WO2020203700A1 - Device, method, and program for controlling observation - Google Patents

Device, method, and program for controlling observation Download PDF

Info

Publication number
WO2020203700A1
WO2020203700A1 PCT/JP2020/013845 JP2020013845W WO2020203700A1 WO 2020203700 A1 WO2020203700 A1 WO 2020203700A1 JP 2020013845 W JP2020013845 W JP 2020013845W WO 2020203700 A1 WO2020203700 A1 WO 2020203700A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
observation
imaging
unit
determination
Prior art date
Application number
PCT/JP2020/013845
Other languages
French (fr)
Japanese (ja)
Inventor
兼太 松原
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2020203700A1 publication Critical patent/WO2020203700A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements

Definitions

  • the present disclosure relates to an observation control device, a method, and a program for imaging and observing a container containing an observation object.
  • pluripotent stem cells such as ES (Embryonic Stem) cells and iPS (Induced Pluripotent Stem) cells and cells induced to differentiate are imaged with an observation device such as a microscope, and cell differentiation is captured by capturing the characteristics of the images.
  • an observation device such as a microscope
  • cell differentiation is captured by capturing the characteristics of the images.
  • Pluripotent stem cells such as ES cells and iPS cells have the ability to differentiate into cells of various tissues, and are attracting attention as being applicable in regenerative medicine, drug development, elucidation of diseases, and the like. There is.
  • the well plate well plates having different numbers of wells such as 6 wells, 12 wells, 24 wells, 48 wells and 96 wells are used. Further, regarding the well plate, the center position of the well, the distance between the wells, and the arrangement of the wells on the plate differ depending on the manufacturer of the well plate.
  • the type of container is set in the photographing menu when performing imaging. If the container is a well plate, the number of wells, the manufacturer name, and the like are also set in the shooting menu.
  • imaging is performed at the well position according to the well plate to be used, so that the imaging position and the well position should be matched. Can be done. Further, when the entire well plate is imaged and then only the image of the well position is extracted to generate the observation image, the image of the well position is specified according to the container to be used and the observation image is generated. be able to.
  • the template image and the image obtained by imaging the container do not match.
  • the acquired observation image may be an image that does not include an image of cells in the wells of the container. Since cells change from moment to moment due to culture, a failure in imaging means that an image of the cells cannot be obtained at the required time. Therefore, if the imaging fails, the necessary opportunity to capture the observation image is lost.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to prevent a loss of necessary observation image imaging opportunities.
  • the observation control device includes a condition setting unit for setting acquisition conditions for acquiring an observation image by imaging an observation object housed in a container with an imaging unit. It is provided with a determination unit that determines whether or not a container corresponding to the set acquisition condition is used based on the determination image including the observation target.
  • the determination unit may give a warning when the determination is denied.
  • the observation control device further includes an imaging control unit that acquires an observation image by imaging the observation target with the imaging unit based on the set acquisition conditions. If the judgment is denied, the condition setting unit sets new acquisition conditions corresponding to the container being used, and sets new acquisition conditions.
  • the image pickup control unit may acquire a new observation image based on the new acquisition condition.
  • the observation control device further includes an imaging control unit that acquires an observation image by imaging the observation target with the imaging unit based on the set acquisition conditions. If the judgment is denied, the condition setting unit sets new acquisition conditions corresponding to the container being used, and sets new acquisition conditions.
  • the imaging control unit may acquire both an observation image based on the acquisition conditions and a new observation image based on the new acquisition conditions.
  • observation control device further includes an imaging control unit that acquires an observation image by imaging the observation target with the imaging unit based on the set acquisition conditions.
  • the determination image may be an observation image acquired based on the set acquisition conditions.
  • the imaging control unit acquires an observation image including only the region where the observation target exists in the container based on the acquisition conditions.
  • the determination unit determines whether or not the container corresponding to the set acquisition condition is used by determining whether or not the observation target is included in the area where the observation target should exist in the observation image. It may be a thing.
  • observation control device may further include a determination image acquisition unit that captures an observation target and acquires a determination image.
  • the determination unit may further determine whether or not the orientation of the container included in the image to be observed is correct.
  • the culture container may be a well plate.
  • the observation control method includes a step of setting acquisition conditions for acquiring an observation image by imaging an observation target housed in a container with an imaging unit. It has a step of determining whether or not a container corresponding to the set acquisition condition is used based on the determination image including the observation target.
  • observation control method may be provided as a program to be executed by a computer.
  • observational control devices include a memory for storing instructions to be executed by a computer and a memory.
  • the processor comprises a processor configured to execute a stored instruction.
  • the acquisition conditions for acquiring the observation image by imaging the observation target housed in the container with the imaging unit are set. Based on the determination image including the observation target, the process of determining whether or not the container corresponding to the set acquisition condition is used is executed.
  • the figure which shows the scanning position of the observation position in a culture vessel Diagram showing the condition setting screen The figure for demonstrating the acquisition position of the phase difference image in the well plate of 6 wells.
  • the figure which shows the composite retardation image The figure for demonstrating the acquisition position of the phase difference image when the culture vessel corresponding to the acquisition condition is not used.
  • the figure which shows the synthetic phase difference image when the culture vessel corresponding to the acquisition condition is not used.
  • the figure for demonstrating the acquisition position of the phase difference image when the culture vessel corresponding to the acquisition condition is not used.
  • the figure which shows the synthetic phase difference image when the culture vessel corresponding to the acquisition condition is not used.
  • Diagram showing examples of multiple templates Diagram showing the warning screen
  • a flowchart showing the processing performed in the first embodiment The figure which shows the schematic structure of the microscope apparatus in the microscope observation system using the observation control apparatus by 1st Embodiment of this disclosure.
  • a flowchart showing the processing performed in the second embodiment Diagram showing an example of a well plate with a fixed top and bottom
  • FIG. 1 is a diagram showing a schematic configuration of a microscope device in a microscope observation system using the observation control device according to the first embodiment of the present disclosure.
  • the microscope device 10 is described in, for example, Japanese Patent Application Laid-Open No. 2018-054817, and obtains a phase difference image of cultured cells to be observed and combines the phase difference images to generate a composite phase difference image. To do. Specifically, as shown in FIG. 1, the microscope device 10 includes a white light source 11 that emits white light, a condenser lens 12, a slit plate 13, an imaging optical system 14, an imaging optical system driving unit 15, and an imaging element. A 16 and a detection unit 18 are provided. The retardation image and the composite retardation image correspond to the observation image.
  • the slit plate 13 is provided with a ring-shaped slit that transmits white light to a light-shielding plate that blocks white light emitted from the white light source 11, and is ring-shaped as the white light passes through the slit. Illumination light L is formed.
  • the imaging optical system 14 includes a phase difference lens and an imaging lens including an objective lens and a phase plate.
  • the imaging optical system 14 is moved in the optical axis direction by the imaging optical system driving unit 15 shown in FIG.
  • the optical axis direction and the Z direction (vertical direction) of the imaging optical system 14 are the same directions.
  • Autofocus control is performed by moving the imaging optical system 14 in the Z direction, and the contrast of the phase difference image captured by the image sensor 16 is adjusted.
  • the imaging optical system drive unit 15 includes an actuator such as a piezoelectric element, and drives the image based on a control signal output from an autofocus control unit 31 (see FIG. 2) described later.
  • the imaging optical system driving unit 15 is configured to pass the phase difference image that has passed through the imaging optical system 14 as it is. Further, the configuration of the imaging optical system driving unit 15 is not limited to the piezoelectric element, as long as the imaging optical system 14 can be moved in the Z direction, and other known configurations can be used.
  • the image sensor 16 captures a phase difference image imaged by the imaging optical system 14.
  • a CCD (Charge-Coupled Device) image sensor, a CMOS (Complementary Metal-Oxide Semiconductor) image sensor, or the like is used.
  • CMOS Complementary Metal-Oxide Semiconductor
  • an image sensor provided with an RGB (Red Green Blue) color filter may be used, or a monochrome image sensor may be used.
  • the image sensor 16 constitutes the image pickup unit.
  • the detection unit 18 detects the position of the culture vessel 50 installed on the stage 51 in the Z direction (vertical direction).
  • the detection unit 18 includes a first displacement sensor 18a and a second displacement sensor 18b.
  • the first displacement sensor 18a and the second displacement sensor 18b are provided side by side in the X direction shown in FIG. 1 with the imaging optical system 14 interposed therebetween.
  • the first displacement sensor 18a and the second displacement sensor 18b in the present embodiment are laser displacement meters, and by irradiating the culture vessel 50 with laser light and detecting the reflected light, the Z on the bottom surface of the culture vessel 50 is detected. Detect the position of the direction.
  • the bottom surface of the culture vessel 50 is a boundary surface between the bottom portion of the culture vessel 50 and the cells to be observed, that is, an observation target installation surface.
  • the position information indicating the position of the culture vessel 50 in the Z direction detected by the detection unit 18 is output to the autofocus control unit 31.
  • the autofocus control unit 31 controls the imaging optical system drive unit 15 based on the input position information, and performs autofocus control.
  • a stage 51 is provided between the slit plate 13, the imaging optical system 14, and the detection unit 18.
  • a culture vessel 50 containing cells to be observed is installed on the stage 51.
  • the culture vessel 50 is aligned with a predetermined position on the stage 51 and installed on the stage 51.
  • the culture container 50 a petri dish, a dish, a well plate, or the like can be used.
  • the cells contained in the culture vessel 50 include pluripotent stem cells such as iPS cells and ES cells, nerves, skin, myocardial and liver cells induced to differentiate from stem cells, and skin and retina extracted from the human body. There are cells of myocardium, blood cells, nerves and organs.
  • the stage 51 is moved in the X and Y directions orthogonal to each other by the horizontal drive unit 17 (see FIG. 2) described later.
  • the X and Y directions are orthogonal to the Z direction and are orthogonal to each other in the horizontal plane.
  • the X direction is the main scanning direction and the Y direction is the sub scanning direction.
  • a rectangular opening 51a shown by a line in FIG. 1 is formed.
  • the culture vessel 50 is installed on the member forming the opening 51a, and the illumination light L transmitted through the cells in the culture vessel 50 is configured to pass through the opening 51a.
  • FIG. 2 is a block diagram showing the configuration of the observation control device of the first embodiment.
  • the microscope device 10 a block diagram of a part of the configuration controlled by each part of the observation control device 20 is shown.
  • the observation control device 20 controls the entire microscope device 10 in the present embodiment, and is realized by installing the observation control program according to the first embodiment on the computer.
  • the observation control device 20 includes a CPU (Central Processing Unit) 21, a memory 22, and a storage 23 as a standard workstation configuration. Further, the observation control device 20 is connected to a display unit 24 such as a liquid crystal display and an input unit 25 such as a keyboard and a mouse.
  • a display unit 24 such as a liquid crystal display
  • an input unit 25 such as a keyboard and a mouse.
  • the storage 23 is composed of a hard disk drive or the like, and stores various information including information necessary for processing performed by the observation control device 20 according to the present embodiment.
  • the memory 22 stores the observation control program according to the present embodiment.
  • the observation control program defines autofocus control processing, scanning control processing, imaging control processing, condition setting processing, determination processing, and display control processing as processing to be executed by the CPU 21. Then, when the CPU 21 executes these processes according to the program, the computer functions as an autofocus control unit 31, a scanning control unit 32, an imaging control unit 33, a condition setting unit 34, a determination unit 35, and a display control unit 36.
  • the observation control device 20 may be configured only by the condition setting unit 34 and the determination unit 35. Further, the observation control device 20 may be configured only by the image pickup control unit 33, the condition setting unit 34, and the determination unit 35.
  • the display unit 24 displays a setting screen for setting acquisition conditions for the phase difference image, a generated composite phase difference image, and the like, and includes, for example, a liquid crystal display. Further, the display unit 24 may be configured by a touch panel and may also be used as the input unit 25.
  • the input unit 25 is provided with a mouse, a keyboard, and the like, and accepts various setting inputs by the operator.
  • the input unit 25 of the present embodiment accepts setting inputs such as image acquisition conditions.
  • the autofocus control unit 31 controls the imaging optical system drive unit 15 based on the position information in the Z direction of the culture vessel 50 detected by the detection unit 18 as described above. Then, the imaging optical system 14 moves in the optical axis direction by driving the imaging optical system driving unit 15, and autofocus control is performed.
  • the scanning control unit 32 drives and controls the horizontal drive unit 17, thereby moving the stage 51 in the X direction and the Y direction.
  • the horizontal drive unit 17 is composed of an actuator having a piezoelectric element or the like.
  • FIG. 3 is a diagram showing the scanning position of the observation position in the culture vessel 50 by the solid line M.
  • a well plate having 6 wells W is used as the culture container 50.
  • the imaging optical system 14 moves along the solid line M from the scanning start point S to the scanning end point E. That is, the observation position on the culture vessel 50 by the imaging optical system 14 is scanned in the positive direction (right direction in FIG. 3) in the X direction, then moves in the Y direction (downward direction in FIG. 3), and vice versa. It is scanned in the negative direction (leftward in FIG. 3). The observation position then moves again in the Y direction and is scanned again in the positive direction. In this way, the imaging optical system 14 scans the inside of the culture vessel 50 in a two-dimensional manner by repeatedly moving back and forth in the X direction and moving in the Y direction.
  • the observation position R of the culture vessel 50 is preceded by the imaging optical system 14 in the moving direction (that is, the main scanning direction) by the first displacement sensor 18a and the second displacement sensor 18b according to the moving direction.
  • the position in the Z direction is detected.
  • the autofocus control unit 31 performs autofocus control using the position information of the culture vessel 50 detected in advance in the Z direction.
  • the culture vessel 50 is imaged and a phase difference image is acquired.
  • the image pickup control unit 33 controls to take an image of the culture vessel 50 by the image pickup element 16 and acquire a phase difference image at each observation position by the imaging optical system 14 in the movement of the stage 51.
  • the image sensor 16 is controlled by the image pickup control unit 33 based on the phase difference image acquisition conditions set by the condition setting unit 34.
  • the condition setting unit 34 sets the acquisition conditions when acquiring the phase difference image. Specifically, an input of the type of the culture container 50 to be used by the operator is received from the input unit 25, and the acquisition condition is set based on the input type of the culture container 50. Therefore, the display control unit 36 displays a condition setting screen for setting the acquisition condition on the display unit 24.
  • FIG. 4 is a diagram showing a condition setting screen. As shown in FIG. 4, the condition setting screen 60 displays a plurality of commands for instructing the type of the culture vessel 50 to be used. For example, commands 61A-61C for selecting well plates, flasks and petri dishes as the type of culture vessel 50 are displayed.
  • commands 62A-62C for selecting well plate manufacturers are displayed.
  • FIG. 4 shows a state in which Company A is selected as the manufacturer. Therefore, in FIG. 4, for Company A, commands 63A-63D for selecting 6-well, 12-well, 24-well, 48-well, and 96-well are displayed.
  • the operator inputs the type of culture vessel to be used by selecting commands for the type of culture vessel, the manufacturer, and the number of wells using the input unit 25.
  • the condition setting unit 34 sets the acquisition condition for acquiring the phase difference image based on the input of the operator.
  • a phase difference image is acquired while operating the culture vessel 50 two-dimensionally.
  • the image sensor 16 is driven only at the position corresponding to the well W in the culture container 50 to image the culture container 50 and acquire the phase difference image.
  • the image pickup control unit 33 controls the image pickup so as to be performed.
  • the culture vessel 50 is imaged at the position where the diagonal line is given as shown in FIG. 5 to acquire the retardation image.
  • the image pickup control unit 33 controls the image pickup element 16.
  • the culture vessel 50 is positioned and installed at a predetermined position on the stage 51. Therefore, the culture vessel 50 is installed on the stage 51, and at least one of the position to be imaged after the start of scanning, the imaging timing, the size and magnification of the imaging field of view at the position to be imaged, and the like are set as acquisition conditions. By doing so, the culture vessel 50 can be imaged and a phase difference image can be obtained at the position where the diagonal line shown in FIG. 5 is provided.
  • the storage 23 stores a table in which various culture containers are associated with acquisition conditions including the position to be imaged according to the culture container, the imaging timing, the size and magnification of the imaging field of view, and the like. ing.
  • the condition setting unit 34 sets the acquisition conditions with reference to the table according to the type of the culture vessel 50 input from the input unit 25 by the operator.
  • the set acquisition conditions are output to the imaging control unit 33.
  • the image pickup control unit 33 acquires a phase difference image by controlling the image pickup device 16 and the like based on the input acquisition conditions to image the culture vessel 50.
  • the position where the cells to be observed are present differs depending on the type.
  • the position where the cells are present differs depending on the number of wells.
  • the size of the plate, the center position and size of each well differ depending on the manufacturer of the well plate, and therefore, the position where the cells exist in the well plate differs depending on the manufacturer. Therefore, when the position to be imaged, the imaging timing, and the like are set as the acquisition conditions as in the present embodiment, if the operator mistakenly inputs the type of the culture container 50 to be used, the culture container 50 to be used and the acquisition conditions are input. Will not match.
  • the determination unit 35 determines whether or not the culture vessel 50 corresponding to the acquisition conditions set by the condition setting unit 34 is used based on the determination image including the cells to be observed. Do. Therefore, in the present embodiment, the culture vessel 50 is first imaged to generate a synthetic retardation image. That is, one composite retardation image is obtained by scanning the culture vessel 50, acquiring the retardation image at the observation position where the retardation image should be acquired in the culture vessel 50, and combining the acquired retardation images. Generate. The display control unit 36 generates the composite retardation image.
  • the determination unit 35 uses the composite retardation image generated by the display control unit 36 as the determination image to perform the above determination.
  • the synthetic retardation image 70 includes an image of cells at the position of each well W of the culture vessel 50.
  • the composite retardation image 70 since the image of the culture vessel 50 is not included in the region other than the region including the retardation image, the composite retardation image 70 has a predetermined density (white, black, gray, etc.). There is. Further, in FIG. 6, for the sake of explanation, the edges of the six wells W contained in the culture vessel 50 are shown by broken lines.
  • the culture vessel 50 corresponding to the acquisition condition set by the condition setting unit 34 is not used, for example, when the culture vessel 50 used is a 6-well well plate of company A, the operator makes a mistake.
  • the position of the well of the culture vessel 50 used and the position where the phase difference image shown by the diagonal line is acquired. Does not match.
  • the synthetic retardation image 71 does not include the image of the cells in the well W that should be originally included.
  • the edges of the six wells contained in the culture vessel 50 are shown by broken lines.
  • FIG. 9 shows.
  • the position of the well of the culture vessel 50 used and the position where the phase difference image was acquired do not match.
  • the synthetic retardation image 72 does not include the image of the cells in the well W that should be originally included.
  • the edges of the six wells contained in the culture vessel 50 are shown by broken lines.
  • the determination unit 35 analyzes the generated synthetic retardation image and determines whether or not the culture vessel 50 corresponding to the acquisition conditions set by the condition setting unit 34 is used.
  • the edge of the well W is shown in the image of the cells included in the synthetic retardation image 70. Not included.
  • the culture vessel 50 corresponding to the set acquisition conditions is not used as in the synthetic retardation images 71 and 72 shown in FIGS. 8 and 10, the image of the cells contained in the synthetic retardation images 71 and 72 Includes the edge of the well W.
  • the characteristics of the culture vessel 50 such as the position and curvature of the edge of the well W differ depending on the manufacturer and the number of wells. For example, even in the same manufacturer, the position and curvature of the edge of the well W are different between the 6-well well plate and the 12-well well plate. Further, when the manufacturers are different, the positions of the edges of the wells W are different even in the same 6-well well plate.
  • the type of culture vessel, the manufacturer, and the number of wells of the culture vessel 50 that are expected to be used are imaged in advance to generate synthetic retardation images corresponding to various culture vessels.
  • the generated synthetic retardation image can recognize the characteristics of the culture vessel 50 such as the position and curvature of the edge of the well in the various culture vessels 50.
  • a plurality of composite retardation images generated in advance are stored in the storage 23 as templates.
  • FIG. 11 is a diagram showing an example of a plurality of templates T0.
  • the determination unit 35 first uses the acquired composite retardation image as the determination image, and the culture container 50 corresponding to the set acquisition conditions is used depending on whether or not the edge of the well W is included. Determine if it has been done. That is, when the composite retardation image as the determination image does not include the edge portion of the well W, the determination unit 35 determines that the culture container 50 corresponding to the set acquisition condition is used. For example, when the composite retardation image 70 shown in FIG. 6 is acquired, the composite retardation image 70 does not include the edge of the well W. In this case, the determination unit 35 determines that the culture vessel 50 that matches the acquisition conditions set by the condition setting unit 34 has been used.
  • the determination unit 35 compares each of the templates stored in the storage 23 with the position of the edge of the well W included in the composite retardation image, and further determines which culture container 50 was used. To do.
  • the determination unit 35 determines that the culture vessel 50 corresponding to the set acquisition condition is not used. Further, the determination unit 35 compares the position of the edge portion of the well W in the synthetic retardation image 71 with the plurality of templates T0 stored in the storage 23, and determines the culture vessel 50 used. In this case, the determination unit 35 determines that the culture vessel 50 used is a 12-well well plate of company A.
  • the determination unit 35 determines that the culture vessel 50 corresponding to the set acquisition condition is not used. Further, the determination unit 35 compares the position of the edge portion of the well W in the synthetic retardation image 72 with the plurality of templates T0 stored in the storage 23, and determines the culture vessel 50 used. In this case, the determination unit 35 determines that the culture vessel 50 used is a 6-well well plate of Company B.
  • the coordinates and curvature of the position of the edge of the well on the synthetic retardation image corresponding to the various culture containers 50 are stored as the characteristics of the culture container 50. You may.
  • the determination unit 35 determines the position and curvature of the edge of the well and the edge of the well in the various culture vessels 50 stored in the storage 23. Which culture container 50 was used may be determined by comparing the position and curvature of the culture vessel 50.
  • the determination unit 35 outputs information to that effect to the condition setting unit 34.
  • the condition setting unit 34 sets new acquisition conditions according to the culture vessel 50 used, and outputs the new setting conditions to the imaging control unit 33.
  • the image pickup control unit 33 takes an image of the culture vessel 50 based on the input new setting conditions. As a result, a new phase difference image is acquired based on the new acquisition conditions according to the culture vessel 50 used, and the display control unit 36 obtains a new composite retardation image based on the new phase difference image. Generate.
  • the determination unit 35 warns when it is determined that the culture vessel 50 corresponding to the set acquisition condition is not used.
  • a text indicating that the type of the culture container 50 input by the operator is different from the type of the culture container 50 used is displayed on the display unit 24, or an alarm sound or the like is emitted. It may be a thing.
  • the composite retardation image generated based on the acquisition conditions set according to the input of the operator and the new composite retardation image generated based on the new acquisition conditions may be displayed on the display unit 24.
  • FIG. 12 is a diagram showing a warning screen displayed on the display unit 24. As shown in FIG.
  • the text 81 of "The input culture vessel is different” the synthetic phase difference image 82 generated based on the acquisition conditions set according to the input of the operator, and A new composite retardation image 83 generated based on the new acquisition conditions is displayed.
  • a text indicating that the culture container input by the operator and the culture container used may be different may be sent to the operator's e-mail address by e-mail or the like.
  • the synthetic retardation image 82 based on the acquisition conditions set based on the type of the culture vessel 50 input by the operator and the new synthetic retardation image 83 based on the new acquisition conditions are also sent by e-mail or the like. It may be attached and sent to the operator.
  • FIG. 13 is a flowchart showing the processing performed in the first embodiment.
  • the culture vessel 50 containing the cells to be observed is placed on the stage 51 (step ST1).
  • the input unit 25 accepts the input of the type of the culture container 50 to be used by the operator, so that the condition setting unit 34 sets the acquisition conditions (step ST2).
  • the image pickup control unit 33 images the culture vessel 50 with the image pickup element 16 to acquire a phase difference image. (Step ST3).
  • the display control unit 36 generates a composite retardation image (step ST4).
  • the determination unit 35 uses the composite retardation image as the determination image to determine whether or not the culture vessel 50 corresponding to the set acquisition conditions is used (step ST5).
  • step ST5 is affirmed, the composite retardation image generated based on the set acquisition conditions is saved in the storage 23 (step ST6), and the process ends.
  • step ST5 When step ST5 is denied, the condition setting unit 34 sets a new acquisition condition corresponding to the culture vessel 50 used (step ST7), and the image pickup control unit 33 newly sets a new acquisition condition based on the new acquisition condition. Acquire a phase difference image (step ST8). Then, the display control unit 36 generates a new composite retardation image (step ST9). Further, the determination unit 35 issues a warning (step ST10) and ends the process.
  • the synthetic retardation image generated by imaging the culture vessel 50 is used as the determination image, and the culture vessel corresponding to the set acquisition conditions is used based on the determination image. It is determined whether or not 50 is used. Further, in the present embodiment, a warning is given based on the determination result, and a new acquisition condition corresponding to the culture vessel 50 used is set. As a result, the operator can reset the acquisition conditions or acquire the image to be observed based on the new acquisition conditions. Therefore, according to the present embodiment, it is possible to eliminate the failure of imaging, and as a result, it is possible to prevent the loss of the imaging opportunity of the necessary observation target cell.
  • a new acquisition condition corresponding to the culture container 50 used is set.
  • a composite phase difference image is generated based on the set acquisition conditions. Therefore, the operator can acquire a synthetic phase difference image appropriately including an image of cells without performing the work of re-inputting the correct type of the culture vessel 50. Therefore, according to the present embodiment, the work load of the operator can be reduced.
  • FIG. 14 is a diagram showing a schematic configuration of a microscope device in a microscope observation system using the observation control device according to the second embodiment of the present disclosure.
  • the same reference numbers are assigned to the same configurations as those in FIG. 1, and detailed description thereof will be omitted.
  • the microscope observation system of the second embodiment is provided with a camera 90 for capturing an image of the culture vessel 50 installed on the stage 51 and acquiring a determination image. Different from. The image pickup of the culture vessel 50 by the camera 90 is performed by the image pickup control unit 33. Further, the camera 90 corresponds to the determination image acquisition unit.
  • the image pickup control unit 33 takes an image of the culture vessel 50 with the camera 90 and acquires the determination image 91 before taking the phase difference image.
  • the determination unit 35 determines whether or not the culture vessel 50 corresponding to the set acquisition conditions is used based on the determination image 91.
  • the culture container 50 of the manufacturer and the number of wells expected to be used is imaged in advance by the camera 90 to acquire the determination image 91 corresponding to the various culture containers.
  • the acquired determination image 91 is capable of recognizing the characteristics of the culture vessel 50 such as the position and curvature of the edge of the well in the various culture vessels 50.
  • a plurality of determination images 91 acquired in advance are stored in the storage 23 as templates.
  • the determination unit 35 acquires the template of the culture container 50 corresponding to the acquisition condition from the storage 23 as a comparison template. Then, the determination unit 35 matches the determination image 91 of the culture vessel 50 installed in the stage 51 with the comparison template to determine whether or not the culture vessel 50 corresponding to the set acquisition conditions is used. To judge. That is, when the determination image 91 and the comparison template match, the determination unit 35 determines that the culture container 50 corresponding to the set acquisition conditions is used. The determination of whether or not the determination image 91 and the comparison template match is determined by determining whether or not the correlation between the determination image 91 and the comparison template is equal to or greater than a predetermined threshold value. It may be done by.
  • the determination unit 35 determines that the culture vessel 50 corresponding to the set acquisition conditions is not used. In this case, the determination unit 35 matches each of the templates other than the comparison template stored in the storage 23 with the determination image 91, and determines the culture container 50 used. In this case, the culture container 50 corresponding to the template that most closely matches the determination image 91 may be determined to be the culture container 50 in use.
  • the determination unit 35 If it is determined that the culture vessel 50 of the type corresponding to the set acquisition condition is not used, the determination unit 35 outputs information to that effect to the condition setting unit 34.
  • the condition setting unit 34 sets new acquisition conditions according to the culture vessel 50 used, as in the first embodiment.
  • the imaging control unit 33 images the culture vessel 50 based on the acquisition conditions set based on the input of the operator to acquire a phase difference image, and the display control unit 36 further generates a composite phase difference image.
  • This retardation image is referred to as a first composite retardation image.
  • the imaging control unit 33 images the culture vessel 50 based on the new setting conditions to acquire a new phase difference image, and the display control unit 36 further generates a new composite retardation image.
  • This new composite retardation image is referred to as a second composite retardation image.
  • the determination unit 35 determines that the culture vessel 50 corresponding to the set acquisition condition is not used, the determination unit 35 issues a warning as in the first embodiment.
  • both the first composite retardation image and the second composite retardation image may be displayed on the warning screen.
  • FIG. 15 is a flowchart showing the processing performed in the second embodiment.
  • the culture vessel 50 containing the cells to be observed is placed on the stage 51 (step ST21).
  • the condition setting unit 34 sets the acquisition conditions by receiving the input of the type of the culture container 50 to be used by the operator from the input unit 25 (step ST22).
  • the camera 90 images the culture container 50 and acquires the determination image 91 (step ST23).
  • the determination unit 35 determines whether or not the culture vessel 50 corresponding to the set acquisition conditions is used based on the determination image 91 (step ST24). When step ST24 is affirmed, the imaging control unit 33 acquires a phase difference image based on the set acquisition conditions (step ST25), and the display control unit 36 generates a composite retardation image (step ST26). Then, the determination unit 35 saves the composite retardation image generated based on the set acquisition conditions in the storage 23 (step ST27), and ends the process.
  • step ST28 When step ST24 is denied, the display control unit 36 generates a composite retardation image based on the set acquisition conditions as the first composite retardation image (step ST28).
  • the process of step ST28 is the same as the process of steps ST25 to ST27.
  • the condition setting unit 34 sets a new acquisition condition corresponding to the culture vessel 50 used (step ST29), and the imaging control unit 33 acquires a new phase difference image based on the new acquisition condition. (Step ST30).
  • the display control unit 36 generates a second composite retardation image, which is a new composite retardation image (step ST31).
  • the determination unit 35 issues a warning (step ST32) and ends the process.
  • some culture containers 50 have a fixed top and bottom.
  • the numbers 1 to 6 are engraved below the well W, and the 6 well Ws are unevenly arranged on the upper side of the well plate 52.
  • the composite retardation image 73 includes an image of originally necessary cells. It will not be possible. Therefore, in the first and second embodiments, it may be further determined whether or not the orientation of the culture vessel 50 is correct.
  • the culture vessel 50 corresponding to the set acquisition conditions is determined by using the template stored in the storage 23. Determine if is used. If the orientation of the culture vessel 50 is incorrect, it will not match any of the templates. Therefore, the determination unit 35 further reverses the top and bottom of the determination image to match with the template, and determines the culture container 50 used. It should be noted that the top and bottom of the template may be reversed to match with the composite phase difference image or the determination image. In this case, a warning may be given that the culture container 50 used is upside down.
  • the same treatment as in the first and second embodiments may be performed.
  • the present invention when the culture vessel 50 corresponding to the acquisition condition is not used, a new acquisition condition is set and a new synthetic retardation image is acquired, but the present invention is limited to this. It is not something that is done. It is possible to give only a warning without acquiring a new composite retardation image.
  • the warning screen displays only the generated composite retardation image and the text for warning.
  • the generated composite retardation image may not be displayed, and only the text for giving a warning may be displayed.
  • the text for giving a warning and the text of the set acquisition condition may be displayed, and in addition to the text for giving a warning and the text of the set acquisition condition, the text of the new acquisition condition May be displayed. In this case, the operator can redo the imaging of the culture vessel 50 according to the warning. Therefore, loss of imaging opportunity can be prevented.
  • the first synthetic retardation image corresponding to the acquisition condition and the second synthetic retardation image corresponding to the new acquisition condition are used.
  • a composite retardation image is generated, but the present invention is not limited to this. Only one of the first composite retardation image and the second composite retardation image may be acquired. In this case, the warning screen displays only the first composite retardation image or the second composite retardation image and the text for warning.
  • the well plate is used as the culture container 50, but the present disclosure can also be applied when a culture container 50 other than the well plate such as a flask and a petri dish is used.
  • templates such as flasks and petri dishes that are expected to be used may be stored in the storage 23, and the determination unit 35 may perform the above determination by comparing the determination image with the template. ..
  • the image sensor 16 is driven to acquire the phase difference image only at the position corresponding to the well W in the culture vessel 50 based on the acquisition conditions, but the present invention is limited to this. is not.
  • a phase difference image may be acquired in the entire region of the culture vessel 50, and only the phase difference image at a position determined based on the acquisition conditions may be extracted to generate a composite phase difference image.
  • the observation position in the culture vessel 50 is scanned by moving the stage 51, but the present invention is not limited to this.
  • the image pickup system including the image pickup optical system 14 and the image pickup element 16 may be moved. Further, both the stage 51 and the imaging system may be moved.
  • phase-contrast microscope is not limited to a phase-contrast microscope, but is applied to other microscopes such as a differential interference microscope and a bright-field microscope. You may.
  • the phase difference image formed by the imaging optical system 14 is imaged by the image pickup device 16, but the imaging optical system 14 does not provide the image pickup element 16.
  • An observation optical system or the like may be provided so that the operator can directly observe the imaged phase difference image of the observation target.
  • a processing unit that executes various processes such as an autofocus control unit 31, a scanning control unit 32, an imaging control unit 33, a condition setting unit 34, a determination unit 35, and a display control unit 36.
  • various processors Processors
  • the various processors include a CPU, which is a general-purpose processor that executes software (program) and functions as various processing units, and a circuit after manufacturing an FPGA (Field Programmable Gate Array) or the like.
  • Dedicated electricity which is a processor with a circuit configuration specially designed to execute specific processing such as programmable logic device (PLD), ASIC (Application Specific Integrated Circuit), which is a processor whose configuration can be changed. Circuits and the like are included.
  • One processing unit may be composed of one of these various processors, or a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs or a combination of a CPU and an FPGA). ) May be configured. Further, a plurality of processing units may be configured by one processor.
  • one processor is configured by combining one or more CPUs and software. There is a form in which this processor functions as a plurality of processing units.
  • SoC System On Chip
  • the various processing units are configured by using one or more of the various processors as a hardware structure.
  • circuitry in which circuit elements such as semiconductor elements are combined can be used.

