。
    The rotating member includes a pump rotor and a pump drive shaft that is arranged along the rotation axis of the pump rotor and is connected so as to rotate integrally with the pump rotor.
    The hydraulic pump further includes a pump shaft support portion that supports the outer peripheral surface of the pump drive shaft from the outside in the radial direction.
    The vehicle drive device according to claim 1 or 2, wherein a shaft support gap, which is a gap between the outer peripheral surface of the pump drive shaft and the pump shaft support portion, communicates with the oil storage portion.
  4.  前記油圧ポンプは、前記ポンプロータを覆うポンプケースを更に備え、
     前記ポンプロータの回転によって容積変化が生じる空間をポンプ室とし、前記ポンプロータと前記ポンプケースの内面との隙間をロータ隙間として、
     前記ロータ隙間における、前記軸支持隙間と前記ポンプ室との間にシール構造が設けられている、請求項3に記載の車両用駆動装置。
    The hydraulic pump further includes a pump case that covers the pump rotor.
    The space where the volume changes due to the rotation of the pump rotor is used as the pump chamber, and the gap between the pump rotor and the inner surface of the pump case is used as the rotor gap.
    The vehicle drive device according to claim 3, wherein a seal structure is provided between the shaft support gap and the pump chamber in the rotor gap.
  5.  前記伝達機構は、
     前記入力部材が備える第1ギヤと、
     前記第1ギヤに噛み合う第2ギヤ、及び前記第2ギヤと一体的に回転する第3ギヤを有するカウンタギヤ機構と、
     前記第3ギヤに噛み合う第4ギヤを有し、前記第4ギヤの回転を一対の前記出力部材に分配する差動歯車機構と、を備えている、請求項1から4のいずれか一項に記載の車両用駆動装置。
    The transmission mechanism
    The first gear included in the input member and
    A counter gear mechanism having a second gear that meshes with the first gear and a third gear that rotates integrally with the second gear.
    The present invention according to any one of claims 1 to 4, further comprising a fourth gear that meshes with the third gear and a differential gear mechanism that distributes the rotation of the fourth gear to the pair of output members. The vehicle drive device described.
  6.  前記油圧ポンプは、前記出力部材の軸方向に沿う軸方向視で、前記差動歯車機構の前記第4ギヤと重複するように配置されていると共に、前記油圧ポンプの前記軸方向の配置領域と前記回転電機の前記軸方向の配置領域とが重なるように配置されている、請求項5に記載の車両用駆動装置。 The hydraulic pump is arranged so as to overlap the fourth gear of the differential gear mechanism in an axial view along the axial direction of the output member, and is arranged with the axial arrangement region of the hydraulic pump. The vehicle drive device according to claim 5, which is arranged so as to overlap with the axially arranged area of the rotary electric machine.
  7.  前記油圧ポンプは、当該油圧ポンプの入力要素であるポンプ入力ギヤを備え、
     前記ポンプ入力ギヤは、前記差動歯車機構の前記第4ギヤ、又は前記第4ギヤと一体的に回転するように設けられたポンプ駆動ギヤに噛み合っている、請求項5又は6に記載の車両用駆動装置。
    The hydraulic pump includes a pump input gear that is an input element of the hydraulic pump.
    The vehicle according to claim 5 or 6, wherein the pump input gear meshes with the fourth gear of the differential gear mechanism or a pump drive gear provided so as to rotate integrally with the fourth gear. Drive device.
  8.  前記カウンタギヤ機構の軸心が、前記差動歯車機構の軸心よりも下方に配置され、
     前記油圧ポンプは、前記カウンタギヤ機構の回転により駆動される、請求項5又は6に記載の車両用駆動装置。
    The axis of the counter gear mechanism is arranged below the axis of the differential gear mechanism.
    The vehicle drive device according to claim 5 or 6, wherein the hydraulic pump is driven by rotation of the counter gear mechanism.
PCT/JP2020/014364 2019-03-29 2020-03-27 Vehicle drive device WO2020203916A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-066934 2019-03-29
JP2019066934 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203916A1 true WO2020203916A1 (en) 2020-10-08

