WO2020203907A1 - Liquid ejecting head and recording device - Google Patents

Liquid ejecting head and recording device Download PDF

Info

Publication number
WO2020203907A1
WO2020203907A1 PCT/JP2020/014355 JP2020014355W WO2020203907A1 WO 2020203907 A1 WO2020203907 A1 WO 2020203907A1 JP 2020014355 W JP2020014355 W JP 2020014355W WO 2020203907 A1 WO2020203907 A1 WO 2020203907A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
repellent film
water
discharge hole
liquid discharge
Prior art date
Application number
PCT/JP2020/014355
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 真人
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2021512082A priority Critical patent/JP7216194B2/en
Publication of WO2020203907A1 publication Critical patent/WO2020203907A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/165Prevention or detection of nozzle clogging, e.g. cleaning, capping or moistening for nozzles

Definitions

  • the disclosed embodiment relates to a liquid discharge head and a recording device.
  • an inkjet printer or an inkjet plotter using an inkjet recording method is known.
  • Such an inkjet printing apparatus is equipped with a liquid ejection head for ejecting a liquid.
  • the liquid discharge head includes a flow path member having a plurality of discharge holes. Some flow path members have a protrusion around the ejection hole in order to stabilize the ink ejection direction (see, for example, Patent Document 1).
  • the liquid discharge head includes a flow path member, a pressurizing portion, and a plurality of discharge holes.
  • the flow path member has a first surface and a second surface located on the opposite side of the first surface.
  • the pressurizing portion is located on the first surface.
  • the plurality of discharge holes are located on the second surface.
  • the flow path member has a water-repellent film on the second surface.
  • the water-repellent film has a convex portion protruding in the first direction when the direction from the first surface to the second surface is the first direction.
  • the convex portion is located around the discharge hole in the plan view of the second surface, and the shape in the plan view is annular or arcuate.
  • FIG. 1 is an explanatory diagram (No. 1) of the recording device according to the embodiment.
  • FIG. 2 is an explanatory diagram (No. 2) of the recording device according to the embodiment.
  • FIG. 3 is an exploded perspective view showing a schematic configuration of the liquid discharge head according to the embodiment.
  • FIG. 4 is a partially enlarged perspective perspective view of the liquid discharge head shown in FIG.
  • FIG. 5 is an enlarged view of the region A shown in FIG.
  • FIG. 6 is a cross-sectional view taken along the line BB shown in FIG.
  • FIG. 7 is a partially enlarged view of a cross section taken along the line CC shown in FIG.
  • FIG. 8 is a plan view of the water repellent film shown in FIG. 7.
  • FIG. 9 is an explanatory diagram showing an example of wiping processing of the flow path member.
  • FIG. 10 is a partially enlarged cross-sectional view of the flow path member according to the second embodiment.
  • FIG. 11 is a plan view of the water repellent film shown in FIG.
  • FIG. 12 is a partially enlarged cross-sectional view of the flow path member according to the third embodiment.
  • FIG. 13 is a plan view of the water repellent film shown in FIG.
  • FIG. 14 is a partially enlarged cross-sectional view of the flow path member according to the fourth embodiment.
  • FIG. 15 is a plan view of the water repellent film shown in FIG.
  • FIG. 16A is a plan view of a part of the water repellent film according to the first modification.
  • FIG. 16B is a plan view of a part of the water repellent film according to the second modification.
  • FIG. 16A is a plan view of a part of the water repellent film according to the first modification.
  • FIG. 16B is a plan view of a part of the water repellent film according to the second modification.
  • FIG. 16C is a plan view of a part of the water repellent film according to the third modification.
  • FIG. 17A is a plan view of a part of the water repellent film according to the fourth modification.
  • FIG. 17B is a plan view of a part of the water repellent film according to the fifth modification.
  • FIGS. 1 and 2 are explanatory views of the printer 1 according to the embodiment. Specifically, FIG. 1 is a schematic side view of the printer 1, and FIG. 2 is a schematic plan view of the printer 1.
  • the printer 1 according to the embodiment is, for example, a color inkjet printer.
  • the printer 1 includes a paper feed roller 2, a guide roller 3, a coating machine 4, a head case 5, a plurality of transfer rollers 6, a plurality of frames 7, and a plurality of liquid discharge heads.
  • a transfer roller 9, a dryer 10, a transfer roller 11, a sensor unit 12, and a collection roller 13 are provided.
  • the transfer roller 6 is an example of a transfer unit.
  • the printer 1 includes a paper feed roller 2, a guide roller 3, a coating machine 4, a head case 5, a plurality of transfer rollers 6, a plurality of frames 7, a plurality of liquid discharge heads 8, a transfer roller 9, a dryer 10, and a transfer.
  • a control unit 14 that controls a roller 11, a sensor unit 12, and a collection roller 13 is provided.
  • the printer 1 records images and characters on the printing paper P by landing droplets on the printing paper P.
  • the printing paper P is an example of a recording medium.
  • the printing paper P is in a state of being wound around the paper feed roller 2 before use. Then, the printer 1 conveys the printing paper P from the paper feed roller 2 to the inside of the head case 5 via the guide roller 3 and the coating machine 4.
  • the coating machine 4 uniformly applies the coating agent to the printing paper P. As a result, the printing paper P can be surface-treated, so that the print quality of the printer 1 can be improved.
  • the head case 5 accommodates a plurality of transfer rollers 6, a plurality of frames 7, and a plurality of liquid discharge heads 8. Inside the head case 5, a space isolated from the outside is formed except that a part such as a portion where the printing paper P enters and exits is connected to the outside.
  • the internal space of the head case 5 is controlled by the control unit 14 at least one of control factors such as temperature, humidity, and atmospheric pressure, if necessary.
  • the transport roller 6 transports the printing paper P in the vicinity of the liquid discharge head 8 inside the head case 5.
  • the frame 7 is a rectangular flat plate, and is located close to the upper side of the printing paper P conveyed by the transfer roller 6. Further, as shown in FIG. 2, the frame 7 is positioned so that the longitudinal direction is orthogonal to the conveying direction of the printing paper P. A plurality of (for example, four) frames 7 are located inside the head case 5 along the conveying direction of the printing paper P.
  • Liquid, for example, ink is supplied to the liquid discharge head 8 from a liquid tank (not shown).
  • the liquid discharge head 8 discharges the liquid supplied from the liquid tank.
  • the control unit 14 controls the liquid discharge head 8 based on data such as an image and characters, and discharges the liquid toward the printing paper P.
  • the distance between the liquid ejection head 8 and the printing paper P is, for example, about 0.5 to 20 mm.
  • the liquid discharge head 8 is fixed to the frame 7.
  • the liquid discharge head 8 is positioned so that the longitudinal direction is orthogonal to the transport direction of the printing paper P.
  • the printer 1 according to the embodiment is a so-called line printer in which the liquid discharge head 8 is fixed inside the printer 1.
  • the printer 1 according to the embodiment is not limited to a line printer, and may be a so-called serial printer.
  • the serial printer alternately performs an operation of recording while moving the liquid discharge head 8 in a direction intersecting the conveying direction of the printing paper P, for example, reciprocating in a direction substantially orthogonal to each other, and conveying the printing paper P. It is a printer of the method to perform.
  • FIG. 2 shows an example in which three liquid discharge heads 8 are located in front of and two liquid discharge heads 8 in the rear in the transport direction of the printing paper P, and the liquid discharge heads 8 are located in the transport direction of the printing paper P.
  • the liquid discharge head 8 is positioned so that the centers do not overlap.
  • the head group 8A is composed of a plurality of liquid discharge heads 8 located in one frame 7.
  • the four head groups 8A are located along the transport direction of the printing paper P. Ink of the same color is supplied to the liquid ejection head 8 belonging to the same head group 8A.
  • the printer 1 can print with four colors of ink using the four head groups 8A.
  • the colors of the ink discharged from each head group 8A are, for example, magenta (M), yellow (Y), cyan (C), and black (K).
  • the control unit 14 can print a color image on the printing paper P by controlling each head group 8A and ejecting inks of a plurality of colors onto the printing paper P.
  • the coating agent may be discharged from the liquid discharge head 8 onto the printing paper P in order to perform the surface treatment of the printing paper P.
  • the number of liquid discharge heads 8 included in one head group 8A and the number of head groups 8A mounted on the printer 1 can be appropriately changed according to the printing target and printing conditions. For example, if the color to be printed on the printing paper P is a single color and the printable range is printed by one liquid discharge head 8, the number of the liquid discharge heads 8 mounted on the printer 1 may be one. Good.
  • the printing paper P printed inside the head case 5 is conveyed to the outside of the head case 5 by the conveying roller 9 and passes through the inside of the dryer 10.
  • the dryer 10 dries the printed printing paper P.
  • the printing paper P dried by the dryer 10 is conveyed by the conveying roller 11 and collected by the collecting roller 13.
  • the printer 1 by drying the printing paper P with the dryer 10, it is possible to prevent the collection rollers 13 from adhering the printing papers P that are overlapped and wound up or rubbing the undried liquid. it can.
  • the sensor unit 12 is composed of a position sensor, a speed sensor, a temperature sensor, and the like.
  • the control unit 14 can determine the state of each unit of the printer 1 based on the information from the sensor unit 12 and control each unit of the printer 1.
  • the printing target in the printer 1 is not limited to the printing paper P, and a roll-shaped cloth or the like is printed. May be.
  • the printer 1 may be mounted on a transport belt and transported instead of directly transporting the printing paper P.
  • the printer 1 can print a sheet of paper, a cut cloth, wood, a tile, or the like.
  • the printer 1 may print a wiring pattern of an electronic device or the like by discharging a liquid containing conductive particles from the liquid discharge head 8. Further, the printer 1 may produce a chemical by discharging a predetermined amount of liquid chemical agent or a liquid containing the chemical agent from the liquid discharge head 8 toward a reaction vessel or the like.
  • the printer 1 may include a cleaning unit for cleaning the liquid discharge head 8.
  • the cleaning unit cleans the liquid discharge head 8 by, for example, a wiping process or a capping process.
  • the wiping process is, for example, a process of removing the liquid adhering to the liquid discharge head 8 by wiping the surface of the portion where the liquid is discharged with a flexible wiper.
  • the wiping process will be described later with reference to FIG.
  • the capping process is performed as follows, for example. First, a cap is put on the portion where the liquid is discharged, for example, the surface 24c (see FIG. 6) of the flow path member 24 (this is called capping). As a result, a substantially sealed space is formed between the surface 24c and the cap.
  • the liquid is repeatedly discharged in such a closed space.
  • the liquid is repeatedly discharged in such a closed space.
  • FIG. 3 is an exploded perspective view showing a schematic configuration of the liquid discharge head 8 according to the embodiment.
  • the liquid discharge head 8 includes a head main body 20, a reservoir 21, a circuit board 22, and a head cover 23. Further, the head main body 20 includes a flow path member 24, a piezoelectric actuator board 25, a signal transmission unit 26, and a drive IC 27.
  • the flow path member 24 of the head body 20 has a substantially flat plate shape, and has a first surface 24a which is one main surface and a second surface 24b located on the opposite side of the first surface 24a.
  • the first surface 24a has an opening 241a (see FIG. 4), and a liquid is supplied from the reservoir 21 to the inside of the flow path member 24 via the opening 241a.
  • a plurality of first ejection holes 243 (see FIG. 4) for ejecting liquid to the printing paper P are located on the second surface 24b.
  • a flow path for flowing a liquid from the first surface 24a to the second surface 24b is formed inside the flow path member 24.
  • the piezoelectric actuator board 25 is located on the first surface 24a of the flow path member 24.
  • the piezoelectric actuator substrate 25 has a plurality of displacement elements 30 (see FIG. 6).
  • the displacement element 30 is an example of a pressurizing unit.
  • the displacement element 30 is located on the first surface 24a of the flow path member 24.
  • the piezoelectric actuator substrate 25 will be described later with reference to FIG.
  • Each signal transmission unit 26 is electrically connected to the piezoelectric actuator board 25.
  • Each signal transmission unit 26 includes a plurality of drive ICs (Integrated Circuits) 27. In FIG. 3, one of the signal transmission units 26 is not shown for ease of understanding.
  • the signal transmission unit 26 supplies a signal to each displacement element 30 of the piezoelectric actuator board 25.
  • the signal transmission unit 26 is formed by, for example, an FPC (Flexible Printed Circuit) or the like.
  • the drive IC 27 is mounted on the signal transmission unit 26.
  • the drive IC 27 controls the drive of each displacement element 30 on the piezoelectric actuator substrate 25.
  • the head body 20 has a discharge surface for discharging the liquid and an opposite surface located on the opposite side of the discharge surface.
  • the discharge surface will be described as the surface 24c of the flow path member 24 (see FIG. 6), and the opposite surface will be described as the first surface 24a of the flow path member 24.
  • the reservoir 21 is located on the opposite surface side of the head body 20 and is in contact with the first surface 24a other than the piezoelectric actuator substrate 25.
  • the reservoir 21 has a flow path inside, and a liquid is supplied from the outside through the opening 21a.
  • the reservoir 21 has a function of supplying a liquid to the flow path member 24 and a function of storing the supplied liquid.
  • a circuit board 22 is erected on the surface of the reservoir 21 opposite to the head body 20.
  • a plurality of connectors 28 are located at the ends of the circuit board 22 on the reservoir 21 side. Each connector 28 accommodates an end of a signal transduction unit 26.
  • a power supply connector 29 is located at the end of the circuit board 22 opposite to the reservoir 21.
  • the circuit board 22 distributes the current supplied from the outside through the connector 29 to the connector 28, and supplies the current to the signal transmission unit 26.
  • the head cover 23 is located on the opposite surface side of the head body 20 and covers the signal transmission unit 26 and the circuit board 22. As a result, the liquid discharge head 8 can seal the signal transmission unit 26 and the circuit board 22.
  • the head cover 23 has an opening 23a.
  • the connector 29 of the circuit board 22 is inserted so as to be exposed to the outside through the opening 23a.
  • the drive IC 27 is in contact with the inner side surface of the head cover 23.
  • the drive IC 27 is pressed against, for example, the inner side surface of the head cover 23.
  • the heat generated by the drive IC 27 can be dissipated (heat radiated) from the contact portion on the side surface of the head cover 23.
  • the liquid discharge head 8 may further include members other than the members shown in FIG.
  • FIG. 4 is a partially enlarged perspective perspective view of the head body 20 according to the embodiment, and shows a region through which the right region of the diagram is transmitted.
  • FIG. 5 is an enlarged view of the region A shown in FIG.
  • FIG. 6 is a cross-sectional view taken along the line BB shown in FIG.
  • the head main body 20 has a flow path member 24 and a piezoelectric actuator board 25.
  • the flow path member 24 has a supply manifold 241, a plurality of pressurizing chambers 242, a plurality of first discharge holes 243, and a plurality of second discharge holes 246.
  • the first discharge hole 243 is an example of the discharge hole.
  • the plurality of pressurizing chambers 242 are connected to the supply manifold 241.
  • the plurality of first discharge holes 243 are connected to the plurality of pressurizing chambers 242, respectively.
  • the plurality of second discharge holes 246 are connected to the plurality of first discharge holes 243, respectively.
  • the pressurizing chamber 242 is open to the first surface 24a (see FIG. 6) of the flow path member 24. Further, the first surface 24a of the flow path member 24 has an opening 241a connected to the supply manifold 241. Then, the liquid is supplied from the reservoir 21 (see FIG. 3) to the inside of the flow path member 24 through the opening 241a.
  • the head main body 20 has four supply manifolds 241 inside the flow path member 24.
  • the supply manifold 241 has an elongated shape extending along the longitudinal direction of the flow path member 24, and openings 241a of the supply manifold 241 are formed on the first surface 24a of the flow path member 24 at both ends thereof.
  • a plurality of pressurizing chambers 242 are two-dimensionally expanded and formed in the flow path member 24.
  • the pressurizing chamber 242 is a hollow region having a substantially rhombic planar shape with rounded corners.
  • the pressurizing chamber 242 is open to the first surface 24a of the flow path member 24, and is closed by joining the piezoelectric actuator substrate 25 to the first surface 24a.
  • the pressurizing chamber 242 constitutes a pressurizing chamber row arranged in the longitudinal direction.
  • the pressurizing chambers 242 in the pressurizing chamber row are arranged in a staggered pattern between two adjacent pressurizing chamber rows.
  • One pressurizing chamber group is composed of two pressurizing chamber rows connected to one supply manifold 241.
  • the flow path member 24 has four pressure chamber groups.
  • each pressurizing chamber group is arranged slightly offset in the longitudinal direction.
  • the first discharge hole 243 is arranged at a position of the flow path member 24 so as to avoid the region facing the supply manifold 241. That is, when the flow path member 24 is viewed through from the first surface 24a side, the first discharge hole 243 does not overlap with the supply manifold 241.
  • first discharge hole 243 and the second discharge hole 246 are arranged so as to fit in the mounting area of the piezoelectric actuator substrate 25.
  • Such a first discharge hole 243 and a second discharge hole 246 occupy a region having substantially the same size and shape as the piezoelectric actuator substrate 25 as one group.
  • the pressurizing chamber 242 and the supply manifold 241 are connected via an individual supply flow path 245 (see FIG. 6).
  • the individual supply flow path 245 contains a squeeze 36 that is narrower than the other parts. Since the squeeze 36 is narrower than the other parts of the individual supply flow path 245, the flow path resistance is high. As described above, when the flow path resistance of the squeeze 36 is high, the pressure generated in the pressurizing chamber 242 is difficult to escape to the supply manifold 241.
  • the flow path member 24 has a plate group 24P.
  • the plate group 24P has a laminated structure in which a plurality of plates are laminated.
  • the cavity plate 24A, the base plate 24B, and the aperture (squeezing) are arranged in this order from the first surface 24a side.
  • Plate 24C, supply plate 24D, manifold plates 24E, 24F, 24G, cover plate 24H and nozzle plate 24I are located.
  • a large number of holes are formed in the plate group 24P.
  • the thickness of each plate of the plate group 24P is about 10 ⁇ m to 300 ⁇ m. As a result, the accuracy of forming the holes to be formed can be increased.
  • the plate group 24P is aligned and laminated so that these holes communicate with each other to form an individual flow path 244 and a supply manifold 241.
  • the flow path member 24 has a water repellent film 24M located on the second surface 24b of the flow path member 24.
  • the water-repellent film 24M has a second discharge hole 246 that communicates with the first discharge hole 243.
  • the water-repellent film 24M will be described later with reference to FIGS. 7 and 8.
  • the head body 20 constitutes an individual flow path 244 with the pressurizing chamber 242 on the upper surface of the plate group 24P, the supply manifold 241 on the lower surface side inside the plate group 24P, and the first discharge hole 243 on the lower surface of the plate group 24P.
  • the parts are arranged close to each other at different positions.
  • the second discharge hole 246 is arranged on the lower surface of the flow path member 24.
  • the head main body 20 has a configuration in which the supply manifold 241 and the second discharge hole 246 are connected via the pressurizing chamber 242 and the first discharge hole 243.
  • the piezoelectric actuator substrate 25 includes piezoelectric ceramic layers 25a and 25b, a common electrode 31, an individual electrode 32, a connection electrode 33, a dummy connection electrode 34, and a surface electrode 35 (see FIG. 4).
  • the piezoelectric ceramic layer 25a, the common electrode 31, the piezoelectric ceramic layer 25b, and the individual electrodes 32 are laminated in this order.
  • the piezoelectric ceramic layers 25a and 25b each have a thickness of about 20 ⁇ m. Each of the piezoelectric ceramic layers 25a and 25b extends so as to straddle the plurality of pressurizing chambers 242.
  • a lead zirconate titanate (PZT) -based ceramic material having ferroelectricity can be used.
  • the common electrode 31 is formed in the region between the piezoelectric ceramic layer 25a and the piezoelectric ceramic layer 25b over substantially the entire surface direction. That is, the common electrode 31 overlaps all the pressurizing chambers 242 in the region facing the piezoelectric actuator substrate 25.
  • the thickness of the common electrode 31 is about 2 ⁇ m.
  • a metal material such as an Ag-Pd system can be used.
  • the individual electrode 32 includes an individual electrode main body 32a and an extraction electrode 32b.
  • the individual electrode body 32a is located on the piezoelectric ceramic layer 25b in a region facing the pressurizing chamber 242.
  • the individual electrode body 32a is one size smaller than the pressurizing chamber 242 and has a shape substantially similar to that of the pressurizing chamber 242.
  • the extraction electrode 32b is extracted from the individual electrode body 32a.
  • a connection electrode 33 is formed at one end of the extraction electrode 32b, which is drawn out of the region facing the pressurizing chamber 242.
  • a metal material such as Au can be used for the individual electrode 32.
  • connection electrode 33 is located on the extraction electrode 32b, has a thickness of about 15 ⁇ m, and is convex. Further, the connection electrode 33 is electrically joined to the electrode provided in the signal transmission unit 26 (see FIG. 3).
  • connection electrode 33 for example, silver-palladium containing glass frit can be used.
  • the dummy connection electrode 34 is located on the piezoelectric ceramic layer 25b so as not to overlap with various electrodes such as the individual electrodes 32.
  • the dummy connection electrode 34 connects the piezoelectric actuator substrate 25 and the signal transmission unit 26 to increase the connection strength.
  • the dummy connection electrode 34 equalizes the distribution of the contact positions between the piezoelectric actuator substrate 25 and the piezoelectric actuator substrate 25, and stabilizes the electrical connection.
  • the dummy connection electrode 34 may be formed by the same material and the same process as the connection electrode 33.
  • the surface electrode 35 is formed on the piezoelectric ceramic layer 25b at a position avoiding the individual electrodes 32.
  • the surface electrode 35 is connected to the common electrode 31 via a via hole formed in the piezoelectric ceramic layer 25b. Therefore, the surface electrode 35 is grounded and held at the ground potential.
  • the surface electrode 35 may be formed by the same material and the same process as the individual electrode 32.
  • the plurality of individual electrodes 32 are individually electrically connected to the control unit 14 (see FIG. 1) via a signal transmission unit 26 and wiring in order to individually control the potential.
  • the piezoelectric ceramic layer 25b sandwiched between the individual electrode 32 and the common electrode 31 has an electric field when the individual electrode 32 and the common electrode 31 have different potentials and an electric field is applied to the piezoelectric ceramic layer 25b in the polarization direction.
  • the applied portion acts as an active portion that is distorted by the piezoelectric effect.
  • the individual electrode 32, the piezoelectric ceramic layer 25b, and the common electrode 31 facing the pressurizing chamber 242 function as the displacement element 30. Then, the displacement element 30 is unimorphically deformed to press the pressurizing chamber 242, and the liquid is discharged from the second discharge hole 246.
  • the individual electrode 32 is set to a higher potential (hereinafter referred to as high potential) than the common electrode 31 in advance.
  • the individual electrode 32 is once set to the same potential as the common electrode 31 (hereinafter referred to as low potential), and is set to high potential again at a predetermined timing.
  • the piezoelectric ceramic layers 25a and 25b return to their original shapes at the timing when the individual electrodes 32 have low potentials, and the volume of the pressurizing chamber 242 increases from the initial state (the potentials of both electrodes are different).
  • the pressure applied to the liquid inside the pressurizing chamber 242 rises, and droplets are discharged. That is, in order to eject the droplets, a drive signal including a pulse with reference to a high potential is supplied to the individual electrodes 32.
  • This pulse width may be AL (Acoustic Length), which is the length of time for the pressure wave to propagate from the squeeze 36 to the second discharge hole 246.
  • AL Acoustic Length
  • gradation expression is performed by the number of droplets continuously ejected from the second ejection hole 246, that is, the amount of droplets (volume) adjusted by the number of droplet ejections. Therefore, the droplets are continuously ejected a number of times corresponding to the designated gradation expression from the second ejection hole 246 corresponding to the designated dot region.
  • the interval between the pulses supplied to discharge the droplets may be AL.
  • the period of the residual pressure wave of the pressure generated when the droplet discharged earlier is discharged and the pressure wave of the pressure generated when the droplet discharged later is discharged coincide with each other. Therefore, the residual pressure wave and the pressure wave are superimposed, and the pressure for ejecting the droplet can be amplified. In this case, the velocity of the droplets ejected later becomes faster, and the landing points of the plurality of droplets become closer.
  • FIG. 7 is a partially enlarged view of a cross section taken along the line CC shown in FIG.
  • FIG. 8 is a plan view of the water repellent film shown in FIG. 7.
  • the head body 20 has a water-repellent film 24M located on the second surface 24b of the flow path member 24 formed of the surface of the nozzle plate 24I.
  • the water-repellent film 24M has a convex portion 247 protruding in the first direction D1.
  • the convex portion 247 refers to a portion having a water repellent film 24M higher than the thickness t0 of the water repellent film 24M in the region 70 farther from the first discharge hole 243 than the convex portion 247.
  • the portion of the water-repellent film 24M located between the first discharge hole 243 and the outer edge 71 in a plan view is a convex portion 247.
  • the thickness t0 of the region 70 is a value obtained by measuring, for example, a portion of the region 70 located between the adjacent first discharge holes 243 in a plan view using an optical interference type film thickness meter. To say. If the obtained thickness t0 differs for each measurement location, the average value is defined as the thickness t0. When the thickness t0 is different for each measurement point, the thickness is measured at 5 points, and the average thickness of the three values excluding the maximum value and the minimum value is defined as t0. Further, unless otherwise specified, each dimension of the flow path member 24 in the following description is also calculated based on the result of measurement using the optical interference type film thickness meter.
  • the convex portion 247 is rounded on the outside and the inside with the top portion 248 as a boundary.
  • the top portion 248 is the highest point in the first direction D1 in the cross section perpendicular to the second surface 24b and passing through the center of the first discharge hole 243.
  • the convex portion 247 has an annular shape in a plan view, and is located around the first discharge hole 243 in a plan view concentrically around the first discharge hole 243. ..
  • the second discharge hole 246 located inside the convex portion 247 is positioned so as to overlap the first discharge hole 243 in a plan view. Therefore, the droplet discharged from the first discharge hole 243 is not interfered by the convex portion 247 or the second discharge hole 246, and lands at a predetermined position.
  • the water-repellent film 24M is formed, for example, by using a silicone-based film-forming material containing fluorine. Specifically, a water-repellent film 24M having a predetermined thickness is formed on the surface of the nozzle plate 24I, and then the surface of the water-repellent film 24M located outside the region to be the convex portion 247 is masked. It is formed by laminating a water-repellent film 24M on the water film 24M by a predetermined height and further removing the mask. The water-repellent film 24M may be laminated a plurality of times. Further, if necessary, heat treatment or drying treatment may be performed.
  • the position and shape of the convex portion 247 can be appropriately changed by changing the design of the mask and the viscosity of the film-forming material.
  • the method for producing the water-repellent film 24M and the convex portion 247 is not limited to the above, and may be formed by any method.
  • FIG. 9 is an explanatory diagram showing an example of the wiping process.
  • the surface 24c of the water-repellent film 24M is wiped by moving the wiper 90 in the second direction D2 along the second surface 24b, and the liquid adhering to the surface 24c. It is a process to remove.
  • the wiper 90 is, for example, an elastic member harder than the water-repellent film 24M.
  • a rubber member having a hardness of 30 to 90 can be applied as the wiper 90.
  • the hardness of the wiper 90 can be measured using, for example, a durometer standardized by JIS K6253.
  • the wiper 90 is less likely to come into contact with the edge portion 73 of the water-repellent film 24M located around the first discharge hole 243 during the wiping process. Therefore, the peeling of the water-repellent film 24M due to the wiping treatment is reduced.
  • the convex portion 247 protrudes in the first direction D1. Therefore, in the convex portion 247, even if the water-repellent film 24M is worn by the wiping treatment, the water-repellent film 24M may exist for a long period of time. Therefore, the water repellency of the flow path member 24 can be maintained. Further, since the convex portion 247 is located around the first discharge hole 243, it becomes difficult for foreign matter to enter the first discharge hole 243 during the wiping process.
  • the convex portion 247 has a rounded vicinity of the top portion 248. Therefore, excessive wear and damage of the convex portion 247 and the wiper 90 due to the wiping process can be suppressed.
  • the convex portion 247 is formed of the water-repellent film 24M, it is compared with a configuration having a convex portion integrated with the nozzle plate 24I made of metal or resin (a configuration in which the nozzle plate 24I itself has a convex portion). Therefore, the load on the wiper 90 can be reduced.
  • the surface inclination of the convex portion 247 with respect to the second surface 24b may be different between the inner side and the outer side with the top portion 248 interposed therebetween. Specifically, when the convex portion 247 has a region closer to the first discharge hole 243 than the top portion 248 as the first region R1 and a region closer to the first discharge hole 243 than the top portion 248 as the second region R2, The inclination ⁇ 1 of the surface of the first region R1 with respect to the second surface 24b may be smaller than the inclination ⁇ 2 of the surface of the second region R2 with respect to the second surface 24b.
  • the inclination ⁇ 1 refers to the angle formed by the line segment connecting the top portion 248 and the outer edge 71 and the second surface 24b in FIG. 7.
  • the inclination ⁇ 2 refers to the angle formed by the line segment connecting the top portion 248 and the inner edge 72 and the second surface 24b in FIG. 7.
  • the inner edge 72 is a boundary located inside the top portion 248 closer to the first discharge hole 243 than the top portion 248 among the convex portions 247 protruding in the first direction D1.
  • the top portion 248 of the convex portion 247 may have a height t1 of 1.2 times or more and 1.5 times or less the thickness t0 of the water-repellent film 24M in the region 70.
  • the convex portion 247 remains, and the durability of the water-repellent film 24M can be improved.
  • the amount of liquid droplets discharged can be stabilized without interfering with the discharge of the liquid from the first discharge hole 243.
  • the thickness t0 can be, for example, about 100 nm.
  • the average height can be set to the height t1.
  • 60% or more has a height t1 of 1.2 times or more and 1.5 times or less of the thickness t0 of the water-repellent film 24M in the region 70.
  • the amount of droplets of the discharged liquid can be further stabilized.
  • the distance w1 between the top portions 248 is 4.0 times or more and 6.6 times or less the opening diameter w0 of the first discharge hole 243 in the opposed convex portions facing each other with the first discharge hole 243 in between. There may be.
  • the durability of the water-repellent film 24M can be improved.
  • the amount of liquid droplets discharged can be stabilized without interfering with the discharge of the liquid from the first discharge hole 243.
  • water repellency can be ensured between the convex portion 247 and the second discharge hole 246.
  • the opening diameter w0 can be, for example, about 10 to 30 ⁇ m.
  • FIG. 10 is a partially enlarged cross-sectional view of the flow path member according to the second embodiment.
  • FIG. 11 is a plan view of the water repellent film shown in FIG.
  • the water-repellent film 24M located on the second surface 24b of the flow path member 24 is closer to the first discharge hole 243 than the top 248 from the second region R2 to the first discharge hole. It is also located in the third region R3, which is the region up to the edge of 243. As a result, the water repellency of the second surface 24b can be ensured even in the flow path member 24 located in the third region R3 inside the second region R2.
  • FIG. 12 is a partially enlarged cross-sectional view of the flow path member according to the third embodiment.
  • FIG. 13 is a plan view of the water repellent film shown in FIG.
  • the flow path member is such that the inclination ⁇ 4 of the surface of the third region R3 with respect to the second surface 24b is smaller than the inclination ⁇ 3 of the surface of the second region R2 with respect to the second surface 24b.
  • the water repellent film 24M is located on the second surface 24b of 24.
  • the inclination ⁇ 3 is the angle formed by the line segment connecting the top portion 248 and the inner edge 72 and the second surface 24b in FIG.
  • the inclination ⁇ 4 is an angle formed by a line segment connecting the contact portion 75 and the inner edge 72, which are in contact with the first discharge hole 243 and the water repellent film 24M, and the second surface 24b in FIG.
  • FIG. 14 is a partially enlarged cross-sectional view of the flow path member according to the fourth embodiment.
  • FIG. 15 is a plan view of the water repellent film shown in FIG.
  • the third region R3 is a flat portion 249 on the surface.
  • the water-repellent film 24M is located on the second surface 24b of the flow path member 24 so as to have.
  • the flat portion 249 is a plane in which the surface of the water-repellent film 24M in the third region R3 has parallelism within 1 ° with respect to the second surface 24b and is defined by JIS B0021 (1998).
  • FIGS. 16A to 16C are plan views of a part of the water repellent film according to the first to third modifications.
  • the flow path member 24 included in the head body 20 according to the first modification has a water-repellent film according to each embodiment in that the shape of the convex portion 247 in a plan view is not an annular shape but an arc shape. It is different from 24M. Even when such a convex portion 247 is provided, the peeling of the water-repellent film 24M due to the wiping treatment is reduced. In the case of the aspect of FIG. 16A, when the wiper 90 (see FIG. 10) moves in the second direction D2, the contact area between the wiper 90 and the convex portion 247 becomes large, and the peeling of the water repellent film 24M is more effective. Is reduced to.
  • the convex portions 247 may have opposed convex portions 247a and 247b facing each other with the first discharge hole 243 in between. Even when such a convex portion 247 is provided, the peeling of the water-repellent film 24M due to the wiping treatment is reduced. In the case of the aspect of FIG. 16B, when the wiper 90 moves in the second direction D2, the contact area between the wiper 90 and the convex portion 247 becomes large, and the peeling of the water repellent film 24M is more effectively reduced.
  • the convex portions 247 do not necessarily have to face each other with the first discharge hole 243 in between. Even when such a convex portion 247 is provided, the peeling of the water-repellent film 24M due to the wiping treatment is reduced. At this time, if the position of the convex portion 247 with respect to the first discharge hole 243 is adjusted so that the contact area with the convex portion 247 is maximized with respect to the moving direction of the wiper 90 in the wiping process, the water-repellent film 24M is more peeled off. Effectively reduced. Specifically, the wiper 90 may move in the second direction D2.
  • FIGS. 17A and 17B are plan views of a part of the water-repellent film according to the fourth and fifth modifications.
  • the flow path member 24 included in the head body 20 according to the fourth modification is different from the water repellent film 24M according to each embodiment in that the shape of the convex portion 247 in a plan view is elliptical.
  • the flow path member 24 included in the head body 20 according to the fifth modification has a water-repellent film according to each embodiment in that the convex portion 247 in a plan view has a substantially square shape. It is different from 24M. Even when such a convex portion 247 is provided, the peeling of the water-repellent film 24M due to the wiping treatment is reduced.
  • the flow path member 24 may be formed by forming the supply manifold 241 and the individual flow path 244 by etching.
  • the water-repellent film 24M has a curved surface on the surface from the top portion 248 of the convex portion 247 to the edge of the first discharge hole 243, that is, the surface of the second discharge hole 246 (however, the flat portion 249 (see FIG. 14) is excluded). It may be.
  • the top portion 248 of the convex portion 247 to the edge of the first discharge hole 243 is viewed in cross section, except for the flat portion 249, it has a curved surface whose surface gradient changes continuously. More specifically, the slope of the surface of the second discharge hole 246 changes continuously, and has a slope-like surface shape that slopes smoothly.
  • the durability (wear resistance) of the water-repellent film 24M in the second discharge hole 246 located inside the convex portion 247 can be further improved.
  • the liquid discharge head 8 includes a flow path member 24, a pressurizing portion (displacement element 30), and a plurality of discharge holes (first discharge hole 243).
  • the flow path member 24 has a first surface 24a and a second surface 24b located on the opposite side of the first surface 24a.
  • the pressurizing portion (displacement element 30) is located on the first surface 24a.
  • the plurality of discharge holes (first discharge hole 243) are located on the second surface 24b.
  • the flow path member 24 has a water repellent film 24M on the second surface 24b.
  • the water-repellent film 24M has a convex portion 247 protruding in the first direction D1 when the direction from the first surface 24a to the second surface 24b is the first direction D1.
  • the convex portion 247 is located around the discharge hole (first discharge hole 243) in the plan view of the second surface 24b, and has an annular or arc shape in the plan view. Therefore, the load on the wiper 90 can be reduced.
  • the convex portion 247 has a first region R1 that is farther from the discharge hole (first discharge hole 243) than the top 248 of the convex portion 247, and a discharge hole (first discharge hole) from the top 248. It has a second region R2 close to 243), and the inclination ⁇ 1 of the surface of the first region R1 with respect to the second surface 24b may be smaller than the inclination ⁇ 2 of the surface of the second region R2 with respect to the second surface 24b. As a result, the load on the wiper 90 can be reduced.
  • the water-repellent film 24M may be located in a region (third region R3) from the second region R2 to the edge of the discharge hole (first discharge hole 243). As a result, the water repellency of the second surface 24b can be ensured even in the flow path member 24 located in the third region R3.
  • the water-repellent film 24M has a second surface 24b when the region from the second region R2 to the edge of the discharge hole (first discharge hole 243) is the third region R3.
  • the inclination ⁇ 4 of the surface of the third region R3 with respect to the second surface 24b may be smaller than the inclination ⁇ 3 of the surface of the second region R2 with respect to the second surface 24b.
  • the water-repellent film 24M has a third region R3 when the region from the second region R2 to the edge of the discharge hole (first discharge hole 243) is the third region R3. May have a flat portion 249 on its surface. This makes it difficult for foreign matter to enter the first discharge hole 243 from the second discharge hole 246.
  • the water-repellent film 24M has a water-repellent film 24M in a region 70 in which at least one of the convex portions 247 is separated from the discharge hole (first discharge hole 243) by the convex portion 247. It may have a height t1 of 1.2 times or more and 1.5 times or less of the thickness t0 of. Thereby, the durability of the water-repellent film 24M can be improved. In addition, the amount of liquid droplets discharged from the first discharge hole 243 can be stabilized.
  • the water-repellent film 24M has facing convex portions facing each other with the discharge hole (first discharge hole 243) interposed therebetween, and the facing convex portion has a distance w1 between the top portions 248.
  • the opening diameter w0 of the discharge hole (first discharge hole 243) may be 4.0 times or more and 6.6 times or less.

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

A liquid ejecting head according to an embodiment of the present invention is provided with a flow passage member, a pressurizing portion, and a plurality of ejection holes. The flow passage member has a first surface and a second surface positioned on the opposite side to the first surface. The pressurizing portion is positioned on the first surface. The plurality of ejection holes are positioned in the second surface. The flow passage member has a water repellent film on the second surface. The water repellent film has protruding portions which protrude in a first direction, where the first direction is defined as the direction from the first surface toward the second surface. The protruding portions are positioned at the periphery of the ejection holes in a plan view of the second surface, and have an annular or arcuate shape in a plan view.

Description

液体吐出ヘッドおよび記録装置Liquid discharge head and recording device
 開示の実施形態は、液体吐出ヘッドおよび記録装置に関する。 The disclosed embodiment relates to a liquid discharge head and a recording device.
 印刷装置として、インクジェット記録方式を利用したインクジェットプリンタやインクジェットプロッタが知られている。このようなインクジェット方式の印刷装置には、液体を吐出させるための液体吐出ヘッドが搭載されている。 As a printing device, an inkjet printer or an inkjet plotter using an inkjet recording method is known. Such an inkjet printing apparatus is equipped with a liquid ejection head for ejecting a liquid.
 液体吐出ヘッドは、複数の吐出孔を有する流路部材を備える。流路部材には、インクの吐出方向を安定させるために吐出孔の周囲に突出部を有するものがある(たとえば、特許文献1参照)。 The liquid discharge head includes a flow path member having a plurality of discharge holes. Some flow path members have a protrusion around the ejection hole in order to stabilize the ink ejection direction (see, for example, Patent Document 1).
特開2007-69381号公報JP-A-2007-69381
 実施形態の一態様に係る液体吐出ヘッドは、流路部材と、加圧部と、複数の吐出孔とを備える。流路部材は、第1面および前記第1面の反対側に位置する第2面を有する。加圧部は、前記第1面上に位置する。複数の吐出孔は、前記第2面に位置する。前記流路部材は、前記第2面上に撥水膜を有する。前記撥水膜は、前記第1面から前記第2面に向かう方向を第1方向としたとき、前記第1方向に突出した凸部を有する。前記凸部は、前記第2面の平面視で前記吐出孔の周囲に位置し、前記平面視の形状が環状または弧状である。 The liquid discharge head according to one aspect of the embodiment includes a flow path member, a pressurizing portion, and a plurality of discharge holes. The flow path member has a first surface and a second surface located on the opposite side of the first surface. The pressurizing portion is located on the first surface. The plurality of discharge holes are located on the second surface. The flow path member has a water-repellent film on the second surface. The water-repellent film has a convex portion protruding in the first direction when the direction from the first surface to the second surface is the first direction. The convex portion is located around the discharge hole in the plan view of the second surface, and the shape in the plan view is annular or arcuate.
図1は、実施形態に係る記録装置の説明図(その1)である。FIG. 1 is an explanatory diagram (No. 1) of the recording device according to the embodiment. 図2は、実施形態に係る記録装置の説明図(その2)である。FIG. 2 is an explanatory diagram (No. 2) of the recording device according to the embodiment. 図3は、実施形態に係る液体吐出ヘッドの概略構成を示す分解斜視図である。FIG. 3 is an exploded perspective view showing a schematic configuration of the liquid discharge head according to the embodiment. 図4は、図3に示す液体吐出ヘッドの一部拡大平面透視図である。FIG. 4 is a partially enlarged perspective perspective view of the liquid discharge head shown in FIG. 図5は、図4に示す領域Aの拡大図である。FIG. 5 is an enlarged view of the region A shown in FIG. 図6は、図4に示すB-B線に沿った断面図である。FIG. 6 is a cross-sectional view taken along the line BB shown in FIG. 図7は、図5に示すC-C線に沿った断面の一部拡大図である。FIG. 7 is a partially enlarged view of a cross section taken along the line CC shown in FIG. 図8は、図7に示す撥水膜の平面図である。FIG. 8 is a plan view of the water repellent film shown in FIG. 7. 図9は、流路部材のワイピング処理の一例を示す説明図である。FIG. 9 is an explanatory diagram showing an example of wiping processing of the flow path member. 図10は、第2実施形態に係る流路部材の一部拡大断面図である。FIG. 10 is a partially enlarged cross-sectional view of the flow path member according to the second embodiment. 図11は、図10に示す撥水膜の平面図である。FIG. 11 is a plan view of the water repellent film shown in FIG. 図12は、第3実施形態に係る流路部材の一部拡大断面図である。FIG. 12 is a partially enlarged cross-sectional view of the flow path member according to the third embodiment. 図13は、図12に示す撥水膜の平面図である。FIG. 13 is a plan view of the water repellent film shown in FIG. 図14は、第4実施形態に係る流路部材の一部拡大断面図である。FIG. 14 is a partially enlarged cross-sectional view of the flow path member according to the fourth embodiment. 図15は、図14に示す撥水膜の平面図である。FIG. 15 is a plan view of the water repellent film shown in FIG. 図16Aは、第1変形例に係る撥水膜の一部の平面図である。FIG. 16A is a plan view of a part of the water repellent film according to the first modification. 図16Bは、第2変形例に係る撥水膜の一部の平面図である。FIG. 16B is a plan view of a part of the water repellent film according to the second modification. 図16Cは、第3変形例に係る撥水膜の一部の平面図である。FIG. 16C is a plan view of a part of the water repellent film according to the third modification. 図17Aは、第4変形例に係る撥水膜の一部の平面図である。FIG. 17A is a plan view of a part of the water repellent film according to the fourth modification. 図17Bは、第5変形例に係る撥水膜の一部の平面図である。FIG. 17B is a plan view of a part of the water repellent film according to the fifth modification.
 以下、添付図面を参照して、本願の開示する液体吐出ヘッドおよび記録装置の実施形態を詳細に説明する。なお、以下に示す実施形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of the liquid discharge head and the recording device disclosed in the present application will be described in detail with reference to the attached drawings. The present invention is not limited to the embodiments shown below.
<プリンタの構成>
 まず、図1および図2を参照して実施形態に係る記録装置の一例であるプリンタ1の概要について説明する。図1および図2は、実施形態に係るプリンタ1の説明図である。具体的には、図1は、プリンタ1の概略的な側面図であり、図2は、プリンタ1の概略的な平面図である。実施形態に係るプリンタ1は、たとえば、カラーインクジェットプリンタである。
<Printer configuration>
First, the outline of the printer 1 which is an example of the recording device according to the embodiment will be described with reference to FIGS. 1 and 2. 1 and 2 are explanatory views of the printer 1 according to the embodiment. Specifically, FIG. 1 is a schematic side view of the printer 1, and FIG. 2 is a schematic plan view of the printer 1. The printer 1 according to the embodiment is, for example, a color inkjet printer.
 図1に示すように、プリンタ1は、給紙ローラ2と、ガイドローラ3と、塗布機4と、ヘッドケース5と、複数の搬送ローラ6と、複数のフレーム7と、複数の液体吐出ヘッド8と、搬送ローラ9と、乾燥機10と、搬送ローラ11と、センサ部12と、回収ローラ13とを備える。搬送ローラ6は、搬送部の一例である。 As shown in FIG. 1, the printer 1 includes a paper feed roller 2, a guide roller 3, a coating machine 4, a head case 5, a plurality of transfer rollers 6, a plurality of frames 7, and a plurality of liquid discharge heads. A transfer roller 9, a dryer 10, a transfer roller 11, a sensor unit 12, and a collection roller 13 are provided. The transfer roller 6 is an example of a transfer unit.
 さらに、プリンタ1は、給紙ローラ2、ガイドローラ3、塗布機4、ヘッドケース5、複数の搬送ローラ6、複数のフレーム7、複数の液体吐出ヘッド8、搬送ローラ9、乾燥機10、搬送ローラ11、センサ部12および回収ローラ13を制御する制御部14を備える。 Further, the printer 1 includes a paper feed roller 2, a guide roller 3, a coating machine 4, a head case 5, a plurality of transfer rollers 6, a plurality of frames 7, a plurality of liquid discharge heads 8, a transfer roller 9, a dryer 10, and a transfer. A control unit 14 that controls a roller 11, a sensor unit 12, and a collection roller 13 is provided.
 プリンタ1は、印刷用紙Pに液滴を着弾させることにより、印刷用紙Pに画像や文字の記録を行う。印刷用紙Pは、記録媒体の一例である。印刷用紙Pは、使用前において給紙ローラ2に巻かれた状態になっている。そして、プリンタ1は、印刷用紙Pを、給紙ローラ2からガイドローラ3および塗布機4を介してヘッドケース5の内部に搬送する。 The printer 1 records images and characters on the printing paper P by landing droplets on the printing paper P. The printing paper P is an example of a recording medium. The printing paper P is in a state of being wound around the paper feed roller 2 before use. Then, the printer 1 conveys the printing paper P from the paper feed roller 2 to the inside of the head case 5 via the guide roller 3 and the coating machine 4.
 塗布機4は、コーティング剤を印刷用紙Pに一様に塗布する。これにより、印刷用紙Pに表面処理を施すことができることから、プリンタ1の印刷品質を向上させることができる。 The coating machine 4 uniformly applies the coating agent to the printing paper P. As a result, the printing paper P can be surface-treated, so that the print quality of the printer 1 can be improved.
 ヘッドケース5は、複数の搬送ローラ6と、複数のフレーム7と、複数の液体吐出ヘッド8とを収容する。ヘッドケース5の内部には、印刷用紙Pが出入りする部分などの一部において外部と繋がっている他は、外部と隔離された空間が形成されている。 The head case 5 accommodates a plurality of transfer rollers 6, a plurality of frames 7, and a plurality of liquid discharge heads 8. Inside the head case 5, a space isolated from the outside is formed except that a part such as a portion where the printing paper P enters and exits is connected to the outside.
 ヘッドケース5の内部空間は、必要に応じて、温度、湿度、および気圧などの制御因子のうち、少なくとも1つが制御部14によって制御される。搬送ローラ6は、ヘッドケース5の内部で印刷用紙Pを液体吐出ヘッド8の近傍に搬送する。 The internal space of the head case 5 is controlled by the control unit 14 at least one of control factors such as temperature, humidity, and atmospheric pressure, if necessary. The transport roller 6 transports the printing paper P in the vicinity of the liquid discharge head 8 inside the head case 5.
 フレーム7は、矩形状の平板であり、搬送ローラ6で搬送される印刷用紙Pの上方に近接して位置している。また、図2に示すように、フレーム7は、長手方向が印刷用紙Pの搬送方向に直交するように位置している。そして、ヘッドケース5の内部には、複数(たとえば、4つ)のフレーム7が、印刷用紙Pの搬送方向に沿って位置している。 The frame 7 is a rectangular flat plate, and is located close to the upper side of the printing paper P conveyed by the transfer roller 6. Further, as shown in FIG. 2, the frame 7 is positioned so that the longitudinal direction is orthogonal to the conveying direction of the printing paper P. A plurality of (for example, four) frames 7 are located inside the head case 5 along the conveying direction of the printing paper P.
 液体吐出ヘッド8には、図示しない液体タンクから液体、たとえば、インクが供給される。液体吐出ヘッド8は、液体タンクから供給される液体を吐出する。 Liquid, for example, ink is supplied to the liquid discharge head 8 from a liquid tank (not shown). The liquid discharge head 8 discharges the liquid supplied from the liquid tank.
 制御部14は、画像や文字などのデータに基づいて液体吐出ヘッド8を制御し、印刷用紙Pに向けて液体を吐出させる。液体吐出ヘッド8と印刷用紙Pとの間の距離は、たとえば、0.5~20mm程度である。 The control unit 14 controls the liquid discharge head 8 based on data such as an image and characters, and discharges the liquid toward the printing paper P. The distance between the liquid ejection head 8 and the printing paper P is, for example, about 0.5 to 20 mm.
 液体吐出ヘッド8は、フレーム7に固定されている。液体吐出ヘッド8は、長手方向が印刷用紙Pの搬送方向に直交するように位置している。 The liquid discharge head 8 is fixed to the frame 7. The liquid discharge head 8 is positioned so that the longitudinal direction is orthogonal to the transport direction of the printing paper P.
 すなわち、実施形態に係るプリンタ1は、プリンタ1の内部に液体吐出ヘッド8が固定されている、いわゆるラインプリンタである。なお、実施形態に係るプリンタ1は、ラインプリンタに限られず、いわゆるシリアルプリンタであってもよい。 That is, the printer 1 according to the embodiment is a so-called line printer in which the liquid discharge head 8 is fixed inside the printer 1. The printer 1 according to the embodiment is not limited to a line printer, and may be a so-called serial printer.
 シリアルプリンタとは、液体吐出ヘッド8を、印刷用紙Pの搬送方向に交差する方向、たとえば、略直交する方向に往復させるなどして移動させながら記録する動作と、印刷用紙Pの搬送とを交互に行う方式のプリンタである。 The serial printer alternately performs an operation of recording while moving the liquid discharge head 8 in a direction intersecting the conveying direction of the printing paper P, for example, reciprocating in a direction substantially orthogonal to each other, and conveying the printing paper P. It is a printer of the method to perform.
 図2に示すように、1つのフレーム7に複数(たとえば、5つ)の液体吐出ヘッド8が固定されている。図2では、印刷用紙Pの搬送方向の前方に3つ、後方に2つの液体吐出ヘッド8が位置している例を示しており、印刷用紙Pの搬送方向において、それぞれの液体吐出ヘッド8の中心が重ならないように液体吐出ヘッド8が位置している。 As shown in FIG. 2, a plurality of (for example, five) liquid discharge heads 8 are fixed to one frame 7. FIG. 2 shows an example in which three liquid discharge heads 8 are located in front of and two liquid discharge heads 8 in the rear in the transport direction of the printing paper P, and the liquid discharge heads 8 are located in the transport direction of the printing paper P. The liquid discharge head 8 is positioned so that the centers do not overlap.
 そして、1つのフレーム7に位置する複数の液体吐出ヘッド8によって、ヘッド群8Aが構成されている。4つのヘッド群8Aは、印刷用紙Pの搬送方向に沿って位置している。同じヘッド群8Aに属する液体吐出ヘッド8には、同じ色のインクが供給される。これにより、プリンタ1は、4つのヘッド群8Aを用いて4色のインクによる印刷を行うことができる。 Then, the head group 8A is composed of a plurality of liquid discharge heads 8 located in one frame 7. The four head groups 8A are located along the transport direction of the printing paper P. Ink of the same color is supplied to the liquid ejection head 8 belonging to the same head group 8A. As a result, the printer 1 can print with four colors of ink using the four head groups 8A.
 各ヘッド群8Aから吐出されるインクの色は、たとえば、マゼンタ(M)、イエロー(Y)、シアン(C)およびブラック(K)である。制御部14は、各ヘッド群8Aを制御して複数色のインクを印刷用紙Pに吐出することにより、印刷用紙Pにカラー画像を印刷することができる。 The colors of the ink discharged from each head group 8A are, for example, magenta (M), yellow (Y), cyan (C), and black (K). The control unit 14 can print a color image on the printing paper P by controlling each head group 8A and ejecting inks of a plurality of colors onto the printing paper P.
 なお、印刷用紙Pの表面処理をするために、液体吐出ヘッド8からコーティング剤を印刷用紙Pに吐出してもよい。 The coating agent may be discharged from the liquid discharge head 8 onto the printing paper P in order to perform the surface treatment of the printing paper P.
 また、1つのヘッド群8Aに含まれる液体吐出ヘッド8の個数や、プリンタ1に搭載されているヘッド群8Aの個数は、印刷する対象や印刷条件に応じて適宜変更可能である。たとえば、印刷用紙Pに印刷する色が単色で、かつ、1つの液体吐出ヘッド8で印刷可能な範囲を印刷するのであれば、プリンタ1に搭載されている液体吐出ヘッド8の個数は1つでもよい。 Further, the number of liquid discharge heads 8 included in one head group 8A and the number of head groups 8A mounted on the printer 1 can be appropriately changed according to the printing target and printing conditions. For example, if the color to be printed on the printing paper P is a single color and the printable range is printed by one liquid discharge head 8, the number of the liquid discharge heads 8 mounted on the printer 1 may be one. Good.
 ヘッドケース5の内部で印刷処理された印刷用紙Pは、搬送ローラ9によってヘッドケース5の外部に搬送され、乾燥機10の内部を通る。乾燥機10は、印刷処理された印刷用紙Pを乾燥する。乾燥機10で乾燥された印刷用紙Pは、搬送ローラ11で搬送されて、回収ローラ13で回収される。 The printing paper P printed inside the head case 5 is conveyed to the outside of the head case 5 by the conveying roller 9 and passes through the inside of the dryer 10. The dryer 10 dries the printed printing paper P. The printing paper P dried by the dryer 10 is conveyed by the conveying roller 11 and collected by the collecting roller 13.
 プリンタ1では、乾燥機10で印刷用紙Pを乾燥することにより、回収ローラ13において、重なって巻き取られる印刷用紙P同士が接着したり、未乾燥の液体が擦れたりすることを抑制することができる。 In the printer 1, by drying the printing paper P with the dryer 10, it is possible to prevent the collection rollers 13 from adhering the printing papers P that are overlapped and wound up or rubbing the undried liquid. it can.
 センサ部12は、位置センサや速度センサ、温度センサなどにより構成されている。制御部14は、センサ部12からの情報に基づいて、プリンタ1の各部における状態を判断し、プリンタ1の各部を制御することができる。 The sensor unit 12 is composed of a position sensor, a speed sensor, a temperature sensor, and the like. The control unit 14 can determine the state of each unit of the printer 1 based on the information from the sensor unit 12 and control each unit of the printer 1.
 ここまで説明したプリンタ1では、印刷対象(すなわち、記録媒体)として印刷用紙Pを用いた場合について示したが、プリンタ1における印刷対象は印刷用紙Pに限られず、ロール状の布などを印刷対象としてもよい。 In the printer 1 described so far, the case where the printing paper P is used as the printing target (that is, the recording medium) has been shown, but the printing target in the printer 1 is not limited to the printing paper P, and a roll-shaped cloth or the like is printed. May be.
 また、プリンタ1は、印刷用紙Pを直接搬送する代わりに、搬送ベルト上に載せて搬送するものであってもよい。搬送ベルトを用いることで、プリンタ1は、枚葉紙や裁断された布、木材、タイルなどを印刷対象とすることができる。 Further, the printer 1 may be mounted on a transport belt and transported instead of directly transporting the printing paper P. By using the transport belt, the printer 1 can print a sheet of paper, a cut cloth, wood, a tile, or the like.
 また、プリンタ1は、液体吐出ヘッド8から導電性の粒子を含む液体を吐出するようにして、電子機器の配線パターンなどを印刷してもよい。また、プリンタ1は、液体吐出ヘッド8から反応容器などに向けて所定量の液体の化学薬剤や化学薬剤を含んだ液体を吐出させて、化学薬品を作製してもよい。 Further, the printer 1 may print a wiring pattern of an electronic device or the like by discharging a liquid containing conductive particles from the liquid discharge head 8. Further, the printer 1 may produce a chemical by discharging a predetermined amount of liquid chemical agent or a liquid containing the chemical agent from the liquid discharge head 8 toward a reaction vessel or the like.
 また、プリンタ1は、液体吐出ヘッド8をクリーニングするクリーニング部を備えていてもよい。クリーニング部は、たとえば、ワイピング処理やキャッピング処理によって液体吐出ヘッド8の洗浄を行う。 Further, the printer 1 may include a cleaning unit for cleaning the liquid discharge head 8. The cleaning unit cleans the liquid discharge head 8 by, for example, a wiping process or a capping process.
 ワイピング処理とは、たとえば、柔軟性のあるワイパーで、液体が吐出される部位の面を払拭することで、液体吐出ヘッド8に付着していた液体を取り除く処理である。なお、ワイピング処理については、図9を用いて後述する。 The wiping process is, for example, a process of removing the liquid adhering to the liquid discharge head 8 by wiping the surface of the portion where the liquid is discharged with a flexible wiper. The wiping process will be described later with reference to FIG.
 また、キャッピング処理は、たとえば、次のように実施する。まず、液体を吐出される部位、たとえば、流路部材24の表面24c(図6参照)を覆うようにキャップを被せる(これをキャッピングという)。これにより、表面24cとキャップとの間に、略密閉された空間が形成される。 Also, the capping process is performed as follows, for example. First, a cap is put on the portion where the liquid is discharged, for example, the surface 24c (see FIG. 6) of the flow path member 24 (this is called capping). As a result, a substantially sealed space is formed between the surface 24c and the cap.
 次に、このような密閉された空間で液体の吐出を繰り返す。これにより、第1吐出孔243(図6参照)や第2吐出孔246(図6参照)に詰まっていた、標準状態よりも粘度が高い液体や異物などを取り除くことができる。 Next, the liquid is repeatedly discharged in such a closed space. As a result, it is possible to remove liquids and foreign substances having a viscosity higher than the standard state, which are clogged in the first discharge hole 243 (see FIG. 6) and the second discharge hole 246 (see FIG. 6).
<液体吐出ヘッドの構成>
 次に、図3を参照して実施形態に係る液体吐出ヘッド8の構成について説明する。図3は、実施形態に係る液体吐出ヘッド8の概略構成を示す分解斜視図である。
<Construction of liquid discharge head>
Next, the configuration of the liquid discharge head 8 according to the embodiment will be described with reference to FIG. FIG. 3 is an exploded perspective view showing a schematic configuration of the liquid discharge head 8 according to the embodiment.
 図3に示すように、液体吐出ヘッド8は、ヘッド本体20と、リザーバ21と、回路基板22と、ヘッドカバー23とを備える。また、ヘッド本体20は、流路部材24と、圧電アクチュエータ基板25と、信号伝達部26と、駆動IC27とを備える。 As shown in FIG. 3, the liquid discharge head 8 includes a head main body 20, a reservoir 21, a circuit board 22, and a head cover 23. Further, the head main body 20 includes a flow path member 24, a piezoelectric actuator board 25, a signal transmission unit 26, and a drive IC 27.
 ヘッド本体20の流路部材24は、略平板形状であり、1つの主面である第1面24aと、第1面24aの反対側に位置する第2面24bとを有している。第1面24aは、開口241a(図4参照)を有し、リザーバ21から開口241aを介して流路部材24の内部に液体が供給される。 The flow path member 24 of the head body 20 has a substantially flat plate shape, and has a first surface 24a which is one main surface and a second surface 24b located on the opposite side of the first surface 24a. The first surface 24a has an opening 241a (see FIG. 4), and a liquid is supplied from the reservoir 21 to the inside of the flow path member 24 via the opening 241a.
 第2面24bには、印刷用紙Pに液体を吐出する複数の第1吐出孔243(図4参照)が位置している。そして、流路部材24の内部には、第1面24aから第2面24bに液体を流す流路が形成されている。 A plurality of first ejection holes 243 (see FIG. 4) for ejecting liquid to the printing paper P are located on the second surface 24b. A flow path for flowing a liquid from the first surface 24a to the second surface 24b is formed inside the flow path member 24.
 圧電アクチュエータ基板25は、流路部材24の第1面24a上に位置している。圧電アクチュエータ基板25は、複数の変位素子30(図6参照)を有している。変位素子30は、加圧部の一例である。変位素子30は、流路部材24の第1面24a上に位置している。なお、圧電アクチュエータ基板25については、図6を用いて後述する。 The piezoelectric actuator board 25 is located on the first surface 24a of the flow path member 24. The piezoelectric actuator substrate 25 has a plurality of displacement elements 30 (see FIG. 6). The displacement element 30 is an example of a pressurizing unit. The displacement element 30 is located on the first surface 24a of the flow path member 24. The piezoelectric actuator substrate 25 will be described later with reference to FIG.
 圧電アクチュエータ基板25には、2つの信号伝達部26が電気的に接続されている。それぞれの信号伝達部26は、複数の駆動IC(Integrated Circuit)27を含んでいる。なお、図3では、理解の容易のため、信号伝達部26のうち1つの図示を省略している。 Two signal transmission units 26 are electrically connected to the piezoelectric actuator board 25. Each signal transmission unit 26 includes a plurality of drive ICs (Integrated Circuits) 27. In FIG. 3, one of the signal transmission units 26 is not shown for ease of understanding.
 信号伝達部26は、圧電アクチュエータ基板25の各変位素子30に信号を供給する。信号伝達部26は、たとえば、FPC(Flexible Printed Circuit)などによって形成されている。 The signal transmission unit 26 supplies a signal to each displacement element 30 of the piezoelectric actuator board 25. The signal transmission unit 26 is formed by, for example, an FPC (Flexible Printed Circuit) or the like.
 駆動IC27は、信号伝達部26に搭載されている。駆動IC27は、圧電アクチュエータ基板25における各変位素子30の駆動を制御する。 The drive IC 27 is mounted on the signal transmission unit 26. The drive IC 27 controls the drive of each displacement element 30 on the piezoelectric actuator substrate 25.
 なお、ヘッド本体20は、液体を吐出する吐出面およびこの吐出面の反対側に位置する反対面を有している。以下においては、吐出面を流路部材24における表面24c(図6参照)、反対面を流路部材24における第1面24aとして説明する。 The head body 20 has a discharge surface for discharging the liquid and an opposite surface located on the opposite side of the discharge surface. In the following, the discharge surface will be described as the surface 24c of the flow path member 24 (see FIG. 6), and the opposite surface will be described as the first surface 24a of the flow path member 24.
 リザーバ21は、ヘッド本体20の反対面側に位置し、圧電アクチュエータ基板25以外の第1面24aに接している。リザーバ21は、内部に流路を有しており、外部から開口21aを介して液体が供給される。リザーバ21は、流路部材24に液体を供給する機能、および供給される液体を貯留する機能を有している。 The reservoir 21 is located on the opposite surface side of the head body 20 and is in contact with the first surface 24a other than the piezoelectric actuator substrate 25. The reservoir 21 has a flow path inside, and a liquid is supplied from the outside through the opening 21a. The reservoir 21 has a function of supplying a liquid to the flow path member 24 and a function of storing the supplied liquid.
 リザーバ21におけるヘッド本体20とは反対側の面には、回路基板22が立設している。回路基板22におけるリザーバ21側の端部には、複数のコネクタ28が位置している。それぞれのコネクタ28には、信号伝達部26の端部が収容される。 A circuit board 22 is erected on the surface of the reservoir 21 opposite to the head body 20. A plurality of connectors 28 are located at the ends of the circuit board 22 on the reservoir 21 side. Each connector 28 accommodates an end of a signal transduction unit 26.
 回路基板22におけるリザーバ21とは反対側の端部には、給電用のコネクタ29が位置している。回路基板22は、外部からコネクタ29を介して供給された電流をコネクタ28に分配し、信号伝達部26に電流を供給する。 A power supply connector 29 is located at the end of the circuit board 22 opposite to the reservoir 21. The circuit board 22 distributes the current supplied from the outside through the connector 29 to the connector 28, and supplies the current to the signal transmission unit 26.
 ヘッドカバー23は、ヘッド本体20の反対面側に位置しており、信号伝達部26および回路基板22を覆っている。これにより、液体吐出ヘッド8は、信号伝達部26および回路基板22を封止することができる。 The head cover 23 is located on the opposite surface side of the head body 20 and covers the signal transmission unit 26 and the circuit board 22. As a result, the liquid discharge head 8 can seal the signal transmission unit 26 and the circuit board 22.
 また、ヘッドカバー23は、開口23aを有している。回路基板22のコネクタ29は、開口23aから外部に露出するように挿通される。 Further, the head cover 23 has an opening 23a. The connector 29 of the circuit board 22 is inserted so as to be exposed to the outside through the opening 23a.
 ヘッドカバー23の内部側面には、駆動IC27が接触している。駆動IC27は、たとえば、ヘッドカバー23の内部側面に押し当てられている。これにより、駆動IC27で発生する熱を、ヘッドカバー23の側面における接触部分から放散(放熱)することができる。 The drive IC 27 is in contact with the inner side surface of the head cover 23. The drive IC 27 is pressed against, for example, the inner side surface of the head cover 23. As a result, the heat generated by the drive IC 27 can be dissipated (heat radiated) from the contact portion on the side surface of the head cover 23.
 なお、液体吐出ヘッド8は、図3に示した部材以外の部材をさらに含んでもよい。 The liquid discharge head 8 may further include members other than the members shown in FIG.
<ヘッド本体の構成>
 次に、図4~6を参照して実施形態に係るヘッド本体20の構成について説明する。図4は、実施形態に係るヘッド本体20の一部拡大平面透視図であり、図の右側領域が透過した領域を示している。図5は、図4に示す領域Aの拡大図である。図6は、図4に示すB-B線に沿った断面図である。
<Structure of head body>
Next, the configuration of the head main body 20 according to the embodiment will be described with reference to FIGS. 4 to 6. FIG. 4 is a partially enlarged perspective perspective view of the head body 20 according to the embodiment, and shows a region through which the right region of the diagram is transmitted. FIG. 5 is an enlarged view of the region A shown in FIG. FIG. 6 is a cross-sectional view taken along the line BB shown in FIG.
 図4、図6に示すように、ヘッド本体20は、流路部材24と圧電アクチュエータ基板25とを有している。流路部材24は、供給マニホールド241と、複数の加圧室242と、複数の第1吐出孔243と、複数の第2吐出孔246とを有している。第1吐出孔243は、吐出孔の一例である。 As shown in FIGS. 4 and 6, the head main body 20 has a flow path member 24 and a piezoelectric actuator board 25. The flow path member 24 has a supply manifold 241, a plurality of pressurizing chambers 242, a plurality of first discharge holes 243, and a plurality of second discharge holes 246. The first discharge hole 243 is an example of the discharge hole.
 複数の加圧室242は、供給マニホールド241に繋がっている。複数の第1吐出孔243は、複数の加圧室242にそれぞれ繋がっている。複数の第2吐出孔246は、複数の第1吐出孔243にそれぞれ繋がっている。 The plurality of pressurizing chambers 242 are connected to the supply manifold 241. The plurality of first discharge holes 243 are connected to the plurality of pressurizing chambers 242, respectively. The plurality of second discharge holes 246 are connected to the plurality of first discharge holes 243, respectively.
 加圧室242は、流路部材24の第1面24a(図6参照)に開口している。また、流路部材24の第1面24aは、供給マニホールド241と繋がる開口241aを有している。そして、リザーバ21(図3参照)から、開口241aを介して流路部材24の内部に液体が供給される。 The pressurizing chamber 242 is open to the first surface 24a (see FIG. 6) of the flow path member 24. Further, the first surface 24a of the flow path member 24 has an opening 241a connected to the supply manifold 241. Then, the liquid is supplied from the reservoir 21 (see FIG. 3) to the inside of the flow path member 24 through the opening 241a.
 図4に示す例において、ヘッド本体20は、流路部材24の内部に4つの供給マニホールド241を有している。供給マニホールド241は、流路部材24の長手方向に沿って延びる細長い形状を有しており、その両端において、流路部材24の第1面24aに供給マニホールド241の開口241aが形成されている。 In the example shown in FIG. 4, the head main body 20 has four supply manifolds 241 inside the flow path member 24. The supply manifold 241 has an elongated shape extending along the longitudinal direction of the flow path member 24, and openings 241a of the supply manifold 241 are formed on the first surface 24a of the flow path member 24 at both ends thereof.
 流路部材24には、複数の加圧室242が2次元的に広がって形成されている。加圧室242は、角部にアールが施されたほぼ菱形の平面形状を有する中空の領域である。加圧室242は、流路部材24の第1面24aに開口しており、第1面24aに圧電アクチュエータ基板25が接合されることによって閉塞される。 A plurality of pressurizing chambers 242 are two-dimensionally expanded and formed in the flow path member 24. The pressurizing chamber 242 is a hollow region having a substantially rhombic planar shape with rounded corners. The pressurizing chamber 242 is open to the first surface 24a of the flow path member 24, and is closed by joining the piezoelectric actuator substrate 25 to the first surface 24a.
 加圧室242は、長手方向に配列された加圧室行を構成する。加圧室行の加圧室242は、近隣する2行の加圧室行の間において千鳥状に配置されている。1つの供給マニホールド241に繋がっている2行の加圧室行によって、1つの加圧室群が構成されている。図4に示す例では、流路部材24が4つの加圧室群を有している。 The pressurizing chamber 242 constitutes a pressurizing chamber row arranged in the longitudinal direction. The pressurizing chambers 242 in the pressurizing chamber row are arranged in a staggered pattern between two adjacent pressurizing chamber rows. One pressurizing chamber group is composed of two pressurizing chamber rows connected to one supply manifold 241. In the example shown in FIG. 4, the flow path member 24 has four pressure chamber groups.
 また、各加圧室群内における加圧室242の相対的な配置は同じになっており、各加圧室群は長手方向にわずかにずれて配置されている。第1吐出孔243は、流路部材24のうち供給マニホールド241と対向する領域を避けた位置に配置されている。すなわち、流路部材24を第1面24a側から透過視した場合に、第1吐出孔243は、供給マニホールド241と重なっていない。 Further, the relative arrangement of the pressurizing chambers 242 in each pressurizing chamber group is the same, and each pressurizing chamber group is arranged slightly offset in the longitudinal direction. The first discharge hole 243 is arranged at a position of the flow path member 24 so as to avoid the region facing the supply manifold 241. That is, when the flow path member 24 is viewed through from the first surface 24a side, the first discharge hole 243 does not overlap with the supply manifold 241.
 さらに、平面視して、第1吐出孔243および第2吐出孔246は、圧電アクチュエータ基板25の搭載領域に収まるように配置されている。このような第1吐出孔243および第2吐出孔246は、1つの群として圧電アクチュエータ基板25と略同一の大きさおよび形状の領域を占有している。 Further, in a plan view, the first discharge hole 243 and the second discharge hole 246 are arranged so as to fit in the mounting area of the piezoelectric actuator substrate 25. Such a first discharge hole 243 and a second discharge hole 246 occupy a region having substantially the same size and shape as the piezoelectric actuator substrate 25 as one group.
 そして、対応する圧電アクチュエータ基板25の加圧部である変位素子30(図6参照)を変位させることにより、第1吐出孔243に連通する第2吐出孔246から液滴が吐出される。 Then, by displace the displacement element 30 (see FIG. 6), which is the pressurizing portion of the corresponding piezoelectric actuator substrate 25, the droplets are discharged from the second discharge hole 246 communicating with the first discharge hole 243.
 なお、加圧室242および供給マニホールド241は、個別供給流路245(図6参照)を介して繋がっている。個別供給流路245は、他の部分よりも幅の狭いしぼり36を含んでいる。しぼり36は、個別供給流路245の他の部分よりも幅が狭いため、流路抵抗が高い。このように、しぼり36の流路抵抗が高いとき、加圧室242に生じた圧力は、供給マニホールド241に逃げにくい。 The pressurizing chamber 242 and the supply manifold 241 are connected via an individual supply flow path 245 (see FIG. 6). The individual supply flow path 245 contains a squeeze 36 that is narrower than the other parts. Since the squeeze 36 is narrower than the other parts of the individual supply flow path 245, the flow path resistance is high. As described above, when the flow path resistance of the squeeze 36 is high, the pressure generated in the pressurizing chamber 242 is difficult to escape to the supply manifold 241.
 図6に示すように、流路部材24は、プレート群24Pを有している。プレート群24Pは、複数のプレートが積層された積層構造を有している。プレート群24Pには、流路部材24の第1面24aから第2面24bに向かう方向を第1方向D1としたとき、第1面24a側から順に、キャビティプレート24A、ベースプレート24B、アパーチャ(しぼり)プレート24C、サプライプレート24D、マニホールドプレート24E,24F,24G、カバープレート24Hおよびノズルプレート24Iが位置している。 As shown in FIG. 6, the flow path member 24 has a plate group 24P. The plate group 24P has a laminated structure in which a plurality of plates are laminated. In the plate group 24P, when the direction from the first surface 24a to the second surface 24b of the flow path member 24 is the first direction D1, the cavity plate 24A, the base plate 24B, and the aperture (squeezing) are arranged in this order from the first surface 24a side. ) Plate 24C, supply plate 24D, manifold plates 24E, 24F, 24G, cover plate 24H and nozzle plate 24I are located.
 プレート群24Pには、多数の孔が形成されている。プレート群24Pが有する各プレートの厚さは、10μm~300μm程度である。これにより、形成する孔の形成精度を高くすることができる。プレート群24Pは、これらの孔が互いに連通して個別流路244および供給マニホールド241を構成するように、位置合わせして積層されている。 A large number of holes are formed in the plate group 24P. The thickness of each plate of the plate group 24P is about 10 μm to 300 μm. As a result, the accuracy of forming the holes to be formed can be increased. The plate group 24P is aligned and laminated so that these holes communicate with each other to form an individual flow path 244 and a supply manifold 241.
 また、流路部材24は、流路部材24の第2面24b上に位置する撥水膜24Mを有している。撥水膜24Mは、第1吐出孔243に連通する第2吐出孔246を有している。なお、撥水膜24Mについては、図7、図8を用いて後述する。 Further, the flow path member 24 has a water repellent film 24M located on the second surface 24b of the flow path member 24. The water-repellent film 24M has a second discharge hole 246 that communicates with the first discharge hole 243. The water-repellent film 24M will be described later with reference to FIGS. 7 and 8.
 ヘッド本体20は、加圧室242がプレート群24Pの上面に、供給マニホールド241がプレート群24P内部の下面側に、第1吐出孔243がプレート群24Pの下面に、個別流路244を構成する各部分が異なる位置に互いに近接して配設されている。また、第2吐出孔246は、流路部材24の下面に配設されている。ヘッド本体20は、供給マニホールド241および第2吐出孔246が加圧室242および第1吐出孔243を介して繋がる構成を有している。 The head body 20 constitutes an individual flow path 244 with the pressurizing chamber 242 on the upper surface of the plate group 24P, the supply manifold 241 on the lower surface side inside the plate group 24P, and the first discharge hole 243 on the lower surface of the plate group 24P. The parts are arranged close to each other at different positions. Further, the second discharge hole 246 is arranged on the lower surface of the flow path member 24. The head main body 20 has a configuration in which the supply manifold 241 and the second discharge hole 246 are connected via the pressurizing chamber 242 and the first discharge hole 243.
 圧電アクチュエータ基板25は、圧電セラミック層25a,25bと、共通電極31と、個別電極32と、接続電極33と、ダミー接続電極34と、表面電極35(図4参照)とを含んでいる。 The piezoelectric actuator substrate 25 includes piezoelectric ceramic layers 25a and 25b, a common electrode 31, an individual electrode 32, a connection electrode 33, a dummy connection electrode 34, and a surface electrode 35 (see FIG. 4).
 圧電アクチュエータ基板25は、圧電セラミック層25a、共通電極31、圧電セラミック層25bおよび個別電極32がこの順に積層されている。 In the piezoelectric actuator substrate 25, the piezoelectric ceramic layer 25a, the common electrode 31, the piezoelectric ceramic layer 25b, and the individual electrodes 32 are laminated in this order.
 圧電セラミック層25a,25bは、それぞれ20μm程度の厚さを有している。圧電セラミック層25a,25bのいずれの層も複数の加圧室242を跨ぐように延在している。圧電セラミック層25a,25bは、強誘電性を有するチタン酸ジルコン酸鉛(PZT)系のセラミックス材料を用いることができる。 The piezoelectric ceramic layers 25a and 25b each have a thickness of about 20 μm. Each of the piezoelectric ceramic layers 25a and 25b extends so as to straddle the plurality of pressurizing chambers 242. For the piezoelectric ceramic layers 25a and 25b, a lead zirconate titanate (PZT) -based ceramic material having ferroelectricity can be used.
 共通電極31は、圧電セラミック層25aおよび圧電セラミック層25bの間の領域に面方向の略全面にわたって形成されている。すなわち、共通電極31は、圧電アクチュエータ基板25に対向する領域内の全ての加圧室242と重なっている。共通電極31の厚さは、2μm程度である。共通電極31は、たとえば、Ag-Pd系などの金属材料を用いることができる。 The common electrode 31 is formed in the region between the piezoelectric ceramic layer 25a and the piezoelectric ceramic layer 25b over substantially the entire surface direction. That is, the common electrode 31 overlaps all the pressurizing chambers 242 in the region facing the piezoelectric actuator substrate 25. The thickness of the common electrode 31 is about 2 μm. For the common electrode 31, for example, a metal material such as an Ag-Pd system can be used.
 個別電極32は、個別電極本体32aと、引出電極32bとを含んでいる。個別電極本体32aは、圧電セラミック層25b上のうち加圧室242と対向する領域に位置している。個別電極本体32aは、加圧室242より一回り小さく、加圧室242と略相似な形状である。 The individual electrode 32 includes an individual electrode main body 32a and an extraction electrode 32b. The individual electrode body 32a is located on the piezoelectric ceramic layer 25b in a region facing the pressurizing chamber 242. The individual electrode body 32a is one size smaller than the pressurizing chamber 242 and has a shape substantially similar to that of the pressurizing chamber 242.
 引出電極32bは、個別電極本体32aから引き出されている。引出電極32bの一端における加圧室242と対向する領域外に引き出された部分には、接続電極33が形成されている。個別電極32は、たとえば、Au系などの金属材料を用いることができる。 The extraction electrode 32b is extracted from the individual electrode body 32a. A connection electrode 33 is formed at one end of the extraction electrode 32b, which is drawn out of the region facing the pressurizing chamber 242. For the individual electrode 32, for example, a metal material such as Au can be used.
 接続電極33は、引出電極32b上に位置し、厚さが15μm程度で凸状である。また、接続電極33は、信号伝達部26(図3参照)に設けられた電極と電気的に接合されている。接続電極33は、たとえば、ガラスフリットを含む銀-パラジウムを用いることができる。 The connection electrode 33 is located on the extraction electrode 32b, has a thickness of about 15 μm, and is convex. Further, the connection electrode 33 is electrically joined to the electrode provided in the signal transmission unit 26 (see FIG. 3). For the connection electrode 33, for example, silver-palladium containing glass frit can be used.
 ダミー接続電極34は、圧電セラミック層25b上に位置しており、個別電極32などの各種電極と重ならないように位置している。ダミー接続電極34は、圧電アクチュエータ基板25と信号伝達部26とを接続し、接続強度を高めている。 The dummy connection electrode 34 is located on the piezoelectric ceramic layer 25b so as not to overlap with various electrodes such as the individual electrodes 32. The dummy connection electrode 34 connects the piezoelectric actuator substrate 25 and the signal transmission unit 26 to increase the connection strength.
 また、ダミー接続電極34は、圧電アクチュエータ基板25と、圧電アクチュエータ基板25との接触位置の分布を均一化し、電気的な接続を安定させる。ダミー接続電極34は、接続電極33と同等の材料、同等の工程により形成すればよい。 Further, the dummy connection electrode 34 equalizes the distribution of the contact positions between the piezoelectric actuator substrate 25 and the piezoelectric actuator substrate 25, and stabilizes the electrical connection. The dummy connection electrode 34 may be formed by the same material and the same process as the connection electrode 33.
 表面電極35は、圧電セラミック層25b上において、個別電極32を避ける位置に形成されている。表面電極35は、圧電セラミック層25bに形成されたビアホールを介して共通電極31と繋がっている。このため、表面電極35は、接地され、グランド電位に保持されている。表面電極35は、個別電極32と同等の材料、同等の工程により形成すればよい。 The surface electrode 35 is formed on the piezoelectric ceramic layer 25b at a position avoiding the individual electrodes 32. The surface electrode 35 is connected to the common electrode 31 via a via hole formed in the piezoelectric ceramic layer 25b. Therefore, the surface electrode 35 is grounded and held at the ground potential. The surface electrode 35 may be formed by the same material and the same process as the individual electrode 32.
 複数の個別電極32は、個別に電位を制御するために、それぞれが信号伝達部26および配線を介して、個別に制御部14(図1参照)に電気的に接続されている。個別電極32および共通電極31に狭持された圧電セラミック層25bは、個別電極32および共通電極31を異なる電位にして、圧電セラミック層25bに対してその分極方向に電界を印加したとき、電界が印加された部分が圧電効果により歪む活性部として働く。 The plurality of individual electrodes 32 are individually electrically connected to the control unit 14 (see FIG. 1) via a signal transmission unit 26 and wiring in order to individually control the potential. The piezoelectric ceramic layer 25b sandwiched between the individual electrode 32 and the common electrode 31 has an electric field when the individual electrode 32 and the common electrode 31 have different potentials and an electric field is applied to the piezoelectric ceramic layer 25b in the polarization direction. The applied portion acts as an active portion that is distorted by the piezoelectric effect.
 これにより、加圧室242に対向する、個別電極32と、圧電セラミック層25bと、共通電極31とが変位素子30として機能する。そして、変位素子30がユニモルフ変形することにより、加圧室242を押圧し、第2吐出孔246から液体が吐出される。 As a result, the individual electrode 32, the piezoelectric ceramic layer 25b, and the common electrode 31 facing the pressurizing chamber 242 function as the displacement element 30. Then, the displacement element 30 is unimorphically deformed to press the pressurizing chamber 242, and the liquid is discharged from the second discharge hole 246.
 ここで、本実施形態における駆動手順を説明する。まず、個別電極32を予め共通電極31より高い電位(以下、高電位という)にしておく。次いで、吐出要求があるごとに個別電極32を共通電極31と一旦同じ電位(以下、低電位という)とし、所定のタイミングで再び高電位とする。 Here, the driving procedure in this embodiment will be described. First, the individual electrode 32 is set to a higher potential (hereinafter referred to as high potential) than the common electrode 31 in advance. Next, each time there is a discharge request, the individual electrode 32 is once set to the same potential as the common electrode 31 (hereinafter referred to as low potential), and is set to high potential again at a predetermined timing.
 これにより、個別電極32が低電位になるタイミングで、圧電セラミック層25a,25bが元の形状に戻り、加圧室242の容積が初期状態(両電極の電位が異なる状態)よりも増加する。 As a result, the piezoelectric ceramic layers 25a and 25b return to their original shapes at the timing when the individual electrodes 32 have low potentials, and the volume of the pressurizing chamber 242 increases from the initial state (the potentials of both electrodes are different).
 このとき、加圧室242内に負圧が与えられ、液体が供給マニホールド241側から加圧室242内部に吸い込まれる。その後、再び個別電極32を高電位にしたタイミングで、圧電セラミック層25a,25bが加圧室242側へ向けて凸となるように変形し、加圧室242の容積減少により加圧室242内の圧力が正圧となる。 At this time, a negative pressure is applied to the pressurizing chamber 242, and the liquid is sucked into the pressurizing chamber 242 from the supply manifold 241 side. After that, at the timing when the individual electrodes 32 are raised to a high potential again, the piezoelectric ceramic layers 25a and 25b are deformed so as to be convex toward the pressure chamber 242 side, and the inside of the pressure chamber 242 is reduced by the volume reduction of the pressure chamber 242. Pressure becomes positive pressure.
 この結果、加圧室242内部の液体に付与する圧力が上昇し、液滴が吐出される。つまり、液滴を吐出させるため、高電位を基準とするパルスを含む駆動信号を個別電極32に供給することになる。 As a result, the pressure applied to the liquid inside the pressurizing chamber 242 rises, and droplets are discharged. That is, in order to eject the droplets, a drive signal including a pulse with reference to a high potential is supplied to the individual electrodes 32.
 このパルス幅は、圧力波がしぼり36から第2吐出孔246まで伝播する時間の長さであるAL(Acoustic Length)とすればよい。これによると、加圧室242の内部が負圧状態から正圧状態に反転するときに両者の圧力が合わさり、より強い圧力で液滴を吐出させることができる。 This pulse width may be AL (Acoustic Length), which is the length of time for the pressure wave to propagate from the squeeze 36 to the second discharge hole 246. According to this, when the inside of the pressurizing chamber 242 reverses from the negative pressure state to the positive pressure state, the pressures of both are combined, and the droplet can be discharged with a stronger pressure.
 また、階調印刷においては、第2吐出孔246から連続して吐出される液滴の数、すなわち、液滴吐出回数で調整される液滴量(体積)で階調表現が行われる。このため、指定された階調表現に対応する回数の液滴吐出を、指定されたドット領域に対応する第2吐出孔246から連続して行う。 Further, in gradation printing, gradation expression is performed by the number of droplets continuously ejected from the second ejection hole 246, that is, the amount of droplets (volume) adjusted by the number of droplet ejections. Therefore, the droplets are continuously ejected a number of times corresponding to the designated gradation expression from the second ejection hole 246 corresponding to the designated dot region.
 一般に、液体吐出を連続して行う場合は、液滴を吐出させるために供給するパルスとパルスとの間隔をALとしてもよい。これにより、先に吐出された液滴を吐出させるときに発生した圧力の残余圧力波と、後に吐出させる液滴を吐出させるときに発生する圧力の圧力波との周期が一致する。このため、残余圧力波と圧力波とが重畳して液滴を吐出するための圧力を増幅させることができる。なお、この場合、後から吐出される液滴の速度が速くなり、複数の液滴の着弾点が近くなる。 In general, when liquid discharge is continuously performed, the interval between the pulses supplied to discharge the droplets may be AL. As a result, the period of the residual pressure wave of the pressure generated when the droplet discharged earlier is discharged and the pressure wave of the pressure generated when the droplet discharged later is discharged coincide with each other. Therefore, the residual pressure wave and the pressure wave are superimposed, and the pressure for ejecting the droplet can be amplified. In this case, the velocity of the droplets ejected later becomes faster, and the landing points of the plurality of droplets become closer.
<第1実施形態に係る撥水膜の構成>
 次に、図7、図8を参照して第1実施形態に係る撥水膜24Mの構成について説明する。図7は、図5に示すC-C線に沿った断面の一部拡大図である。図8は、図7に示す撥水膜の平面図である。
<Structure of water-repellent film according to the first embodiment>
Next, the configuration of the water-repellent film 24M according to the first embodiment will be described with reference to FIGS. 7 and 8. FIG. 7 is a partially enlarged view of a cross section taken along the line CC shown in FIG. FIG. 8 is a plan view of the water repellent film shown in FIG. 7.
 図7に示すように、ヘッド本体20は、ノズルプレート24Iの表面で構成される流路部材24の第2面24b上に位置する撥水膜24Mを有する。撥水膜24Mは、第1方向D1に突出した凸部247を有する。ここで、凸部247とは、凸部247よりも第1吐出孔243から離れた領域70における撥水膜24Mの厚さt0よりも高い撥水膜24Mを有する部分をいう。図7、図8に示した例では、撥水膜24Mのうち、平面視で第1吐出孔243と外縁71との間に位置する部分が凸部247である。なお、領域70の厚さt0は、領域70のうち、たとえば平面視で隣り合う第1吐出孔243同士の中間に位置する部分を、光干渉式膜厚計を用いて測定して得た値をいう。なお、得られた厚さt0が測定箇所ごとに相違する場合には、平均した値を厚さt0とする。測定箇所ごとに厚さt0が相違する場合には、5箇所測定し、最大値および最小値を除いた3つの値の平均した厚さをt0とする。また、特に断りの無い限り、以下の説明における流路部材24の各寸法についても、光干渉式膜厚計を用いて測定した結果に基づいて算出する。 As shown in FIG. 7, the head body 20 has a water-repellent film 24M located on the second surface 24b of the flow path member 24 formed of the surface of the nozzle plate 24I. The water-repellent film 24M has a convex portion 247 protruding in the first direction D1. Here, the convex portion 247 refers to a portion having a water repellent film 24M higher than the thickness t0 of the water repellent film 24M in the region 70 farther from the first discharge hole 243 than the convex portion 247. In the example shown in FIGS. 7 and 8, the portion of the water-repellent film 24M located between the first discharge hole 243 and the outer edge 71 in a plan view is a convex portion 247. The thickness t0 of the region 70 is a value obtained by measuring, for example, a portion of the region 70 located between the adjacent first discharge holes 243 in a plan view using an optical interference type film thickness meter. To say. If the obtained thickness t0 differs for each measurement location, the average value is defined as the thickness t0. When the thickness t0 is different for each measurement point, the thickness is measured at 5 points, and the average thickness of the three values excluding the maximum value and the minimum value is defined as t0. Further, unless otherwise specified, each dimension of the flow path member 24 in the following description is also calculated based on the result of measurement using the optical interference type film thickness meter.
 また、凸部247は、頂部248を境に外側と内側とがそれぞれ丸みを帯びている。ここで、頂部248とは、第2面24bに対し垂直であり、かつ第1吐出孔243の中心を通る断面において、第1方向D1に最も高い箇所である。 In addition, the convex portion 247 is rounded on the outside and the inside with the top portion 248 as a boundary. Here, the top portion 248 is the highest point in the first direction D1 in the cross section perpendicular to the second surface 24b and passing through the center of the first discharge hole 243.
 また、図8に示すように、凸部247は、平面視の形状が環状であり、第1吐出孔243を中心とする同心円状に平面視で第1吐出孔243の周囲に位置している。凸部247の内側に位置する第2吐出孔246は、平面視で第1吐出孔243と重なるように位置している。このため、第1吐出孔243から吐出した液滴は、凸部247や第2吐出孔246によって干渉されず、所定の位置へ着弾する。 Further, as shown in FIG. 8, the convex portion 247 has an annular shape in a plan view, and is located around the first discharge hole 243 in a plan view concentrically around the first discharge hole 243. .. The second discharge hole 246 located inside the convex portion 247 is positioned so as to overlap the first discharge hole 243 in a plan view. Therefore, the droplet discharged from the first discharge hole 243 is not interfered by the convex portion 247 or the second discharge hole 246, and lands at a predetermined position.
 撥水膜24Mは、たとえば、フッ素を含有するシリコーン系の成膜材料を用いて形成される。具体的には、ノズルプレート24Iの表面に所定の厚さを有する撥水膜24Mを形成し、次いで凸部247となる領域以外に位置する撥水膜24Mの表面にマスクを施した状態で撥水膜24M上に所定の高さだけ撥水膜24Mを積層させ、さらにマスクを除去することにより形成される。撥水膜24Mの積層は、複数回行ってもよい。また、必要に応じて、加熱処理や乾燥処理を施してもよい。凸部247の位置や形状は、マスクの設計や成膜材料の粘度を変更することにより適宜変更することができる。なお、撥水膜24Mおよび凸部247の製法は、上記したものに限られず、いかなる方法で形成してもよい。 The water-repellent film 24M is formed, for example, by using a silicone-based film-forming material containing fluorine. Specifically, a water-repellent film 24M having a predetermined thickness is formed on the surface of the nozzle plate 24I, and then the surface of the water-repellent film 24M located outside the region to be the convex portion 247 is masked. It is formed by laminating a water-repellent film 24M on the water film 24M by a predetermined height and further removing the mask. The water-repellent film 24M may be laminated a plurality of times. Further, if necessary, heat treatment or drying treatment may be performed. The position and shape of the convex portion 247 can be appropriately changed by changing the design of the mask and the viscosity of the film-forming material. The method for producing the water-repellent film 24M and the convex portion 247 is not limited to the above, and may be formed by any method.
 ここで、図9を参照して、図7、図8に示す流路部材24のワイピング処理の一例について説明する。図9は、ワイピング処理の一例を示す説明図である。 Here, an example of the wiping process of the flow path member 24 shown in FIGS. 7 and 8 will be described with reference to FIG. 9. FIG. 9 is an explanatory diagram showing an example of the wiping process.
 図9に示すように、ワイピング処理は、第2面24bに沿った第2方向D2にワイパー90を移動させることで、撥水膜24Mの表面24cを払拭し、表面24cに付着していた液体を取り除く処理である。ワイパー90は、たとえば、撥水膜24Mよりも硬い弾性部材である。具体的には、硬度が30~90のゴム部材をワイパー90として適用できる。ここで、ワイパー90の硬度は、たとえば、JIS K 6253で規格されたデュロメータを用いて測定できる。 As shown in FIG. 9, in the wiping treatment, the surface 24c of the water-repellent film 24M is wiped by moving the wiper 90 in the second direction D2 along the second surface 24b, and the liquid adhering to the surface 24c. It is a process to remove. The wiper 90 is, for example, an elastic member harder than the water-repellent film 24M. Specifically, a rubber member having a hardness of 30 to 90 can be applied as the wiper 90. Here, the hardness of the wiper 90 can be measured using, for example, a durometer standardized by JIS K6253.
 撥水膜24Mが凸部247を有することにより、ワイピング処理の際にワイパー90が第1吐出孔243の周囲に位置する撥水膜24Mのエッジ部73に接触しにくくなる。このため、ワイピング処理による撥水膜24Mの剥がれが低減される。 Since the water-repellent film 24M has the convex portion 247, the wiper 90 is less likely to come into contact with the edge portion 73 of the water-repellent film 24M located around the first discharge hole 243 during the wiping process. Therefore, the peeling of the water-repellent film 24M due to the wiping treatment is reduced.
 また、上記したように、凸部247は、第1方向D1に突出している。このため、凸部247では、ワイピング処理により撥水膜24Mが摩耗しても、撥水膜24Mが長期間にわたって存在しうる。このため、流路部材24の撥水性を維持することができる。また、第1吐出孔243の周囲に凸部247が位置することで、ワイピング処理の際に第1吐出孔243に異物が入りにくくなる。 Further, as described above, the convex portion 247 protrudes in the first direction D1. Therefore, in the convex portion 247, even if the water-repellent film 24M is worn by the wiping treatment, the water-repellent film 24M may exist for a long period of time. Therefore, the water repellency of the flow path member 24 can be maintained. Further, since the convex portion 247 is located around the first discharge hole 243, it becomes difficult for foreign matter to enter the first discharge hole 243 during the wiping process.
 また、上記したように、凸部247は、頂部248の近傍が丸みを帯びている。このため、ワイピング処理による凸部247およびワイパー90の過度な摩耗や損傷が抑えられる。 Further, as described above, the convex portion 247 has a rounded vicinity of the top portion 248. Therefore, excessive wear and damage of the convex portion 247 and the wiper 90 due to the wiping process can be suppressed.
 また、凸部247は、撥水膜24Mにより形成されているため、たとえば金属製または樹脂製のノズルプレート24Iと一体の凸部を有する構成(ノズルプレート24I自体が凸部を有する構成)と比較して、ワイパー90に対する負荷を低減することができる。 Further, since the convex portion 247 is formed of the water-repellent film 24M, it is compared with a configuration having a convex portion integrated with the nozzle plate 24I made of metal or resin (a configuration in which the nozzle plate 24I itself has a convex portion). Therefore, the load on the wiper 90 can be reduced.
 図7、図8に戻り、第1実施形態に係る撥水膜24Mの構成についてさらに説明する。 Returning to FIGS. 7 and 8, the configuration of the water-repellent film 24M according to the first embodiment will be further described.
 凸部247は、頂部248を挟んで内側と外側とで第2面24bに対する表面の傾斜が異なってもよい。具体的には、凸部247は、頂部248よりも第1吐出孔243から離れた領域を第1領域R1、頂部248よりも第1吐出孔243に近い領域を第2領域R2としたとき、第2面24bに対する第1領域R1の表面の傾斜θ1が、第2面24bに対する第2領域R2の表面の傾斜θ2よりも小さくてもよい。傾斜θ1,θ2をこのように規定することにより、ワイピング処理の際に、凸部247がワイパー90から受ける外力が小さくなるため、凸部247を含む撥水膜24Mの耐久性が向上する。ここで、傾斜θ1は、図7において、頂部248と外縁71とを結ぶ線分と第2面24bとのなす角度をいう。また、傾斜θ2は、図7において、頂部248と内縁72とを結ぶ線分と第2面24bとのなす角度をいう。なお、内縁72は、第1方向D1に突出する凸部247のうち、頂部248よりも第1吐出孔243に近い頂部248の内側に位置する境界である。 The surface inclination of the convex portion 247 with respect to the second surface 24b may be different between the inner side and the outer side with the top portion 248 interposed therebetween. Specifically, when the convex portion 247 has a region closer to the first discharge hole 243 than the top portion 248 as the first region R1 and a region closer to the first discharge hole 243 than the top portion 248 as the second region R2, The inclination θ1 of the surface of the first region R1 with respect to the second surface 24b may be smaller than the inclination θ2 of the surface of the second region R2 with respect to the second surface 24b. By defining the inclinations θ1 and θ2 in this way, the external force received by the convex portion 247 from the wiper 90 during the wiping process is reduced, so that the durability of the water-repellent film 24M including the convex portion 247 is improved. Here, the inclination θ1 refers to the angle formed by the line segment connecting the top portion 248 and the outer edge 71 and the second surface 24b in FIG. 7. Further, the inclination θ2 refers to the angle formed by the line segment connecting the top portion 248 and the inner edge 72 and the second surface 24b in FIG. 7. The inner edge 72 is a boundary located inside the top portion 248 closer to the first discharge hole 243 than the top portion 248 among the convex portions 247 protruding in the first direction D1.
 また、撥水膜24Mは、凸部247の頂部248が、領域70における撥水膜24Mの厚さt0の1.2倍以上1.5倍以下の高さt1を有していてもよい。これにより、たとえばワイピング処理の繰り返しによって凸部247の一部が摩耗した場合であっても、凸部247が残存することとなり、撥水膜24Mの耐久性を向上させることができる。また、第1吐出孔243からの液体の吐出を妨げることなく、吐出される液体の液滴量を安定させることができる。また、ワイピング処理時に凸部237のみに接触しにくくなり、撥水膜24Mの領域70についてもワイピング処理できる。ここで、厚さt0は、たとえば100nm程度とすることができる。また、頂部248の高さが部位ごとに異なる場合には、平均の高さを高さt1とすることができる。なお、凸部247の頂部248の全体の個数のうち、60%以上が、領域70における撥水膜24Mの厚さt0の1.2倍以上1.5倍以下の高さt1を有しているときには、さらに、吐出される液体の液滴量を安定させることができる。 Further, in the water-repellent film 24M, the top portion 248 of the convex portion 247 may have a height t1 of 1.2 times or more and 1.5 times or less the thickness t0 of the water-repellent film 24M in the region 70. As a result, even if a part of the convex portion 247 is worn due to repeated wiping treatment, for example, the convex portion 247 remains, and the durability of the water-repellent film 24M can be improved. In addition, the amount of liquid droplets discharged can be stabilized without interfering with the discharge of the liquid from the first discharge hole 243. Further, during the wiping treatment, it becomes difficult to contact only the convex portion 237, and the wiping treatment can be performed on the region 70 of the water-repellent film 24M. Here, the thickness t0 can be, for example, about 100 nm. When the height of the top portion 248 is different for each part, the average height can be set to the height t1. Of the total number of tops 248 of the convex portion 247, 60% or more has a height t1 of 1.2 times or more and 1.5 times or less of the thickness t0 of the water-repellent film 24M in the region 70. When present, the amount of droplets of the discharged liquid can be further stabilized.
 また、凸部247は、第1吐出孔243を挟んで向かい合う対向凸部において、頂部248間の距離w1が、第1吐出孔243の開口直径w0の4.0倍以上6.6倍以下であってもよい。これにより、撥水膜24Mの耐久性を良好なものとすることができる。また、第1吐出孔243からの液体の吐出を妨げることなく、吐出される液体の液滴量を安定させることができる。さらに、凸部247と第2吐出孔246との間においても、撥水性を確保できる。ここで、開口直径w0は、たとえば10~30μm程度とすることができる。 Further, in the convex portion 247, the distance w1 between the top portions 248 is 4.0 times or more and 6.6 times or less the opening diameter w0 of the first discharge hole 243 in the opposed convex portions facing each other with the first discharge hole 243 in between. There may be. As a result, the durability of the water-repellent film 24M can be improved. In addition, the amount of liquid droplets discharged can be stabilized without interfering with the discharge of the liquid from the first discharge hole 243. Further, water repellency can be ensured between the convex portion 247 and the second discharge hole 246. Here, the opening diameter w0 can be, for example, about 10 to 30 μm.
<第2実施形態に係る撥水膜の構成>
 次に、図10、図11を参照して第2実施形態に係る撥水膜24Mの構成について説明する。図10は、第2実施形態に係る流路部材の一部拡大断面図である。図11は、図10に示す撥水膜の平面図である。
<Structure of water repellent film according to the second embodiment>
Next, the configuration of the water-repellent film 24M according to the second embodiment will be described with reference to FIGS. 10 and 11. FIG. 10 is a partially enlarged cross-sectional view of the flow path member according to the second embodiment. FIG. 11 is a plan view of the water repellent film shown in FIG.
 なお、以下の説明では、第1実施形態と同一の部位には同一の符号を付することにより重複する説明を省略する場合がある。 In the following description, duplicate description may be omitted by assigning the same reference numerals to the same parts as those in the first embodiment.
 第2実施形態に係るヘッド本体20では、流路部材24の第2面24b上に位置する撥水膜24Mが、頂部248よりも第1吐出孔243に近い第2領域R2から第1吐出孔243の縁までの領域である第3領域R3にも位置している。これにより、第2領域R2よりも内側の第3領域R3に位置する流路部材24においても、第2面24bの撥水性を確保できる。 In the head body 20 according to the second embodiment, the water-repellent film 24M located on the second surface 24b of the flow path member 24 is closer to the first discharge hole 243 than the top 248 from the second region R2 to the first discharge hole. It is also located in the third region R3, which is the region up to the edge of 243. As a result, the water repellency of the second surface 24b can be ensured even in the flow path member 24 located in the third region R3 inside the second region R2.
<第3実施形態に係る撥水膜の構成>
 次に、図12、図13を参照して第3実施形態に係る撥水膜24Mの構成について説明する。図12は、第3実施形態に係る流路部材の一部拡大断面図である。図13は、図12に示す撥水膜の平面図である。
<Structure of water repellent film according to the third embodiment>
Next, the configuration of the water-repellent film 24M according to the third embodiment will be described with reference to FIGS. 12 and 13. FIG. 12 is a partially enlarged cross-sectional view of the flow path member according to the third embodiment. FIG. 13 is a plan view of the water repellent film shown in FIG.
 第3実施形態に係るヘッド本体20では、第2面24bに対する第3領域R3の表面の傾斜θ4が、第2面24bに対する第2領域R2の表面の傾斜θ3よりも小さくなるよう、流路部材24の第2面24b上に撥水膜24Mが位置している。これにより、ワイピング処理の際に、ワイパー90から受ける外力に応じて、凸部247が内側へも外側へも撓みやすい形状となり、変形しやすくなる。このため、凸部247の耐久性(耐摩耗性)がより向上する。ここで、傾斜θ3は、図12において、頂部248と内縁72とを結ぶ線分と、第2面24bとのなす角度である。また、傾斜θ4は、図12において、第1吐出孔243および撥水膜24Mが接触する接触部75と内縁72とを結ぶ線分と、第2面24bとのなす角度である。 In the head body 20 according to the third embodiment, the flow path member is such that the inclination θ4 of the surface of the third region R3 with respect to the second surface 24b is smaller than the inclination θ3 of the surface of the second region R2 with respect to the second surface 24b. The water repellent film 24M is located on the second surface 24b of 24. As a result, during the wiping process, the convex portion 247 becomes easily bent inward and outward according to the external force received from the wiper 90, and is easily deformed. Therefore, the durability (wear resistance) of the convex portion 247 is further improved. Here, the inclination θ3 is the angle formed by the line segment connecting the top portion 248 and the inner edge 72 and the second surface 24b in FIG. Further, the inclination θ4 is an angle formed by a line segment connecting the contact portion 75 and the inner edge 72, which are in contact with the first discharge hole 243 and the water repellent film 24M, and the second surface 24b in FIG.
<第4実施形態に係る撥水膜の構成>
 次に、図14、図15を参照して第4実施形態に係る撥水膜24Mの構成について説明する。図14は、第4実施形態に係る流路部材の一部拡大断面図である。図15は、図14に示す撥水膜の平面図である。
<Structure of water repellent film according to the fourth embodiment>
Next, the configuration of the water-repellent film 24M according to the fourth embodiment will be described with reference to FIGS. 14 and 15. FIG. 14 is a partially enlarged cross-sectional view of the flow path member according to the fourth embodiment. FIG. 15 is a plan view of the water repellent film shown in FIG.
 第4実施形態に係るヘッド本体20では、凸部247の第2領域R2から第1吐出孔243の縁までの領域を第3領域R3としたとき、第3領域R3が、表面に平坦部249を有するよう、流路部材24の第2面24b上に撥水膜24Mが位置している。これにより、凸部247と第2吐出孔246との間に異物が入った場合であっても、異物が第2吐出孔246から第1吐出孔243に入りにくくなる。ここで、平坦部249は、第3領域R3のうち、撥水膜24Mの表面が第2面24bに対して1°以内の平行度を有し、かつJIS B0021(1998)で規定される平面度が1mm以下である連続した部分をいう。 In the head body 20 according to the fourth embodiment, when the region from the second region R2 of the convex portion 247 to the edge of the first discharge hole 243 is the third region R3, the third region R3 is a flat portion 249 on the surface. The water-repellent film 24M is located on the second surface 24b of the flow path member 24 so as to have. As a result, even if foreign matter enters between the convex portion 247 and the second discharge hole 246, it becomes difficult for the foreign matter to enter the first discharge hole 243 from the second discharge hole 246. Here, the flat portion 249 is a plane in which the surface of the water-repellent film 24M in the third region R3 has parallelism within 1 ° with respect to the second surface 24b and is defined by JIS B0021 (1998). A continuous portion having a degree of 1 mm or less.
<変形例に係る撥水膜の構成>
 次に、図16A~図16Cを参照して変形例に係る撥水膜24Mの構成について説明する。図16A~図16Cは、第1~第3変形例に係る撥水膜の一部の平面図である。
<Structure of water-repellent film according to modified example>
Next, the configuration of the water-repellent film 24M according to the modified example will be described with reference to FIGS. 16A to 16C. 16A to 16C are plan views of a part of the water repellent film according to the first to third modifications.
 図16Aに示すように、第1変形例に係るヘッド本体20が有する流路部材24は、平面視した凸部247の形状が環状ではなく、弧状である点で各実施形態に係る撥水膜24Mと相違する。このような凸部247を有する場合であっても、ワイピング処理による撥水膜24Mの剥がれが低減される。なお、図16Aの態様の場合、ワイパー90(図10参照)は、第2方向D2に移動すると、ワイパー90と凸部247との接触面積が大きくなり、撥水膜24Mの剥がれがより効果的に低減される。 As shown in FIG. 16A, the flow path member 24 included in the head body 20 according to the first modification has a water-repellent film according to each embodiment in that the shape of the convex portion 247 in a plan view is not an annular shape but an arc shape. It is different from 24M. Even when such a convex portion 247 is provided, the peeling of the water-repellent film 24M due to the wiping treatment is reduced. In the case of the aspect of FIG. 16A, when the wiper 90 (see FIG. 10) moves in the second direction D2, the contact area between the wiper 90 and the convex portion 247 becomes large, and the peeling of the water repellent film 24M is more effective. Is reduced to.
 また、図16Bに示すように、凸部247が、第1吐出孔243を挟んで向かい合う対向凸部247a,247bを有してもよい。このような凸部247を有する場合であっても、ワイピング処理による撥水膜24Mの剥がれが低減される。なお、図16Bの態様の場合、ワイパー90は、第2方向D2に移動すると、ワイパー90と凸部247との接触面積が大きくなり、撥水膜24Mの剥がれがより効果的に低減される。 Further, as shown in FIG. 16B, the convex portions 247 may have opposed convex portions 247a and 247b facing each other with the first discharge hole 243 in between. Even when such a convex portion 247 is provided, the peeling of the water-repellent film 24M due to the wiping treatment is reduced. In the case of the aspect of FIG. 16B, when the wiper 90 moves in the second direction D2, the contact area between the wiper 90 and the convex portion 247 becomes large, and the peeling of the water repellent film 24M is more effectively reduced.
 また、図16Cに示すように、凸部247が、必ずしも第1吐出孔243を挟んで向かい合わなくてもよい。このような凸部247を有する場合であっても、ワイピング処理による撥水膜24Mの剥がれが低減される。このとき、ワイピング処理におけるワイパー90の移動方向に対し、凸部247との接触面積が最大となるように第1吐出孔243に対する凸部247の位置を調整すると、撥水膜24Mの剥がれがより効果的に低減される。具体的には、ワイパー90が、第2方向D2に移動するとよい。 Further, as shown in FIG. 16C, the convex portions 247 do not necessarily have to face each other with the first discharge hole 243 in between. Even when such a convex portion 247 is provided, the peeling of the water-repellent film 24M due to the wiping treatment is reduced. At this time, if the position of the convex portion 247 with respect to the first discharge hole 243 is adjusted so that the contact area with the convex portion 247 is maximized with respect to the moving direction of the wiper 90 in the wiping process, the water-repellent film 24M is more peeled off. Effectively reduced. Specifically, the wiper 90 may move in the second direction D2.
 また、上記した各実施形態および変形例では、平面視の形状が略円形状または円弧状の凸部247を有する撥水膜24Mについて説明したが、これに限らない。この点について、図17A、図17Bを例に挙げて説明する。図17A、図17Bは、第4、第5変形例に係る撥水膜の一部の平面図である。 Further, in each of the above-described embodiments and modifications, the water-repellent film 24M having a substantially circular or arcuate convex portion 247 in a plan view has been described, but the present invention is not limited to this. This point will be described by taking FIGS. 17A and 17B as examples. 17A and 17B are plan views of a part of the water-repellent film according to the fourth and fifth modifications.
 図17Aに示すように、第4変形例に係るヘッド本体20が有する流路部材24は、平面視した凸部247の形状が楕円形状である点で各実施形態に係る撥水膜24Mと相違する。また、図17Bに示すように、第5変形例に係るヘッド本体20が有する流路部材24は、平面視した凸部247の形状が略正方形状である点で各実施形態に係る撥水膜24Mと相違する。このような凸部247を有する場合であっても、ワイピング処理による撥水膜24Mの剥がれが低減される。 As shown in FIG. 17A, the flow path member 24 included in the head body 20 according to the fourth modification is different from the water repellent film 24M according to each embodiment in that the shape of the convex portion 247 in a plan view is elliptical. To do. Further, as shown in FIG. 17B, the flow path member 24 included in the head body 20 according to the fifth modification has a water-repellent film according to each embodiment in that the convex portion 247 in a plan view has a substantially square shape. It is different from 24M. Even when such a convex portion 247 is provided, the peeling of the water-repellent film 24M due to the wiping treatment is reduced.
 以上、本発明の各実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。たとえば、上述の実施形態では、流路部材24のプレート群24Pが積層された複数のプレートで構成された例について示したが、プレート群24Pは積層された複数のプレートで構成されている場合に限られない。 Although each embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, in the above-described embodiment, the example in which the plate group 24P of the flow path member 24 is composed of a plurality of laminated plates is shown, but when the plate group 24P is composed of a plurality of laminated plates. Not limited.
 たとえば、供給マニホールド241や個別流路244などをエッチング処理で形成することにより、流路部材24を構成してもよい。 For example, the flow path member 24 may be formed by forming the supply manifold 241 and the individual flow path 244 by etching.
 また、撥水膜24Mは、凸部247の頂部248から第1吐出孔243の縁までの表面、すなわち第2吐出孔246の表面(ただし、平坦部249(図14参照)を除く)が曲面であってもよい。このとき、凸部247の頂部248から第1吐出孔243の縁までを断面視すると、平坦部249を除き、表面の勾配が連続して変化する曲面を有している。より具体的には、第2吐出孔246の表面の勾配は連続的に変化しており、滑らかに傾斜するスロープ状の表面形状を有している。これにより、凸部247の内側に位置する第2吐出孔246における撥水膜24Mの耐久性(耐摩耗性)をさらに向上させることができる。 Further, the water-repellent film 24M has a curved surface on the surface from the top portion 248 of the convex portion 247 to the edge of the first discharge hole 243, that is, the surface of the second discharge hole 246 (however, the flat portion 249 (see FIG. 14) is excluded). It may be. At this time, when the top portion 248 of the convex portion 247 to the edge of the first discharge hole 243 is viewed in cross section, except for the flat portion 249, it has a curved surface whose surface gradient changes continuously. More specifically, the slope of the surface of the second discharge hole 246 changes continuously, and has a slope-like surface shape that slopes smoothly. As a result, the durability (wear resistance) of the water-repellent film 24M in the second discharge hole 246 located inside the convex portion 247 can be further improved.
 以上のように、実施形態に係る液体吐出ヘッド8は、流路部材24と、加圧部(変位素子30)と、複数の吐出孔(第1吐出孔243)とを備える。流路部材24は、第1面24aおよび第1面24aの反対側に位置する第2面24bを有する。加圧部(変位素子30)は、第1面24a上に位置する。複数の吐出孔(第1吐出孔243)は、第2面24bに位置する。流路部材24は、第2面24b上に撥水膜24Mを有する。撥水膜24Mは、第1面24aから第2面24bに向かう方向を第1方向D1としたとき、第1方向D1に突出した凸部247を有する。凸部247は、第2面24bの平面視で吐出孔(第1吐出孔243)の周囲に位置し、平面視の形状が環状または弧状である。このため、ワイパー90に対する負荷を低減することができる。 As described above, the liquid discharge head 8 according to the embodiment includes a flow path member 24, a pressurizing portion (displacement element 30), and a plurality of discharge holes (first discharge hole 243). The flow path member 24 has a first surface 24a and a second surface 24b located on the opposite side of the first surface 24a. The pressurizing portion (displacement element 30) is located on the first surface 24a. The plurality of discharge holes (first discharge hole 243) are located on the second surface 24b. The flow path member 24 has a water repellent film 24M on the second surface 24b. The water-repellent film 24M has a convex portion 247 protruding in the first direction D1 when the direction from the first surface 24a to the second surface 24b is the first direction D1. The convex portion 247 is located around the discharge hole (first discharge hole 243) in the plan view of the second surface 24b, and has an annular or arc shape in the plan view. Therefore, the load on the wiper 90 can be reduced.
 また、液体吐出ヘッド8において、凸部247は、凸部247の頂部248よりも吐出孔(第1吐出孔243)から離れた第1領域R1と、頂部248よりも吐出孔(第1吐出孔243)に近い第2領域R2とを有し、第2面24bに対する第1領域R1の表面の傾斜θ1が、第2面24bに対する第2領域R2の表面の傾斜θ2よりも小さくてもよい。これにより、ワイパー90に対する負荷を低減することができる。 Further, in the liquid discharge head 8, the convex portion 247 has a first region R1 that is farther from the discharge hole (first discharge hole 243) than the top 248 of the convex portion 247, and a discharge hole (first discharge hole) from the top 248. It has a second region R2 close to 243), and the inclination θ1 of the surface of the first region R1 with respect to the second surface 24b may be smaller than the inclination θ2 of the surface of the second region R2 with respect to the second surface 24b. As a result, the load on the wiper 90 can be reduced.
 また、実施形態に係る液体吐出ヘッド8において、撥水膜24Mは、第2領域R2から吐出孔(第1吐出孔243)の縁までの領域(第3領域R3)に位置してもよい。これにより、第3領域R3に位置する流路部材24においても、第2面24bの撥水性を確保できる。 Further, in the liquid discharge head 8 according to the embodiment, the water-repellent film 24M may be located in a region (third region R3) from the second region R2 to the edge of the discharge hole (first discharge hole 243). As a result, the water repellency of the second surface 24b can be ensured even in the flow path member 24 located in the third region R3.
 また、実施形態に係る液体吐出ヘッド8において、撥水膜24Mは、第2領域R2から吐出孔(第1吐出孔243)の縁までの領域を第3領域R3としたとき、第2面24bに対する第3領域R3の表面の傾斜θ4が、第2面24bに対する第2領域R2の表面の傾斜θ3よりも小さくてもよい。これにより、凸部247の耐久性(耐摩耗性)が向上する。 Further, in the liquid discharge head 8 according to the embodiment, the water-repellent film 24M has a second surface 24b when the region from the second region R2 to the edge of the discharge hole (first discharge hole 243) is the third region R3. The inclination θ4 of the surface of the third region R3 with respect to the second surface 24b may be smaller than the inclination θ3 of the surface of the second region R2 with respect to the second surface 24b. As a result, the durability (wear resistance) of the convex portion 247 is improved.
 また、実施形態に係る液体吐出ヘッド8において、撥水膜24Mは、第2領域R2から吐出孔(第1吐出孔243)の縁までの領域を第3領域R3としたとき、第3領域R3が表面に平坦部249を有していてもよい。これにより、異物が第2吐出孔246から第1吐出孔243に入りにくくなる。 Further, in the liquid discharge head 8 according to the embodiment, the water-repellent film 24M has a third region R3 when the region from the second region R2 to the edge of the discharge hole (first discharge hole 243) is the third region R3. May have a flat portion 249 on its surface. This makes it difficult for foreign matter to enter the first discharge hole 243 from the second discharge hole 246.
 また、実施形態に係る液体吐出ヘッド8において、撥水膜24Mは、凸部247の少なくとも一つが、凸部247よりも吐出孔(第1吐出孔243)から離れた領域70における撥水膜24Mの厚さt0の1.2倍以上1.5倍以下の高さt1を有していてもよい。これにより、撥水膜24Mの耐久性を向上させることができる。また、第1吐出孔243から吐出される液体の液滴量を安定させることができる。 Further, in the liquid discharge head 8 according to the embodiment, the water-repellent film 24M has a water-repellent film 24M in a region 70 in which at least one of the convex portions 247 is separated from the discharge hole (first discharge hole 243) by the convex portion 247. It may have a height t1 of 1.2 times or more and 1.5 times or less of the thickness t0 of. Thereby, the durability of the water-repellent film 24M can be improved. In addition, the amount of liquid droplets discharged from the first discharge hole 243 can be stabilized.
 また、実施形態に係る液体吐出ヘッド8において、撥水膜24Mは、吐出孔(第1吐出孔243)を挟んで向かい合う対向凸部を有し、対向凸部は、頂部248間の距離w1が、吐出孔(第1吐出孔243)の開口直径w0の4.0倍以上6.6倍以下であってもよい。これにより、第1吐出孔243から吐出される液体の液滴量を安定させることができる。さらに、凸部247と第2吐出孔246との間においても、撥水性を確保できる。 Further, in the liquid discharge head 8 according to the embodiment, the water-repellent film 24M has facing convex portions facing each other with the discharge hole (first discharge hole 243) interposed therebetween, and the facing convex portion has a distance w1 between the top portions 248. , The opening diameter w0 of the discharge hole (first discharge hole 243) may be 4.0 times or more and 6.6 times or less. As a result, the amount of liquid droplets discharged from the first discharge hole 243 can be stabilized. Further, water repellency can be ensured between the convex portion 247 and the second discharge hole 246.
 さらなる効果や変形例は、当業者によって容易に導き出すことができる。このため、本発明のより広範な態様は、以上のように表しかつ記述した特定の詳細および代表的な実施形態に限定されるものではない。したがって、添付の請求の範囲およびその均等物によって定義される総括的な発明の概念の精神または範囲から逸脱することなく、様々な変更が可能である。 Further effects and modifications can be easily derived by those skilled in the art. For this reason, the broader aspects of the invention are not limited to the particular details and representative embodiments expressed and described as described above. Thus, various modifications can be made without departing from the spirit or scope of the general concept of the invention as defined by the appended claims and their equivalents.
   1  プリンタ(記録装置の一例)
   4  塗布機
   6  搬送ローラ(搬送部の一例)
   8  液体吐出ヘッド
  10  乾燥機
  14  制御部
  24  流路部材
  24a 第1面
  24b 第2面
  24c 表面
  24M 撥水膜
  30  変位素子(加圧部の一例)
 243  第1吐出孔(吐出孔の一例)
 246  第2吐出孔
 247  凸部
 248  頂部
 249  平坦部
1 Printer (an example of recording device)
4 Coating machine 6 Conveying roller (example of conveying part)
8 Liquid discharge head 10 Dryer 14 Control unit 24 Flow path member 24a First surface 24b Second surface 24c Surface 24M Water repellent film 30 Displacement element (example of pressurizing unit)
243 First discharge hole (example of discharge hole)
246 Second discharge hole 247 Convex part 248 Top part 249 Flat part

Claims (12)

  1.  第1面および前記第1面の反対側に位置する第2面を有する流路部材と、
     前記第1面上に位置する加圧部と、
     前記第2面に位置する複数の吐出孔と
     を備え、
     前記流路部材は、
      前記第2面上に撥水膜を有し、
     前記撥水膜は、
      前記第1面から前記第2面に向かう方向を第1方向としたとき、前記第1方向に突出した凸部を有し、
      前記凸部は、前記第2面の平面視で前記吐出孔の周囲に位置し、前記平面視の形状が環状または弧状である
     液体吐出ヘッド。
    A flow path member having a first surface and a second surface located on the opposite side of the first surface,
    The pressurizing part located on the first surface and
    It is provided with a plurality of discharge holes located on the second surface.
    The flow path member
    It has a water-repellent film on the second surface,
    The water repellent film is
    When the direction from the first surface to the second surface is the first direction, it has a convex portion protruding in the first direction.
    The convex portion is a liquid discharge head that is located around the discharge hole in the plan view of the second surface and has an annular or arc shape in the plan view.
  2.  前記凸部は、
      前記凸部の頂部よりも前記吐出孔から離れた第1領域と、前記頂部よりも前記吐出孔に近い第2領域とを有し、
      前記第2面に対する前記第1領域の表面の傾斜は、前記第2面に対する前記第2領域の表面の傾斜よりも小さい
     請求項1に記載の液体吐出ヘッド。
    The convex part is
    It has a first region that is farther from the discharge hole than the top of the convex portion and a second region that is closer to the discharge hole than the top.
    The liquid discharge head according to claim 1, wherein the inclination of the surface of the first region with respect to the second surface is smaller than the inclination of the surface of the second region with respect to the second surface.
  3.  前記撥水膜は、前記第2領域から前記吐出孔の縁までの領域にも位置する
     請求項2に記載の液体吐出ヘッド。
    The liquid discharge head according to claim 2, wherein the water-repellent film is also located in a region from the second region to the edge of the discharge hole.
  4.  前記撥水膜は、前記第2領域から前記吐出孔の縁までの領域を第3領域としたとき、
     前記第2面に対する前記第3領域の表面の傾斜は、前記第2面に対する前記第2領域の表面の傾斜よりも小さい
     請求項3に記載の液体吐出ヘッド。
    The water-repellent film is formed when the region from the second region to the edge of the discharge hole is defined as the third region.
    The liquid discharge head according to claim 3, wherein the inclination of the surface of the third region with respect to the second surface is smaller than the inclination of the surface of the second region with respect to the second surface.
  5.  前記撥水膜は、前記第2領域から前記吐出孔の縁までの領域を第3領域としたとき、
     前記第3領域は、表面に平坦部を有する
     請求項3または4に記載の液体吐出ヘッド。
    The water-repellent film is formed when the region from the second region to the edge of the discharge hole is defined as the third region.
    The liquid discharge head according to claim 3 or 4, wherein the third region has a flat portion on the surface.
  6.  前記撥水膜は、前記凸部の頂部から前記吐出孔の縁までの表面が曲面である
     請求項1~4のいずれか1つに記載の液体吐出ヘッド。
    The liquid discharge head according to any one of claims 1 to 4, wherein the water-repellent film has a curved surface from the top of the convex portion to the edge of the discharge hole.
  7.  前記撥水膜は、前記凸部の少なくとも一つが、前記凸部よりも前記吐出孔から離れた領域における前記撥水膜の厚さの1.2倍以上1.5倍以下の高さを有する
     請求項1~6のいずれか1つに記載の液体吐出ヘッド。
    At least one of the convex portions of the water-repellent film has a height of 1.2 times or more and 1.5 times or less of the thickness of the water-repellent film in a region farther from the discharge hole than the convex portion. The liquid discharge head according to any one of claims 1 to 6.
  8.  前記撥水膜は、前記吐出孔を挟んで向かい合う対向凸部を有し、
      前記対向凸部は、頂部間の距離が、前記吐出孔の開口直径の4.0倍以上6.6倍以下である
     請求項1~7のいずれか1つに記載の液体吐出ヘッド。
    The water-repellent film has opposed convex portions facing each other with the discharge hole interposed therebetween.
    The liquid discharge head according to any one of claims 1 to 7, wherein the opposed convex portion has a distance between the tops of 4.0 times or more and 6.6 times or less of the opening diameter of the discharge hole.
  9.  請求項1~8のいずれか1つに記載の液体吐出ヘッドと、
     前記液体吐出ヘッドに対して記録媒体を搬送する搬送部と
     を備える
     記録装置。
    The liquid discharge head according to any one of claims 1 to 8.
    A recording device including a transport unit for transporting a recording medium to the liquid discharge head.
  10.  請求項1~8のいずれか1つに記載の液体吐出ヘッドと、
     記録媒体にコーティング剤を塗布する塗布機と
     を備える
     記録装置。
    The liquid discharge head according to any one of claims 1 to 8.
    A recording device equipped with a coating machine for applying a coating agent to a recording medium.
  11.  請求項1~8のいずれか1つに記載の液体吐出ヘッドと、
     記録媒体を乾燥させる乾燥機と
     を備える
     記録装置。
    The liquid discharge head according to any one of claims 1 to 8.
    A recording device equipped with a dryer for drying the recording medium.
  12.  前記撥水膜の表面を払拭するワイパー
     をさらに備え、
     前記ワイパーの硬度が、30~90である
     請求項9~11のいずれか1つに記載の記録装置。
    Further provided with a wiper that wipes the surface of the water-repellent film,
    The recording device according to any one of claims 9 to 11, wherein the wiper has a hardness of 30 to 90.
PCT/JP2020/014355 2019-03-29 2020-03-27 Liquid ejecting head and recording device WO2020203907A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021512082A JP7216194B2 (en) 2019-03-29 2020-03-27 Liquid ejection head and recording device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-067093 2019-03-29
JP2019067093 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203907A1 true WO2020203907A1 (en) 2020-10-08