Abstract

In the present invention, a condition setting unit sets an acquirement condition at which an imaging unit images an observation object contained in a container to acquire an observation image thereof. A determination unit determines, on the basis of an image for determination including the observation object, whether a container corresponding to the set acquirement condition is being used.

Description

観察制御装置、方法およびプログラムObservation controllers, methods and programs
 本開示は、観察対象が収容された容器を撮像して観察するための観察制御装置、方法およびプログラムに関するものである。 The present disclosure relates to an observation control device, a method, and a program for imaging and observing a container containing an observation object.
 従来、ES(Embryonic Stem)細胞およびiPS(Induced Pluripotent Stem)細胞等の多能性幹細胞および分化誘導された細胞等を顕微鏡等の観察装置で撮像し、その画像の特徴を捉えることで細胞の分化状態等を判定する方法が提案されている。 Conventionally, pluripotent stem cells such as ES (Embryonic Stem) cells and iPS (Induced Pluripotent Stem) cells and cells induced to differentiate are imaged with an observation device such as a microscope, and cell differentiation is captured by capturing the characteristics of the images. A method for determining a state or the like has been proposed.
 ES細胞およびiPS細胞等の多能性幹細胞は、種々の組織の細胞に分化する能力を備えたものであり、再生医療、薬の開発および病気の解明等において応用が可能なものとして注目されている。 Pluripotent stem cells such as ES cells and iPS cells have the ability to differentiate into cells of various tissues, and are attracting attention as being applicable in regenerative medicine, drug development, elucidation of diseases, and the like. There is.
 上述したように細胞を観察装置で撮像する際、高倍率な広視野画像を取得するため、例えばウェルプレート等の培養容器等の容器の範囲内を結像光学系によって走査し、観察位置毎の画像を撮像した後、その観察位置毎の画像を結合する、いわゆるタイリング撮影を行うことが提案されている。 As described above, when a cell is imaged with an observation device, in order to obtain a high-magnification wide-field image, the range of a container such as a culture container such as a well plate is scanned by an imaging optical system, and each observation position is scanned. It has been proposed to perform so-called tyling photography in which images are taken and then the images for each observation position are combined.
 一方、容器としては、ウェルプレート、フラスコ、シャーレおよびディッシュ等、多くの種類が用いられる。また、ウェルプレートについても、6ウェル、12ウェル、24ウェル、48ウェルおよび96ウェル等、ウェルの数が異なるウェルプレートが用いられる。また、ウェルプレートに関して、ウェルの中心位置、ウェルの間隔、およびプレート上におけるウェルの配置の仕方が、ウェルプレートの製造メーカーによって異なるものとなる。観察装置においては、撮像を行う際に、撮影メニューにおいて容器の種類が設定される。また、容器がウェルプレートであれば、ウェル数および製造メーカー名等も撮影メニューにおいて設定される。このように、撮影メニューを設定することにより、上述したタイリング撮影を行う際に、使用するウェルプレートに応じたウェルの位置において撮像が行われるため、撮像位置とウェルの位置とを一致させることができる。また、ウェルプレートの全体を撮像した後に、ウェルの位置の画像のみを抽出して観察画像を生成する際にも、使用する容器に応じてウェルの位置の画像を特定して観察画像を生成することができる。 On the other hand, many types of containers such as well plates, flasks, petri dishes and dishes are used. As the well plate, well plates having different numbers of wells such as 6 wells, 12 wells, 24 wells, 48 wells and 96 wells are used. Further, regarding the well plate, the center position of the well, the distance between the wells, and the arrangement of the wells on the plate differ depending on the manufacturer of the well plate. In the observation device, the type of container is set in the photographing menu when performing imaging. If the container is a well plate, the number of wells, the manufacturer name, and the like are also set in the shooting menu. By setting the imaging menu in this way, when performing the above-mentioned tiling imaging, imaging is performed at the well position according to the well plate to be used, so that the imaging position and the well position should be matched. Can be done. Further, when the entire well plate is imaged and then only the image of the well position is extracted to generate the observation image, the image of the well position is specified according to the container to be used and the observation image is generated. be able to.
 このように容器の撮像を行う際に、結像光学系の視野とウェルプレートにおける撮像すべき位置とを一致させるための各種手法が提案されている。例えば、特開2011-47695号公報には、容器全体の観察画像を取得し、観察画像と予め作成されたテンプレート画像とを位置合わせすることにより容器におけるウェルの位置を特定し、観察画像における観察すべき領域が、容器におけるウェルの位置にあるか否かを判定するようにしている。そして、特開2011-47695号公報に記載された手法においては、この判定が否定されると、警告が発せられ、その観察画像の記録を行わないようにしている。 Various methods have been proposed for matching the field of view of the imaging optical system with the position to be imaged on the well plate when imaging the container in this way. For example, in Japanese Patent Application Laid-Open No. 2011-47695, an observation image of the entire container is acquired, and the position of a well in the container is specified by aligning the observation image with a template image created in advance, and the observation in the observation image is performed. It is designed to determine if the area to be located is at the well position in the container. Then, in the method described in Japanese Patent Application Laid-Open No. 2011-47695, if this determination is denied, a warning is issued and the observation image is not recorded.
 しかしながら、特開2011-47695号公報に記載された手法においては、テンプレート画像に対応する容器とは異なる容器が使用された場合、テンプレート画像と容器を撮像した画像とが一致しなくなる。このような場合、観察画像における観察すべき領域が、容器におけるウェルの位置にあるか否かを判定することができなくなる。さらにこの場合、取得された観察画像は、容器のウェルにある細胞の像を含まない画像となる可能性がある。細胞は培養により時々刻々と変化するため、撮像の失敗は必要な時点における細胞の画像が取得できないこととなる。このため、撮像が失敗すると、必要な観察画像の撮像機会が失われてしまう。 However, in the method described in Japanese Patent Application Laid-Open No. 2011-47695, when a container different from the container corresponding to the template image is used, the template image and the image obtained by imaging the container do not match. In such a case, it becomes impossible to determine whether or not the area to be observed in the observation image is at the position of the well in the container. Further, in this case, the acquired observation image may be an image that does not include an image of cells in the wells of the container. Since cells change from moment to moment due to culture, a failure in imaging means that an image of the cells cannot be obtained at the required time. Therefore, if the imaging fails, the necessary opportunity to capture the observation image is lost.
 本開示は上記事情に鑑みなされたものであり、必要な観察画像の撮像機会の損失を防止できるようにすることを目的とする。 The present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to prevent a loss of necessary observation image imaging opportunities.
 本開示による観察制御装置は、容器に収容された観察対象を撮像部により撮像して観察画像を取得するための取得条件を設定する条件設定部と、
 観察対象を含む判定用画像に基づいて、設定された取得条件に対応する容器が使用されているか否かの判定を行う判定部とを備える。
The observation control device according to the present disclosure includes a condition setting unit for setting acquisition conditions for acquiring an observation image by imaging an observation object housed in a container with an imaging unit.
It is provided with a determination unit that determines whether or not a container corresponding to the set acquisition condition is used based on the determination image including the observation target.
 なお、本開示による観察制御装置においては、判定部は、判定が否定された場合に警告を行うものであってもよい。 In the observation control device according to the present disclosure, the determination unit may give a warning when the determination is denied.
 また、本開示による観察制御装置においては、設定された取得条件に基づいて観察対象を撮像部により撮像することにより、観察画像を取得する撮像制御部をさらに備え、
 条件設定部は、判定が否定された場合、使用されている容器に対応する新たな取得条件を設定し、
 撮像制御部は、新たな取得条件に基づいて新たな観察画像を取得するものであってもよい。
Further, the observation control device according to the present disclosure further includes an imaging control unit that acquires an observation image by imaging the observation target with the imaging unit based on the set acquisition conditions.
If the judgment is denied, the condition setting unit sets new acquisition conditions corresponding to the container being used, and sets new acquisition conditions.
The image pickup control unit may acquire a new observation image based on the new acquisition condition.
 また、本開示による観察制御装置においては、設定された取得条件に基づいて観察対象を撮像部により撮像することにより、観察画像を取得する撮像制御部をさらに備え、
 条件設定部は、判定が否定された場合、使用されている容器に対応する新たな取得条件を設定し、
 撮像制御部は、取得条件に基づく観察画像および新たな取得条件に基づく新たな観察画像の双方を取得するものであってもよい。
Further, the observation control device according to the present disclosure further includes an imaging control unit that acquires an observation image by imaging the observation target with the imaging unit based on the set acquisition conditions.
If the judgment is denied, the condition setting unit sets new acquisition conditions corresponding to the container being used, and sets new acquisition conditions.
The imaging control unit may acquire both an observation image based on the acquisition conditions and a new observation image based on the new acquisition conditions.
 また、本開示による観察制御装置においては、設定された取得条件に基づいて観察対象を撮像部により撮像することにより、観察画像を取得する撮像制御部をさらに備え、
 判定用画像は、設定された取得条件に基づいて取得された観察画像であってもよい。
Further, the observation control device according to the present disclosure further includes an imaging control unit that acquires an observation image by imaging the observation target with the imaging unit based on the set acquisition conditions.
The determination image may be an observation image acquired based on the set acquisition conditions.
 この場合、撮像制御部は、取得条件に基づいて、容器における観察対象が存在する領域のみを含む観察画像を取得し、
 判定部は、観察画像における観察対象が存在すべき領域に、観察対象が含まれるか否かを判定することにより、設定された取得条件に対応する容器が使用されているか否かの判定を行うものであってもよい。
In this case, the imaging control unit acquires an observation image including only the region where the observation target exists in the container based on the acquisition conditions.
The determination unit determines whether or not the container corresponding to the set acquisition condition is used by determining whether or not the observation target is included in the area where the observation target should exist in the observation image. It may be a thing.
 また、本開示による観察制御装置においては、観察対象を撮像して判定用画像を取得する判定用画像取得部をさらに備えるものであってもよい。 Further, the observation control device according to the present disclosure may further include a determination image acquisition unit that captures an observation target and acquires a determination image.
 また、本開示による観察制御装置においては、判定部は、観察対象の画像に含まれる容器の向きが正しいか否かの判定をさらに行うものであってもよい。 Further, in the observation control device according to the present disclosure, the determination unit may further determine whether or not the orientation of the container included in the image to be observed is correct.
 また、本開示による観察制御装置においては、培養容器はウェルプレートであってもよい。 Further, in the observation control device according to the present disclosure, the culture container may be a well plate.
 本開示による観察制御方法は、容器に収容された観察対象を撮像部により撮像して観察画像を取得するための取得条件を設定する工程と、
 観察対象を含む判定用画像に基づいて、設定された取得条件に対応する容器が使用されているか否かの判定を行う工程とを有する。
The observation control method according to the present disclosure includes a step of setting acquisition conditions for acquiring an observation image by imaging an observation target housed in a container with an imaging unit.
It has a step of determining whether or not a container corresponding to the set acquisition condition is used based on the determination image including the observation target.
 なお、本開示による観察制御方法を、コンピュータに実行させるプログラムとして提供してもよい。 Note that the observation control method according to the present disclosure may be provided as a program to be executed by a computer.
 本開示による他の観察制御装置は、コンピュータに実行させるための命令を記憶するメモリと、
 記憶された命令を実行するよう構成されたプロセッサとを備え、プロセッサは、
 容器に収容された観察対象を撮像部により撮像して観察画像を取得するための取得条件を設定し、
 観察対象を含む判定用画像に基づいて、設定された取得条件に対応する容器が使用されているか否かの判定を行う処理を実行する。
Other observational control devices according to the present disclosure include a memory for storing instructions to be executed by a computer and a memory.
The processor comprises a processor configured to execute a stored instruction.
The acquisition conditions for acquiring the observation image by imaging the observation target housed in the container with the imaging unit are set.
Based on the determination image including the observation target, the process of determining whether or not the container corresponding to the set acquisition condition is used is executed.
 本開示によれば、必要な観察画像の撮像機会の損失を防止することができる。 According to the present disclosure, it is possible to prevent the loss of the necessary observation image imaging opportunity.
本開示の第1の実施形態による観察制御装置を用いた顕微鏡観察システムにおける顕微鏡装置の概略構成を示す図The figure which shows the schematic structure of the microscope apparatus in the microscope observation system using the observation control apparatus by 1st Embodiment of this disclosure. 第1の実施形態の観察制御装置の構成を示すブロック図A block diagram showing the configuration of the observation control device of the first embodiment. 培養容器内における観察位置の走査位置を示す図The figure which shows the scanning position of the observation position in a culture vessel 条件設定画面を示す図Diagram showing the condition setting screen 6ウェルのウェルプレートにおける位相差画像の取得位置を説明するための図The figure for demonstrating the acquisition position of the phase difference image in the well plate of 6 wells. 合成位相差画像を示す図The figure which shows the composite retardation image 取得条件に対応する培養容器が使用されていない場合における位相差画像の取得位置を説明するための図The figure for demonstrating the acquisition position of the phase difference image when the culture vessel corresponding to the acquisition condition is not used. 取得条件に対応する培養容器が使用されていない場合における合成位相差画像を示す図The figure which shows the synthetic phase difference image when the culture vessel corresponding to the acquisition condition is not used. 取得条件に対応する培養容器が使用されていない場合における位相差画像の取得位置を説明するための図The figure for demonstrating the acquisition position of the phase difference image when the culture vessel corresponding to the acquisition condition is not used. 取得条件に対応する培養容器が使用されていない場合における合成位相差画像を示す図The figure which shows the synthetic phase difference image when the culture vessel corresponding to the acquisition condition is not used. 複数のテンプレートの例を示す図Diagram showing examples of multiple templates 警告画面を示す図Diagram showing the warning screen 第1の実施形態において行われる処理を示すフローチャートA flowchart showing the processing performed in the first embodiment 本開示の第1の実施形態による観察制御装置を用いた顕微鏡観察システムにおける顕微鏡装置の概略構成を示す図The figure which shows the schematic structure of the microscope apparatus in the microscope observation system using the observation control apparatus by 1st Embodiment of this disclosure. 第2の実施形態において行われる処理を示すフローチャートA flowchart showing the processing performed in the second embodiment 天地が定められたウェルプレートの例を示す図Diagram showing an example of a well plate with a fixed top and bottom 天地が逆となっている合成位相差画像を示す図The figure which shows the composite retardation image which the top and bottom are reversed
 以下、本開示の観察制御装置の実施形態を用いた顕微鏡観察システムについて、図面を参照して説明する。図1は、本開示の第1の実施形態による観察制御装置を用いた顕微鏡観察システムにおける顕微鏡装置の概略構成を示す図である。 Hereinafter, a microscope observation system using the embodiment of the observation control device of the present disclosure will be described with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of a microscope device in a microscope observation system using the observation control device according to the first embodiment of the present disclosure.
 顕微鏡装置10は、例えば特開2018-054817号公報に記載されたものであり、観察対象である培養された細胞の位相差画像を取得し、位相差画像を結合して合成位相差画像を生成するものである。具体的には、顕微鏡装置10は、図1に示すように、白色光を出射する白色光源11、コンデンサレンズ12、スリット板13、結像光学系14、結像光学系駆動部15、撮像素子16および検出部18を備える。なお、位相差画像および合成位相差画像が観察画像に対応する。 The microscope device 10 is described in, for example, Japanese Patent Application Laid-Open No. 2018-054817, and obtains a phase difference image of cultured cells to be observed and combines the phase difference images to generate a composite phase difference image. To do. Specifically, as shown in FIG. 1, the microscope device 10 includes a white light source 11 that emits white light, a condenser lens 12, a slit plate 13, an imaging optical system 14, an imaging optical system driving unit 15, and an imaging element. A 16 and a detection unit 18 are provided. The retardation image and the composite retardation image correspond to the observation image.
