WO2020203845A1 - Printing paper and printed matter - Google Patents

Printing paper and printed matter Download PDF

Info

Publication number
WO2020203845A1
WO2020203845A1 PCT/JP2020/014211 JP2020014211W WO2020203845A1 WO 2020203845 A1 WO2020203845 A1 WO 2020203845A1 JP 2020014211 W JP2020014211 W JP 2020014211W WO 2020203845 A1 WO2020203845 A1 WO 2020203845A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing paper
nitrogen
layer
containing compound
mass
Prior art date
Application number
PCT/JP2020/014211
Other languages
French (fr)
Japanese (ja)
Inventor
李香 渡邉
暢洋 岩谷
鈴木 達也
秀幸 今井
Original Assignee
株式会社ユポ・コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユポ・コーポレーション filed Critical 株式会社ユポ・コーポレーション
Priority to JP2021512044A priority Critical patent/JP7142153B2/en
Publication of WO2020203845A1 publication Critical patent/WO2020203845A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/16Anti-static materials

Definitions

  • the present invention relates to printing paper and printed matter.
  • Oxidative polymerization type inks used for pulp paper generally contain a relatively large amount of solvent with respect to the components to be oxidatively polymerized so as to accelerate the start of oxidative polymerization and shorten the drying time.
  • the drying time is not sufficient for the same drying time as pulp paper, and the printed surface is printed when the synthetic papers after printing are stacked. In some cases, the ink was transferred to other synthetic paper.
  • printing paper may be stacked and stored after printing.
  • the ink on the printing surface may affect the printing paper stacked on the printing paper.
  • the ink on the front surface (derived component) is applied to the ink on the back surface of the printing paper.
  • a phenomenon that inhibits transcription may occur. This phenomenon is called chemical ghost.
  • chemical ghosts When chemical ghosts occur, the reproducibility of color, density, etc. differs between the area printed on the printed portion on the front surface and the area not overlapped on the printed portion on the back surface.
  • An object of the present invention is to provide a printing paper and a printed matter which are excellent in versatility and dryness of ink and can suppress the generation of chemical ghosts.
  • the present invention has been completed by finding that the above problems can be solved if the printing paper has a nitrogen content as small as a specific value or less and an oil absorption as a specific value or more. That is, the present invention is as follows.
  • the oil absorption of the printing paper is 1.0 g / m 2 or more.
  • the ratio of the atomic concentration of nitrogen atom to the total atomic concentration of nitrogen atom and carbon atom is 3.0% or less.
  • the antistatic layer contains a nitrogen-containing compound and
  • the nitrogen-containing compound contains a quaternary nitrogen-containing compound.
  • the content of the quaternary nitrogen-containing compound in the nitrogen-containing compound is 50% by mass or more.
  • the nitrogen-containing compound contains a primary nitrogen-containing compound or a secondary nitrogen-containing compound.
  • the content of the primary nitrogen-containing compound and the secondary nitrogen-containing compound in the nitrogen-containing compound is 20% by mass or less.
  • the antistatic layer contains a nitrogen-containing compound and a cross-linking agent.
  • the nitrogen-containing compound contains a primary nitrogen-containing compound or a secondary nitrogen-containing compound.
  • a printing paper having a thermoplastic resin film containing a porous layer and an antistatic layer provided on the porous layer of the thermoplastic resin film.
  • the oil absorption of the printing paper is 1.0 g / m 2 or more.
  • the antistatic layer contains a nitrogen-containing compound, and the total content of primary or secondary nitrogen in the total nitrogen contained in the nitrogen-containing compound is 10% or less. Printing paper.
  • the porous layer contains a thermoplastic resin and a filler, and the porous layer contains a thermoplastic resin and a filler.
  • the particle size distribution D10-D90 of the filler is 4 ⁇ m or less.
  • the porous layer contains a soft polyolefin resin as the thermoplastic resin.
  • An intermediate layer is provided between the base material layer and the porous layer.
  • the intermediate layer contains a filler having an average particle size larger than the thickness of the intermediate layer.
  • the porous layer is a stretched film stretched in at least one axial direction.
  • the printing paper according to any one of (1) to (8) above.
  • the print layer is formed by an oxidative polymerization type ink.
  • the printing paper of the present invention has a thermoplastic resin film including a porous layer and an antistatic layer provided on the porous layer of the thermoplastic resin film.
  • the oil absorption of the printing paper of the present invention is 1.0 g / m 2 or more.
  • the oil absorption amount is 1.0 g / m 2 or more, when the ink is transferred to the printing paper, a large amount of the solvent in the ink can be absorbed in a short time.
  • the oxidative polymerization type ink after the solvent is evaporated from the ink or absorbed by the printing paper, the oxidative polymerization of the remaining oxidative polymerization components proceeds and the ink dries.
  • the printing paper of the present invention absorbs a large amount of solvent in a short time to dry the ink.
  • the time required can be shortened. That is, the printing paper of the present invention is excellent in drying property regardless of whether it is an ink for pulp paper or an ink for synthetic paper, and since either ink can be used, the versatility of the ink is also excellent. ..
  • the oil absorption is 1.5 g / m 2 or more, more preferably 1.8 g / m 2 or more, more preferably 2.0 g / m 2 or more, 3.0 g / m It is particularly preferable that the number is 2 or more.
  • Oil absorption (g / m 2 ) ⁇ (Mass after oil absorption (g))-(Mass before oil absorption (g)) ⁇ / (Area absorbed oil (m 2 ))
  • the present inventors focused on reducing the nitrogen-containing compound presumed to be the causative substance of this chemical ghost, and controlled the ratio of nitrogen atoms on the surface of the printing paper to 3.0% or less, and found that the chemical ghost. It turned out that it can suppress. As described above, even when the oil absorption of the printing paper is more than the specific value and the oxidative polymerization proceeds rapidly, if the ratio of the atomic concentration of nitrogen atoms is less than the specific value, the chemical ghost is effectively suppressed. , Ink transferability can be improved.
  • the above ratio is preferably 2.8% or less, more preferably 2.6% or less, still more preferably 2.4% or less. It is particularly preferably 0% or less. The smaller the ratio is, the higher the suppressing effect is, and it may be 0%, but when the antistatic layer contains a nitrogen-containing compound described later, it is larger than 0%, for example, 0.01% or more.
  • the ratio (%) of the atomic concentration of the nitrogen atom is the peak area of the N1s peak of the nitrogen atom with respect to the sum of the peak area of the C1s peak of the carbon atom and the peak area of the N1s peak of the nitrogen atom measured by XPS. Obtained as a percentage.
  • the printing paper of the present invention may have a porous layer and an antistatic layer on only one side as long as it has a porous layer and an antistatic layer on at least one side, and the printing paper may have a porous layer and an antistatic layer on both sides. It may have a quality layer and an antistatic layer.
  • the porous layer and the antistatic layer are provided on only one side, it is suitable to print on the front surface of the antistatic layer side first and then on the back surface.
  • the thermoplastic resin film may have a single-layer structure having only a porous layer, or may have a multi-layer structure having a layer other than the porous layer.
  • FIG. 1 is a cross-sectional view showing a configuration example of printing paper as an embodiment of the present invention.
  • the printing paper 10 has a thermoplastic resin film 1 including a porous layer 2 provided on one surface side, and an antistatic layer 3 provided on the porous layer 2.
  • the porous layer 2a is also provided on the other surface side of the thermoplastic resin film 1, and the antistatic layer 3a is provided on the porous layer 2a.
  • the thermoplastic resin film 1 has a multilayer structure, and has a base material layer 4 and intermediate layers 5 and 5a provided on both sides of the base material layer 4, respectively.
  • the porous layers 2 and 2a are provided on the intermediate layers 5 and 5a, respectively, and form the outermost layer of the thermoplastic resin film 1.
  • the two porous layers 2, 2a, the antistatic layers 3, 3a, and the intermediate layers 5, 5a may have the same composition, thickness, or the like, or may be different.
  • the antistatic layer can suppress adhesion of foreign matter to the printing paper due to static electricity, deterioration of transportability due to blocking, and the like.
  • the antistatic layer is preferably provided as the outermost layer of the printing paper from the viewpoint of reducing the influence of static electricity such as blocking.
  • the antistatic layer can be formed, for example, by applying an antistatic agent-containing coating liquid onto the porous layer.
  • the antistatic agent is not particularly limited, and known antistatic agents such as polymer type and metal oxide type antistatic agents can be used.
  • a cationic type, an anion type, an amphoteric type, a nonionic type and the like are known, and any of them can be used.
  • the cationic type include compounds having an ammonium salt structure or a phosphonium salt structure.
  • the anion type include alkali metal salts such as sulfonic acid, phosphoric acid and carboxylic acid, specifically alkali metal salts such as acrylic acid, methacrylic acid and (anhydrous) maleic acid (for example, lithium salt, sodium salt and potassium salt).
  • Examples include compounds having a structure in the molecular structure.
  • Examples of the amphoteric type include compounds containing both the above-mentioned cationic type and anion type structures in the same molecule, specifically, betaine type.
  • Examples of the nonionic type include an ethylene oxide polymer having an alkylene oxide structure and a polymer having an ethylene oxide polymerization component in the molecular chain.
  • Examples of the metal oxide type antistatic agent include fine particles having a metal oxide, for example, a colloidal silica sol having a metal oxide layer on the surface of colloidal silica.
  • a polymer-type antistatic agent having boron in its molecular structure can be mentioned as an example. One of these may be used alone or in combination of two or more.
  • a cationic polymer type antistatic agent is preferable because of its good antistatic performance
  • a nitrogen-containing polymer type antistatic agent for example, a tertiary nitrogen or a quaternary nitrogen (ammonium salt structure) -containing acrylic type is preferable.
  • Polymers are more preferred.
  • Commercially available products can also be used as the antistatic agent.
  • Commercially available products of tertiary or quaternary nitrogen-containing acrylic polymers include, for example, Saftmer ST-1000, Saftmer ST-1100, Saftmer ST-1300, and Saftmer ST-3200, which are water-soluble and easy to prepare a coating solution. (Made by Mitsubishi Chemical Corporation), etc.
  • the antistatic layer preferably contains an anchoring agent from the viewpoint of obtaining more stable adhesion to the ink.
  • the anchoring agent is not particularly limited, and a known anchoring agent can be appropriately used.
  • the anchoring agent that can be used include a polyimine-based polymer, an ethyleneimine adduct of a polyamine polyamide, and a mixture thereof.
  • the ethyleneimine adduct of the polyimine polymer or the polyamine polyamide include polyethyleneimine, poly (ethyleneimine-urea) and the ethyleneimine adduct of the polyamine polyamide; these alkyl modified products, cycloalkyl modified products and aryl modified products.
  • Examples thereof include allyl-modified products, aralkyl-modified products, alkylal-modified products, benzyl-modified products, cyclopentyl-modified products, and aliphatic cyclic hydrocarbon-modified products; hydroxides thereof; and the above-mentioned complexes.
  • One of these may be used alone or in combination of two or more.
  • the content of the anchoring agent is preferably 0 to 200 parts by mass, more preferably 0 to 150 parts by mass with respect to 100 parts by mass of the antistatic agent in terms of solid content ratio. , More preferably 0 to 100 parts by mass, and particularly preferably 0 to 50 parts by mass.
  • the antistatic layer may contain a cross-linking agent from the viewpoint of water resistance, stability over time, improvement of layer strength, and the like.
  • the cross-linking agent include epoxy compounds such as glycidyl ether and glycidyl ester, and water-dispersible resins such as epoxy resins, isocyanates, oxazolines, formalins, and hydrazides.
  • the content of the cross-linking agent in the antistatic layer is preferably 1 to 200 parts by mass, more preferably 1 to 200 parts by mass, based on 100 parts by mass of the total of the primary and secondary nitrogen-containing compounds from the viewpoint of the stability of the solution over time. It is 10 to 170 parts by mass, more preferably 20 to 140 parts by mass.
  • the coating liquid used to form the antistatic layer can be obtained by dissolving or dispersing various components such as an antistatic agent in a solvent.
  • a solvent water, methyl alcohol, ethyl alcohol, isopropyl alcohol, acetone, methyl ethyl ketone, ethyl acetate, toluene, xylene and the like are generally used.
  • the coating liquid is preferably an aqueous solution.
  • the solid content concentration of the coating liquid is preferably about 0.1 to 20% by mass, more preferably 0.3 to 15% by mass, and further preferably 0.5 to 10% by mass.
  • a coating device such as a die coater, a bar coater, a lip coater, a roll coater, a gravure coater, a spray coater, a blade coater, an air knife coater, and a size press coater can be used.
  • the antistatic layer may contain nitrogen-containing compounds.
  • the nitrogen-containing compound include amine compounds, imine compounds, amide compounds, imide compounds, isocyanate compounds, urethane compounds, and nitrile compounds.
  • the nitrogen-containing compound is preferably an amide compound, an imide compound, an isocyanate compound, a urethane compound or a nitrile compound from the viewpoint of suppressing chemical ghosts.
  • an amine compound or an imine compound can be used without any problem by controlling the substitution of the amino group or the imino group.
  • the nitrogen-containing compound can be blended as the above-mentioned antistatic agent, anchoring agent, etc., but the antistatic layer can contain an antistatic agent, anchoring agent, etc. other than the above-mentioned nitrogen compound.
  • the nitrogen-containing compound can contain any of primary to quaternary nitrogen-containing compounds, but it is preferable to include a quaternary nitrogen-containing compound because it has a high effect of suppressing chemical ghosts.
  • the content of the quaternary nitrogen compound in the nitrogen compound is preferably 50% by mass or more, more preferably 70% by mass or more, and 90% by mass. The above is more preferable, and 95% by mass or more is particularly preferable. The higher the content of the quaternary nitrogen compound in the nitrogen compound, the easier it is to suppress chemical ghosts.
  • the nitrogen-containing compound contains a primary nitrogen-containing compound or a secondary nitrogen-containing compound
  • the total content of each of the primary nitrogen-containing compound and the secondary nitrogen-containing compound in the nitrogen compound is 20% by mass or less. It is preferably 15% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less. The lower the content of the primary and secondary nitrogen-containing compounds in the nitrogen compound, the easier it is to suppress chemical ghosts.
  • the total content (pieces) of primary to tertiary nitrogen in the total nitrogen (pieces) contained in the nitrogen-containing compound is preferably 35% or less, more preferably 30% or less, and 25. It is more preferably% or less.
  • the total content of the primary or secondary nitrogen in the total nitrogen contained in the nitrogen-containing compound is preferably 10% or less, more preferably 9% or less, and more preferably 7% or less. It is more preferable, and it is particularly preferable that it is 5% or less.
  • the content of primary to quaternary nitrogen in the total nitrogen contained in the nitrogen-containing compound can be measured by, for example, a nuclear magnetic resonance apparatus, an X-ray optical spectrometer, or the like.
  • the printing paper of the present invention is primary or primary in total nitrogen contained in the nitrogen-containing compound even when the ratio of the atomic concentration (atom%) of nitrogen atoms does not satisfy the condition of 3.0% or less.
  • the total content of the secondary nitrogen is 10% or less, the generation of chemical ghosts can be effectively suppressed as in the case where the ratio of the atomic concentration of nitrogen atoms is 3.0% or less.
  • lower nitrogen-containing compounds containing primary or secondary nitrogen which are particularly easily deteriorated by contact with gas, are specified. It was found that the chemical ghost can be suppressed by controlling the following.
  • the antistatic layer preferably further contains a cross-linking agent.
  • the cross-linking agent By coordinating or covalently bonding the cross-linking agent to the nitrogen atom of the primary to tertiary nitrogen-containing compounds, the primary to tertiary nitrogen-containing compounds, especially the highly reactive lower amine compounds, are reduced. It is presumed that even if the ink comes into contact with gas generated when the ink is oxidatively polymerized and dried, there is little deterioration and it is easy to suppress chemical ghosts.
  • the antistatic agent contains a cross-linking agent and the total content of each of the primary to tertiary nitrogen-containing compounds in the nitrogen-containing compound is within the above range, chemical ghosts are more effectively suppressed. be able to.
  • the cross-linking agent is a nitrogen-containing compound (particularly a primary nitrogen-containing compound or a secondary nitrogen-containing compound)
  • self-cross-linking also contains a group (epoxy group, etc.) capable of reacting with an amine or the like in the molecule. It is preferable that it is possible.
  • the ratio (%) of the atomic concentration of nitrogen atoms on the surface of the printing paper on the antistatic layer side, or the total content of primary or secondary nitrogen in the total nitrogen contained in the nitrogen-containing compound is charged. It can be controlled to a specific value or less by adjusting the solid content of a component containing a nitrogen-containing compound in the coating liquid for forming the preventive layer, for example, an antistatic agent, an anchor agent, and the like.
  • the thermoplastic resin film may be a single-layer film having only a porous layer as described above, as long as it contains a porous layer on the outermost surface, or includes other layers such as a base material layer and an intermediate layer. It may be a multilayer film. Further, each layer of the thermoplastic resin film may be a non-stretched film, but if it is a stretched film stretched in at least one axial direction, it is easy to obtain a thickness, stiffness, etc. excellent in printability as printing paper. Moreover, it is preferable because it is easy to flatten the surface or the interface between layers.
  • Porous layer has a large number of pores and absorbs the solvent in the ink to improve the drying property of the ink.
  • the greater the proportion of the pores in the porous layer communicating with each other the greater the amount of oil absorbed by the printing paper and the better the dryness of the ink.
  • the proportion of independent pores in the porous layer is large, the amount of oil absorbed becomes small and the drying property of the ink decreases. In this way, since the degree of communication of the holes is proportional to the oil absorption of the printing paper, it is possible to judge whether or not there are sufficient pores communicating with each other in the porous layer based on the oil absorption of the printing paper. it can.
  • the porous layer preferably contains a thermoplastic resin and a filler from the viewpoint of forming pores that communicate with each other.
  • thermoplastic resin examples include polyolefin resins, polyester resins, polyamide resins, polystyrene resins, polyvinyl chloride resins, polycarbonate resins and the like.
  • thermoplastic resins can be used alone or in combination of two or more.
  • the thermoplastic resin is preferably a polyolefin resin or a polyester resin, and more preferably a polypropylene resin or a polyethylene resin.
  • the thermoplastic resin preferably contains a hydrophobic or non-polar resin. This makes it possible to improve the amount of oil absorption when the pores in the porous layer are in communication with each other.
  • the hydrophobic or non-polar resin refers to a resin having a solubility parameter (SP value) of, for example, 10 or less.
  • SP value solubility parameter
  • the SP value is preferably 9.5 or less, more preferably 9.0 or less, and even more preferably 8.0 or less. Further, the SP value can be 6.5 or more, and may be 7.0 or more.
  • the SP value is a value calculated by the method proposed by Small.
  • thermoplastic resin examples include polyolefin-based resins and polystyrene-based resins.
  • the content of the hydrophobic or non-polar resin is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, based on the total mass of the thermoplastic resin.
  • the content of the hydrophobic or non-polar resin may be, for example, 99% by mass or less, 98% by mass or less, or 97% by mass or less based on the total mass of the thermoplastic resin. It does not matter if all of the thermoplastic resins are composed of hydrophobic or non-polar resins.
  • the porous layer preferably contains a soft polyolefin-based resin as the thermoplastic resin.
  • the soft polyolefin resin refers to a polyolefin resin having a melting energy of 75 J / g or less as measured by differential scanning calorimetry (DSC). The melting energy is calculated from the peak area of the endothermic peak observed in DSC.
  • Edge picking is a phenomenon in which deformation such as fluffing on the paper surface or peeling such as peeling occurs during printing.
  • the content of the soft polyolefin resin in the porous layer is preferably 1% by mass or more, more preferably 3% by mass or more, and further preferably 4% by mass or more. Further, the content is preferably 15% by mass or less, more preferably 10% by mass or less, and further preferably 8% by mass or less.
  • the content is 1% by mass or more, pores are excessively generated during stretching, and the occurrence of edge picking due to this tends to be suppressed.
  • the content is 15% by mass or less, a decrease in the proportion of independent pores is suppressed, and high dryness tends to be obtained.
  • the tensile elastic modulus of the soft polyolefin resin is preferably 1.2 GPa or less.
  • the tensile elastic modulus is measured at a temperature of 23 ° C. in accordance with JIS K7161-1: 2014 and JIS K7161-2: 2014.
  • the porous layer may further contain an acid-modified resin as the thermoplastic resin from the viewpoint of preventing the filler from falling off.
  • the acid-modified resin include maleic acid-modified polyolefin and the like.
  • the content of the acid-modified resin is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass or less, based on the total mass of the thermoplastic resin.
  • the content of the acid-modified resin may be, for example, 0.1% by mass or more, 0.5% by mass or more, or 1% by mass or more, based on the total mass of the thermoplastic resin.
  • Examples of the filler include an inorganic filler and an organic filler, and either of them can be used alone or in combination of both. When the thermoplastic resin containing the filler is stretched, it becomes easy to form a large number of fine pores with the filler as the core.
  • Examples of the inorganic filler include heavy calcium carbonate, light calcium carbonate, calcined clay, talc, diatomaceous earth, barium sulfate, magnesium oxide, zinc oxide, titanium dioxide, silicon dioxide and the like.
  • Organic fillers include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polyamide, polycarbonate, polyethylene sulfide, polyphenylene sulfide, polyimide, polyetherketone, polyetheretherketone, polymethylmethacrylate, and poly-4-methyl-1.
  • the inorganic filler or the organic filler may be surface-treated with a fatty acid or the like from the viewpoint of dispersing the filler having a relatively small particle size in the resin.
  • inorganic fillers or organic fillers can be used alone or in combination of two or more.
  • an inorganic filler is preferable from the viewpoint of ease of adjusting the particle size distribution.
  • heavy calcium carbonate or light calcium carbonate is preferable from the viewpoint of pore formation, cost and the like, and titanium dioxide is preferable from the viewpoint of weather resistance.
  • the particle size of the filler is the median diameter (D50), and is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, from the viewpoint of uniformly dispersing in the porous layer.
  • the median diameter of the filler is preferably 10 ⁇ m or less, more preferably 3 ⁇ m, from the viewpoint of facilitating the separation of components such as pigments and binders in the ink and the solvent component and preventing color sinking or drying failure of the ink. It is less than or equal to, more preferably 1.5 ⁇ m or less, and particularly preferably 1.3 ⁇ m or less.
  • the particle size of the filler can also be determined as the average dispersed particle size when dispersed in the thermoplastic resin by melt-kneading and dispersion. Specifically, the cut surface of the film is observed with an electron microscope, the maximum diameters of at least 10 particles of the filler are measured, and the average value thereof is taken as the average dispersed particle diameter.
  • the particle size distribution D10-D90 of the filler is preferably 4 ⁇ m or less, more preferably 3.5 ⁇ m or less, and further preferably 3 ⁇ m or less.
  • the particle size distribution D10-D90 of the filler is usually 0.01 ⁇ m or more, may be 0.1 ⁇ m or more, and is preferably 0.3 ⁇ m or more from the viewpoint of cost.
  • the particle size distribution D10-D90 of the filler can be determined as follows. The following D10, D50 and D90 are measured with a laser diffraction type particle size distribution measuring machine. The absolute value of the difference between the measured D90 and D10 is obtained as the particle size distribution D10-D90. Water, methanol, ethanol, ethylene glycol, etc. are appropriately used as the solvent used for the measurement, and the ultrasonic disperser Model US-300T manufactured by Nippon Seiki Co., Ltd. is used as the pretreatment for the measurement for 60 seconds under the condition of 300 ⁇ A. Perform ultrasonic dispersion. D10: Cumulative total of filler particles 10% by volume particle diameter ( ⁇ m) D50: Integrated filler particles 50% by volume particle diameter ( ⁇ m) D90: Accumulation of filler particles 90% by volume particle diameter ( ⁇ m)
  • the content of the filler in the porous layer is preferably 45 parts by mass or more, more preferably 60 parts by mass or more, and further, with respect to 100 parts by mass of the thermoplastic resin, from the viewpoint of forming pores. It is preferably 75 parts by mass or more, and particularly preferably 100 parts by mass or more.
  • the content of the filler in the porous layer is preferably 250 parts by mass or less, more preferably 200 parts by mass, with respect to 100 parts by mass of the thermoplastic resin from the viewpoint of maintaining the strength of the multilayer layer appropriately. It is 5 parts or less, more preferably 150 parts by mass or less, and particularly preferably 125 parts by mass or less.
  • the pore ratio which represents the ratio of pores in the porous layer, is preferably 10% or more, more preferably 15% or more, and further preferably 20% or more, from the viewpoint of increasing communication holes. It is preferably 25% or more, and particularly preferably 25% or more. From the viewpoint of increasing the surface strength and reducing printing defects such as edge picking, the pore ratio is preferably 50% or less, more preferably 45% or less, still more preferably 40% or less. ..
  • the vacancy rate is an index showing the number of vacancy, and is not necessarily linked to the amount of oil absorbed. For example, even when a large number of pores are formed and the pore ratio is large, the amount of oil absorption is small if the degree of communication between the pores is small. As described above, the pore ratio and the oil absorption amount are independent index values, and even if the pore ratio of the porous layer of the printing paper is the same, the oil absorption amount is not necessarily the same.
  • the pore ratio can be obtained from the ratio of the area occupied by the pores in a certain region of the cross section of the printing paper observed with an electron microscope. Specifically, an arbitrary part of the printing paper is cut out, embedded in epoxy resin and solidified, and then cut perpendicularly to the surface direction of the printing paper using a microtome, and the cut surface becomes an observation surface. Attach it to the observation sample table as shown. Gold or gold-palladium or the like is deposited on the observation surface, the pores are observed at an arbitrary magnification (for example, a magnification of 500 to 3000 times) that is easy to observe with an electron microscope, and the observed area is captured as image data. The obtained image data can be subjected to image processing by an image analysis device to obtain the area ratio of the vacancy portion, and the vacancy ratio can be obtained. In this case, the vacancy rate can be obtained by averaging the measured values at any 10 or more observation points.
  • the base material layer functions as a support for the thermoplastic resin film and imparts strength, elasticity, etc. to the printing paper.
  • the base material layer preferably contains a thermoplastic resin and a filler from the viewpoint of imparting opacity. This makes it easier to prevent the pattern printed on one side from being seen through the other side.
  • thermoplastic resin of the base material layer the same thermoplastic resin as that of the porous layer can be used, and for example, polyolefin resins, polyester resins, polyamide resins, polystyrene resins, polyvinyl chloride resins, polycarbonate resins and the like can be used. Can be mentioned. These resins may be used alone or in combination of two or more.
  • the thermoplastic resin is preferably a polyolefin resin or a polyester resin, and more preferably a polypropylene resin or a polyethylene resin.
  • the same filler as the porous layer can be used.
  • the inorganic filler include heavy calcium carbonate, light calcium carbonate, calcined clay, talc, diatomaceous earth, barium sulfate, magnesium oxide, zinc oxide, titanium dioxide, silicon dioxide and the like.
  • the organic filler include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polyamide, polycarbonate, polyethylene sulfide, polyphenylene sulfide, polyimide, polyetherketone, polyetheretherketone, polymethylmethacrylate, and poly-4-methyl-.
  • Examples thereof include 1-pentene, a homopolymer of cyclic olefin, and a copolymer of cyclic olefin and ethylene.
  • These inorganic fillers or organic fillers can be used alone or in combination of two or more.
  • the average particle size of the filler is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, from the viewpoint of pore formation. Further, when the opacity or printability is improved by generating pores inside by stretching, the average particle size of the filler is preferably set from the viewpoint of suppressing sheet breakage during stretching and a decrease in strength of the base material layer. It is 30 ⁇ m or less, more preferably 20 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the "average particle size" of the filler in this specification is calculated by the following procedure. First, the printing paper is cut out and its cross section is exposed. The cross section is magnified to an appropriate magnification (for example, 1,000 times) using a scanning electron microscope, and a photographic image is taken. From the captured image, the average value of 100 randomly selected particle diameters (major diameters) present in the sample is calculated. The average particle size is calculated from this.
  • the content of the filler in the base material layer is preferably 1% by mass or more, more preferably 3% by mass or more, and particularly preferably 5% by mass or more.
  • the content of the filler in the base material layer is preferably 45% by mass or less, more preferably 40% by mass or less, and particularly preferably 35% by mass or less.
  • the printing paper has an appropriate strength and is easy to handle.
  • the base material layer is preferably stretched in at least one axial direction, and more preferably a stretched film stretched in two axial directions.
  • the intermediate layer is provided between the base material layer and the porous layer, and suppresses deformation such as waviness of the printing paper when the solvent component of the ink absorbed by the porous layer reaches the base material layer. Such a deformation is called a solvent attack.
  • the intermediate layer preferably contains a thermoplastic resin, and more preferably contains an amorphous resin as the thermoplastic resin.
  • the thermoplastic resin the same one as the thermoplastic resin in the porous layer can be used.
  • an amorphous resin having a glass transition temperature of 140 ° C. or lower is preferable, and an amorphous resin having a glass transition temperature of 70 to 140 ° C. is more preferable.
  • the glass transition temperature of the amorphous resin is 70 ° C. or higher, sticking to the roll is reduced and the moldability is likely to be improved.
  • the glass transition temperature is 140 ° C. or lower, the amorphous resin is sufficient for the solvent. It absorbs and retains amorphous material, prevents solvent from penetrating into the base material layer, and easily suppresses solvent attack.
  • the temperature during stretching is 10 ° C. or higher higher than the glass transition temperature of the amorphous resin.
  • the amorphous resin examples include cyclic olefin resin, atactic polystyrene, petroleum resin, polycarbonate, acrylic resin and the like.
  • the amorphous resin is preferably a cyclic olefin resin, more preferably an ethylene-cyclic olefin copolymer.
  • the intermediate layer preferably contains an ethylene-cyclic olefin copolymer as an amorphous resin together with a polypropylene resin as a thermoplastic resin.
  • the mixing ratio of the thermoplastic resin other than the amorphous resin and the amorphous resin in the intermediate layer is 0 to 80% by mass of the thermoplastic resin from the viewpoint of sufficiently suppressing the solvent attack, and the amorphous resin. Is preferably 20 to 100% by mass, the thermoplastic resin is 20 to 70% by mass, the amorphous resin is more preferably 30 to 80% by mass, and the thermoplastic resin is 30 to 60% by mass. It is more preferable that the amount of the amorphous resin is 40 to 70% by mass.
  • the porosity of the intermediate layer is preferably 5% or less from the viewpoint of reducing the solvent (particularly high boiling point petroleum solvent such as mineral oil) in the ink that passes through the pores and reaches the base material layer. % Or less is more preferable.
  • the intermediate layer may contain a filler as long as the porosity is in the range of 5% or less.
  • the filler contained in the intermediate layer is a filler having an average particle size larger than the thickness of the intermediate layer (hereinafter, also referred to as a coarse filler). Is preferable.
  • the coarse filler facilitates imparting roughness to the surface of the porous layer on the intermediate layer. If the surface is rough, gaps are generated between the printed matter when the printed matter after printing is stacked and stored. The gas generated by the oxidative polymerization of the ink is discharged to the outside through the voids, and the retention on the surface of the printed matter is suppressed, so that the chemical ghost is more easily suppressed.
  • the content of the coarse filler in the intermediate layer is preferably 1% by mass or more, more preferably 3% by mass or more, and further preferably 5% by mass or more. Further, the content is preferably 25% by mass or less, more preferably 20% by mass or less, and further preferably 15% by mass or less. When the content is 1% by mass or more, the above-mentioned effect of suppressing chemical ghosts can be easily obtained. Further, when the content is 25% by mass or less, the formation of pores in the intermediate layer is suppressed, and the arrival of the solvent in the base material layer is likely to be suppressed.
  • the distance (K) from the surface of the coarse filler to the surface of the porous layer when the center of the coarse filler is located at the center in the thickness direction of the intermediate layer preferably exceeds 0 ⁇ m.
  • the distance (K) exceeds 0 ⁇ m it is easy to prevent the coarse filler from being exposed to the surface of the printing paper beyond the porous layer.
  • the distance (K) is calculated by the following formula when the thickness of the porous layer is M1, the thickness of the intermediate layer is M2, and the average particle size of the coarse filler is ⁇ .
  • M1 and M2 refer to the thickness of the porous layer and the intermediate layer at the position where the coarse particles do not exist.
  • K M1- ( ⁇ -M2) / 2
  • the distance (K) is preferably 10 ⁇ m or less, more preferably 9 ⁇ m or less, and even more preferably 6 ⁇ m or less.
  • the distance (K) is 10 ⁇ m or less, the surface of the porous layer described above is likely to be roughened, and chemical ghosts are more likely to be suppressed.
  • Each layer of the thermoplastic resin film can contain additives such as a heat stabilizer (antioxidant), a light stabilizer, a dispersant, and a lubricant, if necessary.
  • a heat stabilizer antioxidant
  • each layer usually contains 0.001 to 1% by weight of the heat stabilizer.
  • the heat stabilizer include steric hindrance phenol-based, phosphorus-based, amine-based and the like stabilizers.
  • each layer usually contains 0.001 to 1% by weight of the light stabilizer.
  • the light stabilizer include steric hindrance amine-based, benzotriazole-based, and benzophenone-based light stabilizers.
  • Dispersants or lubricants can be used, for example, for the purpose of dispersing inorganic fillers.
  • the amount of dispersant or lubricant used is usually in the range of 0.01-4% by mass.
  • examples of the dispersant or lubricant include silane coupling agents, higher fatty acids such as oleic acid and stearic acid, metal soaps, polyacrylic acid, polymethacrylic acid, and salts thereof.
  • the method for producing the printing paper of the present invention is not particularly limited, but it can be produced, for example, by applying a coating liquid for forming an antistatic layer on a thermoplastic resin film.
  • thermoplastic resin film for example, cast molding, calendar molding, rolling molding, inflation molding, etc., in which the molten resin is extruded into a sheet by a single-layer or multi-layer T-die, I-die, etc. connected to a screw type extruder is used. It can be molded into a film.
  • a thermoplastic resin film may be formed by cast molding or calendar molding a mixture of a thermoplastic resin and an organic solvent or oil, and then removing the solvent or oil. The material of each layer of the thermoplastic resin film is selected and blended so that each layer has the above-mentioned composition.
  • Examples of the method for laminating each layer of the thermoplastic resin film include a feed block, a multi-layer die method using a multi-manifold, an extrusion lamination method using a plurality of dies, and the like, and each method can be combined.
  • each layer may be stretched individually before being laminated, or may be stretched together after being laminated. Further, it may be laminated on the stretched layer and then stretched again.
  • a longitudinal stretching method using the peripheral speed difference of the roll group for example, a longitudinal stretching method using the peripheral speed difference of the roll group, a transverse stretching method using a tenter oven, a sequential biaxial stretching method combining these, a rolling method, and a simultaneous 2 stretching method using a combination of a tenter oven and a pantograph.
  • Examples thereof include a shaft stretching method or a simultaneous biaxial stretching method using a combination of a tenter oven and a linear motor.
  • a simultaneous biaxial stretching (inflation molding) method in which the molten resin is extruded into a tube shape using a circular die connected to a screw type extruder and then air is blown into the molten resin can also be used.
  • the stretching temperature at the time of stretching can be set in consideration of the composition of each layer, for example, the melting point of the thermoplastic resin.
  • the stretching temperature is preferably equal to or lower than the melting point of the thermoplastic resin, and more preferably in the temperature range of 2 to 20 ° C. lower than the melting point.
  • the stretching temperature is preferably in the range of the glass transition temperature or higher of the thermoplastic resin.
  • the stretching temperature is at least the glass transition point of the non-crystalline portion of the thermoplastic resin and within the range of the melting point of the crystalline portion of the thermoplastic resin or less. Specifically, a temperature 2 to 60 ° C. lower than the melting point of the thermoplastic resin is preferable.
  • the stretching speed is not particularly limited, but is preferably in the range of 20 to 350 m / min from the viewpoint of stable stretch molding.
  • the draw ratio can also be appropriately determined in consideration of the characteristics of the thermoplastic resin used. For example, when a thermoplastic resin film containing a homopolymer of propylene or a copolymer thereof is stretched in one direction, the draw ratio is usually about 1.2 times or more, preferably 2 times or more, more preferably. Is 5 times or more, while is usually 12 times or less, preferably 10 times or less.
  • the draw ratio in the case of biaxial stretching is the area stretch ratio, which is usually 1.5 times or more, preferably 10 times or more, while usually 60 times or less, preferably 50 times or less. is there.
  • the draw ratio is usually 1.2 times or more, preferably 2 times or more, and usually 10 times or less. , Preferably 5 times or less.
  • the draw ratio in the case of biaxial stretching is the area stretch ratio, which is usually 1.5 times or more, preferably 4 times or more, while usually 20 times or less, preferably 12 times or less. If it is within the range of the draw ratio, the desired porosity can be obtained and the opacity can be easily improved. In addition, the thermoplastic resin film is less likely to break, and stable stretch molding tends to be possible.
  • the thermoplastic resin film is preferably subjected to an oxidation treatment.
  • the oxidation treatment By the oxidation treatment, the abundance ratio of polar groups on the film surface can be adjusted, and the atomic concentration of oxygen atoms can be adjusted. As a result, it is easy to obtain a chemical bond with the ink, and it is easy to improve the adhesion between the printing paper and the ink.
  • the oxidation treatment include corona discharge treatment, frame treatment, plasma treatment, glow discharge treatment, ozone treatment and the like, and these treatments can be combined. Of these, corona discharge treatment or frame treatment is preferable, and corona treatment is more preferable.
  • the amount of discharge when the corona discharge treatment is carried out is preferably 600 J / m 2 (10 W / min / m 2 ) or more, and more preferably 1,200 J / m 2 (20 W / min / m 2 ) or more. ..
  • the discharge amount is preferably 12,000 J / m 2 (200 W / min / m 2 ) or less, and more preferably 10,800 J / m 2 (180 W / min / m 2 ) or less.
  • the amount of discharge when the frame processing is performed is preferably 8,000 J / m 2 or more, and more preferably 20,000 J / m 2 or more.
  • the discharge amount is preferably 200,000 J / m 2 or less, and more preferably 100,000 J / m 2 or less.
  • the antistatic layer is prepared by mixing an antistatic agent, an anchoring agent, a solvent, or the like to prepare the above-mentioned coating liquid for forming the antistatic layer, and using a coating device, a porous layer of a thermoplastic resin film. It can be formed by applying a coating liquid on top.
  • the thickness (total thickness) of the printing paper may be appropriately set according to the application or the required performance.
  • the total thickness of the printing paper means the total thickness of each layer constituting the printing paper.
  • the total thickness of the printing paper is preferably 51 ⁇ m or more, more preferably 63 ⁇ m or more, still more preferably 75 ⁇ m or more, preferably 550 ⁇ m or less, more preferably 400 ⁇ m or less, still more preferably 300 ⁇ m or less. If the printing paper has a total thickness in the above range, problems are unlikely to occur in offset printing, and the utility value as printing paper tends to increase.
  • the thickness of each layer constituting the printing paper is designed so that the total thickness is within the above range.
  • the thickness of each layer provided on both sides may be the same or different.
  • the thickness of the porous layer is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, still more preferably 7 ⁇ m or more, preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, still more preferably 10 ⁇ m or less.
  • the thickness of the porous layer is within the above range, picking is less likely to occur and a high oil absorption amount can be easily obtained.
  • the thickness of the intermediate layer is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, further preferably 2 ⁇ m or more, preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, still more preferably 5 ⁇ m or less.
  • the thickness of the intermediate layer is within the above range, it becomes easy to prevent solvent attack and the like while obtaining good moldability.
  • the thickness of the antistatic layer can be controlled by the amount of the coating liquid for forming the antistatic layer.
  • the coating amount is preferably 0.01 g / m 2 or more in terms of solid content, and 0.02 g / m 2 or more. More preferably, 3 g / m 2 or less is preferable, 1 g / m 2 or less is more preferable, and 0.5 g / m 2 or less is further preferable.
  • the surface intrinsic resistance of the printing paper is preferably 14 (log ⁇ ) or less.
  • the surface specific resistance is within the above range, it is possible to improve the transportability in lithographic printing and reduce troubles due to static electricity in post-processing such as folding and bookbinding.
  • the printing paper of the present invention it is possible to obtain a printed matter having high gloss and excellent weather resistance by printing. Therefore, it is useful as, for example, posters, pamphlets, catalogs, commercial printed matter such as signboards and menus, publications such as books, maps, book covers and bookmarks, and wrapping paper.
  • the printing paper of the present invention is used outdoors under the influence of sunlight and rainwater, such as posters for elections and posters for signboards, and bathrooms such as posters, because of its high basic performance. It is useful in applications such as public baths, bathrooms, and other environments that are exposed to water, and in restaurants and other menus that may come into contact with water.
  • it is possible to handle both the ink for pulp paper and the ink for synthetic paper it is not necessary to replace the ink, and the workability of the printing process can be improved.
  • the printing paper of the present invention is not limited to printing methods such as offset printing, letterpress printing, flexo printing, and screen printing, and can be used for various printing methods, but is particularly suitable for offset printing. Further, various inks such as offset printing ink, letterpress printing ink, flexo printing ink, screen printing ink and the like can be used for the printing paper of the present invention, and in particular, offset printing ink can be used. preferable.
  • the viscosity of the ink varies depending on the type of ink, the printing method, and the like, and is not particularly limited.
  • the printing paper of the present invention has excellent printability and ink even for oxidative polymerization type ink containing a relatively large amount of solvent, which has been widely used for pulp paper. Has dryness. Therefore, even when the printing paper of the present invention is used instead of the pulp paper, it is not necessary to replace the ink. Further, the printing paper of the present invention also has excellent printability and ink drying property with respect to inks for synthetic papers having few evaporative drying type components, penetration drying type components and the like, ultraviolet curable inks and the like. That is, the printing paper of the present invention can be applied to any of the above-mentioned inks of various printing methods, and the versatility of the ink is high.
  • a printed matter including the above-mentioned printing paper and a printing layer provided on the above-mentioned printing paper.
  • the print layer can be formed by printing with an ink such as the above-mentioned oxidation polymerization type ink.
  • Coating liquids 1 to 5 for forming an antistatic layer were prepared as follows.
  • ⁇ Coating liquid 1> An antistatic agent (trade name: Saftmer ST-3200, manufactured by Mitsubishi Chemical Corporation, quaternary ammonium salt) was diluted by adding pure water so that the solid content was 1.2% by mass to obtain a coating liquid 1. ..
  • Antistatic agent (trade name: Saftmer ST-3200, manufactured by Mitsubishi Chemical Co., Ltd., quaternary ammonium salt) has a solid content of 1.2% by mass, modified polyethyleneimine (trade name: Saftmer AC-2000, manufactured by Mitsubishi Chemical Co., Ltd.) Pure water was added and diluted so that the solid content of the secondary and tertiary amine-containing compounds) was 0.23% by mass to obtain a coating liquid 2.
  • the solid content of modified polyethyleneimine (trade name: Saftmer AC-2000, manufactured by Mitsubishi Chemical Corporation, secondary and tertiary amine-containing compounds) was 0.38% by mass and 0.5% by mass, respectively. Pure water was added to dilute the coating liquids 3 and 4 to obtain the respective coating liquids 3 and 4.
  • Antistatic agent (trade name: Saftmer ST-3200, manufactured by Mitsubishi Chemical Co., Ltd., quaternary ammonium salt) has a solid content of 1.2% by mass, modified polyethyleneimine (trade name: Polymin SK, manufactured by BASF, manufactured by BASF), grade 3 The solid content of the amine-containing compound) is 0.25% by mass, and the solid content of the self-crosslinkable cross-linking agent (trade name: WS4082, manufactured by Seikou PMC, secondary amine and epoxy group-containing compound) is 0.3% by mass. Pure water was added and diluted to obtain a coating liquid 5.
  • Table 1 shows the compositions of the coating liquids 1 to 5.
  • Example 1 Polypropylene resin (trade name: Novatec PP MA3, manufactured by Nippon Polypro Co., Ltd., MFR (230 ° C, 2.16 kg load): 11 g / 10 minutes, melting energy: 95 J / g) 80 parts by mass, heavy calcium carbonate particles (Product name: Softon 1800, manufactured by Bihoku Powder Industry Co., Ltd., average particle size: 1.25 ⁇ m) 19.5 parts by mass, and titanium dioxide particles (trade name: Typake CR-60, manufactured by Ishihara Sangyo Co., Ltd., average particle size: The resin composition (5) mixed with 0.21 ⁇ m) 0.5 parts by mass was melt-kneaded with an extruder set at 270 ° C.
  • the resin composition (1) which was a mixture of 5 parts by mass and 0.5 parts by mass of titanium dioxide particles (trade name: Taipei CR-60, manufactured by Ishihara Sangyo Co., Ltd.), was mixed with a high-speed mixer. Then, using a twin-screw kneading extruder in which the cylinder temperature was set to 210 ° C., melt kneading was performed at a rotation speed of 600 rpm while degassing at the vent holes.
  • polypropylene resin (trade name: Novatec PP MA3, manufactured by Japan Polypropylene Corporation) 48.5 parts by mass
  • ethylene-cyclic olefin copolymer (trade name: Apel 6011T, manufactured by Mitsui Chemicals, Inc., MFR (230 ° C, 2.16 kg) Load): 26 g / 10 minutes
  • melting energy 0 J / g
  • 3 parts by mass of heavy calcium carbonate particles (trade name: Softon 1800, manufactured by Bihoku Powder Industry Co., Ltd.) (4) was melt-kneaded with an extruder set at 270 ° C. Next, these resin compositions were supplied to one multilayer die and laminated inside the die.
  • This laminated body is co-extruded from a die into a sheet, and laminated on one surface of the vertically stretched resin film obtained in the step (I) above so that the layer of the resin composition (1) is on the outside.
  • a laminated sheet having a three-layer structure was obtained.
  • the resin composition (1) and the resin composition (4) are melt-kneaded using two extruders different from the above (II) in the same procedure as the above (II), and then the above (III). It was supplied to a multilayer die different from II) and laminated inside the die. This laminated body is co-extruded from the die into a sheet, and is placed on the surface of the vertically stretched resin film side (layer side of the resin composition (5)) of the three-layer structure laminated sheet obtained in the step (II) above. , The resin composition (1) was laminated so that the layer was on the outside.
  • a laminated sheet having a five-layer structure was obtained in which the layer (4)) / the porous layer (the layer of the resin composition (1)) was laminated in this order.
  • thermoplastic resin film obtained in (IV) While passing the thermoplastic resin film obtained in (IV) at a line processing speed of 25 m / min, corona discharge was performed on both surfaces of the film under the condition of an applied energy density of 1800 J / m 2 (30 W / min / m 2 ). Processing was performed.
  • Examples 3 and 4 The printing papers of Examples 3 and 4 were obtained in the same procedure as in Example 1 except that the coating liquids in (VI) of Example 1 were changed to coating liquids 2 and 5, respectively.
  • Example 5 39 parts by mass of polypropylene resin (trade name: Novatec PP MA3, manufactured by Japan Polypropylene Corporation), maleic anhydride-modified polypropylene resin (trade name: Modic P928, manufactured by Mitsubishi Chemical Corporation) 1 of the resin composition (1) of Example 1. Parts by mass, light calcium carbonate particles surface-treated with fatty acids (particle size distribution D10-D90: 0.6 ⁇ m, D50: 0.5 ⁇ m) 59.5 parts by mass, and titanium dioxide particles (trade name: Taipei CR-60, Ishihara Sangyo) The printing paper of Example 5 was obtained in the same procedure as in Example 1 except that the resin composition (2) was mixed with 0.5 parts by mass.
  • polypropylene resin trade name: Novatec PP MA3, manufactured by Japan Polypropylene Corporation
  • maleic anhydride-modified polypropylene resin trade name: Modic P928, manufactured by Mitsubishi Chemical Corporation
  • Example 6 The resin composition (1) of Example 1 is a polypropylene resin (trade name: Novatec PP MA3, manufactured by Japan Polypropylene Corporation), 44 parts by mass, maleic anhydride-modified polypropylene resin (trade name: Modic P928, manufactured by Mitsubishi Chemical Corporation) 1 Parts by mass, heavy calcium carbonate particles (particle size distribution D10-D90: 2.4 ⁇ m, D50: 1.2 ⁇ m) 54.5 parts by mass, and titanium dioxide particles (trade name: Typake CR-60, manufactured by Ishihara Sangyo Co., Ltd.) 0
  • the printing paper of Example 6 was obtained in the same procedure as in Example 1 except that 5 parts by mass was changed to the mixed resin composition (3).
  • Example 7 The printing paper of Example 7 was obtained in the same procedure as in Example 1 except that the resin composition (1) was replaced with the resin composition (8) to form a porous layer in Example 1.
  • the resin composition (8) contains 42.5 parts by mass of polypropylene resin (trade name: Novatec PP MA3, manufactured by Japan Polypropylene Corporation) and 1 part by mass of polypropylene resin (trade name: Modic P928, manufactured by Mitsubishi Chemical Corporation) modified with maleic anhydride.
  • Soft polypropylene (trade name: Toughmer PN2060, manufactured by Mitsui Chemicals, Ltd., melting energy 10 J / g) 3.5 parts by mass, light calcium carbonate particles surface-treated with fatty acids (particle size distribution D10-D90: 0.6 ⁇ m, D50: Includes 52.5 parts by mass (0.5 ⁇ m) and 0.5 parts by mass of titanium dioxide particles (trade name: Typake CR-60, manufactured by Ishihara Sangyo Co., Ltd.).
  • Example 8 The printing paper of Example 8 was obtained in the same procedure as in Example 1 except that the resin composition (1) was replaced with the resin composition (9) to form a porous layer in Example 1.
  • the resin composition (9) is a polypropylene resin (trade name: Novatec PP MA3, manufactured by Japan Polypropylene Corporation) 38 parts by mass, a maleic anhydride-modified polypropylene resin (trade name: Modic P928, manufactured by Mitsubishi Chemical Corporation), 1 part by mass, soft.
  • Polypropylene (trade name: Toughmer PN2060, manufactured by Mitsui Chemicals, Inc.) 8 parts by mass, light calcium carbonate particles surface-treated with fatty acids (particle size distribution D10-D90: 0.6 ⁇ m, D50: 0.5 ⁇ m) 52.5 parts by mass, And titanium dioxide particles (trade name: Typake CR-60, manufactured by Ishihara Sangyo Co., Ltd.) containing 0.5 parts by mass.
  • Example 9 The printing paper of Example 9 was obtained in the same procedure as in Example 1 except that the resin composition (1) was replaced with the resin composition (10) to form a porous layer in Example 1.
  • the resin composition (10) is a polypropylene resin (trade name: Novatec PP MA3, manufactured by Japan Polypropylene Corporation), 36 parts by mass, a maleic anhydride-modified polypropylene resin (trade name: Modic P928, manufactured by Mitsubishi Chemical Corporation), 1 part by mass, soft.
  • Polypropylene (trade name: Toughmer PN2060, manufactured by Mitsui Chemicals, Inc.) 10 parts by mass, light calcium carbonate particles surface-treated with fatty acids (particle size distribution D10-D90: 0.6 ⁇ m, D50: 0.5 ⁇ m) 52.5 parts by mass, And titanium dioxide particles (trade name: Typake CR-60, manufactured by Ishihara Sangyo Co., Ltd.) containing 0.5 parts by mass.
  • Example 10 The printing paper of Example 10 was obtained in the same procedure as in Example 1 except that the resin composition (4) was replaced with the resin composition (11) to form an intermediate layer in Example 1.
  • the resin composition (11) is a polypropylene resin (trade name: Novatec PP MA3, manufactured by Japan Polypropylene Corporation) 48.5 parts by mass, an ethylene-cyclic olefin copolymer (trade name: Appel 6011T, manufactured by Mitsui Chemicals, Inc.) 48. Includes 5 parts by mass and 3 parts by mass of calcium carbonate particles (trade name: cube80KAS, manufactured by Maruo Calcium Co., Ltd., average particle diameter 8 ⁇ m).
  • Example 11 The printing paper of Example 11 was obtained in the same procedure as in Example 1 except that the resin composition (4) was replaced with the resin composition (12) to form an intermediate layer in Example 1.
  • the resin composition (12) contains 45 parts by mass of a polypropylene resin (trade name: Novatec PP MA3, manufactured by Japan Polypropylene Corporation), 45 parts by mass of an ethylene-cyclic olefin copolymer (trade name: Apel 6011T, manufactured by Mitsui Chemicals, Inc.). And 10 parts by mass of calcium carbonate particles (trade name: cube80KAS, manufactured by Maruo Calcium Co., Ltd.).
  • Example 12 The printing paper of Example 12 was obtained in the same procedure as in Example 11 except that the thickness of the intermediate layer was changed to 6 ⁇ m in Example 11.
  • Example 13 The printing paper of Example 13 was obtained in the same procedure as in Example 1 except that the resin composition (4) was replaced with the resin composition (13) to form an intermediate layer in Example 1.
  • the resin composition (13) contains 40 parts by mass of a polypropylene resin (trade name: Novatec PP MA3, manufactured by Japan Polypropylene Corporation), 40 parts by mass of an ethylene-cyclic olefin copolymer (trade name: Apel 6011T, manufactured by Mitsui Chemicals, Inc.). And 20 parts by mass of calcium carbonate particles (trade name: cube80KAS, manufactured by Maruo Calcium Co., Ltd.).
  • Example 14 The printing paper of Example 14 was obtained in the same procedure as in Example 1 except that the resin composition (4) was replaced with the resin composition (14) to form an intermediate layer in Example 1.
  • the resin composition (14) is a polypropylene resin (trade name: Novatec PP MA3, manufactured by Japan Polypropylene Corporation), 45 parts by mass, an ethylene-cyclic olefin copolymer (trade name: Apel 6011T, manufactured by Mitsui Chemicals, Inc.), 45 parts by mass. And 10 parts by mass of heavy calcium carbonate (trade name: Softon 1800, manufactured by Bihoku Powder Industry Co., Ltd.).
  • Example 15 The printing paper of Example 15 was obtained in the same procedure as in Example 1 except that the resin composition (4) was replaced with the resin composition (15) to form an intermediate layer in Example 1.
  • the resin composition (15) contains 45 parts by mass of a polypropylene resin (trade name: Novatec PP MA3, manufactured by Japan Polypropylene Corporation), 45 parts by mass of an ethylene-cyclic olefin copolymer (trade name: Apel 6011T, manufactured by Mitsui Chemicals, Inc.). And 10 parts by mass of heavy calcium carbonate (trade name: R50A, manufactured by Maruo Calcium Co., Ltd., average particle size: 15 ⁇ m).
  • Comparative Examples 1 and 2 The printing papers of Comparative Examples 1 and 2 were obtained by performing the same procedure as in Example 1 except that the coating liquids 3 and 4 were used as the coating liquid in the step (VI) of Example 1. It was.
  • Example 3 Instead of the resin composition (1) of Example 1, 51.5 parts by mass of a propylene homopolymer (manufactured by Japan Polypropylene Corporation, trade name Novatec PP MA-3), high-density polyethylene (manufactured by Japan Polychem Corporation, trade name HJ580) Density 0.950 g / cm 3 ) 3.5 parts by mass, heavy calcium carbonate (particle size distribution D10-D90: 5.1 ⁇ m, D50: 1.5 ⁇ m) 42 parts by mass, titanium dioxide particles (trade name: Typek CR- 60, manufactured by Ishihara Sangyo Co., Ltd.) After mixing the resin composition (6) consisting of 3 parts by mass with a high-speed mixer, while degassing at the vent hole using a twin-screw kneading extruder with the cylinder temperature set to 240 ° C.
  • a propylene homopolymer manufactured by Japan Polypropylene Corporation, trade name Novatec PP MA-3
  • the printing paper of Comparative Example 3 was obtained in the same procedure as in Example 1 except that the mixture was melt-kneaded at a rotation speed of 600 rpm.
  • Comparative Example 4 instead of the resin composition (1) of Example 1, a polypropylene resin (trade name: Novatec PP MA3, manufactured by Japan Polypropylene Corporation), 46 parts by mass, a maleic anhydride-modified polypropylene resin (trade name: Modic P928, manufactured by Mitsubishi Chemical Corporation) ) 1 part by mass, heavy calcium carbonate (particle size distribution D10-D90: 5.1 ⁇ m, D50: 1.5 ⁇ m) 52.5 parts by mass, and titanium dioxide particles (trade name: Typake CR-60, manufactured by Ishihara) 0
  • the printing paper of Comparative Example 4 was obtained in the same procedure as in Example 1 except that the resin composition (7) in which 5 parts by mass was mixed was melt-kneaded at a rotation speed of 600 rpm while degassing at the vent holes.
  • the printing paper of Comparative Example 4 has a five-layer structure (number of stretched axes of each layer: 1-axis stretch / 1-axis stretch / 2-axis stretch / 1-axis stretch / 1-axis stretch, total thickness: 130 ⁇ m (thickness of each layer: (6)).
  • / (4) / (5) / (4) / (6) 8 ⁇ m / 3 ⁇ m / 108 ⁇ m / 3 ⁇ m / 8 ⁇ m)).
  • Table 2A and Table 2B show the composition of the resin composition.
  • Table 3 shows the composition of the printing paper of each example and each comparative example.
  • Each printing paper has a layer structure of an antistatic layer / a porous layer / an intermediate layer / a base material layer / an intermediate layer / a porous layer / an antistatic layer, but one surface side of the base material layer and the other Since the composition of the antistatic layer / porous layer / intermediate layer does not change from that of the surface side, Table 3 shows only the composition of the antistatic layer / porous layer / intermediate layer provided on one surface of the base material layer. ..
  • the porosity of the porous layer was determined from the ratio of the area occupied by the pores in a certain region of the cross section of the printing paper observed with an electron microscope. Specifically, an arbitrary part of the printing paper to be measured is cut out, embedded in epoxy resin and solidified, and then cut perpendicularly to the surface direction of the printing paper to be measured using a microtome, and the cutting is performed. It was attached to the observation sample table so that the surface became the observation surface.
  • Gold or gold-palladium is deposited on the observation surface, and the pores of the printing paper are observed at an arbitrary magnification (for example, 500 to 3000 times magnification) that is easy to observe with an electron microscope, and the observed area is imaged. Imported as data.
  • the obtained image data was subjected to image processing by an image analyzer, and the porous layer was discriminated from the boundary between the layers to determine the area ratio (%) of the pore portion in a certain region of the porous layer.
  • the vacancy rate (%) was obtained by averaging the measured values at any 10 or more observation points.
  • the measurement is performed by a narrow scan, and the ratio of the peak area of the N1s peak of the nitrogen atom to the sum of the peak area of the C1s peak of the carbon atom and the peak area of the N1s peak of the nitrogen atom is determined by the atom of the nitrogen atom. It was calculated as a concentration ratio.
  • FIG. 2 shows the printed surface A1 of the printed matter A and the printed surface B2 of the printed matter B.
  • the print surface A1 of the printed matter A includes two print areas Ra located on both end sides in the width direction with an interval of 2 cm.
  • the size of each print area Ra from one end to the other end in the width direction is 24 cm.
  • the print surface B1 of the printed matter B includes one print area Rb having a size of 24 cm in the width direction.
  • the positions of both ends of the print area Rb in the width direction are the same as the positions of both ends of each print area Ra in the width direction.
  • the ink density D1 of the print area Rb1 that was in contact with each print area Ra of the printed matter A and the ink density D2 of the print area Rb2 that was not in contact were measured.
  • the ink densities D1 and D2 were measured at a position 5 to 10 mm away from the boundary of the print area Rb2 that was in contact with the print area Ra of the printed matter A and not in contact with the print area Rb2 of the printed matter B. did.
  • the ink density was measured using X-Rite 530 (manufactured by X-Rite Co., Ltd.).
  • Kiku four-dimensional extension 4-color offset printing machine device name: Ryobi 524GX, manufactured by Ryobi MHI Graphic Technology Co., Ltd.
  • oxidation polymerization type oil-based offset ink trade name: Fusion-GMK ink, indigo, red, transparent yellow, DIC
  • the printing papers of each Example and Comparative Example were subjected to oil-based offset printing.
  • the oil-based offset ink used is commercially available as an ink for pulp paper.
  • the solvent amount of each oil-based offset ink is 5 to 15% for black ink, 15 to 25% for indigo, 15 to 25% for red, and 20 to 30% for transparent yellow.
  • the printing conditions include PS version (product name: XP-F, manufactured by Fuji Film Co., Ltd.), blanket (product name: D-3000, manufactured by T & K TOKA), powder (product name: Nikka Rico AS-100S, manufactured by Nikka Co., Ltd.). ), Sampling water (H solution (trade name: Astromark 3, manufactured by Nikken Kagaku Kenkyusho) 1.0% and IPA 5.0% added, water temperature 10 ° C.) was used.
  • H solution trade name: Astromark 3, manufactured by Nikken Kagaku Kenkyusho
  • IPA 5.0% added, water temperature 10 ° C.
  • the temperature in the printing room is adjusted to 20 to 25 ° C.
  • the relative humidity is adjusted to 40 to 60 RH%
  • the color order is black, indigo, red, and transparent yellow
  • the printing speed is 8000 sheets / hour. And said.
  • a pattern was printed in which a solid printing part of each color of black, indigo, red, and transparent yellow and a 400% solid printing part on which all colors of black, indigo, red, and transparent yellow were printed were arranged in the printing flow direction. ..
  • the amount of ink transfer is adjusted so that the densities of the single color solid parts of black, indigo, red, and transparent yellow are 1.85, 1.55, 1.45, and 1.00, respectively, and the dampening water does not cause background stains. More than 200 sheets were printed under the condition that the level was reduced as much as possible, and after printing, the sheets were sequentially stored from the bottom.
  • the ink drying property was evaluated as follows for the printed matter extracted from the portion about 50 sheets below the upper part of the stacked printed matter every hour after printing. ⁇ : 400% solid printing part was set and dried within 6 hours ⁇ : 400% solid printing part was set and dried within 12 hours over 6 hours ⁇ : 400% solid printing part was set and dried within 12 hours Did not
  • Table 4 shows the evaluation results.
  • "-" in Table 4 indicates that the papers were stuck to each other and the chemical ghost suppressing effect could not be evaluated.
  • the printing papers of Examples 1 to 6 and 14 are all excellent in ink drying property and that chemical ghosts are effectively suppressed. Further, the printing papers of Examples 7 to 9 have less edge picking, and the printing papers of Examples 10 to 13 and 15 have a more excellent effect of suppressing chemical ghosts.
  • Printing paper 1 ... Thermoplastic resin film, 2,2a ... Porous layer, 3,3a ... Antistatic layer, 4 ... Base material layer, 5,5a ... Middle layer

Abstract

Provided are a printing paper and printed matter, which have excellent versatility and drying properties of ink and can suppress the occurrence of chemical ghosts. The printing paper has a thermoplastic resin film including a porous layer, and an antistatic layer provided on the porous layer of the thermoplastic resin film, wherein the oil absorption amount of the printing paper is 1.0 g/m2 or more, and when the surface of the antistatic layer of the printing paper is measured by X-ray photoemission spectroscopy, the ratio of the atomic concentration of nitrogen atoms with respect to the total of the respective atomic concentrations of nitrogen atoms and carbon atoms is 3.0% or less.

Description

印刷用紙及び印刷物Printing paper and printed matter
 本発明は、印刷用紙及び印刷物に関する。 The present invention relates to printing paper and printed matter.
 従来、印刷用紙として、パルプ紙だけでなく、樹脂フィルムを用いた合成紙が使用されている。合成紙の最表面には、安定した印刷のために帯電防止剤が塗布されることがある(例えば、特許文献1参照。)。 Conventionally, not only pulp paper but also synthetic paper using a resin film has been used as printing paper. An antistatic agent may be applied to the outermost surface of the synthetic paper for stable printing (see, for example, Patent Document 1).
特開2000-131870号公報Japanese Unexamined Patent Publication No. 2000-131870
 印刷用紙のオフセット印刷等に用いられるインクのなかには、空気中の酸素と反応して乾燥する酸化重合型のインクがある。酸化重合型のインクは、インク中の溶剤が蒸発するかパルプ紙に浸透し、残った成分の酸化重合が進むことで乾燥する。パルプ紙に用いる酸化重合型のインクは、酸化重合の開始を早めて乾燥時間が短くなるように、酸化重合する成分に対して比較的多量の溶剤を含むことが一般的である。一方、パルプ紙に比べて溶剤が浸透しにくい合成紙にパルプ紙と同じインクを使用すると、パルプ紙と同じ乾燥時間では乾燥が十分でなく、印刷後の合成紙同士を重ねた際に印刷面のインクが他の合成紙に転写してしまうことがあった。 Among the inks used for offset printing of printing paper, there is an oxidative polymerization type ink that dries by reacting with oxygen in the air. The oxidative polymerization type ink dries when the solvent in the ink evaporates or penetrates into the pulp paper and the oxidative polymerization of the remaining components proceeds. Oxidative polymerization type inks used for pulp paper generally contain a relatively large amount of solvent with respect to the components to be oxidatively polymerized so as to accelerate the start of oxidative polymerization and shorten the drying time. On the other hand, if the same ink as pulp paper is used for synthetic paper, which is less susceptible to solvent penetration than pulp paper, the drying time is not sufficient for the same drying time as pulp paper, and the printed surface is printed when the synthetic papers after printing are stacked. In some cases, the ink was transferred to other synthetic paper.
 このため、パルプ紙に使用するインクよりも溶剤量を減らしたインクを合成紙用のインクとして使用するか、合成紙に印刷する画像としてインク量が少なく乾燥が容易な画像を選択する等の対策が必要であり、印刷条件が制限されていた。 For this reason, measures such as using ink with a smaller amount of solvent than the ink used for pulp paper as ink for synthetic paper, or selecting an image with a small amount of ink and easy drying as an image to be printed on synthetic paper. Was required, and the printing conditions were limited.
 また、印刷用紙は、印刷後に積み重ねられて保管されることがある。このとき、印刷面のインクがその上に重ねられた印刷用紙に影響を及ぼすことがある。例えば、印刷用紙の表面に印刷を行って積み重ねた後、各印刷用紙の裏面にも印刷を行った場合、表面のインク(由来の成分)がその上に重ねられた印刷用紙の裏面のインクの転写を阻害する現象が発生することがある。この現象は、ケミカルゴーストと呼ばれている。ケミカルゴーストが発生すると、裏面の印刷部分において表面の印刷部分の上に重ねられた領域と重ねられなかった領域とで色、濃度等の再現性が異なってしまう。 In addition, printing paper may be stacked and stored after printing. At this time, the ink on the printing surface may affect the printing paper stacked on the printing paper. For example, when printing is performed on the front surface of printing paper and stacked, and then printing is also performed on the back surface of each printing paper, the ink on the front surface (derived component) is applied to the ink on the back surface of the printing paper. A phenomenon that inhibits transcription may occur. This phenomenon is called chemical ghost. When chemical ghosts occur, the reproducibility of color, density, etc. differs between the area printed on the printed portion on the front surface and the area not overlapped on the printed portion on the back surface.
 本発明は、インクの汎用性及び乾燥性に優れ、ケミカルゴーストの発生を抑制できる印刷用紙及び印刷物を提供することを目的とする。 An object of the present invention is to provide a printing paper and a printed matter which are excellent in versatility and dryness of ink and can suppress the generation of chemical ghosts.
 本発明者らが上記課題を解決すべく鋭意検討を行った結果、帯電防止層側の表面の窒素原子の原子濃度の比率か、又は帯電防止層中の窒素化合物の第1級あるいは第2級窒素の含有量が特定値以下と小さく、さらに吸油量が特定値以上に多い印刷用紙であれば、上記課題を解決できることを見出し、本発明を完成した。
 すなわち、本発明は、以下の通りである。
As a result of diligent studies by the present inventors to solve the above problems, the ratio of the atomic concentration of nitrogen atoms on the surface of the antistatic layer side, or the primary or secondary level of the nitrogen compound in the antistatic layer. The present invention has been completed by finding that the above problems can be solved if the printing paper has a nitrogen content as small as a specific value or less and an oil absorption as a specific value or more.
That is, the present invention is as follows.
(1)多孔質層を含む熱可塑性樹脂フィルムと、前記熱可塑性樹脂フィルムの前記多孔質層上に設けられた帯電防止層と、を有する印刷用紙であって、
 前記印刷用紙の吸油量が、1.0g/m以上であり、
 前記印刷用紙の前記帯電防止層側の表面をX線光電子分光法により測定したとき、窒素原子と炭素原子の各原子濃度の合計に対する窒素原子の原子濃度の比率が、3.0%以下である、
 印刷用紙。
(1) A printing paper having a thermoplastic resin film containing a porous layer and an antistatic layer provided on the porous layer of the thermoplastic resin film.
The oil absorption of the printing paper is 1.0 g / m 2 or more.
When the surface of the printing paper on the antistatic layer side is measured by X-ray photoelectron spectroscopy, the ratio of the atomic concentration of nitrogen atom to the total atomic concentration of nitrogen atom and carbon atom is 3.0% or less. ,
Printing paper.
(2)前記帯電防止層が、窒素含有化合物を含有し、
 前記窒素含有化合物が、第4級窒素含有化合物を含み、
 前記窒素含有化合物中の前記第4級窒素含有化合物の含有量が、50質量%以上である、
 前記(1)に記載の印刷用紙。
(2) The antistatic layer contains a nitrogen-containing compound and
The nitrogen-containing compound contains a quaternary nitrogen-containing compound.
The content of the quaternary nitrogen-containing compound in the nitrogen-containing compound is 50% by mass or more.
The printing paper according to (1) above.
(3)前記窒素含有化合物が、第1級窒素含有化合物又は第2級窒素含有化合物を含み、
 前記窒素含有化合物中の前記第1級窒素含有化合物及び前記第2級窒素含有化合物の含有量が、20質量%以下である、
 前記(1)に記載の印刷用紙。
(3) The nitrogen-containing compound contains a primary nitrogen-containing compound or a secondary nitrogen-containing compound.
The content of the primary nitrogen-containing compound and the secondary nitrogen-containing compound in the nitrogen-containing compound is 20% by mass or less.
The printing paper according to (1) above.
(4)前記帯電防止層が、窒素含有化合物及び架橋剤を含有し、
 前記窒素含有化合物が、第1級窒素含有化合物又は第2級窒素含有化合物を含む、
 請求項1に記載の印刷用紙。
(4) The antistatic layer contains a nitrogen-containing compound and a cross-linking agent.
The nitrogen-containing compound contains a primary nitrogen-containing compound or a secondary nitrogen-containing compound.
The printing paper according to claim 1.
(5)多孔質層を含む熱可塑性樹脂フィルムと、前記熱可塑性樹脂フィルムの前記多孔質層上に設けられた帯電防止層と、を有する印刷用紙であって、
 前記印刷用紙の吸油量が、1.0g/m以上であり、
 前記帯電防止層が窒素含有化合物を含有し、前記窒素含有化合物に含まれる全窒素中の第1級又は第2級窒素の含有量の合計が10%以下である、
 印刷用紙。
(5) A printing paper having a thermoplastic resin film containing a porous layer and an antistatic layer provided on the porous layer of the thermoplastic resin film.
The oil absorption of the printing paper is 1.0 g / m 2 or more.
The antistatic layer contains a nitrogen-containing compound, and the total content of primary or secondary nitrogen in the total nitrogen contained in the nitrogen-containing compound is 10% or less.
Printing paper.
(6)前記多孔質層が、熱可塑性樹脂及びフィラーを含有し、
 前記フィラーの粒度分布D10-D90が、4μm以下である、
 前記(1)~(5)のいずれかに記載の印刷用紙。
(6) The porous layer contains a thermoplastic resin and a filler, and the porous layer contains a thermoplastic resin and a filler.
The particle size distribution D10-D90 of the filler is 4 μm or less.
The printing paper according to any one of (1) to (5) above.
(7)前記多孔質層が、前記熱可塑性樹脂として、軟質ポリオレフィン系樹脂を含有する、
 請求項(1)~(6)のいずれかに記載の印刷用紙。
(7) The porous layer contains a soft polyolefin resin as the thermoplastic resin.
The printing paper according to any one of claims (1) to (6).
(8)前記基材層と前記多孔質層との間に中間層を有し、
 前記中間層が、前記中間層の厚みより大きい平均粒子径を有するフィラーを含有する、
 前記(1)~(7)のいずれかに記載の印刷用紙。
(8) An intermediate layer is provided between the base material layer and the porous layer.
The intermediate layer contains a filler having an average particle size larger than the thickness of the intermediate layer.
The printing paper according to any one of (1) to (7) above.
(9)前記多孔質層が、少なくとも1軸方向に延伸された延伸フィルムである、
 前記(1)~(8)のいずれかに記載の印刷用紙。
(9) The porous layer is a stretched film stretched in at least one axial direction.
The printing paper according to any one of (1) to (8) above.
(10)前記(1)~(9)のいずれかに記載の印刷用紙と、
 前記印刷用紙上に設けられた印刷層と、
 を有する、印刷物。
(10) The printing paper according to any one of (1) to (9) above,
The printing layer provided on the printing paper and
Have a printed matter.
(11)前記印刷層が酸化重合型インクにより形成される、
 前記(10)に記載の印刷物。
(11) The print layer is formed by an oxidative polymerization type ink.
The printed matter according to (10) above.
 本発明によれば、インクの汎用性及び乾燥性に優れ、ケミカルゴーストの発生を抑制できる印刷用紙及び印刷物を提供することができる。 According to the present invention, it is possible to provide a printing paper and a printed matter which are excellent in versatility and dryness of ink and can suppress the generation of chemical ghosts.
本発明の一実施の形態の印刷用紙の構造例を示す断面図である。It is sectional drawing which shows the structural example of the printing paper of one Embodiment of this invention. 重ね合わされる印刷物Aと印刷物Bの各印刷面を示す上面図である。It is a top view which shows each print surface of the printed matter A and printed matter B to be superposed. 中間層が含有するフィラーを示す断面図である。It is sectional drawing which shows the filler contained in the intermediate layer.
 以下、本発明の印刷用紙及び印刷物について詳細に説明するが、以下に記載する構成要件の説明は、本発明の一実施態様としての一例(代表例)であり、これらの内容に特定されるものではない。
 以下の説明において、「(メタ)アクリル」の記載は、アクリルとメタクリルの両方を示す。また、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
Hereinafter, the printing paper and the printed matter of the present invention will be described in detail, but the description of the constituent requirements described below is an example (representative example) as an embodiment of the present invention, and is specified in these contents. is not.
In the following description, the description of "(meth) acrylic" refers to both acrylic and methacrylic. Further, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
(印刷用紙)
 本発明の印刷用紙は、多孔質層を含む熱可塑性樹脂フィルムと、当該熱可塑性樹脂フィルムの多孔質層上に設けられた帯電防止層と、を有する。
(Printing paper)
The printing paper of the present invention has a thermoplastic resin film including a porous layer and an antistatic layer provided on the porous layer of the thermoplastic resin film.
<吸油量>
 本発明の印刷用紙の吸油量は、1.0g/m以上である。吸油量が1.0g/m以上であると、印刷用紙にインクが転写された場合に、インク中の溶剤を短時間で多量に吸収することができる。酸化重合型のインクは、インクから溶剤が蒸発又は印刷用紙に吸収された後、残りの酸化重合成分の酸化重合が進み、乾燥する。よって、樹脂フィルムを用いた合成紙用のインクよりも溶剤を比較的多く含むパルプ紙用のインクであっても、本発明の印刷用紙は溶剤を短時間で多量に吸収してインクの乾燥に要する時間を短くすることができる。すなわち、本発明の印刷用紙は、パルプ紙用のインクであっても合成紙用のインクであっても乾燥性に優れ、どちらのインクも使用することができるため、インクの汎用性にも優れる。
<Oil absorption>
The oil absorption of the printing paper of the present invention is 1.0 g / m 2 or more. When the oil absorption amount is 1.0 g / m 2 or more, when the ink is transferred to the printing paper, a large amount of the solvent in the ink can be absorbed in a short time. In the oxidative polymerization type ink, after the solvent is evaporated from the ink or absorbed by the printing paper, the oxidative polymerization of the remaining oxidative polymerization components proceeds and the ink dries. Therefore, even if the ink for pulp paper contains a relatively large amount of solvent than the ink for synthetic paper using a resin film, the printing paper of the present invention absorbs a large amount of solvent in a short time to dry the ink. The time required can be shortened. That is, the printing paper of the present invention is excellent in drying property regardless of whether it is an ink for pulp paper or an ink for synthetic paper, and since either ink can be used, the versatility of the ink is also excellent. ..
 上記吸油量は1.5g/m以上であることが好ましく、1.8g/m以上であることがより好ましく、2.0g/m以上であることがさらに好ましく、3.0g/m以上であることが特に好ましい。吸油量が多いほど、インクからより多量の溶剤をより短時間で吸収して乾燥速度を速めることができる。インクの裏写りを防止しやすく、次工程に素早く移行することができるため、印刷の作業効率が向上する。
 なお、インク中の溶剤を吸収できれば十分であるため、上記吸油量は、例えば10.0g/m以下であることができ、5.0g/m以下であることができる。
Preferably the oil absorption is 1.5 g / m 2 or more, more preferably 1.8 g / m 2 or more, more preferably 2.0 g / m 2 or more, 3.0 g / m It is particularly preferable that the number is 2 or more. The larger the amount of oil absorbed, the faster the drying rate can be increased by absorbing a larger amount of solvent from the ink in a shorter time. It is easy to prevent show-through of ink, and it is possible to quickly move to the next process, which improves printing work efficiency.
Since it is sufficient to absorb the solvent in the ink, the oil absorption amount can be, for example, 10.0 g / m 2 or less, and 5.0 g / m 2 or less.
 上記吸油量は、一定サイズに切り出した印刷用紙の印刷を行う表面にMineral Oil (和光純薬社製:密度0.84)を5秒間接触させ、接触前と接触後の印刷用紙の質量と吸油させた面積を測定し、下記式により算出する。
 吸油量(g/m)=
   {(吸油後の質量(g))―(吸油前の質量(g))}/(吸油させた面積(m2))
The above oil absorption is the mass and oil absorption of the printing paper before and after contact with Mineral Oil (manufactured by Wako Pure Chemical Industries, Ltd .: density 0.84) for 5 seconds on the surface on which printing paper cut out to a certain size is printed. The area is measured and calculated by the following formula.
Oil absorption (g / m 2 ) =
{(Mass after oil absorption (g))-(Mass before oil absorption (g))} / (Area absorbed oil (m 2 ))
<窒素原子の原子濃度の比率>
 本発明の印刷用紙の帯電防止層側の表面をX線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)により測定したとき、窒素原子と炭素原子の各原子濃度(atom%)の合計に対する窒素原子の原子濃度(atom%)の比率が、3.0%以下である。
 上記窒素原子の原子濃度の比率が3.0%以下と小さいと、ケミカルゴーストの発生を効果的に抑制することができる。ケミカルゴーストが発生するメカニズムは必ずしも明らかではないが、本発明者らは、印刷用紙表面の窒素含有化合物がインクの酸化重合時に発生するガスに接触して変質し、インクの転写を阻害するケミカルゴーストを発生させるのではないかと推測している。本発明者らは、このケミカルゴーストの原因物質と推測される窒素含有化合物を減らすことに着目し、印刷用紙表面の窒素原子の比率を3.0%の特定値以下に制御したところ、ケミカルゴーストを抑制できることが判明した。上記のように印刷用紙の吸油量が特定値以上に多く、酸化重合が速やかに進行する場合でも、窒素原子の原子濃度の比率が特定値以下であれば、ケミカルゴーストを効果的に抑制して、インクの転写性を高めることができる。
<Ratio of atomic concentration of nitrogen atom>
When the surface of the printing paper of the present invention on the antistatic layer side is measured by X-ray Photoelectron Spectroscopy (XPS), the nitrogen atom with respect to the total atomic concentration (atom%) of the nitrogen atom and the carbon atom. The ratio of the atomic concentration (atom%) of is 3.0% or less.
When the ratio of the atomic concentration of the nitrogen atom is as small as 3.0% or less, the generation of chemical ghost can be effectively suppressed. The mechanism by which chemical ghosts are generated is not always clear, but the present inventors have found that nitrogen-containing compounds on the surface of printing paper come into contact with the gas generated during oxidative polymerization of ink and deteriorate, thereby inhibiting ink transfer. I'm guessing that it may cause. The present inventors focused on reducing the nitrogen-containing compound presumed to be the causative substance of this chemical ghost, and controlled the ratio of nitrogen atoms on the surface of the printing paper to 3.0% or less, and found that the chemical ghost. It turned out that it can suppress. As described above, even when the oil absorption of the printing paper is more than the specific value and the oxidative polymerization proceeds rapidly, if the ratio of the atomic concentration of nitrogen atoms is less than the specific value, the chemical ghost is effectively suppressed. , Ink transferability can be improved.
 ケミカルゴーストをより抑制する観点から、上記比率は、2.8%以下であることが好ましく、2.6%以下であることがより好ましく、2.4%以下であることがさらに好ましく、2.0%以下であることが特に好ましい。上記比率は小さいほど抑制効果が高く、0%であってもよいが、帯電防止層が後述する窒素含有化合物を含有する場合は0%よりも大きく、例えば0.01%以上であり得る。 From the viewpoint of further suppressing chemical ghosts, the above ratio is preferably 2.8% or less, more preferably 2.6% or less, still more preferably 2.4% or less. It is particularly preferably 0% or less. The smaller the ratio is, the higher the suppressing effect is, and it may be 0%, but when the antistatic layer contains a nitrogen-containing compound described later, it is larger than 0%, for example, 0.01% or more.
 上記窒素原子の原子濃度の比率(%)は、XPSにより測定された炭素原子のC1sピークのピーク面積と、窒素原子のN1sピークのピーク面積との合計に対する、窒素原子のN1sピークのピーク面積の割合として求められる。 The ratio (%) of the atomic concentration of the nitrogen atom is the peak area of the N1s peak of the nitrogen atom with respect to the sum of the peak area of the C1s peak of the carbon atom and the peak area of the N1s peak of the nitrogen atom measured by XPS. Obtained as a percentage.
 本発明の印刷用紙は、少なくとも一方の面側に多孔質層及び帯電防止層を有するのであれば、片面側だけに多孔質層及び帯電防止層を有してもよいし、両面側にそれぞれ多孔質層及び帯電防止層を有してもよい。片面側だけに多孔質層及び帯電防止層が設けられた場合、まずその帯電防止層側の表面に印刷し、続いて裏面に印刷すること適している。また、熱可塑性樹脂フィルムは、多孔質層のみの単層構造であってもよいし、多孔質層以外の他の層を有する多層構造であってもよい。 The printing paper of the present invention may have a porous layer and an antistatic layer on only one side as long as it has a porous layer and an antistatic layer on at least one side, and the printing paper may have a porous layer and an antistatic layer on both sides. It may have a quality layer and an antistatic layer. When the porous layer and the antistatic layer are provided on only one side, it is suitable to print on the front surface of the antistatic layer side first and then on the back surface. Further, the thermoplastic resin film may have a single-layer structure having only a porous layer, or may have a multi-layer structure having a layer other than the porous layer.
 図1は、本発明の一実施形態としての印刷用紙の構成例を示す断面図である。
 図1に示すように、印刷用紙10は、一方の面側に設けられた多孔質層2を含む熱可塑性樹脂フィルム1と、多孔質層2上に設けられた帯電防止層3とを有する。この印刷用紙10の例では、熱可塑性樹脂フィルム1のもう一方の面側にも多孔質層2aが設けられ、当該多孔質層2a上に帯電防止層3aが設けられている。また、印刷用紙10の例では、熱可塑性樹脂フィルム1は多層構造を有し、基材層4と、基材層4の両面にそれぞれ設けられた中間層5及び5aとを有する。多孔質層2及び2aは、この中間層5及び5a上にそれぞれ設けられ、熱可塑性樹脂フィルム1の最表層を構成する。なお、2つずつ設けられる多孔質層2、2a、帯電防止層3、3a及び中間層5、5aは、組成、厚み等が同じであってもよいし、異なっていてもよい。
FIG. 1 is a cross-sectional view showing a configuration example of printing paper as an embodiment of the present invention.
As shown in FIG. 1, the printing paper 10 has a thermoplastic resin film 1 including a porous layer 2 provided on one surface side, and an antistatic layer 3 provided on the porous layer 2. In the example of the printing paper 10, the porous layer 2a is also provided on the other surface side of the thermoplastic resin film 1, and the antistatic layer 3a is provided on the porous layer 2a. Further, in the example of the printing paper 10, the thermoplastic resin film 1 has a multilayer structure, and has a base material layer 4 and intermediate layers 5 and 5a provided on both sides of the base material layer 4, respectively. The porous layers 2 and 2a are provided on the intermediate layers 5 and 5a, respectively, and form the outermost layer of the thermoplastic resin film 1. The two porous layers 2, 2a, the antistatic layers 3, 3a, and the intermediate layers 5, 5a may have the same composition, thickness, or the like, or may be different.
 以下、本発明の印刷用紙を構成する各層について説明する。 Hereinafter, each layer constituting the printing paper of the present invention will be described.
<帯電防止層>
 帯電防止層は、静電気による印刷用紙への異物の付着、ブロッキングによる搬送性の低下等を抑制することができる。帯電防止層は、ブロッキング等の静電気による影響を減らす観点から、印刷用紙の最表層として設けられることが好ましい。帯電防止層は、例えば帯電防止剤を含有する塗工液を多孔質層上に塗工することによって形成できる。
<Antistatic layer>
The antistatic layer can suppress adhesion of foreign matter to the printing paper due to static electricity, deterioration of transportability due to blocking, and the like. The antistatic layer is preferably provided as the outermost layer of the printing paper from the viewpoint of reducing the influence of static electricity such as blocking. The antistatic layer can be formed, for example, by applying an antistatic agent-containing coating liquid onto the porous layer.
<<帯電防止剤>>
  帯電防止剤としては特に限定されず、ポリマー型及び金属酸化物型帯電防止剤等の公知の帯電防止剤を使用できる。ポリマー型帯電防止剤としては、カチオン型、アニオン型、両性型、ノニオン型等が知られており、いずれも使用可能である。カチオン型としては、例えばアンモニウム塩構造又はホスホニウム塩構造を有する化合物等が挙げられる。アニオン型としては、例えばスルホン酸、リン酸、カルボン酸等のアルカリ金属塩、具体的にはアクリル酸、メタクリル酸、(無水)マレイン酸等のアルカリ金属塩(例えばリチウム塩、ナトリウム塩、カリウム塩等)構造を分子構造中に有する化合物等が挙げられる。両性型としては、例えば前述のカチオン型とアニオン型の両方の構造を同一分子中に含有する化合物、具体的にはベタイン型が挙げられる。ノニオン型としては、例えばアルキレンオキシド構造を有するエチレンオキシド重合体、エチレンオキシド重合成分を分子鎖中に有する重合体等が挙げられる。金属酸化物型帯電防止剤としては、金属酸化物を有する微粒子、例えばコロイダルシリカの表面に金属酸化物層を有するコロイダルシリカゾルが挙げられる。その他、ホウ素を分子構造中に有するポリマー型帯電防止剤も例として挙げることができる。これらのうち1種を単独で又は2種以上を組み合わせて使用してもよい。
<< Antistatic agent >>
The antistatic agent is not particularly limited, and known antistatic agents such as polymer type and metal oxide type antistatic agents can be used. As the polymer type antistatic agent, a cationic type, an anion type, an amphoteric type, a nonionic type and the like are known, and any of them can be used. Examples of the cationic type include compounds having an ammonium salt structure or a phosphonium salt structure. Examples of the anion type include alkali metal salts such as sulfonic acid, phosphoric acid and carboxylic acid, specifically alkali metal salts such as acrylic acid, methacrylic acid and (anhydrous) maleic acid (for example, lithium salt, sodium salt and potassium salt). Etc.) Examples include compounds having a structure in the molecular structure. Examples of the amphoteric type include compounds containing both the above-mentioned cationic type and anion type structures in the same molecule, specifically, betaine type. Examples of the nonionic type include an ethylene oxide polymer having an alkylene oxide structure and a polymer having an ethylene oxide polymerization component in the molecular chain. Examples of the metal oxide type antistatic agent include fine particles having a metal oxide, for example, a colloidal silica sol having a metal oxide layer on the surface of colloidal silica. In addition, a polymer-type antistatic agent having boron in its molecular structure can be mentioned as an example. One of these may be used alone or in combination of two or more.
  なかでも、帯電防止性能が良好であることから、カチオン型のポリマー型帯電防止剤が好ましく、窒素含有ポリマー型帯電防止剤、例えば第3級窒素又は第4級窒素(アンモニウム塩構造)含有アクリル系ポリマーがより好ましい。
 帯電防止剤としては市販品も使用することができる。第3級又は第4級窒素含有アクリル系ポリマーの市販品としては、例えば水溶性で塗工液を調製しやすいサフトマー ST-1000、サフトマー ST-1100、サフトマー ST-1300、サフトマー ST-3200(いずれも三菱ケミカル社製)等が挙げられる。
Among them, a cationic polymer type antistatic agent is preferable because of its good antistatic performance, and a nitrogen-containing polymer type antistatic agent, for example, a tertiary nitrogen or a quaternary nitrogen (ammonium salt structure) -containing acrylic type is preferable. Polymers are more preferred.
Commercially available products can also be used as the antistatic agent. Commercially available products of tertiary or quaternary nitrogen-containing acrylic polymers include, for example, Saftmer ST-1000, Saftmer ST-1100, Saftmer ST-1300, and Saftmer ST-3200, which are water-soluble and easy to prepare a coating solution. (Made by Mitsubishi Chemical Corporation), etc.
<<アンカー剤>>
  帯電防止層は、より安定したインクとの密着性を得る観点から、アンカー剤を含有することが好ましい。アンカー剤としては特に限定されず、公知のアンカー剤を適宜用いることができる。使用できるアンカー剤としては、例えばポリイミン系重合体又はポリアミンポリアミドのエチレンイミン付加物、これらの混合物等が挙げられる。ポリイミン系重合体又はポリアミンポリアミドのエチレンイミン付加物としては、例えばポリエチレンイミン、ポリ(エチレンイミン-尿素)及びポリアミンポリアミドのエチレンイミン付加物;これらのアルキル変性体、シクロアルキル変性体、アリール変性体、アリル変性体、アラルキル変性体、アルキラル変性体、ベンジル変性体、シクロペンチル変性体、及び脂肪族環状炭化水素変性体;これらの水酸化物;並びに、上記の複合体等が挙げられる。これらのうち1種を単独で又は2種類以上を組み合わせて使用してもよい。
<< Anchor >>
The antistatic layer preferably contains an anchoring agent from the viewpoint of obtaining more stable adhesion to the ink. The anchoring agent is not particularly limited, and a known anchoring agent can be appropriately used. Examples of the anchoring agent that can be used include a polyimine-based polymer, an ethyleneimine adduct of a polyamine polyamide, and a mixture thereof. Examples of the ethyleneimine adduct of the polyimine polymer or the polyamine polyamide include polyethyleneimine, poly (ethyleneimine-urea) and the ethyleneimine adduct of the polyamine polyamide; these alkyl modified products, cycloalkyl modified products and aryl modified products. Examples thereof include allyl-modified products, aralkyl-modified products, alkylal-modified products, benzyl-modified products, cyclopentyl-modified products, and aliphatic cyclic hydrocarbon-modified products; hydroxides thereof; and the above-mentioned complexes. One of these may be used alone or in combination of two or more.
  帯電防止剤及びアンカー剤を併用する場合、これらの含有量比は要求性能に応じて適宜設定でき、特に限定されない。個々の成分の性能を十分に発揮させる観点から、アンカー剤の含有量は、固形分比率で、帯電防止剤100重量部に対して0~200質量部が好ましく、より好ましくは0~150質量部、さらに好ましくは0~100質量部であり、特に好ましくは0~50質量部である。 When an antistatic agent and an anchor agent are used in combination, their content ratios can be appropriately set according to the required performance and are not particularly limited. From the viewpoint of fully exerting the performance of each component, the content of the anchoring agent is preferably 0 to 200 parts by mass, more preferably 0 to 150 parts by mass with respect to 100 parts by mass of the antistatic agent in terms of solid content ratio. , More preferably 0 to 100 parts by mass, and particularly preferably 0 to 50 parts by mass.
<<架橋剤>>
 帯電防止層は、耐水性、経時安定性、又は層強度向上等の観点から、架橋剤を含有することができる。
 架橋剤としては、例えばグリシジルエーテル、グリシジルエステル等のエポキシ系化合物、エポキシ樹脂、イソシアネ-ト系、オキサゾリン系、ホルマリン系、ヒドラジド系等の水分散型樹脂等が挙げられる。
 帯電防止層中の架橋剤の含有量は、溶液の経時安定性の観点から、第1級及び第2級窒素含有化合物の合計100質量部に対して1~200質量部が好ましく、より好ましくは10~170質量部、さらに好ましくは20~140質量部である。
<< Crosslinking agent >>
The antistatic layer may contain a cross-linking agent from the viewpoint of water resistance, stability over time, improvement of layer strength, and the like.
Examples of the cross-linking agent include epoxy compounds such as glycidyl ether and glycidyl ester, and water-dispersible resins such as epoxy resins, isocyanates, oxazolines, formalins, and hydrazides.
The content of the cross-linking agent in the antistatic layer is preferably 1 to 200 parts by mass, more preferably 1 to 200 parts by mass, based on 100 parts by mass of the total of the primary and secondary nitrogen-containing compounds from the viewpoint of the stability of the solution over time. It is 10 to 170 parts by mass, more preferably 20 to 140 parts by mass.
  帯電防止層の形成に用いる塗工液は、帯電防止剤等の各種成分を溶媒に溶解又は分散させることで得ることができる。溶媒としては、水、メチルアルコール、エチルアルコール、イソプロピルアルコール、アセトン、メチルエチルケトン、酢酸エチル、トルエン、キシレン等が一般的である。塗工時の取扱性等の観点から、塗工液は水溶液であることが好ましい。塗工液の固形分濃度は0.1~20質量%程度が好ましく、より好ましくは0.3~15質量%であり、さらに好ましくは0.5~10質量%である。 The coating liquid used to form the antistatic layer can be obtained by dissolving or dispersing various components such as an antistatic agent in a solvent. As the solvent, water, methyl alcohol, ethyl alcohol, isopropyl alcohol, acetone, methyl ethyl ketone, ethyl acetate, toluene, xylene and the like are generally used. From the viewpoint of handleability at the time of coating, the coating liquid is preferably an aqueous solution. The solid content concentration of the coating liquid is preferably about 0.1 to 20% by mass, more preferably 0.3 to 15% by mass, and further preferably 0.5 to 10% by mass.
  塗工装置としては、公知の各種塗布装置を用いることができ、特に限定されない。例えば、ダイコーター、バーコーター、リップコーター、ロールコーター、グラビアコーター、スプレーコーター、ブレードコーター、エアーナイフコーター、サイズプレスコーター等の塗工装置を使用することができる。 As the coating device, various known coating devices can be used and are not particularly limited. For example, a coating device such as a die coater, a bar coater, a lip coater, a roll coater, a gravure coater, a spray coater, a blade coater, an air knife coater, and a size press coater can be used.
<<窒素含有化合物>>
 帯電防止層は、窒素含有化合物を含有し得る。
 窒素含有化合物としては、例えばアミン化合物、イミン化合物、アミド化合物、イミド化合物、イソシアネート化合物、ウレタン化合物、及びニトリル化合物等が挙げられる。なかでも、ケミカルゴーストを抑制する観点から、窒素含有化合物は、アミド化合物、イミド化合物、イソシアネート化合物、ウレタン化合物又はニトリル化合物であることが好ましい。ただし、アミン化合物又はイミン化合物であっても、アミノ基又はイミノ基の置換を制御することにより問題なく使用することができる。
 窒素含有化合物は、上述した帯電防止剤、アンカー剤等として配合され得るが、帯電防止層は、上記窒素化合物以外の帯電防止剤、アンカー剤等を含有することができる。
<< Nitrogen-containing compound >>
The antistatic layer may contain nitrogen-containing compounds.
Examples of the nitrogen-containing compound include amine compounds, imine compounds, amide compounds, imide compounds, isocyanate compounds, urethane compounds, and nitrile compounds. Among them, the nitrogen-containing compound is preferably an amide compound, an imide compound, an isocyanate compound, a urethane compound or a nitrile compound from the viewpoint of suppressing chemical ghosts. However, even an amine compound or an imine compound can be used without any problem by controlling the substitution of the amino group or the imino group.
The nitrogen-containing compound can be blended as the above-mentioned antistatic agent, anchoring agent, etc., but the antistatic layer can contain an antistatic agent, anchoring agent, etc. other than the above-mentioned nitrogen compound.
 窒素含有化合物は、第1級~第4級窒素含有化合物のいずれをも含むことができるが、ケミカルゴーストの抑制効果が高いことから、第4級窒素含有化合物を含むことが好ましい。
 窒素化合物が第4級窒素含有化合物を含む場合、窒素化合物中の第4級窒素化合物の含有量が50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、95質量%以上であることが特に好ましい。窒素化合物中の第4級窒素化合物の含有量が多いほど、ケミカルゴーストを抑制しやすい。
The nitrogen-containing compound can contain any of primary to quaternary nitrogen-containing compounds, but it is preferable to include a quaternary nitrogen-containing compound because it has a high effect of suppressing chemical ghosts.
When the nitrogen compound contains a quaternary nitrogen-containing compound, the content of the quaternary nitrogen compound in the nitrogen compound is preferably 50% by mass or more, more preferably 70% by mass or more, and 90% by mass. The above is more preferable, and 95% by mass or more is particularly preferable. The higher the content of the quaternary nitrogen compound in the nitrogen compound, the easier it is to suppress chemical ghosts.
 窒素含有化合物が第1級窒素含有化合物又は第2級窒素含有化合物を含む場合、窒素化合物中の第1級窒素含有化合物と第2級窒素含有化合物の各含有量の合計が20質量%以下であることが好ましく、15質量%以下であることがより好ましく、10質量%以下であることがさらに好ましく、5質量%以下であることが特に好ましい。窒素化合物中の第1級及び第2級窒素含有化合物の含有量が低いほど、ケミカルゴーストを抑制しやすい。 When the nitrogen-containing compound contains a primary nitrogen-containing compound or a secondary nitrogen-containing compound, the total content of each of the primary nitrogen-containing compound and the secondary nitrogen-containing compound in the nitrogen compound is 20% by mass or less. It is preferably 15% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less. The lower the content of the primary and secondary nitrogen-containing compounds in the nitrogen compound, the easier it is to suppress chemical ghosts.
 窒素含有化合物に含まれる全窒素(個)中の第1級~第3級窒素の含有量の合計(個)は35%以下であることが好ましく、30%以下であることがより好ましく、25%以下であることがさらに好ましい。また、窒素含有化合物に含まれる全窒素中の第1級又は第2級窒素の含有量の合計は10%以下であることが好ましく、9%以下であることがより好ましく、7%以下であることがさらに好ましく、5%以下であることが特に好ましい。第1~第3級窒素、特に、第1~第2級窒素の含有量が低いほど、ケミカルゴーストを抑制しやすい。窒素含有化合物に含まれる全窒素中の第1級~第4級窒素の含有量は、例えば、核磁気共鳴装置又はX線光分光装置等により測定することができる。 The total content (pieces) of primary to tertiary nitrogen in the total nitrogen (pieces) contained in the nitrogen-containing compound is preferably 35% or less, more preferably 30% or less, and 25. It is more preferably% or less. The total content of the primary or secondary nitrogen in the total nitrogen contained in the nitrogen-containing compound is preferably 10% or less, more preferably 9% or less, and more preferably 7% or less. It is more preferable, and it is particularly preferable that it is 5% or less. The lower the content of primary to tertiary nitrogen, particularly primary to secondary nitrogen, the easier it is to suppress chemical ghosts. The content of primary to quaternary nitrogen in the total nitrogen contained in the nitrogen-containing compound can be measured by, for example, a nuclear magnetic resonance apparatus, an X-ray optical spectrometer, or the like.
 本発明の印刷用紙は、上記窒素原子の原子濃度(atom%)の比率が3.0%以下の条件を満たさない場合であっても、窒素含有化合物に含まれる全窒素中の第1級又は第2級窒素の含有量の合計が10%以下であれば、窒素原子の原子濃度の比率が3.0%以下の場合と同様に、ケミカルゴーストの発生を効果的に抑制することができる。本発明者らの検討により、ケミカルゴーストの原因物質と推測される窒素含有化合物のなかでも、ガスとの接触で特に変質しやすい第1級又は第2級窒素を含む低級窒素含有化合物を特定値以下に制御したところ、ケミカルゴーストを抑制できることが判明した。 The printing paper of the present invention is primary or primary in total nitrogen contained in the nitrogen-containing compound even when the ratio of the atomic concentration (atom%) of nitrogen atoms does not satisfy the condition of 3.0% or less. When the total content of the secondary nitrogen is 10% or less, the generation of chemical ghosts can be effectively suppressed as in the case where the ratio of the atomic concentration of nitrogen atoms is 3.0% or less. According to the studies by the present inventors, among the nitrogen-containing compounds presumed to be the causative substances of chemical ghosts, lower nitrogen-containing compounds containing primary or secondary nitrogen, which are particularly easily deteriorated by contact with gas, are specified. It was found that the chemical ghost can be suppressed by controlling the following.
 窒素含有化合物が第1級~第3級窒素含有化合物を含有する場合、帯電防止層は、さらに架橋剤を含有することが好ましい。第1級~第3級窒素含有化合物が有する窒素原子に架橋剤が配位又は共有結合することで、第1級~第3級窒素含有化合物、なかでも反応性の高い低級アミン化合物が減少し、インクが酸化重合して乾燥する際に発生するガスと接触しても変質が少なく、ケミカルゴーストを抑制しやすいと推測される。帯電防止剤が架橋剤を含有し、かつ窒素含有化合物中の第1級~第3級窒素含有化合物の各含有量の合計が上述した範囲内であれば、ケミカルゴーストをより効果的に抑制することができる。架橋剤が窒素含有化合物(特に第1級窒素含有化合物又は第2級窒素含有化合物)である場合には、分子内のアミン等と反応可能な基(エポキシ基等)をも含有する、自己架橋可能なものであることが好ましい。 When the nitrogen-containing compound contains a primary to tertiary nitrogen-containing compound, the antistatic layer preferably further contains a cross-linking agent. By coordinating or covalently bonding the cross-linking agent to the nitrogen atom of the primary to tertiary nitrogen-containing compounds, the primary to tertiary nitrogen-containing compounds, especially the highly reactive lower amine compounds, are reduced. It is presumed that even if the ink comes into contact with gas generated when the ink is oxidatively polymerized and dried, there is little deterioration and it is easy to suppress chemical ghosts. If the antistatic agent contains a cross-linking agent and the total content of each of the primary to tertiary nitrogen-containing compounds in the nitrogen-containing compound is within the above range, chemical ghosts are more effectively suppressed. be able to. When the cross-linking agent is a nitrogen-containing compound (particularly a primary nitrogen-containing compound or a secondary nitrogen-containing compound), self-cross-linking also contains a group (epoxy group, etc.) capable of reacting with an amine or the like in the molecule. It is preferable that it is possible.
 上述した印刷用紙の帯電防止層側の表面における窒素原子の原子濃度の比率(%)、又は窒素含有化合物に含まれる全窒素中の第1級又は第2級窒素の含有量の合計は、帯電防止層形成用の塗工液中の窒素含有化合物を含む成分、例えば帯電防止剤、アンカー剤等の固形分量を調整することによって、特定値以下に制御することができる。 The ratio (%) of the atomic concentration of nitrogen atoms on the surface of the printing paper on the antistatic layer side, or the total content of primary or secondary nitrogen in the total nitrogen contained in the nitrogen-containing compound is charged. It can be controlled to a specific value or less by adjusting the solid content of a component containing a nitrogen-containing compound in the coating liquid for forming the preventive layer, for example, an antistatic agent, an anchor agent, and the like.
<熱可塑性樹脂フィルム>
 熱可塑性樹脂フィルムは、最表面に多孔質層を含むのであれば、上述のように多孔質層のみの単層フィルムであってもよいし、基材層、中間層等の他の層を含む多層フィルムであってもよい。
 また、熱可塑性樹脂フィルムの各層は、無延伸フィルムであってもよいが、少なくとも1軸方向に延伸された延伸フィルムであると、印刷用紙として印刷適性に優れた厚み、コシ等が得られやすく、また表面又は層間界面の平坦化がしやすいため、好ましい。
<Thermoplastic resin film>
The thermoplastic resin film may be a single-layer film having only a porous layer as described above, as long as it contains a porous layer on the outermost surface, or includes other layers such as a base material layer and an intermediate layer. It may be a multilayer film.
Further, each layer of the thermoplastic resin film may be a non-stretched film, but if it is a stretched film stretched in at least one axial direction, it is easy to obtain a thickness, stiffness, etc. excellent in printability as printing paper. Moreover, it is preferable because it is easy to flatten the surface or the interface between layers.
<<多孔質層>>
 多孔質層は、多数の空孔を有し、インク中の溶剤を吸収してインクの乾燥性を高める。多孔質層の空孔が互いに連通する割合が多いほど、印刷用紙の吸油量が多くなり、インクの乾燥性が向上する。一方、多孔質層において独立した空孔の割合が多いと吸油量は小さくなり、インクの乾燥性が低下する。このように、空孔の連通度合いは印刷用紙の吸油量に比例することから、多孔質層中に互いに連通した空孔が十分に存在するか否かを印刷用紙の吸油量により判断することができる。
<< Porous layer >>
The porous layer has a large number of pores and absorbs the solvent in the ink to improve the drying property of the ink. The greater the proportion of the pores in the porous layer communicating with each other, the greater the amount of oil absorbed by the printing paper and the better the dryness of the ink. On the other hand, if the proportion of independent pores in the porous layer is large, the amount of oil absorbed becomes small and the drying property of the ink decreases. In this way, since the degree of communication of the holes is proportional to the oil absorption of the printing paper, it is possible to judge whether or not there are sufficient pores communicating with each other in the porous layer based on the oil absorption of the printing paper. it can.
 多孔質層は、連通する空孔の形成性の観点から、熱可塑性樹脂及びフィラーを含有することが好ましい。 The porous layer preferably contains a thermoplastic resin and a filler from the viewpoint of forming pores that communicate with each other.
<<<熱可塑性樹脂>>>
 熱可塑性樹脂としては、例えばポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリスチレン系樹脂、ポリ塩化ビニル樹脂、及びポリカーボネート樹脂等が挙げられる。これらの熱可塑性樹脂の1種を単独で又は2種以上を組み合わせて使用できる。熱可塑性樹脂は、層強度の向上の観点から、ポリオレフィン系樹脂又はポリエステル系樹脂であることが好ましく、ポリプロピレン系樹脂又はポリエチレン系樹脂であることがより好ましい。
<<< Thermoplastic Resin >>>
Examples of the thermoplastic resin include polyolefin resins, polyester resins, polyamide resins, polystyrene resins, polyvinyl chloride resins, polycarbonate resins and the like. One of these thermoplastic resins can be used alone or in combination of two or more. From the viewpoint of improving the layer strength, the thermoplastic resin is preferably a polyolefin resin or a polyester resin, and more preferably a polypropylene resin or a polyethylene resin.
 熱可塑性樹脂は、疎水性又は非極性樹脂を含むことが好ましい。これにより、多孔質層中の空孔が連通している場合の吸油量を向上させることができる。本明細書において、疎水性又は非極性樹脂は例えば10以下の溶解パラメータ(SP値)を有する樹脂をいう。当該SP値は9.5以下であることが好ましく、9.0以下であることがより好ましく、8.0以下であることがさらに好ましい。また上記SP値は、6.5以上であることができ、7.0以上であってもよい。SP値は、Smallにより提唱された方法で計算される値である。 The thermoplastic resin preferably contains a hydrophobic or non-polar resin. This makes it possible to improve the amount of oil absorption when the pores in the porous layer are in communication with each other. In the present specification, the hydrophobic or non-polar resin refers to a resin having a solubility parameter (SP value) of, for example, 10 or less. The SP value is preferably 9.5 or less, more preferably 9.0 or less, and even more preferably 8.0 or less. Further, the SP value can be 6.5 or more, and may be 7.0 or more. The SP value is a value calculated by the method proposed by Small.
 疎水性又は非極性の熱可塑性樹脂としては、例えば、ポリオレフィン系樹脂及びポリスチレン系樹脂等が挙げられる。疎水性又は非極性樹脂の含有量は、熱可塑性樹脂全質量を基準として、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上である。疎水性又は非極性樹脂の含有量は、例えば熱可塑性樹脂全質量を基準として、99質量%以下であってよく、98質量%以下であってよく、97質量%以下であってよい。熱可塑性樹脂のすべてが疎水性又は非極性樹脂から構成されていても差し支えない。 Examples of the hydrophobic or non-polar thermoplastic resin include polyolefin-based resins and polystyrene-based resins. The content of the hydrophobic or non-polar resin is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, based on the total mass of the thermoplastic resin. The content of the hydrophobic or non-polar resin may be, for example, 99% by mass or less, 98% by mass or less, or 97% by mass or less based on the total mass of the thermoplastic resin. It does not matter if all of the thermoplastic resins are composed of hydrophobic or non-polar resins.
 エッジピッキングの発生を抑制する観点からは、多孔質層は、熱可塑性樹脂として、軟質ポリオレフィン系樹脂を含むことが好ましい。軟質ポリオレフィン系樹脂とは、示差走査熱量測定(DSC:Differential scanning calorimetry)により測定される融解エネルギーが75J/g以下のポリオレフィン系樹脂をいう。融解エネルギーは、DSCにおいて観測された吸熱ピークのピーク面積から算出される。エッジピッキングは、印刷時に紙表面の毛羽立ち等の変形又は剥け等の剥離が生じる現象である。 From the viewpoint of suppressing the occurrence of edge picking, the porous layer preferably contains a soft polyolefin-based resin as the thermoplastic resin. The soft polyolefin resin refers to a polyolefin resin having a melting energy of 75 J / g or less as measured by differential scanning calorimetry (DSC). The melting energy is calculated from the peak area of the endothermic peak observed in DSC. Edge picking is a phenomenon in which deformation such as fluffing on the paper surface or peeling such as peeling occurs during printing.
 多孔質層中の軟質ポリオレフィン系樹脂の含有量は、1質量%以上が好ましく、3質量%以上がより好ましく、4質量%以上がさらに好ましい。また、同含有量は、15質量%以下が好ましく、10質量%以下がより好ましく、8質量%以下がさらに好ましい。上記含有量が1質量%以上であると、延伸時に空孔が過度に生じ、これに起因するエッジピッキングの発生を抑制できる傾向がある。一方、上記含有量が15質量%以下であると、独立した空孔の割合の低下を抑えて、高い乾燥性が得られる傾向がある。 The content of the soft polyolefin resin in the porous layer is preferably 1% by mass or more, more preferably 3% by mass or more, and further preferably 4% by mass or more. Further, the content is preferably 15% by mass or less, more preferably 10% by mass or less, and further preferably 8% by mass or less. When the content is 1% by mass or more, pores are excessively generated during stretching, and the occurrence of edge picking due to this tends to be suppressed. On the other hand, when the content is 15% by mass or less, a decrease in the proportion of independent pores is suppressed, and high dryness tends to be obtained.
 エッジピッキングの抑制の観点からは、軟質ポリオレフィン系樹脂の引張弾性率は、1.2GPa以下であることが好ましい。上記引張弾性率は、温度23℃下で、JIS K7161-1:2014及びJIS K7161-2:2014に準拠して、測定される。 From the viewpoint of suppressing edge picking, the tensile elastic modulus of the soft polyolefin resin is preferably 1.2 GPa or less. The tensile elastic modulus is measured at a temperature of 23 ° C. in accordance with JIS K7161-1: 2014 and JIS K7161-2: 2014.
 多孔質層は、フィラーの脱落防止等の観点から、熱可塑性樹脂としてさらに酸変性樹脂を含んでいてもよい。酸変性樹脂としては例えばマレイン酸変性ポリオレフィン等が挙げられる。酸変性樹脂の含有量は、熱可塑性樹脂全質量を基準として、好ましくは10質量%以下であり、より好ましくは5質量%以下であり、さらに好ましくは3質量%以下である。酸変性樹脂の含有量は、例えば熱可塑性樹脂全質量を基準として、0.1質量%以上であってよく、0.5質量%以上であってよく、1質量%以上であってよい。 The porous layer may further contain an acid-modified resin as the thermoplastic resin from the viewpoint of preventing the filler from falling off. Examples of the acid-modified resin include maleic acid-modified polyolefin and the like. The content of the acid-modified resin is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass or less, based on the total mass of the thermoplastic resin. The content of the acid-modified resin may be, for example, 0.1% by mass or more, 0.5% by mass or more, or 1% by mass or more, based on the total mass of the thermoplastic resin.
<<<フィラー>>>
 フィラーとしては、例えば無機フィラー及び有機フィラーが挙げられ、いずれかを単独で又は両者を組み合わせて使用することができる。フィラーを含む熱可塑性樹脂を延伸した場合、フィラーを核とした微細な空孔を多数形成することが容易となる。
<<< Filler >>
Examples of the filler include an inorganic filler and an organic filler, and either of them can be used alone or in combination of both. When the thermoplastic resin containing the filler is stretched, it becomes easy to form a large number of fine pores with the filler as the core.
 無機フィラーとしては、例えば重質炭酸カルシウム、軽質炭酸カルシウム、焼成クレイ、タルク、珪藻土、硫酸バリウム、酸化マグネシウム、酸化亜鉛、二酸化チタン、及び二酸化珪素等が挙げられる。
 有機フィラーとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、ポリアミド、ポリカーボネート、ポリエチレンスルフィド、ポリフェニレンスルフィド、ポリイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリメチルメタクリレート、ポリ-4-メチル-1-ペンテン、環状オレフィンの単独重合体、及び環状オレフィンとエチレンとの共重合体等が挙げられる。
 無機フィラー又は有機フィラーは、粒子径の比較的小さいフィラーを樹脂中に分散させる観点から、脂肪酸等により表面処理されていてもよい。
Examples of the inorganic filler include heavy calcium carbonate, light calcium carbonate, calcined clay, talc, diatomaceous earth, barium sulfate, magnesium oxide, zinc oxide, titanium dioxide, silicon dioxide and the like.
Organic fillers include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polyamide, polycarbonate, polyethylene sulfide, polyphenylene sulfide, polyimide, polyetherketone, polyetheretherketone, polymethylmethacrylate, and poly-4-methyl-1. -Pentene, homopolymers of cyclic olefins, copolymers of cyclic olefins and ethylene, and the like can be mentioned.
The inorganic filler or the organic filler may be surface-treated with a fatty acid or the like from the viewpoint of dispersing the filler having a relatively small particle size in the resin.
 上記無機フィラー又は有機フィラーの1種を単独で又は2種以上を組み合わせて使用できる。なかでも、粒度分布の調整のしやすさの観点から、無機フィラーが好ましい。無機フィラーのなかでも、空孔の形成性、コスト等の観点から、重質炭酸カルシウム又は軽質炭酸カルシウムであることが好ましく、耐候性の観点から、二酸化チタンであることが好ましい。 One of the above inorganic fillers or organic fillers can be used alone or in combination of two or more. Of these, an inorganic filler is preferable from the viewpoint of ease of adjusting the particle size distribution. Among the inorganic fillers, heavy calcium carbonate or light calcium carbonate is preferable from the viewpoint of pore formation, cost and the like, and titanium dioxide is preferable from the viewpoint of weather resistance.
 フィラーの粒子径は、メディアン径(D50)で、多孔質層内に均一に分散させる観点から、好ましくは0.01μm以上であり、より好ましくは0.1μm以上である。また、フィラーのメディアン径は、インク中の顔料及びバインダー等の成分と溶剤成分との分離を容易にし、インクの色沈み又は乾燥不良を防ぐ観点から、好ましくは10μm以下であり、より好ましくは3μm以下であり、さらに好ましくは1.5μm以下であり、特に好ましくは1.3μm以下である。
 なお、フィラーの粒子径は、溶融混練と分散により熱可塑性樹脂中に分散したときの平均分散粒子径として、求めることもできる。具体的には、フィルムの切断面を電子顕微鏡で観察し、フィラーの粒子の少なくとも10個の最大径を測定し、その平均値を平均分散粒子径とする。
The particle size of the filler is the median diameter (D50), and is preferably 0.01 μm or more, more preferably 0.1 μm or more, from the viewpoint of uniformly dispersing in the porous layer. The median diameter of the filler is preferably 10 μm or less, more preferably 3 μm, from the viewpoint of facilitating the separation of components such as pigments and binders in the ink and the solvent component and preventing color sinking or drying failure of the ink. It is less than or equal to, more preferably 1.5 μm or less, and particularly preferably 1.3 μm or less.
The particle size of the filler can also be determined as the average dispersed particle size when dispersed in the thermoplastic resin by melt-kneading and dispersion. Specifically, the cut surface of the film is observed with an electron microscope, the maximum diameters of at least 10 particles of the filler are measured, and the average value thereof is taken as the average dispersed particle diameter.
 フィラーの粒度分布D10-D90は、好ましくは4μm以下であり、より好ましくは3.5μm以下であり、さらに好ましくは3μm以下である。粒度分布D10-D90が上記範囲内にあることにより、延伸の際に多孔質層中に生じた空孔が連通しやすくなり、吸油量を1.0g/mの特定値以上に増加させやすい。フィラーの粒度分布D10-D90は、通常0.01μm以上であり、コストの観点から、0.1μm以上であってもよく、0.3μm以上であることが好ましい。 The particle size distribution D10-D90 of the filler is preferably 4 μm or less, more preferably 3.5 μm or less, and further preferably 3 μm or less. When the particle size distribution D10-D90 is within the above range, the pores generated in the porous layer during stretching are easily communicated with each other, and the oil absorption amount is easily increased to a specific value of 1.0 g / m 2. .. The particle size distribution D10-D90 of the filler is usually 0.01 μm or more, may be 0.1 μm or more, and is preferably 0.3 μm or more from the viewpoint of cost.
 フィラーの粒度分布D10-D90は、次のように求めることができる。
 レーザー回析式粒度分布測定機で下記D10、D50及びD90を測定する。測定したD90とD10の差の絶対値を粒度分布D10-D90として求める。測定に用いる溶媒は、水、メタノール、エタノール、エチレングリコール等が適宜使用され、測定の前処理として、日本精機製超音波分散機Model US-300Tを使用し、300μAの条件下で60秒間、超音波分散を行う。
 D10:フィラー粒子の積算10体積%粒子径(μm)
 D50:フィラー粒子の積算50体積%粒子径(μm)
 D90:フィラー粒子の積算90体積%粒子径(μm)
The particle size distribution D10-D90 of the filler can be determined as follows.
The following D10, D50 and D90 are measured with a laser diffraction type particle size distribution measuring machine. The absolute value of the difference between the measured D90 and D10 is obtained as the particle size distribution D10-D90. Water, methanol, ethanol, ethylene glycol, etc. are appropriately used as the solvent used for the measurement, and the ultrasonic disperser Model US-300T manufactured by Nippon Seiki Co., Ltd. is used as the pretreatment for the measurement for 60 seconds under the condition of 300 μA. Perform ultrasonic dispersion.
D10: Cumulative total of filler particles 10% by volume particle diameter (μm)
D50: Integrated filler particles 50% by volume particle diameter (μm)
D90: Accumulation of filler particles 90% by volume particle diameter (μm)
 多孔質層中のフィラーの含有量は、空孔の形成性の観点から、熱可塑性樹脂100質量部に対して、好ましくは45質量部以上であり、より好ましくは60質量部以上であり、さらに好ましくは75質量部以上であり、特に好ましくは100質量部以上である。一方、多孔質層中のフィラーの含有量は、多層質層の強度を適度に維持する観点から、熱可塑性樹脂100質量部に対して、好ましくは250質量部以下であり、より好ましくは200質量部以下であり、さらに好ましくは150質量部以下であり、特に好ましくは125質量部以下である。 The content of the filler in the porous layer is preferably 45 parts by mass or more, more preferably 60 parts by mass or more, and further, with respect to 100 parts by mass of the thermoplastic resin, from the viewpoint of forming pores. It is preferably 75 parts by mass or more, and particularly preferably 100 parts by mass or more. On the other hand, the content of the filler in the porous layer is preferably 250 parts by mass or less, more preferably 200 parts by mass, with respect to 100 parts by mass of the thermoplastic resin from the viewpoint of maintaining the strength of the multilayer layer appropriately. It is 5 parts or less, more preferably 150 parts by mass or less, and particularly preferably 125 parts by mass or less.
<<<空孔率>>>
 多孔質層中の空孔の割合を表す空孔率は、連通孔を増やす観点から、10%以上であることが好ましく、15%以上であることがより好ましく、20%以上であることがさらに好ましく、25%以上であることが特に好ましい。表面強度を高めてエッジピッキング等の印刷不良を減らす観点からは、空孔率は、50%以下であることが好ましく、45%以下であることがより好ましく、40%以下であることがさらに好ましい。
<<< Pore rate >>
The pore ratio, which represents the ratio of pores in the porous layer, is preferably 10% or more, more preferably 15% or more, and further preferably 20% or more, from the viewpoint of increasing communication holes. It is preferably 25% or more, and particularly preferably 25% or more. From the viewpoint of increasing the surface strength and reducing printing defects such as edge picking, the pore ratio is preferably 50% or less, more preferably 45% or less, still more preferably 40% or less. ..
 なお、空孔率は空孔の多さを表わす指標であり、吸油量と必ずしも連動しない。例えば、空孔が多数形成され、空孔率が大きい場合でも、各空孔の連通の度合いが小さければ吸油量も小さい。このように、空孔率と吸油量は独立した指標値であり、印刷用紙の多孔質層の空孔率が同じであっても吸油量も同じとは限らない。 The vacancy rate is an index showing the number of vacancy, and is not necessarily linked to the amount of oil absorbed. For example, even when a large number of pores are formed and the pore ratio is large, the amount of oil absorption is small if the degree of communication between the pores is small. As described above, the pore ratio and the oil absorption amount are independent index values, and even if the pore ratio of the porous layer of the printing paper is the same, the oil absorption amount is not necessarily the same.
 上記空孔率は、電子顕微鏡で観察した印刷用紙の断面の一定領域において、空孔が占める面積の比率より求めることができる。具体的には、印刷用紙の任意の一部を切り取り、エポキシ樹脂で包埋して固化させた後、ミクロトームを用いて印刷用紙の面方向に垂直に切断し、その切断面が観察面となるように観察試料台に貼り付ける。観察面に金又は金-パラジウム等を蒸着し、電子顕微鏡にて観察しやすい任意の倍率(例えば、500~3000倍の拡大倍率)において空孔を観察し、観察した領域を画像データとして取り込む。得られた画像データに対して画像解析装置にて画像処理を行い、空孔部分の面積率を求めて、空孔率を得ることができる。この場合、任意の10箇所以上の観察における測定値を平均して、空孔率とすることができる。 The pore ratio can be obtained from the ratio of the area occupied by the pores in a certain region of the cross section of the printing paper observed with an electron microscope. Specifically, an arbitrary part of the printing paper is cut out, embedded in epoxy resin and solidified, and then cut perpendicularly to the surface direction of the printing paper using a microtome, and the cut surface becomes an observation surface. Attach it to the observation sample table as shown. Gold or gold-palladium or the like is deposited on the observation surface, the pores are observed at an arbitrary magnification (for example, a magnification of 500 to 3000 times) that is easy to observe with an electron microscope, and the observed area is captured as image data. The obtained image data can be subjected to image processing by an image analysis device to obtain the area ratio of the vacancy portion, and the vacancy ratio can be obtained. In this case, the vacancy rate can be obtained by averaging the measured values at any 10 or more observation points.
<<基材層>>
 基材層は、熱可塑性樹脂フィルムの支持体として機能し、印刷用紙に強度、コシ等を付与する。
 基材層は、不透明性付与の観点から、熱可塑性樹脂及びフィラーを含有することが好ましい。これにより、一方の面に印刷された絵柄が他方の面から透けて見えることを防ぎやすくなる。
<< Base material layer >>
The base material layer functions as a support for the thermoplastic resin film and imparts strength, elasticity, etc. to the printing paper.
The base material layer preferably contains a thermoplastic resin and a filler from the viewpoint of imparting opacity. This makes it easier to prevent the pattern printed on one side from being seen through the other side.
 基材層の熱可塑性樹脂としては、多孔質層と同様の熱可塑性樹脂を使用でき、例えばポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリスチレン系樹脂、ポリ塩化ビニル樹脂、及びポリカーボネート樹脂等が挙げられる。これらの樹脂を単独で又は2種以上を組み合わせて使用してもよい。熱可塑性樹脂はポリオレフィン系樹脂又はポリエステル系樹脂であることが好ましく、ポリプロピレン系樹脂又はポリエチレン系樹脂であることがより好ましい。 As the thermoplastic resin of the base material layer, the same thermoplastic resin as that of the porous layer can be used, and for example, polyolefin resins, polyester resins, polyamide resins, polystyrene resins, polyvinyl chloride resins, polycarbonate resins and the like can be used. Can be mentioned. These resins may be used alone or in combination of two or more. The thermoplastic resin is preferably a polyolefin resin or a polyester resin, and more preferably a polypropylene resin or a polyethylene resin.
 基材層のフィラーについても、多孔質層と同様のフィラーを使用できる。無機フィラーとしては、例えば重質炭酸カルシウム、軽質炭酸カルシウム、焼成クレイ、タルク、珪藻土、硫酸バリウム、酸化マグネシウム、酸化亜鉛、二酸化チタン、及び二酸化珪素等が挙げられる。有機フィラーとしては、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、ポリアミド、ポリカーボネート、ポリエチレンスルフィド、ポリフェニレンスルフィド、ポリイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリメチルメタクリレート、ポリ-4-メチル-1-ペンテン、環状オレフィンの単独重合体、及び環状オレフィンとエチレンとの共重合体等が挙げられる。これらの無機フィラー又は有機フィラーを単独で又は2種以上を組み合わせて使用できる。 As for the filler of the base material layer, the same filler as the porous layer can be used. Examples of the inorganic filler include heavy calcium carbonate, light calcium carbonate, calcined clay, talc, diatomaceous earth, barium sulfate, magnesium oxide, zinc oxide, titanium dioxide, silicon dioxide and the like. Examples of the organic filler include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polyamide, polycarbonate, polyethylene sulfide, polyphenylene sulfide, polyimide, polyetherketone, polyetheretherketone, polymethylmethacrylate, and poly-4-methyl-. Examples thereof include 1-pentene, a homopolymer of cyclic olefin, and a copolymer of cyclic olefin and ethylene. These inorganic fillers or organic fillers can be used alone or in combination of two or more.
 フィラーの平均粒子径は、空孔の形成性の観点から、好ましくは0.01μm以上であり、より好ましくは0.1μm以上である。また、延伸により内部に空孔を発生させて不透明性又は印刷性を向上させる場合に、延伸時のシート切れや基材層の強度低下等を抑える観点から、フィラーの平均粒子径は、好ましくは30μm以下であり、より好ましくは20μm以下、より好ましくは10μm以下である。 The average particle size of the filler is preferably 0.01 μm or more, more preferably 0.1 μm or more, from the viewpoint of pore formation. Further, when the opacity or printability is improved by generating pores inside by stretching, the average particle size of the filler is preferably set from the viewpoint of suppressing sheet breakage during stretching and a decrease in strength of the base material layer. It is 30 μm or less, more preferably 20 μm or less, and more preferably 10 μm or less.
 なお、本明細書におけるフィラーの「平均粒子径」は、次の手順で算出する。まず、印刷用紙を切り出し、その断面を露出させる。当該断面を、走査型電子顕微鏡を用いて適度な倍率(例えば1,000倍)に拡大し写真画像を撮影する。撮影した画像から、サンプル中に存在する無作為に選んだ100個の粒子径(長径)の平均値を計算する。これにより平均粒子径を算出する。 The "average particle size" of the filler in this specification is calculated by the following procedure. First, the printing paper is cut out and its cross section is exposed. The cross section is magnified to an appropriate magnification (for example, 1,000 times) using a scanning electron microscope, and a photographic image is taken. From the captured image, the average value of 100 randomly selected particle diameters (major diameters) present in the sample is calculated. The average particle size is calculated from this.
 基材層中のフィラーの含有量は、好ましくは1質量%以上であり、より好ましくは3質量%以上であり、特に好ましくは5質量%以上である。一方、基材層中のフィラーの含有量は、好ましくは45質量%以下であり、より好ましくは40質量%以下であり、特に好ましくは35質量%以下である。含有量が上記範囲内であれば、印刷用紙に適度な強度を持たせて取り扱いやすくなる。 The content of the filler in the base material layer is preferably 1% by mass or more, more preferably 3% by mass or more, and particularly preferably 5% by mass or more. On the other hand, the content of the filler in the base material layer is preferably 45% by mass or less, more preferably 40% by mass or less, and particularly preferably 35% by mass or less. When the content is within the above range, the printing paper has an appropriate strength and is easy to handle.
 基材層は、フィルム強度向上の観点から、少なくとも1軸方向に延伸されていることが好ましく、2軸方向に延伸された延伸フィルムであることがより好ましい。 From the viewpoint of improving the film strength, the base material layer is preferably stretched in at least one axial direction, and more preferably a stretched film stretched in two axial directions.
<<中間層>>
 中間層は、基材層と多孔質層の間に設けられ、多孔質層に吸収されたインクの溶剤成分が基材層に到達して印刷用紙が波打つ等の変形を抑える。このような変形は、溶剤アタックと呼ばれている。
<< Intermediate layer >>
The intermediate layer is provided between the base material layer and the porous layer, and suppresses deformation such as waviness of the printing paper when the solvent component of the ink absorbed by the porous layer reaches the base material layer. Such a deformation is called a solvent attack.
 中間層は、溶剤アタック抑制の観点から、熱可塑性樹脂を含有することが好ましく、上記熱可塑性樹脂として非晶性樹脂を含有することがより好ましい。
 熱可塑性樹脂としては、多孔質層における熱可塑性樹脂と同様のものが使用可能である。
From the viewpoint of suppressing solvent attack, the intermediate layer preferably contains a thermoplastic resin, and more preferably contains an amorphous resin as the thermoplastic resin.
As the thermoplastic resin, the same one as the thermoplastic resin in the porous layer can be used.
 非晶性樹脂としては、ガラス転移温度が140℃以下の非晶性樹脂が好ましく、70~140℃である非晶性樹脂がより好ましい。非晶性樹脂のガラス転移温度が70℃以上であれば、ロールへの張り付き等が減って成形性が向上しやすく、ガラス転移温度が140℃以下であれば、非晶性樹脂が溶剤を十分に吸収、保持し基材層への溶剤浸透を防ぎ溶剤アタックを抑制しやすい。なお、中間層を有する印刷用紙を製造する際には、延伸時の温度を非晶性樹脂のガラス転移温度より10℃以上高い温度にすることが好ましい。 As the amorphous resin, an amorphous resin having a glass transition temperature of 140 ° C. or lower is preferable, and an amorphous resin having a glass transition temperature of 70 to 140 ° C. is more preferable. When the glass transition temperature of the amorphous resin is 70 ° C. or higher, sticking to the roll is reduced and the moldability is likely to be improved. When the glass transition temperature is 140 ° C. or lower, the amorphous resin is sufficient for the solvent. It absorbs and retains amorphous material, prevents solvent from penetrating into the base material layer, and easily suppresses solvent attack. When producing printing paper having an intermediate layer, it is preferable that the temperature during stretching is 10 ° C. or higher higher than the glass transition temperature of the amorphous resin.
 非晶性樹脂としては、環状オレフィン系樹脂、アタクチックポリスチレン、石油樹脂、ポリカーボネート、及びアクリル系樹脂等が挙げられる。非晶性樹脂は、環状オレフィン系樹脂であることが好ましく、エチレン-環状オレフィン共重合体であることがより好ましい。なかでも、中間層は、熱可塑性樹脂としてのポリプロピレン系樹脂とともに、非晶性樹脂としてのエチレン-環状オレフィン共重合体を含有することが好ましい。 Examples of the amorphous resin include cyclic olefin resin, atactic polystyrene, petroleum resin, polycarbonate, acrylic resin and the like. The amorphous resin is preferably a cyclic olefin resin, more preferably an ethylene-cyclic olefin copolymer. Among them, the intermediate layer preferably contains an ethylene-cyclic olefin copolymer as an amorphous resin together with a polypropylene resin as a thermoplastic resin.
 中間層中の非晶性樹脂以外の熱可塑性樹脂と非晶性樹脂の配合割合は、溶剤アタックを十分に抑制する観点からは、熱可塑樹脂が0~80質量%であり、非晶性樹脂が20~100質量%であることが好ましく、熱可塑性樹脂が20~70質量%であり、非晶性樹脂が30~80質量%であることがより好ましく、熱可塑性樹脂が30~60質量%であり、非晶性樹脂が40~70質量%であることがさらに好ましい。 The mixing ratio of the thermoplastic resin other than the amorphous resin and the amorphous resin in the intermediate layer is 0 to 80% by mass of the thermoplastic resin from the viewpoint of sufficiently suppressing the solvent attack, and the amorphous resin. Is preferably 20 to 100% by mass, the thermoplastic resin is 20 to 70% by mass, the amorphous resin is more preferably 30 to 80% by mass, and the thermoplastic resin is 30 to 60% by mass. It is more preferable that the amount of the amorphous resin is 40 to 70% by mass.
 中間層の空孔率は、空孔を通過して基材層に到達するインク中の溶剤(特に鉱油等の高沸点石油系溶剤)を減らす観点から、5%以下であることが好ましく、3%以下がより好ましい。空孔率が5%以下の範囲であれば、中間層はフィラーを含有してもよい。 The porosity of the intermediate layer is preferably 5% or less from the viewpoint of reducing the solvent (particularly high boiling point petroleum solvent such as mineral oil) in the ink that passes through the pores and reaches the base material layer. % Or less is more preferable. The intermediate layer may contain a filler as long as the porosity is in the range of 5% or less.
 中間層がフィラーを含有する場合、ケミカルゴーストの抑制の観点からは、中間層が含有するフィラーは、中間層の厚みよりも大きい平均粒子径を有するフィラー(以下、粗大フィラーともいう。)であることが好ましい。粗大フィラーによって、中間層上の多孔質層の表面に粗さを付与しやすくなる。表面が粗いと、印刷後の印刷物を積み重ねて保管した際に、印刷物間に空隙が生じる。インクの酸化重合により発生したガスが空隙を通じて外部へ排出され、印刷物表面での滞留が抑制されるため、ケミカルゴーストがより抑制されやすくなる。 When the intermediate layer contains a filler, from the viewpoint of suppressing chemical ghosts, the filler contained in the intermediate layer is a filler having an average particle size larger than the thickness of the intermediate layer (hereinafter, also referred to as a coarse filler). Is preferable. The coarse filler facilitates imparting roughness to the surface of the porous layer on the intermediate layer. If the surface is rough, gaps are generated between the printed matter when the printed matter after printing is stacked and stored. The gas generated by the oxidative polymerization of the ink is discharged to the outside through the voids, and the retention on the surface of the printed matter is suppressed, so that the chemical ghost is more easily suppressed.
 中間層中の粗大フィラーの含有量は、1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上がさらに好ましい。また、同含有量は、25質量%以下が好ましく、20質量%以下がより好ましく、15質量%以下がさらに好ましい。上記含有量が1質量%以上であると、上述したケミカルゴーストの抑制効果が得られやすい。また、上記含有量が25質量%以下であると、中間層の空孔の形成が抑えられ、基材層への溶剤の到達が抑えられやすい。 The content of the coarse filler in the intermediate layer is preferably 1% by mass or more, more preferably 3% by mass or more, and further preferably 5% by mass or more. Further, the content is preferably 25% by mass or less, more preferably 20% by mass or less, and further preferably 15% by mass or less. When the content is 1% by mass or more, the above-mentioned effect of suppressing chemical ghosts can be easily obtained. Further, when the content is 25% by mass or less, the formation of pores in the intermediate layer is suppressed, and the arrival of the solvent in the base material layer is likely to be suppressed.
 中間層の厚み方向中心に粗大フィラーの中心が位置するときの粗大フィラーの表面から多孔質層の表面までの距離(K)は、0μmを超えることが好ましい。距離(K)が0μmを超えると、粗大フィラーが多孔質層を超えて印刷用紙表面に露出することが防止されやすい。また、印刷用紙からの粗大フィラーの脱落及び脱落による紙粉の発生も防止されやすい。 The distance (K) from the surface of the coarse filler to the surface of the porous layer when the center of the coarse filler is located at the center in the thickness direction of the intermediate layer preferably exceeds 0 μm. When the distance (K) exceeds 0 μm, it is easy to prevent the coarse filler from being exposed to the surface of the printing paper beyond the porous layer. In addition, it is easy to prevent the coarse filler from falling off from the printing paper and the generation of paper dust due to the falling off.
 距離(K)は、図3に示すように、多孔質層の厚みをM1、中間層の厚みをM2、粗大フィラーの平均粒子径をφと表すとき、下記式により求められる。なお、M1及びM2は、粗大粒子が存在しない位置における多孔質層及び中間層の厚さを指す。
 K=M1-(φ-M2)/2
As shown in FIG. 3, the distance (K) is calculated by the following formula when the thickness of the porous layer is M1, the thickness of the intermediate layer is M2, and the average particle size of the coarse filler is φ. In addition, M1 and M2 refer to the thickness of the porous layer and the intermediate layer at the position where the coarse particles do not exist.
K = M1- (φ-M2) / 2
 距離(K)は、10μm以下が好ましく、9μm以下がより好ましく、6μm以下がさらに好ましい。距離(K)が10μm以下であると、上述した多孔質層の表面に粗さを付与しやすく、ケミカルゴーストがより抑制されやすい。 The distance (K) is preferably 10 μm or less, more preferably 9 μm or less, and even more preferably 6 μm or less. When the distance (K) is 10 μm or less, the surface of the porous layer described above is likely to be roughened, and chemical ghosts are more likely to be suppressed.
<<<他の添加剤>>>
  熱可塑性樹脂フィルムの各層は、必要に応じて、熱安定剤(酸化防止剤)、光安定剤、分散剤、及び滑剤等の添加剤を含有することができる。熱安定剤を使用する場合、各層は、通常0.001~1質量%の熱安定剤を含有する。熱安定剤としては、例えば立体障害フェノール系、リン系、又はアミン系等の安定剤等が挙げられる。光安定剤を使用する場合、各層は、通常0.001~1質量%の光安定剤を含有する。光安定剤としては、例えば立体障害アミン系、ベンゾトリアゾール系、又はベンゾフェノン系の光安定剤等が挙げられる。分散剤又は滑剤は、例えば無機フィラーを分散させる目的で使用することができる。分散剤又は滑剤の使用量は、通常0.01~4質量%の範囲内である。分散剤又は滑剤としては、例えばシランカップリング剤、オレイン酸あるいはステアリン酸等の高級脂肪酸、金属石鹸、ポリアクリル酸、ポリメタクリル酸、又はそれらの塩等が挙げられる。
<<< Other Additives >>>
Each layer of the thermoplastic resin film can contain additives such as a heat stabilizer (antioxidant), a light stabilizer, a dispersant, and a lubricant, if necessary. When a heat stabilizer is used, each layer usually contains 0.001 to 1% by weight of the heat stabilizer. Examples of the heat stabilizer include steric hindrance phenol-based, phosphorus-based, amine-based and the like stabilizers. When a light stabilizer is used, each layer usually contains 0.001 to 1% by weight of the light stabilizer. Examples of the light stabilizer include steric hindrance amine-based, benzotriazole-based, and benzophenone-based light stabilizers. Dispersants or lubricants can be used, for example, for the purpose of dispersing inorganic fillers. The amount of dispersant or lubricant used is usually in the range of 0.01-4% by mass. Examples of the dispersant or lubricant include silane coupling agents, higher fatty acids such as oleic acid and stearic acid, metal soaps, polyacrylic acid, polymethacrylic acid, and salts thereof.
(印刷用紙の製造方法)
 本発明の印刷用紙の製造方法は特に限定されないが、例えば熱可塑性樹脂フィルム上に帯電防止層形成用の塗工液を塗工することにより製造できる。
(Manufacturing method of printing paper)
The method for producing the printing paper of the present invention is not particularly limited, but it can be produced, for example, by applying a coating liquid for forming an antistatic layer on a thermoplastic resin film.
 熱可塑性樹脂フィルムは、例えばスクリュー型押出機に接続された単層又は多層のTダイ、Iダイ等により溶融樹脂をシート状に押し出すキャスト成形、カレンダー成形、圧延成形、インフレーション成形等を用いて、フィルム状に成形することができる。熱可塑性樹脂と有機溶媒又はオイルとの混合物を、キャスト成形又はカレンダー成形した後、溶媒又はオイルを除去することにより、熱可塑性樹脂フィルムを成形してもよい。熱可塑性樹脂フィルムの各層の材料は、各層が上述の組成を有するように選択され、配合される。 For the thermoplastic resin film, for example, cast molding, calendar molding, rolling molding, inflation molding, etc., in which the molten resin is extruded into a sheet by a single-layer or multi-layer T-die, I-die, etc. connected to a screw type extruder is used. It can be molded into a film. A thermoplastic resin film may be formed by cast molding or calendar molding a mixture of a thermoplastic resin and an organic solvent or oil, and then removing the solvent or oil. The material of each layer of the thermoplastic resin film is selected and blended so that each layer has the above-mentioned composition.
 熱可塑性樹脂フィルムの各層の積層方法としては、例えばフィードブロック、マルチマニホールドを使用した多層ダイス方式、及び複数のダイスを使用する押出しラミネーション方式等が挙げられ、各方法を組み合わせることもできる。 Examples of the method for laminating each layer of the thermoplastic resin film include a feed block, a multi-layer die method using a multi-manifold, an extrusion lamination method using a plurality of dies, and the like, and each method can be combined.
 熱可塑性樹脂フィルムが延伸された複数の層を含む場合は、各層を積層する前に個別に延伸しておいてもよいし、積層した後にまとめて延伸してもよい。また、延伸した層に積層した後再び延伸してもよい。 When the thermoplastic resin film contains a plurality of stretched layers, each layer may be stretched individually before being laminated, or may be stretched together after being laminated. Further, it may be laminated on the stretched layer and then stretched again.
 延伸方法としては、例えばロール群の周速差を利用した縦延伸法、テンターオーブンを利用した横延伸法、これらを組み合わせた逐次2軸延伸法、圧延法、テンターオーブンとパンタグラフの組み合わせによる同時2軸延伸法、又はテンターオーブンとリニアモーターの組み合わせによる同時2軸延伸法等が挙げられる。また、スクリュー型押出機に接続された円形ダイを使用して溶融樹脂をチューブ状に押し出し成形した後、これに空気を吹き込む同時2軸延伸(インフレーション成形)法等も使用できる。 As the stretching method, for example, a longitudinal stretching method using the peripheral speed difference of the roll group, a transverse stretching method using a tenter oven, a sequential biaxial stretching method combining these, a rolling method, and a simultaneous 2 stretching method using a combination of a tenter oven and a pantograph. Examples thereof include a shaft stretching method or a simultaneous biaxial stretching method using a combination of a tenter oven and a linear motor. Further, a simultaneous biaxial stretching (inflation molding) method in which the molten resin is extruded into a tube shape using a circular die connected to a screw type extruder and then air is blown into the molten resin can also be used.
 延伸時の延伸温度は、各層の組成、例えば熱可塑性樹脂の融点等を考慮して設定することができる。例えば、延伸温度は、熱可塑性樹脂の融点以下であることが好ましく、融点よりも2~20℃低い温度の範囲内であることがより好ましい。使用する熱可塑性樹脂が非結晶性樹脂の場合の延伸温度は、当該熱可塑性樹脂のガラス転移点温度以上の範囲であることが好ましい。また、熱可塑性樹脂が結晶性樹脂の場合の延伸温度は、当該熱可塑性樹脂の非結晶部分のガラス転移点以上であって、かつ当該熱可塑性樹脂の結晶部分の融点以下の範囲内であることが好ましく、具体的には熱可塑性樹脂の融点よりも2~60℃低い温度が好ましい。 The stretching temperature at the time of stretching can be set in consideration of the composition of each layer, for example, the melting point of the thermoplastic resin. For example, the stretching temperature is preferably equal to or lower than the melting point of the thermoplastic resin, and more preferably in the temperature range of 2 to 20 ° C. lower than the melting point. When the thermoplastic resin used is a non-crystalline resin, the stretching temperature is preferably in the range of the glass transition temperature or higher of the thermoplastic resin. Further, when the thermoplastic resin is a crystalline resin, the stretching temperature is at least the glass transition point of the non-crystalline portion of the thermoplastic resin and within the range of the melting point of the crystalline portion of the thermoplastic resin or less. Specifically, a temperature 2 to 60 ° C. lower than the melting point of the thermoplastic resin is preferable.
 延伸速度は、特に限定されるものではないが、安定した延伸成形の観点から、20~350m/分の範囲内であることが好ましい。
 また、延伸倍率についても、使用する熱可塑性樹脂の特性等を考慮して適宜決定することができる。 例えば、プロピレンの単独重合体又はその共重合体を含む熱可塑性樹脂フィルムを一方向に延伸する場合、その延伸倍率は、通常は約1.2倍以上であり、好ましくは2倍以上、より好ましくは5倍以上である一方、通常は12倍以下であり、好ましくは10倍以下である。一方、2軸延伸する場合の延伸倍率は、面積延伸倍率で、通常は1.5倍以上であり、好ましくは10倍以上である一方、通常は60倍以下であり、好ましくは50倍以下である。
The stretching speed is not particularly limited, but is preferably in the range of 20 to 350 m / min from the viewpoint of stable stretch molding.
Further, the draw ratio can also be appropriately determined in consideration of the characteristics of the thermoplastic resin used. For example, when a thermoplastic resin film containing a homopolymer of propylene or a copolymer thereof is stretched in one direction, the draw ratio is usually about 1.2 times or more, preferably 2 times or more, more preferably. Is 5 times or more, while is usually 12 times or less, preferably 10 times or less. On the other hand, the draw ratio in the case of biaxial stretching is the area stretch ratio, which is usually 1.5 times or more, preferably 10 times or more, while usually 60 times or less, preferably 50 times or less. is there.
 また、ポリエステル系樹脂を含む熱可塑性樹脂フィルムを一方向に延伸する場合、その延伸倍率は、通常は1.2倍以上であり、好ましくは2倍以上である一方、通常は10倍以下であり、好ましくは5倍以下である。2軸延伸する場合の延伸倍率は、面積延伸倍率で、通常は1.5倍以上であり、好ましくは4倍以上である一方、通常は20倍以下であり、好ましくは12倍以下である。
 上記延伸倍率の範囲内であれば、目的の空孔率が得られて不透明性が向上しやすい。また、熱可塑性樹脂フィルムの破断が起きにくく、安定した延伸成形ができる傾向がある。
When a thermoplastic resin film containing a polyester resin is stretched in one direction, the draw ratio is usually 1.2 times or more, preferably 2 times or more, and usually 10 times or less. , Preferably 5 times or less. The draw ratio in the case of biaxial stretching is the area stretch ratio, which is usually 1.5 times or more, preferably 4 times or more, while usually 20 times or less, preferably 12 times or less.
If it is within the range of the draw ratio, the desired porosity can be obtained and the opacity can be easily improved. In addition, the thermoplastic resin film is less likely to break, and stable stretch molding tends to be possible.
<表面処理>
 熱可塑性樹脂フィルムは、酸化処理が施されていることが好ましい。酸化処理により、フィルム表面の極性基の存在割合を調整でき、酸素原子の原子濃度を調整できる。その結果、インクとの化学的な結合力が得られやすく、印刷用紙とインクとの密着性を向上させやすい。
 酸化処理としては、コロナ放電処理、フレーム処理、プラズマ処理、グロー放電処理、又はオゾン処理等が挙げられ、これら処理は組み合わせることができる。なかでも、コロナ放電処理又はフレーム処理が好ましく、コロナ処理がより好ましい。
<Surface treatment>
The thermoplastic resin film is preferably subjected to an oxidation treatment. By the oxidation treatment, the abundance ratio of polar groups on the film surface can be adjusted, and the atomic concentration of oxygen atoms can be adjusted. As a result, it is easy to obtain a chemical bond with the ink, and it is easy to improve the adhesion between the printing paper and the ink.
Examples of the oxidation treatment include corona discharge treatment, frame treatment, plasma treatment, glow discharge treatment, ozone treatment and the like, and these treatments can be combined. Of these, corona discharge treatment or frame treatment is preferable, and corona treatment is more preferable.
 コロナ放電処理を実施する場合の放電量は、好ましくは600J/m(10W・分/m)以上であり、より好ましくは1,200J/m(20W・分/m)以上である。また、放電量は、好ましくは12,000J/m(200W・分/m)以下であり、より好ましくは10,800J/m(180W・分/m)以下である。フレーム処理を実施する場合の放電量は、好ましくは8,000J/m以上であり、より好ましくは20,000J/m以上である。また、放電量は、好ましくは200,000J/m以下であり、より好ましくは100,000J/m以下である。 The amount of discharge when the corona discharge treatment is carried out is preferably 600 J / m 2 (10 W / min / m 2 ) or more, and more preferably 1,200 J / m 2 (20 W / min / m 2 ) or more. .. The discharge amount is preferably 12,000 J / m 2 (200 W / min / m 2 ) or less, and more preferably 10,800 J / m 2 (180 W / min / m 2 ) or less. The amount of discharge when the frame processing is performed is preferably 8,000 J / m 2 or more, and more preferably 20,000 J / m 2 or more. The discharge amount is preferably 200,000 J / m 2 or less, and more preferably 100,000 J / m 2 or less.
 帯電防止層は、帯電防止剤、アンカー剤、又は溶剤等を混合して、上述した帯電防止層形成用の塗工液を調製し、塗工装置を使用して熱可塑性樹脂フィルムの多孔質層上に塗工液を塗工することで、形成することができる。 The antistatic layer is prepared by mixing an antistatic agent, an anchoring agent, a solvent, or the like to prepare the above-mentioned coating liquid for forming the antistatic layer, and using a coating device, a porous layer of a thermoplastic resin film. It can be formed by applying a coating liquid on top.
(印刷用紙の特性)
<厚み>
 印刷用紙の厚み(総厚み)は、用途又は要求性能に応じて適宜設定すればよい。印刷用紙の総厚みとは、印刷用紙を構成する各層の厚みの総和を意味する。印刷用紙の総厚みは、好ましくは51μm以上、より好ましくは63μm以上、さらに好ましくは75μm以上であり、好ましくは550μm以下、より好ましくは400μm以下、さらに好ましくは300μm以下である。総厚みが上記範囲の印刷用紙であれば、オフセット印刷する場合に不具合が生じ難く、印刷用紙としての利用価値が高くなる傾向にある。
(Characteristics of printing paper)
<Thickness>
The thickness (total thickness) of the printing paper may be appropriately set according to the application or the required performance. The total thickness of the printing paper means the total thickness of each layer constituting the printing paper. The total thickness of the printing paper is preferably 51 μm or more, more preferably 63 μm or more, still more preferably 75 μm or more, preferably 550 μm or less, more preferably 400 μm or less, still more preferably 300 μm or less. If the printing paper has a total thickness in the above range, problems are unlikely to occur in offset printing, and the utility value as printing paper tends to increase.
 印刷用紙を構成する各層の厚みは、総厚みが上記範囲内となるように設計される。
 また、基材層の両面に中間層、多孔質層及び帯電防止層が設けられる場合は、両面に設けられる各層の厚みは同じでも異なっていてもよい。
The thickness of each layer constituting the printing paper is designed so that the total thickness is within the above range.
When the intermediate layer, the porous layer and the antistatic layer are provided on both sides of the base material layer, the thickness of each layer provided on both sides may be the same or different.
 多孔質層中の空孔が連通している場合には、多孔質層の厚みを変更することにより、吸油量を制御することも可能である。この場合、多孔質層の厚みは、好ましくは3μm以上、より好ましくは5μm以上、さらに好ましくは7μm以上であり、好ましくは20μm以下、より好ましくは15μm以下、さらに好ましくは10μm以下である。多孔質層の厚みが上記範囲にあることにより、ピッキングが生じにくく、高い吸油量を得やすくなる。 When the pores in the porous layer communicate with each other, it is possible to control the amount of oil absorption by changing the thickness of the porous layer. In this case, the thickness of the porous layer is preferably 3 μm or more, more preferably 5 μm or more, still more preferably 7 μm or more, preferably 20 μm or less, more preferably 15 μm or less, still more preferably 10 μm or less. When the thickness of the porous layer is within the above range, picking is less likely to occur and a high oil absorption amount can be easily obtained.
 中間層の厚みは、好ましくは0.5μm以上、より好ましくは1μm以上、さらに好ましくは2μm以上であり、好ましくは20μm以下、より好ましくは10μm以下、さらに好ましくは5μm以下である。中間層の厚みが上記範囲にあることにより、良好な成形性を得つつ、溶剤アタック等を防止しやすくなる。 The thickness of the intermediate layer is preferably 0.5 μm or more, more preferably 1 μm or more, further preferably 2 μm or more, preferably 20 μm or less, more preferably 10 μm or less, still more preferably 5 μm or less. When the thickness of the intermediate layer is within the above range, it becomes easy to prevent solvent attack and the like while obtaining good moldability.
 帯電防止層の厚みは、帯電防止層形成用の塗工液の塗工量により制御できる。生産コスト若しくはベタつきの抑制、又は経時でのインクの密着性の安定効果等の観点から、塗工量は、固形分換算で0.01g/m以上が好ましく、0.02g/m以上がより好ましく、3g/m以下が好ましく、1g/m以下がより好ましく、0.5g/m以下がさらに好ましい。 The thickness of the antistatic layer can be controlled by the amount of the coating liquid for forming the antistatic layer. From the viewpoint of suppressing production cost or stickiness, or stabilizing the adhesion of ink over time, the coating amount is preferably 0.01 g / m 2 or more in terms of solid content, and 0.02 g / m 2 or more. More preferably, 3 g / m 2 or less is preferable, 1 g / m 2 or less is more preferable, and 0.5 g / m 2 or less is further preferable.
<表面固有抵抗>
 印刷用紙の表面固有抵抗は、14(logΩ)以下であることが好ましい。表面固有抵抗が上記範囲内にあることにより、平判印刷での搬送性を向上させるとともに、折り及び製本等の後加工における静電気によるトラブルを減らすことができる。
<Surface specific resistance>
The surface intrinsic resistance of the printing paper is preferably 14 (logΩ) or less. When the surface specific resistance is within the above range, it is possible to improve the transportability in lithographic printing and reduce troubles due to static electricity in post-processing such as folding and bookbinding.
(印刷用紙の用途)
 本発明の印刷用紙によれば、印刷により高光沢で対候性に優れた印刷物を得ることができる。そのため、例えばポスター、パンフレット、カタログ、看板やメニュー等の商業印刷物、本、地図、ブックカバーやしおり等の出版物、及び包装紙等として有用である。これらの用途の中でも、本発明の印刷用紙は、その基本性能の高さから、例えば選挙用ポスターや看板用ポスター等のように、日光や雨水の影響を受ける屋外使用、ポスター等のようにサウナや大衆浴場、浴室等の水に晒される環境下での使用、飲食店等のメニュー等の水に接触する可能性のある環境下での使用等の用途において有用である。しかも、パルプ紙用のインクと合成紙用のインクの双方に対応可能であるため、インクの入れ替えを必要とせず、印刷加工の作業性を向上させることができる。
(Use of printing paper)
According to the printing paper of the present invention, it is possible to obtain a printed matter having high gloss and excellent weather resistance by printing. Therefore, it is useful as, for example, posters, pamphlets, catalogs, commercial printed matter such as signboards and menus, publications such as books, maps, book covers and bookmarks, and wrapping paper. Among these uses, the printing paper of the present invention is used outdoors under the influence of sunlight and rainwater, such as posters for elections and posters for signboards, and bathrooms such as posters, because of its high basic performance. It is useful in applications such as public baths, bathrooms, and other environments that are exposed to water, and in restaurants and other menus that may come into contact with water. Moreover, since it is possible to handle both the ink for pulp paper and the ink for synthetic paper, it is not necessary to replace the ink, and the workability of the printing process can be improved.
(印刷物)
 本発明の印刷用紙は、例えばオフセット印刷、凸版印刷、フレキソ印刷、スクリーン印刷等の印刷方式にとらわれず、種々の印刷方式に対応することができるが、特にオフセット印刷に適している。また、本発明の印刷用紙には、オフセット印刷用インク、凸版印刷用インク、フレキソ印刷用インク、スクリーン印刷用インク等、種々のインクを用いることができるが、特にオフセット印刷用インクを用いることが好ましい。なお、インクの粘度は、インクの種類及び印刷方式等により様々であり、特に限定されない。
(Printed matter)
The printing paper of the present invention is not limited to printing methods such as offset printing, letterpress printing, flexo printing, and screen printing, and can be used for various printing methods, but is particularly suitable for offset printing. Further, various inks such as offset printing ink, letterpress printing ink, flexo printing ink, screen printing ink and the like can be used for the printing paper of the present invention, and in particular, offset printing ink can be used. preferable. The viscosity of the ink varies depending on the type of ink, the printing method, and the like, and is not particularly limited.
 合成紙への適用が難しかったが、パルプ紙には従来から汎用されている、比較的多くの溶剤を含む酸化重合型インクに対しても、本発明の印刷用紙は、優れた印刷適性及びインク乾燥性を有する。そのため、パルプ紙に代えて本発明の印刷用紙を使用した場合でも、インクを入れ替える必要がない。また、蒸発乾燥型成分、浸透乾燥型成分等が少ない合成紙用のインク、紫外線硬化型インク等に対しても、本発明の印刷用紙は優れた印刷適性及びインク乾燥性を有する。すなわち、本発明の印刷用紙は、上述の各種印刷方式のインクのうちどのインクにも対応することができ、インクの汎用性が高い。したがって、本発明によれば、上述の印刷用紙と、上記印刷用紙上に設けられた印刷層と、を備える印刷物が提供される。印刷層は上述した酸化重合型インク等のインクを用いて印刷することにより形成することができる。 Although it was difficult to apply to synthetic paper, the printing paper of the present invention has excellent printability and ink even for oxidative polymerization type ink containing a relatively large amount of solvent, which has been widely used for pulp paper. Has dryness. Therefore, even when the printing paper of the present invention is used instead of the pulp paper, it is not necessary to replace the ink. Further, the printing paper of the present invention also has excellent printability and ink drying property with respect to inks for synthetic papers having few evaporative drying type components, penetration drying type components and the like, ultraviolet curable inks and the like. That is, the printing paper of the present invention can be applied to any of the above-mentioned inks of various printing methods, and the versatility of the ink is high. Therefore, according to the present invention, there is provided a printed matter including the above-mentioned printing paper and a printing layer provided on the above-mentioned printing paper. The print layer can be formed by printing with an ink such as the above-mentioned oxidation polymerization type ink.
 以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例中の「部」、「%」等の記載は、断りのない限り、質量基準の記載を意味する。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples. In addition, the description of "part", "%", etc. in the Examples means the description of the mass standard unless otherwise specified.
(塗工液の調製)
 以下のようにして、帯電防止層形成用の塗工液1~5を調製した。
(Preparation of coating liquid)
Coating liquids 1 to 5 for forming an antistatic layer were prepared as follows.
<塗工液1>
 帯電防止剤(商品名:サフトマーST-3200、三菱ケミカル社製、第4級アンモニウム塩)の固形分量が1.2質量%となるように純水を加えて薄め、塗工液1を得た。
<Coating liquid 1>
An antistatic agent (trade name: Saftmer ST-3200, manufactured by Mitsubishi Chemical Corporation, quaternary ammonium salt) was diluted by adding pure water so that the solid content was 1.2% by mass to obtain a coating liquid 1. ..
<塗工液2>
 帯電防止剤(商品名:サフトマーST-3200、三菱ケミカル社製、第4級アンモニウム塩)の固形分量が1.2質量%、変性ポリエチレンイミン(商品名:サフトマーAC-2000、三菱ケミカル社製、第2級及び第3級アミン含有化合物)の固形分量が0.23質量%となるように、純水を加えて薄め、塗工液2を得た。
<Coating liquid 2>
Antistatic agent (trade name: Saftmer ST-3200, manufactured by Mitsubishi Chemical Co., Ltd., quaternary ammonium salt) has a solid content of 1.2% by mass, modified polyethyleneimine (trade name: Saftmer AC-2000, manufactured by Mitsubishi Chemical Co., Ltd.) Pure water was added and diluted so that the solid content of the secondary and tertiary amine-containing compounds) was 0.23% by mass to obtain a coating liquid 2.
<塗工液3、4>
 塗工液2において、変性ポリエチレンイミン(商品名:サフトマーAC-2000、三菱ケミカル社製、第2級及び第3級アミン含有化合物)の固形分量がそれぞれ0.38質量%及び0.5質量%となるように、純水を加えて薄め、各塗工液3及び4を得た。
< Coating liquids 3 and 4>
In the coating liquid 2, the solid content of modified polyethyleneimine (trade name: Saftmer AC-2000, manufactured by Mitsubishi Chemical Corporation, secondary and tertiary amine-containing compounds) was 0.38% by mass and 0.5% by mass, respectively. Pure water was added to dilute the coating liquids 3 and 4 to obtain the respective coating liquids 3 and 4.
<塗工液5>
 帯電防止剤(商品名:サフトマーST-3200、三菱ケミカル社製、第4級アンモニウム塩)の固形分量が1.2質量%、変性ポリエチレンイミン(商品名:ポリミンSK、BASF社製、第3級アミン含有化合物)の固形分量が0.25質量%、自己架橋可能な架橋剤(商品名:WS4082、星光PMC社製、第2級アミン及びエポキシ基含有化合物)の固形分量が0.3質量%となるように、純水を加えて薄め、塗工液5を得た。
<Coating liquid 5>
Antistatic agent (trade name: Saftmer ST-3200, manufactured by Mitsubishi Chemical Co., Ltd., quaternary ammonium salt) has a solid content of 1.2% by mass, modified polyethyleneimine (trade name: Polymin SK, manufactured by BASF, manufactured by BASF), grade 3 The solid content of the amine-containing compound) is 0.25% by mass, and the solid content of the self-crosslinkable cross-linking agent (trade name: WS4082, manufactured by Seikou PMC, secondary amine and epoxy group-containing compound) is 0.3% by mass. Pure water was added and diluted to obtain a coating liquid 5.
 表1は、塗工液1~5の組成を示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the compositions of the coating liquids 1 to 5.
Figure JPOXMLDOC01-appb-T000001
(実施例1)
(I)ポリプロピレン樹脂(商品名:ノバテックPP MA3、日本ポリプロ社製、MFR(230℃、2.16kg荷重):11g/10分、融解エネルギー:95J/g)80質量部、重質炭酸カルシウム粒子(商品名:ソフトン1800、備北粉化工業社製、平均粒子径:1.25μm)19.5質量部、及び二酸化チタン粒子(商品名:タイペークCR-60、石原産業社製、平均粒子径:0.21μm)0.5質量部を混合した樹脂組成物(5)を、270℃に設定した押出機で溶融混練した。これをシート状に押し出して冷却ロールにより冷却し、無延伸シートを得た。次いで、この無延伸シートを150℃にまで再度加熱させた後、ロール間の速度差を利用してシート流れ方向に4.8倍の延伸を行って、縦延伸樹脂フィルムを得た。
(Example 1)
(I) Polypropylene resin (trade name: Novatec PP MA3, manufactured by Nippon Polypro Co., Ltd., MFR (230 ° C, 2.16 kg load): 11 g / 10 minutes, melting energy: 95 J / g) 80 parts by mass, heavy calcium carbonate particles (Product name: Softon 1800, manufactured by Bihoku Powder Industry Co., Ltd., average particle size: 1.25 μm) 19.5 parts by mass, and titanium dioxide particles (trade name: Typake CR-60, manufactured by Ishihara Sangyo Co., Ltd., average particle size: The resin composition (5) mixed with 0.21 μm) 0.5 parts by mass was melt-kneaded with an extruder set at 270 ° C. This was extruded into a sheet and cooled by a cooling roll to obtain an unstretched sheet. Next, the unstretched sheet was heated again to 150 ° C., and then stretched 4.8 times in the sheet flow direction by utilizing the speed difference between the rolls to obtain a longitudinally stretched resin film.
(II)ポリプロピレン樹脂(商品名:ノバテックPP MA3、日本ポリプロ社製)46質量部、無水マレイン酸変性ポリプロピレン樹脂(商品名:モディックP928、三菱ケミカル社製、融点:155~165℃、比重:0.89~0.91g/m、融解エネルギー:89J/g)1質量部、脂肪酸により表面処理された軽質炭酸カルシウム粒子(粒度分布D10-D90:0.6μm、D50:0.5μm)52.5質量部、及び二酸化チタン粒子(商品名:タイペークCR-60、石原産業社製)0.5質量部を混合した樹脂組成物(1)を、高速ミキサーで混合した。その後、シリンダー温度を210℃に設定した2軸混練押出機を用いて、ベント孔で脱気しながら回転数600rpmで溶融混練した。 (II) Polypropylene resin (trade name: Novatec PP MA3, manufactured by Japan Polypropylene Corporation) 46 parts by mass, maleic anhydride-modified polypropylene resin (trade name: Modic P928, manufactured by Mitsubishi Chemical Corporation, melting point: 155 to 165 ° C., specific gravity: 0 . 89-0.91 g / m 3 , melting energy: 89 J / g) 1 part by mass, light calcium carbonate particles surface-treated with fatty acids (particle size distribution D10-D90: 0.6 μm, D50: 0.5 μm) 52. The resin composition (1), which was a mixture of 5 parts by mass and 0.5 parts by mass of titanium dioxide particles (trade name: Taipei CR-60, manufactured by Ishihara Sangyo Co., Ltd.), was mixed with a high-speed mixer. Then, using a twin-screw kneading extruder in which the cylinder temperature was set to 210 ° C., melt kneading was performed at a rotation speed of 600 rpm while degassing at the vent holes.
 一方、ポリプロピレン樹脂(商品名:ノバテックPP MA3、日本ポリプロ社製)48.5質量部、エチレン-環状オレフィン共重合体(商品名:アペル 6011T、三井化学社製、MFR(230℃、2.16kg荷重):26g/10分、融解エネルギー:0J/g)48.5質量部、及び重質炭酸カルシウム粒子(商品名:ソフトン1800、備北粉化工業社製)3質量部を混合した樹脂組成物(4)を、270℃に設定した押出機で溶融混練した。
 次いで、これらの樹脂組成物を1台の多層ダイに供給してダイ内部で積層した。この積層体をダイからシート状に共押し出しし、上記(I)の工程で得られた縦延伸樹脂フィルムの一方の面上に、樹脂組成物(1)の層が外側となるように積層し、3層構造の積層シートを得た。
On the other hand, polypropylene resin (trade name: Novatec PP MA3, manufactured by Japan Polypropylene Corporation) 48.5 parts by mass, ethylene-cyclic olefin copolymer (trade name: Apel 6011T, manufactured by Mitsui Chemicals, Inc., MFR (230 ° C, 2.16 kg) Load): 26 g / 10 minutes, melting energy: 0 J / g) 48.5 parts by mass, and 3 parts by mass of heavy calcium carbonate particles (trade name: Softon 1800, manufactured by Bihoku Powder Industry Co., Ltd.) (4) was melt-kneaded with an extruder set at 270 ° C.
Next, these resin compositions were supplied to one multilayer die and laminated inside the die. This laminated body is co-extruded from a die into a sheet, and laminated on one surface of the vertically stretched resin film obtained in the step (I) above so that the layer of the resin composition (1) is on the outside. A laminated sheet having a three-layer structure was obtained.
(III)上記(II)とは別の押出機2台を用いて、上記(II)と同様の手順で樹脂組成物(1)及び樹脂組成物(4)をそれぞれ溶融混練した後、上記(II)とは別の多層ダイに供給してダイ内部で積層した。この積層体をダイからシート状に共押し出しし、上記(II)の工程で得られた3層構造の積層シートの縦延伸樹脂フィルム側(樹脂組成物(5)の層側)の面上に、樹脂組成物(1)の層が外側となるように積層した。これにより、多孔質層(樹脂組成物(1)の層)/中間層(樹脂組成物(4)の層)/基材層(樹脂組成物(5)の層)/中間層(樹脂組成物(4)の層)/多孔質層(樹脂組成物(1)の層)の順に積層された5層構造の積層シートを得た。 (III) The resin composition (1) and the resin composition (4) are melt-kneaded using two extruders different from the above (II) in the same procedure as the above (II), and then the above (III). It was supplied to a multilayer die different from II) and laminated inside the die. This laminated body is co-extruded from the die into a sheet, and is placed on the surface of the vertically stretched resin film side (layer side of the resin composition (5)) of the three-layer structure laminated sheet obtained in the step (II) above. , The resin composition (1) was laminated so that the layer was on the outside. As a result, the porous layer (layer of the resin composition (1)) / intermediate layer (layer of the resin composition (4)) / base material layer (layer of the resin composition (5)) / intermediate layer (resin composition). A laminated sheet having a five-layer structure was obtained in which the layer (4)) / the porous layer (the layer of the resin composition (1)) was laminated in this order.
(IV)得られた5層構造の積層シートを60℃にまで冷却した後、再び150℃にまで再加熱して、テンターを用いてシート幅方向に9倍延伸し、次いで165℃でアニーリング処理した。その後、再び60℃にまで冷却した後、耳部をスリットして、5層構造の熱可塑性樹脂フィルム(各層の延伸軸数:1軸延伸/1軸延伸/2軸延伸/1軸延伸/1軸延伸)、総厚み:130μm、各層の厚み:(1)/(4)/(5)/(4)/(1)=8μm/3μm/108μm/3μm/8μm)を得た。 (IV) The obtained 5-layer laminated sheet was cooled to 60 ° C., reheated to 150 ° C., stretched 9 times in the sheet width direction using a tenter, and then annealed at 165 ° C. did. Then, after cooling to 60 ° C. again, the selvage portion is slit, and a thermoplastic resin film having a five-layer structure (number of stretching axes of each layer: 1-axis stretching / 1-axis stretching / 2-axis stretching / 1-axis stretching / 1). Axial stretching), total thickness: 130 μm, thickness of each layer: (1) / (4) / (5) / (4) / (1) = 8 μm / 3 μm / 108 μm / 3 μm / 8 μm) was obtained.
(V)高周波電源(機器名:AGF-B10、春日電気社製)、長さ0.8mのアルミニウム製電極、及びトリーターロールとしてシリコーン被膜ロールを用い、電極とロールとのギャップを5mmとして、上記(IV)で得られた熱可塑性樹脂フィルムをライン処理速度25m/分で通過させながら、印加エネルギー密度1800J/m(30W・分/m)の条件で、同フィルムの両表面にコロナ放電処理を行った。 (V) A high-frequency power supply (device name: AGF-B10, manufactured by Kasuga Denki Co., Ltd.), an aluminum electrode with a length of 0.8 m, and a silicone film roll as a treater roll are used, and the gap between the electrode and the roll is 5 mm. While passing the thermoplastic resin film obtained in (IV) at a line processing speed of 25 m / min, corona discharge was performed on both surfaces of the film under the condition of an applied energy density of 1800 J / m 2 (30 W / min / m 2 ). Processing was performed.
(VI)コロナ放電処理後の熱可塑性樹脂フィルムの両表面に、乾燥後の塗膜の固形分が片面当たり0.02g/mとなるように、ロールコーターを用いて塗工液1を塗布した。塗膜を乾燥固化させて、実施例1の印刷用紙を得た。 (VI) Apply the coating liquid 1 to both surfaces of the thermoplastic resin film after the corona discharge treatment using a roll coater so that the solid content of the coating film after drying is 0.02 g / m 2 per side. did. The coating film was dried and solidified to obtain the printing paper of Example 1.
(実施例2)
 実施例1において各層の樹脂組成物の吐出量を変更して、総厚みを130μm(各層の厚み:(1)/(4)/(5)/(4)/(1)=5μm/3μm/114μm/3μm/5μm)としたこと以外は、実施例1と同様の手順で実施例2の印刷用紙を得た
(Example 2)
In Example 1, the discharge amount of the resin composition of each layer was changed to increase the total thickness to 130 μm (thickness of each layer: (1) / (4) / (5) / (4) / (1) = 5 μm / 3 μm / The printing paper of Example 2 was obtained in the same procedure as in Example 1 except that it was set to 114 μm / 3 μm / 5 μm).
(実施例3及び4)
 実施例1の(VI)における塗工液を塗工液2及び5にそれぞれ変更したこと以外は、実施例1と同様の手順で各実施例3及び4の印刷用紙を得た。
(Examples 3 and 4)
The printing papers of Examples 3 and 4 were obtained in the same procedure as in Example 1 except that the coating liquids in (VI) of Example 1 were changed to coating liquids 2 and 5, respectively.
(実施例5)
 実施例1の樹脂組成物(1)を、ポリプロピレン樹脂(商品名:ノバテックPP MA3、日本ポリプロ社製)39質量部、無水マレイン酸変性ポリプロピレン樹脂(商品名:モディックP928、三菱ケミカル社製)1質量部、脂肪酸表面処理された軽質炭酸カルシウム粒子(粒度分布D10-D90:0.6μm、D50:0.5μm)59.5質量部、及び二酸化チタン粒子(商品名:タイペークCR-60、石原産業社製)0.5質量部を混合した樹脂組成物(2)に変更すること以外は、実施例1と同様の手順で実施例5の印刷用紙を得た。
(Example 5)
39 parts by mass of polypropylene resin (trade name: Novatec PP MA3, manufactured by Japan Polypropylene Corporation), maleic anhydride-modified polypropylene resin (trade name: Modic P928, manufactured by Mitsubishi Chemical Corporation) 1 of the resin composition (1) of Example 1. Parts by mass, light calcium carbonate particles surface-treated with fatty acids (particle size distribution D10-D90: 0.6 μm, D50: 0.5 μm) 59.5 parts by mass, and titanium dioxide particles (trade name: Taipei CR-60, Ishihara Sangyo) The printing paper of Example 5 was obtained in the same procedure as in Example 1 except that the resin composition (2) was mixed with 0.5 parts by mass.
(実施例6)
 実施例1の樹脂組成物(1)を、ポリプロピレン樹脂(商品名:ノバテックPP MA3、日本ポリプロ社製)44質量部、無水マレイン酸変性ポリプロピレン樹脂(商品名:モディックP928、三菱ケミカル社製)1質量部、重質炭酸カルシウム粒子(粒度分布D10-D90:2.4μm、D50:1.2μm)54.5質量部、及び二酸化チタン粒子(商品名:タイペークCR-60、石原産業社製)0.5質量部を混合した樹脂組成物(3)に変更すること以外は、実施例1と同様の手順で実施例6の印刷用紙を得た。
(Example 6)
The resin composition (1) of Example 1 is a polypropylene resin (trade name: Novatec PP MA3, manufactured by Japan Polypropylene Corporation), 44 parts by mass, maleic anhydride-modified polypropylene resin (trade name: Modic P928, manufactured by Mitsubishi Chemical Corporation) 1 Parts by mass, heavy calcium carbonate particles (particle size distribution D10-D90: 2.4 μm, D50: 1.2 μm) 54.5 parts by mass, and titanium dioxide particles (trade name: Typake CR-60, manufactured by Ishihara Sangyo Co., Ltd.) 0 The printing paper of Example 6 was obtained in the same procedure as in Example 1 except that 5 parts by mass was changed to the mixed resin composition (3).
(実施例7)
 実施例1において、樹脂組成物(1)を樹脂組成物(8)に代えて多孔質層を形成したこと以外は、実施例1と同様の手順で実施例7の印刷用紙を得た。
 樹脂組成物(8)は、ポリプロピレン樹脂(商品名:ノバテックPP MA3、日本ポリプロ社製)42.5質量部、無水マレイン酸変性ポリプロピレン樹脂(商品名:モディックP928、三菱ケミカル社製)1質量部、軟質ポリプロピレン(商品名:タフマーPN2060、三井化学社製、融解エネルギー10J/g)3.5質量部、脂肪酸により表面処理された軽質炭酸カルシウム粒子(粒度分布D10-D90:0.6μm、D50:0.5μm)52.5質量部、及び二酸化チタン粒子(商品名:タイペークCR-60、石原産業社製)0.5質量部を含む。
(Example 7)
The printing paper of Example 7 was obtained in the same procedure as in Example 1 except that the resin composition (1) was replaced with the resin composition (8) to form a porous layer in Example 1.
The resin composition (8) contains 42.5 parts by mass of polypropylene resin (trade name: Novatec PP MA3, manufactured by Japan Polypropylene Corporation) and 1 part by mass of polypropylene resin (trade name: Modic P928, manufactured by Mitsubishi Chemical Corporation) modified with maleic anhydride. , Soft polypropylene (trade name: Toughmer PN2060, manufactured by Mitsui Chemicals, Ltd., melting energy 10 J / g) 3.5 parts by mass, light calcium carbonate particles surface-treated with fatty acids (particle size distribution D10-D90: 0.6 μm, D50: Includes 52.5 parts by mass (0.5 μm) and 0.5 parts by mass of titanium dioxide particles (trade name: Typake CR-60, manufactured by Ishihara Sangyo Co., Ltd.).
(実施例8)
 実施例1において、樹脂組成物(1)を樹脂組成物(9)に代えて多孔質層を形成したこと以外は、実施例1と同様の手順で実施例8の印刷用紙を得た。
 樹脂組成物(9)は、ポリプロピレン樹脂(商品名:ノバテックPP MA3、日本ポリプロ社製)38質量部、無水マレイン酸変性ポリプロピレン樹脂(商品名:モディックP928、三菱ケミカル社製)1質量部、軟質ポリプロピレン(商品名:タフマーPN2060、三井化学社製)8質量部、脂肪酸により表面処理された軽質炭酸カルシウム粒子(粒度分布D10-D90:0.6μm、D50:0.5μm)52.5質量部、及び二酸化チタン粒子(商品名:タイペークCR-60、石原産業社製)0.5質量部を含む。
(Example 8)
The printing paper of Example 8 was obtained in the same procedure as in Example 1 except that the resin composition (1) was replaced with the resin composition (9) to form a porous layer in Example 1.
The resin composition (9) is a polypropylene resin (trade name: Novatec PP MA3, manufactured by Japan Polypropylene Corporation) 38 parts by mass, a maleic anhydride-modified polypropylene resin (trade name: Modic P928, manufactured by Mitsubishi Chemical Corporation), 1 part by mass, soft. Polypropylene (trade name: Toughmer PN2060, manufactured by Mitsui Chemicals, Inc.) 8 parts by mass, light calcium carbonate particles surface-treated with fatty acids (particle size distribution D10-D90: 0.6 μm, D50: 0.5 μm) 52.5 parts by mass, And titanium dioxide particles (trade name: Typake CR-60, manufactured by Ishihara Sangyo Co., Ltd.) containing 0.5 parts by mass.
(実施例9)
 実施例1において、樹脂組成物(1)を樹脂組成物(10)に代えて多孔質層を形成したこと以外は、実施例1と同様の手順で実施例9の印刷用紙を得た。
 樹脂組成物(10)は、ポリプロピレン樹脂(商品名:ノバテックPP MA3、日本ポリプロ社製)36質量部、無水マレイン酸変性ポリプロピレン樹脂(商品名:モディックP928、三菱ケミカル社製)1質量部、軟質ポリプロピレン(商品名:タフマーPN2060、三井化学社製)10質量部、脂肪酸により表面処理された軽質炭酸カルシウム粒子(粒度分布D10-D90:0.6μm、D50:0.5μm)52.5質量部、及び二酸化チタン粒子(商品名:タイペークCR-60、石原産業社製)0.5質量部を含む。
(Example 9)
The printing paper of Example 9 was obtained in the same procedure as in Example 1 except that the resin composition (1) was replaced with the resin composition (10) to form a porous layer in Example 1.
The resin composition (10) is a polypropylene resin (trade name: Novatec PP MA3, manufactured by Japan Polypropylene Corporation), 36 parts by mass, a maleic anhydride-modified polypropylene resin (trade name: Modic P928, manufactured by Mitsubishi Chemical Corporation), 1 part by mass, soft. Polypropylene (trade name: Toughmer PN2060, manufactured by Mitsui Chemicals, Inc.) 10 parts by mass, light calcium carbonate particles surface-treated with fatty acids (particle size distribution D10-D90: 0.6 μm, D50: 0.5 μm) 52.5 parts by mass, And titanium dioxide particles (trade name: Typake CR-60, manufactured by Ishihara Sangyo Co., Ltd.) containing 0.5 parts by mass.
(実施例10)
 実施例1において、樹脂組成物(4)を樹脂組成物(11)に代えて中間層を形成したこと以外は、実施例1と同様の手順で実施例10の印刷用紙を得た。
 樹脂組成物(11)は、ポリプロピレン樹脂(商品名:ノバテックPP MA3、日本ポリプロ社製)48.5質量部、エチレン-環状オレフィン共重合体(商品名:アペル 6011T、三井化学社製)48.5質量部、及び炭酸カルシウム粒子(商品名:cube80KAS、丸尾カルシウム社製、平均粒子径8μm)3質量部を含む。
(Example 10)
The printing paper of Example 10 was obtained in the same procedure as in Example 1 except that the resin composition (4) was replaced with the resin composition (11) to form an intermediate layer in Example 1.
The resin composition (11) is a polypropylene resin (trade name: Novatec PP MA3, manufactured by Japan Polypropylene Corporation) 48.5 parts by mass, an ethylene-cyclic olefin copolymer (trade name: Appel 6011T, manufactured by Mitsui Chemicals, Inc.) 48. Includes 5 parts by mass and 3 parts by mass of calcium carbonate particles (trade name: cube80KAS, manufactured by Maruo Calcium Co., Ltd., average particle diameter 8 μm).
(実施例11)
 実施例1において、樹脂組成物(4)を樹脂組成物(12)に代えて中間層を形成したこと以外は、実施例1と同様の手順で実施例11の印刷用紙を得た。
 樹脂組成物(12)は、ポリプロピレン樹脂(商品名:ノバテックPP MA3、日本ポリプロ社製)45質量部、エチレン-環状オレフィン共重合体(商品名:アペル 6011T、三井化学社製)45質量部、及び炭酸カルシウム粒子(商品名:cube80KAS、丸尾カルシウム社製)10質量部を含む。
(Example 11)
The printing paper of Example 11 was obtained in the same procedure as in Example 1 except that the resin composition (4) was replaced with the resin composition (12) to form an intermediate layer in Example 1.
The resin composition (12) contains 45 parts by mass of a polypropylene resin (trade name: Novatec PP MA3, manufactured by Japan Polypropylene Corporation), 45 parts by mass of an ethylene-cyclic olefin copolymer (trade name: Apel 6011T, manufactured by Mitsui Chemicals, Inc.). And 10 parts by mass of calcium carbonate particles (trade name: cube80KAS, manufactured by Maruo Calcium Co., Ltd.).
(実施例12)
 実施例11において、中間層の厚みを6μmに代えたこと以外は、実施例11と同様の手順で実施例12の印刷用紙を得た。
(Example 12)
The printing paper of Example 12 was obtained in the same procedure as in Example 11 except that the thickness of the intermediate layer was changed to 6 μm in Example 11.
(実施例13)
 実施例1において、樹脂組成物(4)を樹脂組成物(13)に代えて中間層を形成したこと以外は、実施例1と同様の手順で実施例13の印刷用紙を得た。
 樹脂組成物(13)は、ポリプロピレン樹脂(商品名:ノバテックPP MA3、日本ポリプロ社製)40質量部、エチレン-環状オレフィン共重合体(商品名:アペル 6011T、三井化学社製)40質量部、及び炭酸カルシウム粒子(商品名:cube80KAS、丸尾カルシウム社製)20質量部を含む。
(Example 13)
The printing paper of Example 13 was obtained in the same procedure as in Example 1 except that the resin composition (4) was replaced with the resin composition (13) to form an intermediate layer in Example 1.
The resin composition (13) contains 40 parts by mass of a polypropylene resin (trade name: Novatec PP MA3, manufactured by Japan Polypropylene Corporation), 40 parts by mass of an ethylene-cyclic olefin copolymer (trade name: Apel 6011T, manufactured by Mitsui Chemicals, Inc.). And 20 parts by mass of calcium carbonate particles (trade name: cube80KAS, manufactured by Maruo Calcium Co., Ltd.).
(実施例14)
 実施例1において、樹脂組成物(4)を樹脂組成物(14)に代えて中間層を形成したこと以外は、実施例1と同様の手順で実施例14の印刷用紙を得た。
 樹脂組成物(14)は、ポリプロピレン樹脂(商品名:ノバテックPP MA3、日本ポリプロ社製)45質量部、エチレン-環状オレフィン共重合体(商品名:アペル 6011T、三井化学社製)45質量部、及び重質炭酸カルシウム(商品名:ソフトン1800、備北粉化工業社製)10質量部を含む。
(Example 14)
The printing paper of Example 14 was obtained in the same procedure as in Example 1 except that the resin composition (4) was replaced with the resin composition (14) to form an intermediate layer in Example 1.
The resin composition (14) is a polypropylene resin (trade name: Novatec PP MA3, manufactured by Japan Polypropylene Corporation), 45 parts by mass, an ethylene-cyclic olefin copolymer (trade name: Apel 6011T, manufactured by Mitsui Chemicals, Inc.), 45 parts by mass. And 10 parts by mass of heavy calcium carbonate (trade name: Softon 1800, manufactured by Bihoku Powder Industry Co., Ltd.).
(実施例15)
 実施例1において、樹脂組成物(4)を樹脂組成物(15)に代えて中間層を形成したこと以外は、実施例1と同様の手順で実施例15の印刷用紙を得た。
 樹脂組成物(15)は、ポリプロピレン樹脂(商品名:ノバテックPP MA3、日本ポリプロ社製)45質量部、エチレン-環状オレフィン共重合体(商品名:アペル 6011T、三井化学社製)45質量部、及び重質炭酸カルシウム(商品名:R50A、丸尾カルシウム社製、平均粒子径:15μm)10質量部を含む。
(Example 15)
The printing paper of Example 15 was obtained in the same procedure as in Example 1 except that the resin composition (4) was replaced with the resin composition (15) to form an intermediate layer in Example 1.
The resin composition (15) contains 45 parts by mass of a polypropylene resin (trade name: Novatec PP MA3, manufactured by Japan Polypropylene Corporation), 45 parts by mass of an ethylene-cyclic olefin copolymer (trade name: Apel 6011T, manufactured by Mitsui Chemicals, Inc.). And 10 parts by mass of heavy calcium carbonate (trade name: R50A, manufactured by Maruo Calcium Co., Ltd., average particle size: 15 μm).
(比較例1及び2)
 実施例1の工程(VI)の塗工液として、塗工液3及び4をそれぞれ用いたこと以外は、実施例1と同様の手順を行って、各比較例1及び2の印刷用紙を得た。
(Comparative Examples 1 and 2)
The printing papers of Comparative Examples 1 and 2 were obtained by performing the same procedure as in Example 1 except that the coating liquids 3 and 4 were used as the coating liquid in the step (VI) of Example 1. It was.
(比較例3)
 実施例1の樹脂組成物(1)に代えて、プロピレン単独重合体(日本ポリプロ社製、商品名ノバテックPP MA-3)51.5質量部、高密度ポリエチレン(日本ポリケム社製、商品名HJ580;密度0.950g/cm)3.5質量部、重質炭酸カルシウム(粒度分布D10-D90:5.1μm、D50:1.5μm)42質量部、二酸化チタン粒子(商品名:タイペークCR-60、石原産業社製)3質量部よりなる樹脂組成物(6)を高速ミキサーで混合した後、シリンダー温度を240℃に設定した2軸混練押出機を用いて、ベント孔で脱気しながら回転数600rpmで溶融混練した以外は、実施例1と同様の手順で比較例3の印刷用紙を得た。比較例3の印刷用紙は、5層構造(各層の延伸軸数:1軸延伸/1軸延伸/2軸延伸/1軸延伸/1軸延伸)、総厚み:130μm(各層の厚み:(6)/(4)/(5)/(4)/(6)=8μm/3μm/108μm/3μm/8μm))であった。
(Comparative Example 3)
Instead of the resin composition (1) of Example 1, 51.5 parts by mass of a propylene homopolymer (manufactured by Japan Polypropylene Corporation, trade name Novatec PP MA-3), high-density polyethylene (manufactured by Japan Polychem Corporation, trade name HJ580) Density 0.950 g / cm 3 ) 3.5 parts by mass, heavy calcium carbonate (particle size distribution D10-D90: 5.1 μm, D50: 1.5 μm) 42 parts by mass, titanium dioxide particles (trade name: Typek CR- 60, manufactured by Ishihara Sangyo Co., Ltd.) After mixing the resin composition (6) consisting of 3 parts by mass with a high-speed mixer, while degassing at the vent hole using a twin-screw kneading extruder with the cylinder temperature set to 240 ° C. The printing paper of Comparative Example 3 was obtained in the same procedure as in Example 1 except that the mixture was melt-kneaded at a rotation speed of 600 rpm. The printing paper of Comparative Example 3 has a five-layer structure (number of stretched axes of each layer: 1-axis stretch / 1-axis stretch / 2-axis stretch / 1-axis stretch / 1-axis stretch), total thickness: 130 μm (thickness of each layer: (6). ) / (4) / (5) / (4) / (6) = 8 μm / 3 μm / 108 μm / 3 μm / 8 μm)).
(比較例4)
 実施例1の樹脂組成物(1)に代えて、ポリプロピレン樹脂(商品名:ノバテックPP MA3、日本ポリプロ社製)46質量部、無水マレイン酸変性ポリプロピレン樹脂(商品名:モディックP928、三菱ケミカル社製)1質量部、重質炭酸カルシウム(粒度分布D10-D90:5.1μm、D50:1.5μm)52.5質量部、及び二酸化チタン粒子(商品名:タイペークCR-60、石原社製)0.5質量部を混合した樹脂組成物(7)を用いて、ベント孔で脱気しながら回転数600rpmで溶融混練した以外は、実施例1と同様の手順で比較例4の印刷用紙を得た。比較例4の印刷用紙は、5層構造(各層の延伸軸数:1軸延伸/1軸延伸/2軸延伸/1軸延伸/1軸延伸、総厚み:130μm(各層の厚み:(6)/(4)/(5)/(4)/(6)=8μm/3μm/108μm/3μm/8μm))であった。
(Comparative Example 4)
Instead of the resin composition (1) of Example 1, a polypropylene resin (trade name: Novatec PP MA3, manufactured by Japan Polypropylene Corporation), 46 parts by mass, a maleic anhydride-modified polypropylene resin (trade name: Modic P928, manufactured by Mitsubishi Chemical Corporation) ) 1 part by mass, heavy calcium carbonate (particle size distribution D10-D90: 5.1 μm, D50: 1.5 μm) 52.5 parts by mass, and titanium dioxide particles (trade name: Typake CR-60, manufactured by Ishihara) 0 The printing paper of Comparative Example 4 was obtained in the same procedure as in Example 1 except that the resin composition (7) in which 5 parts by mass was mixed was melt-kneaded at a rotation speed of 600 rpm while degassing at the vent holes. It was. The printing paper of Comparative Example 4 has a five-layer structure (number of stretched axes of each layer: 1-axis stretch / 1-axis stretch / 2-axis stretch / 1-axis stretch / 1-axis stretch, total thickness: 130 μm (thickness of each layer: (6)). / (4) / (5) / (4) / (6) = 8 μm / 3 μm / 108 μm / 3 μm / 8 μm)).
(比較例5)
 実施例1において各層の樹脂の吐出量を変更して、総厚みを130μm(各層の厚み:(1)/(4)/(5)/(4)/(1)=3μm/3μm/118μm/3μm/3μm)としたこと以外は、実施例1と同様の手順で比較例5の印刷用紙を得た。
(Comparative Example 5)
In Example 1, the discharge amount of the resin in each layer was changed to increase the total thickness to 130 μm (thickness of each layer: (1) / (4) / (5) / (4) / (1) = 3 μm / 3 μm / 118 μm / The printing paper of Comparative Example 5 was obtained in the same procedure as in Example 1 except that the thickness was 3 μm / 3 μm).
 表2A及び表2Bは、樹脂組成物の組成を示す。
Figure JPOXMLDOC01-appb-T000002
Table 2A and Table 2B show the composition of the resin composition.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 表3は、各実施例及び各比較例の印刷用紙の組成を示す。なお、各印刷用紙は、帯電防止層/多孔質層/中間層/基材層/中間層/多孔質層/帯電防止層の層構成を有するが、基材層の一方の面側と他方の面側とで帯電防止層/多孔質層/中間層の組成は変わらないため、表3は基材層の一方の面に設けられた帯電防止層/多孔質層/中間層の組成のみを示す。 Table 3 shows the composition of the printing paper of each example and each comparative example. Each printing paper has a layer structure of an antistatic layer / a porous layer / an intermediate layer / a base material layer / an intermediate layer / a porous layer / an antistatic layer, but one surface side of the base material layer and the other Since the composition of the antistatic layer / porous layer / intermediate layer does not change from that of the surface side, Table 3 shows only the composition of the antistatic layer / porous layer / intermediate layer provided on one surface of the base material layer. ..
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 各実施例及び比較例の印刷用紙について、下記測定条件により各種測定を行った。
<空孔率>
 多孔質層の空孔率は、電子顕微鏡で観察した印刷用紙の断面の一定領域において、空孔が占める面積の比率より求めた。具体的には、測定対象の印刷用紙の任意の一部を切り取り、エポキシ樹脂で包埋して固化させた後、ミクロトームを用いて測定対象の印刷用紙の面方向に垂直に切断し、その切断面が観察面となるように観察試料台に貼り付けた。観察面に金又は金-パラジウム等を蒸着し、電子顕微鏡にて観察しやすい任意の倍率(例えば、500倍~3000倍の拡大倍率)において印刷用紙の空孔を観察し、観察した領域を画像データとして取り込んだ。得られた画像データは画像解析装置にて画像処理を行い、各層間の境界から多孔質層を判別して多孔質層の一定領域における空孔部分の面積率(%)を求めた。任意の10箇所以上の観察における測定値を平均して、空孔率(%)とした。
Various measurements were carried out on the printing papers of each Example and Comparative Example under the following measurement conditions.
<Vacancy rate>
The porosity of the porous layer was determined from the ratio of the area occupied by the pores in a certain region of the cross section of the printing paper observed with an electron microscope. Specifically, an arbitrary part of the printing paper to be measured is cut out, embedded in epoxy resin and solidified, and then cut perpendicularly to the surface direction of the printing paper to be measured using a microtome, and the cutting is performed. It was attached to the observation sample table so that the surface became the observation surface. Gold or gold-palladium is deposited on the observation surface, and the pores of the printing paper are observed at an arbitrary magnification (for example, 500 to 3000 times magnification) that is easy to observe with an electron microscope, and the observed area is imaged. Imported as data. The obtained image data was subjected to image processing by an image analyzer, and the porous layer was discriminated from the boundary between the layers to determine the area ratio (%) of the pore portion in a certain region of the porous layer. The vacancy rate (%) was obtained by averaging the measured values at any 10 or more observation points.
<表面固有抵抗>
 JIS-K-6911:1995に準拠し、印刷用紙を温度23℃、相対湿度50RH%の雰囲気下で2時間以上置いて状態を一定に調整した後、帯電防止層側の表面の表面固有抵抗値(logΩ)を絶縁抵抗計(型番:DSM-8103、東亜電波工業社製)を用いて測定した。
<Surface specific resistance>
In accordance with JIS-K-6911: 1995, the printing paper is left in an atmosphere of a temperature of 23 ° C. and a relative humidity of 50 RH% for 2 hours or more to adjust the state to a constant value, and then the surface specific resistance value of the surface on the antistatic layer side. (LogΩ) was measured using an insulation resistance tester (model number: DSM-8103, manufactured by Toa Denpa Kogyo Co., Ltd.).
<吸油量>
 印刷用紙を縦横100mmの正方形に切り出してサンプルを作成し、その質量を測定した。Mineral Oil (和光純薬社製:密度0.84)を容器に入れ、液温20℃になるように調整し、切り出したサンプルの片面のみがMineral Oilにつくように浮かべて、吸油させた。5秒間浮かべた後、取り出して吸油させた面に付着した余分なMineral Oilを十分にふき取った。ふき取り後、再度サンプルの質量を測定し、吸油させた面積、すなわち切り出したサンプル全面の面積から下記式により吸油量を求めた。
 吸油量(g/m)=
   {(吸油後の質量(g))―(吸油前の質量(g))}/(吸油させた面積(m2))
<Oil absorption>
A sample was prepared by cutting out a printing paper into a square having a length and width of 100 mm, and the mass thereof was measured. Mineral Oil (manufactured by Wako Pure Chemical Industries, Ltd .: density 0.84) was placed in a container, adjusted to a liquid temperature of 20 ° C., and floated so that only one side of the cut-out sample was attached to Mineral Oil to absorb oil. After floating for 5 seconds, the excess Mineral Oil adhering to the oil-absorbed surface was thoroughly wiped off. After wiping, the mass of the sample was measured again, and the oil absorption amount was calculated by the following formula from the area where the oil was absorbed, that is, the area of the entire surface of the cut out sample.
Oil absorption (g / m 2 ) =
{(Mass after oil absorption (g))-(Mass before oil absorption (g))} / (Area absorbed oil (m 2 ))
<表面の窒素原子の原子濃度比>
 印刷用紙の表面の炭素原子及び窒素原子の原子濃度(atom%)の合計に対する窒素原子の原子濃度(atom%)の比率(%)を、XPSにより下記測定条件で測定した。 
 装置:K-Alpha 
 励起X線:AlKα 
 X線出力:72W 
 X線径:400μm
 光電子脱出角度:45°
<Atomic concentration ratio of nitrogen atoms on the surface>
The ratio (%) of the atomic concentration (atom%) of nitrogen atoms to the total atomic concentrations (atom%) of carbon atoms and nitrogen atoms on the surface of the printing paper was measured by XPS under the following measurement conditions.
Equipment: K-Alpha
Excited X-ray: AlKα
X-ray output: 72W
X-ray diameter: 400 μm
Photoelectron escape angle: 45 °
 具体的には、測定はナロースキャンで行い炭素原子のC1sピークのピーク面積と、窒素原子のN1sピークのピーク面積との合計に対する、窒素原子のN1sピークのピーク面積の割合を、窒素原子の原子濃度比として求めた。 Specifically, the measurement is performed by a narrow scan, and the ratio of the peak area of the N1s peak of the nitrogen atom to the sum of the peak area of the C1s peak of the carbon atom and the peak area of the N1s peak of the nitrogen atom is determined by the atom of the nitrogen atom. It was calculated as a concentration ratio.
(評価)
 各実施例及び比較例の印刷用紙に下記方法で印刷を施し、得られた印刷物についてケミカルゴーストの抑制効果、インク乾燥性及びエッジピッキングの評価を行った。
(Evaluation)
The printing papers of each Example and Comparative Example were printed by the following methods, and the obtained printed matter was evaluated for the effect of suppressing chemical ghosts, ink drying property, and edge picking.
<ケミカルゴーストの抑制効果>
 2枚の印刷用紙を用意した。そのうちの1枚の印刷用紙の一方の面に、下記印刷機及びインクを使用してインクの転移量が1.5g/mとなるように印刷した。印刷には、印刷用紙の幅方向両端のみ印刷を行う印刷ロールを用いた。
 印刷機:RIテスター(小久保精密社製)
 インク:Fusion-G MK 墨インク(DIC社製、パルプ紙用の酸化重合型油性インク(溶剤5~15%))
<Suppressive effect of chemical ghost>
Two sheets of printing paper were prepared. Printing was performed on one side of one of the printing sheets using the following printing machine and ink so that the transfer amount of the ink was 1.5 g / m 2 . For printing, a printing roll was used, which prints only on both ends of the printing paper in the width direction.
Printing machine: RI tester (manufactured by Kokubo Precision Co., Ltd.)
Ink: Fusion-G MK ink (DIC, oxidative polymerization type oil-based ink for pulp paper (solvent 5 to 15%))
 得られた印刷物Aの印刷面を上向きにしてバットの上に置いた後、印刷物Aの印刷面上にもう1枚の印刷用紙を直ちに置き、この印刷用紙上から用紙サイズと同じサイズで質量が1kgの重りを乗せた。バットを温度35℃、相対湿度80RH%の室内に72時間置いた後、重りを外して一番上の印刷用紙の下面(印刷物Aの印刷面に重ねられていた面)に印刷し、24時間乾燥させた。2枚目の印刷は、幅方向全体に印刷を行う印刷ロールを用いた以外は印刷物Aと同様に行った。 After placing the obtained printed matter A on the bat with the printed side facing up, another printing paper is immediately placed on the printed side of the printed matter A, and the mass is the same as the paper size from the printed matter A. A 1 kg weight was placed on it. After placing the vat in a room with a temperature of 35 ° C. and a relative humidity of 80 RH% for 72 hours, the weight is removed and printing is performed on the lower surface of the top printing paper (the surface overlapped with the printed surface of printed matter A) for 24 hours. It was dried. The second sheet was printed in the same manner as the printed matter A except that a printing roll for printing in the entire width direction was used.
 図2は、印刷物Aの印刷面A1と印刷物Bの印刷面B2を示す。
 図2に示すように、印刷物Aの印刷面A1は、2cmの間隔を空けて幅方向両端側に位置する2つの印刷領域Raを含む。各印刷領域Raの幅方向の一端から他端までのサイズは24cmである。一方、印刷物Bの印刷面B1は、幅方向のサイズが24cmの1つの印刷領域Rbを含む。印刷領域Rbの幅方向の両端の位置は、各印刷領域Raの幅方向の両端の位置と同じである。
FIG. 2 shows the printed surface A1 of the printed matter A and the printed surface B2 of the printed matter B.
As shown in FIG. 2, the print surface A1 of the printed matter A includes two print areas Ra located on both end sides in the width direction with an interval of 2 cm. The size of each print area Ra from one end to the other end in the width direction is 24 cm. On the other hand, the print surface B1 of the printed matter B includes one print area Rb having a size of 24 cm in the width direction. The positions of both ends of the print area Rb in the width direction are the same as the positions of both ends of each print area Ra in the width direction.
 印刷物Bの印刷領域Rbのうち、印刷物Aの各印刷領域Raと接触していた印刷領域Rb1のインク濃度D1と、接触していなかった印刷領域Rb2のインク濃度D2を測定した。測定時、印刷物Bの印刷部分のうち、印刷物Aの印刷領域Raと接触した印刷領域Rb1と接触していなかった印刷領域Rb2の境界から、5~10mm離れた位置においてインク濃度D1及びD2を測定した。インク濃度は、X-Rite 530(エックスライト株式会社製)を用いて測定した。測定したインク濃度D1及びD2の濃度差Δを下記式により求めた。
  濃度差Δ=D2-D1
Among the print areas Rb of the printed matter B, the ink density D1 of the print area Rb1 that was in contact with each print area Ra of the printed matter A and the ink density D2 of the print area Rb2 that was not in contact were measured. At the time of measurement, the ink densities D1 and D2 were measured at a position 5 to 10 mm away from the boundary of the print area Rb2 that was in contact with the print area Ra of the printed matter A and not in contact with the print area Rb2 of the printed matter B. did. The ink density was measured using X-Rite 530 (manufactured by X-Rite Co., Ltd.). The density difference Δ between the measured ink densities D1 and D2 was calculated by the following formula.
Concentration difference Δ = D2-D1
 求めた濃度差Δによりケミカルゴーストの抑制効果を下記基準で評価した。
 ◎:Δ≦0.05であり、インクが良好に転写している。目視でも差異が確認できず、ケミカルゴーストが十分に抑制されている。
 〇:0.05<Δ≦0.2であり、インクが良好に転写しており、ケミカルゴーストが抑制されている
 ×:0.2<Δであり、インクが十分に転写していないことから、ケミカルゴーストの抑制が十分でない
The effect of suppressing chemical ghosts was evaluated based on the obtained concentration difference Δ according to the following criteria.
⊚: Δ ≦ 0.05, and the ink is transferred well. No difference can be confirmed visually, and chemical ghosts are sufficiently suppressed.
〇: 0.05 <Δ≤0.2, the ink is transferred well, and chemical ghosts are suppressed. ×: 0.2 <Δ, and the ink is not sufficiently transferred. , Chemical ghost suppression is not enough
<インクの乾燥性> 
 菊四截寸延び4色オフセット印刷機(機器名:Ryobi524GX、リョービMHIグラフィックテクノロジー社製)、及び酸化重合型油性オフセットインク(商品名:Fusion-G MK墨、藍、紅、透明黄、DIC社製)を用いて、各実施例、比較例の印刷用紙に油性オフセット印刷を行った。使用した油性オフセットインクは、パルプ紙用のインクとして市販されているものである。また、それぞれの油性オフセットインクの溶剤量は、墨で5~15%、藍で15~25%、紅で15~25%、透明黄で20~30%である。
<Ink drying property>
Kiku four-dimensional extension 4-color offset printing machine (device name: Ryobi 524GX, manufactured by Ryobi MHI Graphic Technology Co., Ltd.), and oxidation polymerization type oil-based offset ink (trade name: Fusion-GMK ink, indigo, red, transparent yellow, DIC The printing papers of each Example and Comparative Example were subjected to oil-based offset printing. The oil-based offset ink used is commercially available as an ink for pulp paper. The solvent amount of each oil-based offset ink is 5 to 15% for black ink, 15 to 25% for indigo, 15 to 25% for red, and 20 to 30% for transparent yellow.
 なお、印刷条件として、PS版(商品名:XP-F、富士フィルム社製)、ブランケット(商品名:D-3000、T&K TOKA社製)、パウダー(商品名:ニッカリコ AS-100S、ニッカ社製)、湿し水(H液(商品名:アストロマーク3、日研化学研究所製)1.0%及びIPA5.0%添加、水温10℃)を用いた。
 また、印刷条件として、印刷室内の温度を20~25℃に、相対湿度を40~60RH%に調整し、色順を墨、藍、紅、透明黄の順とし、印刷速度は8000枚/時間とした。この時、墨、藍、紅、透明黄の各色単色のベタ印刷部及び墨、藍、紅、透明黄の全色が印刷される400%ベタ印刷部を印刷流れ方向に配置する絵柄を印刷した。
 墨、藍、紅、透明黄の単色ベタ部の濃度がそれぞれ1.85、1.55、1.45、1.00となるようインク転移量を調整し、湿し水は地汚れが発生しないレベルで極力少なくした条件で200枚以上印刷を行い、印刷後順次下から重ねて保存した。
The printing conditions include PS version (product name: XP-F, manufactured by Fuji Film Co., Ltd.), blanket (product name: D-3000, manufactured by T & K TOKA), powder (product name: Nikka Rico AS-100S, manufactured by Nikka Co., Ltd.). ), Sampling water (H solution (trade name: Astromark 3, manufactured by Nikken Kagaku Kenkyusho) 1.0% and IPA 5.0% added, water temperature 10 ° C.) was used.
As printing conditions, the temperature in the printing room is adjusted to 20 to 25 ° C., the relative humidity is adjusted to 40 to 60 RH%, the color order is black, indigo, red, and transparent yellow, and the printing speed is 8000 sheets / hour. And said. At this time, a pattern was printed in which a solid printing part of each color of black, indigo, red, and transparent yellow and a 400% solid printing part on which all colors of black, indigo, red, and transparent yellow were printed were arranged in the printing flow direction. ..
The amount of ink transfer is adjusted so that the densities of the single color solid parts of black, indigo, red, and transparent yellow are 1.85, 1.55, 1.45, and 1.00, respectively, and the dampening water does not cause background stains. More than 200 sheets were printed under the condition that the level was reduced as much as possible, and after printing, the sheets were sequentially stored from the bottom.
 印刷後1時間ごとに、重ねられた印刷物の上部から50枚程度下の部分から抜き出した印刷物に対して、次のようにインク乾燥性を評価した。
 〇:400%ベタ印刷部が6時間以内にセット乾燥した
 △:400%ベタ印刷部が6時間を超えて12時間以内にセット乾燥した
 ×:400%ベタ印刷部が12時間以内にセット乾燥しなかった
The ink drying property was evaluated as follows for the printed matter extracted from the portion about 50 sheets below the upper part of the stacked printed matter every hour after printing.
〇: 400% solid printing part was set and dried within 6 hours Δ: 400% solid printing part was set and dried within 12 hours over 6 hours ×: 400% solid printing part was set and dried within 12 hours Did not
<エッジピッキング>
 上記<インクの乾燥性>と同じ印刷条件により、各実施例及び比較例の印刷用紙に油性オフセット印刷を行った。重ねられた印刷物の上部から50枚程下の部分から抜き出した印刷物に対して、次のようにエッジピッキングを評価した。
 ◎:400%ベタ印刷部の端部に空白部がなく、印刷版の絵柄通りである
 〇:400%ベタ印刷部の端部に空白部がごくわずかに点在している
 △:400%ベタ印刷部の端部に空白部が点在している
 ×:400%ベタ印刷部の端部に空白部が連続的に発生
<Edge picking>
Oil-based offset printing was performed on the printing papers of the respective examples and comparative examples under the same printing conditions as the above <ink dryness>. Edge picking was evaluated as follows for the printed matter extracted from the portion about 50 sheets below the top of the stacked printed matter.
⊚: There is no blank part at the end of the 400% solid printing part, and it is as the pattern of the printing plate. 〇: 400% solid There are very few blank parts at the end of the printing part. △: 400% solid Blanks are scattered at the edges of the printed part ×: 400% solid Blanks are continuously generated at the edges of the printed part
 表4は、評価結果を示す。なお、表4中の「-」は、用紙同士が貼りつき、ケミカルゴースト抑制効果を評価できなかったことを表す。
Figure JPOXMLDOC01-appb-T000005
Table 4 shows the evaluation results. In addition, "-" in Table 4 indicates that the papers were stuck to each other and the chemical ghost suppressing effect could not be evaluated.
Figure JPOXMLDOC01-appb-T000005
 表4に示すように、実施例1~6及び14の印刷用紙は、いずれもインクの乾燥性に優れ、ケミカルゴーストも効果的に抑制されていることが分かる。また、実施例7~9の印刷用紙はエッジピッキングが少なく、実施例10~13及び15の印刷用紙はケミカルゴーストの抑制効果がより優れている。 As shown in Table 4, it can be seen that the printing papers of Examples 1 to 6 and 14 are all excellent in ink drying property and that chemical ghosts are effectively suppressed. Further, the printing papers of Examples 7 to 9 have less edge picking, and the printing papers of Examples 10 to 13 and 15 have a more excellent effect of suppressing chemical ghosts.
 一方、比較例1~5の印刷用紙は、インクの乾燥が十分でなく、ケミカルゴーストも発生して濃度差が生じている。また、比較例4によれば、空孔率が高くても吸油量が十分でないため、インクの乾燥が不十分になることが分かる。 On the other hand, in the printing papers of Comparative Examples 1 to 5, the ink was not sufficiently dried, and chemical ghosts were generated, resulting in a difference in density. Further, according to Comparative Example 4, it can be seen that even if the pore ratio is high, the amount of oil absorbed is not sufficient, so that the ink is not sufficiently dried.
 本出願は、2019年4月2日に出願された日本特許出願である特願2019-70505号に基づく優先権を主張し、当該日本特許出願のすべての記載内容を援用する。 This application claims priority based on Japanese Patent Application No. 2019-70505, which is a Japanese patent application filed on April 2, 2019, and incorporates all the contents of the Japanese patent application.
10・・・印刷用紙、1・・・熱可塑性樹脂フィルム、2,2a・・・多孔質層、3,3a・・・帯電防止層、4・・・基材層、5,5a・・・中間層

 
10 ... Printing paper, 1 ... Thermoplastic resin film, 2,2a ... Porous layer, 3,3a ... Antistatic layer, 4 ... Base material layer, 5,5a ... Middle layer

Claims (11)

  1.  多孔質層を含む熱可塑性樹脂フィルムと、前記熱可塑性樹脂フィルムの前記多孔質層上に設けられた帯電防止層と、を有する印刷用紙であって、
     前記印刷用紙の吸油量が、1.0g/m以上であり、
     前記印刷用紙の前記帯電防止層側の表面をX線光電子分光法により測定したとき、窒素原子と炭素原子の各原子濃度の合計に対する窒素原子の原子濃度の比率が、3.0%以下である、
     印刷用紙。
    A printing paper having a thermoplastic resin film including a porous layer and an antistatic layer provided on the porous layer of the thermoplastic resin film.
    The oil absorption of the printing paper is 1.0 g / m 2 or more.
    When the surface of the printing paper on the antistatic layer side is measured by X-ray photoelectron spectroscopy, the ratio of the atomic concentration of nitrogen atom to the total atomic concentration of nitrogen atom and carbon atom is 3.0% or less. ,
    Printing paper.
  2.  前記帯電防止層が、窒素含有化合物を含有し、
     前記窒素含有化合物が、第4級窒素含有化合物を含み、
     前記窒素含有化合物中の前記第4級窒素含有化合物の含有量が、50質量%以上である、
     請求項1に記載の印刷用紙。
    The antistatic layer contains a nitrogen-containing compound and
    The nitrogen-containing compound contains a quaternary nitrogen-containing compound.
    The content of the quaternary nitrogen-containing compound in the nitrogen-containing compound is 50% by mass or more.
    The printing paper according to claim 1.
  3.  前記窒素含有化合物が、第1級窒素含有化合物又は第2級窒素含有化合物を含み、
     前記窒素含有化合物中の前記第1級窒素含有化合物及び前記第2級窒素含有化合物の含有量が、20質量%以下である、
     請求項1に記載の印刷用紙。
    The nitrogen-containing compound contains a primary nitrogen-containing compound or a secondary nitrogen-containing compound.
    The content of the primary nitrogen-containing compound and the secondary nitrogen-containing compound in the nitrogen-containing compound is 20% by mass or less.
    The printing paper according to claim 1.
  4.  前記帯電防止層が、窒素含有化合物及び架橋剤を含有し、
     前記窒素含有化合物が、第1級窒素含有化合物又は第2級窒素含有化合物を含む、
     請求項1に記載の印刷用紙。
    The antistatic layer contains a nitrogen-containing compound and a cross-linking agent.
    The nitrogen-containing compound contains a primary nitrogen-containing compound or a secondary nitrogen-containing compound.
    The printing paper according to claim 1.
  5.  多孔質層を含む熱可塑性樹脂フィルムと、前記熱可塑性樹脂フィルムの前記多孔質層上に設けられた帯電防止層と、を有する印刷用紙であって、
     前記印刷用紙の吸油量が、1.0g/m以上であり、
     前記帯電防止層が窒素含有化合物を含有し、前記窒素含有化合物に含まれる全窒素中の第1級又は第2級窒素の含有量の合計が10%以下である、
     印刷用紙。
    A printing paper having a thermoplastic resin film including a porous layer and an antistatic layer provided on the porous layer of the thermoplastic resin film.
    The oil absorption of the printing paper is 1.0 g / m 2 or more.
    The antistatic layer contains a nitrogen-containing compound, and the total content of primary or secondary nitrogen in the total nitrogen contained in the nitrogen-containing compound is 10% or less.
    Printing paper.
  6.  前記多孔質層が、熱可塑性樹脂及びフィラーを含有し、
     前記フィラーの粒度分布D10-D90が、4μm以下である、
     請求項1~5のいずれか一項に記載の印刷用紙。
    The porous layer contains a thermoplastic resin and a filler, and the porous layer contains a thermoplastic resin and a filler.
    The particle size distribution D10-D90 of the filler is 4 μm or less.
    The printing paper according to any one of claims 1 to 5.
  7.  前記多孔質層が、前記熱可塑性樹脂として、軟質ポリオレフィン系樹脂を含有する、
     請求項1~6のいずれか一項に記載の印刷用紙。
    The porous layer contains a soft polyolefin resin as the thermoplastic resin.
    The printing paper according to any one of claims 1 to 6.
  8.  前記基材層と前記多孔質層との間に中間層を有し、
     前記中間層が、前記中間層の厚みより大きい平均粒子径を有するフィラーを含有する、
     請求項1~7のいずれか一項に記載の印刷用紙。
    It has an intermediate layer between the base material layer and the porous layer,
    The intermediate layer contains a filler having an average particle size larger than the thickness of the intermediate layer.
    The printing paper according to any one of claims 1 to 7.
  9.  前記多孔質層が、少なくとも1軸方向に延伸された延伸フィルムである、
     請求項1~8のいずれか一項に記載の印刷用紙。
    The porous layer is a stretched film stretched in at least one axial direction.
    The printing paper according to any one of claims 1 to 8.
  10.  請求項1~9のいずれか一項に記載の印刷用紙と、
     前記印刷用紙上に設けられた印刷層と、
     を有する、印刷物。
    The printing paper according to any one of claims 1 to 9 and
    The printing layer provided on the printing paper and
    Have a printed matter.
  11.  前記印刷層が酸化重合型インクにより形成される、
     請求項10に記載の印刷物。

     
    The print layer is formed by an oxidative polymerization type ink.
    The printed matter according to claim 10.

PCT/JP2020/014211 2019-04-02 2020-03-27 Printing paper and printed matter WO2020203845A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021512044A JP7142153B2 (en) 2019-04-02 2020-03-27 Printing paper and printed matter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-070505 2019-04-02
JP2019070505 2019-04-02

Publications (1)

Publication Number Publication Date
WO2020203845A1 true WO2020203845A1 (en) 2020-10-08

Family

ID=72667694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014211 WO2020203845A1 (en) 2019-04-02 2020-03-27 Printing paper and printed matter

Country Status (2)

Country Link
JP (1) JP7142153B2 (en)
WO (1) WO2020203845A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233291A (en) * 1986-04-03 1987-10-13 Dainippon Printing Co Ltd Sheet to be thermally transferred
JPH0551470A (en) * 1991-08-23 1993-03-02 Toray Ind Inc Recording sheet
JPH05278324A (en) * 1992-04-04 1993-10-26 Toray Ind Inc Recording sheet
JPH0687196A (en) * 1992-09-07 1994-03-29 Toray Ind Inc Laminate
JP2000131870A (en) * 1998-10-22 2000-05-12 Kiso Kasei Sangyo Kk Sheet for printing and copying
JP2012145935A (en) * 2010-12-22 2012-08-02 Yupo Corp Electrostatic attracting sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028658A1 (en) 2007-08-29 2009-03-05 Sumco Corporation Silicon single crystal wafer for igbt, method for manufacturing silicon single crystal wafer for igbt and method for assuring resistivity of silicon single crystal wafer for igbt

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233291A (en) * 1986-04-03 1987-10-13 Dainippon Printing Co Ltd Sheet to be thermally transferred
JPH0551470A (en) * 1991-08-23 1993-03-02 Toray Ind Inc Recording sheet
JPH05278324A (en) * 1992-04-04 1993-10-26 Toray Ind Inc Recording sheet
JPH0687196A (en) * 1992-09-07 1994-03-29 Toray Ind Inc Laminate
JP2000131870A (en) * 1998-10-22 2000-05-12 Kiso Kasei Sangyo Kk Sheet for printing and copying
JP2012145935A (en) * 2010-12-22 2012-08-02 Yupo Corp Electrostatic attracting sheet

Also Published As

Publication number Publication date
JPWO2020203845A1 (en) 2020-10-08
JP7142153B2 (en) 2022-09-26

Similar Documents

Publication Publication Date Title
JP5077229B2 (en) Biaxially oriented white polypropylene film, reflector and thermal transfer recording receiving sheet
JP5701461B1 (en) Labeled plastic container
JP6310232B2 (en) Thermoplastic resin film, adhesive sheet, and image receiving sheet for thermal transfer
WO2014092142A1 (en) Recording paper
JP7308229B2 (en) Thermoplastic resin film, recording paper and recording label
WO2020203845A1 (en) Printing paper and printed matter
US7862884B2 (en) Electrophotographic film and recorded material using the same
US6863934B2 (en) Method of surface treatment of thermoplastic resin film
JP7378614B2 (en) Laminate with porous layer and inkjet paper
JP5052759B2 (en) Surface treatment method for thermoplastic resin film and thermoplastic resin film
US11654708B2 (en) Printing paper
JP4219265B2 (en) Electrophotographic film and recorded matter using the same
JP2004122774A (en) Melting thermal transfer recording paper
WO2022208966A1 (en) Recording paper
JP7123272B2 (en) Recording paper and recording label
US8211507B2 (en) Method for producing thermoplastic resin film
JP2022157125A (en) Laminated film and method for manufacturing the same
JP7139130B2 (en) printing paper
JP2023137280A (en) Laminate and packaging material
JP2023071094A (en) Recording paper
TWI736598B (en) Biaxially stretched polypropylene resin film and packaging body
JP2022151706A (en) laminated film
WO2019087979A1 (en) Thermoplastic resin film and inkjet paper
JP2023138132A (en) Laminate and packaging material
JP4450560B2 (en) Electrophotographic film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021512044

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20783395

Country of ref document: EP

Kind code of ref document: A1