Family

ID=72668953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014355 WO2020203907A1 (en) 2019-03-29 2020-03-27 Liquid ejecting head and recording device

Country Status (2)

Country Link
JP (1) JP7216194B2 (en)
WO (1) WO2020203907A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003320673A (en) * 2002-05-08 2003-11-11 Canon Inc Inkjet recording head and inkjet recorder
JP2006103275A (en) * 2004-10-08 2006-04-20 Canon Finetech Inc Ink-jet recording head and recording device
JP2007125876A (en) * 2005-10-04 2007-05-24 Seiko Epson Corp Pattern formation method and droplet discharging device
JP2009241500A (en) * 2008-03-31 2009-10-22 Fujifilm Corp Nozzle plate, liquid discharge head, and image forming device
US20180104947A1 (en) * 2015-04-20 2018-04-19 Eth Zurich Print pattern generation on a substrate
WO2018181733A1 (en) * 2017-03-29 2018-10-04 京セラ株式会社 Liquid discharge head, recording device using same, and recording method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003320673A (en) * 2002-05-08 2003-11-11 Canon Inc Inkjet recording head and inkjet recorder
JP2006103275A (en) * 2004-10-08 2006-04-20 Canon Finetech Inc Ink-jet recording head and recording device
JP2007125876A (en) * 2005-10-04 2007-05-24 Seiko Epson Corp Pattern formation method and droplet discharging device
JP2009241500A (en) * 2008-03-31 2009-10-22 Fujifilm Corp Nozzle plate, liquid discharge head, and image forming device
US20180104947A1 (en) * 2015-04-20 2018-04-19 Eth Zurich Print pattern generation on a substrate
WO2018181733A1 (en) * 2017-03-29 2018-10-04 京セラ株式会社 Liquid discharge head, recording device using same, and recording method

Also Published As

Publication number Publication date
JP7216194B2 (en) 2023-01-31
JPWO2020203907A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
WO2020189695A1 (en) Liquid ejecting head and recording device
WO2020203907A1 (en) Liquid ejecting head and recording device
US11766863B2 (en) Liquid discharge head and recording device
JP7189970B2 (en) Liquid ejection head and recording device
JP7328105B2 (en) Liquid ejection head and recording device
JP7221992B2 (en) Liquid ejection head and recording device
JP7215972B2 (en) Liquid ejection head and recording device
WO2021065524A1 (en) Liquid ejection head and recording device
WO2023190211A1 (en) Liquid discharge head and recording device
WO2023191005A1 (en) Droplet dispensing head and recording device
WO2021132676A1 (en) Liquid discharge head and recording device
US20220402268A1 (en) Liquid droplet discharge head and recording device
WO2021085632A1 (en) Liquid discharge head and recording device
JP7293337B2 (en) Liquid ejection head and recording device
JP2019177638A (en) Liquid discharge head and recording device using the same
JP7154174B2 (en) Liquid ejection head and recording device
JP2021104665A (en) Liquid discharge head and recording device
CN117500669A (en) Liquid ejection head and recording apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783637

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021512082

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20783637

Country of ref document: EP

Kind code of ref document: A1