 スリット板13は、白色光源11から出射された白色光を遮光する遮光板に対して白色光を透過するリング形状のスリットが設けられたものであり、白色光がスリットを通過することによってリング状の照明光Lが形成される。 The slit plate 13 is provided with a ring-shaped slit that transmits white light to a light-shielding plate that blocks white light emitted from the white light source 11, and is ring-shaped as the white light passes through the slit. Illumination light L is formed.
 結像光学系14は、対物レンズおよび位相板を備えた位相差レンズおよび結像レンズを備える。結像光学系14は、図1に示す結像光学系駆動部15によってその光軸方向に移動する。なお、本実施形態においては、結像光学系14の光軸方向とZ方向(鉛直方向)とは同じ方向である。結像光学系14のZ方向への移動によってオートフォーカス制御が行われ、撮像素子16によって撮像される位相差画像のコントラストが調整される。 The imaging optical system 14 includes a phase difference lens and an imaging lens including an objective lens and a phase plate. The imaging optical system 14 is moved in the optical axis direction by the imaging optical system driving unit 15 shown in FIG. In the present embodiment, the optical axis direction and the Z direction (vertical direction) of the imaging optical system 14 are the same directions. Autofocus control is performed by moving the imaging optical system 14 in the Z direction, and the contrast of the phase difference image captured by the image sensor 16 is adjusted.
 結像光学系駆動部15は、例えば圧電素子のようなアクチュエータを備え、後述するオートフォーカス制御部31(図2参照)から出力された制御信号に基づいて駆動する。なお、結像光学系駆動部15は、結像光学系14を通過した位相差画像をそのまま通過させる構成となっている。また、結像光学系駆動部15の構成は圧電素子に限らず、結像光学系14をZ方向に移動可能なものであればよく、その他の公知の構成を用いることができる。 The imaging optical system drive unit 15 includes an actuator such as a piezoelectric element, and drives the image based on a control signal output from an autofocus control unit 31 (see FIG. 2) described later. The imaging optical system driving unit 15 is configured to pass the phase difference image that has passed through the imaging optical system 14 as it is. Further, the configuration of the imaging optical system driving unit 15 is not limited to the piezoelectric element, as long as the imaging optical system 14 can be moved in the Z direction, and other known configurations can be used.
 撮像素子16は、結像光学系14によって結像された位相差画像を撮像する。撮像素子16としては、CCD(Charge-Coupled Device)イメージセンサまたはCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサ等が用いられる。撮像素子16としては、RGB(Red Green Blue)のカラーフィルタが設けられた撮像素子を用いてもよいし、モノクロの撮像素子を用いてもよい。なお、撮像素子16が撮像部を構成する。 The image sensor 16 captures a phase difference image imaged by the imaging optical system 14. As the image sensor 16, a CCD (Charge-Coupled Device) image sensor, a CMOS (Complementary Metal-Oxide Semiconductor) image sensor, or the like is used. As the image sensor 16, an image sensor provided with an RGB (Red Green Blue) color filter may be used, or a monochrome image sensor may be used. The image sensor 16 constitutes the image pickup unit.
 検出部18は、ステージ51に設置された培養容器50のZ方向(鉛直方向)の位置を検出する。検出部18は、具体的には、第1の変位センサ18aおよび第2の変位センサ18bを備える。第1の変位センサ18aおよび第2の変位センサ18bは、結像光学系14を挟んで、図1に示すX方向に並べて設けられている。本実施形態における第1の変位センサ18aおよび第2の変位センサ18bはレーザ変位計であり、培養容器50にレーザ光を照射し、その反射光を検出することによって、培養容器50の底面のZ方向の位置を検出する。なお、培養容器50の底面とは、培養容器50の底部と観察対象である細胞との境界面、すなわち観察対象設置面である。 The detection unit 18 detects the position of the culture vessel 50 installed on the stage 51 in the Z direction (vertical direction). Specifically, the detection unit 18 includes a first displacement sensor 18a and a second displacement sensor 18b. The first displacement sensor 18a and the second displacement sensor 18b are provided side by side in the X direction shown in FIG. 1 with the imaging optical system 14 interposed therebetween. The first displacement sensor 18a and the second displacement sensor 18b in the present embodiment are laser displacement meters, and by irradiating the culture vessel 50 with laser light and detecting the reflected light, the Z on the bottom surface of the culture vessel 50 is detected. Detect the position of the direction. The bottom surface of the culture vessel 50 is a boundary surface between the bottom portion of the culture vessel 50 and the cells to be observed, that is, an observation target installation surface.
 検出部18によって検出された培養容器50のZ方向の位置を表す位置情報は、オートフォーカス制御部31に出力される。オートフォーカス制御部31は、入力された位置情報に基づいて、結像光学系駆動部15を制御し、オートフォーカス制御を行う。 The position information indicating the position of the culture vessel 50 in the Z direction detected by the detection unit 18 is output to the autofocus control unit 31. The autofocus control unit 31 controls the imaging optical system drive unit 15 based on the input position information, and performs autofocus control.
 スリット板13と結像光学系14および検出部18との間には、ステージ51が設けられている。ステージ51上には、観察対象である細胞が収容された培養容器50が設置される。なお、培養容器50は、ステージ51における予め定められた位置に位置合わせされて、ステージ51上に設置される。 A stage 51 is provided between the slit plate 13, the imaging optical system 14, and the detection unit 18. A culture vessel 50 containing cells to be observed is installed on the stage 51. The culture vessel 50 is aligned with a predetermined position on the stage 51 and installed on the stage 51.
 培養容器50としては、シャーレ、ディッシュまたはウェルプレート等を用いることができる。また、培養容器50に収容される細胞としては、iPS細胞およびES細胞といった多能性幹細胞、幹細胞から分化誘導された神経、皮膚、心筋および肝臓の細胞、並びに人体から取り出された皮膚、網膜、心筋、血球、神経および臓器の細胞等がある。 As the culture container 50, a petri dish, a dish, a well plate, or the like can be used. The cells contained in the culture vessel 50 include pluripotent stem cells such as iPS cells and ES cells, nerves, skin, myocardial and liver cells induced to differentiate from stem cells, and skin and retina extracted from the human body. There are cells of myocardium, blood cells, nerves and organs.
 ステージ51は、後述する水平方向駆動部17(図2参照)によって互いに直交するX方向およびY方向に移動する。X方向およびY方向は、Z方向に直交する方向であり、水平面内において互いに直交する方向である。本実施形態においては、X方向を主走査方向とし、Y方向を副走査方向とする。ステージ51の中央には、図1には線で示す矩形の開口51aが形成されている。開口51aを形成する部材の上に培養容器50が設置され、培養容器50内の細胞を透過した照明光Lが開口51aを通過するように構成されている。 The stage 51 is moved in the X and Y directions orthogonal to each other by the horizontal drive unit 17 (see FIG. 2) described later. The X and Y directions are orthogonal to the Z direction and are orthogonal to each other in the horizontal plane. In the present embodiment, the X direction is the main scanning direction and the Y direction is the sub scanning direction. At the center of the stage 51, a rectangular opening 51a shown by a line in FIG. 1 is formed. The culture vessel 50 is installed on the member forming the opening 51a, and the illumination light L transmitted through the cells in the culture vessel 50 is configured to pass through the opening 51a.
 次に、顕微鏡装置10を制御する観察制御装置20の構成について説明する。図2は、第1の実施形態の観察制御装置の構成を示すブロック図である。なお、顕微鏡装置10については、観察制御装置20の各部により制御される一部の構成のブロック図を示している。 Next, the configuration of the observation control device 20 that controls the microscope device 10 will be described. FIG. 2 is a block diagram showing the configuration of the observation control device of the first embodiment. Regarding the microscope device 10, a block diagram of a part of the configuration controlled by each part of the observation control device 20 is shown.
 観察制御装置20は、本実施形態においては顕微鏡装置10の全体を制御するものであり、第1の実施形態による観察制御プログラムをコンピュータにインストールすることにより実現される。図2に示すように、観察制御装置20は、標準的なワークステーションの構成として、CPU(Central Processing Unit)21、メモリ22およびストレージ23を備えている。また、観察制御装置20には、液晶ディスプレイ等の表示部24、並びにキーボードおよびマウス等の入力部25が接続されている。 The observation control device 20 controls the entire microscope device 10 in the present embodiment, and is realized by installing the observation control program according to the first embodiment on the computer. As shown in FIG. 2, the observation control device 20 includes a CPU (Central Processing Unit) 21, a memory 22, and a storage 23 as a standard workstation configuration. Further, the observation control device 20 is connected to a display unit 24 such as a liquid crystal display and an input unit 25 such as a keyboard and a mouse.
 ストレージ23は、ハードディスクドライブ等からなり、本実施形態による観察制御装置20が行う処理に必要な情報を含む各種情報が記憶されている。 The storage 23 is composed of a hard disk drive or the like, and stores various information including information necessary for processing performed by the observation control device 20 according to the present embodiment.
 また、メモリ22には、本実施形態による観察制御プログラムが記憶されている。観察制御プログラムは、CPU21に実行させる処理として、オートフォーカス制御処理、走査制御処理、撮像制御処理、条件設定処理、判定処理および表示制御処理を規定する。そして、CPU21がプログラムに従いこれらの処理を実行することで、コンピュータはオートフォーカス制御部31、走査制御部32、撮像制御部33、条件設定部34、判定部35および表示制御部36として機能する。なお、条件設定部34および判定部35のみにより観察制御装置20を構成してもよい。また、撮像制御部33、条件設定部34および判定部35のみにより観察制御装置20を構成してもよい。 Further, the memory 22 stores the observation control program according to the present embodiment. The observation control program defines autofocus control processing, scanning control processing, imaging control processing, condition setting processing, determination processing, and display control processing as processing to be executed by the CPU 21. Then, when the CPU 21 executes these processes according to the program, the computer functions as an autofocus control unit 31, a scanning control unit 32, an imaging control unit 33, a condition setting unit 34, a determination unit 35, and a display control unit 36. The observation control device 20 may be configured only by the condition setting unit 34 and the determination unit 35. Further, the observation control device 20 may be configured only by the image pickup control unit 33, the condition setting unit 34, and the determination unit 35.
 表示部24は、後述するように位相差画像の取得条件を設定するための設定画面、および生成された合成位相差画像等を表示するものであり、例えば液晶ディスプレイ等を備える。また、表示部24をタッチパネルによって構成し、入力部25と兼用してもよい。 As will be described later, the display unit 24 displays a setting screen for setting acquisition conditions for the phase difference image, a generated composite phase difference image, and the like, and includes, for example, a liquid crystal display. Further, the display unit 24 may be configured by a touch panel and may also be used as the input unit 25.
 入力部25は、マウスおよびキーボード等を備えたものであり、操作者による種々の設定入力を受け付ける。本実施形態の入力部25は、例えば画像の取得条件等の設定入力を受け付ける。 The input unit 25 is provided with a mouse, a keyboard, and the like, and accepts various setting inputs by the operator. The input unit 25 of the present embodiment accepts setting inputs such as image acquisition conditions.
 オートフォーカス制御部31は、上述したように検出部18によって検出された培養容器50のZ方向の位置情報に基づいて、結像光学系駆動部15を制御する。そして、結像光学系駆動部15の駆動によって結像光学系14が光軸方向に移動し、オートフォーカス制御が行われる。 The autofocus control unit 31 controls the imaging optical system drive unit 15 based on the position information in the Z direction of the culture vessel 50 detected by the detection unit 18 as described above. Then, the imaging optical system 14 moves in the optical axis direction by driving the imaging optical system driving unit 15, and autofocus control is performed.
 走査制御部32は、水平方向駆動部17を駆動制御し、これによりステージ51をX方向およびY方向に移動させる。水平方向駆動部17は、圧電素子等を有するアクチュエータから構成される。 The scanning control unit 32 drives and controls the horizontal drive unit 17, thereby moving the stage 51 in the X direction and the Y direction. The horizontal drive unit 17 is composed of an actuator having a piezoelectric element or the like.
 本実施形態においては、例えば特開2018-054817号公報に記載された手法により、走査制御部32による制御によってステージ51をX方向およびY方向に移動させ、結像光学系14を培養容器50内において2次元状に走査し、結像光学系14による各観察位置の位相差画像を撮像する。図3は、培養容器50内における観察位置の走査位置を実線Mで示した図である。なお、本実施形態においては、培養容器50として6つのウェルWを有するウェルプレートを用いる。 In the present embodiment, for example, by the method described in Japanese Patent Application Laid-Open No. 2018-054817, the stage 51 is moved in the X and Y directions under the control of the scanning control unit 32, and the imaging optical system 14 is placed in the culture vessel 50. Scans in a two-dimensional manner and captures a phase difference image of each observation position by the imaging optical system 14. FIG. 3 is a diagram showing the scanning position of the observation position in the culture vessel 50 by the solid line M. In this embodiment, a well plate having 6 wells W is used as the culture container 50.
 図3に示すように、結像光学系14は、走査開始点Sから走査終了点Eまで実線Mに沿って移動する。すなわち、結像光学系14による培養容器50上の観察位置は、X方向の正方向(図3の右方向)に走査された後、Y方向(図3の下方向)に移動し、逆の負方向(図3の左方向)に走査される。次いで、観察位置は、再びY方向に移動し、再び正方向に走査される。このように、結像光学系14は、X方向についての往復移動とY方向への移動を繰り返し行うことによって、培養容器50内を2次元状に走査する。この際、移動方向に応じて、第1の変位センサ18aおよび第2の変位センサ18bにより、移動方向(すなわち主走査方向)において結像光学系14に先行して、培養容器50の観察位置RにおけるZ方向の位置が検出される。そして、観察位置Rが、結像光学系14の位置まで移動した場合に、オートフォーカス制御部31において、前もって検出された培養容器50のZ方向の位置情報が用いられてオートフォーカス制御が行われ、培養容器50が撮像されて位相差画像が取得される。 As shown in FIG. 3, the imaging optical system 14 moves along the solid line M from the scanning start point S to the scanning end point E. That is, the observation position on the culture vessel 50 by the imaging optical system 14 is scanned in the positive direction (right direction in FIG. 3) in the X direction, then moves in the Y direction (downward direction in FIG. 3), and vice versa. It is scanned in the negative direction (leftward in FIG. 3). The observation position then moves again in the Y direction and is scanned again in the positive direction. In this way, the imaging optical system 14 scans the inside of the culture vessel 50 in a two-dimensional manner by repeatedly moving back and forth in the X direction and moving in the Y direction. At this time, the observation position R of the culture vessel 50 is preceded by the imaging optical system 14 in the moving direction (that is, the main scanning direction) by the first displacement sensor 18a and the second displacement sensor 18b according to the moving direction. The position in the Z direction is detected. Then, when the observation position R moves to the position of the imaging optical system 14, the autofocus control unit 31 performs autofocus control using the position information of the culture vessel 50 detected in advance in the Z direction. , The culture vessel 50 is imaged and a phase difference image is acquired.
 図2に戻り、撮像制御部33は、ステージ51の移動における結像光学系14による各観察位置において、撮像素子16により培養容器50を撮像して位相差画像を取得する制御を行う。なお、撮像制御部33による撮像素子16の制御は、条件設定部34により設定される位相差画像の取得条件に基づいて行われる。 Returning to FIG. 2, the image pickup control unit 33 controls to take an image of the culture vessel 50 by the image pickup element 16 and acquire a phase difference image at each observation position by the imaging optical system 14 in the movement of the stage 51. The image sensor 16 is controlled by the image pickup control unit 33 based on the phase difference image acquisition conditions set by the condition setting unit 34.
 条件設定部34は、位相差画像を取得する際の取得条件を設定する。具体的には、操作者による使用する培養容器50の種類の入力を入力部25から受け付け、入力された培養容器50の種類に基づいて取得条件を設定する。このために、表示制御部36によって、取得条件を設定するための条件設定画面が表示部24に表示される。図4は条件設定画面を示す図である。図4に示すように条件設定画面60は、使用する培養容器50の種類を指示するための複数のコマンドが表示される。例えば、培養容器50の種類として、ウェルプレート、フラスコおよびシャーレを選択するためのコマンド61A~61Cが表示される。また、特にウェルプレートに対して、ウェルプレートの製造メーカー(A社、B社およびC社)を選択するためのコマンド62A~62Cが表示される。図4においては、製造メーカーとしてA社が選択された状態を示している。このため、図4においては、A社に関して、6ウェル、12ウェル、24ウェル、48ウェルおよび96ウェルを選択するためのコマンド63A~63Dが表示される。 The condition setting unit 34 sets the acquisition conditions when acquiring the phase difference image. Specifically, an input of the type of the culture container 50 to be used by the operator is received from the input unit 25, and the acquisition condition is set based on the input type of the culture container 50. Therefore, the display control unit 36 displays a condition setting screen for setting the acquisition condition on the display unit 24. FIG. 4 is a diagram showing a condition setting screen. As shown in FIG. 4, the condition setting screen 60 displays a plurality of commands for instructing the type of the culture vessel 50 to be used. For example, commands 61A-61C for selecting well plates, flasks and petri dishes as the type of culture vessel 50 are displayed. Also, for well plates in particular, commands 62A-62C for selecting well plate manufacturers (Company A, Company B and Company C) are displayed. FIG. 4 shows a state in which Company A is selected as the manufacturer. Therefore, in FIG. 4, for Company A, commands 63A-63D for selecting 6-well, 12-well, 24-well, 48-well, and 96-well are displayed.
 操作者は、入力部25を用いて、培養容器の種類、製造メーカーおよびウェル数のコマンドを選択することにより、使用する培養容器の種類の入力を行う。 The operator inputs the type of culture vessel to be used by selecting commands for the type of culture vessel, the manufacturer, and the number of wells using the input unit 25.
 条件設定部34は、操作者の入力に基づいて、位相差画像を取得するための取得条件を設定する。本実施形態においては、図3に示すように培養容器50を2次元的に操作しつつ位相差画像を取得する。このように位相差画像を取得するに際し、本実施形態においては、培養容器50におけるウェルWに対応する位置においてのみ、撮像素子16を駆動して、培養容器50を撮像して位相差画像を取得するように、撮像制御部33が撮像の制御を行う。図5は6ウェルのウェルプレートにおける位相差画像の取得位置を説明するための図である。本実施形態においては、各ウェルにおいて視野数として3×3=9個の位相差画像を取得するものとする。図5における小さい正方形は、培養容器50の2次元走査中において、位相差画像を取得することが可能な観察位置における撮像視野を示す。 The condition setting unit 34 sets the acquisition condition for acquiring the phase difference image based on the input of the operator. In the present embodiment, as shown in FIG. 3, a phase difference image is acquired while operating the culture vessel 50 two-dimensionally. When acquiring the phase difference image in this way, in the present embodiment, the image sensor 16 is driven only at the position corresponding to the well W in the culture container 50 to image the culture container 50 and acquire the phase difference image. The image pickup control unit 33 controls the image pickup so as to be performed. FIG. 5 is a diagram for explaining the acquisition position of the phase difference image in the 6-well well plate. In the present embodiment, it is assumed that 3 × 3 = 9 phase difference images are acquired as the number of fields of view in each well. The small squares in FIG. 5 indicate the imaging field of view at the observation position where the phase difference image can be acquired during the two-dimensional scanning of the culture vessel 50.
 本実施形態においては、各ウェルWにおいて3×3個の位相差画像を取得するものであるため、図5に示す斜線を付与した位置において、培養容器50を撮像して位相差画像を取得するように、撮像制御部33が撮像素子16の制御を行う。本実施形態においては、培養容器50はステージ51上の予め定められた位置に位置決めされて設置される。このため、培養容器50をステージ51上に設置し、走査を開始してからの撮像すべき位置、撮像タイミング、撮像すべき位置における撮像視野のサイズおよび倍率等の少なくとも1つを取得条件として設定することにより、図5に示す斜線を付与した位置おいて、培養容器50を撮像して位相差画像を取得することができる。 In the present embodiment, since 3 × 3 retardation images are acquired in each well W, the culture vessel 50 is imaged at the position where the diagonal line is given as shown in FIG. 5 to acquire the retardation image. As described above, the image pickup control unit 33 controls the image pickup element 16. In the present embodiment, the culture vessel 50 is positioned and installed at a predetermined position on the stage 51. Therefore, the culture vessel 50 is installed on the stage 51, and at least one of the position to be imaged after the start of scanning, the imaging timing, the size and magnification of the imaging field of view at the position to be imaged, and the like are set as acquisition conditions. By doing so, the culture vessel 50 can be imaged and a phase difference image can be obtained at the position where the diagonal line shown in FIG. 5 is provided.
 このため、本実施形態においては、ストレージ23に、各種培養容器と培養容器に応じた撮像すべき位置、撮像タイミング、撮像視野のサイズおよび倍率等を含む取得条件とを対応づけたテーブルが記憶されている。条件設定部34は、操作者による入力部25から入力された培養容器50の種類に応じて、テーブルを参照して取得条件を設定する。設定された取得条件は、撮像制御部33に出力される。撮像制御部33は、入力された取得条件に基づいて撮像素子16等を制御して培養容器50を撮像することにより、位相差画像を取得する。 Therefore, in the present embodiment, the storage 23 stores a table in which various culture containers are associated with acquisition conditions including the position to be imaged according to the culture container, the imaging timing, the size and magnification of the imaging field of view, and the like. ing. The condition setting unit 34 sets the acquisition conditions with reference to the table according to the type of the culture vessel 50 input from the input unit 25 by the operator. The set acquisition conditions are output to the imaging control unit 33. The image pickup control unit 33 acquires a phase difference image by controlling the image pickup device 16 and the like based on the input acquisition conditions to image the culture vessel 50.
 ここで、培養容器50は、その種類に応じて観察対象である細胞が存在する位置が異なる。例えば、培養容器50がウェルプレートの場合、ウェル数が異なれば細胞が存在する位置が異なる。また、ウェル数が同一であっても、プレートのサイズ、各ウェルの中心位置および大きさが、ウェルプレートの製造メーカーによって異なるため、製造メーカーが異なるとウェルプレートにおける細胞が存在する位置が異なる。このため、本実施形態のように、撮像すべき位置および撮像タイミング等を取得条件として設定する場合、操作者が使用する培養容器50の種類を間違えて入力すると、使用する培養容器50と取得条件とが一致しないものとなる。このように使用する培養容器50と取得条件とが一致しないと、使用している培養容器50における細胞が存在する位置において撮像が行われなくなり、その結果、観察に必要な細胞を含む位相差画像が取得されなくなる事態が生じる。すなわち、図5に示すように、ある製造メーカーの6ウェルのウェルプレートを培養容器50として使用する場合、これを使用する培養容器50として入力すれば、使用する培養容器50の種類に応じた取得条件が設定されるため、図5の斜線に示すように、各ウェルW内において3×3の視野数の位相差画像が取得される。しかしながら、ウェルプレートの数を例えば12ウェルおよび96ウェル等に間違えてしまうと、図5に示す斜線の位置において位相差画像が取得されないこととなってしまう。 Here, in the culture vessel 50, the position where the cells to be observed are present differs depending on the type. For example, when the culture vessel 50 is a well plate, the position where the cells are present differs depending on the number of wells. Further, even if the number of wells is the same, the size of the plate, the center position and size of each well differ depending on the manufacturer of the well plate, and therefore, the position where the cells exist in the well plate differs depending on the manufacturer. Therefore, when the position to be imaged, the imaging timing, and the like are set as the acquisition conditions as in the present embodiment, if the operator mistakenly inputs the type of the culture container 50 to be used, the culture container 50 to be used and the acquisition conditions are input. Will not match. If the culture vessel 50 used and the acquisition conditions do not match in this way, imaging will not be performed at the position where the cells exist in the culture vessel 50 used, and as a result, a phase difference image including the cells necessary for observation will not be performed. Will not be acquired. That is, as shown in FIG. 5, when a 6-well well plate of a certain manufacturer is used as the culture container 50, if it is input as the culture container 50 to be used, acquisition according to the type of the culture container 50 to be used. Since the conditions are set, as shown by the diagonal line in FIG. 5, a phase difference image having a number of fields of view of 3 × 3 is acquired in each well W. However, if the number of well plates is mistaken for, for example, 12 wells and 96 wells, the phase difference image will not be acquired at the position of the shaded line shown in FIG.
 本実施形態においては、判定部35が、観察対象である細胞を含む判定用画像に基づいて、条件設定部34が設定した取得条件に対応する培養容器50が使用されているか否かの判定を行う。このため、本実施形態においては、まず培養容器50を撮像して、合成位相差画像を生成する。すなわち、培養容器50の走査を行い、培養容器50における位相差画像を取得すべき観察位置において位相差画像を取得し、取得した位相差画像を結合することにより、1枚の合成位相差画像を生成する。なお、合成位相差画像の生成は、表示制御部36が行う。 In the present embodiment, the determination unit 35 determines whether or not the culture vessel 50 corresponding to the acquisition conditions set by the condition setting unit 34 is used based on the determination image including the cells to be observed. Do. Therefore, in the present embodiment, the culture vessel 50 is first imaged to generate a synthetic retardation image. That is, one composite retardation image is obtained by scanning the culture vessel 50, acquiring the retardation image at the observation position where the retardation image should be acquired in the culture vessel 50, and combining the acquired retardation images. Generate. The display control unit 36 generates the composite retardation image.
 判定部35は、表示制御部36が生成した合成位相差画像を判定用画像として使用し、上記判定を行う。ここで、条件設定部34が設定した取得条件に対応する培養容器50が使用されている場合、図5に示す斜線の位置において位相差画像が取得されている。このため、図6に示すように、合成位相差画像70には、培養容器50の各ウェルWの位置における細胞の像が含まれる。なお、合成位相差画像70においては、位相差画像を含む領域以外の領域は培養容器50の像は含まれないため、予め定められた濃度(白、黒またはグレー等)を有するものとなっている。また、図6においては、説明のために、培養容器50に含まれる6つのウェルWの縁部を破線で示している。 The determination unit 35 uses the composite retardation image generated by the display control unit 36 as the determination image to perform the above determination. Here, when the culture vessel 50 corresponding to the acquisition condition set by the condition setting unit 34 is used, the phase difference image is acquired at the position of the shaded line shown in FIG. Therefore, as shown in FIG. 6, the synthetic retardation image 70 includes an image of cells at the position of each well W of the culture vessel 50. In the composite retardation image 70, since the image of the culture vessel 50 is not included in the region other than the region including the retardation image, the composite retardation image 70 has a predetermined density (white, black, gray, etc.). There is. Further, in FIG. 6, for the sake of explanation, the edges of the six wells W contained in the culture vessel 50 are shown by broken lines.
 一方、条件設定部34が設定した取得条件に対応する培養容器50が使用されていない場合、例えば使用している培養容器50がA社の6ウェルのウェルプレートである場合において、操作者が間違えてA社の12ウェルのウェルプレートを使用する培養容器50として入力した場合、図7に示すように、使用している培養容器50のウェルの位置と、斜線で示す位相差画像を取得した位置とが一致しなくなる。その結果、図8に示すように、合成位相差画像71には、本来含まれるべきウェルW内の細胞の像が含まれないものとなってしまう。なお、図8においても、説明のために、培養容器50に含まれる6つのウェルの縁部を破線で示している。 On the other hand, when the culture vessel 50 corresponding to the acquisition condition set by the condition setting unit 34 is not used, for example, when the culture vessel 50 used is a 6-well well plate of company A, the operator makes a mistake. When input as a culture vessel 50 using a 12-well well plate of company A, as shown in FIG. 7, the position of the well of the culture vessel 50 used and the position where the phase difference image shown by the diagonal line is acquired. Does not match. As a result, as shown in FIG. 8, the synthetic retardation image 71 does not include the image of the cells in the well W that should be originally included. Also in FIG. 8, for the sake of explanation, the edges of the six wells contained in the culture vessel 50 are shown by broken lines.
 また、使用している培養容器50がA社の6ウェルのウェルプレートである場合において、操作者が間違えてB社の6ウェルのウェルプレートを使用する培養容器50として入力した場合、図9に示すように、使用している培養容器50のウェルの位置と、位相差画像を取得した位置とが一致しなくなる。その結果、図10に示すように、合成位相差画像72には、本来含まれるべきウェルW内の細胞の像が含まれないものとなってしまう。なお、図10においても、説明のために、培養容器50に含まれる6つのウェルの縁部を破線で示している。 Further, when the culture vessel 50 used is a 6-well well plate of company A and the operator mistakenly inputs it as the culture vessel 50 using the 6-well well plate of company B, FIG. 9 shows. As shown, the position of the well of the culture vessel 50 used and the position where the phase difference image was acquired do not match. As a result, as shown in FIG. 10, the synthetic retardation image 72 does not include the image of the cells in the well W that should be originally included. Also in FIG. 10, for the sake of explanation, the edges of the six wells contained in the culture vessel 50 are shown by broken lines.
 判定部35は、生成された合成位相差画像を解析して、条件設定部34により設定された取得条件に対応する培養容器50が使用されているか否かを判定する。図6に示す合成位相差画像70のように、設定した取得条件に対応する培養容器50が使用されている場合、合成位相差画像70に含まれる細胞の像には、ウェルWの縁部は含まれない。一方、図8および図10に示す合成位相差画像71,72のように、設定した取得条件に対応する培養容器50が使用されていない場合、合成位相差画像71,72に含まれる細胞の像には、ウェルWの縁部が含まれる。 The determination unit 35 analyzes the generated synthetic retardation image and determines whether or not the culture vessel 50 corresponding to the acquisition conditions set by the condition setting unit 34 is used. When the culture vessel 50 corresponding to the set acquisition conditions is used as in the synthetic retardation image 70 shown in FIG. 6, the edge of the well W is shown in the image of the cells included in the synthetic retardation image 70. Not included. On the other hand, when the culture vessel 50 corresponding to the set acquisition conditions is not used as in the synthetic retardation images 71 and 72 shown in FIGS. 8 and 10, the image of the cells contained in the synthetic retardation images 71 and 72 Includes the edge of the well W.
 ここで、ウェルWの縁部の位置および曲率等の培養容器50の特徴は、製造メーカーおよびウェル数に応じて異なる。例えば、同じ製造メーカーであっても、6ウェルのウェルプレートと12ウェルのウェルプレートとでは、ウェルWの縁部の位置および曲率等が異なる。また、製造メーカーが異なる場合、同じ6ウェルのウェルプレートであっても、ウェルWの縁部の位置が異なる。本実施形態においては、使用が想定される培養容器の種類、製造メーカーおよびウェル数の培養容器50を予め撮像して各種培養容器に対応する合成位相差画像を生成する。生成された合成位相差画像は、各種培養容器50におけるウェルの縁部の位置および曲率等の培養容器50の特徴を認識可能なものである。第1の実施形態においては、予め生成された複数の合成位相差画像をテンプレートとしてストレージ23に保存しておく。図11は複数のテンプレートT0の例を示す図である。 Here, the characteristics of the culture vessel 50 such as the position and curvature of the edge of the well W differ depending on the manufacturer and the number of wells. For example, even in the same manufacturer, the position and curvature of the edge of the well W are different between the 6-well well plate and the 12-well well plate. Further, when the manufacturers are different, the positions of the edges of the wells W are different even in the same 6-well well plate. In the present embodiment, the type of culture vessel, the manufacturer, and the number of wells of the culture vessel 50 that are expected to be used are imaged in advance to generate synthetic retardation images corresponding to various culture vessels. The generated synthetic retardation image can recognize the characteristics of the culture vessel 50 such as the position and curvature of the edge of the well in the various culture vessels 50. In the first embodiment, a plurality of composite retardation images generated in advance are stored in the storage 23 as templates. FIG. 11 is a diagram showing an example of a plurality of templates T0.
 判定部35は、まず取得された合成位相差画像を判定用画像として用いて、ウェルWの縁部が含まれているか否かに応じて、設定された取得条件に対応する培養容器50が使用されているか否かを判定する。すなわち、判定部35は、判定用画像としての合成位相差画像にウェルWの縁部が含まれていない場合、設定された取得条件に対応する培養容器50が使用されていると判定する。例えば、図6に示す合成位相差画像70が取得された場合、合成位相差画像70にはウェルWの縁部が含まれない。この場合、判定部35は条件設定部34が設定した取得条件と一致する培養容器50が使用されたと判定する。 The determination unit 35 first uses the acquired composite retardation image as the determination image, and the culture container 50 corresponding to the set acquisition conditions is used depending on whether or not the edge of the well W is included. Determine if it has been done. That is, when the composite retardation image as the determination image does not include the edge portion of the well W, the determination unit 35 determines that the culture container 50 corresponding to the set acquisition condition is used. For example, when the composite retardation image 70 shown in FIG. 6 is acquired, the composite retardation image 70 does not include the edge of the well W. In this case, the determination unit 35 determines that the culture vessel 50 that matches the acquisition conditions set by the condition setting unit 34 has been used.
 一方、合成位相差画像にウェルWの縁部が含まれている場合、設定された取得条件に対応する培養容器50が使用されていないと判定する。この場合、判定部35は、ストレージ23に保存されたテンプレートのそれぞれと合成位相差画像に含まれるウェルWの縁部の位置との比較を行い、いずれの培養容器50が使用されたかをさらに判定する。 On the other hand, when the composite retardation image includes the edge of the well W, it is determined that the culture vessel 50 corresponding to the set acquisition condition is not used. In this case, the determination unit 35 compares each of the templates stored in the storage 23 with the position of the edge of the well W included in the composite retardation image, and further determines which culture container 50 was used. To do.
 例えば、図8に示すような合成位相差画像71が取得された場合、合成位相差画像71にはウェルWの縁部が含まれる。このため、判定部35は、設定された取得条件に対応する培養容器50が使用されていないと判定する。さらに判定部35は、合成位相差画像71におけるウェルWの縁部の位置と、ストレージ23に保存された複数のテンプレートT0とを比較し、使用された培養容器50を判定する。この場合、判定部35は、使用されている培養容器50がA社の12ウェルのウェルプレートであると判定する。 For example, when the composite retardation image 71 as shown in FIG. 8 is acquired, the composite retardation image 71 includes the edge of the well W. Therefore, the determination unit 35 determines that the culture vessel 50 corresponding to the set acquisition condition is not used. Further, the determination unit 35 compares the position of the edge portion of the well W in the synthetic retardation image 71 with the plurality of templates T0 stored in the storage 23, and determines the culture vessel 50 used. In this case, the determination unit 35 determines that the culture vessel 50 used is a 12-well well plate of company A.
 また、図10に示すような合成位相差画像72が取得された場合、合成位相差画像72にはウェルWの縁部が含まれる。このため、判定部35は、設定された取得条件に対応する培養容器50が使用されていないと判定する。さらに、判定部35は、合成位相差画像72におけるウェルWの縁部の位置と、ストレージ23に保存された複数のテンプレートT0とを比較し、使用された培養容器50を判定する。この場合、判定部35は、使用されている培養容器50が、B社の6ウェルのウェルプレートであると判定する。 Further, when the composite retardation image 72 as shown in FIG. 10 is acquired, the composite retardation image 72 includes the edge of the well W. Therefore, the determination unit 35 determines that the culture vessel 50 corresponding to the set acquisition condition is not used. Further, the determination unit 35 compares the position of the edge portion of the well W in the synthetic retardation image 72 with the plurality of templates T0 stored in the storage 23, and determines the culture vessel 50 used. In this case, the determination unit 35 determines that the culture vessel 50 used is a 6-well well plate of Company B.
 なお、ストレージ23には、テンプレートT0に代えて、各種培養容器50に対応する合成位相差画像上におけるウェルの縁部の位置の座標および曲率等を培養容器50の特徴として保存しておくようにしてもよい。この場合、判定部35は、合成位相差画像にウェルの縁部が含まれている場合、ウェルの縁部の位置および曲率等と、ストレージ23に保存された各種培養容器50におけるウェルの縁部の位置および曲率等とを比較して、いずれの培養容器50が使用されたかを判定すればよい。 In the storage 23, instead of the template T0, the coordinates and curvature of the position of the edge of the well on the synthetic retardation image corresponding to the various culture containers 50 are stored as the characteristics of the culture container 50. You may. In this case, when the composite retardation image includes the edge of the well, the determination unit 35 determines the position and curvature of the edge of the well and the edge of the well in the various culture vessels 50 stored in the storage 23. Which culture container 50 was used may be determined by comparing the position and curvature of the culture vessel 50.
 また、判定部35は、設定された取得条件に対応する培養容器50が使用されていない場合、条件設定部34に対してその旨の情報を出力する。条件設定部34は、使用されている培養容器50に応じた新たな取得条件を設定し、新たな設定条件を撮像制御部33に出力する。撮像制御部33は入力された新たな設定条件に基づいて培養容器50を撮像する。これにより、使用されている培養容器50に応じた新たな取得条件に基づく、新たな位相差画像が取得され、表示制御部36が、新たな位相差画像に基づいて新たな合成位相差画像を生成する。 Further, when the culture vessel 50 corresponding to the set acquisition condition is not used, the determination unit 35 outputs information to that effect to the condition setting unit 34. The condition setting unit 34 sets new acquisition conditions according to the culture vessel 50 used, and outputs the new setting conditions to the imaging control unit 33. The image pickup control unit 33 takes an image of the culture vessel 50 based on the input new setting conditions. As a result, a new phase difference image is acquired based on the new acquisition conditions according to the culture vessel 50 used, and the display control unit 36 obtains a new composite retardation image based on the new phase difference image. Generate.
 さらに判定部35は、設定された取得条件に対応する培養容器50が使用されていないと判定した場合、警告を行う。警告の態様としては、操作者が入力した培養容器50の種類と、使用している培養容器50の種類とが異なることを示すテキストを表示部24に表示したり、警報音等を発したりするものであってもよい。さらに、操作者の入力に応じて設定された取得条件に基づいて生成した合成位相差画像および新たな取得条件に基づいて生成した新たな合成位相差画像を表示部24に表示してもよい。図12は表示部24に表示された警告画面を示す図である。図12に示すように警告画面80には、「入力した培養容器が違います。」のテキスト81、操作者の入力に応じて設定した取得条件に基づいて生成された合成位相差画像82、および新たな取得条件に基づいて生成した新たな合成位相差画像83が表示される。また、操作者が入力した培養容器と使用している培養容器とが異なることを示すテキストを、電子メール等によって操作者のメールアドレスに送信するようにしてもよい。この場合、操作者が入力した培養容器50の種類に基づいて設定された取得条件に基づく合成位相差画像82、および新たな取得条件に基づく新たな合成位相差画像83も併せて電子メール等に添付して操作者に送信してもよい。 Further, the determination unit 35 warns when it is determined that the culture vessel 50 corresponding to the set acquisition condition is not used. As an aspect of the warning, a text indicating that the type of the culture container 50 input by the operator is different from the type of the culture container 50 used is displayed on the display unit 24, or an alarm sound or the like is emitted. It may be a thing. Further, the composite retardation image generated based on the acquisition conditions set according to the input of the operator and the new composite retardation image generated based on the new acquisition conditions may be displayed on the display unit 24. FIG. 12 is a diagram showing a warning screen displayed on the display unit 24. As shown in FIG. 12, on the warning screen 80, the text 81 of "The input culture vessel is different", the synthetic phase difference image 82 generated based on the acquisition conditions set according to the input of the operator, and A new composite retardation image 83 generated based on the new acquisition conditions is displayed. Further, a text indicating that the culture container input by the operator and the culture container used may be different may be sent to the operator's e-mail address by e-mail or the like. In this case, the synthetic retardation image 82 based on the acquisition conditions set based on the type of the culture vessel 50 input by the operator and the new synthetic retardation image 83 based on the new acquisition conditions are also sent by e-mail or the like. It may be attached and sent to the operator.
 次いで、第1の実施形態において行われる処理について説明する。図13は第1の実施形態において行われる処理を示すフローチャートである。まず、観察対象である細胞が収容された培養容器50が、ステージ51上に設置される(ステップST1)。次に、操作者による使用する培養容器50の種類の入力を、入力部25が受け付けることにより、条件設定部34が取得条件を設定する(ステップST2)。次いで、オートフォーカス制御部31によりオートフォーカス制御を行いつつ、かつ走査制御部32によりステージ51の走査を行いつつ、撮像制御部33が撮像素子16により培養容器50を撮像して位相差画像を取得する(ステップST3)。さらに、表示制御部36が合成位相差画像を生成する(ステップST4)。 Next, the process performed in the first embodiment will be described. FIG. 13 is a flowchart showing the processing performed in the first embodiment. First, the culture vessel 50 containing the cells to be observed is placed on the stage 51 (step ST1). Next, the input unit 25 accepts the input of the type of the culture container 50 to be used by the operator, so that the condition setting unit 34 sets the acquisition conditions (step ST2). Next, while the autofocus control unit 31 performs autofocus control and the scanning control unit 32 scans the stage 51, the image pickup control unit 33 images the culture vessel 50 with the image pickup element 16 to acquire a phase difference image. (Step ST3). Further, the display control unit 36 generates a composite retardation image (step ST4).
 次いで、判定部35が、合成位相差画像を判定用画像として用いて、設定された取得条件に対応する培養容器50が使用されているか否かの判定を行う(ステップST5)。ステップST5が肯定されると、設定された取得条件に基づいて生成された合成位相差画像をストレージ23に保存し(ステップST6)、処理を終了する。 Next, the determination unit 35 uses the composite retardation image as the determination image to determine whether or not the culture vessel 50 corresponding to the set acquisition conditions is used (step ST5). When step ST5 is affirmed, the composite retardation image generated based on the set acquisition conditions is saved in the storage 23 (step ST6), and the process ends.
 ステップST5が否定されると、条件設定部34が、使用されている培養容器50に対応する新たな取得条件を設定し(ステップST7)、撮像制御部33が新たな取得条件に基づいて新たな位相差画像を取得する(ステップST8)。そして、表示制御部36が新たな合成位相差画像を生成する(ステップST9)。さらに判定部35が警告を行い(ステップST10)、処理を終了する。 When step ST5 is denied, the condition setting unit 34 sets a new acquisition condition corresponding to the culture vessel 50 used (step ST7), and the image pickup control unit 33 newly sets a new acquisition condition based on the new acquisition condition. Acquire a phase difference image (step ST8). Then, the display control unit 36 generates a new composite retardation image (step ST9). Further, the determination unit 35 issues a warning (step ST10) and ends the process.
 このように、本実施形態においては、培養容器50を撮像することにより生成された合成位相差画像を判定用画像として用いて、判定用画像に基づいて、設定された取得条件に対応する培養容器50が使用されているか否かの判定を行うようにした。また、本実施形態においては、判定結果に基づいて警告を行い、さらには使用している培養容器50に対応した新たな取得条件を設定するようにした。これにより、操作者は取得条件を設定し直したり、新たな取得条件に基づく観察対象の画像を取得したりすることができる。したがって、本実施形態によれば、撮像の失敗をなくすことができ、その結果、必要な観察対象である細胞の撮像機会が損失されてしまうことを防止することができる。 As described above, in the present embodiment, the synthetic retardation image generated by imaging the culture vessel 50 is used as the determination image, and the culture vessel corresponding to the set acquisition conditions is used based on the determination image. It is determined whether or not 50 is used. Further, in the present embodiment, a warning is given based on the determination result, and a new acquisition condition corresponding to the culture vessel 50 used is set. As a result, the operator can reset the acquisition conditions or acquire the image to be observed based on the new acquisition conditions. Therefore, according to the present embodiment, it is possible to eliminate the failure of imaging, and as a result, it is possible to prevent the loss of the imaging opportunity of the necessary observation target cell.
 また、本実施形態においては、設定された取得条件に対応する培養容器が使用されているか否かの判定が否定された場合、使用している培養容器50に対応した新たな取得条件を設定し、設定された取得条件に基づく合成位相差画像を生成している。このため、操作者は、正しい培養容器50の種類を入力し直す作業を行うことなく、細胞の像を適切に含む合成位相差画像を取得することができる。したがって、本実施形態によれば、操作者の作業の負担を軽減することができる。 Further, in the present embodiment, when the determination as to whether or not the culture container corresponding to the set acquisition condition is used is denied, a new acquisition condition corresponding to the culture container 50 used is set. , A composite phase difference image is generated based on the set acquisition conditions. Therefore, the operator can acquire a synthetic phase difference image appropriately including an image of cells without performing the work of re-inputting the correct type of the culture vessel 50. Therefore, according to the present embodiment, the work load of the operator can be reduced.
 次いで、本開示の第2の実施形態について説明する。図14は、本開示の第2の実施形態による観察制御装置を用いた顕微鏡観察システムにおける顕微鏡装置の概略構成を示す図である。なお、図14において図1と同一の構成については同一の参照番号を付与し、詳細な説明は省略する。図14に示すように第2の実施形態の顕微鏡観察システムは、ステージ51に設置された培養容器50を撮像して判定用画像を取得するためのカメラ90を備えた点が第1の実施形態と異なる。なお、カメラ90による培養容器50の撮像は、撮像制御部33により行われる。また、カメラ90が判定用画像取得部に対応する。 Next, the second embodiment of the present disclosure will be described. FIG. 14 is a diagram showing a schematic configuration of a microscope device in a microscope observation system using the observation control device according to the second embodiment of the present disclosure. In FIG. 14, the same reference numbers are assigned to the same configurations as those in FIG. 1, and detailed description thereof will be omitted. As shown in FIG. 14, the microscope observation system of the second embodiment is provided with a camera 90 for capturing an image of the culture vessel 50 installed on the stage 51 and acquiring a determination image. Different from. The image pickup of the culture vessel 50 by the camera 90 is performed by the image pickup control unit 33. Further, the camera 90 corresponds to the determination image acquisition unit.
 第2の実施形態においては、撮像制御部33は、位相差画像を撮像する前に、カメラ90により培養容器50を撮像して判定用画像91を取得する。判定部35は、判定用画像91に基づいて、設定された取得条件に対応する培養容器50が使用されているか否かの判定を行う。このために、第2の実施形態においては、使用が想定される製造メーカーおよびウェル数の培養容器50をカメラ90により予め撮像して各種培養容器に対応する判定用画像91を取得する。取得された判定用画像91は、各種培養容器50におけるウェルの縁部の位置および曲率等の培養容器50の特徴を認識可能なものである。第2の実施形態においては、予め取得された複数の判定用画像91をテンプレートとしてストレージ23に保存しておく。 In the second embodiment, the image pickup control unit 33 takes an image of the culture vessel 50 with the camera 90 and acquires the determination image 91 before taking the phase difference image. The determination unit 35 determines whether or not the culture vessel 50 corresponding to the set acquisition conditions is used based on the determination image 91. For this purpose, in the second embodiment, the culture container 50 of the manufacturer and the number of wells expected to be used is imaged in advance by the camera 90 to acquire the determination image 91 corresponding to the various culture containers. The acquired determination image 91 is capable of recognizing the characteristics of the culture vessel 50 such as the position and curvature of the edge of the well in the various culture vessels 50. In the second embodiment, a plurality of determination images 91 acquired in advance are stored in the storage 23 as templates.
 第2の実施形態において、判定部35は、取得条件に対応する培養容器50のテンプレートをストレージ23から比較用テンプレートとして取得する。そして判定部35は、ステージ51に設置された培養容器50の判定用画像91と比較用テンプレートとのマッチングを行うことにより、設定された取得条件に対応する培養容器50が使用されているか否かを判定する。すなわち、判定部35は、判定用画像91と比較用テンプレートとが一致する場合、設定された取得条件に対応する培養容器50が使用されていると判定する。なお、判定用画像91と比較用テンプレートとが一致するか否かの判定は、判定用画像91と比較用テンプレートとの相関が予め定められたしきい値以上であるか否かを判定することにより行えばよい。 In the second embodiment, the determination unit 35 acquires the template of the culture container 50 corresponding to the acquisition condition from the storage 23 as a comparison template. Then, the determination unit 35 matches the determination image 91 of the culture vessel 50 installed in the stage 51 with the comparison template to determine whether or not the culture vessel 50 corresponding to the set acquisition conditions is used. To judge. That is, when the determination image 91 and the comparison template match, the determination unit 35 determines that the culture container 50 corresponding to the set acquisition conditions is used. The determination of whether or not the determination image 91 and the comparison template match is determined by determining whether or not the correlation between the determination image 91 and the comparison template is equal to or greater than a predetermined threshold value. It may be done by.
 一方、判定用画像91と比較用テンプレートとが一致しない場合、判定部35は、設定された取得条件に対応する培養容器50が使用されていないと判定する。この場合、判定部35は、ストレージ23に保存された比較用テンプレート以外の他のテンプレートのそれぞれと判定用画像91とのマッチングを行い、使用されている培養容器50を判定する。この場合、判定用画像91と最も一致するテンプレートに対応する培養容器50を、使用されている培養容器50であると判定すればよい。 On the other hand, if the determination image 91 and the comparison template do not match, the determination unit 35 determines that the culture vessel 50 corresponding to the set acquisition conditions is not used. In this case, the determination unit 35 matches each of the templates other than the comparison template stored in the storage 23 with the determination image 91, and determines the culture container 50 used. In this case, the culture container 50 corresponding to the template that most closely matches the determination image 91 may be determined to be the culture container 50 in use.
 なお、設定された取得条件に対応する種類の培養容器50が使用されていないと判定された場合、判定部35は条件設定部34に対してその旨の情報を出力する。条件設定部34は、上記第1の実施形態と同様に、使用されている培養容器50に応じた新たな取得条件を設定する。 If it is determined that the culture vessel 50 of the type corresponding to the set acquisition condition is not used, the determination unit 35 outputs information to that effect to the condition setting unit 34. The condition setting unit 34 sets new acquisition conditions according to the culture vessel 50 used, as in the first embodiment.
 撮像制御部33は、まず、操作者の入力に基づいて設定した取得条件に基づいて培養容器50を撮像して位相差画像を取得し、さらに表示制御部36が合成位相差画像を生成する。この位相差画像を第1の合成位相差画像と称する。一方、撮像制御部33は新たな設定条件にも基づいて培養容器50を撮像して新たな位相差画像を取得し、さらに表示制御部36が新たな合成位相差画像を生成する。この新たな合成位相差画像を第2の合成位相差画像と称する。 First, the imaging control unit 33 images the culture vessel 50 based on the acquisition conditions set based on the input of the operator to acquire a phase difference image, and the display control unit 36 further generates a composite phase difference image. This retardation image is referred to as a first composite retardation image. On the other hand, the imaging control unit 33 images the culture vessel 50 based on the new setting conditions to acquire a new phase difference image, and the display control unit 36 further generates a new composite retardation image. This new composite retardation image is referred to as a second composite retardation image.
 判定部35は、設定された取得条件に対応する培養容器50が使用されていないと判定した場合、第1の実施形態と同様に警告を行う。この場合、警告画面には、第1の合成位相差画像および第2の合成位相差画像の双方を表示すればよい。 When the determination unit 35 determines that the culture vessel 50 corresponding to the set acquisition condition is not used, the determination unit 35 issues a warning as in the first embodiment. In this case, both the first composite retardation image and the second composite retardation image may be displayed on the warning screen.
 次いで、第2の実施形態において行われる処理について説明する。図15は第2の実施形態において行われる処理を示すフローチャートである。まず、観察対象である細胞が収容された培養容器50が、ステージ51上に設置される(ステップST21)。次に、操作者による使用する培養容器50の種類の入力を、入力部25から受け付けることにより、条件設定部34が、取得条件を設定する(ステップST22)。そして、カメラ90が培養容器50を撮像して判定用画像91を取得する(ステップST23)。 Next, the process performed in the second embodiment will be described. FIG. 15 is a flowchart showing the processing performed in the second embodiment. First, the culture vessel 50 containing the cells to be observed is placed on the stage 51 (step ST21). Next, the condition setting unit 34 sets the acquisition conditions by receiving the input of the type of the culture container 50 to be used by the operator from the input unit 25 (step ST22). Then, the camera 90 images the culture container 50 and acquires the determination image 91 (step ST23).
 次いで、判定部35が、判定用画像91に基づいて、設定された取得条件に対応する培養容器50が使用されているか否かの判定を行う(ステップST24)。ステップST24が肯定されると、撮像制御部33が設定された取得条件に基づいて位相差画像を取得し(ステップST25)、表示制御部36が合成位相差画像を生成する(ステップST26)。そして、判定部35は、設定された取得条件に基づいて生成された合成位相差画像をストレージ23に保存し(ステップST27)、処理を終了する。 Next, the determination unit 35 determines whether or not the culture vessel 50 corresponding to the set acquisition conditions is used based on the determination image 91 (step ST24). When step ST24 is affirmed, the imaging control unit 33 acquires a phase difference image based on the set acquisition conditions (step ST25), and the display control unit 36 generates a composite retardation image (step ST26). Then, the determination unit 35 saves the composite retardation image generated based on the set acquisition conditions in the storage 23 (step ST27), and ends the process.
 ステップST24が否定されると、表示制御部36が、設定された取得条件に基づく合成位相差画像を第1の合成位相差画像として生成する(ステップST28)。ステップST28の処理はステップST25~ステップST27の処理と同一である。さらに、条件設定部34が、使用されている培養容器50に対応する新たな取得条件を設定し(ステップST29)、撮像制御部33が新たな取得条件に基づいて新たな位相差画像を取得する(ステップST30)。そして、表示制御部36が新たな合成位相差画像である第2の合成位相差画像を生成する(ステップST31)。さらに判定部35が警告を行い(ステップST32)、処理を終了する。 When step ST24 is denied, the display control unit 36 generates a composite retardation image based on the set acquisition conditions as the first composite retardation image (step ST28). The process of step ST28 is the same as the process of steps ST25 to ST27. Further, the condition setting unit 34 sets a new acquisition condition corresponding to the culture vessel 50 used (step ST29), and the imaging control unit 33 acquires a new phase difference image based on the new acquisition condition. (Step ST30). Then, the display control unit 36 generates a second composite retardation image, which is a new composite retardation image (step ST31). Further, the determination unit 35 issues a warning (step ST32) and ends the process.
 なお、培養容器50によっては、天地が定められているものがある。例えば、図16に示す6ウェルのウェルプレート52は、1~6の数字がウェルWの下方に刻印されており、6つのウェルWがウェルプレート52の上側に偏って配置されている。このようなウェルプレート52を天地を逆にしてステージ51に設置して合成位相差画像を生成した場合、図17に示すように、合成位相差画像73には、本来必要な細胞の像が含まれなくなってしまう。このため、上記第1および第2の実施形態においては、培養容器50の向きが正しいか否かの判定をさらに行うようにしてもよい。 Note that some culture containers 50 have a fixed top and bottom. For example, in the 6-well well plate 52 shown in FIG. 16, the numbers 1 to 6 are engraved below the well W, and the 6 well Ws are unevenly arranged on the upper side of the well plate 52. When such a well plate 52 is placed on the stage 51 with the top and bottom turned upside down to generate a composite retardation image, as shown in FIG. 17, the composite retardation image 73 includes an image of originally necessary cells. It will not be possible. Therefore, in the first and second embodiments, it may be further determined whether or not the orientation of the culture vessel 50 is correct.
 培養容器50の向きが正しいか否かの判定は、まず上記第1および第2の実施形態と同様に、ストレージ23に保存されたテンプレートを用いて、設定された取得条件に対応する培養容器50が使用されているか否かを判定する。培養容器50の向きが正しくない場合、いずれのテンプレートとも一致しないこととなる。このため、判定部35は、さらに判定用画像の天地を逆にしてテンプレートとのマッチングを行い、使用されている培養容器50を判定する。なお、テンプレートの天地を逆にして合成位相差画像または判定用画像とのマッチングを行うようにしてもよい。この場合、使用されている培養容器50の天地が逆であることの警告を行うようにすればよい。 In the determination of whether or not the orientation of the culture vessel 50 is correct, first, as in the first and second embodiments, the culture vessel 50 corresponding to the set acquisition conditions is determined by using the template stored in the storage 23. Determine if is used. If the orientation of the culture vessel 50 is incorrect, it will not match any of the templates. Therefore, the determination unit 35 further reverses the top and bottom of the determination image to match with the template, and determines the culture container 50 used. It should be noted that the top and bottom of the template may be reversed to match with the composite phase difference image or the determination image. In this case, a warning may be given that the culture container 50 used is upside down.
 なお、上記のように培養容器50の向きが正しいか否かの判定を行うと、設定された取得条件に対応する培養容器50と使用している培養容器50とが異なる場合も判定できることとなる。このように設定された取得条件に対応する培養容器50と使用している培養容器50とが異なる場合は、上記第1および第2の実施形態と同様の処理を行えばよい。 When it is determined whether or not the orientation of the culture vessel 50 is correct as described above, it is possible to determine even if the culture vessel 50 corresponding to the set acquisition conditions and the culture vessel 50 used are different. .. When the culture container 50 corresponding to the acquisition conditions set in this way and the culture container 50 used are different, the same treatment as in the first and second embodiments may be performed.
 また、上記第1の実施形態においては、取得条件に対応する培養容器50が使用されていない場合、新たな取得条件を設定して新たな合成位相差画像を取得しているが、これに限定されるものではない。新たな合成位相差画像を取得することなく、警告のみを行うようにしてもよい。この場合、警告画面には、生成された合成位相差画像と警告を行うためのテキストのみが表示される。なお、生成された合成位相差画像を表示することなく、警告を行うためのテキストのみを表示してもよい。また、警告を行うためのテキストと、設定された取得条件のテキストとを表示してもよいし、警告を行うためのテキストと設定された取得条件のテキストに加えて、新たな取得条件のテキストを表示してもよい。この場合、操作者は警告に従って、培養容器50の撮像をやり直すことができる。このため、撮像機会の損失を防止することができる。 Further, in the first embodiment, when the culture vessel 50 corresponding to the acquisition condition is not used, a new acquisition condition is set and a new synthetic retardation image is acquired, but the present invention is limited to this. It is not something that is done. It is possible to give only a warning without acquiring a new composite retardation image. In this case, the warning screen displays only the generated composite retardation image and the text for warning. It should be noted that the generated composite retardation image may not be displayed, and only the text for giving a warning may be displayed. In addition, the text for giving a warning and the text of the set acquisition condition may be displayed, and in addition to the text for giving a warning and the text of the set acquisition condition, the text of the new acquisition condition May be displayed. In this case, the operator can redo the imaging of the culture vessel 50 according to the warning. Therefore, loss of imaging opportunity can be prevented.
 また、上記第2の実施形態においては、取得条件に対応する培養容器50が使用されていない場合、取得条件に対応する第1の合成位相差画像と、新たな取得条件に対応する第2の合成位相差画像とを生成しているが、これに限定されるものではない。第1の合成位相差画像および第2の合成位相差画像のいずれか一方のみを取得するようにしてもよい。この場合、警告画面には、第1の合成位相差画像または第2の合成位相差画像と警告を行うためのテキストのみが表示される。 Further, in the second embodiment, when the culture vessel 50 corresponding to the acquisition condition is not used, the first synthetic retardation image corresponding to the acquisition condition and the second synthetic retardation image corresponding to the new acquisition condition are used. A composite retardation image is generated, but the present invention is not limited to this. Only one of the first composite retardation image and the second composite retardation image may be acquired. In this case, the warning screen displays only the first composite retardation image or the second composite retardation image and the text for warning.
 また、上記各実施形態においては、培養容器50としてウェルプレートを用いているが、フラスコおよびシャーレ等のウェルプレート以外の培養容器50を用いる場合にも、本開示を適用することができる。この場合、使用が想定されるフラスコおよびシャーレ等のテンプレートをストレージ23に保存しておき、判定部35においては、判定用画像とテンプレートとを比較することにより、上記判定を行うようにすればよい。 Further, in each of the above embodiments, the well plate is used as the culture container 50, but the present disclosure can also be applied when a culture container 50 other than the well plate such as a flask and a petri dish is used. In this case, templates such as flasks and petri dishes that are expected to be used may be stored in the storage 23, and the determination unit 35 may perform the above determination by comparing the determination image with the template. ..
 また、上記各実施形態においては、取得条件に基づいて培養容器50におけるウェルWに対応する位置においてのみ、撮像素子16を駆動して位相差画像を取得しているが、これに限定されるものではない。培養容器50の全領域において位相差画像を取得し、取得条件に基づいて定められた位置の位相差画像のみを抽出して合成位相差画像を生成するようにしてもよい。 Further, in each of the above embodiments, the image sensor 16 is driven to acquire the phase difference image only at the position corresponding to the well W in the culture vessel 50 based on the acquisition conditions, but the present invention is limited to this. is not. A phase difference image may be acquired in the entire region of the culture vessel 50, and only the phase difference image at a position determined based on the acquisition conditions may be extracted to generate a composite phase difference image.
 また、上記各実施形態においては、ステージ51を移動させることによって、培養容器50内の観察位置を走査するようにしたが、これに限定されるものではない。結像光学系14および撮像素子16からなる撮像系を移動させるようにしてもよい。また、ステージ51と撮像系との両方を移動させるようにしてもよい。 Further, in each of the above embodiments, the observation position in the culture vessel 50 is scanned by moving the stage 51, but the present invention is not limited to this. The image pickup system including the image pickup optical system 14 and the image pickup element 16 may be moved. Further, both the stage 51 and the imaging system may be moved.
 また、上記各実施形態は、本開示を位相差顕微鏡に適用したものであるが、本開示は、位相差顕微鏡に限らず、微分干渉顕微鏡および明視野顕微鏡等のその他の顕微鏡に適用するようにしてもよい。 Further, although each of the above embodiments applies the present disclosure to a phase-contrast microscope, the present disclosure is not limited to a phase-contrast microscope, but is applied to other microscopes such as a differential interference microscope and a bright-field microscope. You may.
 また、上記第2の実施形態においては、結像光学系14によって結像された位相差画像を撮像素子16によって撮像するようにしたが、撮像素子16を設けることなく、結像光学系14によって結像された観察対象の位相差画像を操作者が直接観察できるように観察光学系等を設けるようにしてもよい。 Further, in the second embodiment, the phase difference image formed by the imaging optical system 14 is imaged by the image pickup device 16, but the imaging optical system 14 does not provide the image pickup element 16. An observation optical system or the like may be provided so that the operator can directly observe the imaged phase difference image of the observation target.
 また、上記各実施形態において、例えば、オートフォーカス制御部31、走査制御部32、撮像制御部33、条件設定部34、判定部35および表示制御部36といった各種の処理を実行する処理部(Processing Unit)のハードウェア的な構造としては、次に示す各種のプロセッサ(Processor)を用いることができる。上記各種のプロセッサには、上述したように、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPUに加えて、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device :PLD)、ASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。 Further, in each of the above embodiments, for example, a processing unit (Processing) that executes various processes such as an autofocus control unit 31, a scanning control unit 32, an imaging control unit 33, a condition setting unit 34, a determination unit 35, and a display control unit 36. As the hardware structure of the Unit), various processors (Processors) shown below can be used. As described above, the various processors include a CPU, which is a general-purpose processor that executes software (program) and functions as various processing units, and a circuit after manufacturing an FPGA (Field Programmable Gate Array) or the like. Dedicated electricity, which is a processor with a circuit configuration specially designed to execute specific processing such as programmable logic device (PLD), ASIC (Application Specific Integrated Circuit), which is a processor whose configuration can be changed. Circuits and the like are included.
 1つの処理部は、これらの各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせまたはCPUとFPGAとの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。 One processing unit may be composed of one of these various processors, or a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs or a combination of a CPU and an FPGA). ) May be configured. Further, a plurality of processing units may be configured by one processor.
 複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントおよびサーバ等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアとの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)等に代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサの1つ以上を用いて構成される。 As an example of configuring a plurality of processing units with one processor, first, as represented by a computer such as a client and a server, one processor is configured by combining one or more CPUs and software. There is a form in which this processor functions as a plurality of processing units. Second, as typified by System On Chip (SoC), there is a form that uses a processor that realizes the functions of the entire system including multiple processing units with a single IC (Integrated Circuit) chip. is there. As described above, the various processing units are configured by using one or more of the various processors as a hardware structure.
 さらに、これらの各種のプロセッサのハードウェア的な構造としては、より具体的には、半導体素子等の回路素子を組み合わせた電気回路(Circuitry)を用いることができる。 Further, as the hardware structure of these various processors, more specifically, an electric circuit (Circuitry) in which circuit elements such as semiconductor elements are combined can be used.
   10  顕微鏡装置
   11  白色光源
   12  コンデンサレンズ
   13  スリット板
   14  結像光学系
   15  結像光学系駆動部
   16  撮像素子
   17  水平方向駆動部
   18  検出部
   20  観察制御装置
   21  CPU
   22  メモリ
   23  ストレージ
   24  表示部
   25  入力部
   31  オートフォーカス制御部
   32  走査制御部
   33  撮像制御部
   34  条件設定部
   35  判定部
   36  表示制御部
   50  培養容器
   51  ステージ
   51a 開口
   60  条件設定画面
   61A~61C、62A~62C、63A~63D  コマンド
   70~73、82~83  合成位相差画像
   80  警告画面
   81  テキスト
   90  カメラ
   91  判定用画像
   E  走査終了点
   L  照明光
   M  実線
   S  走査開始点
   T0  テンプレート
   W  ウェル
10 Microscope device 11 White light source 12 Condenser lens 13 Slit plate 14 Imaging optical system 15 Imaging optical system drive unit 16 Imaging element 17 Horizontal drive unit 18 Detection unit 20 Observation control device 21 CPU
22 Memory 23 Storage 24 Display 25 Input 31 Autofocus control 32 Scanning control 33 Imaging control 34 Condition setting 35 Judgment 36 Display control 50 Culture container 51 Stage 51a Aperture 60 Condition setting screen 61A to 61C, 62A ~ 62C, 63A ~ 63D Command 70-73, 82-83 Composite phase difference image 80 Warning screen 81 Text 90 Camera 91 Judgment image E Scanning end point L Illumination light M Solid line S Scanning start point T0 Template W

Claims (11)

  1.  容器に収容された観察対象を撮像部により撮像して観察画像を取得するための取得条件を設定する条件設定部と、
     前記観察対象を含む判定用画像に基づいて、前記設定された取得条件に対応する前記容器が使用されているか否かの判定を行う判定部とを備えた観察制御装置。
    A condition setting unit that sets acquisition conditions for acquiring an observation image by imaging the observation target housed in the container with the imaging unit, and
    An observation control device including a determination unit that determines whether or not the container corresponding to the set acquisition condition is used based on the determination image including the observation target.
  2.  前記判定部は、前記判定が否定された場合に警告を行う請求項1に記載の観察制御装置。 The observation control device according to claim 1, wherein the determination unit gives a warning when the determination is denied.
  3.  前記設定された取得条件に基づいて前記観察対象を前記撮像部により撮像することにより、前記観察画像を取得する撮像制御部をさらに備え、
     前記条件設定部は、前記判定が否定された場合、使用されている容器に対応する新たな取得条件を設定し、
     前記撮像制御部は、前記新たな取得条件に基づいて新たな観察画像を取得する請求項1または2に記載の観察制御装置。
    An imaging control unit that acquires the observation image by imaging the observation target with the imaging unit based on the set acquisition conditions is further provided.
    If the determination is denied, the condition setting unit sets a new acquisition condition corresponding to the container used.
    The observation control device according to claim 1 or 2, wherein the imaging control unit acquires a new observation image based on the new acquisition condition.
  4.  前記設定された取得条件に基づいて前記観察対象を前記撮像部により撮像することにより、前記観察画像を取得する撮像制御部をさらに備え、
     前記条件設定部は、前記判定が否定された場合、使用されている容器に対応する新たな取得条件を設定し、
     前記撮像制御部は、前記取得条件に基づく前記観察画像および前記新たな取得条件に基づく新たな観察画像の双方を取得する請求項1または2に記載の観察制御装置。
    An imaging control unit that acquires the observation image by imaging the observation target with the imaging unit based on the set acquisition conditions is further provided.
    If the determination is denied, the condition setting unit sets a new acquisition condition corresponding to the container used.
    The observation control device according to claim 1 or 2, wherein the imaging control unit acquires both the observation image based on the acquisition conditions and the new observation image based on the new acquisition conditions.
  5.  前記設定された取得条件に基づいて前記観察対象を前記撮像部により撮像することにより、前記観察画像を取得する撮像制御部をさらに備え、
     前記判定用画像は、前記設定された取得条件に基づいて取得された前記観察画像である請求項1から4のいずれか1項に記載の観察制御装置。
    An imaging control unit that acquires the observation image by imaging the observation target with the imaging unit based on the set acquisition conditions is further provided.
    The observation control device according to any one of claims 1 to 4, wherein the determination image is the observation image acquired based on the set acquisition conditions.
  6.  前記撮像制御部は、前記取得条件に基づいて、前記容器における前記観察対象が存在する領域のみを含む前記観察画像を取得し、
     前記判定部は、前記観察画像における前記観察対象が存在すべき領域に、前記観察対象が含まれるか否かを判定することにより、前記設定された取得条件に対応する前記容器が使用されているか否かの判定を行う請求項5に記載の観察制御装置。
    Based on the acquisition conditions, the imaging control unit acquires the observation image including only the region in which the observation target exists in the container.
    By determining whether or not the observation target is included in the region where the observation target should exist in the observation image, the determination unit determines whether the container corresponding to the set acquisition condition is used. The observation control device according to claim 5, wherein it determines whether or not.
  7.  前記観察対象を撮像して前記判定用画像を取得する判定用画像取得部をさらに備えた請求項1から4のいずれか1項に記載の観察制御装置。 The observation control device according to any one of claims 1 to 4, further comprising a determination image acquisition unit that captures the observation target and acquires the determination image.
  8.  前記判定部は、前記観察対象の画像に含まれる前記容器の向きが正しいか否かの判定をさらに行う請求項1から7のいずれか1項に記載の観察制御装置。 The observation control device according to any one of claims 1 to 7, wherein the determination unit further determines whether or not the orientation of the container included in the image to be observed is correct.
  9.  前記容器はウェルプレートである請求項1から8のいずれか1項に記載の観察制御装置。 The observation control device according to any one of claims 1 to 8, wherein the container is a well plate.
  10.  容器に収容された観察対象を撮像部により撮像して観察画像を取得するための取得条件を設定する工程と、
     前記観察対象を含む判定用画像に基づいて、前記設定された取得条件に対応する前記容器が使用されているか否かの判定を行う工程とを有する観察制御方法。
    A process of setting acquisition conditions for acquiring an observation image by imaging an observation target housed in a container with an imaging unit, and
    An observation control method including a step of determining whether or not the container corresponding to the set acquisition condition is used based on the determination image including the observation target.
  11.  容器に収容された観察対象を撮像部により撮像して観察画像を取得するための取得条件を設定する手順と、
     前記観察対象を含む判定用画像に基づいて、前記設定された取得条件に対応する前記容器が使用されているか否かの判定を行う手順とをコンピュータに実行させる観察制御プログラム。
    The procedure for setting the acquisition conditions for acquiring the observation image by imaging the observation target contained in the container with the imaging unit, and
    An observation control program that causes a computer to execute a procedure for determining whether or not the container corresponding to the set acquisition condition is used based on the determination image including the observation target.
PCT/JP2020/013845 2019-04-02 2020-03-26 Device, method, and program for controlling observation WO2020203700A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-070659 2019-04-02
JP2019070659 2019-04-02

Publications (1)

Publication Number Publication Date
WO2020203700A1 true WO2020203700A1 (en) 2020-10-08

Family

ID=72668512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013845 WO2020203700A1 (en) 2019-04-02 2020-03-26 Device, method, and program for controlling observation

Country Status (1)

Country Link
WO (1) WO2020203700A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175220A1 (en) * 2013-04-26 2014-10-30 浜松ホトニクス株式会社 Image acquisition device and method and system for creating focus map for specimen
JP2015082098A (en) * 2013-10-24 2015-04-27 株式会社キーエンス Controller for controlling microscope, container holder, microscope system, control method, and program
WO2016162945A1 (en) * 2015-04-07 2016-10-13 オリンパス株式会社 Cell analysis device and cell analysis method
WO2017069150A1 (en) * 2015-10-20 2017-04-27 ロート製薬株式会社 Cell treatment device
WO2018062125A1 (en) * 2016-09-28 2018-04-05 オリンパス株式会社 Cell status assessment device
WO2018179946A1 (en) * 2017-03-30 2018-10-04 富士フイルム株式会社 Observation device, observation control method, and observation control program
WO2019088030A1 (en) * 2017-11-02 2019-05-09 富士フイルム株式会社 Imaging control device, method for operating imaging control device, and imaging control program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175220A1 (en) * 2013-04-26 2014-10-30 浜松ホトニクス株式会社 Image acquisition device and method and system for creating focus map for specimen
JP2015082098A (en) * 2013-10-24 2015-04-27 株式会社キーエンス Controller for controlling microscope, container holder, microscope system, control method, and program
WO2016162945A1 (en) * 2015-04-07 2016-10-13 オリンパス株式会社 Cell analysis device and cell analysis method
WO2017069150A1 (en) * 2015-10-20 2017-04-27 ロート製薬株式会社 Cell treatment device
WO2018062125A1 (en) * 2016-09-28 2018-04-05 オリンパス株式会社 Cell status assessment device
WO2018179946A1 (en) * 2017-03-30 2018-10-04 富士フイルム株式会社 Observation device, observation control method, and observation control program
WO2019088030A1 (en) * 2017-11-02 2019-05-09 富士フイルム株式会社 Imaging control device, method for operating imaging control device, and imaging control program

Similar Documents

Publication Publication Date Title
US10761295B2 (en) Image focusing device, image focusing method and computer readable medium with image focusing control program
JP6743871B2 (en) Medical system and medical image processing method
WO2019181053A1 (en) Device, method, and program for measuring defocus amount, and discriminator
US20190339498A1 (en) Microscope apparatus, observation method, and microscope apparatus-control program
US11209637B2 (en) Observation device, observation control method, and observation control program that control acceleration of a moveable stage having an installed subject vessel
US11163145B2 (en) Observation device, observation method, and observation device control program
WO2020203700A1 (en) Device, method, and program for controlling observation
EP3457192B1 (en) Imaging device and method, and imaging device control program
US20190204536A1 (en) Observation device, observation method, and observation device control program
JP6848086B2 (en) Observation device and method and observation device control program
EP3726273A1 (en) Observation device, observation method, and observation program
WO2019044416A1 (en) Imaging processing device, control method for imaging processing device, and imaging processing program
US20200192073A1 (en) Observation apparatus, observation method, and observation program
US11971530B2 (en) Observation apparatus, method of operating observation apparatus, and observation control program
US20220113528A1 (en) Observation apparatus, method of operating observation apparatus, and observation control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP