WO2020203643A1 - Light diffusion film laminate for reflective display device, and reflective display device using same - Google Patents

Light diffusion film laminate for reflective display device, and reflective display device using same Download PDF

Info

Publication number
WO2020203643A1
WO2020203643A1 PCT/JP2020/013660 JP2020013660W WO2020203643A1 WO 2020203643 A1 WO2020203643 A1 WO 2020203643A1 JP 2020013660 W JP2020013660 W JP 2020013660W WO 2020203643 A1 WO2020203643 A1 WO 2020203643A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
anisotropic
light diffusion
diffusion layer
display device
Prior art date
Application number
PCT/JP2020/013660
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 昌央
Original Assignee
株式会社巴川製紙所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社巴川製紙所 filed Critical 株式会社巴川製紙所
Priority to CN202080024211.2A priority Critical patent/CN113631966A/en
Priority to KR1020217032839A priority patent/KR20210145764A/en
Priority to JP2021511919A priority patent/JPWO2020203643A1/ja
Publication of WO2020203643A1 publication Critical patent/WO2020203643A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0257Diffusing elements; Afocal elements characterised by the diffusing properties creating an anisotropic diffusion characteristic, i.e. distributing output differently in two perpendicular axes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors

Definitions

  • the present invention relates to a light diffusing film laminate for a reflective display device, which is a display method for displaying an image by reflecting external light, and a reflective display device using the same.
  • Patent Documents In the conventional reflective display device, it is common to provide an isotropic light diffusion layer on the display screen for the purpose of reducing the metallic luster of the reflective layer that reflects external light. Further, there is a case in which an anisotropic light diffusing layer is used to diffuse (condense) the reflected light from the reflecting layer that reflects external light in a limited direction preferentially to obtain sufficient brightness (Patent Documents). 1). Further, Patent Documents 2 and 3 each use an optical film in which a specific anisotropic diffusion layer and an isotropic diffusion layer are laminated, and an observer (viewer) can see the visibility according to the observation position and the observation angle. The invention that suppresses the change of is disclosed.
  • the positional relationship between the external light and the display device often changes under the usage environment, and the angle of incidence of the external light on the display device is not constant.
  • a device such as a smartphone or tablet that is used by rotating the device vertically and horizontally.
  • the angle at which the display device is visually recognized is generally the front direction of the display device.
  • an isotropic light diffusion layer When the incident angle of external light is large (when light is incident from an angle), it is necessary to widen the diffusion range in order to increase the intensity of reflected light in the front direction, which is the viewing direction (for example, fine particles). If it is the isotropic light diffusion layer used, a method of adding a large amount of fine particles can be mentioned). On the other hand, when the incident angle of external light is small (when incident from an angle close to the front direction), if the diffusion range is wide, the reflected light intensity in the front direction becomes small, so it is necessary to narrow the diffusion range. There is (for example, in the case of an isotropic light diffusion layer using fine particles, a method of adding a small amount of fine particles can be mentioned). In this way, the isotropic light diffusion layer has a trade-off relationship in which the optimum scattering characteristics differ depending on the incident angle of external light.
  • the pillar in the case of a pillar structure, since it has the property of concentrating light in the direction in which the pillar extends, the pillar extends to an angle close to the normal direction of the layer plane when considering the condensing in the front direction, which is the viewing direction. It is preferable to be present. From this, considering the case where the extending direction of the pillar is close to the normal direction of the layer plane, the incident angle of the external light is the extending direction of the pillar (in the main plane of the anisotropic light diffusing layer, from one surface to the other.
  • the reflected light intensity in the pillar extending direction is significantly increased due to the above-mentioned condensing action. improves.
  • the incident angle of the external light is larger than the extending direction of the pillars (when the incident light is incident from an angle away from the normal direction of the layer plane)
  • the scattering characteristics are weak, so that the front direction The light condensing effect on the light is not sufficiently exerted, and the reflected light intensity becomes small.
  • the louver structure since the light has a characteristic of diffusing and condensing the light in the direction orthogonal to the major axis of the louver cross section, the light is incident from a specific direction in the condensing in the front direction, which is the viewing direction. Only when the reflected light intensity is greatly improved.
  • the brightness is in the direction in which the louver extends (in the main plane of the anisotropic light diffusing layer, the direction in which the louver is oriented from one surface to the other surface, also referred to as the height direction in the present invention). Light interference is likely to occur due to sudden changes in.
  • the pillar structure has a characteristic that the scattering characteristics are weak against external light that forms an angle with the extending direction of the louver, so the light collecting effect in the front direction is not sufficiently exhibited, and this is also the case.
  • the reflected light intensity becomes small. Therefore, it is difficult for the anisotropic light diffusing layer to sufficiently collect the external light forming an angle with the extending direction of the internal structure.
  • both the isotropic light diffusion layer and the anisotropic light diffusion layer had an external light incident angle at which the reflected light intensity became small.
  • Patent Documents 2 and 3 have the effect of widening the range of incident angles of external light in which the intensity of reflected light does not change, and make it possible to suppress changes in visibility depending on the observation position and observation angle.
  • the relative reflection brightness for each observation angle with the front direction as 100% is only changed so as to be small in the vicinity of the front direction, and the reflection brightness for each observation angle itself. No effect has been shown to improve.
  • Patent Documents 2 and 3 make it possible to suppress a change in visibility when the observation position is changed, but are not inventions in consideration of a change in the incident angle of external light.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is a display capable of improving the reflected light intensity at various external light incident angles in the front direction on the viewing side and improving the visibility.
  • An object of the present invention is to provide a light diffusing film laminate for a reflective display device having excellent quality.
  • the light diffusing film laminate for a reflective display device of the present invention is a light diffusing film laminated body for a reflective display device whose diffusivity changes depending on the incident angle of light, and the light diffusing
  • the film laminate includes at least an anisotropic light diffusing layer whose linear transmittance changes depending on the incident angle of the light and an isotropic light diffusing layer provided on one surface side of the anisotropic light diffusing layer, and the anisotropic light diffusing body.
  • the layer has a matrix region and a columnar region composed of a plurality of columnar structures inside the layer, and the scattering center axis angle of the anisotropic light diffusion layer is 6 with respect to the normal direction of the anisotropic light diffusion layer.
  • the maximum linear transmittance of the anisotropic light diffusing layer is 15% or more and 85% or less, and the maximum linear transmittance of the isotropic light diffusing layer is 35% or less, for the reflective display device.
  • the maximum linear transmittance of the light diffusing film laminate is 10% or less.
  • the scattering central axis angle of the anisotropic light diffusion layer and the maximum linear transmittance of each layer are defined. It is possible to provide a light diffusing film laminate for a reflective display device having excellent display quality, which can improve the reflected light intensity at various external light incident angles in the front direction on the viewing side and improve the visibility. ..
  • FIG. 1 It is a schematic diagram which shows the structural example of the anisotropic light diffusion layer which has a pillar structure and a louver structure in the anisotropic optical film by this embodiment, (a) is a louver structure, and (b) is a pillar structure. It is a three-dimensional polar coordinate display for explaining the scattering center axis in the anisotropic light diffusion layer by this embodiment. It is explanatory drawing which shows the arrangement structure of the anisotropic optical film and the isotropic light diffusion layer by this embodiment. It is a figure which shows the measuring method of the diffuse reflection light intensity of the light diffusion film laminate or the anisotropic optical film obtained in an Example and a comparative example.
  • anisotropic optical film is a case where the anisotropic light diffusing layer is a single layer (only one layer) or a case where two or more anisotropic light diffusing layers are laminated (at that time, the anisotropic light diffusing layer is an adhesive layer. Etc.) and the like are included. Therefore, for example, when the anisotropic light diffusing layer is a single layer, it means that the monolayer anisotropic light diffusing layer is an anisotropic optical film.
  • the "anisotropic optical film” has anisotropy and directivity in which the diffusion, transmission and diffusion distribution of light have an incident light angle dependence that changes depending on the incident angle of light (details will be described later). .. Therefore, it is different from a directional diffusion film, an isotropic diffusion film, and a diffusion film oriented in a specific direction, which are not dependent on the incident light angle.
  • the "low refractive index region” and the “high refractive index region” are regions formed by the local difference in the refractive index of the material constituting the anisotropic optical film according to the present invention, as compared with the other. It is a relative indicator of whether the refractive index is low or high. These regions are formed when the material forming the anisotropic optical film is cured.
  • the “scattering center axis” is a direction in which the light diffusivity matches the incident light angle of light having substantially symmetry with the incident light angle as a boundary when the incident light angle on the anisotropic optical film is changed. means. "Having substantially symmetry” means that the optical profile (described later) regarding light diffusivity is strict when the scattering center axis has an inclination with respect to the normal direction of the film (the film thickness direction). This is because it does not have symmetry.
  • the scattering center axis observes the inclination of the columnar structure in the cross section of the anisotropic optical film with an optical microscope, and observes the projected shape of light through the anisotropic optical film by changing the incident light angle. It can be confirmed by.
  • the "straight line transmittance” generally refers to the linear transmittance of light incident on a film, and is generally referred to as "linear transmitted light amount” which is the amount of transmitted light in the linear direction when incident from a certain incident light angle. It is a ratio with the “incident light amount” which is the light amount of the light, and is expressed by the following formula.
  • Linear transmittance (%) (Linear transmitted light amount / Incident light amount) ⁇ 100
  • both “scattering” and “diffusion” are used without distinction, and both have the same meaning.
  • the meanings of "photopolymerization” and “photocuring” are that the photopolymerizable compound undergoes a polymerization reaction by light, and both are used as synonyms.
  • anisotropic optical film ⁇ 1. Structure and characteristics of anisotropic optical film >>> As a premise for explaining the anisotropic optical film according to the present embodiment with reference to FIGS. 1 to 4, a single-layer anisotropic optical film according to the prior art (“anisotropic light diffusion layer” referred to in the present embodiment”. The structure and characteristics of the anisotropic optical film) when only one layer is used will be described.
  • FIG. 1 shows an example of the structure of a single-layer anisotropic optical film (anisotropic light diffusion layer) having columnar regions of a pillar structure and a louver structure, and the state of transmitted light incident on these anisotropic optical films. It is a schematic diagram.
  • FIG. 2 is an explanatory diagram showing a method for evaluating the light diffusivity of the anisotropic optical film.
  • FIG. 3 is a graph showing the relationship between the incident light angle of the pillar structure and the louver structure shown in FIG. 1 on the anisotropic optical film and the linear transmittance.
  • FIG. 4 is a graph for explaining a diffusion region and a non-diffusion region.
  • An anisotropic optical film is a film in which a region having a refractive index different from that of the matrix region of the film is formed inside the film.
  • the shape of the regions having different refractive indexes is not particularly limited, but for example, as shown in FIG. 1A, the anisotropy in which the columnar structures 13 having different refractive indexes are formed in the matrix region 11.
  • FIG. 1 (b) there are an optical film 10 and an anisotropic optical film 20 in which a columnar structure 23 having a different refractive index is formed in a matrix region 21.
  • the columnar structure 13 has a cross section whose normal direction is the extending direction (the direction in which the columnar structure 13 is oriented from one surface to the other surface in the anisotropic optical film main plane). , Circular, or a columnar (for example, rod-shaped) having a small aspect ratio (major axis / minor axis) between the minor axis and the major axis, and such a structure is referred to as a pillar structure.
  • the columnar structure 23 is in the extending direction (in the main plane of the anisotropic optical film, the direction in which the columnar structure 23 is oriented from one surface to the other surface, also referred to as the height direction in the present invention). It is a columnar structure (for example, substantially plate-like) having a large aspect ratio in the cross section with the normal direction, and such a structure is called a louver structure.
  • the anisotropic optical film having the above-mentioned structure is a light diffusing film having different light diffusivity depending on the incident light angle on the film, that is, a light diffusing film having an incident light angle dependence.
  • the light incident on the anisotropic optical film at a predetermined incident light angle is the orientation direction of the plurality of columnar structures (for example, the extending direction of the plurality of columnar structures 13 in the pillar structure and the plurality of columnar structures in the louver structure). When it is substantially parallel to the height direction of the body 23), it shows high diffusivity, and when it is not parallel to the direction, it has low diffusivity.
  • the light diffusivity of the anisotropic optical film will be described more specifically with reference to FIGS. 2 and 3.
  • the light diffusivity of the above-mentioned anisotropic optical film 10 having a pillar structure and the anisotropic optical film 20 having a louver structure will be described as examples.
  • the method for evaluating the light diffusivity is as follows. First, as shown in FIG. 2, the anisotropic optical films 10 and 20 are arranged between the light source 1 and the detector 2. In the present embodiment, the case where the irradiation light I from the light source 1 is incident from the normal direction of the anisotropic optical films 10 and 20 is defined as the incident light angle of 0 °. Further, the anisotropic optical films 10 and 20 are arranged so as to be arbitrarily rotated around the straight line V, and the light source 1 and the detector 2 are fixed.
  • the sample anisotropic optical films 10 and 20
  • the sample travels straight while changing the angle with the straight line V on the sample surface as the central axis.
  • the amount of linearly transmitted light that is transmitted and enters the detector 2 can be measured.
  • the light diffusivity was evaluated for the anisotropic optical films 10 and 20 when the TD direction of FIG. 1 was selected as the straight line V at the center of rotation shown in FIG. 2, and the obtained evaluation results of the light diffusivity were evaluated.
  • FIG. 3 shows the incident light angle dependence of the light diffusivity (light scattering property) of the anisotropic optical films 10 and 20 shown in FIG. 1 measured by the method shown in FIG.
  • the vertical axis of FIG. 3 shows the linear transmittance which is an index showing the degree of scattering, and the horizontal axis shows the angle of incident light on the anisotropic optical films 10 and 20.
  • linear transmittance (%) (linear transmitted light amount / incident light amount) ⁇ 100
  • the detected light amount of the detector 2 when there are anisotropic optical films 10 and 20 "straight line transmission".
  • the amount of light "and also.
  • the amount of detected light of the detector 2 in the absence of the anisotropic optical films 10 and 20 "incident light amount”.
  • the solid line in FIG. 3 shows the light diffusivity of the anisotropic optical film 10 having a pillar structure, and the broken line shows the light diffusivity of the anisotropic optical film 20 having a louver structure.
  • the positive and negative of the incident light angle indicate that the directions in which the anisotropic optical films 10 and 20 are rotated are opposite.
  • the anisotropic optical films 10 and 20 have a light diffusive incident light angle dependence in which the linear transmittance changes depending on the incident light angle.
  • the curve showing the light diffusivity depending on the incident light angle as shown in FIG. 3 is hereinafter referred to as an “optical profile”.
  • the optical profile does not directly express the light diffusivity, but if it is interpreted that the diffusive transmittance increases (increases) due to the decrease in the linear transmittance, it is generally the light diffusivity. It can be said that it shows.
  • the linear transmittance in the anisotropic optical films 10 and 20, compared with the linear transmittance when the plurality of columnar structures 13 and 23 are incident in the central axis direction (extending direction), that is, in the scattering central axis direction. , The linear transmittance once becomes the minimum value at the incident light angle of -20 ° to + 20 °, and the linear transmittance increases as the incident light angle (absolute value) increases, -60 ° to -30 ° or A valley-shaped optical profile with maximum linear transmittance at an incident light angle of + 30 ° to + 60 ° is shown.
  • the incident light is strongly diffused in the incident light angle range of -20 ° to + 20 ° near the scattering center axis direction, but the absolute value of the incident light angle is higher than that.
  • the diffusion is weakened and the linear transmittance is increased.
  • the linear transmittance shows the minimum value, that is, in the predetermined angle range.
  • the diffusivity decreases with respect to the light (display light or external light) incident at an angle other than the predetermined angle range.
  • the property that the linear transmittance shows the maximum value, that is, the property that the light diffusion is reduced except in a predetermined angle range is referred to as "anisometric". That is, it means that the diffusivity of light changes depending on the angle of incident light.
  • the predetermined angle range in which the light diffusion increases is compared with the linear transmission rate when the light is incident in the direction of the scattering center axis (the incident light angle in this direction is 0 °).
  • the incident light angle in this direction is 0 °.
  • it refers to a range of incident light angles of ⁇ 20 ° to + 20 °.
  • other than the predetermined angle range in which the diffusion of light is reduced as described above, it is compared with the linear transmittance in the case of incident in the direction of the scattering center axis (the incident light angle in this direction is 0 °). Then, for example, it refers to a range of incident light angles of ⁇ 60 ° to ⁇ 30 ° or + 30 ° to + 60 °.
  • the diffusion distribution of light differs depending on the diffusion angle.
  • the diffusion distribution of light not only differs depending on the diffusion angle but also changes depending on the incident light angle. It shows a diffusion distribution with further dependence. That is, the diffusion, transmission, and diffusion distribution of light have anisotropy and directivity having an incident light angle dependence that changes depending on the incident angle of light.
  • the angular range of the two incident light angles with respect to the linear transmittance of the intermediate value between the maximum linear transmittance and the minimum linear transmittance is referred to as a diffusion region (the width of this diffusion region is referred to as "diffusion width").
  • the other incident light angle range is referred to as a non-diffuse region.
  • FIG. 4 shows the optical profile of the anisotropic optical film 20 having the louver structure of FIG.
  • the linear transmittance is about 42%) (inside the two incident light angles at the positions of the two black spots on the optical profile shown in FIG. 4).
  • the incident light angle range is the diffused region, and the other incident light angle range (outside the two incident light angles at the positions of the two black spots on the optical profile shown in FIG. 4) is the non-diffuse region.
  • the transmitted light has a substantially circular shape, and the light is substantially the same in the MD direction and the TD direction. It shows diffusivity. That is, in the anisotropic optical film 10 having a pillar structure, the diffusion is isotropic when viewed azimuthally. Further, as shown by the solid line in FIG. 3, even if the incident light angle is changed, the light diffusivity (particularly, the optical profile near the boundary between the non-diffusing region and the diffusing region) changes relatively slowly, so that the brightness is increased. It has the effect of not causing discomfort due to sudden changes.
  • the anisotropic optical film 10 is characterized in that the linear transmittance in the non-diffuse region is low, as can be understood by comparing with the optical profile of the anisotropic optical film 20 having a louver structure shown by the broken line in FIG. There is. Further, the anisotropic optical film 10 having a pillar structure is characterized in that the width of the diffusion region is narrower than that of the anisotropic optical film 20 having a louver structure. It should be noted that the pillar structure does not have the directivity of diffusion depending on the azimuth angle, but has the characteristic of having directivity with respect to the distribution of diffusion.
  • the transmitted light has a substantially needle shape, and the transmitted light is emitted in the MD direction and the TD direction.
  • Diffusivity is very different. That is, in the anisotropic optical film 20 having a louver structure, the diffusion has directivity in which the diffusion characteristics differ greatly depending on the azimuth angle. Specifically, in the example shown in FIG. 1B, the diffusion is wider in the MD direction than in the case of the pillar structure, but is narrower in the TD direction than in the case of the pillar structure. Further, as shown by the broken line in FIG.
  • the light diffusivity in particular, the optical profile near the boundary between the non-diffusing region and the diffusing region
  • the anisotropic optical film 20 Since the change is extremely steep, when the anisotropic optical film 20 is applied to the display device, it appears as a sudden change in brightness, which may cause a sense of discomfort.
  • the anisotropic optical film having a louver structure tends to cause light interference (rainbow).
  • the anisotropic optical film 20 has an effect that the linear transmittance in the non-diffusion region is high and the display characteristics can be improved.
  • the preferred diffusion direction MD direction in FIG. 1B
  • the anisotropic optical films 100 and 150 are anisotropic optical films having an anisotropic light diffusing layer 110 or 120 whose linear transmittance changes depending on the incident light angle.
  • the anisotropic light diffusing layer 110 has a matrix region 111 and a plurality of columnar structures 113 (columnar regions) having a refractive index different from that of the matrix region 111.
  • the anisotropic light diffusing layer 120 has a matrix region 121 and a plurality of columnar structures 123 (columnar regions) having a refractive index different from that of the matrix region 121.
  • the columnar region when simply expressed as a columnar region, includes a pillar region having a pillar structure and a columnar region having a louver structure.
  • the columnar structure includes a pillar structure having a pillar structure and a columnar structure having a louver structure.
  • the plurality of columnar structures (113 and 123) are formed by orienting the plurality of columnar structures from one surface to the other surface in the main plane of the anisotropic light diffusion layer, and the orientation directions of the plurality of columnar structures.
  • anisotropic optical films 100 and 150 having such an anisotropic light diffusion layer 110 or an anisotropic light diffusion layer 120 will be described in detail.
  • the anisotropic light diffusing layer 110 has the above-mentioned louver structure (similar structure to the anisotropic optical film 20 of FIG. 1B), and has anisotropy in which the linear transmittance changes depending on the incident light angle. are doing. Further, the anisotropic light diffusing layer 110 is made of a cured product of a composition containing a photopolymerizable compound, and as shown in FIG. 5A, the matrix region 111 and a plurality of regions having different refractive indexes from the matrix region 111. It has a columnar structure 113 (columnar region).
  • the anisotropic light diffusion layer 110 may have an orientation direction of the columnar structure 113 that does not coincide with the film thickness direction (normal direction) of the film.
  • the incident light is strongly diffused in the incident light angle range (diffuse region) close to the direction inclined by a predetermined angle from the normal direction (that is, the orientation direction of the columnar structure 113).
  • the diffusion is weakened and the linear transmittance is increased.
  • the columnar structure 113 is provided as a plurality of columnar hardening regions in the matrix region 111, and each columnar structure 113 is oriented so that the orientation direction is parallel to the scattering center axis. It was formed.
  • the refractive index of the matrix region 111 may be different from the refractive index of the columnar structure 113, but the degree of difference in the refractive index is not particularly limited and is relative.
  • the matrix region 111 becomes a low refractive index region.
  • the refractive index of the matrix region 111 is higher than the refractive index of the columnar structure 113, the matrix region 111 becomes a high refractive index region.
  • the change in diffusivity when the incident light angle is changed becomes extremely steep, and the problem that glare is likely to occur is less likely to occur.
  • the refractive index of the interface between the matrix region 111 and the columnar structure 113 can be gradually changed.
  • the cross-sectional shape of the columnar structure 113 perpendicular to the orientation direction has a minor axis SA and a major axis LA.
  • the minor axis SA and the major axis LA can be confirmed by observing the anisotropic light diffusing layer 110 with an optical microscope (details will be described later).
  • the cross-sectional shape of the columnar structure 113 is not particularly limited as long as it is within the range of the aspect ratio described later, but can be, for example, 2 or more and less than 50.
  • the cross-sectional shape of the columnar structure 113 is shown as an elliptical shape, but the cross-sectional shape of the columnar structure 113 is not particularly limited.
  • Anisotropic light diffusion layer 120 has a pillar structure (similar to the anisotropic optical film 10 of FIG. 1A) and has light diffusivity in which the linear transmittance changes depending on the incident light angle. There is. Further, as shown in FIG. 5B, the anisotropic light diffusing layer 120 is made of a cured product of a composition containing a photopolymerizable compound, and the matrix region 121 and the matrix region 121 have a plurality of refractive indexes different from each other. It has a columnar structure 123.
  • the plurality of columnar structures 123 and the matrix region 121 have an irregular distribution and shape, but the optical characteristics (for example, linear transmittance) obtained by being formed over the entire surface of the anisotropic light diffusing layer 120 are omitted. It will be the same. Since the plurality of columnar structures 123 and the matrix region 121 have an irregular distribution and shape, the anisotropic light diffusion layer 120 according to the present embodiment is less likely to cause light interference (rainbow).
  • the columnar structure 123 is provided as a plurality of columnar hardened regions in the matrix region 121, and each columnar structure 123 has an orientation direction parallel to the scattering center axis. Is. Therefore, the plurality of columnar structures 123 in the same anisotropic light diffusion layer 120 are formed so as to be parallel to each other.
  • the refractive index of the matrix region 121 may be different from the refractive index of the columnar structure, but the degree of difference in the refractive index is not particularly limited and is relative.
  • the matrix region 121 becomes a low refractive index region.
  • the matrix region 121 becomes a high refractive index region.
  • the cross-sectional shape of the columnar structure 123 perpendicular to the orientation direction has a minor axis SA and a major axis LA, as shown in FIG. 5 (b).
  • the cross-sectional shape of the columnar structure 123 can have an aspect ratio range of less than 2, which will be described later.
  • the cross-sectional shape of the columnar structure 123 is shown as a circular shape, but the cross-sectional shape of the columnar structure 123 is not limited to the circular shape, and is an elliptical shape, a polygonal shape, or the like.
  • the shape is not particularly limited, such as an indefinite shape or a mixture of these.
  • the aspect ratio of the columnar structure is 1 or more, but the upper limit of the aspect ratio is not particularly limited, but for example, it is preferably less than 50, more preferably 25 or less, still more preferably 10 or less. When the aspect ratio is within such a range, unevenness due to light interference is unlikely to occur, and the display quality can be kept good.
  • the average value (average minor axis) of the minor axis SA of the plurality of columnar structures 113 is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, and 1.5 ⁇ m or more. Is more preferable.
  • the average value (average minor axis) of the minor axis SA of the plurality of columnar structures 113 is preferably 5.0 ⁇ m or less, more preferably 4.0 ⁇ m or less, and 3.0 ⁇ m or less. Is more preferable.
  • the lower limit value and the upper limit value of the average minor axis of the plurality of columnar structures 113 can be appropriately combined.
  • the average value (average major axis) of the major axis LA of the plurality of columnar structures 113 is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, and 1.5 ⁇ m or more. Is even more suitable.
  • the average value (average major axis) of the major axis LA of the plurality of columnar structures 113 is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and further preferably 30 ⁇ m or less. ..
  • the lower limit value and the upper limit value of the average major axis of the plurality of columnar structures 113 can be appropriately combined.
  • the average value (average minor axis) of the minor axis SA of the plurality of columnar structures 123 is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, and 1.5 ⁇ m or more. Is more preferable.
  • the average value (average minor axis) of the minor axis SA of the plurality of columnar structures 123 is preferably 5.0 ⁇ m or less, more preferably 4.0 ⁇ m or less, and 3.0 ⁇ m or less. Is more preferable.
  • the lower limit value and the upper limit value of the average minor axis of the plurality of columnar structures 123 can be appropriately combined.
  • the average value (average major axis) of the major axis LA of the plurality of columnar structures 123 is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, and 1.5 ⁇ m or more. Is even more suitable.
  • the average value (average major axis) of the major axis LA of the plurality of columnar structures 123 is preferably 8.0 ⁇ m or less, more preferably 5.0 ⁇ m or less, and 3.0 ⁇ m or less. Is even more suitable.
  • the lower limit value and the upper limit value of the average major axis of the plurality of columnar structures 123 can be appropriately combined.
  • the anisotropic optical film 100 or 150 according to the present embodiment has a higher level by setting the average minor axis and the average major axis of the plurality of columnar structures 113 or the plurality of columnar structures 123 to the above-mentioned preferable ranges.
  • An anisotropic optical film having various characteristics in a well-balanced manner can be obtained.
  • the average value of the minor axis SA (mean minor axis) and the average value of the major axis LA (mean major axis) of the plurality of columnar structures 113 and the plurality of columnar structures 123 in the present embodiment are those of the anisotropic light diffusion layer 120.
  • a cross section with the extending direction (orientation direction) of the plurality of columnar structures in the columnar region as the normal direction is observed with a microscope, and the minor axis SA of 100 columnar structures 113 and columnar structures 123 arbitrarily selected.
  • the major axis LA may be measured and the average value thereof may be obtained. Further, as the aspect ratio of the columnar structure, a value obtained by dividing the average value (average major axis) of the major axis LA obtained above by the average value (average minor axis) of the minor axis SA is used.
  • the thickness T of the plurality of columnar structures 113 and 123 is preferably 10 ⁇ m to 200 ⁇ m, more preferably 20 ⁇ m or more and less than 100 ⁇ m, and further preferably 20 ⁇ m or more and less than 50 ⁇ m. ..
  • the thickness T exceeds 200 ⁇ m, not only the material cost is higher, but also the cost for UV irradiation is increased, so that not only the cost is high, but also the increase in diffusivity in the thickness T direction causes image blurring and contrast reduction. It is easy to happen. Further, when the thickness T is less than 10 ⁇ m, it may be difficult to make the light diffusivity and light condensing property sufficient.
  • the present invention by setting the thickness T within the specified range, the problem of cost is reduced, the light diffusing property and the light condensing property are excellent, and the light diffusing property is lowered in the thickness T direction, so that the image is imaged. Blurring is less likely to occur, and contrast can be improved.
  • anisotropic optical films 100 and 150 have an anisotropic light diffusion layer 110 or 120. More specifically, the anisotropic light diffusion layer 110 has a louver structure. The anisotropic light diffusing layer 120 has a pillar structure. Hereinafter, the properties of such anisotropic optical films 100 and 150 will be described.
  • linear transmittance the linear transmittance of the light incident on the anisotropic optical film 100 or 150 (anisometric light diffusing layer 110 or 120) at the incident light angle at which the linear transmittance is maximized is defined as the "maximum linear transmittance".
  • the anisotropic optical film 100 or 150 (anisometric light diffusing layer 110 or 120) has a maximum linear transmittance of 15% or more and 85% or less, preferably 15% or more and 80% or less, and more preferably 20%. It can be 75% or more and 75% or less.
  • the maximum linear transmittance of the anisotropic optical film 100 or 150 is within such a range, good diffusivity can be obtained, and image blurring and reduction in brightness due to excessive diffusion can be suppressed, and a reflective liquid crystal can be obtained.
  • the front side of the display device on the visible side it is possible to improve the visibility in the front direction of the screen.
  • the linear transmittance of the light incident on the anisotropic light diffusing layer 110 or 120 at the incident light angle at which the linear transmittance is minimized can be defined as the "minimum linear transmittance".
  • the minimum linear transmittance is not particularly limited, but can be 10% or less.
  • the amount of linear transmitted light and the linear transmittance can be measured by the method shown in FIG. That is, the straight line V shown in FIG. 2 is set as the rotation axis, and the amount of linear transmitted light is measured for each incident light angle so as to coincide with the CC axis shown in FIG. 5 (the normal direction is 0 °).
  • An optical profile can be obtained from the obtained data, and the maximum linear transmittance and the minimum linear transmittance can be obtained from this optical profile.
  • the maximum linear transmittance and the minimum linear transmittance in the anisotropic optical film 100 or 150 can be adjusted by design parameters at the time of manufacture.
  • parameters include the composition of the coating film, the film thickness of the coating film, the temperature applied to the coating film at the time of structure formation, and the like.
  • the composition of the coating film changes the maximum linear transmittance and the minimum linear transmittance by appropriately selecting and blending the constituent components. In terms of design parameters, the thicker the film thickness, the lower the maximum linear transmittance and the minimum linear transmittance tend to be, and the thinner the film thickness, the higher the maximum linear transmittance.
  • the maximum linear transmittance and the minimum linear transmittance of the anisotropic optical film 100 or 150 are obtained, and the linear transmittance of an intermediate value between the maximum linear transmittance and the minimum linear transmittance is obtained.
  • the two incident light angles with respect to the linear transmittance of this intermediate value are read.
  • the normal direction is 0 °
  • the incident light angle is shown in the minus direction and the plus direction. Therefore, the incident light angle and the incident light angle corresponding to the intersection may have a negative value.
  • the value of the two intersections has a positive incident light angle value and a negative incident light angle value
  • the sum of the absolute value of the negative incident light angle value and the positive incident light angle value is the diffusion of the incident light. It is the diffusion width, which is the angular range of the region.
  • the difference between the larger value minus the smaller value is the diffusion width, which is the angular range of the incident light angle.
  • the absolute value of each is taken, and the difference obtained by subtracting the smaller value from the larger value is the diffusion width which is the angular range of the incident light angle.
  • FIG. 6 is a three-dimensional polar coordinate display for explaining the scattering center axis P in the anisotropic optical film 100 or 150 (anisotropic light diffusion layer).
  • the anisotropic light diffusing layer has at least one scattering central axis, and as described above, the scattering central axis has a light diffusivity when the incident light angle to the anisotropic light diffusing layer is changed. It means a direction that coincides with the incident light angle having substantially symmetry with the boundary.
  • the incident light angle (scattering center axis angle) at this time is a substantially central portion (central portion of the diffusion region) having substantially symmetry in this optical profile by measuring the optical profile of the anisotropic light diffusion layer.
  • the scattering center axis has a polar angle ⁇ and an azimuth angle when the surfaces of the anisotropic light diffusion layers 110 and 120 are xy planes and the normal is the z axis. It can be expressed by ⁇ . That is, it can be said that Pxy in FIG. 6 is the length direction of the scattering center axis projected on the surface of the anisotropic light diffusion layer.
  • the scattering center axis angle is less than 6 ° with respect to the anisotropic optical films 100 and 150.
  • the scattering center axis angle is within such a range, the light collection property in the normal direction of the layer plane is exhibited, so that the reflection brightness in the front direction, which is the viewing direction, is improved and the visibility is improved. Is possible.
  • each of the anisotropic light diffusion layers 110 and 120 may have a plurality of columnar region groups having different slopes (a set of columnar regions having the same slope) in a single layer.
  • the absolute value of this difference in the scattering center axis angle is less than 12 °.
  • the anisotropic light diffusion layers 110 and 120 are obtained by curing a composition containing a photopolymerizable compound, and the following combinations can be used as this composition. (1) A single photopolymerizable compound is used (2) A plurality of photopolymerizable compounds are mixed and used (3) A single or multiple photopolymerizable compounds and a polymer compound having no photopolymerizability What is used by mixing
  • any of the above combinations it is presumed that micron-order fine structures having different refractive indexes are formed in the anisotropic light diffusion layer 110 or 120 by light irradiation, whereby the peculiarity shown in the present embodiment is shown. It is considered that various anisotropic light diffusion characteristics are exhibited. Therefore, in (1) above, it is preferable that the change in refractive index before and after photopolymerization is large, and in (2) and (3), it is preferable to combine a plurality of materials having different refractive indexes.
  • the change or difference in refractive index here is specifically, preferably 0.01 or more, more preferably 0.05 or more, and further preferably 0.10 or more. Is shown.
  • the matrix region 111 or 121 when the refractive index of the matrix region 111 or 121 is higher than the refractive index of the columnar structure 113 or 123, the matrix region 111 or 121 becomes a high refractive index region, and the plurality of columnar structures 113 or 123 have a low refractive index. It becomes an area.
  • the difference in refractive index between the matrix region 111 or 121 (high refractive index region) and the columnar structure 113 or 123 (low refractive index region) is not particularly limited, but is, for example, in the range of 0.01 to 0.50. The range is preferably 0.03 to 0.20.
  • the isotropic light diffusing layer 200 (for example, FIG. 7) is a layer using a light-transmitting resin as a base material and containing fine particles that diffuse light due to a difference in refractive index from the base material.
  • the isotropic light diffusing layer 200 diffuses light regardless of the incident angle of the light, and has no directionality in diffusivity. More specifically, when light is diffused by the isotropic light diffusing layer 200, the degree of diffusion of the light (diffused light) in a plane parallel to the isotropic light diffusing layer 200 in the diffused light (emitted light). The shape of the spread of light) has the property of not changing depending on the direction in the same plane.
  • Resin base material As the resin constituting the isotropic light diffusion layer 200, acrylic resin, polyester resin, epoxy resin, polyurethane resin, silicone resin and the like have been conventionally known, but they have high optical transparency. Acrylic resins are particularly preferable because they have good workability, have a refractive index close to that of a TAC film which is a protective film for a polarizing plate, and are relatively inexpensive. Further, the resin may be provided with adhesiveness so that the isotropic light diffusing layer 200 can be easily laminated with another member (for example, a reflective display device). In this case, the pressure-sensitive adhesive made of an acrylic resin is preferably used in the present embodiment because, in addition to the advantages of the acrylic resin, it is highly reliable and has a good track record as a pressure-sensitive adhesive for polarizing plates.
  • Fine particles, other ingredients are preferable in order to prevent coloring of transmitted light.
  • inorganic fine particles and white pigments include silica fine particles, alumina fine particles, zirconium fine particles, silicone fine particles, acrylic resin fine particles, polystyrene resin fine particles, styrene-acrylic copolymer resin fine particles, polyethylene resin fine particles, epoxy resin fine particles and the like.
  • one or a mixture of two or more cross-linking agents such as metal chelate type, isocyanate type and epoxy type can be used in the resin.
  • an initiator such as a photoinitiator and a thermosetting initiator and a solvent
  • a thickener such as a surfactant, a dispersant, if necessary, A plasticizer, a leveling agent, etc.
  • the difference between the refractive index of the base resin (method B according to JIS K-7142) and the refractive index of the fine particles is preferably in the range of 0.01 to 0.10, and is 0.02 to 0.05. It is more preferable that it is in the range.
  • an acrylic pressure-sensitive adhesive and silicone resin fine particles it is preferable to use an acrylic pressure-sensitive adhesive and silicone resin fine particles.
  • the refractive index of the silicone resin fine particles is 1.40 to 1.45, which is slightly lower than the refractive index of 1.45 to 1.55 of the acrylic pressure-sensitive adhesive. It has a high light transmittance, less backscattering and less depolarization, and is excellent for application to reflective display devices.
  • the average particle size of the fine particles is not particularly limited, but can be, for example, 0.5 ⁇ m to 10.0 ⁇ m, and more preferably 1 ⁇ m to 5.0 ⁇ m. If the average particle size is less than 0.1 ⁇ m, the light diffusion performance is low and the metallic luster of the light reflector becomes visible, so that paper whiteness cannot be obtained. On the other hand, if the average particle size exceeds 10 ⁇ m, the particles are too coarse and a satin pattern or glare appears on the background of the screen, resulting in a decrease in contrast.
  • the average particle size referred to here is measured by the Coulter counter method.
  • the content of the fine particles in the isotropic light diffusing layer 200 is preferably 5.0% by weight to 50.0% by weight, and more preferably 7.5% by weight to 45% by weight. If the content is less than 5.0% by weight, the light diffusivity is lowered, and if it exceeds 50.0% by weight, it becomes difficult to uniformly disperse the fine particles in the isotropic light diffusing layer 200, and the light diffusing property and the like. When the optical properties of the above are deteriorated or when the adhesive is used, the adhesive strength is lowered and peeling is likely to occur.
  • the haze value of the isotropic light diffusion layer 200 is preferably 80% or more, and more preferably 85% or more.
  • the upper limit of the haze value is not particularly limited, but can be, for example, 95% or less. When the haze value is within such a range, the amount of light transmitted linearly can be reduced, and the visibility in front of the viewing side of the reflective liquid crystal display device can be improved. If it is less than 80%, sufficient diffusion cannot be obtained and the brightness decreases. Further, even if the haze value is 95% or more, the brightness is lowered and the image is easily blurred.
  • the haze value (Hz,%) is a value calculated by the following formula by measuring the diffusion transmittance (%) and the total light transmittance (%) in accordance with JIS K7105.
  • Hz (%) (diffusion transmittance / total light transmittance) ⁇ 100
  • Linear transmittance >> The maximum linear transmittance of the isotropic light diffusing layer 200 is 35% or less.
  • the lower limit of the maximum linear transmittance of the isotropic light diffusing layer 200 is not particularly limited, but can be, for example, 15% or more.
  • the minimum linear transmittance of the isotropic light diffusion layer 200 is not particularly limited, but can be 0.5% or more and 10% or less.
  • the thickness of the isotropic light diffusion layer 200 is preferably 5 ⁇ m or more and less than 100 ⁇ m, more preferably 10 ⁇ m or more and less than 50 ⁇ m, and further preferably 10 ⁇ m or more and less than 25 ⁇ m. If the thickness is thick (for example, 100 ⁇ m or more), the image tends to be blurred, which is not suitable. Further, if the thickness is thin (for example, less than 5 ⁇ m), the adhesive force when the adhesive is used becomes insufficient, which is not preferable.
  • the light diffusion film laminate 30 is an anisotropic optical film (lamination) in which the above-mentioned anisotropic optical film 100 or 150 and the isotropic light diffusion layer 200 are laminated. Body).
  • the anisotropic optical film 100 or 150 is arranged on a surface on which external light such as the sun is incident or on the visual side (front direction of the screen, outer surface side) of the viewer, and the anisotropic optical film 100 or 150 is arranged.
  • the isotropic light diffusion layer 200 is arranged on the back surface of the film 100 or 150 (one surface opposite to the viewing side). With such an arrangement, the anisotropy of the anisotropic optical film 100 or 150 can be effectively used, and the brightness in the front direction of the screen is increased, the visibility is improved, and blurring is difficult. It becomes an image.
  • the “maximum straight line” which is the linear transmittance at the incident light angle at which the linear transmittance is maximized.
  • Transmittance is 10% or less.
  • the lower limit of the maximum linear transmittance is not particularly limited, but may be 5% or more.
  • the “minimum linear transmittance”, which is the linear transmittance at the incident light angle at which the linear transmittance is minimized, is not particularly limited, but can be 2% or less, and the anisotropic optical film 100 or 150 can be used. It is preferable that the diffusivity of the incident light increases as the linear transmittance decreases.
  • the surface of the anisotropic optical film 100 or 150 (the side where the reflected light is visually recognized, the external light incident surface side, or the viewer).
  • a TAC film, a retardation film, a polarizing plate, or the like may be laminated via an adhesive.
  • a reflective display device for example, other than a liquid crystal
  • a PET film, a TAC film, or the like may be laminated on the outer surface of the anisotropic optical film 100 or 150, for example, via an adhesive. Good.
  • the light diffusing film laminate 30 in which the anisotropic optical film 100 or 150 and the isotropic light diffusing layer 200 are laminated is combined with the reflective layer 300 (for example, a reflective film, a reflective plate) shown in FIG. 7 (b).
  • the reflective layer 300 for example, a reflective film, a reflective plate
  • a device having a device for example, a reflective display device
  • reflects light such as, the anisotropic optical film 100 or 150 at the time of incident external light and emitted reflected light. It is possible to minimize the hindrance of the effect, and in particular, it is possible to maintain the reflected brightness in the front direction of the screen of the reflective display device.
  • Various functional layers such as an adhesive layer, a retardation film, a polarizing plate, a liquid crystal layer, and a transparent electrode layer may be present alone or a plurality between the light diffusing film laminate 30 and the reflective layer 300.
  • the incident light is strongly diffused in the incident light angle range close to the scattering center axis direction, and exhibits light collecting property in the scattering center axis direction.
  • the diffusion is weakened and the light collecting property is lowered.
  • the scattering central axis of the anisotropic optical films 100 and 150 is the normal direction of the main plane of the anisotropic optical films 100 and 150, and the diffusion region of the anisotropic optical films 100 and 150 is ⁇ 20. It is assumed to be ° to + 20 °.
  • the incident light angle of the light with respect to the scattering center axis direction is 10 °
  • the incident light is incident in a range having high diffusivity, so that the light is condensed in the scattering center axis direction. That is, the anisotropic optical films 100 and 150 diffuse and condense light at a predetermined incident angle (in the above assumption, ⁇ 20 ° to + 20 °) in a predetermined direction (scattering center axis direction). It is possible to maintain a high intensity (brightness) of the light.
  • the isotropic light diffusing layer 200 uses light diffusing fine particles that diffuse light, and has the property of diffusing light regardless of the incident angle of light and having no directionality in diffusivity. Therefore, the anisotropic optical films 100 and 150 can also diffuse light from a direction having weak diffusivity. That is, the isotropic light diffusing layer diffuses light from a direction that is difficult to diffuse and condense with the anisotropic light diffusing layer alone, so that the diffused light can be condensed by the anisotropic light diffusing layer.
  • the light emitted from the light diffusing film laminate 30 is reflected by the reflective layer 300.
  • the reflected light is again incident on the light diffusing film laminate 30 and emitted.
  • the reflected brightness of the reflective display device in the front direction (0 °) of the screen can be increased.
  • Reflective display device >>> The reflective display device used in the present embodiment is not particularly limited as long as it has a reflective function. Specific examples of display methods include electronic powder and granular material, liquid crystal (cholesteric liquid crystal, bistable nematic liquid crystal, pixel memory liquid crystal, etc.), electrowetting method, electrochromic method, electrophoresis method (microcapsule, etc.). Etc., a reflective display device using a known technique can be applied.
  • the laminated portion of the light diffusing film laminate of the present invention in the reflective display device is not particularly limited as long as it is a layer between the time when the light is reflected and the time when it is visually recognized, but it is preferable.
  • the image forming part in each display method for example, in the case of the electrophoresis method, the microcapsule portion and the electron powder granules
  • the flat base material is specifically glass, a resin molded body, a film, or the like.
  • the light diffusing film laminate of the present invention is laminated on a flat base material surface (external light incident surface side, side where reflected light is visually recognized), and at that time, the flat base material surface of the reflective display device is used. It is not limited whether the anisotropic optical film of the light diffusing film laminate or the isotropic light diffusing layer is laminated on the top.
  • the external light incident surface side (the visible side of the viewer, the side that visually recognizes the reflected light) is the anisotropic optical film in the light diffusion film laminate, and the external light reflecting surface side, which is the opposite side to the external light incident surface, is.
  • the light diffusing layer is laminated on a flat base material surface.
  • the isotropic light diffusing layer is laminated on the planar base material surface so that the external light reflecting surface side becomes an isotropic light diffusing layer
  • the isotropic light diffusing layer is directly applied as an adhesive when the isotropic light diffusing layer is an adhesive. If this is not the case, an isotropic light diffusing layer may be laminated via an adhesive.
  • laminating may be performed via a transparent adhesive of a known technique.
  • the external light reflecting surface side is laminated on the planar base material surface so as to be an anisotropic optical film
  • the surface of the isotropic light diffusion layer (the side where the reflected light is visually recognized, the external light incident surface side or the visual recognition).
  • a TAC film, a retardation film, a polarizing plate, or the like may be laminated on the visible side of the person), if necessary, via, for example, an adhesive.
  • the light diffusing film laminate of the present invention (anisotropic optical film and isotropic light diffusing layer, in this embodiment, the anisotropic optical film has an anisotropic light diffusing layer as a single layer) and A comparative example was prepared.
  • the anisotropic light diffusing layer was prepared with reference to the existing methods shown below (for example, Japanese Patent Application Laid-Open No. 2006-119241 and International Publication No. WO2014 / 084361).
  • the isotropic light diffusion layer was prepared with reference to the existing method shown below (for example, JP-A-2002-122714).
  • Anisotropic optical film A partition wall having a height of 50 ⁇ m was formed of a curable resin using a dispenser around the entire edge of a PET film having a thickness of 100 ⁇ m (manufactured by Toyobo Co., Ltd., trade name: A4300). The following UV curable resin composition was added dropwise thereto, and the mixture was covered with another PET film.
  • An irradiation intensity of 30 mW / cm 2 was applied to a liquid film having a thickness of 50 ⁇ m sandwiched between PET films on both sides from an irradiation unit for epi-illumination of a UV spot light source (manufactured by Hamamatsu Photonics, trade name: L2859-01).
  • a UV spot light source manufactured by Hamamatsu Photonics, trade name: L2859-01.
  • the eight types of anisotropic light diffusing layers produced are shown in Table 1 below.
  • the maximum linear transmittance and the scattering center axis angle (relative to the normal direction of the anisotropic light diffusion layer), which are the optical characteristics of each anisotropic light diffusion layer, and the aspect ratio of each columnar structure are the ultraviolet curable resin composition.
  • a directional diffusion element capable of changing the aspect ratio of parallel rays is arranged between the anisotropic light diffusion layer and the irradiation unit for epi-illumination. By adjusting whether or not to do so, and when using a directional diffusing element, adjusting the arrangement of the directional diffusing element (approaching or moving away from the anisotropic light diffusing layer), as shown in Table 1. Eight kinds of anisotropic light diffusing layers having characteristics could be obtained.
  • the directional diffusion element imparts directivity to the incident parallel light rays
  • an directional diffusion element containing needle-like fine particles having a high aspect ratio was used.
  • the aspect ratio of the columnar structure was formed in a form substantially corresponding to the aspect ratio of the parallel rays changed by the directional diffusion element.
  • the sample was rotated around the straight line V as the rotation axis, and the amount of linear transmitted light corresponding to each incident light angle was measured.
  • This axis of rotation is the same axis as the CC axis in the sample structure shown in FIG.
  • the wavelength in the visible light region was measured using a luminosity factor filter. Based on the optical profile obtained as a result of the above measurement, the center between the maximum value (maximum linear transmittance) and the minimum value (minimum linear transmittance) of the linear transmittance and the minimum value in the optical profile.
  • the maximum linear transmittance and the scattering center axis angle were obtained from the part (the central part of the diffusion region) and summarized in Table 1.
  • Isotropic light diffusion layer >> An acrylic pressure-sensitive adhesive (trade name: SK Dyne TM206, total solid content concentration 18. 8%, solvent: ethyl acetate, methyl ethyl ketone, manufactured by Soken Kagaku Co., Ltd. 0.5 parts of isocyanate-based curing agent (trade name: L-45, manufactured by Soken Kagaku Co., Ltd.) and epoxy-based curing agent (manufactured by Soken Kagaku Co., Ltd.) Product name: E-5XM, manufactured by Soken Kagaku Co., Ltd.
  • Silicone resin fine particles (Tospearl 145, refractive index 1.43, particle diameter 4) as fine particles having a different refractive index from the above-mentioned adhesive to the base paint to which 0.2 part is added.
  • a 38 ⁇ m-thick release PET film manufactured by Lintec Co., Ltd., trade name: 3801 was laminated to prepare four types of isotropic light diffusing layers with PET.
  • the prepared isotropic light diffusion layer is shown in Table 2 below.
  • a transparent adhesive layer e blended without adding silicone resin fine particles as a transparent adhesive layer was also produced at the same time.
  • ⁇ Measurement of haze> The haze value (Hz) was measured using a haze meter manufactured by Nippon Denshoku Industries Co., Ltd., NDH-2000, and is summarized in Table 2.
  • Example 1 The above-mentioned anisotropic light diffusing layer 1 with PET and the isotropic light diffusing layer a with PET are laminated after peeling the PET film on each other's laminating surface, and is composed of two layers of an anisotropic optical film / isotropic light diffusing layer.
  • the light diffusing film laminate of Example 1 was obtained. Subsequently, the PET film on the anisotropic light diffusing layer 1 side was peeled off, and a highly transparent PET (Toyobo Cosmo Shine A4100 100 ⁇ m) was attached via the transparent adhesive layer e.
  • the PET film on the surface of the isotropic light diffusion layer a side was peeled off, and then bonded to a smooth specular reflector (reflectance of about 90%) to prepare a sample for evaluation of reflected brightness.
  • a smooth specular reflector reflectance of about 90%
  • Example 2 to 7 Comparative Examples 1 to 6
  • Example 2 to 7 were prepared in the same manner as in Example 1 except that the combination of the anisotropic light diffusing layer and the isotropic light diffusing layer in Table 3 was followed, and consisted of two layers of an anisotropic optical film / isotropic light diffusing layer. And the light diffusing film laminates of Comparative Examples 1 to 6 were obtained. Subsequently, the PET film on the 2 to 8 side of the anisotropic light diffusing layer was peeled off, and a highly transparent PET (Toyobo Cosmo Shine A4100 100 ⁇ m) was attached via the transparent adhesive layer e.
  • a highly transparent PET Toyobo Cosmo Shine A4100 100 ⁇ m
  • the PET film on the isotropic light diffusion layer a to d side surface or the transparent adhesive layer e side surface was peeled off, and then attached to a smooth specular reflector (reflectance of about 90%) to prepare a sample for evaluation of reflection luminance.
  • a smooth specular reflector reflectance of about 90%
  • ⁇ Preparation of standard reflection brightness> As a standard in the reflection brightness measurement, a reference sample was prepared in which the isotropic light diffusion layer b was bonded between a highly transparent PET (Toyobo Cosmo Shine A4100 100 ⁇ m) and a smooth specular reflector (reflectance of about 90%).
  • the ratio of the reflected brightness of the evaluation sample to the reflected brightness of the reference sample was used as the reflected brightness gain, and this was used as an index of the reflected light intensity.
  • Reflection brightness gain (reflection brightness of sample ⁇ reflection brightness of reference sample) ⁇ 100
  • the reflection brightness when the incident angles were 30 ° and 45 ° was also measured.
  • ⁇ Criteria for judging reflected brightness gain> The larger the incident angle, the more remarkable the difference in the reflected luminance gain appears. Therefore, the determination was made as follows according to the incident angle.
  • the incident angle was 15 °, less than 0.90 was evaluated as x, 0.90 or more and less than 1.00 was evaluated as ⁇ , and 1.00 or more was evaluated as ⁇ .
  • the incident angle was 30 °, less than 0.90 was evaluated as x, 0.90 or more and less than 1.80 was evaluated as ⁇ , and 1.80 or more was evaluated as ⁇ .
  • the incident angle was 45 °, less than 0.90 was evaluated as x, 0.90 or more and less than 2.50 was evaluated as ⁇ , and 2.50 or more was evaluated as ⁇ .
  • the reflected luminance gain of the present invention using a predetermined anisotropic light diffusing layer (anisotropic optical film) and an isotropic light diffusing layer has an incident angle as compared with Comparative Examples 1 to 6. It is excellent regardless. Although Comparative Examples 1 to 3 were excellent in the reflected luminance gain at an incident angle of 30 ° or 45 °, the reflected luminance gain at an incident angle of 15 ° was low. On the contrary, in Comparative Examples 4 to 6, the reflected luminance gain at the incident angle of 15 ° was good, but the reflected luminance gain at the incident angles of 30 ° and 45 ° was low.
  • the present invention evaluates the present invention by supplementing the diffusion function of an anisotropic optical film by using a specific isotropic light diffusion layer together with a specific anisotropic optical film as a diffusion medium having specific diffusion characteristics. It is probable that the results could be obtained.
  • the diffusivity of the anisotropic optical film (anisometric light diffusing layer) when the external light is incident and the reflected light is emitted. Since the diffusion effect of the isotropic light diffusion layer can be utilized even at a low angle, the reflected brightness gain in the front direction (that is, the reflected light intensity) is not deteriorated even under external light from all directions. ) Can be increased.
  • the reflective display device includes, for example, a tabbed terminal such as a smartphone, a wristwatch, a game machine, or a notebook type. Examples include personal computers.

Abstract

[Problem] To provide a light diffusion film laminate for a reflective display device having excellent display quality, the light diffusion film laminate being capable of improving the intensity of reflected light at various outside light incidence angles in the viewing-side front direction to thereby improve visibility. [Solution] This light diffusion film laminate for a reflective display device has diffuseness that changes according to a light incidence angle. The light diffusion film laminate is characterized by comprising at least an anisotropic light diffusion layer which has linear transmittance that changes according to the light incidence angle, and an isotropic light diffusion layer provided on one surface side of the anisotropic light diffusion layer, wherein the anisotropic light diffusion layer has therein a matrix region and a columnar region composed of a plurality of columnar structures, the scattering central axis angle of the anisotropic light diffusion layer is less than 6° with respect to the normal direction of the anisotropic light diffusion layer, the maximum linear transmittance of the anisotropic light diffusion layer is 15-85% inclusive, the maximum linear transmittance of the isotropic light diffusion layer is 35% or less, and the maximum linear transmittance of the light diffusion film laminate for a reflective display device is 10% or less.

Description

反射型表示装置用光拡散フィルム積層体及びこれを用いた反射型表示装置Light diffusing film laminate for reflective display device and reflective display device using this
 本発明は、外光を反射して画像を表示する表示方式である反射型表示装置用の、光拡散フィルム積層体及びこれを用いた反射型表示装置に関する。 The present invention relates to a light diffusing film laminate for a reflective display device, which is a display method for displaying an image by reflecting external light, and a reflective display device using the same.
 従来の反射型表示装置は、外光を反射する反射層の金属光沢感を軽減するため等を目的として、表示画面上に等方性光拡散層を設けることが一般的であった。更に異方性光拡散層を用いて、外光を反射する反射層からの反射光を、限られた方向に優先して拡散(集光)させ、十分な明るさを得るものもあった(特許文献1)。
 また、特許文献2と3は、それぞれ、特定の異方性拡散層と等方性拡散層とを積層した光学フィルムを用い、観察者(視認者)が、その観察位置や観察角度による視認性の変化を抑制する発明が開示されている。
In the conventional reflective display device, it is common to provide an isotropic light diffusion layer on the display screen for the purpose of reducing the metallic luster of the reflective layer that reflects external light. Further, there is a case in which an anisotropic light diffusing layer is used to diffuse (condense) the reflected light from the reflecting layer that reflects external light in a limited direction preferentially to obtain sufficient brightness (Patent Documents). 1).
Further, Patent Documents 2 and 3 each use an optical film in which a specific anisotropic diffusion layer and an isotropic diffusion layer are laminated, and an observer (viewer) can see the visibility according to the observation position and the observation angle. The invention that suppresses the change of is disclosed.
特開2014-142502号公報Japanese Unexamined Patent Publication No. 2014-142502 国際公開2018/051639号公報International Publication No. 2018/05/1639 国際公開2018/051700号公報International Publication No. 2018/051700
 反射型表示装置の多くは、その使用環境下において外光と表示装置との位置関係が変化することが多く、表示装置への外光の入射角は一定ではない。具体的には、移動する車内等で表示装置を視認する場合や、屋外に設置された表示装置を長時間視認する場合の他に、スマートフォンやタブレットなど、装置の縦横を回転させて利用する装置の場合を挙げることができる。一方で、その表示装置を視認する角度は、表示装置の正面方向であることが一般的である。 In many reflective display devices, the positional relationship between the external light and the display device often changes under the usage environment, and the angle of incidence of the external light on the display device is not constant. Specifically, in addition to when visually recognizing a display device in a moving vehicle or when visually recognizing a display device installed outdoors for a long time, a device such as a smartphone or tablet that is used by rotating the device vertically and horizontally. Can be mentioned. On the other hand, the angle at which the display device is visually recognized is generally the front direction of the display device.
 まず等方性光拡散層を設ける場合を考える。外光の入射角が大きいとき(斜めから光が入射するとき)、視認方向である正面方向への反射光強度を大きくするためには、その拡散範囲を広くする必要がある(例えば、微粒子を用いた等方性光拡散層であれば、微粒子を多く加える方法が挙げられる)。一方、外光の入射角が小さいとき(正面方向に近い角度から入射するとき)は、拡散範囲が広いと、正面方向への反射光強度が小さくなってしまうため、拡散範囲を狭くする必要がある(例えば、微粒子を用いた等方性光拡散層であれば、微粒子を少なく加える方法が挙げられる)。この様に等方性光拡散層は、外光の入射角により最適な散乱特性が異なるトレードオフの関係となっている。 First, consider the case where an isotropic light diffusion layer is provided. When the incident angle of external light is large (when light is incident from an angle), it is necessary to widen the diffusion range in order to increase the intensity of reflected light in the front direction, which is the viewing direction (for example, fine particles). If it is the isotropic light diffusion layer used, a method of adding a large amount of fine particles can be mentioned). On the other hand, when the incident angle of external light is small (when incident from an angle close to the front direction), if the diffusion range is wide, the reflected light intensity in the front direction becomes small, so it is necessary to narrow the diffusion range. There is (for example, in the case of an isotropic light diffusion layer using fine particles, a method of adding a small amount of fine particles can be mentioned). In this way, the isotropic light diffusion layer has a trade-off relationship in which the optimum scattering characteristics differ depending on the incident angle of external light.
 次に特許文献1にあるような異方性光拡散層を設ける場合を考える。まずピラー構造の場合、そのピラーの延在する方向に光を集光する特性があるため、視認方向である正面方向への集光を考えるとピラーは層平面の法線方向に近い角度に延在することが好ましい。このことから、ピラーの延在方向が層平面の法線方向に近い場合を考えると、外光の入射角がピラーの延在する方向(異方性光拡散層主平面において、一方の表面から他方の表面にかけ、ピラーが配向している方向)に対して小さいとき(層平面の法線方向に近い角度から入射するとき)は、先述の集光作用によりピラー延在方向における反射光強度は大幅に向上する。一方で、外光の入射角がピラーの延在する方向に対して大きいとき(層平面の法線方向から離れた角度から入射するとき)は、散乱特性が弱いという特徴を有するため、正面方向への集光作用は十分に発揮されず、反射光強度は小さくなってしまう。 Next, consider the case where an anisotropic light diffusion layer as described in Patent Document 1 is provided. First, in the case of a pillar structure, since it has the property of concentrating light in the direction in which the pillar extends, the pillar extends to an angle close to the normal direction of the layer plane when considering the condensing in the front direction, which is the viewing direction. It is preferable to be present. From this, considering the case where the extending direction of the pillar is close to the normal direction of the layer plane, the incident angle of the external light is the extending direction of the pillar (in the main plane of the anisotropic light diffusing layer, from one surface to the other. When it is smaller than the surface (direction in which the pillars are oriented) (when it is incident from an angle close to the normal direction of the layer plane), the reflected light intensity in the pillar extending direction is significantly increased due to the above-mentioned condensing action. improves. On the other hand, when the incident angle of the external light is larger than the extending direction of the pillars (when the incident light is incident from an angle away from the normal direction of the layer plane), the scattering characteristics are weak, so that the front direction The light condensing effect on the light is not sufficiently exerted, and the reflected light intensity becomes small.
 続いてルーバー構造の場合、そのルーバー断面の長径と直交する方位に光を拡散して集光する特性があるため、視認方向である正面方向への集光は、特定の方位から光が入射したときにのみ反射光強度が大幅に向上する。ただし上記特性であるため、ルーバーの延在する方向(異方性光拡散層主平面において、一方の表面から他方の表面にかけ、ルーバーが配向している方向、本発明では高さ方向とも称す)で輝度の急激な変化による光の干渉が起きやすい。またピラー構造と同様に、ルーバーの延在する方向と角度をなす外光に対しては、散乱特性が弱いという特徴を有するため、正面方向への集光作用は十分に発揮されず、こちらも反射光強度は小さくなってしまう。このため異方性光拡散層は、内部構造の延在する方向と角度をなす外光を十分に集光することは困難であった。 Subsequently, in the case of the louver structure, since the light has a characteristic of diffusing and condensing the light in the direction orthogonal to the major axis of the louver cross section, the light is incident from a specific direction in the condensing in the front direction, which is the viewing direction. Only when the reflected light intensity is greatly improved. However, due to the above characteristics, the brightness is in the direction in which the louver extends (in the main plane of the anisotropic light diffusing layer, the direction in which the louver is oriented from one surface to the other surface, also referred to as the height direction in the present invention). Light interference is likely to occur due to sudden changes in. Also, as with the pillar structure, it has a characteristic that the scattering characteristics are weak against external light that forms an angle with the extending direction of the louver, so the light collecting effect in the front direction is not sufficiently exhibited, and this is also the case. The reflected light intensity becomes small. Therefore, it is difficult for the anisotropic light diffusing layer to sufficiently collect the external light forming an angle with the extending direction of the internal structure.
 以上のように、等方性光拡散層と、異方性光拡散層のいずれについても、反射光強度が小さくなってしまう外光入射角が存在していた。 As described above, both the isotropic light diffusion layer and the anisotropic light diffusion layer had an external light incident angle at which the reflected light intensity became small.
 特許文献2及び3は、反射光強度が変化しない外光入射角度範囲を広くする効果があり、観察位置や観察角度による、視認性の変化を抑制することを可能としている。しかし、特許文献2及び3では、正面方向を100%とした観察角度ごとの相対的な反射輝度を、正面方向近傍で変化が少なくなるようにしているのみであり、観察角度ごとの反射輝度そのものを向上させる効果は示されていない。
 また、特許文献2及び3は、観察位置を変化させたときの視認性の変化を抑制することを可能としているが、外光の入射角の変化を考慮した発明ではない。
Patent Documents 2 and 3 have the effect of widening the range of incident angles of external light in which the intensity of reflected light does not change, and make it possible to suppress changes in visibility depending on the observation position and observation angle. However, in Patent Documents 2 and 3, the relative reflection brightness for each observation angle with the front direction as 100% is only changed so as to be small in the vicinity of the front direction, and the reflection brightness for each observation angle itself. No effect has been shown to improve.
Further, Patent Documents 2 and 3 make it possible to suppress a change in visibility when the observation position is changed, but are not inventions in consideration of a change in the incident angle of external light.
 本発明は、上述した事情に鑑みてなされたものであり、その目的は、視認側正面方向において、様々な外光入射角における反射光強度を向上させ、視認性を良好とすることができる表示品質に優れた反射型表示装置用光拡散フィルム積層体を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is a display capable of improving the reflected light intensity at various external light incident angles in the front direction on the viewing side and improving the visibility. An object of the present invention is to provide a light diffusing film laminate for a reflective display device having excellent quality.
 上記課題を解決するために、本発明の反射型表示装置用光拡散フィルム積層体は、光の入射角度により拡散性が変化する反射型表示装置用光拡散フィルム積層体であって、前記光拡散フィルム積層体は、前記光の入射角度により直線透過率が変化する異方性光拡散層と、前記異方性光拡散層の一方の面側に設けられた等方性光拡散層とを少なくとも備え、前記異方性光拡散層はその内部に、マトリックス領域と、複数の柱状構造体よりなる柱状領域と、を有し、前記異方性光拡散層の散乱中心軸角度が、前記異方性光拡散層法線方向に対して、6°未満であり、前記異方性光拡散層の最大直線透過率が、15%以上85%以下であり、前記等方性光拡散層の最大直線透過率が、35%以下であり、前記反射型表示装置用光拡散フィルム積層体の最大直線透過率が、10%以下であることを特徴とする。 In order to solve the above problems, the light diffusing film laminate for a reflective display device of the present invention is a light diffusing film laminated body for a reflective display device whose diffusivity changes depending on the incident angle of light, and the light diffusing The film laminate includes at least an anisotropic light diffusing layer whose linear transmittance changes depending on the incident angle of the light and an isotropic light diffusing layer provided on one surface side of the anisotropic light diffusing layer, and the anisotropic light diffusing body. The layer has a matrix region and a columnar region composed of a plurality of columnar structures inside the layer, and the scattering center axis angle of the anisotropic light diffusion layer is 6 with respect to the normal direction of the anisotropic light diffusion layer. The maximum linear transmittance of the anisotropic light diffusing layer is 15% or more and 85% or less, and the maximum linear transmittance of the isotropic light diffusing layer is 35% or less, for the reflective display device. The maximum linear transmittance of the light diffusing film laminate is 10% or less.
 本発明によれば、異方性光拡散層と、等方性拡散層との光拡散フィルム積層体において、異方性光拡散層の散乱中心軸角度と、各層の最大直線透過率とを規定することにより、視認側正面方向において、様々な外光入射角における反射光強度を向上させ、視認性を良好とすることができる表示品質に優れた反射型表示装置用光拡散フィルム積層体を提供することができる。 According to the present invention, in the light diffusion film laminate of the anisotropic light diffusion layer and the isotropic diffusion layer, the scattering central axis angle of the anisotropic light diffusion layer and the maximum linear transmittance of each layer are defined. It is possible to provide a light diffusing film laminate for a reflective display device having excellent display quality, which can improve the reflected light intensity at various external light incident angles in the front direction on the viewing side and improve the visibility. ..
本実施形態によるピラー構造及びルーバー構造の柱状領域を有する異方性光学フィルム(異方性光拡散層)の構造と、これらの異方性光学フィルムに入射した透過光の様子の一例を示す模式図である。It is a schematic diagram which shows the structure of the anisotropic optical film (anisotropic light diffusion layer) which has the columnar region of the pillar structure and the louver structure according to this embodiment, and an example of the state of transmitted light incident on these anisotropic optical films. is there. 本実施形態による異方性光学フィルムの光拡散性の評価方法を示す説明図である。It is explanatory drawing which shows the evaluation method of the light diffusivity of the anisotropic optical film by this Embodiment. 本実施形態による図1に示したピラー構造及びルーバー構造の異方性光学フィルム(異方性光拡散層)への入射光角度と直線透過率との関係を示すグラフである。It is a graph which shows the relationship between the incident light angle to the anisotropic optical film (anisotropic light diffusion layer) of the pillar structure and the louver structure shown in FIG. 1 by this embodiment, and the linear transmittance. 本実施形態による拡散領域と非拡散領域を説明するためのグラフである。It is a graph for demonstrating the diffusion region and non-diffusion region by this embodiment. 本実施形態による異方性光学フィルムにおけるピラー構造とルーバー構造を有する異方性光拡散層の構成例を示す模式図であり、(a)がルーバー構造、(b)がピラー構造である。It is a schematic diagram which shows the structural example of the anisotropic light diffusion layer which has a pillar structure and a louver structure in the anisotropic optical film by this embodiment, (a) is a louver structure, and (b) is a pillar structure. 本実施形態による異方性光拡散層における散乱中心軸を説明するための3次元極座標表示である。It is a three-dimensional polar coordinate display for explaining the scattering center axis in the anisotropic light diffusion layer by this embodiment. 本実施形態による異方性光学フィルムと等方性光拡散層との配置構成を示す説明図である。It is explanatory drawing which shows the arrangement structure of the anisotropic optical film and the isotropic light diffusion layer by this embodiment. 実施例及び比較例において得られた光拡散フィルム積層体又は異方性光学フィルムの拡散反射光強度の測定方法を示す図である。It is a figure which shows the measuring method of the diffuse reflection light intensity of the light diffusion film laminate or the anisotropic optical film obtained in an Example and a comparative example.
<<<0.主な用語の定義>>>
 ここで、異方性光学フィルム(異方性光拡散層)に関して、主な用語の定義をしておく。
 「異方性光学フィルム」とは、異方性光拡散層が単層(一層のみ)の場合、異方性光拡散層が2層以上積層されて構成された場合(その際、異方性光拡散層間は粘着層等を介して積層されていてもよい)等を含むことを意味する。従って、例えば、異方性光拡散層が単層の場合には、単層の異方性光拡散層が異方性光学フィルムであることを意味する。
<<< 0. Definition of main terms >>>
Here, the main terms of the anisotropic optical film (anisotropic light diffusion layer) will be defined.
The "anisotropic optical film" is a case where the anisotropic light diffusing layer is a single layer (only one layer) or a case where two or more anisotropic light diffusing layers are laminated (at that time, the anisotropic light diffusing layer is an adhesive layer. Etc.) and the like are included. Therefore, for example, when the anisotropic light diffusing layer is a single layer, it means that the monolayer anisotropic light diffusing layer is an anisotropic optical film.
 「異方性光学フィルム」は、光の拡散、透過及び拡散分布が、光の入射角度によって変化する入射光角度依存性を有する異方性及び指向性を有するものである(詳細は後述する)。従って、入射光角度依存性が無い指向性拡散フィルム、等方性拡散フィルム、特定方位に配向する拡散フィルムとは異なるものである。 The "anisotropic optical film" has anisotropy and directivity in which the diffusion, transmission and diffusion distribution of light have an incident light angle dependence that changes depending on the incident angle of light (details will be described later). .. Therefore, it is different from a directional diffusion film, an isotropic diffusion film, and a diffusion film oriented in a specific direction, which are not dependent on the incident light angle.
 「低屈折率領域」と「高屈折率領域」は、本発明にかかる異方性光学フィルムを構成する材料の局所的な屈折率の高低差により形成される領域であって、他方に比べて屈折率が低いか高いかを示した相対的なものである。これらの領域は、異方性光学フィルムを形成する材料が硬化する際に形成される。 The "low refractive index region" and the "high refractive index region" are regions formed by the local difference in the refractive index of the material constituting the anisotropic optical film according to the present invention, as compared with the other. It is a relative indicator of whether the refractive index is low or high. These regions are formed when the material forming the anisotropic optical film is cured.
 「散乱中心軸」とは、異方性光学フィルムへの入射光角度を変化させた際に光拡散性がその入射光角度を境に略対称性を有する光の入射光角度と一致する方向を意味する。「略対称性を有する」としたのは、散乱中心軸がフィルムの法線方向(フィルムの膜厚方向)に対して傾きを有する場合には、光拡散性に関する光学プロファイル(後述する)が厳密には対称性を有しないためである。散乱中心軸は、異方性光学フィルムの断面の柱状構造体の傾きを光学顕微鏡によって観察することや、異方性光学フィルムを介した光の投影形状を、入射光角度を変化させて観察することにより確認することができる。 The "scattering center axis" is a direction in which the light diffusivity matches the incident light angle of light having substantially symmetry with the incident light angle as a boundary when the incident light angle on the anisotropic optical film is changed. means. "Having substantially symmetry" means that the optical profile (described later) regarding light diffusivity is strict when the scattering center axis has an inclination with respect to the normal direction of the film (the film thickness direction). This is because it does not have symmetry. The scattering center axis observes the inclination of the columnar structure in the cross section of the anisotropic optical film with an optical microscope, and observes the projected shape of light through the anisotropic optical film by changing the incident light angle. It can be confirmed by.
 また、「直線透過率」とは、一般に、フィルムに対して入射した光の直線透過性に関し、ある入射光角度から入射した際に、直線方向の透過光量である「直線透過光量」と、入射した光の光量である「入射光量」との比率であり、下記式で表される。
  直線透過率(%)=(直線透過光量/入射光量)×100
Further, the "straight line transmittance" generally refers to the linear transmittance of light incident on a film, and is generally referred to as "linear transmitted light amount" which is the amount of transmitted light in the linear direction when incident from a certain incident light angle. It is a ratio with the "incident light amount" which is the light amount of the light, and is expressed by the following formula.
Linear transmittance (%) = (Linear transmitted light amount / Incident light amount) × 100
 また、本発明においては、「散乱」と「拡散」の両者を区別せずに使用しており、両者は同じ意味を示す。更に、「光重合」及び「光硬化」の意味を、光重合性化合物が光により重合反応することとし、両者を同義語で用いることとする。 Further, in the present invention, both "scattering" and "diffusion" are used without distinction, and both have the same meaning. Further, the meanings of "photopolymerization" and "photocuring" are that the photopolymerizable compound undergoes a polymerization reaction by light, and both are used as synonyms.
 以下、図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面においては、同一の符号が付された構成要素は、実質的に同一の構造又は機能を有するものとする。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, in this specification and drawing, the constituent elements having the same reference numerals shall have substantially the same structure or function.
<<<1.異方性光学フィルムの構造と特性>>>
 図1~図4を参照しながら、本実施形態にかかる異方性光学フィルムについて説明する前提として、従来技術にかかる単層の異方性光学フィルム(本実施形態で言う「異方性光拡散層」が一層のみの場合の異方性光学フィルム)の構造と特性について説明する。
<<< 1. Structure and characteristics of anisotropic optical film >>>
As a premise for explaining the anisotropic optical film according to the present embodiment with reference to FIGS. 1 to 4, a single-layer anisotropic optical film according to the prior art (“anisotropic light diffusion layer” referred to in the present embodiment”. The structure and characteristics of the anisotropic optical film) when only one layer is used will be described.
 図1は、ピラー構造及びルーバー構造の柱状領域を有する単層の異方性光学フィルム(異方性光拡散層)の構造と、これらの異方性光学フィルムに入射した透過光の様子の一例を示す模式図である。図2は、異方性光学フィルムの光拡散性の評価方法を示す説明図である。図3は、図1に示したピラー構造及びルーバー構造の異方性光学フィルムへの入射光角度と直線透過率との関係を示すグラフである。図4は、拡散領域と非拡散領域を説明するためのグラフである。 FIG. 1 shows an example of the structure of a single-layer anisotropic optical film (anisotropic light diffusion layer) having columnar regions of a pillar structure and a louver structure, and the state of transmitted light incident on these anisotropic optical films. It is a schematic diagram. FIG. 2 is an explanatory diagram showing a method for evaluating the light diffusivity of the anisotropic optical film. FIG. 3 is a graph showing the relationship between the incident light angle of the pillar structure and the louver structure shown in FIG. 1 on the anisotropic optical film and the linear transmittance. FIG. 4 is a graph for explaining a diffusion region and a non-diffusion region.
<<1-1.異方性光学フィルムの基本的な構造>>
 異方性光学フィルムとは、フィルムの内部に、フィルムのマトリックス領域とは屈折率の異なる領域が形成されたフィルムである。屈折率の異なる領域の形状は、特に制限されるものではないが、例えば、図1(a)に示すように、マトリックス領域11中に屈折率の異なる柱状構造体13が形成された異方性光学フィルム10や、図1(b)に示すように、マトリックス領域21中に屈折率の異なる柱状構造体23が形成された異方性光学フィルム20等がある。
ここで、柱状構造体13は、延在方向(異方性光学フィルム主平面において、一方の表面から他方の表面にかけ、柱状構造体13が配向している方向)を法線方向とする断面が、円形、又は、短径と長径とのアスペクト比(長径/短径)の小さな柱状(例えば、棒状)であり、このような構造をピラー構造と称する。また、柱状構造体23は、延在方向(異方性光学フィルム主平面において、一方の表面から他方の表面にかけ、柱状構造体23が配向している方向、本発明では高さ方向とも称す)を法線方向とする断面のアスペクト比が大きな柱状(例えば、略板状)であり、このような構造をルーバー構造と称する。
<< 1-1. Basic structure of anisotropic optical film >>
An anisotropic optical film is a film in which a region having a refractive index different from that of the matrix region of the film is formed inside the film. The shape of the regions having different refractive indexes is not particularly limited, but for example, as shown in FIG. 1A, the anisotropy in which the columnar structures 13 having different refractive indexes are formed in the matrix region 11. As shown in FIG. 1 (b), there are an optical film 10 and an anisotropic optical film 20 in which a columnar structure 23 having a different refractive index is formed in a matrix region 21.
Here, the columnar structure 13 has a cross section whose normal direction is the extending direction (the direction in which the columnar structure 13 is oriented from one surface to the other surface in the anisotropic optical film main plane). , Circular, or a columnar (for example, rod-shaped) having a small aspect ratio (major axis / minor axis) between the minor axis and the major axis, and such a structure is referred to as a pillar structure. Further, the columnar structure 23 is in the extending direction (in the main plane of the anisotropic optical film, the direction in which the columnar structure 23 is oriented from one surface to the other surface, also referred to as the height direction in the present invention). It is a columnar structure (for example, substantially plate-like) having a large aspect ratio in the cross section with the normal direction, and such a structure is called a louver structure.
<<1-2.異方性光学フィルムの特性>>
 上述した構造を有する異方性光学フィルムは、当該フィルムへの入射光角度により光拡散性が異なる光拡散フィルム、すなわち入射光角度依存性を有する光拡散フィルムである。この異方性光学フィルムに所定の入射光角度で入射した光は、複数の柱状構造体の配向方向(例えば、ピラー構造における複数の柱状構造体13の延在方向やルーバー構造における複数の柱状構造体23の高さ方向)と略平行である場合には高い拡散性を示し、当該方向に平行でない場合には拡散性が低い。
<< 1-2. Characteristics of anisotropic optical film >>
The anisotropic optical film having the above-mentioned structure is a light diffusing film having different light diffusivity depending on the incident light angle on the film, that is, a light diffusing film having an incident light angle dependence. The light incident on the anisotropic optical film at a predetermined incident light angle is the orientation direction of the plurality of columnar structures (for example, the extending direction of the plurality of columnar structures 13 in the pillar structure and the plurality of columnar structures in the louver structure). When it is substantially parallel to the height direction of the body 23), it shows high diffusivity, and when it is not parallel to the direction, it has low diffusivity.
 ここで、図2及び3を参照しながら、異方性光学フィルムの光拡散性についてより具体的に説明する。ここでは、上述したピラー構造の異方性光学フィルム10と、ルーバー構造の異方性光学フィルム20の光拡散性を例に挙げて説明する。 Here, the light diffusivity of the anisotropic optical film will be described more specifically with reference to FIGS. 2 and 3. Here, the light diffusivity of the above-mentioned anisotropic optical film 10 having a pillar structure and the anisotropic optical film 20 having a louver structure will be described as examples.
 光拡散性の評価方法は、以下のようにして行う。まず、図2に示すように、異方性光学フィルム10、20を、光源1と検出器2との間に配置する。本実施形態においては、光源1からの照射光Iが、異方性光学フィルム10、20平面の法線方向から入射する場合を入射光角度0°とした。また、異方性光学フィルム10、20は直線Vを中心として、任意に回転させることができるように配置され、光源1及び検出器2は固定されている。 
 すなわち、この方法によれば、光源1と検出器2との間にサンプル(異方性光学フィルム10、20)を配置し、サンプル表面の直線Vを中心軸として角度を変化させながらサンプルを直進透過して検出器2に入る直線透過光量を測定することができる。
The method for evaluating the light diffusivity is as follows. First, as shown in FIG. 2, the anisotropic optical films 10 and 20 are arranged between the light source 1 and the detector 2. In the present embodiment, the case where the irradiation light I from the light source 1 is incident from the normal direction of the anisotropic optical films 10 and 20 is defined as the incident light angle of 0 °. Further, the anisotropic optical films 10 and 20 are arranged so as to be arbitrarily rotated around the straight line V, and the light source 1 and the detector 2 are fixed.
That is, according to this method, the sample (anisotropic optical films 10 and 20) is arranged between the light source 1 and the detector 2, and the sample travels straight while changing the angle with the straight line V on the sample surface as the central axis. The amount of linearly transmitted light that is transmitted and enters the detector 2 can be measured.
 異方性光学フィルム10、20に対し、それぞれ、図1のTD方向を図2に示す回転中心の直線Vに選んだ場合における光拡散性を評価し、得られた光拡散性の評価結果を図3に示した。図3は、図2に示す方法を用いて測定した図1に示す異方性光学フィルム10、20が有する光拡散性(光散乱性)の入射光角度依存性を示すものである。図3の縦軸は、散乱の程度を示す指標である直線透過率を示し、横軸は異方性光学フィルム10、20への入射光角度を示す。より具体的には、直線透過率(%)=(直線透過光量/入射光量)×100、なる式において、異方性光学フィルム10、20がある場合の検出器2の検出光量=「直線透過光量」であり、また。異方性光学フィルム10、20がない場合の検出器2の検出光量=「入射光量」である。図3中の実線は、ピラー構造の異方性光学フィルム10の光拡散性を示し、破線は、ルーバー構造の異方性光学フィルム20の光拡散性を示している。なお、入射光角度の正負は、異方性光学フィルム10、20を回転させる方向が反対であることを示している。 The light diffusivity was evaluated for the anisotropic optical films 10 and 20 when the TD direction of FIG. 1 was selected as the straight line V at the center of rotation shown in FIG. 2, and the obtained evaluation results of the light diffusivity were evaluated. It is shown in FIG. FIG. 3 shows the incident light angle dependence of the light diffusivity (light scattering property) of the anisotropic optical films 10 and 20 shown in FIG. 1 measured by the method shown in FIG. The vertical axis of FIG. 3 shows the linear transmittance which is an index showing the degree of scattering, and the horizontal axis shows the angle of incident light on the anisotropic optical films 10 and 20. More specifically, in the equation of linear transmittance (%) = (linear transmitted light amount / incident light amount) × 100, the detected light amount of the detector 2 when there are anisotropic optical films 10 and 20 = "straight line transmission". The amount of light "and also. The amount of detected light of the detector 2 in the absence of the anisotropic optical films 10 and 20 = "incident light amount". The solid line in FIG. 3 shows the light diffusivity of the anisotropic optical film 10 having a pillar structure, and the broken line shows the light diffusivity of the anisotropic optical film 20 having a louver structure. The positive and negative of the incident light angle indicate that the directions in which the anisotropic optical films 10 and 20 are rotated are opposite.
 図3に示すように、異方性光学フィルム10、20は、入射光角度によって直線透過率が変化する光拡散性の入射光角度依存性を有するものである。ここで、図3のように光拡散性の入射光角度依存性を示す曲線を以下、「光学プロファイル」と称する。光学プロファイルは、光拡散性を直接的に表現しているものではないが、直線透過率が低下することで逆に拡散透過率が増加(増大)していると解釈すれば、概ね光拡散性を示しているといえる。具体的に、異方性光学フィルム10、20では、複数の柱状構造体13、23の中心軸方向(延在方向)、すなわち、散乱中心軸方向で入射する場合の直線透過率と比較して、-20°~+20°の入射光角度で一旦直線透過率が最小値になり、その入射光角度(の絶対値)が大きくなるにつれて直線透過率が大きくなり、-60°~-30°又は+30°~+60°の入射光角度で直線透過率が最大値となる谷型の光学プロファイルを示す。このように、異方性光学フィルム10、20は、入射光が散乱中心軸方向に近い-20°~+20°の入射光角度範囲では強く拡散されるが、入射光角度の絶対値がそれよりも大きい入射光角度範囲では、拡散が弱まり直線透過率が高まるという性質を有する。 As shown in FIG. 3, the anisotropic optical films 10 and 20 have a light diffusive incident light angle dependence in which the linear transmittance changes depending on the incident light angle. Here, the curve showing the light diffusivity depending on the incident light angle as shown in FIG. 3 is hereinafter referred to as an “optical profile”. The optical profile does not directly express the light diffusivity, but if it is interpreted that the diffusive transmittance increases (increases) due to the decrease in the linear transmittance, it is generally the light diffusivity. It can be said that it shows. Specifically, in the anisotropic optical films 10 and 20, compared with the linear transmittance when the plurality of columnar structures 13 and 23 are incident in the central axis direction (extending direction), that is, in the scattering central axis direction. , The linear transmittance once becomes the minimum value at the incident light angle of -20 ° to + 20 °, and the linear transmittance increases as the incident light angle (absolute value) increases, -60 ° to -30 ° or A valley-shaped optical profile with maximum linear transmittance at an incident light angle of + 30 ° to + 60 ° is shown. In this way, in the anisotropic optical films 10 and 20, the incident light is strongly diffused in the incident light angle range of -20 ° to + 20 ° near the scattering center axis direction, but the absolute value of the incident light angle is higher than that. In the large incident light angle range, the diffusion is weakened and the linear transmittance is increased.
 ここで、図3に示されるように、所定の角度範囲で入射した光(表示光或いは外光)に対して拡散性が増加し直線透過率が最小値を示す性質、すなわち所定の角度範囲では、光の拡散が増加する性質を有しており、更に、図3に示されるように、所定の角度範囲以外の角度で入射した光(表示光或いは外光)に対して拡散性が減少し直線透過率が最大値を示す性質、すなわち所定の角度範囲以外では、光の拡散が減少する性質を有している、ような性質を「異方性」と称する。すなわち、入射光角度に依存して光の拡散性が変化することを意味している。光の拡散が増加する前記所定の角度範囲とは、上述したように、散乱中心軸方向(この方向の入射光角度を0°とする。)で入射する場合の直線透過率と比較して、例えば、-20°~+20°の入射光角度の範囲をいう。更に、光の拡散が減少する前記所定の角度範囲以外とは、上述したように、散乱中心軸方向(この方向の入射光角度を0°とする。)で入射する場合の直線透過率と比較して、例えば、-60°~-30°又は+30°~+60°の入射光角度の範囲をいう。 Here, as shown in FIG. 3, in the property that the diffusivity increases with respect to the light (display light or external light) incident in a predetermined angle range and the linear transmittance shows the minimum value, that is, in the predetermined angle range. , It has the property of increasing the diffusivity of light, and further, as shown in FIG. 3, the diffusivity decreases with respect to the light (display light or external light) incident at an angle other than the predetermined angle range. The property that the linear transmittance shows the maximum value, that is, the property that the light diffusion is reduced except in a predetermined angle range is referred to as "anisometric". That is, it means that the diffusivity of light changes depending on the angle of incident light. As described above, the predetermined angle range in which the light diffusion increases is compared with the linear transmission rate when the light is incident in the direction of the scattering center axis (the incident light angle in this direction is 0 °). For example, it refers to a range of incident light angles of −20 ° to + 20 °. Further, other than the predetermined angle range in which the diffusion of light is reduced, as described above, it is compared with the linear transmittance in the case of incident in the direction of the scattering center axis (the incident light angle in this direction is 0 °). Then, for example, it refers to a range of incident light angles of −60 ° to −30 ° or + 30 ° to + 60 °.
 また、光の拡散分布が、拡散角度により異なる性質を「指向性」と称するが、本発明の場合、光の拡散分布が、拡散角度により異なるだけでなく、入射光角度によって変化する入射光角度依存性を更に有した拡散分布を示す。つまり、光の拡散、透過及び拡散分布が、光の入射角度によって変化する入射光角度依存性を有する異方性及び指向性を有するものである。 Further, the property that the diffusion distribution of light differs depending on the diffusion angle is called "directivity". In the case of the present invention, the diffusion distribution of light not only differs depending on the diffusion angle but also changes depending on the incident light angle. It shows a diffusion distribution with further dependence. That is, the diffusion, transmission, and diffusion distribution of light have anisotropy and directivity having an incident light angle dependence that changes depending on the incident angle of light.
 また、以下、最大直線透過率と最小直線透過率との中間値の直線透過率に対する2つの入射光角度の角度範囲を拡散領域(この拡散領域の幅を「拡散幅」と称する)と称し、それ以外の入射光角度範囲を非拡散領域と称する。 Further, hereinafter, the angular range of the two incident light angles with respect to the linear transmittance of the intermediate value between the maximum linear transmittance and the minimum linear transmittance is referred to as a diffusion region (the width of this diffusion region is referred to as "diffusion width"). The other incident light angle range is referred to as a non-diffuse region.
 ここで、図4を参照しながら、ルーバー構造の異方性光学フィルム20を例に挙げて拡散領域と非拡散領域について説明する。図4は、図3のルーバー構造の異方性光学フィルム20の光学プロファイルを示したものである。図4に示すように、最大直線透過率(図4の例では、直線透過率が約77%)と最小直線透過率(図4の例では、直線透過率が約7%)との中間値の直線透過率(図4の例では、直線透過率が約42%)に対する2つの入射光角度の間(図4に示す光学プロファイル上の2つの黒点の位置の2つの入射光角度の内側)の入射光角度範囲が拡散領域となり、それ以外(図4に示す光学プロファイル上の2つの黒点の位置の2つの入射光角度の外側)の入射光角度範囲が非拡散領域となる。 Here, the diffusion region and the non-diffusion region will be described by taking the anisotropic optical film 20 having a louver structure as an example with reference to FIG. FIG. 4 shows the optical profile of the anisotropic optical film 20 having the louver structure of FIG. As shown in FIG. 4, an intermediate value between the maximum linear transmittance (in the example of FIG. 4, the linear transmittance is about 77%) and the minimum linear transmittance (in the example of FIG. 4, the linear transmittance is about 7%). Between two incident light angles with respect to the linear transmittance (in the example of FIG. 4, the linear transmittance is about 42%) (inside the two incident light angles at the positions of the two black spots on the optical profile shown in FIG. 4). The incident light angle range is the diffused region, and the other incident light angle range (outside the two incident light angles at the positions of the two black spots on the optical profile shown in FIG. 4) is the non-diffuse region.
 ピラー構造の異方性光学フィルム10では、図1(a)の透過光の様子を見ればわかるように、透過光は略円形状となっており、MD方向とTD方向とで略同一の光拡散性を示している。すなわち、ピラー構造の異方性光学フィルム10では、拡散は方位的に見れば等方性を有する。また、図3の実線で示すように、入射光角度を変えても光拡散性(特に、非拡散領域と拡散領域との境界付近における光学プロファイル)の変化が比較的緩やかであるため、輝度の急激な変化による違和感を生じないという効果がある。しかしながら、異方性光学フィルム10では、図3の破線で示されたルーバー構造の異方性光学フィルム20の光学プロファイルと比較すれば理解できるように、非拡散領域における直線透過率が低いという特徴がある。また、ピラー構造の異方性光学フィルム10は、ルーバー構造の異方性光学フィルム20と比較して、拡散領域の幅が狭いという特徴がある。なお、ピラー構造とすることで、方位角による拡散の指向性はないが、拡散の分布に対しては指向性を有する特性となる。 In the anisotropic optical film 10 having a pillar structure, as can be seen from the state of the transmitted light in FIG. 1A, the transmitted light has a substantially circular shape, and the light is substantially the same in the MD direction and the TD direction. It shows diffusivity. That is, in the anisotropic optical film 10 having a pillar structure, the diffusion is isotropic when viewed azimuthally. Further, as shown by the solid line in FIG. 3, even if the incident light angle is changed, the light diffusivity (particularly, the optical profile near the boundary between the non-diffusing region and the diffusing region) changes relatively slowly, so that the brightness is increased. It has the effect of not causing discomfort due to sudden changes. However, the anisotropic optical film 10 is characterized in that the linear transmittance in the non-diffuse region is low, as can be understood by comparing with the optical profile of the anisotropic optical film 20 having a louver structure shown by the broken line in FIG. There is. Further, the anisotropic optical film 10 having a pillar structure is characterized in that the width of the diffusion region is narrower than that of the anisotropic optical film 20 having a louver structure. It should be noted that the pillar structure does not have the directivity of diffusion depending on the azimuth angle, but has the characteristic of having directivity with respect to the distribution of diffusion.
 他方、ルーバー構造の異方性光学フィルム20では、図1(b)の透過光の様子を見ればわかるように、透過光は、略針状となっており、MD方向とTD方向とで光拡散性が大きく異なる。すなわち、ルーバー構造の異方性光学フィルム20では、拡散は方位角によって大きく拡散特性が異なる指向性を有する。具体的には、図1(b)に示す例では、MD方向ではピラー構造の場合よりも拡散が広がっているが、TD方向ではピラー構造の場合よりも拡散が狭まっている。また、図3の破線で示すように、入射光角度を変えると、(本実施形態の場合、TD方向において)光拡散性(特に、非拡散領域と拡散領域との境界付近における光学プロファイル)の変化が極めて急峻であるため、異方性光学フィルム20を表示装置に適用した場合、輝度の急激な変化となって現れ、違和感を生じさせるおそれがあった。加えて、ルーバー構造の異方性光学フィルムは光の干渉(虹)が生じやすい。しかしながら、異方性光学フィルム20では、非拡散領域における直線透過率が高く、表示特性を向上させることができるという効果がある。特に、優先される拡散の方位(図1(b)ではMD方向)の視野角を広げたい方向と一致させることで、意図する特定方向に視野角を広げることが可能となる。 On the other hand, in the anisotropic optical film 20 having a louver structure, as can be seen from the state of the transmitted light in FIG. 1 (b), the transmitted light has a substantially needle shape, and the transmitted light is emitted in the MD direction and the TD direction. Diffusivity is very different. That is, in the anisotropic optical film 20 having a louver structure, the diffusion has directivity in which the diffusion characteristics differ greatly depending on the azimuth angle. Specifically, in the example shown in FIG. 1B, the diffusion is wider in the MD direction than in the case of the pillar structure, but is narrower in the TD direction than in the case of the pillar structure. Further, as shown by the broken line in FIG. 3, when the incident light angle is changed, the light diffusivity (in particular, the optical profile near the boundary between the non-diffusing region and the diffusing region) becomes (in the case of the present embodiment, in the TD direction). Since the change is extremely steep, when the anisotropic optical film 20 is applied to the display device, it appears as a sudden change in brightness, which may cause a sense of discomfort. In addition, the anisotropic optical film having a louver structure tends to cause light interference (rainbow). However, the anisotropic optical film 20 has an effect that the linear transmittance in the non-diffusion region is high and the display characteristics can be improved. In particular, by matching the preferred diffusion direction (MD direction in FIG. 1B) with the direction in which the viewing angle is desired to be widened, it is possible to widen the viewing angle in a specific intended direction.
<<<2.異方性光学フィルムの構成>>>
 図5を参照しながら、本実施形態にかかる異方性光学フィルム100、150の構成について説明する。
<<< 2. Composition of anisotropic optical film >>>
The configurations of the anisotropic optical films 100 and 150 according to the present embodiment will be described with reference to FIG.
<<2-1.全体構成>>
 図5に示すように、異方性光学フィルム100、150は、入射光角度により直線透過率が変化する異方性光拡散層110又は120を有する異方性光学フィルムである。
<< 2-1. Overall configuration >>
As shown in FIG. 5, the anisotropic optical films 100 and 150 are anisotropic optical films having an anisotropic light diffusing layer 110 or 120 whose linear transmittance changes depending on the incident light angle.
 異方性光拡散層110は、マトリックス領域111と、マトリックス領域111とは屈折率が異なる複数の柱状構造体113(柱状領域)とを有する。異方性光拡散層120は、マトリックス領域121と、マトリックス領域121とは屈折率が異なる複数の柱状構造体123(柱状領域)とを有する。ここで、単に、柱状領域と表現する場合には、柱状領域には、ピラー構造の柱状領域及びルーバー構造の柱状領域とを含む。また、単に柱状構造体と表現する場合には、柱状構造体には、ピラー構造の柱状構造体及びルーバー構造の柱状構造体とを含む。
 複数の柱状構造体(113及び123)は、異方性光拡散層主平面において、一方の表面から他方の表面にかけ、複数の柱状構造体が配向して構成され、前記複数の柱状構造体の配向方向を法線方向とする断面における平均短径と平均長径とのアスペクト比を有する。
The anisotropic light diffusing layer 110 has a matrix region 111 and a plurality of columnar structures 113 (columnar regions) having a refractive index different from that of the matrix region 111. The anisotropic light diffusing layer 120 has a matrix region 121 and a plurality of columnar structures 123 (columnar regions) having a refractive index different from that of the matrix region 121. Here, when simply expressed as a columnar region, the columnar region includes a pillar region having a pillar structure and a columnar region having a louver structure. Further, when simply expressed as a columnar structure, the columnar structure includes a pillar structure having a pillar structure and a columnar structure having a louver structure.
The plurality of columnar structures (113 and 123) are formed by orienting the plurality of columnar structures from one surface to the other surface in the main plane of the anisotropic light diffusion layer, and the orientation directions of the plurality of columnar structures. Has an aspect ratio of an average minor axis and an average major axis in a cross section whose normal direction is.
 以下、このような、異方性光拡散層110又は異方性光拡散層120を有する異方性光学フィルム100、150について詳述する。 Hereinafter, the anisotropic optical films 100 and 150 having such an anisotropic light diffusion layer 110 or an anisotropic light diffusion layer 120 will be described in detail.
<<2-2.異方性光拡散層110>>
 異方性光拡散層110は、上述したルーバー構造(図1(b)の異方性光学フィルム20と同様の構成)を有しており、入射光角度により直線透過率が変化する異方性を有している。また、異方性光拡散層110は、光重合性化合物を含む組成物の硬化物からなり、図5(a)に示すように、マトリックス領域111と、当該マトリックス領域111とは屈折率の異なる複数の柱状構造体113(柱状領域)を有している。この柱状構造体113の配向方向(延在方向)Pは、散乱中心軸と平行になっており、異方性光拡散層110が所望の直線透過率及び拡散性を有するように適宜定められている。なお、散乱中心軸と柱状構造体の配向方向とが平行であるとは、屈折率の法則(Snellの法則)を満たすものであればよく、厳密に平行である必要はない。Snellの法則は、屈折率nの媒質から屈折率nの媒質の界面に対して光が入射する場合、その入射光角度θと屈折角θとの間に、nsinθ=nsinθの関係が成立するものである。例えば、n=1(空気)、n=1.51(異方性光学フィルム)とすると、入射光角度が30°の場合、柱状構造体の配向方向(屈折角)は約19°となるが、このように入射光角度と屈折角が異なっていてもSnellの法則を満たしていれば、本実施形態においては平行の概念に包含される。
<< 2-2. Anisotropic light diffusion layer 110 >>
The anisotropic light diffusing layer 110 has the above-mentioned louver structure (similar structure to the anisotropic optical film 20 of FIG. 1B), and has anisotropy in which the linear transmittance changes depending on the incident light angle. are doing. Further, the anisotropic light diffusing layer 110 is made of a cured product of a composition containing a photopolymerizable compound, and as shown in FIG. 5A, the matrix region 111 and a plurality of regions having different refractive indexes from the matrix region 111. It has a columnar structure 113 (columnar region). The orientation direction (extending direction) P of the columnar structure 113 is parallel to the scattering center axis, and is appropriately determined so that the anisotropic light diffusing layer 110 has a desired linear transmittance and diffusivity. It should be noted that the fact that the central axis of scattering and the orientation direction of the columnar structure are parallel does not have to be exactly parallel as long as it satisfies the law of refractive index (Snell's law). Snell's law states that when light is incident from a medium having a refractive index n 1 to the interface of a medium having a refractive index n 2 , n 1 sin θ 1 = between the incident light angle θ 1 and the refraction angle θ 2. The relationship of n 2 sin θ 2 is established. For example, assuming that n 1 = 1 (air) and n 2 = 1.51 (anisotropic optical film), when the incident light angle is 30 °, the orientation direction (refraction angle) of the columnar structure is about 19 °. However, even if the incident light angle and the refraction angle are different as described above, if Snell's law is satisfied, the concept of parallelism is included in the present embodiment.
 なお、異方性光拡散層110としては、柱状構造体113の配向方向がフィルムの膜厚方向(法線方向)と一致しないものであってもよい。この場合、異方性光拡散層110においては、入射光が法線方向から所定角度傾いた方向(すなわち、柱状構造体113の配向方向)に近い入射光角度範囲(拡散領域)では強く拡散されるが、それ以上の入射光角度範囲(非拡散領域)では拡散が弱まり直線透過率が高まるという性質を有する。 The anisotropic light diffusion layer 110 may have an orientation direction of the columnar structure 113 that does not coincide with the film thickness direction (normal direction) of the film. In this case, in the anisotropic light diffusion layer 110, the incident light is strongly diffused in the incident light angle range (diffuse region) close to the direction inclined by a predetermined angle from the normal direction (that is, the orientation direction of the columnar structure 113). In the incident light angle range (non-diffuse region) beyond that, the diffusion is weakened and the linear transmittance is increased.
<2-2-1.柱状構造体113>
 本実施形態にかかる柱状構造体113は、マトリックス領域111中に、複数の柱状の硬化領域として設けられており、各々の柱状構造体113は、それぞれ配向方向が散乱中心軸と平行になるように形成されたものである。
<2-2-1. Columnar structure 113>
The columnar structure 113 according to the present embodiment is provided as a plurality of columnar hardening regions in the matrix region 111, and each columnar structure 113 is oriented so that the orientation direction is parallel to the scattering center axis. It was formed.
 マトリックス領域111の屈折率は、柱状構造体113の屈折率と異なっていればよいが、屈折率がどの程度異なるかは特に限定されず、相対的なものである。マトリックス領域111の屈折率が柱状構造体113の屈折率よりも低い場合、マトリックス領域111は低屈折率領域となる。逆に、マトリックス領域111の屈折率が柱状構造体113の屈折率よりも高い場合、マトリックス領域111は高屈折率領域となる。ここで、マトリックス領域111と柱状構造体113の界面における屈折率は漸増的に変化するものであることが好適である。漸増的に変化させることで、入射光角度を変えた場合の拡散性の変化が極めて急峻となりギラツキを生じやすくなる問題が発生し難くなる。マトリックス領域111と柱状構造体113を光照射に伴う相分離によって形成することで、マトリックス領域111と柱状構造体113の界面の屈折率を漸増的に変化させることができる。 The refractive index of the matrix region 111 may be different from the refractive index of the columnar structure 113, but the degree of difference in the refractive index is not particularly limited and is relative. When the refractive index of the matrix region 111 is lower than the refractive index of the columnar structure 113, the matrix region 111 becomes a low refractive index region. On the contrary, when the refractive index of the matrix region 111 is higher than the refractive index of the columnar structure 113, the matrix region 111 becomes a high refractive index region. Here, it is preferable that the refractive index at the interface between the matrix region 111 and the columnar structure 113 gradually changes. By gradually changing the light, the change in diffusivity when the incident light angle is changed becomes extremely steep, and the problem that glare is likely to occur is less likely to occur. By forming the matrix region 111 and the columnar structure 113 by phase separation accompanying light irradiation, the refractive index of the interface between the matrix region 111 and the columnar structure 113 can be gradually changed.
 柱状構造体113の配向方向に垂直な断面形状は、図5(a)に示すように、短径SAと長径LAを有する。短径SAと長径LAは異方性光拡散層110を光学顕微鏡で観察することによって確認することができる(詳細は後述する)。柱状構造体113の断面形状は、後述するアスペクト比の範囲内であれば、特に制限されるものではないが、例えば、2以上50未満とすることができる。図5(a)では、柱状構造体113の断面形状を楕円形状に示しているが、柱状構造体113の断面形状は、特に限定されるものではない。 As shown in FIG. 5A, the cross-sectional shape of the columnar structure 113 perpendicular to the orientation direction has a minor axis SA and a major axis LA. The minor axis SA and the major axis LA can be confirmed by observing the anisotropic light diffusing layer 110 with an optical microscope (details will be described later). The cross-sectional shape of the columnar structure 113 is not particularly limited as long as it is within the range of the aspect ratio described later, but can be, for example, 2 or more and less than 50. In FIG. 5A, the cross-sectional shape of the columnar structure 113 is shown as an elliptical shape, but the cross-sectional shape of the columnar structure 113 is not particularly limited.
<<2-3.異方性光拡散層120>>
 異方性光拡散層120は、ピラー構造(図1(a)の異方性光学フィルム10と同様の構成)を有しており、入射光角度により直線透過率が変化する光拡散性を有している。また、図5(b)に示すように、異方性光拡散層120は、光重合性化合物を含む組成物の硬化物からなり、マトリックス領域121と、当該マトリックス領域121とは屈折率の異なる複数の柱状構造体123を有している。複数の柱状構造体123並びにマトリックス領域121は、不規則な分布や形状を有するが、異方性光拡散層120の全面にわたって形成されることで、得られる光学特性(例えば、直線透過率等)は略同じとなる。複数の柱状構造体123並びにマトリックス領域121が不規則な分布や形状を有するため、本実施形態にかかる異方性光拡散層120は、光の干渉(虹)が発生することが少ない。
<< 2-3. Anisotropic light diffusion layer 120 >>
The anisotropic light diffusing layer 120 has a pillar structure (similar to the anisotropic optical film 10 of FIG. 1A) and has light diffusivity in which the linear transmittance changes depending on the incident light angle. There is. Further, as shown in FIG. 5B, the anisotropic light diffusing layer 120 is made of a cured product of a composition containing a photopolymerizable compound, and the matrix region 121 and the matrix region 121 have a plurality of refractive indexes different from each other. It has a columnar structure 123. The plurality of columnar structures 123 and the matrix region 121 have an irregular distribution and shape, but the optical characteristics (for example, linear transmittance) obtained by being formed over the entire surface of the anisotropic light diffusing layer 120 are omitted. It will be the same. Since the plurality of columnar structures 123 and the matrix region 121 have an irregular distribution and shape, the anisotropic light diffusion layer 120 according to the present embodiment is less likely to cause light interference (rainbow).
<2-3-1.柱状構造体123>
 本実施形態にかかる柱状構造体123は、マトリックス領域121中に、複数の柱状の硬化領域として設けられており、各々の柱状構造体123は、それぞれ配向方向が散乱中心軸と平行になったものである。従って、同一の異方性光拡散層120における複数の柱状構造体123は、互いに平行となるように形成されている。
<2-3-1. Columnar structure 123>
The columnar structure 123 according to the present embodiment is provided as a plurality of columnar hardened regions in the matrix region 121, and each columnar structure 123 has an orientation direction parallel to the scattering center axis. Is. Therefore, the plurality of columnar structures 123 in the same anisotropic light diffusion layer 120 are formed so as to be parallel to each other.
 マトリックス領域121の屈折率は、柱状構造体の屈折率と異なっていればよいが、屈折率がどの程度異なるかは特に限定されず、相対的なものである。マトリックス領域121の屈折率が柱状構造体の屈折率よりも低い場合、マトリックス領域121は低屈折率領域となる。逆に、マトリックス領域121の屈折率が柱状構造体の屈折率よりも高い場合、マトリックス領域121は高屈折率領域となる。 The refractive index of the matrix region 121 may be different from the refractive index of the columnar structure, but the degree of difference in the refractive index is not particularly limited and is relative. When the refractive index of the matrix region 121 is lower than the refractive index of the columnar structure, the matrix region 121 becomes a low refractive index region. On the contrary, when the refractive index of the matrix region 121 is higher than the refractive index of the columnar structure, the matrix region 121 becomes a high refractive index region.
 柱状構造体123の配向方向に垂直な断面形状は、図5(b)に示すように、短径SAと長径LAを有する。柱状構造体123の断面形状は、後述するアスペクト比の範囲を2未満とすることができる。例えば、図5(b)では、柱状構造体123の断面形状を円形状に示しているが、柱状構造体123の断面形状は、円形状に限定されるものではなく、楕円形状、多角形状、不定形状、これらの入り混じっているもの等、特に限定されるものではない。 The cross-sectional shape of the columnar structure 123 perpendicular to the orientation direction has a minor axis SA and a major axis LA, as shown in FIG. 5 (b). The cross-sectional shape of the columnar structure 123 can have an aspect ratio range of less than 2, which will be described later. For example, in FIG. 5B, the cross-sectional shape of the columnar structure 123 is shown as a circular shape, but the cross-sectional shape of the columnar structure 123 is not limited to the circular shape, and is an elliptical shape, a polygonal shape, or the like. The shape is not particularly limited, such as an indefinite shape or a mixture of these.
<<2-4.柱状構造体113及び柱状構造体123のアスペクト比>>
 複数の柱状構造体113は、短径SAの平均値(平均短径)と長径LAの平均値(平均長径)のアスペクト比(=平均長径/平均短径)が2以上である。
<< 2-4. Aspect ratio of columnar structure 113 and columnar structure 123 >>
The plurality of columnar structures 113 have an aspect ratio (= average major axis / average minor axis) of 2 or more between the average value (average minor axis) of the minor axis SA and the average value (average major axis) of the major axis LA.
 複数の柱状構造体123は、短径SAの平均値(平均短径)と平均長径LAの平均値(平均長径)のアスペクト比(=平均長径/平均短径)が2未満である。 The plurality of columnar structures 123 have an aspect ratio (= average major axis / average minor axis) of less than 2 between the average value (average minor axis) of the minor axis SA and the average value (average major axis) of the average major axis LA.
 柱状構造体のアスペクト比は、1以上であるが、アスペクト比の上限は特に限定されないが、例えば、50未満が好ましく、25以下がより好ましく、10以下が更に好ましい。アスペクト比が、かかる範囲にある場合には、光の干渉によるムラなどが生じにくく、表示品位を良好に保つことができる。 The aspect ratio of the columnar structure is 1 or more, but the upper limit of the aspect ratio is not particularly limited, but for example, it is preferably less than 50, more preferably 25 or less, still more preferably 10 or less. When the aspect ratio is within such a range, unevenness due to light interference is unlikely to occur, and the display quality can be kept good.
<2-4-1.柱状構造体113及び柱状構造体123の平均短径及び平均長径>
 また、複数の柱状構造体113の短径SAの平均値(平均短径)は0.5μm以上であることが好適であり、1.0μm以上であることがより好適であり、1.5μm以上であることが更に好適である。一方、複数の柱状構造体113の短径SAの平均値(平均短径)は5.0μm以下であることが好適であり、4.0μm以下であることがより好適であり、3.0μm以下であることが更に好適である。これら複数の柱状構造体113の平均短径の下限値及び上限値は、適宜組み合わせることができる。
<2-4-1. Average minor axis and average major axis of columnar structure 113 and columnar structure 123>
Further, the average value (average minor axis) of the minor axis SA of the plurality of columnar structures 113 is preferably 0.5 μm or more, more preferably 1.0 μm or more, and 1.5 μm or more. Is more preferable. On the other hand, the average value (average minor axis) of the minor axis SA of the plurality of columnar structures 113 is preferably 5.0 μm or less, more preferably 4.0 μm or less, and 3.0 μm or less. Is more preferable. The lower limit value and the upper limit value of the average minor axis of the plurality of columnar structures 113 can be appropriately combined.
 更に、複数の柱状構造体113の長径LAの平均値(平均長径)は0.5μm以上であることが好適であり、1.0μm以上であることがより好適であり、1.5μm以上であることが更に好適である。一方、複数の柱状構造体113の長径LAの平均値(平均長径)は100μm以下であることが好適であり、50μm以下であることがより好適であり、30μm以下であることが更に好適である。これら複数の柱状構造体113の平均長径の下限値及び上限値は、適宜組み合わせることができる。 Further, the average value (average major axis) of the major axis LA of the plurality of columnar structures 113 is preferably 0.5 μm or more, more preferably 1.0 μm or more, and 1.5 μm or more. Is even more suitable. On the other hand, the average value (average major axis) of the major axis LA of the plurality of columnar structures 113 is preferably 100 μm or less, more preferably 50 μm or less, and further preferably 30 μm or less. .. The lower limit value and the upper limit value of the average major axis of the plurality of columnar structures 113 can be appropriately combined.
 また、複数の柱状構造体123の短径SAの平均値(平均短径)は0.5μm以上であることが好適であり、1.0μm以上であることがより好適であり、1.5μm以上であることが更に好適である。一方、複数の柱状構造体123の短径SAの平均値(平均短径)は5.0μm以下であることが好適であり、4.0μm以下であることがより好適であり、3.0μm以下であることが更に好適である。これら複数の柱状構造体123の平均短径の下限値及び上限値は、適宜組み合わせることができる。 Further, the average value (average minor axis) of the minor axis SA of the plurality of columnar structures 123 is preferably 0.5 μm or more, more preferably 1.0 μm or more, and 1.5 μm or more. Is more preferable. On the other hand, the average value (average minor axis) of the minor axis SA of the plurality of columnar structures 123 is preferably 5.0 μm or less, more preferably 4.0 μm or less, and 3.0 μm or less. Is more preferable. The lower limit value and the upper limit value of the average minor axis of the plurality of columnar structures 123 can be appropriately combined.
 更に、複数の柱状構造体123の長径LAの平均値(平均長径)は0.5μm以上であることが好適であり、1.0μm以上であることがより好適であり、1.5μm以上であることが更に好適である。一方、複数の柱状構造体123の長径LAの平均値(平均長径)は8.0μm以下であることが好適であり、5.0μm以下であることがより好適であり、3.0μm以下であることが更に好適である。これら複数の柱状構造体123の平均長径の下限値及び上限値は、適宜組み合わせることができる。 Further, the average value (average major axis) of the major axis LA of the plurality of columnar structures 123 is preferably 0.5 μm or more, more preferably 1.0 μm or more, and 1.5 μm or more. Is even more suitable. On the other hand, the average value (average major axis) of the major axis LA of the plurality of columnar structures 123 is preferably 8.0 μm or less, more preferably 5.0 μm or less, and 3.0 μm or less. Is even more suitable. The lower limit value and the upper limit value of the average major axis of the plurality of columnar structures 123 can be appropriately combined.
 本実施形態にかかる異方性光学フィルム100又は150は、複数の柱状構造体113又は複数の柱状構造体123の平均短径及び平均長径を共に上記好適範囲とすることにより、より高いレベルにて各種特性をバランス良く有する異方性光学フィルムとすることができる。 The anisotropic optical film 100 or 150 according to the present embodiment has a higher level by setting the average minor axis and the average major axis of the plurality of columnar structures 113 or the plurality of columnar structures 123 to the above-mentioned preferable ranges. An anisotropic optical film having various characteristics in a well-balanced manner can be obtained.
 なお、本実施形態における複数の柱状構造体113及び複数の柱状構造体123の、短径SAの平均値(平均短径)及び長径LAの平均値(平均長径)は、異方性光拡散層120の柱状領域における複数の柱状構造体の延在方向(配向方向)を法線方向とする断面を顕微鏡で観察し、任意に選択した100個の柱状構造体113及び柱状構造体123の短径SA、長径LAを計測し、これらの平均値を求めればよい。また、柱状構造体のアスペクト比としては、上記で求めた長径LAの平均値(平均長径)を短径SAの平均値(平均短径)で除した値を用いる。 The average value of the minor axis SA (mean minor axis) and the average value of the major axis LA (mean major axis) of the plurality of columnar structures 113 and the plurality of columnar structures 123 in the present embodiment are those of the anisotropic light diffusion layer 120. A cross section with the extending direction (orientation direction) of the plurality of columnar structures in the columnar region as the normal direction is observed with a microscope, and the minor axis SA of 100 columnar structures 113 and columnar structures 123 arbitrarily selected. The major axis LA may be measured and the average value thereof may be obtained. Further, as the aspect ratio of the columnar structure, a value obtained by dividing the average value (average major axis) of the major axis LA obtained above by the average value (average minor axis) of the minor axis SA is used.
<<2-5.柱状構造体113及び123が形成される領域の厚み>>
 複数の柱状構造体113及び123の厚さTは、10μm~200μmであるのが好適であり、20μm以上100μm未満であることがより好適であり、20μm以上50μm未満であることが更に好適である。厚さTが200μmを超える場合、材料費がよりかかるだけでなく、UV照射にかかる費用も増すため、コストがかかるだけなく、厚さT方向での拡散性増加により、画像ボケやコントラスト低下が起こりやすくなる。また、厚さTが10μm未満の場合、光の拡散性及び集光性を十分なものとすることが難しい場合がある。本発明では、厚さTを該規定範囲内とすることにより、コストの問題を少なくし、光の拡散性及び集光性に優れ、かつ、厚さT方向での光拡散性低下により、画像ボケが発生し難くなり、コントラストも向上させることができる。
<< 2-5. Thickness of region where columnar structures 113 and 123 are formed >>
The thickness T of the plurality of columnar structures 113 and 123 is preferably 10 μm to 200 μm, more preferably 20 μm or more and less than 100 μm, and further preferably 20 μm or more and less than 50 μm. .. When the thickness T exceeds 200 μm, not only the material cost is higher, but also the cost for UV irradiation is increased, so that not only the cost is high, but also the increase in diffusivity in the thickness T direction causes image blurring and contrast reduction. It is easy to happen. Further, when the thickness T is less than 10 μm, it may be difficult to make the light diffusivity and light condensing property sufficient. In the present invention, by setting the thickness T within the specified range, the problem of cost is reduced, the light diffusing property and the light condensing property are excellent, and the light diffusing property is lowered in the thickness T direction, so that the image is imaged. Blurring is less likely to occur, and contrast can be improved.
<<2-6.異方性光学フィルム100、150の性質>>
 上述したように、異方性光学フィルム100、150は、異方性光拡散層110又は120を有する。より具体的には異方性光拡散層110はルーバー構造を有する。異方性光拡散層120は、ピラー構造を有する。以下、このような異方性光学フィルム100、150の性質に関して説明する。
<< 2-6. Properties of anisotropic optical films 100 and 150 >>
As described above, the anisotropic optical films 100 and 150 have an anisotropic light diffusion layer 110 or 120. More specifically, the anisotropic light diffusion layer 110 has a louver structure. The anisotropic light diffusing layer 120 has a pillar structure. Hereinafter, the properties of such anisotropic optical films 100 and 150 will be described.
<2-6-1.直線透過率>
 ここで、直線透過率が最大となる入射光角度で異方性光学フィルム100又は150(異方性光拡散層110又は120)に入射した光の直線透過率を「最大直線透過率」と定義すると、異方性光学フィルム100又は150(異方性光拡散層110又は120)は、最大直線透過率が15%以上85%以下であり、好ましくは15%以上80%以下であり、より好ましくは、20%以上75%以下とすることができる。異方性光学フィルム100又は150の最大直線透過率が、かかる範囲にあることで、良好な拡散性が得られ、また過度な拡散による画像ボケや輝度の低下の抑制が可能となり、反射型液晶表示装置の視認側正面に用いた場合に、その画面正面方向の視認性を高くすることが可能となる。
<2-6-1. Linear transmittance>
Here, the linear transmittance of the light incident on the anisotropic optical film 100 or 150 (anisometric light diffusing layer 110 or 120) at the incident light angle at which the linear transmittance is maximized is defined as the "maximum linear transmittance". The anisotropic optical film 100 or 150 (anisometric light diffusing layer 110 or 120) has a maximum linear transmittance of 15% or more and 85% or less, preferably 15% or more and 80% or less, and more preferably 20%. It can be 75% or more and 75% or less. When the maximum linear transmittance of the anisotropic optical film 100 or 150 is within such a range, good diffusivity can be obtained, and image blurring and reduction in brightness due to excessive diffusion can be suppressed, and a reflective liquid crystal can be obtained. When used on the front side of the display device on the visible side, it is possible to improve the visibility in the front direction of the screen.
 なお、直線透過率が最小となる入射光角度で異方性光拡散層110又は120に入射した光の直線透過率を「最小直線透過率」と定義することができる。なお、最小直線透過率は、特に限定されないが、10%以下とすることができる。 The linear transmittance of the light incident on the anisotropic light diffusing layer 110 or 120 at the incident light angle at which the linear transmittance is minimized can be defined as the "minimum linear transmittance". The minimum linear transmittance is not particularly limited, but can be 10% or less.
 ここで、直線透過光量及び直線透過率は、図2に示す方法によって測定することができる。
 すなわち、図2に示す直線Vを回転軸とし、図5に示すC-C軸と一致させるようにして、入射光角度毎に直線透過光量を測定する(法線方向を0°とする)。得られたデータより光学プロファイルが得られ、この光学プロファイルから最大直線透過率及び最小直線透過率を求めることができる。
Here, the amount of linear transmitted light and the linear transmittance can be measured by the method shown in FIG.
That is, the straight line V shown in FIG. 2 is set as the rotation axis, and the amount of linear transmitted light is measured for each incident light angle so as to coincide with the CC axis shown in FIG. 5 (the normal direction is 0 °). An optical profile can be obtained from the obtained data, and the maximum linear transmittance and the minimum linear transmittance can be obtained from this optical profile.
 また、異方性光学フィルム100又は150(異方性光拡散層110又は120)における最大直線透過率及び最小直線透過率は、製造時の設計パラメータによって調整することができる。パラメータの例としては、塗膜の組成、塗膜の膜厚、構造形成時に与える塗膜への温度等が挙げられる。塗膜の組成は構成成分を適宜選択し調合することで、最大直線透過率及び最小直線透過率は変化する。設計パラメータでは、膜厚が厚いほど最大直線透過率及び最小直線透過率は低くなりやすく、薄いほど高くなりやすい。温度が高いほど最大直線透過率及び最小直線透過率は低くなりやすく、低いほど高くなりやすい。これらのパラメータの組み合わせにより、最大直線透過率及び最小直線透過率のそれぞれを適宜調節することが可能である。 Further, the maximum linear transmittance and the minimum linear transmittance in the anisotropic optical film 100 or 150 (anisotropic light diffusion layer 110 or 120) can be adjusted by design parameters at the time of manufacture. Examples of parameters include the composition of the coating film, the film thickness of the coating film, the temperature applied to the coating film at the time of structure formation, and the like. The composition of the coating film changes the maximum linear transmittance and the minimum linear transmittance by appropriately selecting and blending the constituent components. In terms of design parameters, the thicker the film thickness, the lower the maximum linear transmittance and the minimum linear transmittance tend to be, and the thinner the film thickness, the higher the maximum linear transmittance. The higher the temperature, the lower the maximum linear transmittance and the minimum linear transmittance tend to be, and the lower the temperature, the higher the maximum linear transmittance. By combining these parameters, it is possible to appropriately adjust each of the maximum linear transmittance and the minimum linear transmittance.
<2-6-2.拡散幅>
 上記方法により、異方性光学フィルム100又は150の最大直線透過率と最小直線透過率を求め、最大直線透過率と最小直線透過率との中間値の直線透過率を求める。この中間値の直線透過率に対する2つの入射光角度を読み取る。光学プロファイルにおいては、法線方向を0°とし、入射光角度をマイナス方向及びプラス方向で示している。従って、入射光角度及び交点に対応する入射光角度はマイナスの値を有する場合がある。
 2つの交点の値がプラスの入射光角度値と、マイナスの入射光角度値を有するものであれば、マイナスの入射光角度値の絶対値とプラスの入射光角度値の和が入射光の拡散領域の角度範囲である、拡散幅となる。
 2つの交点の値が両方ともプラスである場合、より大きい値からより小さい値を引いた差が入射光角度の角度範囲である拡散幅となる。
 2つの交点の値が両方ともマイナスである場合、それぞれの絶対値をとり、より大きい値からより小さい値を引いた差が入射光角度の角度範囲である拡散幅となる。
<2-6-2. Diffusion width>
By the above method, the maximum linear transmittance and the minimum linear transmittance of the anisotropic optical film 100 or 150 are obtained, and the linear transmittance of an intermediate value between the maximum linear transmittance and the minimum linear transmittance is obtained. The two incident light angles with respect to the linear transmittance of this intermediate value are read. In the optical profile, the normal direction is 0 °, and the incident light angle is shown in the minus direction and the plus direction. Therefore, the incident light angle and the incident light angle corresponding to the intersection may have a negative value.
If the value of the two intersections has a positive incident light angle value and a negative incident light angle value, the sum of the absolute value of the negative incident light angle value and the positive incident light angle value is the diffusion of the incident light. It is the diffusion width, which is the angular range of the region.
When the values of the two intersections are both positive, the difference between the larger value minus the smaller value is the diffusion width, which is the angular range of the incident light angle.
When the values of the two intersections are both negative, the absolute value of each is taken, and the difference obtained by subtracting the smaller value from the larger value is the diffusion width which is the angular range of the incident light angle.
<2-6-3.散乱中心軸>
 次に、図6を参照しながら、異方性光拡散層における散乱中心軸Pについて説明する。図6は、異方性光学フィルム100又は150(異方性光拡散層)における散乱中心軸Pを説明するための3次元極座標表示である。
<2-6-3. Scattering center axis>
Next, the scattering center axis P in the anisotropic light diffusion layer will be described with reference to FIG. FIG. 6 is a three-dimensional polar coordinate display for explaining the scattering center axis P in the anisotropic optical film 100 or 150 (anisotropic light diffusion layer).
 異方性光拡散層は、少なくとも1つの散乱中心軸を有するが、この散乱中心軸は、上述したように、異方性光拡散層への入射光角度を変化させた際に光拡散性がその入射光角度を境に略対称性を有する入射光角度と一致する方向を意味する。なお、このときの入射光角度(散乱中心軸角度)は、異方性光拡散層の光学プロファイルを測定し、この光学プロファイルにおける略対称性を有する略中央部(拡散領域の中央部)となる。 The anisotropic light diffusing layer has at least one scattering central axis, and as described above, the scattering central axis has a light diffusivity when the incident light angle to the anisotropic light diffusing layer is changed. It means a direction that coincides with the incident light angle having substantially symmetry with the boundary. The incident light angle (scattering center axis angle) at this time is a substantially central portion (central portion of the diffusion region) having substantially symmetry in this optical profile by measuring the optical profile of the anisotropic light diffusion layer.
 また、上記散乱中心軸は、図6に示すような3次元極座標表示によれば、異方性光拡散層110、120の表面をxy平面とし、法線をz軸とすると、極角θと方位角φとによって表現することができる。つまり、図6中のPxyが、上記異方性光拡散層の表面に投影した散乱中心軸の長さ方向ということができる。 Further, according to the three-dimensional polar coordinate display as shown in FIG. 6, the scattering center axis has a polar angle θ and an azimuth angle when the surfaces of the anisotropic light diffusion layers 110 and 120 are xy planes and the normal is the z axis. It can be expressed by φ. That is, it can be said that Pxy in FIG. 6 is the length direction of the scattering center axis projected on the surface of the anisotropic light diffusion layer.
 異方性光学フィルム100、150に対して、散乱中心軸角度は6°未満である。散乱中心軸角度が、かかる範囲にある場合には、層平面の法線方向への集光性が発現するため、視認方向である正面方向での反射輝度が向上し、視認性を高くすることが可能となる。 The scattering center axis angle is less than 6 ° with respect to the anisotropic optical films 100 and 150. When the scattering center axis angle is within such a range, the light collection property in the normal direction of the layer plane is exhibited, so that the reflection brightness in the front direction, which is the viewing direction, is improved and the visibility is improved. Is possible.
 ここで、異方性光拡散層110、120の各々は、単一層中に、傾きの異なる柱状領域群(同一の傾きを有する柱状領域の集合)を複数有していてもよい。この散乱中心軸角度の差の絶対値は12°未満である。 Here, each of the anisotropic light diffusion layers 110 and 120 may have a plurality of columnar region groups having different slopes (a set of columnar regions having the same slope) in a single layer. The absolute value of this difference in the scattering center axis angle is less than 12 °.
<2-6-4.屈折率>
 異方性光拡散層110、120は、光重合性化合物を含む組成物を硬化したものであるが、この組成物としては、次のような組み合わせが使用可能である。
(1)単独の光重合性化合物を使用するもの
(2)複数の光重合性化合物を混合使用するもの
(3)単独又は複数の光重合性化合物と、光重合性を有しない高分子化合物とを混合して使用するもの
<2-6-4. Refractive index>
The anisotropic light diffusion layers 110 and 120 are obtained by curing a composition containing a photopolymerizable compound, and the following combinations can be used as this composition.
(1) A single photopolymerizable compound is used (2) A plurality of photopolymerizable compounds are mixed and used (3) A single or multiple photopolymerizable compounds and a polymer compound having no photopolymerizability What is used by mixing
 上記いずれの組み合わせにおいても、光照射により異方性光拡散層110又は120中に、屈折率の異なるミクロンオーダーの微細な構造が形成されると推察されており、これにより、本実施形態に示される特異な異方性光拡散特性が発現されるものと思われる。従って、上記(1)では、光重合の前後における屈折率変化が大きい方が好適であり、また、(2)、(3)では屈折率の異なる複数の材料を組み合わせることが好適である。なお、ここでの屈折率変化や屈折率の差とは、具体的には、好適には0.01以上、より好適には0.05以上、更に好適には0.10以上の変化や差を示すものである。 In any of the above combinations, it is presumed that micron-order fine structures having different refractive indexes are formed in the anisotropic light diffusion layer 110 or 120 by light irradiation, whereby the peculiarity shown in the present embodiment is shown. It is considered that various anisotropic light diffusion characteristics are exhibited. Therefore, in (1) above, it is preferable that the change in refractive index before and after photopolymerization is large, and in (2) and (3), it is preferable to combine a plurality of materials having different refractive indexes. The change or difference in refractive index here is specifically, preferably 0.01 or more, more preferably 0.05 or more, and further preferably 0.10 or more. Is shown.
 ここで、マトリックス領域111又は121の屈折率が柱状構造体113又は123の屈折率よりも高い場合、マトリックス領域111又は121は高屈折率領域となり、複数の柱状構造体113又は123が低屈折率領域となる。マトリックス領域111又は121(高屈折率領域)と柱状構造体113又は123(低屈折率領域)の屈折率の差は、特に限定されないが、例えば、0.01~0.50の範囲とすることができ、0.03~0.20の範囲が好ましい。屈折率の差が、かかる範囲にある場合には、良好な拡散性が発現するとともに、後方散乱を抑制することが可能となり、反射型液晶表示装置の視認側正面に用いた場合に、その画面正面方向の視認性を高くすることが可能となる。 Here, when the refractive index of the matrix region 111 or 121 is higher than the refractive index of the columnar structure 113 or 123, the matrix region 111 or 121 becomes a high refractive index region, and the plurality of columnar structures 113 or 123 have a low refractive index. It becomes an area. The difference in refractive index between the matrix region 111 or 121 (high refractive index region) and the columnar structure 113 or 123 (low refractive index region) is not particularly limited, but is, for example, in the range of 0.01 to 0.50. The range is preferably 0.03 to 0.20. When the difference in refractive index is within such a range, good diffusivity is exhibited and backscattering can be suppressed, and when used in front of the visible side of a reflective liquid crystal display device, the screen thereof. It is possible to improve the visibility in the front direction.
<<<3.等方性光拡散層200>>>
 等方性光拡散層200(例えば、図7)は、光透過性を有する樹脂を母材とし、母材との屈折率差により光を拡散する微粒子を含有する層である。この等方性光拡散層200は、光の入射角度に依らず光を拡散し、拡散性に方向性を有しない。より具体的には、光が等方性光拡散層200によって拡散された場合に、拡散された光(出射光)における等方性光拡散層200と平行な面内での、その光の拡散具合(拡散光の広がりの形状)が、同面内での方向によって変化しない性質を有する。
<<< 3. Isotropic light diffusion layer 200 >>>
The isotropic light diffusing layer 200 (for example, FIG. 7) is a layer using a light-transmitting resin as a base material and containing fine particles that diffuse light due to a difference in refractive index from the base material. The isotropic light diffusing layer 200 diffuses light regardless of the incident angle of the light, and has no directionality in diffusivity. More specifically, when light is diffused by the isotropic light diffusing layer 200, the degree of diffusion of the light (diffused light) in a plane parallel to the isotropic light diffusing layer 200 in the diffused light (emitted light). The shape of the spread of light) has the property of not changing depending on the direction in the same plane.
<<3-1.樹脂母材>>
 等方性光拡散層200を構成する樹脂としては、従来から、アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、ポリウレタン系樹脂、シリコーン系樹脂等が知られているが、光学的透明性が高いこと、加工性が良好なこと、偏光板の保護フィルムであるTACフィルムと近い屈折率を持つこと、比較的安価なこと等から、アクリル系樹脂が特に好適である。更に、等法性光拡散層200を他の部材(例えば、反射型表示装置)とラミネートしやすいよう、樹脂に粘着性を付与してもよい。この場合、アクリル系樹脂からなる粘着剤が、上記アクリル系樹脂のメリットに加えて、偏光板用の粘着剤として信頼性が高く実績が多いこと等より、本実施形態では好適に用いられる。
<< 3-1. Resin base material >>
As the resin constituting the isotropic light diffusion layer 200, acrylic resin, polyester resin, epoxy resin, polyurethane resin, silicone resin and the like have been conventionally known, but they have high optical transparency. Acrylic resins are particularly preferable because they have good workability, have a refractive index close to that of a TAC film which is a protective film for a polarizing plate, and are relatively inexpensive. Further, the resin may be provided with adhesiveness so that the isotropic light diffusing layer 200 can be easily laminated with another member (for example, a reflective display device). In this case, the pressure-sensitive adhesive made of an acrylic resin is preferably used in the present embodiment because, in addition to the advantages of the acrylic resin, it is highly reliable and has a good track record as a pressure-sensitive adhesive for polarizing plates.
<<3-2.微粒子、他の成分>>
 また、樹脂中に混合・分散される微粒子としては、母材となる樹脂との屈折率が異なり、透過光の着色を防ぐために無色又は白色のものが好適であり、例えば、無機微粒子、白色顔料や樹脂微粒子等を挙げることができる。具体的には、シリカ微粒子、アルミナ微粒子、ジルコニウム微粒子、シリコーン微粒子、アクリル樹脂微粒子、ポリスチレン樹脂微粒子、スチレン-アクリル共重合体樹脂微粒子、ポリエチレン樹脂微粒子、エポキシ樹脂微粒子等が挙げられる。更に、樹脂中には、必要に応じて、金属キレート系、イソシアネート系、エポキシ系等の架橋剤を1種あるいは2種以上混合して用いることができる。
<< 3-2. Fine particles, other ingredients >>
Further, as the fine particles mixed and dispersed in the resin, those having a different refractive index from the resin as the base material and which are colorless or white are preferable in order to prevent coloring of transmitted light. For example, inorganic fine particles and white pigments. And resin fine particles and the like. Specific examples thereof include silica fine particles, alumina fine particles, zirconium fine particles, silicone fine particles, acrylic resin fine particles, polystyrene resin fine particles, styrene-acrylic copolymer resin fine particles, polyethylene resin fine particles, epoxy resin fine particles and the like. Further, if necessary, one or a mixture of two or more cross-linking agents such as metal chelate type, isocyanate type and epoxy type can be used in the resin.
 更に、等方性光拡散層200を形成するための他の成分として、光開始剤、熱硬化開始剤等の開始剤、溶媒の他に、必要に応じて増粘剤、界面活性剤、分散剤、可塑剤、レベリング剤等を添加することができる。 Further, as other components for forming the isotropic light diffusion layer 200, in addition to an initiator such as a photoinitiator and a thermosetting initiator and a solvent, a thickener, a surfactant, a dispersant, if necessary, A plasticizer, a leveling agent, etc. can be added.
<<3-3.屈折率>>
 母材となる樹脂の屈折率(JIS K-7142によるB法)と微粒子の屈折率の差は0.01~0.10の範囲であることが好適であり、0.02~0.05の範囲であることがより好適である。
<< 3-3. Refractive index >>
The difference between the refractive index of the base resin (method B according to JIS K-7142) and the refractive index of the fine particles is preferably in the range of 0.01 to 0.10, and is 0.02 to 0.05. It is more preferable that it is in the range.
 本実施形態では、アクリル系粘着剤とシリコーン樹脂微粒子とを用いることが好適である。シリコーン樹脂微粒子の屈折率は1.40~1.45であり、アクリル系粘着剤の屈折率の1.45~1.55よりもよりもやや低い屈折率を有しており、このために他の材料と比べて光透過率が高く、後方散乱や偏光解消も少なく、反射型表示装置に適用するのに優れている。 In this embodiment, it is preferable to use an acrylic pressure-sensitive adhesive and silicone resin fine particles. The refractive index of the silicone resin fine particles is 1.40 to 1.45, which is slightly lower than the refractive index of 1.45 to 1.55 of the acrylic pressure-sensitive adhesive. It has a high light transmittance, less backscattering and less depolarization, and is excellent for application to reflective display devices.
<<3-4.平均粒子径>>
 微粒子の平均粒子径は、特に限定されないが、例えば、0.5μm~10.0μm、より好適には1μm~5.0μmとすることができる。平均粒子径が0.1μm未満では、光拡散性能が低く、光反射板の金属光沢が見えてくるためペーパーホワイト性が得られなくなる。一方、平均粒子径が10μmを超えると、粒子が粗すぎて画面の背景に梨地模様やギラつきが見え、コントラストが低下することになる。ここでいう平均粒子径は、コールターカウンター法により測定されるものである。
<< 3-4. Average particle size >>
The average particle size of the fine particles is not particularly limited, but can be, for example, 0.5 μm to 10.0 μm, and more preferably 1 μm to 5.0 μm. If the average particle size is less than 0.1 μm, the light diffusion performance is low and the metallic luster of the light reflector becomes visible, so that paper whiteness cannot be obtained. On the other hand, if the average particle size exceeds 10 μm, the particles are too coarse and a satin pattern or glare appears on the background of the screen, resulting in a decrease in contrast. The average particle size referred to here is measured by the Coulter counter method.
<<3-5.含有量>>
 等方性光拡散層200中の微粒子の含有量は、好適には5.0重量%~50.0重量%、より好適には7.5重量%~45重量%である。含有量が5.0重量%未満では、光拡散性が低下し、また50.0重量%を超えると、等方性光拡散層200中に微粒子を均一に分散するのが難しくなり、光拡散性等の光学特性が低下したり、粘着剤である場合、粘着力が低下して剥離を生じ易くなる。
<< 3-5. Content >>
The content of the fine particles in the isotropic light diffusing layer 200 is preferably 5.0% by weight to 50.0% by weight, and more preferably 7.5% by weight to 45% by weight. If the content is less than 5.0% by weight, the light diffusivity is lowered, and if it exceeds 50.0% by weight, it becomes difficult to uniformly disperse the fine particles in the isotropic light diffusing layer 200, and the light diffusing property and the like. When the optical properties of the above are deteriorated or when the adhesive is used, the adhesive strength is lowered and peeling is likely to occur.
<<3-6.ヘイズ値>>
 等方性光拡散層200のヘイズ値は、好適には80%以上であり、より好適には85%以上である。ヘイズ値の上限は特に限定されないが、例えば、95%以下とすることができる。ヘイズ値が、かかる範囲にある場合には、直線的に透過する光量を減らすことが可能となり、反射型液晶表示装置の視認側正面における視認性を高くすることが可能となる。80%未満の場合、充分な拡散が得られず輝度が低下する。また、ヘイズ値が95%以上でも輝度は低下し、且つ画像はボケやすい。ここで、ヘイズ値(Hz、%)は、JIS K7105に準拠し、拡散透過率(%)及び全光線透過率(%)を測定し、次式にて算出された値である。Hz(%)=(拡散透過率/全光線透過率)×100
<< 3-6. Haze value >>
The haze value of the isotropic light diffusion layer 200 is preferably 80% or more, and more preferably 85% or more. The upper limit of the haze value is not particularly limited, but can be, for example, 95% or less. When the haze value is within such a range, the amount of light transmitted linearly can be reduced, and the visibility in front of the viewing side of the reflective liquid crystal display device can be improved. If it is less than 80%, sufficient diffusion cannot be obtained and the brightness decreases. Further, even if the haze value is 95% or more, the brightness is lowered and the image is easily blurred. Here, the haze value (Hz,%) is a value calculated by the following formula by measuring the diffusion transmittance (%) and the total light transmittance (%) in accordance with JIS K7105. Hz (%) = (diffusion transmittance / total light transmittance) × 100
<<3-7.直線透過率>>
 等方性光拡散層200の最大直線透過率は、35%以下である。等方性光拡散層200の最大直線透過率の下限は特に限定されないが、例えば、15%以上とすることができる。また等方性光拡散層200の最小直線透過率は、特に限定されないが、0.5%以上10%以下とすることができる。等方性光拡散層200の最大直線透過率が、かかる範囲にある場合には、良好な拡散性を得ることが可能となり、反射型液晶表示装置の視認側正面に用いた場合に、その画面正面方向の視認性を高くすることが可能となる。
<< 3-7. Linear transmittance >>
The maximum linear transmittance of the isotropic light diffusing layer 200 is 35% or less. The lower limit of the maximum linear transmittance of the isotropic light diffusing layer 200 is not particularly limited, but can be, for example, 15% or more. The minimum linear transmittance of the isotropic light diffusion layer 200 is not particularly limited, but can be 0.5% or more and 10% or less. When the maximum linear transmittance of the isotropic light diffusing layer 200 is within such a range, good diffusivity can be obtained, and when it is used on the front side of the viewing side of the reflective liquid crystal display device, the front direction of the screen. It is possible to increase the visibility of the.
 等方性光拡散層200の厚さは、5μm以上100μm未満であるのが好適であり、10μm以上50μm未満であることがより好適であり、10μm以上25μm未満であることが更に好適である。厚みが厚い(例えば、100μm以上)とボケやすい画像となり好適ではない。また、厚みが薄い(例えば5μm未満)と粘着剤である場合の接着力が不十分となり好ましくない。 The thickness of the isotropic light diffusion layer 200 is preferably 5 μm or more and less than 100 μm, more preferably 10 μm or more and less than 50 μm, and further preferably 10 μm or more and less than 25 μm. If the thickness is thick (for example, 100 μm or more), the image tends to be blurred, which is not suitable. Further, if the thickness is thin (for example, less than 5 μm), the adhesive force when the adhesive is used becomes insufficient, which is not preferable.
<<<4.異方性光学フィルム100と等方性光拡散層200との配置構成(光拡散フィルム積層体30)>>>
 図7(a)に示すように、本実施形態による光拡散フィルム積層体30は、上述した異方性光学フィルム100又は150と等方性光拡散層200とが積層された異方性光学フィルム(積層体)である。光拡散フィルム積層体30は、太陽等の外光が入射される面或いは視認者の視認側(画面正面方向、外表面側)に異方性光学フィルム100又は150が配置され、異方性光学フィルム100又は150の裏面(視認側と反対の一面)に等方性光拡散層200が配置されることが好適である。このような配置にすることで、異方性光学フィルム100又は150の異方性を有効に働かせることが可能であり、画面正面方向における輝度が高くなり、視認性が高くなるばかりか、ボケ難い画像となる。
<<< 4. Arrangement configuration of anisotropic optical film 100 and isotropic light diffusion layer 200 (light diffusion film laminate 30) >>>
As shown in FIG. 7A, the light diffusion film laminate 30 according to the present embodiment is an anisotropic optical film (lamination) in which the above-mentioned anisotropic optical film 100 or 150 and the isotropic light diffusion layer 200 are laminated. Body). In the light diffusion film laminate 30, the anisotropic optical film 100 or 150 is arranged on a surface on which external light such as the sun is incident or on the visual side (front direction of the screen, outer surface side) of the viewer, and the anisotropic optical film 100 or 150 is arranged. It is preferable that the isotropic light diffusion layer 200 is arranged on the back surface of the film 100 or 150 (one surface opposite to the viewing side). With such an arrangement, the anisotropy of the anisotropic optical film 100 or 150 can be effectively used, and the brightness in the front direction of the screen is increased, the visibility is improved, and blurring is difficult. It becomes an image.
 また、異方性光学フィルム100又は150と等方性光拡散層200とが積層された光拡散フィルム積層体30に対して、直線透過率が最大となる入射光角度における直線透過率である「最大直線透過率」が、10%以下である。最大直線透過率の下限は、特に限定されないが、5%以上とすることができる。また、直線透過率が最小となる入射光角度における直線透過率である「最小直線透過率」は、特に限定されないが、2%以下とすることができ、異方性光学フィルム100又は150は、直線透過率が低下するほど入射した光の拡散性が増加することが好適である。 Further, with respect to the light diffusing film laminate 30 in which the anisotropic optical film 100 or 150 and the isotropic light diffusing layer 200 are laminated, the “maximum straight line” which is the linear transmittance at the incident light angle at which the linear transmittance is maximized. "Transmittance" is 10% or less. The lower limit of the maximum linear transmittance is not particularly limited, but may be 5% or more. The "minimum linear transmittance", which is the linear transmittance at the incident light angle at which the linear transmittance is minimized, is not particularly limited, but can be 2% or less, and the anisotropic optical film 100 or 150 can be used. It is preferable that the diffusivity of the incident light increases as the linear transmittance decreases.
 なお、偏光板を必要とする反射型表示装置(例えば液晶型)の場合であれば、異方性光学フィルム100又は150の表面(反射光を視認する側、外光入射面側又は視認者の視認側)には、例えば粘着剤を介して、TACフィルム、位相差フィルム又は偏光板等を積層してもよい。偏光板を用いない反射型表示装置(例えば液晶以外)であれば、異方性光学フィルム100又は150の外側表面には、例えば、粘着剤を介してPETフィルム、TACフィルム等を積層してもよい。 In the case of a reflective display device (for example, a liquid crystal type) that requires a polarizing plate, the surface of the anisotropic optical film 100 or 150 (the side where the reflected light is visually recognized, the external light incident surface side, or the viewer). On the visual side), for example, a TAC film, a retardation film, a polarizing plate, or the like may be laminated via an adhesive. In the case of a reflective display device (for example, other than a liquid crystal) that does not use a polarizing plate, a PET film, a TAC film, or the like may be laminated on the outer surface of the anisotropic optical film 100 or 150, for example, via an adhesive. Good.
 このように、異方性光学フィルム100又は150と等方性光拡散層200とが積層された光拡散フィルム積層体30を、図7(b)に示した反射層300(例えば、反射フィルム、反射板等の光を反射するミラー)を有する装置(例えば、反射型表示装置)に適用することによって、外光の入射及び反射光の出射の際の、異方性光学フィルム100又は150の異方性効果の阻害を最小限にすることが可能となり、特に反射型表示装置の画面正面方向の反射輝度を維持することできる。光拡散フィルム積層体30と反射層300の間には、粘着層や位相差フィルム、偏光板や液晶層、透明電極層などの各種機能層が、単独あるいは複数存在してもよい。 In this way, the light diffusing film laminate 30 in which the anisotropic optical film 100 or 150 and the isotropic light diffusing layer 200 are laminated is combined with the reflective layer 300 (for example, a reflective film, a reflective plate) shown in FIG. 7 (b). By applying it to a device having a device (for example, a reflective display device) that reflects light such as, the anisotropic optical film 100 or 150 at the time of incident external light and emitted reflected light. It is possible to minimize the hindrance of the effect, and in particular, it is possible to maintain the reflected brightness in the front direction of the screen of the reflective display device. Various functional layers such as an adhesive layer, a retardation film, a polarizing plate, a liquid crystal layer, and a transparent electrode layer may be present alone or a plurality between the light diffusing film laminate 30 and the reflective layer 300.
 異方性光学フィルム100、150は、入射光が散乱中心軸方向に近い入射光角度範囲では強く拡散され、散乱中心軸方向への集光性を発現する。ただし、それ以上の入射光角度範囲では拡散が弱まり、集光性は低下する。
ここで、異方性光学フィルム100、150の散乱中心軸が異方性光学フィルム100、150の主平面の法線方向であり、かつ、異方性光学フィルム100、150の拡散領域が-20°~+20°であるものと仮定する。当該散乱中心軸方向に対する光の入射光角度が10°であった場合、入射光は、拡散性が高い範囲に入射するため、散乱中心軸方向へ集光性が発現する。
 すなわち、異方性光学フィルム100、150は、所定の入射角(上記仮定では、-20°~+20°)の光を所定の方向(散乱中心軸方向)に拡散・集光するため、集光した光の強度(輝度)を高く維持することができる。
In the anisotropic optical films 100 and 150, the incident light is strongly diffused in the incident light angle range close to the scattering center axis direction, and exhibits light collecting property in the scattering center axis direction. However, in the incident light angle range beyond that, the diffusion is weakened and the light collecting property is lowered.
Here, the scattering central axis of the anisotropic optical films 100 and 150 is the normal direction of the main plane of the anisotropic optical films 100 and 150, and the diffusion region of the anisotropic optical films 100 and 150 is −20. It is assumed to be ° to + 20 °. When the incident light angle of the light with respect to the scattering center axis direction is 10 °, the incident light is incident in a range having high diffusivity, so that the light is condensed in the scattering center axis direction.
That is, the anisotropic optical films 100 and 150 diffuse and condense light at a predetermined incident angle (in the above assumption, −20 ° to + 20 °) in a predetermined direction (scattering center axis direction). It is possible to maintain a high intensity (brightness) of the light.
 等方性光拡散層200は、上述したように、光を拡散する光拡散微粒子を用いており、光の入射角度に依らず光を拡散し、拡散性に方向性を有しない性質を有する。このため、異方性光学フィルム100、150では拡散性が弱い方向からの光も拡散することができる。
 すなわち、異方性光拡散層単独では拡散・集光しにくい方向からの光を、等方性光拡散層が拡散することで、その拡散光を異方性光拡散層が集光することができる。
As described above, the isotropic light diffusing layer 200 uses light diffusing fine particles that diffuse light, and has the property of diffusing light regardless of the incident angle of light and having no directionality in diffusivity. Therefore, the anisotropic optical films 100 and 150 can also diffuse light from a direction having weak diffusivity.
That is, the isotropic light diffusing layer diffuses light from a direction that is difficult to diffuse and condense with the anisotropic light diffusing layer alone, so that the diffused light can be condensed by the anisotropic light diffusing layer.
 光拡散フィルム積層体30より出射した光は、反射層300によって反射されることになる。反射された光は、再び、光拡散フィルム積層体30に入射され、出射されることとなる。その結果、反射型表示装置の画面正面方向(0°)における反射輝度を高くすることができる。 The light emitted from the light diffusing film laminate 30 is reflected by the reflective layer 300. The reflected light is again incident on the light diffusing film laminate 30 and emitted. As a result, the reflected brightness of the reflective display device in the front direction (0 °) of the screen can be increased.
<<<5.反射型表示装置>>>
 本実施形態に用いられる反射型表示装置は、反射型の機能を有していれば、特に限定されない。具体的な表示方式の例としては、電子粉粒体方式、液晶方式(コレステリック液晶、双安定ネマチック液晶、画素メモリー液晶等)、エレクトロウェッティング方式、エレクトロクロミック方式、電気泳動方式(マイクロカプセル等)等、公知の技術を用いた反射型表示装置を適用することができる。
<<< 5. Reflective display device >>>
The reflective display device used in the present embodiment is not particularly limited as long as it has a reflective function. Specific examples of display methods include electronic powder and granular material, liquid crystal (cholesteric liquid crystal, bistable nematic liquid crystal, pixel memory liquid crystal, etc.), electrowetting method, electrochromic method, electrophoresis method (microcapsule, etc.). Etc., a reflective display device using a known technique can be applied.
 ここで本発明の光拡散フィルム積層体の反射型表示装置における積層箇所は、光が反射してから視認されるまでの間の層であれば、特に限定されるものではないが、好ましくは、反射型表示装置における外光入射面側(視認者の視認側、反射光を視認する側)で、各表示方式における画像形成部(例えば、電気泳動方式であればマイクロカプセル箇所、電子粉粒体方式であれば電子粉粒体封入箇所、エレクロトウェッティング方式であれば水及び油膜封入箇所、液晶方式であれば液晶層等を指す)よりも手前側となる、平面状基材表面(外光入射面側)上に積層される。 Here, the laminated portion of the light diffusing film laminate of the present invention in the reflective display device is not particularly limited as long as it is a layer between the time when the light is reflected and the time when it is visually recognized, but it is preferable. On the side of the incident surface of external light (the side where the viewer sees the reflected light, the side where the reflected light is seen) in the reflective display device, the image forming part in each display method (for example, in the case of the electrophoresis method, the microcapsule portion and the electron powder granules A flat base material surface (outside) that is on the front side of the electronic powder and granular material encapsulation location in the method, the water and oil film encapsulation location in the electro-wetting method, and the liquid crystal layer in the liquid crystal method). It is laminated on the light incident surface side).
 ここで平面状基材とは、具体的には、ガラス、樹脂成型体、フィルム等のことである。本発明の光拡散フィルム積層体は、平面状基材面上(外光入射面側、反射光を視認する側)に、積層されるが、その際、反射型表示装置の平面状基材面上に、光拡散フィルム積層体の異方性光学フィルムと、等方性光拡散層とのどちらを積層させるかは、限定されない。外光入射面側(視認者の視認側、反射光を視認する側)が、光拡散フィルム積層体における異方性光学フィルムとなり、外光入射面とは反対側である、外光反射面側が、等方性光拡散層となるよう、平面状基材面上に積層されることが好適である。 Here, the flat base material is specifically glass, a resin molded body, a film, or the like. The light diffusing film laminate of the present invention is laminated on a flat base material surface (external light incident surface side, side where reflected light is visually recognized), and at that time, the flat base material surface of the reflective display device is used. It is not limited whether the anisotropic optical film of the light diffusing film laminate or the isotropic light diffusing layer is laminated on the top. The external light incident surface side (the visible side of the viewer, the side that visually recognizes the reflected light) is the anisotropic optical film in the light diffusion film laminate, and the external light reflecting surface side, which is the opposite side to the external light incident surface, is. , It is preferable that the light diffusing layer is laminated on a flat base material surface.
 その際、外光反射面側が等方性光拡散層となるように平面状基材面上に積層するのであれば、等方性光拡散層が粘着剤である場合には等方性光拡散層を直接、粘着剤でない場合には粘着剤を介して等方性光拡散層を積層すればよい。一方で、外光反射面側が異方性光学フィルムとなるように平面状基材面上に積層するのであれば、透明性を有する公知技術の粘着剤を介して積層すればよい。 At that time, if the isotropic light diffusing layer is laminated on the planar base material surface so that the external light reflecting surface side becomes an isotropic light diffusing layer, the isotropic light diffusing layer is directly applied as an adhesive when the isotropic light diffusing layer is an adhesive. If this is not the case, an isotropic light diffusing layer may be laminated via an adhesive. On the other hand, when laminating on a flat base material surface so that the external light reflecting surface side becomes an anisotropic optical film, laminating may be performed via a transparent adhesive of a known technique.
 また、外光反射面側が異方性光学フィルムとなるように平面状基材面上に積層するのであれば、等方性光拡散層の表面(反射光を視認する側、外光入射面側又は視認者の視認側)には必要に応じ、例えば粘着剤を介して、TACフィルム、位相差フィルム又は偏光板等を積層してもよい。 Further, if the external light reflecting surface side is laminated on the planar base material surface so as to be an anisotropic optical film, the surface of the isotropic light diffusion layer (the side where the reflected light is visually recognized, the external light incident surface side or the visual recognition). A TAC film, a retardation film, a polarizing plate, or the like may be laminated on the visible side of the person), if necessary, via, for example, an adhesive.
<<<6.実施例>>>
 次に、本発明を実施例及び比較例により、更に具体的に説明するが、本発明は、これらの例によって何ら限定されるものではない。
<<< 6. Example >>>
Next, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these examples.
 以下の方法に従って、本発明の光拡散フィルム積層体(異方性光学フィルム及び等方性光拡散層、なお、本実施例においては、異方性光学フィルムは異方性光拡散層を単層とした)及び比較例を作製した。異方性光拡散層については、以下に示す既存の方法(例えば、特開2006-119241及び国際公開番号WO2014/084361)を参考として作製した。また、等方性光拡散層については、以下に示す既存の方法(例えば、特開2002-122714)を参考として作製した。 According to the following method, the light diffusing film laminate of the present invention (anisotropic optical film and isotropic light diffusing layer, in this embodiment, the anisotropic optical film has an anisotropic light diffusing layer as a single layer) and A comparative example was prepared. The anisotropic light diffusing layer was prepared with reference to the existing methods shown below (for example, Japanese Patent Application Laid-Open No. 2006-119241 and International Publication No. WO2014 / 084361). The isotropic light diffusion layer was prepared with reference to the existing method shown below (for example, JP-A-2002-122714).
<<異方性光学フィルム>>
 厚さ100μmのPETフィルム(東洋紡社製、商品名:A4300)の縁部全周に、ディスペンサーを使い、硬化性樹脂で高さ50μmの隔壁を形成した。この中に下記の紫外線硬化樹脂組成物を滴下し、別のPETフィルムでカバーした。
<< Anisotropic optical film >>
A partition wall having a height of 50 μm was formed of a curable resin using a dispenser around the entire edge of a PET film having a thickness of 100 μm (manufactured by Toyobo Co., Ltd., trade name: A4300). The following UV curable resin composition was added dropwise thereto, and the mixture was covered with another PET film.
<紫外線硬化樹脂組成物>
・シリコーン・ウレタン・アクリレート(屈折率:1.460、重量平均分子量:5,890) 20重量部
 (RAHN社製、商品名:00-225/TM18)
・ネオペンチルグリコールジアクリレート(屈折率:1.450) 30重量部
 (ダイセルサイテック社製、商品名:Ebecryl145)
・ビスフェノールAのEO付加物ジアクリレート(屈折率:1.536) 15重量部
 (ダイセルサイテック社製、商品名:Ebecyl150)
・フェノキシエチルアクリレート(屈折率:1.518) 40重量部
 (共栄社化学社製、商品名:ライトアクリレートPO-A)
・2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン 4重量部
 (BASF社製、商品名:Irgacure651)
<UV curable resin composition>
-Silicone urethane acrylate (refractive index: 1.460, weight average molecular weight: 5,890) 20 parts by weight (manufactured by RAHN, trade name: 00-225 / TM18)
-Neopentyl glycol diacrylate (refractive index: 1.450) 30 parts by weight (manufactured by Daicel Cytec, trade name: Ebecryl 145)
EO adduct diacrylate of bisphenol A (refractive index: 1.536) 15 parts by weight (manufactured by Daicel Cytec, trade name: Ebecil150)
・ Phenoxyethyl acrylate (refractive index: 1.518) 40 parts by weight (manufactured by Kyoeisha Chemical Co., Ltd., trade name: light acrylate PO-A)
・ 2,2-Dimethoxy-1,2-diphenylethane-1-one 4 parts by weight (manufactured by BASF, trade name: Irgacure 651)
 この両面をPETフィルムで挟まれた50μmの厚さの液膜に対して、UVスポット光源(浜松ホトニクス社製、商品名:L2859-01)の落射用照射ユニットから、照射強度30mW/cmの平行光線である紫外線を1分間照射して、図1又は図5に示すような棒状の微小な領域を多数有する50μmの膜厚の8種類のPET付き異方性光拡散層(異方性光学フィルム)を得た。作製した8種類の異方性光拡散層を以下の表1に示した。 An irradiation intensity of 30 mW / cm 2 was applied to a liquid film having a thickness of 50 μm sandwiched between PET films on both sides from an irradiation unit for epi-illumination of a UV spot light source (manufactured by Hamamatsu Photonics, trade name: L2859-01). Eight kinds of anisotropic light diffusing layers with PET (anisometric optical film) having a thickness of 50 μm and having a large number of rod-shaped minute regions as shown in FIG. 1 or 5 by irradiating ultraviolet rays as parallel rays for 1 minute. Got The eight types of anisotropic light diffusing layers produced are shown in Table 1 below.
 なお、各異方性光拡散層の光学特性である、最大直線透過率及び散乱中心軸角度(異方性光拡散層の法線方向に対する)と、各柱状構造体のアスペクト比とは、紫外線硬化樹脂組成物による液膜の加熱温度と、照射する紫外線の光線方向とを調整することに加え、平行光線のアスペクト比を変更できる指向性拡散素子を、異方性光拡散層と落射用照射ユニットとの間に配置するか否かを調整することと、指向性拡散素子を使用する場合、指向性拡散素子の配置を調整する(異方性光拡散層に近づける又は遠ざける)こと、を行うことで、表1のような特性の8種類の異方性光拡散層を得ることができた。 The maximum linear transmittance and the scattering center axis angle (relative to the normal direction of the anisotropic light diffusion layer), which are the optical characteristics of each anisotropic light diffusion layer, and the aspect ratio of each columnar structure are the ultraviolet curable resin composition. In addition to adjusting the heating temperature of the liquid film and the direction of the ultraviolet rays to be irradiated, a directional diffusion element capable of changing the aspect ratio of parallel rays is arranged between the anisotropic light diffusion layer and the irradiation unit for epi-illumination. By adjusting whether or not to do so, and when using a directional diffusing element, adjusting the arrangement of the directional diffusing element (approaching or moving away from the anisotropic light diffusing layer), as shown in Table 1. Eight kinds of anisotropic light diffusing layers having characteristics could be obtained.
 指向性拡散素子は、入射した平行光線に指向性を付与するものであり、本実施例では指向性拡散素子内にアスペクト比の高い針状微粒子を含有したものを使用した。柱状構造体のアスペクト比は、指向性拡散素子によって変更された平行光線のアスペクト比にほぼ対応した形で形成された。 The directional diffusion element imparts directivity to the incident parallel light rays, and in this embodiment, an directional diffusion element containing needle-like fine particles having a high aspect ratio was used. The aspect ratio of the columnar structure was formed in a form substantially corresponding to the aspect ratio of the parallel rays changed by the directional diffusion element.
<異方性光拡散層の散乱中心軸の角度及び直線透過率の測定>
 図2に示すような、光源の投光角、検出器の受光角を任意に可変できる変角光度計ゴニオフォトメータ(ジェネシア社製)を用いて、表1に示す実施例の異方性光学フィルム(異方性光拡散層)の直線透過率の測定を行った。光源からの直進光を受ける位置に検出器を固定し、その間のサンプルホルダーに実施例で得られた異方性光学フィルムをセットした。図2に示すように直線Vを回転軸としてサンプルを回転させてそれぞれの入射光角度に対応する直線透過光量を測定した。この評価方法によって、どの角度の範囲で入射される光が拡散するかを評価することができる。この回転軸は、図5に示されるサンプルの構造におけるC-C軸と同じ軸である。直線透過光量の測定は、視感度フィルターを用いて可視光領域の波長を測定した。以上のような測定の結果得られた光学プロファイルに基づき、直線透過率の最大値(最大直線透過率)及び最小値(最小直線透過率)と、該光学プロファイルにおける最小値に挟まれた略中央部(拡散領域の中央部)より、最大直線透過率と、散乱中心軸角度とを求め、表1にまとめた。
<Measurement of the angle of the scattering center axis of the anisotropic light diffusion layer and the linear transmittance>
Anisotropic optics of the examples shown in Table 1 using a goniometer (manufactured by Genesia), a variable-angle photometer that can arbitrarily change the projection angle of the light source and the light-receiving angle of the detector as shown in FIG. The linear transmittance of the film (anisometric light diffusion layer) was measured. The detector was fixed at a position where it received straight light from the light source, and the anisotropic optical film obtained in the example was set in the sample holder between them. As shown in FIG. 2, the sample was rotated around the straight line V as the rotation axis, and the amount of linear transmitted light corresponding to each incident light angle was measured. By this evaluation method, it is possible to evaluate in what angle range the incident light is diffused. This axis of rotation is the same axis as the CC axis in the sample structure shown in FIG. For the measurement of the amount of linear transmitted light, the wavelength in the visible light region was measured using a luminosity factor filter. Based on the optical profile obtained as a result of the above measurement, the center between the maximum value (maximum linear transmittance) and the minimum value (minimum linear transmittance) of the linear transmittance and the minimum value in the optical profile. The maximum linear transmittance and the scattering center axis angle were obtained from the part (the central part of the diffusion region) and summarized in Table 1.
<柱状構造体のアスペクト比の測定(異方性光拡散層の表面観察)>
 実施例及び比較例の異方性光拡散層の柱状領域における複数の柱状構造体の延在方向(異方性光拡散層主平面において、一方の表面から他方の表面にかけ、柱状構造体が配向している方向)を法線方向とする断面(ただし紫外線照射時の照射光側)を光学顕微鏡で観察し、柱状領域における柱状構造体の長径LA及び短径SAを測定した。平均長径LA及び平均短径SAの算出には、任意の100の構造のうちの平均値とした。また、求めた平均長径LA及び平均短径SAに対し、平均長径LA/平均短径SAをアスペクト比として算出し、表1にまとめた。
<Measurement of aspect ratio of columnar structure (surface observation of anisotropic light diffusion layer)>
Extending direction of a plurality of columnar structures in the columnar region of the anisotropic light diffusion layer of Examples and Comparative Examples (direction in which the columnar structures are oriented from one surface to the other surface in the main plane of the anisotropic light diffusion layer. ) Is the normal direction (however, the irradiation light side at the time of ultraviolet irradiation) is observed with an optical microscope, and the major axis LA and minor axis SA of the columnar structure in the columnar region are measured. For the calculation of the average major axis LA and the average minor axis SA, the average value among any 100 structures was used. In addition, the average major axis LA / average minor axis SA was calculated as an aspect ratio with respect to the obtained average major axis LA and average minor axis SA, and is summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<<等方性光拡散層>>
 厚さ38μmの離型PETフィルム(リンテック社製、商品名:38C)に、コンマコーターを用いて、屈折率1.47のアクリル系粘着剤(商品名:SKダインTM206、全固形分濃度18.8%、溶剤:酢酸エチル、メチルエチルケトン、綜研化学社製)100重量部に対して、イソシアネート系硬化剤(商品名:L-45、綜研化学社製)0.5部と、エポキシ系硬化剤(商品名:E-5XM、綜研化学社製)0.2部を添加したベース塗料に、前述の粘着剤と屈折率の異なる微粒子としてシリコーン樹脂微粒子(トスパール145、屈折率1.43、粒子径4.5μm)を所定量添加し、アジターで30分間撹拌して微粒子を分散させ、4種類の等方性光拡散層用塗料を溶剤乾燥後の膜厚が25μm又は50μmとなるように塗工し、これを乾燥して等方性光拡散層を形成した後、厚さ38μmの離型PETフィルム(リンテック社製、商品名:3801)をラミネートし、4種類のPET付き等方性光拡散層を作製した。作製した等方性光拡散層を以下の表2に示した。なお、比較のために、透明粘着層としてシリコーン樹脂微粒子を添加せずに配合した透明粘着層eも同時に作製した。
<< Isotropic light diffusion layer >>
An acrylic pressure-sensitive adhesive (trade name: SK Dyne TM206, total solid content concentration 18. 8%, solvent: ethyl acetate, methyl ethyl ketone, manufactured by Soken Kagaku Co., Ltd. 0.5 parts of isocyanate-based curing agent (trade name: L-45, manufactured by Soken Kagaku Co., Ltd.) and epoxy-based curing agent (manufactured by Soken Kagaku Co., Ltd.) Product name: E-5XM, manufactured by Soken Kagaku Co., Ltd. Silicone resin fine particles (Tospearl 145, refractive index 1.43, particle diameter 4) as fine particles having a different refractive index from the above-mentioned adhesive to the base paint to which 0.2 part is added. Add a predetermined amount of .5 μm) and stir with an agitator for 30 minutes to disperse the fine particles, and apply four types of isotropic light diffusion layer paints so that the film thickness after solvent drying is 25 μm or 50 μm. Was dried to form an isotropic light diffusing layer, and then a 38 μm-thick release PET film (manufactured by Lintec Co., Ltd., trade name: 3801) was laminated to prepare four types of isotropic light diffusing layers with PET. The prepared isotropic light diffusion layer is shown in Table 2 below. For comparison, a transparent adhesive layer e blended without adding silicone resin fine particles as a transparent adhesive layer was also produced at the same time.
<等方性光拡散層又は透明粘着層の直線透過率の測定>
 サンプルの回転軸を任意とする他は、先に示した異方性光拡散層における測定と同様にして、等方性光拡散層及び透明粘着層の最大直線透過率を測定し、表2にまとめた。
<Measurement of linear transmittance of isotropic light diffusion layer or transparent adhesive layer>
The maximum linear transmittances of the isotropic light diffusing layer and the transparent adhesive layer were measured in the same manner as the measurement in the anisotropic light diffusing layer shown above except that the rotation axis of the sample was arbitrary, and are summarized in Table 2.
<ヘイズの測定>
 ヘイズ値(Hz)は、日本電色工業株式会社製のヘイズメーター、NDH-2000を用いて測定し、表2にまとめた。
<Measurement of haze>
The haze value (Hz) was measured using a haze meter manufactured by Nippon Denshoku Industries Co., Ltd., NDH-2000, and is summarized in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例1)
 上記PET付き異方性光拡散層1と、PET付き等方性光拡散層aを、互いのラミネート面におけるPETフィルムを剥離した上でラミネートし、異方性光学フィルム/等方性光拡散層の2層からなる実施例1の光拡散フィルム積層体を得た。
 続いて、異方性光拡散層1側のPETフィルムを剥がし、透明粘着層eを介して高透明性PET(東洋紡コスモシャインA4100 100μm)を貼合した。更に等方性光拡散層a側表面のPETフィルムを剥がしてから、平滑な鏡面反射板(反射率約90%)に貼合して反射輝度評価用サンプルとした。
 以上より、実施例1の光拡散フィルム積層体の構成を、表3に示した。
(Example 1)
The above-mentioned anisotropic light diffusing layer 1 with PET and the isotropic light diffusing layer a with PET are laminated after peeling the PET film on each other's laminating surface, and is composed of two layers of an anisotropic optical film / isotropic light diffusing layer. The light diffusing film laminate of Example 1 was obtained.
Subsequently, the PET film on the anisotropic light diffusing layer 1 side was peeled off, and a highly transparent PET (Toyobo Cosmo Shine A4100 100 μm) was attached via the transparent adhesive layer e. Further, the PET film on the surface of the isotropic light diffusion layer a side was peeled off, and then bonded to a smooth specular reflector (reflectance of about 90%) to prepare a sample for evaluation of reflected brightness.
From the above, the configuration of the light diffusing film laminate of Example 1 is shown in Table 3.
(実施例2~実施例7、比較例1~6)
 表3の異方性光拡散層及び等方性光拡散層の組み合わせに従った他は、実施例1と同様に作製を行い、異方性光学フィルム/等方性光拡散層の2層からなる実施例2~7及び比較例1~6の光拡散フィルム積層体を得た。
 続いて、異方性光拡散層2~8側のPETフィルムを剥がし、透明粘着層eを介して高透明性PET(東洋紡コスモシャインA4100 100μm)を貼合した。更に等方性光拡散層a~d側表面あるいは透明粘着層e側表面のPETフィルムを剥がしてから、平滑な鏡面反射板(反射率約90%)に貼合して反射輝度評価用サンプルとした。
 以上より、実施例2~7及び比較例1~6の光拡散フィルム積層体の構成を、表3に示した。
(Examples 2 to 7, Comparative Examples 1 to 6)
Examples 2 to 7 were prepared in the same manner as in Example 1 except that the combination of the anisotropic light diffusing layer and the isotropic light diffusing layer in Table 3 was followed, and consisted of two layers of an anisotropic optical film / isotropic light diffusing layer. And the light diffusing film laminates of Comparative Examples 1 to 6 were obtained.
Subsequently, the PET film on the 2 to 8 side of the anisotropic light diffusing layer was peeled off, and a highly transparent PET (Toyobo Cosmo Shine A4100 100 μm) was attached via the transparent adhesive layer e. Further, the PET film on the isotropic light diffusion layer a to d side surface or the transparent adhesive layer e side surface was peeled off, and then attached to a smooth specular reflector (reflectance of about 90%) to prepare a sample for evaluation of reflection luminance.
From the above, the configurations of the light diffusing film laminates of Examples 2 to 7 and Comparative Examples 1 to 6 are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<<評価方法>>
 上記の実施例1~7及び比較例1~6で作製した光拡散フィルム積層体に関し、以下の様にして評価を行った。なお、評価結果を、以下の表4に示す。
<< Evaluation method >>
The light diffusing film laminates produced in Examples 1 to 7 and Comparative Examples 1 to 6 described above were evaluated as follows. The evaluation results are shown in Table 4 below.
<光拡散フィルム積層体の直線透過率の測定>
 光拡散フィルム積層体内異方性光拡散層を基準としてサンプルの回転軸とする他は、先に示した異方性光拡散層における測定と同様にして、光拡散フィルム積層体の直線透過率を測定した。
<Measurement of linear transmittance of light diffusing film laminate>
The linear transmittance of the light diffusing film laminate was measured in the same manner as the measurement in the anisotropic light diffusing layer shown above, except that the rotation axis of the sample was based on the anisotropic light diffusing layer in the light diffusing film laminate.
<反射輝度の標準の作製>
 反射輝度測定における標準として、等方性光拡散層bを高透明性PET(東洋紡コスモシャインA4100 100μm)と平滑な鏡面反射板(反射率約90%)の間に貼合した基準サンプルを作製した。
<Preparation of standard reflection brightness>
As a standard in the reflection brightness measurement, a reference sample was prepared in which the isotropic light diffusion layer b was bonded between a highly transparent PET (Toyobo Cosmo Shine A4100 100 μm) and a smooth specular reflector (reflectance of about 90%).
<反射輝度の測定>
 図8に示すような、ジェネシア製ゴニオフォトメーターを用いて、各実施例及び比較例で得た反射輝度評価用サンプルの反射輝度を測定した。ハロゲンランプの光源からコリメート・レンズを介してコリメート光をサンプルの法線方向に対して15°の入射角で照射した(入射角=15°)。この際、異方性光拡散層を用いたサンプルの場合はその散乱中心軸の方位角方向と180°異なる方位角方向(反対の方位角)から照射した。異方性光拡散層を用いていない基準サンプルの場合の方位角方向は任意である。検出器をサンプルの法線方向に設置して反射輝度を測定した(測定角=0°)。基準サンプルの反射輝度に対する評価サンプルの反射輝度の比率を反射輝度ゲインとし、これを反射光強度の指標とした。
 反射輝度ゲイン=(サンプルの反射輝度÷基準サンプルの反射輝度)×100
 同様にして、入射角を30°及び45°としたときの反射輝度も測定した。
<Measurement of reflected brightness>
Using a Genesia goniometer as shown in FIG. 8, the reflection brightness of the reflection brightness evaluation samples obtained in each Example and Comparative Example was measured. Collimated light was irradiated from the light source of the halogen lamp through the collimating lens at an incident angle of 15 ° with respect to the normal direction of the sample (incident angle = 15 °). At this time, in the case of the sample using the anisotropic light diffusion layer, irradiation was performed from an azimuth direction (opposite azimuth angle) 180 ° different from the azimuth direction of the scattering central axis. The azimuth direction is arbitrary in the case of the reference sample that does not use the anisotropic light diffusion layer. The detector was installed in the normal direction of the sample and the reflected brightness was measured (measurement angle = 0 °). The ratio of the reflected brightness of the evaluation sample to the reflected brightness of the reference sample was used as the reflected brightness gain, and this was used as an index of the reflected light intensity.
Reflection brightness gain = (reflection brightness of sample ÷ reflection brightness of reference sample) × 100
Similarly, the reflection brightness when the incident angles were 30 ° and 45 ° was also measured.
<反射輝度ゲインの判定基準>
 入射角が大きいものほど反射輝度ゲインの差が顕著に現れるため、入射角によって以下のように判定した。
 入射角が15°の場合は、0.90未満を×、0.90以上1.00未満を○、1.00以上を◎とした。
 入射角が30°の場合は、0.90未満を×、0.90以上1.80未満を○、1.80以上を◎とした。
 入射角が45°の場合は、0.90未満を×、0.90以上2.50未満を○、2.50以上を◎とした。
<Criteria for judging reflected brightness gain>
The larger the incident angle, the more remarkable the difference in the reflected luminance gain appears. Therefore, the determination was made as follows according to the incident angle.
When the incident angle was 15 °, less than 0.90 was evaluated as x, 0.90 or more and less than 1.00 was evaluated as ◯, and 1.00 or more was evaluated as ⊚.
When the incident angle was 30 °, less than 0.90 was evaluated as x, 0.90 or more and less than 1.80 was evaluated as ◯, and 1.80 or more was evaluated as ⊚.
When the incident angle was 45 °, less than 0.90 was evaluated as x, 0.90 or more and less than 2.50 was evaluated as ◯, and 2.50 or more was evaluated as ⊚.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<<評価結果>>
 実施例1~7に示されるとおり、所定の異方性光拡散層(異方性光学フィルム)と等方性光拡散層を用いた本発明の反射輝度ゲインは、比較例1~6と比較して入射角によらず優れている。比較例1~3は入射角30°や45°における反射輝度ゲインには優れるものの、入射角15°での反射輝度ゲインは低かった。逆に、比較例4~6は入射角15°での反射輝度ゲインは良好なものの、入射角30°や45°における反射輝度ゲインは低くなった。
<< Evaluation result >>
As shown in Examples 1 to 7, the reflected luminance gain of the present invention using a predetermined anisotropic light diffusing layer (anisotropic optical film) and an isotropic light diffusing layer has an incident angle as compared with Comparative Examples 1 to 6. It is excellent regardless. Although Comparative Examples 1 to 3 were excellent in the reflected luminance gain at an incident angle of 30 ° or 45 °, the reflected luminance gain at an incident angle of 15 ° was low. On the contrary, in Comparative Examples 4 to 6, the reflected luminance gain at the incident angle of 15 ° was good, but the reflected luminance gain at the incident angles of 30 ° and 45 ° was low.
 本発明は、特定の拡散特性を有する拡散媒体として、特定の等方性光拡散層を、特定の異方性光学フィルムと共に併用することにより、異方性光学フィルムの拡散機能を補うことにより、本評価結果を得ることができたものと考えられる。 The present invention evaluates the present invention by supplementing the diffusion function of an anisotropic optical film by using a specific isotropic light diffusion layer together with a specific anisotropic optical film as a diffusion medium having specific diffusion characteristics. It is probable that the results could be obtained.
 従って、実施例の光拡散フィルム積層体を、例えば、反射型表示装置に用いた場合に、外光の入射及び反射光の出射の際、異方性光学フィルム(異方性光拡散層)の拡散性が低い角度においても、等方性光拡散層による拡散効果を利用することができるため、あらゆる方向からの外光下においても視認性を低下させることなく、正面方向の反射輝度ゲイン(すなわち、反射光強度)を高くすることができると考えられる。 Therefore, when the light diffusing film laminate of the example is used in, for example, a reflective display device, the diffusivity of the anisotropic optical film (anisometric light diffusing layer) when the external light is incident and the reflected light is emitted. Since the diffusion effect of the isotropic light diffusion layer can be utilized even at a low angle, the reflected brightness gain in the front direction (that is, the reflected light intensity) is not deteriorated even under external light from all directions. ) Can be increased.
 本実施形態では、光拡散フィルム積層体を反射型表示装置に適用する例について説明したが、具体的に反射型表示装置としては、例えば、スマートフォン等のタブレッド型端末、腕時計、ゲーム機、ノート型パソコン等が挙げられる。 In the present embodiment, an example of applying the light diffusing film laminate to a reflective display device has been described. Specifically, the reflective display device includes, for example, a tabbed terminal such as a smartphone, a wristwatch, a game machine, or a notebook type. Examples include personal computers.
 以上、図面を参照しながら本発明の好適な実施の形態について説明したが、本発明は上述した形態に限定されない。すなわち、特許請求の範囲に記載された発明の範囲内で当業者が想到し得る他の形態又は各種の変更例についても本発明の技術的範囲に属するものと理解される。 Although the preferred embodiment of the present invention has been described above with reference to the drawings, the present invention is not limited to the above-described embodiment. That is, it is understood that other forms or various modifications that can be conceived by those skilled in the art within the scope of the invention described in the claims also belong to the technical scope of the present invention.
 10,20   異方性光学フィルム(異方性拡散層)
 11,21   マトリックス領域
 13      柱状構造体(ピラー構造)
 23      柱状構造体(ルーバー構造)
 30      光拡散フィルム積層体
 100,150 異方性光学フィルム
 110,120 異方性光拡散層
 111,121 マトリックス領域
 113 柱状構造体(ルーバー構造)
 123 柱状構造体(ピラー構造)
 200 等方性光拡散層
 300 反射層
 P   散乱中心軸
10,20 Anisotropic optical film (anisotropic diffusion layer)
11 and 21 Matrix region 13 Columnar structure (pillar structure)
23 Columnar structure (louver structure)
30 Light diffusing film laminate 100, 150 Anisotropic optical film 110, 120 Anisotropic light diffusing layer 111, 121 Matrix region 113 Column structure (louver structure)
123 Columnar structure (pillar structure)
200 Isotropic light diffusion layer 300 Reflection layer P Scattering center axis

Claims (6)

  1.  光の入射角度により拡散性が変化する反射型表示装置用光拡散フィルム積層体であって、
     前記光拡散フィルム積層体は、
     前記光の入射角度により直線透過率が変化する異方性光拡散層と、
     前記異方性光拡散層の一方の面側に設けられた等方性光拡散層とを少なくとも備え、
     前記異方性光拡散層はその内部に、マトリックス領域と、複数の柱状構造体よりなる柱状領域と、を有し、
     前記異方性光拡散層の散乱中心軸角度が、前記異方性光拡散層の法線方向に対して、6°未満であり、
     前記異方性光拡散層の最大直線透過率が、15%以上85%以下であり、
     前記等方性光拡散層の最大直線透過率が、35%以下であり、
     前記反射型表示装置用光拡散フィルム積層体の最大直線透過率が、10%以下であることを特徴とする、反射型表示装置用光拡散フィルム積層体。
    A light diffusing film laminate for a reflective display whose diffusivity changes depending on the incident angle of light.
    The light diffusion film laminate is
    An anisotropic light diffusing layer whose linear transmittance changes depending on the incident angle of light,
    At least an isotropic light diffusion layer provided on one surface side of the anisotropic light diffusion layer is provided.
    The anisotropic light diffusion layer has a matrix region and a columnar region composed of a plurality of columnar structures inside thereof.
    The scattering center axis angle of the anisotropic light diffusion layer is less than 6 ° with respect to the normal direction of the anisotropic light diffusion layer.
    The maximum linear transmittance of the anisotropic light diffusing layer is 15% or more and 85% or less.
    The maximum linear transmittance of the isotropic light diffusion layer is 35% or less.
    A light diffusing film laminate for a reflective display device, characterized in that the maximum linear transmittance of the light diffusing film laminate for a reflective display device is 10% or less.
  2.  前記等方性光拡散層のヘイズ値が80%以上であることを特徴とする、請求項1に記載の反射型表示装置用光拡散フィルム積層体。 The light diffusion film laminate for a reflective display device according to claim 1, wherein the haze value of the isotropic light diffusion layer is 80% or more.
  3.  前記複数の柱状構造体は、前記異方性光拡散層の一方の表面から他方の表面にかけて配向して構成され、前記複数の柱状構造体の配向方向を法線方向とする断面における平均短径と平均長径とのアスペクト比が50未満であることを特徴とする、請求項1又は2に記載の反射型表示装置用光拡散フィルム積層体。 The plurality of columnar structures are configured to be oriented from one surface of the anisotropic light diffusion layer to the other surface, and the average minor axis and the average in the cross section in which the orientation direction of the plurality of columnar structures is the normal direction. The light diffusing film laminate for a reflective display device according to claim 1 or 2, wherein the aspect ratio with the major axis is less than 50.
  4.  前記等方性光拡散層は、その内部に微粒子を含み、
     その微粒子の平均粒子径が、0.5μm~10.0μmであることを特徴とする、請求項1~3のいずれか一項に記載の反射型表示装置用光拡散フィルム積層体。
    The isotropic light diffusion layer contains fine particles inside, and the isotropic light diffusion layer contains fine particles.
    The light diffusing film laminate for a reflective display device according to any one of claims 1 to 3, wherein the average particle size of the fine particles is 0.5 μm to 10.0 μm.
  5.  請求項1~4のいずれか一項に記載の反射型表示装置用光拡散フィルム積層体と、
     前記反射型表示装置用光拡散フィルム積層体の視認側とは反対側に設けられた反射層と、を含むことを特徴とする、反射型表示装置。
    The light diffusing film laminate for a reflective display device according to any one of claims 1 to 4,
    A reflective display device including a reflective layer provided on a side opposite to the visible side of the light diffusing film laminate for a reflective display device.
  6.  前記反射型表示装置用光拡散フィルム積層体は、反射光を視認する側から、前記異方性光拡散層、前記等方性光拡散層の順に設けられていることを特徴とする、請求項5に記載の反射型表示装置。 The fifth aspect of the present invention, wherein the light diffusing film laminate for a reflective display device is provided in the order of the anisotropic light diffusing layer and the isotropic light diffusing layer from the side where the reflected light is visually recognized. Reflective display device.
PCT/JP2020/013660 2019-03-29 2020-03-26 Light diffusion film laminate for reflective display device, and reflective display device using same WO2020203643A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080024211.2A CN113631966A (en) 2019-03-29 2020-03-26 Light diffusion film laminate for reflective display device and reflective display device using same
KR1020217032839A KR20210145764A (en) 2019-03-29 2020-03-26 Light-diffusion film laminate for reflective display device and reflective display device using same
JP2021511919A JPWO2020203643A1 (en) 2019-03-29 2020-03-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-069350 2019-03-29
JP2019069350 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203643A1 true WO2020203643A1 (en) 2020-10-08

Family

ID=72669060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013660 WO2020203643A1 (en) 2019-03-29 2020-03-26 Light diffusion film laminate for reflective display device, and reflective display device using same

Country Status (4)

Country Link
JP (1) JPWO2020203643A1 (en)
KR (1) KR20210145764A (en)
CN (1) CN113631966A (en)
WO (1) WO2020203643A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043333A1 (en) * 2022-08-25 2024-02-29 リンテック株式会社 Light diffusion control member and reflection-type display body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122714A (en) * 2000-10-12 2002-04-26 Tomoegawa Paper Co Ltd Light diffusing adhesive layer, light-diffusing adhesive sheet and liquid crystal display device using the same
JP2002214409A (en) * 2001-01-16 2002-07-31 Toppan Printing Co Ltd Light diffusing body and liquid crystal display device
JP2012141593A (en) * 2010-12-16 2012-07-26 Lintec Corp Light diffusion film and manufacturing method for light diffusion film
WO2014084361A1 (en) * 2012-11-29 2014-06-05 株式会社巴川製紙所 Anisotropic optical film
WO2018051700A1 (en) * 2016-09-14 2018-03-22 株式会社巴川製紙所 Light diffusing film laminate for reflective display device and reflective display device using same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142502A (en) 2013-01-24 2014-08-07 Japan Display Inc Reflection type liquid crystal display device and electronic device
JP2018051639A (en) 2016-09-26 2018-04-05 株式会社デンソーウェーブ Robot control system
KR101926633B1 (en) 2016-11-07 2018-12-10 금강공업 주식회사 Prefabricated form panel for construction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122714A (en) * 2000-10-12 2002-04-26 Tomoegawa Paper Co Ltd Light diffusing adhesive layer, light-diffusing adhesive sheet and liquid crystal display device using the same
JP2002214409A (en) * 2001-01-16 2002-07-31 Toppan Printing Co Ltd Light diffusing body and liquid crystal display device
JP2012141593A (en) * 2010-12-16 2012-07-26 Lintec Corp Light diffusion film and manufacturing method for light diffusion film
WO2014084361A1 (en) * 2012-11-29 2014-06-05 株式会社巴川製紙所 Anisotropic optical film
WO2018051700A1 (en) * 2016-09-14 2018-03-22 株式会社巴川製紙所 Light diffusing film laminate for reflective display device and reflective display device using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043333A1 (en) * 2022-08-25 2024-02-29 リンテック株式会社 Light diffusion control member and reflection-type display body

Also Published As

Publication number Publication date
CN113631966A (en) 2021-11-09
JPWO2020203643A1 (en) 2020-10-08
TW202104942A (en) 2021-02-01
KR20210145764A (en) 2021-12-02

Similar Documents

Publication Publication Date Title
JP6981984B2 (en) Light diffusion film laminate for reflective display device and reflective display device using this
JP6993976B2 (en) Light diffusion film laminate for reflective display device and reflective display device using this
US9335449B2 (en) Higher transmission light control film
US8213082B2 (en) Light control film
TW201111842A (en) Light control film
JP6550992B2 (en) Quantum dot sheet, backlight and liquid crystal display
CN102341752A (en) Front projection screen with high contrast
JP6144170B2 (en) Transflective display
WO2020203643A1 (en) Light diffusion film laminate for reflective display device, and reflective display device using same
JP2008286907A (en) Laminate for reflection
TWI836047B (en) Light diffusion film laminate for reflective display device and reflective display device using the same
KR100980068B1 (en) Multi-functional optic film
WO2023140106A1 (en) Light diffusion film laminate for reflective display device, and reflective display device using same
KR100737978B1 (en) Light diffusing sheet for back light unit for liquid crystal display and back light unit having the same
TW202405481A (en) Light diffusing film laminate for reflective display device and reflective display device using the laminate
JP2007512573A (en) Light diffusion film for backlight unit of liquid crystal display
TWI584002B (en) Complex prism sheet
JP2003255126A (en) Reflection type polarizing plate and liquid crystal display device using the same
KR20140083284A (en) Optical film for mobile display
JP2017021296A (en) Quantum dot sheet, backlight, and liquid crystal display
KR20090040502A (en) Backlight unit assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783041

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511919

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217032839

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20783041

Country of ref document: EP

Kind code of ref document: A1