Family

ID=72668895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014364 WO2020203916A1 (en) 2019-03-29 2020-03-27 Vehicle drive device

Country Status (1)

Country Link
WO (1) WO2020203916A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210526A1 (en) * 2021-03-30 2022-10-06 株式会社アイシン Drive device for vehicle
WO2023008195A1 (en) 2021-07-26 2023-02-02 株式会社アイシン Vehicular driving device
JP7477718B2 (en) 2021-03-30 2024-05-01 株式会社アイシン Vehicle drive device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443609U (en) * 1977-09-01 1979-03-26
JP2001165286A (en) * 1999-12-03 2001-06-19 Aisin Aw Co Ltd Lubrication device of automatic transmission for vehicle
JP2002200928A (en) * 2000-10-27 2002-07-16 Honda Motor Co Ltd Power transmission mechanism for four-wheel drive vehicle
JP2009222159A (en) * 2008-03-17 2009-10-01 Toyota Motor Corp Lubricating liquid supply mechanism
JP2013119918A (en) * 2011-12-08 2013-06-17 Aisin Seiki Co Ltd Power transmission device
JP2015045401A (en) * 2013-08-29 2015-03-12 アイシン・エィ・ダブリュ株式会社 Vehicle drive unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5443609U (en) * 1977-09-01 1979-03-26
JP2001165286A (en) * 1999-12-03 2001-06-19 Aisin Aw Co Ltd Lubrication device of automatic transmission for vehicle
JP2002200928A (en) * 2000-10-27 2002-07-16 Honda Motor Co Ltd Power transmission mechanism for four-wheel drive vehicle
JP2009222159A (en) * 2008-03-17 2009-10-01 Toyota Motor Corp Lubricating liquid supply mechanism
JP2013119918A (en) * 2011-12-08 2013-06-17 Aisin Seiki Co Ltd Power transmission device
JP2015045401A (en) * 2013-08-29 2015-03-12 アイシン・エィ・ダブリュ株式会社 Vehicle drive unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210526A1 (en) * 2021-03-30 2022-10-06 株式会社アイシン Drive device for vehicle
JP7477718B2 (en) 2021-03-30 2024-05-01 株式会社アイシン Vehicle drive device
WO2023008195A1 (en) 2021-07-26 2023-02-02 株式会社アイシン Vehicular driving device

Similar Documents

Publication Publication Date Title
CN110131393B (en) Vehicle drive device
JP6664506B2 (en) Vehicle drive system
JP6664302B2 (en) Vehicle drive system
WO2018016267A1 (en) Lubricating oil supply structure
JP5077769B2 (en) Integrated differential gear unit for automobiles that controls drive power distribution device
JP4981694B2 (en) Power transmission device
US6059683A (en) Differential apparatus
WO2020203916A1 (en) Vehicle drive device
JPH06211065A (en) Improved tandem drive axle
JP2017133526A (en) Motor drive unit for vehicle
JP2008089147A (en) Differential device
JP2017133564A (en) Vehicular motor drive device
JP7367357B2 (en) In-wheel motor type vehicle drive system
US11906024B2 (en) Vehicle drive device
JP2020122531A (en) Lubrication structure of differential device
JP7272424B2 (en) Vehicle drive system
CN103032309A (en) Hydraulic pump device
JP6923459B2 (en) Vehicle drive
JP2017024655A (en) In-wheel motor drive device
WO2020194960A1 (en) Vehicle drive device
US20230392683A1 (en) Gerotor Pump as for a Transmission
WO2023190129A1 (en) Drive transmission device for vehicle
JP6887239B2 (en) Motor direct connection type hydraulic pump device
WO2020071462A1 (en) Dynamo-electric machine and motor unit
JP3206239U (en) Hydraulic pump unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20783403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP