WO2020203294A1 - Stator and electric motor - Google Patents

Stator and electric motor Download PDF

Info

Publication number
WO2020203294A1
WO2020203294A1 PCT/JP2020/011979 JP2020011979W WO2020203294A1 WO 2020203294 A1 WO2020203294 A1 WO 2020203294A1 JP 2020011979 W JP2020011979 W JP 2020011979W WO 2020203294 A1 WO2020203294 A1 WO 2020203294A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
crossover
stator
winding
phases
Prior art date
Application number
PCT/JP2020/011979
Other languages
French (fr)
Japanese (ja)
Inventor
田邉 洋一
忠雄 松岡
智則 小嶋
雅樹 山田
颯馬 守屋
庸佑 松井
パーオブトン パッタラワディー
Original Assignee
株式会社富士通ゼネラル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社富士通ゼネラル filed Critical 株式会社富士通ゼネラル
Priority to CN202080021578.9A priority Critical patent/CN113574773A/en
Publication of WO2020203294A1 publication Critical patent/WO2020203294A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/38Windings characterised by the shape, form or construction of the insulation around winding heads, equalising connectors, or connections thereto
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto

Definitions

  • the present invention relates to a stator in which three-phase windings are wound around a plurality of teeth portions of a stator core, and an electric motor provided with the stator.
  • the insulator that insulates between the stator core and the winding is provided with a crossover holding portion that holds the crossover that connects the windings of the same phase.
  • a crossover wire accommodating groove formed in three stages in the central axis direction of the stator is provided in the crossover wire holding portion corresponding to each phase of the three-phase power supply.
  • an object of the present invention is to provide a stator capable of suppressing an increase in size of the stator in the central axis direction and an electric motor provided with the stator.
  • the stator includes a cylindrical stator core, three-phase windings, and an insulator.
  • the stator core has a plurality of tooth portions protruding inward in the radial direction.
  • the three-phase winding is wound around the plurality of teeth portions.
  • the insulator is arranged at the axial end of the stator core and insulates between the stator core and the three-phase windings.
  • the three-phase windings are bridged over the outer peripheral portion of the insulator with the first winding, the second winding, and the third winding corresponding to each phase, and connect the windings of the same phase to each other. Includes three phase crossovers drawn out to the outer peripheral side of the stator core.
  • the crossover of one of the three phases passes between the crossovers of the other two phases on the outer peripheral surface of the insulator. It has a crossover holding portion that holds the crossovers of the three phases so as to be crossed diagonally.
  • the crossover holding portion is a position where the crossovers of the other two phases are at different heights in the axial direction and do not overlap each other in the axial direction when viewed from the outer peripheral side of the insulator. May be held in.
  • the line length of the crossover of the one phase is typically longer than the line length of the crossover of the other two phases.
  • the crossover holding portion may hold the crossovers of the three phases so that all the crossovers of the three phases do not overlap in the axial direction when viewed from the outer peripheral side of the insulator.
  • the stator core includes a first pair of tooth portions in which the first winding is wound and adjacent to each other, and a second pair of tooth portions in which the second winding is wound and adjacent to each other. It may have a total of 12 tooth portions in which the third winding is wound and a pair of third tooth portions adjacent to each other are arranged in order. In this case, the crossover of the one phase is bridged between two pairs of tooth portions arranged so as to sandwich the four tooth portions of the other two phases.
  • the crossover holding portion has a first notch groove for pulling out one of the crossovers of the other two phases and a second notch groove for pulling out the other of the crossovers of the other two phases. It may have a notch groove.
  • the first notch groove and the second notch groove extend parallel to the axial direction, respectively, and the first notch groove is deeper than the second notch groove.
  • the crossover holding portion is provided at a position having an outer diameter different from that of the first outer peripheral portion that bridges one of the crossover lines of the other two phases and the first outer peripheral portion, and the other two. It may have a second outer peripheral portion that bridges the other of the crossovers of the phase.
  • FIG. 1 It is a side sectional view of the electric motor which concerns on one Embodiment of this invention. It is sectional drawing in the direction of AA line in FIG. It is a perspective view of the stator which concerns on one Embodiment of this invention. It is a side view of the above stator. It is a top view of the stator explaining the winding example of the winding with respect to each tooth part of the stator, A is a U-phase winding, B is a V-phase winding, and C is a W-phase winding. Each line is shown. It is a developed view which shows the relationship between the crossover holding part of an insulator and each tooth part of a stator core in the stator.
  • FIG. 1 is a side sectional view of the electric motor 1 according to the embodiment of the present invention
  • FIG. 2 is a sectional view taken along the line AA in FIG.
  • the electric motor 1 is a brushless DC motor, and is used, for example, as a rotational drive source for a blower fan mounted on an outdoor unit of an air conditioner.
  • the electric motor 1 is an inner rotor type permanent magnet electric motor in which a rotor (rotor) 3 having a permanent magnet is rotatably arranged on the inner peripheral side of a cylindrical stator (stator) 2 that generates a rotating magnetic field.
  • the stator 2 is wound around the teeth portion 212 via a cylindrical stator core (stator core) 21 having a cylindrical yoke portion 211 and a plurality of teeth portions 212 extending radially inward from the yoke portion 211, and an insulator 22. It comprises a three-phase winding 23 that has been turned.
  • the stator 2 is covered with a motor outer shell 6 made of resin, except for the inner peripheral surface of the stator core 21.
  • the rotor 3 is rotatably arranged with a predetermined gap on the inner peripheral side of the stator core 21.
  • the structure of the rotor 3 is not particularly limited, and in the present embodiment, it is a 10-pole surface magnet type in which 10 permanent magnets 31 are arranged in an annular shape on the outer peripheral surface facing the stator core 21.
  • the permanent magnet 31 is fixed to the outer peripheral surface of the outer peripheral side iron core 32.
  • a divided structure of the outer peripheral side iron core 32 and the inner peripheral side iron core 34 is adopted as the rotor core, but the present invention is not limited to this, and a single rotor core not provided with the insulating member 33 may be adopted.
  • the shaft 35 is supported by the first bearing 41 and the second bearing 42, and the first bearing 41 is supported by the first bracket 51 and the second bearing 42 is supported by the second bracket 52, so that the rotor 3 can rotate. Is supported by.
  • the first bearing 41 supports one end side (output side) of the shaft 35 of the rotor 3.
  • the second bearing 42 supports the other end side (counter-output side) of the shaft 35 of the rotor 3.
  • first bearing 41 and the second bearing 42 for example, ball bearings are used.
  • the first bracket 51 is made of metal (steel plate, aluminum, etc.) and is arranged on one end side in the axial direction of the motor outer shell 6, that is, on the output side of the shaft 35.
  • the axial direction means the central axis (axis center O) direction of the stator.
  • the central axes of the electric motor 1, the stator 2, the insulator 22, the rotor 3, and the shaft 35 coincide with the axis O.
  • the first bracket 51 has a first bearing accommodating portion 511 for accommodating the first bearing 41, and a flange portion 512 extending around from the open end of the first bearing accommodating portion 511.
  • the first bearing accommodating portion 511 is formed in a cylindrical shape having a bottom having a through hole for passing the shaft 35, and the flange portion 512 of the first bracket 51 is insert-molded at the time of molding the motor outer shell 6, and the motor is formed. It is integrated with the outer shell 6.
  • the outer ring of the first bearing 41 was press-fitted into the inner surface of the first bearing accommodating portion 511, and the output side of the shaft 35 supported by the inner ring of the first bearing 41 was formed in the center of the bottom of the first bearing accommodating portion 511. It protrudes outward from the through hole.
  • the second bracket 52 is made of metal (steel plate, aluminum, etc.) and is fixed to the other end side of the motor outer shell 6, that is, the counter-output side of the shaft 35.
  • the second bracket 52 includes a disc-shaped bracket main body 521, an outer edge portion 520 that abuts on the opposite end (outer edge portion) of the motor outer shell 6, and a second bearing for accommodating the second bearing 42. It has a part 522.
  • the outer edge portion 520 of the bracket main body 521 is screwed to the end portion (outer edge portion) on the opposite output side of the motor outer shell 6.
  • the second bearing accommodating portion 522 is formed as a hole having a circular bottom surface recessed from the output side to the non-output side in the central portion of the bracket main body 521.
  • the second bracket 52 integrally includes heat radiation fins 523 between the second bearing accommodating portion 522 and the outer edge portion 520 in the radial direction. As a result, the space of the electric motor 1 can be saved.
  • the second bracket 52 is provided with heat radiating fins 523 erected outward on the opposite output side of the shaft 35 as a heat sink, and is mounted on a circuit board 72 for controlling the electric motor 1 via a heat transfer member 71. The heat from the electronic components is dissipated by the heat dissipation fins 523.
  • FIG. 3 is a perspective view of the stator 2
  • FIG. 4 is a side view thereof.
  • the stator 2 has a cylindrical stator core 21, an insulator 22, and a winding 23.
  • the stator core 21 has a plurality of tooth portions 212 protruding inward in the radial direction, and is manufactured by laminating and integrating thin plates made of a soft magnetic material such as an electromagnetic steel plate in the axial direction.
  • the stator core 21 is a 12-slot stator core having 12 teeth portions 212.
  • the insulator 22 is a molded body of an insulating synthetic resin material, and has an annular first insulator 22A that covers one side in the axial direction of the stator core 21 (the output side of the shaft 35) and the other side in the axial direction of the stator core 21. It is a coupling with an annular second insulator 22B that covers (the opposite output side of the shaft 35).
  • the first insulator 22A and the second insulator 22B are each formed into a short cylindrical shape, and have an outer peripheral wall portion 221 that covers the yoke portion 211 of the stator core 21 and a plurality of winding cylinder portions that cover the plurality of teeth portions 212 of the stator core 21. It has 222 (see FIG. 2).
  • the outer peripheral wall portion 221 of the first insulator 22A is provided with a crossover holding portion 223A for bridging the winding 23 wound around the winding body portion 222 to another winding body portion 222.
  • the outer peripheral wall portion 221 of the second insulator 22B is provided with a crossover holding portion 223B for bridging the winding 23 wound around each winding body portion 222 to another winding body portion 222.
  • the winding 23 is a three-phase alternating current winding wound around a plurality of teeth portions 212 of the stator core 21 from above the winding body portions 222 of each of the first insulator 22A and the second insulator 22B.
  • the winding 23 is the first winding 23U corresponding to the U phase and the second winding corresponding to the V phase. It includes 23V and a third winding 23W corresponding to the W phase.
  • Resin-coated copper wire is typically used for the first winding 23U, the second winding 23V, and the third winding 23W (see FIG. 5).
  • 5A to 5C are plan views of the stator 2 when viewed from the first insulator 22A side for explaining a winding example of the winding 23 for each tooth portion 212, and A is a winding of the first winding 23U.
  • B shows a winding example of the second winding 23V, and C shows a winding example of the third winding 23W.
  • stator core 21 In the stator core 21, four tooth portions 212 (U1, U2, U3, U4) around which the first winding 23U is wound and a second winding 23V are wound. It has four teeth portions 212 (V1, V2, V3, V4) and four teeth portions 212 (W1, W2, W3, W4) around which the third winding 23W is wound.
  • U1 and U2, and U3 and U4 each have a pair of first teeth portions adjacent to each other.
  • the first pair of teeth portions of these two sets are arranged at positions symmetrical with respect to the axial center O (central axis) of the cylindrical stator 2.
  • the first winding 23U is wound around the adjacent teeth portions in opposite directions.
  • the first winding 23U is wound clockwise around U1 and U4 and counterclockwise around U2 and U3 when viewed from the axial center O of the stator 2.
  • V1 and V2, and V3 and V4 Focusing on the teeth portion 212 (V1, V2, V3, V4) around which the second winding 23V is wound, V1 and V2, and V3 and V4 are the second teeth portions adjacent to each other. A pair is formed, and these two pairs of second tooth portions are arranged at positions symmetrical with respect to the axial center O of the cylindrical stator 2. As shown in FIG. 5B, the second winding 23V is wound around the adjacent teeth portions in opposite directions. In the present embodiment, the second winding 23V is wound clockwise around V1 and V4 and counterclockwise around V2 and V3 when viewed from the axial center O of the stator 2.
  • W1 and W2, and W3 and W4 are the third teeth portions adjacent to each other. A pair is formed, and these two sets of the third tooth portion pair are arranged at positions symmetrical with respect to the axial center O of the cylindrical stator 2.
  • the third winding 23W is wound around the adjacent teeth portions in opposite directions.
  • the third winding 23W is wound clockwise around W1 and W4 and counterclockwise around W2 and W3 when viewed from the axial center O of the stator 2.
  • the first winding 23U is in the order of U1, U2, U3 and U4, the second winding 23V is in the order of V1, V2, V3 and V4, and the third winding 23W is W1, W2, W3. And W4, respectively, are wound around the teeth portion 212.
  • the winding 23 includes three phase crossovers Uc, Vc and Wc that connect the in-phase windings and are drawn out to the outer peripheral side of the stator core 21.
  • the crossovers Uc, Vc, and Wc of each phase are a part of the windings 23 (23U, 23V, 23W) spanning the outer peripheral portion of the insulator 22 (first insulator 22A), respectively.
  • the U-phase crossover Uc is composed of two first crossovers Uc1 that bridge between two adjacent tooth portions 212 (U1 and U2, and U3 and U4).
  • the line length of the second crossover line Uc2 is longer than the line length of the first crossover line Uc1.
  • the V-phase crossover Vc is a two first crossovers Vc1 that bridge between two adjacent tooth portions 212 (V1 and V2 and V3 and V4). And one second that bridges between the two tooth portions 212 (V2 and V3) that sandwich the four tooth portions 212 (W3, W4, U1 and U2) of the other two phases (W phase and U phase). It has a crossover line Vc2.
  • the line length of the second crossover line Vc2 is longer than the line length of the first crossover line Vc1.
  • the W-phase crossover Wc is the two first crossovers Wc1 that bridge between two adjacent tooth portions 212 (W1 and W2, and W3 and W4). And one second that bridges between the two tooth portions 212 (W2 and W3) that sandwich the four tooth portions 212 (U3, U4, V1 and V2) of the other two phases (U phase and V phase). It has a crossover line Wc2.
  • the line length of the second crossover line Wc2 is longer than the line length of the first crossover line Wc1.
  • FIG. 6 is a development view showing the relationship between the crossover holding portion 223A in the first insulator 22A and each teeth portion 212 of the stator core 21.
  • the crossover holding portion 223A is provided at the axial tip of the first insulator 22A, and is an annular shape capable of holding the crossover lines Uc, Vc, and Wc of each phase spanning between the teeth portions 212. It is the wall part of. As shown in FIG. 6, the crossover lines Uc, Vc, and Wc of each phase crossed between the teeth portions 212 are bridged over the crossover line holding portion 223A.
  • crossover holding portion 223A On the outer peripheral surface of the crossover holding portion 223A, the crossover of one of the three phases of crossovers Uc, Vc, and Wc is diagonally bridged between the crossovers of the other two phases. As described above, the crossovers Uc, Vc, and Wc of each phase are held.
  • the crossover holding portion 223A is divided into three angle ranges R1, R2, and R3 in the circumferential direction
  • the crossover of the one phase is the U phase.
  • the crossover lines of the other two phases correspond to the crossover lines Vc and Wc of the V phase and the W phase.
  • the V-phase crossover Vc and the W-phase crossover Wc are the first crossover Vc1 that bridges between the in-phase tooth portions 212 (V3 and V4, and W1 and W2).
  • Wc1 and the U-phase crossover Uc bridges between the U-phase teeth portions (U2 and U3) sandwiching the four teeth portions of these other two phases (V phase and W phase).
  • the second crossover line Uc2 corresponds to the second crossover line Uc2.
  • the crossover of the one phase corresponds to the crossover Wc of the W phase
  • the crossover of the other two phases corresponds to the crossovers Uc and Vc of the U phase and the V phase. ..
  • the U-phase crossover Uc and the V-phase crossover Vc are the first crossover Uc1 that bridges between the in-phase tooth portions 212 (U3 and U4, and V1 and V2).
  • Vc1 and the W-phase crossover Wc bridges between the W-phase teeth portions (W2 and W3) sandwiching the four teeth portions of these other two phases (U-phase and V-phase). It corresponds to the second crossover Wc2.
  • the crossover of the one phase corresponds to the crossover Vc of the V phase
  • the crossovers of the other two phases correspond to the crossovers Wc and Uc of the W phase and the U phase.
  • the W-phase crossover Wc and the U-phase crossover Uc are the first crossover Wc1 that bridges between the in-phase tooth portions 212 (W3 and W4, and U1 and U2).
  • Uc1 and the V-phase crossover Vc bridges between the V-phase teeth portions (V2 and V3) sandwiching the four teeth portions of these other two phases (W phase and U phase).
  • the second crossover Vc2 corresponds to the second crossover Vc2.
  • the crossover holding portion 223A has the crossovers of the other two phases at different heights in the axial direction and in the axial direction when viewed from the outer peripheral side of the insulator 22 (first insulator 22A). Hold in a position that does not overlap with each other.
  • the crossovers Uc, Vc, and Wc of each phase have the first crossovers Uc1, Vc1, Wc1 and the second crossovers Uc2, Vc2, Wc2 having different line lengths. It is possible to easily realize the method of bridging.
  • the V-phase crossover Vc (Vc1) is on the upper side and the W-phase crossover Wc (Wc1) is on the lower side in the virtual plane orthogonal to the axis O of the stator 2. It is bridged at different height positions of the crossover holding portion 223A. Further, the V-phase crossover Vc (Vc1) and the W-phase crossover Wc (Wc1), which are the crossovers of the other two phases, are separated by a predetermined distance in the circumferential direction so as not to overlap each other in the axial direction. It is held in the desired position.
  • the U-phase crossover line Uc (Uc1) is on the upper side and the V-phase crossover line Vc (Vc1) is on the lower side in the virtual plane orthogonal to the axial center O of the stator 2. It is bridged at different height positions of the crossover holding portion 223A. Further, the U-phase crossover Uc (Uc1) and the V-phase crossover Vc (Vc1), which are the crossovers of the other two phases, are separated by a predetermined distance in the circumferential direction so as not to overlap each other in the axial direction. It is held in the desired position.
  • the W-phase crossover line Wc (Wc1) is on the upper side and the U-phase crossover line Uc (Uc1) is on the lower side in the virtual plane orthogonal to the axis O of the stator 2.
  • the crossover holding portion 223A is bridged at different height positions.
  • the W-phase crossover Wc (Wc1) and the U-phase crossover Uc (Uc1) which are the crossovers of the other two phases, are separated by a predetermined distance in the circumferential direction so as not to overlap each other in the axial direction. It is held in the desired position.
  • the crossover holding portion 223A is provided so that all three phases of crossovers Uc, Vc, and Wc do not overlap in the axial direction when viewed from the outer peripheral side of the insulator 22 (first insulator 22A). (Even if there is a place where the crossovers of any two phases overlap in the axial direction among the crossovers Uc, Vc, Wc of the three phases, all of the crossovers Uc, Vc, Wc of the three phases are in the axial direction. The crossovers Uc, Vc, and Wc of each phase are held so that there is no overlap with the above.
  • the insulation distance is set to 1 mm at the portion where the crossover lines of different phases are closest to each other among the crossover lines Uc, Vc, and Wc of the three phases shown in FIG. Is sufficiently secured. The insulation distance is appropriately changed depending on conditions such as the wire diameter of the crossover, the voltage applied to the crossover, and the current flowing through the crossover.
  • the crossover holding portion 223A is configured as follows.
  • the crossover holding portion 223A has two types of notch grooves (first notch groove G1 and second notch groove) extending in parallel in the axial direction from the tip in the axial direction toward the other end side. It has G2). These notch grooves form a passage for drawing the crossovers Uc, Vc, and Wc of each phase from the radially inner side to the radial outer side of the first insulator 22A, or from the radial outer side to the radial inner side.
  • the first notch groove G1 and the second notch groove G2 are each provided at a plurality of positions, and the first notch groove G1 is deeper than the second notch groove G2.
  • the formation positions of the first notch groove G1 and the second notch groove G2 are arbitrary, and their respective arrangements allow the crossovers Uc, Vc, and Wc of each phase to be bridged in the above-described manner.
  • the interval, sequence order, etc. are determined.
  • a U-phase crossover Uc (Uc2) corresponding to the one-phase crossover is laid on the first notch groove G1 and the second notch groove G2. Passed. Further, between the first notch groove G1 and the second notch groove G2, a V-phase crossover Vc (Vc1), which is one of the crossovers of the other two phases, is formed. The pair of second notch grooves G2 to be bridged and the other pair of first crossovers Wc (Wc1) of the W phase, which is the other crossover of the other two phases, are bridged. Notch groove G1 is provided.
  • the crossover holding portion 223A has a plurality of outer peripheral portions (first outer peripheral portion S1 and second outer peripheral portion S2) having different outer diameter positions (distance from the axis O shown in FIG. 5). Have. These outer peripheral portions are circumferential surfaces formed along the axial direction, and are formed at different outer diameter positions of the first insulator 22A. In the present embodiment, the second outer peripheral portion S2 is located on the outer diameter side of the first outer peripheral portion S1.
  • a V-phase crossover Vc (Vc1) is bridged over the first outer peripheral portion S1 on the inner diameter side, and the W phase is bridged over the second outer peripheral portion S2 on the outer diameter side.
  • Crossover line Wc (Wc1) is crossed.
  • the crossover holding portion 223A has a step portion T forming a boundary between the first outer peripheral portion S1 on the inner diameter side and the second outer peripheral portion S2 on the outer diameter side.
  • the step portion T is typically provided between a pair of first notch grooves G1 adjacent to each other in the circumferential direction.
  • the step portion T is for stably holding the crossover of the two phases that is diagonally crossed between the crossovers of the two phases among the crossovers of the three phases. If the insulation distance between the lines can be secured, the height and position can be set arbitrarily. For example, in the first angle range R1, the step portion T stably holds the U-phase crossover Uc that is diagonally crossed between the V-phase crossover Vc and the W-phase crossover Wc. To do.
  • the windings 23 (23U, 23V, 23W) of each phase are wound around each teeth portion 212 of the stator core 21 while being bridged over the crossover holding portion 223A. Winding of the windings 23U, 23V, and 23W around each tooth portion 212 is performed simultaneously for each phase using a 3-nozzle winding machine.
  • the crossovers Uc, Vc, and Wc of each phase are typically manually bridged to the crossover holding portion 223A by an operator.
  • the stator 2 further has a plurality of pins 24 (24U, 24V, 24W, 24N) connected to the winding start end and winding end end of the winding 23 of each phase (see FIG. 3).
  • the plurality of pins 24 extend along the axial direction and are provided at arbitrary positions of the second insulator 22B.
  • the first pin 24U is connected to the winding start end of the U-phase winding 23U
  • the second pin 24V is connected to the winding start end of the V-phase winding 23V
  • the third pin 24W is the W-phase winding. It is connected to the winding start end of the wire 23W.
  • the fourth pin 24N corresponds to a neutral point commonly connected to the end of each of the windings 23U, 23V, 23W of each phase. As shown in FIG. 1, these plurality of pins 24 are connected to a circuit board 72 arranged between the stator 2 and the second bracket 52.
  • the crossover of one of the three phases Uc, Vc, and Wc is the crossover of the other two phases. Since it is held by the crossover holding portion 223A so as to be bridged diagonally between them, it is necessary to hold the crossovers Uc, Vc, and Wc corresponding to each of the three phases U, V, and W.
  • the height dimension H is sufficient for the height of two upper and lower steps, and the holding area of the height of three steps according to each phase as in the conventional case (the crossover line formed in the three steps described in the column of background technology). No need for containment grooves).
  • the height of the crossover holding portion 223A in the axial direction can be lowered while ensuring the insulation distance between the crossovers of the three phases, and the size of the stator 2 and the motor 1 equipped with the stator 2 can be increased in the axial direction. It can be suppressed.

Abstract

[Problem] To provide a stator, the size of which in the axial direction can be prevented from increasing and an electric motor. [Solution] The stator according to one embodiment of the present invention is provided with a cylindrical stator core, three-phase windings, and an insulator. The stator core has a plurality of teeth projecting toward the inside in the radial direction. The three-phase windings are wound around the plurality of teeth. The insulator is disposed at an end in the axial direction of the stator core and insulates between the stator core and the three-phase windings. The three-phase windings includes: a first winding, a second winding, and a third winding corresponding to the respective phases; and three phase jumper wires each bridged over the outer periphery portion of the insulator, connecting the same phase windings to each other, and led out to the outer periphery side of the stator core. The insulator provided on one side in the axial direction has a jumper wire holding portion for holding the three phase jumper wires so that one of the three phase jumper wires passes between the other two phase jumper wires and is obliquely bridged over the outer periphery surface thereof.

Description

ステータ及び電動機Stator and motor
 本発明は、ステータコアの複数のティース部に3相の巻線が巻回されたステータ及びこれを備えた電動機に関する。 The present invention relates to a stator in which three-phase windings are wound around a plurality of teeth portions of a stator core, and an electric motor provided with the stator.
 ステータコアと巻線との間を絶縁するインシュレータに、同相の巻線同士を接続する渡り線を保持する渡り線保持部が設けられたものが知られている。例えば、12個のティース部を有する円筒形状のステータにおいて、3相電源の各相に対応して、渡り線保持部に、ステータの中心軸方向に3段に形成された渡り線収容溝を設けることにより、異相の渡り線間の絶縁距離を確保する技術が知られている(例えば特許文献1,2参照)。 It is known that the insulator that insulates between the stator core and the winding is provided with a crossover holding portion that holds the crossover that connects the windings of the same phase. For example, in a cylindrical stator having 12 teeth portions, a crossover wire accommodating groove formed in three stages in the central axis direction of the stator is provided in the crossover wire holding portion corresponding to each phase of the three-phase power supply. As a result, a technique for securing an insulation distance between crossovers of different phases is known (see, for example, Patent Documents 1 and 2).
特開2002-10607号公報JP-A-2002-10607 特開2010-246353号公報JP-A-2010-246353
 しかしながら、上述した従来のステータにおいては、3相の各相に対応した渡り線の収容溝がステータの中心軸方向に3段に形成されているため、渡り線保持部が軸方向に大型化してしまうという問題があり、ステータ及びこれを備えた電動機の、ステータの中心軸方向への大型化が避けられない。 However, in the conventional stator described above, since the accommodating grooves of the crossovers corresponding to the three phases are formed in three stages in the central axial direction of the stator, the crossover holding portion is enlarged in the axial direction. There is a problem that the stator and the electric motor equipped with the stator are inevitably enlarged in the direction of the central axis of the stator.
 以上のような事情に鑑み、本発明の目的は、ステータの中心軸方向への大型化を抑制することができるステータ及びこれを備えた電動機を提供することにある。 In view of the above circumstances, an object of the present invention is to provide a stator capable of suppressing an increase in size of the stator in the central axis direction and an electric motor provided with the stator.
 本発明の一形態に係るステータは、円筒形状のステータコアと、3相の巻線と、インシュレータとを備える。
 前記ステータコアは、径方向内側に向かって突出する複数のティース部を有する。
 前記3相の巻線は、前記複数のティース部に巻回される。
 前記インシュレータは、前記ステータコアの軸方向の端部に配置され、前記ステータコアと前記3相の巻線との間を絶縁する。
 前記3相の巻線は、各相に対応する第1の巻線、第2の巻線及び第3の巻線と、前記インシュレータの外周部にそれぞれ架け渡され、同相の巻線同士を接続し前記ステータコアの外周側に引き出される3つの相の渡り線とを含む。
 前記軸方向の一方側に設けられた前記インシュレータは、当該インシュレータの外周面に、前記3つの相の渡り線のうち1つの相の渡り線が他の2つの相の渡り線の間を通って斜めに架け渡されるように、前記3つの相の渡り線を保持する渡り線保持部を有する。
The stator according to one embodiment of the present invention includes a cylindrical stator core, three-phase windings, and an insulator.
The stator core has a plurality of tooth portions protruding inward in the radial direction.
The three-phase winding is wound around the plurality of teeth portions.
The insulator is arranged at the axial end of the stator core and insulates between the stator core and the three-phase windings.
The three-phase windings are bridged over the outer peripheral portion of the insulator with the first winding, the second winding, and the third winding corresponding to each phase, and connect the windings of the same phase to each other. Includes three phase crossovers drawn out to the outer peripheral side of the stator core.
In the insulator provided on one side in the axial direction, the crossover of one of the three phases passes between the crossovers of the other two phases on the outer peripheral surface of the insulator. It has a crossover holding portion that holds the crossovers of the three phases so as to be crossed diagonally.
 前記渡り線保持部は、前記他の2つの相の渡り線を、前記軸方向において相互に異なる高さで、かつ、前記インシュレータの外周側から見たときに前記軸方向に相互に重ならない位置に保持してもよい。 The crossover holding portion is a position where the crossovers of the other two phases are at different heights in the axial direction and do not overlap each other in the axial direction when viewed from the outer peripheral side of the insulator. May be held in.
 前記1つの相の渡り線の線長は、典型的には、前記他の2つの相の渡り線の線長よりも長い。 The line length of the crossover of the one phase is typically longer than the line length of the crossover of the other two phases.
 前記渡り線保持部は、前記インシュレータの外周側から見たときに前記3つの相の渡り線の全てが前記軸方向に重ならないように前記3つの相の渡り線をそれぞれ保持してもよい。 The crossover holding portion may hold the crossovers of the three phases so that all the crossovers of the three phases do not overlap in the axial direction when viewed from the outer peripheral side of the insulator.
 前記ステータコアは、前記第1の巻線が各々巻回され相互に隣り合う第1のティース部対と、前記第2の巻線が各々巻回され相互に隣り合う第2のティース部対と、前記第3の巻線が各々巻回され相互に隣り合う第3のティース部対とが順に配置された計12個のティース部を有してもよい。
 この場合、前記1つの相の渡り線は、前記他の2つの相の4個のティース部を間に挟んで配置される2つのティース部対の間に架け渡される。
The stator core includes a first pair of tooth portions in which the first winding is wound and adjacent to each other, and a second pair of tooth portions in which the second winding is wound and adjacent to each other. It may have a total of 12 tooth portions in which the third winding is wound and a pair of third tooth portions adjacent to each other are arranged in order.
In this case, the crossover of the one phase is bridged between two pairs of tooth portions arranged so as to sandwich the four tooth portions of the other two phases.
 前記渡り線保持部は、前記他の2つの相の渡り線のうち一方を引き出すための第1の切欠き溝と、前記他の2つの相の渡り線のうち他方を引き出すための第2の切欠き溝と、を有してもよい。前記第1の切欠き溝及び前記第2の切欠き溝は、それぞれ前記軸方向に平行に延び、前記第1の切欠き溝は、前記第2の切欠き溝よりも深い。 The crossover holding portion has a first notch groove for pulling out one of the crossovers of the other two phases and a second notch groove for pulling out the other of the crossovers of the other two phases. It may have a notch groove. The first notch groove and the second notch groove extend parallel to the axial direction, respectively, and the first notch groove is deeper than the second notch groove.
 前記渡り線保持部は、前記他の2つの相の渡り線のうち一方を架け渡す第1の外周部と、前記第1の外周部とは異なる外径位置に設けられ、前記他の2つの相の渡り線のうち他方を架け渡す第2の外周部と、を有してもよい。 The crossover holding portion is provided at a position having an outer diameter different from that of the first outer peripheral portion that bridges one of the crossover lines of the other two phases and the first outer peripheral portion, and the other two. It may have a second outer peripheral portion that bridges the other of the crossovers of the phase.
 本発明によれば、ステータ及びこれを備えた電動機の軸方向への大型化を抑制することができる。 According to the present invention, it is possible to suppress the axial increase in size of the stator and the electric motor provided with the stator.
本発明の一実施形態に係る電動機の側断面図である。It is a side sectional view of the electric motor which concerns on one Embodiment of this invention. 図1におけるA-A線方向の断面図である。It is sectional drawing in the direction of AA line in FIG. 本発明の一実施形態に係るステータの斜視図である。It is a perspective view of the stator which concerns on one Embodiment of this invention. 上記ステータの側面図である。It is a side view of the above stator. 上記ステータの各ティース部に対する巻線の巻回例を説明するステータの平面図であって、AはU相の巻線を、BはV相の巻線を、そして、CはW相の巻線をそれぞれ示す。It is a top view of the stator explaining the winding example of the winding with respect to each tooth part of the stator, A is a U-phase winding, B is a V-phase winding, and C is a W-phase winding. Each line is shown. 上記ステータにおけるインシュレータの渡り線保持部及びステータコアの各ティース部との関係を示す展開図である。It is a developed view which shows the relationship between the crossover holding part of an insulator and each tooth part of a stator core in the stator.
 以下、図面を参照しながら、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[電動機の全体構成]
 図1は、本発明の一実施形態に係る電動機1の側断面図、図2は図1におけるA-A線方向の断面図である。電動機1は、ブラシレスDCモータであり、例えば、空気調和機の室外機に搭載される送風ファンの回転駆動源として用いられる。
[Overall configuration of electric motor]
FIG. 1 is a side sectional view of the electric motor 1 according to the embodiment of the present invention, and FIG. 2 is a sectional view taken along the line AA in FIG. The electric motor 1 is a brushless DC motor, and is used, for example, as a rotational drive source for a blower fan mounted on an outdoor unit of an air conditioner.
 電動機1は、回転磁界を発生する円筒形状のステータ(固定子)2の内周側に、永久磁石を有するロータ(回転子)3を回転可能に配置したインナーロータ型の永久磁石電動機である。 The electric motor 1 is an inner rotor type permanent magnet electric motor in which a rotor (rotor) 3 having a permanent magnet is rotatably arranged on the inner peripheral side of a cylindrical stator (stator) 2 that generates a rotating magnetic field.
 ステータ2は、円筒形状のヨーク部211とヨーク部211から径方向内側に延びる複数のティース部212とを有する円筒形状のステータコア(固定子鉄心)21と、インシュレータ22を介してティース部212に巻回された3相の巻線23を備えている。ステータ2は、ステータコア21の内周面を除いて、樹脂で形成されたモータ外郭6で覆われている。 The stator 2 is wound around the teeth portion 212 via a cylindrical stator core (stator core) 21 having a cylindrical yoke portion 211 and a plurality of teeth portions 212 extending radially inward from the yoke portion 211, and an insulator 22. It comprises a three-phase winding 23 that has been turned. The stator 2 is covered with a motor outer shell 6 made of resin, except for the inner peripheral surface of the stator core 21.
 ロータ3は、ステータコア21の内周側に所定の空隙(ギャップ)を持って回転自在に配置されている。ロータ3の構造は特に限定されず、本実施形態では、ステータコア21に対向する外周面に環状に10個の永久磁石31を配置した10極の表面磁石型である。永久磁石31は、外周側鉄心32の外周面に固定されている。なお図示の例ではロータコアとして外周側鉄心32と内周側鉄心34の分割構造が採用されているが、これに限られず、絶縁部材33を備えていない単一のロータコアが採用されてもよい。 The rotor 3 is rotatably arranged with a predetermined gap on the inner peripheral side of the stator core 21. The structure of the rotor 3 is not particularly limited, and in the present embodiment, it is a 10-pole surface magnet type in which 10 permanent magnets 31 are arranged in an annular shape on the outer peripheral surface facing the stator core 21. The permanent magnet 31 is fixed to the outer peripheral surface of the outer peripheral side iron core 32. In the illustrated example, a divided structure of the outer peripheral side iron core 32 and the inner peripheral side iron core 34 is adopted as the rotor core, but the present invention is not limited to this, and a single rotor core not provided with the insulating member 33 may be adopted.
 シャフト35は、第1軸受41及び第2軸受42によって支持され、第1軸受41が第1ブラケット51に、第2軸受42が第2ブラケット52にそれぞれ支持されることで、ロータ3が回転自在に支持されている。 The shaft 35 is supported by the first bearing 41 and the second bearing 42, and the first bearing 41 is supported by the first bracket 51 and the second bearing 42 is supported by the second bracket 52, so that the rotor 3 can rotate. Is supported by.
 第1軸受41は、回転子3のシャフト35の一端側(出力側)を支持している。第2軸受42は、回転子3のシャフト35の他端側(反出力側)を支持している。第1軸受41及び第2軸受42は、例えば、ボールベアリングが用いられる。 The first bearing 41 supports one end side (output side) of the shaft 35 of the rotor 3. The second bearing 42 supports the other end side (counter-output side) of the shaft 35 of the rotor 3. As the first bearing 41 and the second bearing 42, for example, ball bearings are used.
 第1ブラケット51は、金属製(鋼板やアルミニウムなど)であり、モータ外郭6の軸方向における一端側すなわちシャフト35の出力側に配置されている。なお、以下の説明において、軸方向とは、ステータの中心軸(軸心O)方向を意味する。また、電動機1、ステータ2、インシュレータ22、ロータ3、シャフト35のそれぞれの中心軸は、軸心Oに一致する。 The first bracket 51 is made of metal (steel plate, aluminum, etc.) and is arranged on one end side in the axial direction of the motor outer shell 6, that is, on the output side of the shaft 35. In the following description, the axial direction means the central axis (axis center O) direction of the stator. Further, the central axes of the electric motor 1, the stator 2, the insulator 22, the rotor 3, and the shaft 35 coincide with the axis O.
 第1ブラケット51は、第1軸受41を収容するための第1軸受収容部511と、第1軸受収容部511の開放端から周りに広がるフランジ部512を有する。第1軸受収容部511は、シャフト35を通すための貫通孔を有する底部を有する円筒形状に形成されており、第1ブラケット51のフランジ部512は、モータ外郭6の成形時にインサート成形され、モータ外郭6と一体になっている。第1軸受収容部511の内面に第1軸受41の外輪が圧入され、この第1軸受41の内輪に支持されたシャフト35の出力側が、第1軸受収容部511の底部の中央に形成された貫通孔から外部に突出されている。 The first bracket 51 has a first bearing accommodating portion 511 for accommodating the first bearing 41, and a flange portion 512 extending around from the open end of the first bearing accommodating portion 511. The first bearing accommodating portion 511 is formed in a cylindrical shape having a bottom having a through hole for passing the shaft 35, and the flange portion 512 of the first bracket 51 is insert-molded at the time of molding the motor outer shell 6, and the motor is formed. It is integrated with the outer shell 6. The outer ring of the first bearing 41 was press-fitted into the inner surface of the first bearing accommodating portion 511, and the output side of the shaft 35 supported by the inner ring of the first bearing 41 was formed in the center of the bottom of the first bearing accommodating portion 511. It protrudes outward from the through hole.
 第2ブラケット52は、金属製(鋼板やアルミニウムなど)であり、モータ外郭6の他端側すなわちシャフト35の反出力側に固定されている。第2ブラケット52は、円板形状のブラケット本体521と、モータ外郭6の反出力側の端部(外縁部)に当接する外縁部520と、第2軸受42を収容するための第2軸受収容部522とを有する。ブラケット本体521は、外縁部520がモータ外郭6の反出力側の端部(外縁部)にねじ留めされている。第2軸受収容部522は、ブラケット本体521の中央部の、出力側から反出力側に凹ませて設けられた円形の底面を有する孔として形成されている。 The second bracket 52 is made of metal (steel plate, aluminum, etc.) and is fixed to the other end side of the motor outer shell 6, that is, the counter-output side of the shaft 35. The second bracket 52 includes a disc-shaped bracket main body 521, an outer edge portion 520 that abuts on the opposite end (outer edge portion) of the motor outer shell 6, and a second bearing for accommodating the second bearing 42. It has a part 522. The outer edge portion 520 of the bracket main body 521 is screwed to the end portion (outer edge portion) on the opposite output side of the motor outer shell 6. The second bearing accommodating portion 522 is formed as a hole having a circular bottom surface recessed from the output side to the non-output side in the central portion of the bracket main body 521.
 第2ブラケット52は、径方向において第2軸受収容部522と外縁部520との間に放熱フィン523を一体的に備える。これにより、電動機1の省スペース化を図ることができる。第2ブラケット52は、ヒートシンクとして、シャフト35の反出力側に、外方へ向けて立設した放熱フィン523を備え、伝熱部材71を介し、電動機1を制御するための回路基板72に搭載された電子部品からの熱が放熱フィン523によって放熱されるようになっている。 The second bracket 52 integrally includes heat radiation fins 523 between the second bearing accommodating portion 522 and the outer edge portion 520 in the radial direction. As a result, the space of the electric motor 1 can be saved. The second bracket 52 is provided with heat radiating fins 523 erected outward on the opposite output side of the shaft 35 as a heat sink, and is mounted on a circuit board 72 for controlling the electric motor 1 via a heat transfer member 71. The heat from the electronic components is dissipated by the heat dissipation fins 523.
[ステータ]
 続いて、ステータ2の詳細について説明する。図3はステータ2の斜視図、図4はその側面図である。
[Stator]
Subsequently, the details of the stator 2 will be described. FIG. 3 is a perspective view of the stator 2, and FIG. 4 is a side view thereof.
 ステータ2は、上述のように、円筒形状のステータコア21と、インシュレータ22と、巻線23とを有する。 As described above, the stator 2 has a cylindrical stator core 21, an insulator 22, and a winding 23.
 ステータコア21は、径方向内側に向かって突出する複数のティース部212を有し、電磁鋼板などの軟磁性材料で構成された薄板を軸方向に積層し一体化させることで作製される。本実施形態においてステータコア21は、12個のティース部212を有する12スロットのステータコアである。 The stator core 21 has a plurality of tooth portions 212 protruding inward in the radial direction, and is manufactured by laminating and integrating thin plates made of a soft magnetic material such as an electromagnetic steel plate in the axial direction. In the present embodiment, the stator core 21 is a 12-slot stator core having 12 teeth portions 212.
 インシュレータ22は、絶縁性の合成樹脂材料の成形体であり、ステータコア21の軸方向の一方側(シャフト35の出力側)を被覆する環状の第1インシュレータ22Aと、ステータコア21の軸方向の他方側(シャフト35の反出力側)を被覆する環状の第2インシュレータ22Bとの結合体である。 The insulator 22 is a molded body of an insulating synthetic resin material, and has an annular first insulator 22A that covers one side in the axial direction of the stator core 21 (the output side of the shaft 35) and the other side in the axial direction of the stator core 21. It is a coupling with an annular second insulator 22B that covers (the opposite output side of the shaft 35).
 第1インシュレータ22A及び第2インシュレータ22Bは、それぞれ短い円筒形状に形成され、ステータコア21のヨーク部211を被覆する外周壁部221と、ステータコア21の複数のティース部212を被覆する複数の巻胴部222とを有する(図2参照)。第1インシュレータ22Aの外周壁部221には、巻胴部222に巻回された巻線23を他の巻胴部222に架け渡すための渡り線保持部223Aが設けられている。また、第2インシュレータ22Bの外周壁部221には、各巻胴部222に巻回された巻線23を他の巻胴部222に架け渡すための渡り線保持部223Bが設けられている。 The first insulator 22A and the second insulator 22B are each formed into a short cylindrical shape, and have an outer peripheral wall portion 221 that covers the yoke portion 211 of the stator core 21 and a plurality of winding cylinder portions that cover the plurality of teeth portions 212 of the stator core 21. It has 222 (see FIG. 2). The outer peripheral wall portion 221 of the first insulator 22A is provided with a crossover holding portion 223A for bridging the winding 23 wound around the winding body portion 222 to another winding body portion 222. Further, the outer peripheral wall portion 221 of the second insulator 22B is provided with a crossover holding portion 223B for bridging the winding 23 wound around each winding body portion 222 to another winding body portion 222.
 巻線23は、第1インシュレータ22A及び第2インシュレータ22B各々の巻胴部222の上からステータコア21の複数のティース部212に巻回される3相交流の巻線である。ここでは、3相交流の各相をU相、V相及びW相としたとき、巻線23は、U相に対応する第1の巻線23Uと、V相に対応する第2の巻線23Vと、W相に対応する第3の巻線23Wとを含む。第1の巻線23U、第2の巻線23V及び第3の巻線23Wには、典型的には、樹脂被覆銅線が用いられる(図5参照)。 The winding 23 is a three-phase alternating current winding wound around a plurality of teeth portions 212 of the stator core 21 from above the winding body portions 222 of each of the first insulator 22A and the second insulator 22B. Here, when each phase of the three-phase alternating current is U phase, V phase, and W phase, the winding 23 is the first winding 23U corresponding to the U phase and the second winding corresponding to the V phase. It includes 23V and a third winding 23W corresponding to the W phase. Resin-coated copper wire is typically used for the first winding 23U, the second winding 23V, and the third winding 23W (see FIG. 5).
 図5A~Cは、各ティース部212に対する巻線23の巻回例を説明する第1インシュレータ22A側から見たときのステータ2の平面図であって、Aは第1の巻線23Uの巻回例を、Bは第2の巻線23Vの巻回例を、そして、Cは第3の巻線23Wの巻回例をそれぞれ示す。 5A to 5C are plan views of the stator 2 when viewed from the first insulator 22A side for explaining a winding example of the winding 23 for each tooth portion 212, and A is a winding of the first winding 23U. B shows a winding example of the second winding 23V, and C shows a winding example of the third winding 23W.
 図5A~Cに示すように、ステータコア21は、第1の巻線23Uが巻回される4つのティース部212(U1,U2,U3,U4)と、第2の巻線23Vが巻回される4つのティース部212(V1,V2,V3,V4)と、第3の巻線23Wが巻回される4つのティース部212(W1、W2,W3,W4)とを有する。 As shown in FIGS. 5A to 5C, in the stator core 21, four tooth portions 212 (U1, U2, U3, U4) around which the first winding 23U is wound and a second winding 23V are wound. It has four teeth portions 212 (V1, V2, V3, V4) and four teeth portions 212 (W1, W2, W3, W4) around which the third winding 23W is wound.
 第1の巻線23Uが巻回されるティース部212(U1、U2,U3,U4)に着目すると、U1とU2、及び、U3とU4は、それぞれ相互に隣り合う第1のティース部対を構成し、これら2組の第1のティース部対は、円筒形状のステータ2の軸心O(中心軸)に関して対称な位置に配置される。図5Aに示すように、第1の巻線23Uは、隣り合うティース部にそれぞれ逆向きに巻回される。本実施形態において第1の巻線23Uは、ステータ2の軸心Oから見たとき、U1及びU4には時計まわりに巻回され、U2及びU3には反時計まわりに巻回される。 Focusing on the teeth portion 212 (U1, U2, U3, U4) around which the first winding 23U is wound, U1 and U2, and U3 and U4 each have a pair of first teeth portions adjacent to each other. The first pair of teeth portions of these two sets are arranged at positions symmetrical with respect to the axial center O (central axis) of the cylindrical stator 2. As shown in FIG. 5A, the first winding 23U is wound around the adjacent teeth portions in opposite directions. In the present embodiment, the first winding 23U is wound clockwise around U1 and U4 and counterclockwise around U2 and U3 when viewed from the axial center O of the stator 2.
 また、第2の巻線23Vが巻回されるティース部212(V1、V2,V3,V4)に着目すると、V1とV2、及び、V3とV4は、それぞれ相互に隣り合う第2のティース部対を構成し、これら2組の第2のティース部対は、円筒形状のステータ2の軸心Oに関して対称な位置に配置される。図5Bに示すように、第2の巻線23Vは、隣り合うティース部にそれぞれ逆向きに巻回される。本実施形態において第2の巻線23Vは、ステータ2の軸心Oから見たとき、V1及びV4には時計まわりに巻回され、V2及びV3には反時計まわりに巻回される。 Focusing on the teeth portion 212 (V1, V2, V3, V4) around which the second winding 23V is wound, V1 and V2, and V3 and V4 are the second teeth portions adjacent to each other. A pair is formed, and these two pairs of second tooth portions are arranged at positions symmetrical with respect to the axial center O of the cylindrical stator 2. As shown in FIG. 5B, the second winding 23V is wound around the adjacent teeth portions in opposite directions. In the present embodiment, the second winding 23V is wound clockwise around V1 and V4 and counterclockwise around V2 and V3 when viewed from the axial center O of the stator 2.
 さらに、第3の巻線23Wが巻回されるティース部212(W1、W2,W3,W4)に着目すると、W1とW2、及び、W3とW4は、それぞれ相互に隣り合う第3のティース部対を構成し、これら2組の第3のティース部対は、円筒形状のステータ2の軸心Oに関して対称な位置に配置される。図5Cに示すように、第3の巻線23Wは、隣り合うティース部にそれぞれ逆向きに巻回される。本実施形態において第3の巻線23Wは、ステータ2の軸心Oから見たとき、W1及びW4には時計まわりに巻回され、W2及びW3には反時計まわりに巻回される。 Further, focusing on the teeth portion 212 (W1, W2, W3, W4) around which the third winding 23W is wound, W1 and W2, and W3 and W4 are the third teeth portions adjacent to each other. A pair is formed, and these two sets of the third tooth portion pair are arranged at positions symmetrical with respect to the axial center O of the cylindrical stator 2. As shown in FIG. 5C, the third winding 23W is wound around the adjacent teeth portions in opposite directions. In the present embodiment, the third winding 23W is wound clockwise around W1 and W4 and counterclockwise around W2 and W3 when viewed from the axial center O of the stator 2.
 第1の巻線23UはU1、U2、U3及びU4の順で、第2の巻線23VはV1、V2、V3及びV4の順で、そして、第3の巻線23WはW1,W2,W3及びW4の順で、それぞれティース部212に巻回される。巻線23は、同相の巻線同士を接続しステータコア21の外周側に引き出される3つの相の渡り線Uc、Vc及びWcを含む。各相の渡り線Uc、Vc及びWcは、インシュレータ22(第1インシュレータ22A)の外周部にそれぞれ架け渡される巻線23(23U、23V、23W)の一部である。 The first winding 23U is in the order of U1, U2, U3 and U4, the second winding 23V is in the order of V1, V2, V3 and V4, and the third winding 23W is W1, W2, W3. And W4, respectively, are wound around the teeth portion 212. The winding 23 includes three phase crossovers Uc, Vc and Wc that connect the in-phase windings and are drawn out to the outer peripheral side of the stator core 21. The crossovers Uc, Vc, and Wc of each phase are a part of the windings 23 (23U, 23V, 23W) spanning the outer peripheral portion of the insulator 22 (first insulator 22A), respectively.
 U相の渡り線Ucは、図5Aに示すように、相互に隣り合う2つのティース部212(U1とU2、及び、U3とU4)の間を架け渡す2つの第1の渡り線Uc1と、他の2つの相(V相とW相)の4つのティース部212(V3、V4、W1及びW2)を挟む2つのティース部212(U2とU3)の間を架け渡す1つの第2の渡り線Uc2とを有する。第2の渡り線Uc2の線長は、第1の渡り線Uc1の線長よりも長い。 As shown in FIG. 5A, the U-phase crossover Uc is composed of two first crossovers Uc1 that bridge between two adjacent tooth portions 212 (U1 and U2, and U3 and U4). One second migration that bridges between two tooth portions 212 (U2 and U3) that sandwich four tooth portions 212 (V3, V4, W1 and W2) of the other two phases (V phase and W phase). It has a line Uc2. The line length of the second crossover line Uc2 is longer than the line length of the first crossover line Uc1.
 また、V相の渡り線Vcは、図5Bに示すように、相互に隣り合う2つのティース部212(V1とV2、及び、V3とV4)の間を架け渡す2つの第1の渡り線Vc1と、他の2つの相(W相とU相)の4つのティース部212(W3、W4、U1及びU2)を挟む2つのティース部212(V2とV3)の間を架け渡す1つの第2の渡り線Vc2とを有する。第2の渡り線Vc2の線長は、第1の渡り線Vc1の線長よりも長い。 Further, as shown in FIG. 5B, the V-phase crossover Vc is a two first crossovers Vc1 that bridge between two adjacent tooth portions 212 (V1 and V2 and V3 and V4). And one second that bridges between the two tooth portions 212 (V2 and V3) that sandwich the four tooth portions 212 (W3, W4, U1 and U2) of the other two phases (W phase and U phase). It has a crossover line Vc2. The line length of the second crossover line Vc2 is longer than the line length of the first crossover line Vc1.
 そして、W相の渡り線Wcは、図5Cに示すように、相互に隣り合う2つのティース部212(W1とW2、及び、W3とW4)の間を架け渡す2つの第1の渡り線Wc1と、他の2つの相(U相とV相)の4つのティース部212(U3、U4、V1及びV2)を挟む2つのティース部212(W2とW3)の間を架け渡す1つの第2の渡り線Wc2とを有する。第2の渡り線Wc2の線長は、第1の渡り線Wc1の線長よりも長い。 Then, as shown in FIG. 5C, the W-phase crossover Wc is the two first crossovers Wc1 that bridge between two adjacent tooth portions 212 (W1 and W2, and W3 and W4). And one second that bridges between the two tooth portions 212 (W2 and W3) that sandwich the four tooth portions 212 (U3, U4, V1 and V2) of the other two phases (U phase and V phase). It has a crossover line Wc2. The line length of the second crossover line Wc2 is longer than the line length of the first crossover line Wc1.
[渡り線保持部]
 続いて、各相の渡り線Uc,Vc,Wcを保持する渡り線保持部223Aについて説明する。図6は、第1インシュレータ22Aにおける渡り線保持部223A及びステータコア21の各ティース部212との関係を示す展開図である。
[Crossover line holder]
Subsequently, the crossover holding portion 223A for holding the crossovers Uc, Vc, and Wc of each phase will be described. FIG. 6 is a development view showing the relationship between the crossover holding portion 223A in the first insulator 22A and each teeth portion 212 of the stator core 21.
 渡り線保持部223Aは、第1インシュレータ22Aの軸方向の先端部に設けられており、ティース部212間に架け渡される各相の渡り線Uc,Vc,Wcをそれぞれ保持することが可能な環状の壁部である。図6に示すように、渡り線保持部223Aにはティース部212間を掛け渡される各相の渡り線Uc,Vc,Wcが架け渡される。 The crossover holding portion 223A is provided at the axial tip of the first insulator 22A, and is an annular shape capable of holding the crossover lines Uc, Vc, and Wc of each phase spanning between the teeth portions 212. It is the wall part of. As shown in FIG. 6, the crossover lines Uc, Vc, and Wc of each phase crossed between the teeth portions 212 are bridged over the crossover line holding portion 223A.
 渡り線保持部223Aは、その外周面において、3つの相の渡り線Uc,Vc,Wcのうち1つの相の渡り線が他の2つの相の渡り線の間を通って斜めに架け渡されるように、各相の渡り線Uc,Vc,Wcをそれぞれ保持する。 On the outer peripheral surface of the crossover holding portion 223A, the crossover of one of the three phases of crossovers Uc, Vc, and Wc is diagonally bridged between the crossovers of the other two phases. As described above, the crossovers Uc, Vc, and Wc of each phase are held.
 例えば図6に示すように、渡り線保持部223Aをその周方向に3つの角度範囲R1、R2及びR3に区分けしたとき、第1の角度範囲R1では、上記1つの相の渡り線がU相の渡り線Ucに該当し、上記他の2つの相の渡り線がV相及びW相の渡り線Vc,Wcに該当する。第1の角度範囲R1において、V相の渡り線Vc及びW相の渡り線Wcは、同相のティース部212(V3とV4、及び、W1とW2)の間を架け渡す第1の渡り線Vc1,Wc1に相当し、U相の渡り線Ucは、これら他の2つの相(V相とW相)の4つのティース部を挟むU相のティース部(U2とU3)との間を架け渡す第2の渡り線Uc2に相当する。 For example, as shown in FIG. 6, when the crossover holding portion 223A is divided into three angle ranges R1, R2, and R3 in the circumferential direction, in the first angle range R1, the crossover of the one phase is the U phase. Corresponds to the crossover line Uc, and the crossover lines of the other two phases correspond to the crossover lines Vc and Wc of the V phase and the W phase. In the first angle range R1, the V-phase crossover Vc and the W-phase crossover Wc are the first crossover Vc1 that bridges between the in-phase tooth portions 212 (V3 and V4, and W1 and W2). , Wc1 and the U-phase crossover Uc bridges between the U-phase teeth portions (U2 and U3) sandwiching the four teeth portions of these other two phases (V phase and W phase). Corresponds to the second crossover line Uc2.
 第2の角度範囲R2では、上記1つの相の渡り線がW相の渡り線Wcに該当し、上記他の2つの相の渡り線がU相及びV相の渡り線Uc,Vcに該当する。第2の角度範囲R2において、U相の渡り線Uc及びV相の渡り線Vcは、同相のティース部212(U3とU4、及び、V1とV2)の間を架け渡す第1の渡り線Uc1,Vc1に相当し、W相の渡り線Wcは、これら他の2つの相(U相とV相)の4つのティース部を挟むW相のティース部(W2とW3)との間を架け渡す第2の渡り線Wc2に相当する。 In the second angle range R2, the crossover of the one phase corresponds to the crossover Wc of the W phase, and the crossover of the other two phases corresponds to the crossovers Uc and Vc of the U phase and the V phase. .. In the second angle range R2, the U-phase crossover Uc and the V-phase crossover Vc are the first crossover Uc1 that bridges between the in-phase tooth portions 212 (U3 and U4, and V1 and V2). , Vc1 and the W-phase crossover Wc bridges between the W-phase teeth portions (W2 and W3) sandwiching the four teeth portions of these other two phases (U-phase and V-phase). It corresponds to the second crossover Wc2.
 そして、第3の角度範囲R3では、上記1つの相の渡り線がV相の渡り線Vcに該当し、上記他の2つの相の渡り線がW相及びU相の渡り線Wc,Ucに該当する。第3の角度範囲R3において、W相の渡り線Wc及びU相の渡り線Ucは、同相のティース部212(W3とW4、及び、U1とU2)の間を架け渡す第1の渡り線Wc1,Uc1に相当し、V相の渡り線Vcは、これら他の2つの相(W相とU相)の4つのティース部を挟むV相のティース部(V2とV3)との間を架け渡す第2の渡り線Vc2に相当する。 Then, in the third angle range R3, the crossover of the one phase corresponds to the crossover Vc of the V phase, and the crossovers of the other two phases correspond to the crossovers Wc and Uc of the W phase and the U phase. Applicable. In the third angle range R3, the W-phase crossover Wc and the U-phase crossover Uc are the first crossover Wc1 that bridges between the in-phase tooth portions 212 (W3 and W4, and U1 and U2). , Uc1 and the V-phase crossover Vc bridges between the V-phase teeth portions (V2 and V3) sandwiching the four teeth portions of these other two phases (W phase and U phase). Corresponds to the second crossover Vc2.
 渡り線保持部223Aは、上記他の2つの相の渡り線を、軸方向において相互に異なる高さで、かつ、インシュレータ22(第1インシュレータ22A)の外周側から見たときに上記軸方向に相互に重ならない位置に保持する。本実施形態では、各相の渡り線Uc,Vc,Wcがそれぞれ線長の異なる第1の渡り線Uc1,Vc1,Wc1及び第2の渡り線Uc2,Vc2,Wc2を有するため、このような形態の架け渡し方法を容易に実現することができる。 The crossover holding portion 223A has the crossovers of the other two phases at different heights in the axial direction and in the axial direction when viewed from the outer peripheral side of the insulator 22 (first insulator 22A). Hold in a position that does not overlap with each other. In the present embodiment, the crossovers Uc, Vc, and Wc of each phase have the first crossovers Uc1, Vc1, Wc1 and the second crossovers Uc2, Vc2, Wc2 having different line lengths. It is possible to easily realize the method of bridging.
 例えば、第1の角度範囲R1では、ステータ2の軸心Oと直交する仮想面において、V相の渡り線Vc(Vc1)が上側、W相の渡り線Wc(Wc1)が下側となるように、渡り線保持部223Aの異なる高さ位置に架け渡される。また、他の2つの相の渡り線であるV相の渡り線Vc(Vc1)とW相の渡り線Wc(Wc1)が軸方向に相互に重ならないように、円周方向に所定距離だけ離間した位置に保持される。
 なお、第2の角度範囲R2では、ステータ2の軸心Oと直交する仮想面において、U相の渡り線Uc(Uc1)が上側、V相の渡り線Vc(Vc1)が下側となるように、渡り線保持部223Aの異なる高さ位置に架け渡される。また、他の2つの相の渡り線であるU相の渡り線Uc(Uc1)とV相の渡り線Vc(Vc1)が軸方向に相互に重ならないように、円周方向に所定距離だけ離間した位置に保持される。
 同様に、第3の角度範囲R3では、ステータ2の軸心Oと直交する仮想面において、W相の渡り線Wc(Wc1)が上側、U相の渡り線Uc(Uc1)が下側となるように、渡り線保持部223Aの異なる高さ位置に架け渡される。また、他の2つの相の渡り線であるW相の渡り線Wc(Wc1)とU相の渡り線Uc(Uc1)が軸方向に相互に重ならないように、円周方向に所定距離だけ離間した位置に保持される。
For example, in the first angle range R1, the V-phase crossover Vc (Vc1) is on the upper side and the W-phase crossover Wc (Wc1) is on the lower side in the virtual plane orthogonal to the axis O of the stator 2. It is bridged at different height positions of the crossover holding portion 223A. Further, the V-phase crossover Vc (Vc1) and the W-phase crossover Wc (Wc1), which are the crossovers of the other two phases, are separated by a predetermined distance in the circumferential direction so as not to overlap each other in the axial direction. It is held in the desired position.
In the second angle range R2, the U-phase crossover line Uc (Uc1) is on the upper side and the V-phase crossover line Vc (Vc1) is on the lower side in the virtual plane orthogonal to the axial center O of the stator 2. It is bridged at different height positions of the crossover holding portion 223A. Further, the U-phase crossover Uc (Uc1) and the V-phase crossover Vc (Vc1), which are the crossovers of the other two phases, are separated by a predetermined distance in the circumferential direction so as not to overlap each other in the axial direction. It is held in the desired position.
Similarly, in the third angle range R3, the W-phase crossover line Wc (Wc1) is on the upper side and the U-phase crossover line Uc (Uc1) is on the lower side in the virtual plane orthogonal to the axis O of the stator 2. As described above, the crossover holding portion 223A is bridged at different height positions. Further, the W-phase crossover Wc (Wc1) and the U-phase crossover Uc (Uc1), which are the crossovers of the other two phases, are separated by a predetermined distance in the circumferential direction so as not to overlap each other in the axial direction. It is held in the desired position.
 特に本実施形態では、渡り線保持部223Aは、インシュレータ22(第1インシュレータ22A)の外周側から見たときに3つの相の渡り線Uc,Vc,Wcの全てが軸方向に重ならないように(3つの相の渡り線Uc,Vc,Wcのうち任意の2つの相の渡り線が軸方向に重なる箇所は存在しても、3つの相の渡り線Uc,Vc,Wcの全てが軸方向に重なる箇所は存在しないように)、各相の渡り線Uc,Vc,Wcをそれぞれ保持する。これにより、渡り線Uc,Vc,Wcが軸方向に対して3本重ならないため、異なる相の渡り線同士の絶縁距離(すなわち、異なる相の渡り線同士を離間させることで、異なる相の渡り線の間で高周波パルスが相互に影響し合うこと抑制できる距離)を確保しつつ、渡り線保持部223Aの軸方向に沿った高さ寸法Hの低減が図れる。本実施形態においては、図6に示される3つの相の渡り線Uc,Vc,Wcのうち、異なる相の渡り線同士が最も近接している箇所の離間距離を1mmとすることで、絶縁距離を十分に確保している。なお、この絶縁距離は、渡り線の線径、渡り線に印加される電圧、渡り線を流れる電流などの条件によって適宜変更される。 In particular, in the present embodiment, the crossover holding portion 223A is provided so that all three phases of crossovers Uc, Vc, and Wc do not overlap in the axial direction when viewed from the outer peripheral side of the insulator 22 (first insulator 22A). (Even if there is a place where the crossovers of any two phases overlap in the axial direction among the crossovers Uc, Vc, Wc of the three phases, all of the crossovers Uc, Vc, Wc of the three phases are in the axial direction. The crossovers Uc, Vc, and Wc of each phase are held so that there is no overlap with the above. As a result, three crossovers Uc, Vc, and Wc do not overlap in the axial direction, so that the insulation distance between the crossovers of different phases (that is, by separating the crossovers of different phases, the crossovers of different phases are crossed. It is possible to reduce the height dimension H along the axial direction of the crossover line holding portion 223A while ensuring (a distance at which high-frequency pulses can be suppressed from interacting with each other) between the lines. In the present embodiment, the insulation distance is set to 1 mm at the portion where the crossover lines of different phases are closest to each other among the crossover lines Uc, Vc, and Wc of the three phases shown in FIG. Is sufficiently secured. The insulation distance is appropriately changed depending on conditions such as the wire diameter of the crossover, the voltage applied to the crossover, and the current flowing through the crossover.
 上述のような形態で各相の渡り線Uc,Vc、Wcを架け渡すため、渡り線保持部223Aは、以下のように構成される。 In order to bridge the crossovers Uc, Vc, and Wc of each phase in the above-described manner, the crossover holding portion 223A is configured as follows.
 第1に、渡り線保持部223Aは、その軸方向の先端から他端側に向かって軸方向に平行に延びる2種類の切欠き溝(第1の切欠き溝G1及び第2の切欠き溝G2)を有する。これらの切欠き溝は、各相の渡り線Uc,Vc,Wcを第1インシュレータ22Aの径方向内側から径方向外側へ引き出し、あるいは径方向外側から径方向内側へ引き入れるための通路を形成する。複数の切欠き溝のうち、第1の切欠き溝G1及び第2の切欠き溝G2はそれぞれ複数個所に設けられ、第1の切欠き溝G1は第2の切欠き溝G2よりも深い。 First, the crossover holding portion 223A has two types of notch grooves (first notch groove G1 and second notch groove) extending in parallel in the axial direction from the tip in the axial direction toward the other end side. It has G2). These notch grooves form a passage for drawing the crossovers Uc, Vc, and Wc of each phase from the radially inner side to the radial outer side of the first insulator 22A, or from the radial outer side to the radial inner side. Of the plurality of notch grooves, the first notch groove G1 and the second notch groove G2 are each provided at a plurality of positions, and the first notch groove G1 is deeper than the second notch groove G2.
 第1の切欠き溝G1及び第2の切欠き溝G2の形成位置は任意であり、各相の渡り線Uc,Vc,Wcを上述のような形態で架け渡すことができるように各々の配列間隔、配列順序などが決定される。 The formation positions of the first notch groove G1 and the second notch groove G2 are arbitrary, and their respective arrangements allow the crossovers Uc, Vc, and Wc of each phase to be bridged in the above-described manner. The interval, sequence order, etc. are determined.
 例えば、第1の角度範囲R1においては、第1の切欠き溝G1と第2の切欠き溝G2とに、上記1つの相の渡り線に該当するU相の渡り線Uc(Uc2)が架け渡される。また、当該第1の切欠き溝G1と第2の切欠き溝G2との間に、上記他の2つの相の渡り線のうち一方の渡り線であるV相の渡り線Vc(Vc1)が架け渡される一対の第2の切欠き溝G2と、上記他の2つの相の渡り線のうち他方の渡り線であるW相の渡り線Wc(Wc1)が架け渡される他の一対の第1の切欠き溝G1が設けられる。 For example, in the first angle range R1, a U-phase crossover Uc (Uc2) corresponding to the one-phase crossover is laid on the first notch groove G1 and the second notch groove G2. Passed. Further, between the first notch groove G1 and the second notch groove G2, a V-phase crossover Vc (Vc1), which is one of the crossovers of the other two phases, is formed. The pair of second notch grooves G2 to be bridged and the other pair of first crossovers Wc (Wc1) of the W phase, which is the other crossover of the other two phases, are bridged. Notch groove G1 is provided.
 第2に、渡り線保持部223Aは、互いに外径位置(図5に示される軸心Oからの距離)が異なる複数の外周部(第1の外周部S1及び第2の外周部S2)を有する。これらの外周部は、軸方向に沿って形成された円周面であり、第1インシュレータ22Aの異なる外径位置にそれぞれ形成される。本実施形態においては、第2の外周部S2は、第1の外周部S1よりも外径側に位置している。 Secondly, the crossover holding portion 223A has a plurality of outer peripheral portions (first outer peripheral portion S1 and second outer peripheral portion S2) having different outer diameter positions (distance from the axis O shown in FIG. 5). Have. These outer peripheral portions are circumferential surfaces formed along the axial direction, and are formed at different outer diameter positions of the first insulator 22A. In the present embodiment, the second outer peripheral portion S2 is located on the outer diameter side of the first outer peripheral portion S1.
 例えば、第1の角度範囲R1においては、内径側の第1の外周部S1に、V相の渡り線Vc(Vc1)が架け渡され、外径側の第2の外周部S2に、W相の渡り線Wc(Wc1)が架け渡される。これにより、V相の渡り線VcとW相の渡り線Wcとが相互に重ならないようにすることができるため、これら2つの相の渡り線間の絶縁距離を容易に確保できる。また、異相の渡り線同士の絶縁距離が確保できることにより、各相の巻線23U,23V,23Wに供給される高周波パルスが相互に影響し合うことが防止される。これらは、第2の角度範囲R2、第3の角度範囲R3でも同様である。 For example, in the first angle range R1, a V-phase crossover Vc (Vc1) is bridged over the first outer peripheral portion S1 on the inner diameter side, and the W phase is bridged over the second outer peripheral portion S2 on the outer diameter side. Crossover line Wc (Wc1) is crossed. As a result, the V-phase crossover Vc and the W-phase crossover Wc can be prevented from overlapping each other, so that the insulation distance between these two phase crossovers can be easily secured. Further, by ensuring the insulation distance between the crossovers of different phases, it is possible to prevent the high frequency pulses supplied to the windings 23U, 23V, 23W of each phase from affecting each other. These are the same in the second angle range R2 and the third angle range R3.
 第3に、渡り線保持部223Aは、内径側の第1の外周部S1と外径側の第2の外周部S2との境界を形成する段部Tを有する。段部Tは、典型的には、円周方向に隣り合う一対の第1の切欠き溝G1の間に設けられる。段部Tは、3つの相の渡り線のうち、2つの相の渡り線の間を通って斜めに架け渡される相の渡り線を安定して保持するためのもので、2つの相の渡り線間の絶縁距離を確保できれば、その高さや位置は任意に設定できる。例えば、第1の角度範囲R1においては、段部Tによって、V相の渡り線VcとW相の渡り線Wcの間を通って斜めに架け渡されるU相の渡り線Ucを安定的に保持する。 Thirdly, the crossover holding portion 223A has a step portion T forming a boundary between the first outer peripheral portion S1 on the inner diameter side and the second outer peripheral portion S2 on the outer diameter side. The step portion T is typically provided between a pair of first notch grooves G1 adjacent to each other in the circumferential direction. The step portion T is for stably holding the crossover of the two phases that is diagonally crossed between the crossovers of the two phases among the crossovers of the three phases. If the insulation distance between the lines can be secured, the height and position can be set arbitrarily. For example, in the first angle range R1, the step portion T stably holds the U-phase crossover Uc that is diagonally crossed between the V-phase crossover Vc and the W-phase crossover Wc. To do.
 以上のようにして、各相の巻線23(23U,23V,23W)が渡り線保持部223Aに架け渡されながらステータコア21の各ティース部212へ巻回される。各ティース部212への巻線23U,23V,23Wの巻き付けは、3ノズル巻線機を用いて各相同時に行われる。渡り線保持部223Aに対する各相の渡り線Uc,Vc,Wcの架け渡しは、典型的には作業者による手作業で行われる。 As described above, the windings 23 (23U, 23V, 23W) of each phase are wound around each teeth portion 212 of the stator core 21 while being bridged over the crossover holding portion 223A. Winding of the windings 23U, 23V, and 23W around each tooth portion 212 is performed simultaneously for each phase using a 3-nozzle winding machine. The crossovers Uc, Vc, and Wc of each phase are typically manually bridged to the crossover holding portion 223A by an operator.
 ステータ2は、各相の巻線23の巻始め端及び巻終り端に接続される複数のピン24(24U,24V,24W,24N)をさらに有する(図3参照)。複数のピン24は、軸方向に沿って延び、第2インシュレータ22Bの任意の位置に設けられる。 The stator 2 further has a plurality of pins 24 (24U, 24V, 24W, 24N) connected to the winding start end and winding end end of the winding 23 of each phase (see FIG. 3). The plurality of pins 24 extend along the axial direction and are provided at arbitrary positions of the second insulator 22B.
 第1のピン24UはU相の巻線23Uの巻始め端に接続され、第2のピン24VはV相の巻線23Vの巻始め端に接続され、第3のピン24WはW相の巻線23Wの巻始め端に接続される。第4のピン24Nは、各相の巻線23U,23V,23Wの各々の巻終り端に共通に接続される中性点に相当する。これら複数のピン24は、図1に示すようにステータ2と第2ブラケット52との間に配置された回路基板72に接続される。 The first pin 24U is connected to the winding start end of the U-phase winding 23U, the second pin 24V is connected to the winding start end of the V-phase winding 23V, and the third pin 24W is the W-phase winding. It is connected to the winding start end of the wire 23W. The fourth pin 24N corresponds to a neutral point commonly connected to the end of each of the windings 23U, 23V, 23W of each phase. As shown in FIG. 1, these plurality of pins 24 are connected to a circuit board 72 arranged between the stator 2 and the second bracket 52.
 以上のように本実施形態によれば、渡り線保持部223Aの外周面において、3つの相の渡り線Uc,Vc,Wcのうち1の相の渡り線が他の2つの相の渡り線の間を斜めに通って架け渡されるように渡り線保持部223Aに保持されるため、U、V、Wの3つの相のそれぞれに対応する渡り線Uc、Vc、Wcを保持するのに必要な高さ寸法Hが上下2段分の高さで十分となり、従来のように各相に応じて3段分の高さの保持領域(背景技術の欄に記載の3段に形成された渡り線収容溝)を必要とすることがなくなる。これにより、3つの相の渡り線同士の絶縁距離を確保しつつ、渡り線保持部223Aの軸方向高さを低くできるとともに、ステータ2及びこれを備えた電動機1の軸方向への大型化を抑制することができる。 As described above, according to the present embodiment, on the outer peripheral surface of the crossover holding portion 223A, the crossover of one of the three phases Uc, Vc, and Wc is the crossover of the other two phases. Since it is held by the crossover holding portion 223A so as to be bridged diagonally between them, it is necessary to hold the crossovers Uc, Vc, and Wc corresponding to each of the three phases U, V, and W. The height dimension H is sufficient for the height of two upper and lower steps, and the holding area of the height of three steps according to each phase as in the conventional case (the crossover line formed in the three steps described in the column of background technology). No need for containment grooves). As a result, the height of the crossover holding portion 223A in the axial direction can be lowered while ensuring the insulation distance between the crossovers of the three phases, and the size of the stator 2 and the motor 1 equipped with the stator 2 can be increased in the axial direction. It can be suppressed.
 1…電動機
 2…ステータ
 3…ロータ
 21…ステータコア
 22…インシュレータ
 23(23U,23V,23W)…巻線
 24(24U,24V,24W,24N)…ピン
 35…シャフト
 212…ティース部
 223A…渡り線保持部
 G1…第1の切欠き溝
 G2…第2の切欠き溝
 S1…第1の外周部
 S2…第2の外周部
 T…段部
 Uc、Vc,Wc…渡り線
1 ... Electric motor 2 ... Stator 3 ... Rotor 21 ... Stator core 22 ... Insulator 23 (23U, 23V, 23W) ... Winding 24 (24U, 24V, 24W, 24N) ... Pin 35 ... Shaft 212 ... Teeth part 223A ... Crossover holding Part G1 ... 1st notch groove G2 ... 2nd notch groove S1 ... 1st outer peripheral part S2 ... 2nd outer peripheral part T ... Step part Uc, Vc, Wc ... Crossover

Claims (8)

  1.  径方向内側に向かって突出する複数のティース部を有する円筒形状のステータコアと、
     前記複数のティース部に巻回される3相の巻線と、
     前記ステータコアの軸方向の端部に配置され、前記ステータコアと前記3相の巻線との間を絶縁するインシュレータとを備え、
     前記3相の巻線は、各相に対応する第1の巻線、第2の巻線及び第3の巻線と、前記インシュレータの外周部にそれぞれ架け渡され、同相の巻線同士を接続し前記ステータコアの外周側に引き出される3つの相の渡り線とを含み、
     前記軸方向の一方側に設けられた前記インシュレータは、当該インシュレータの外周面に、前記3つの相の渡り線のうち1つの相の渡り線が他の2つの相の渡り線の間を通って斜めに架け渡されるように、前記3つの相の渡り線を保持する渡り線保持部を有する
     ステータ。
    A cylindrical stator core with multiple tooth portions protruding inward in the radial direction,
    A three-phase winding wound around the plurality of teeth, and
    It is provided at the axial end of the stator core and includes an insulator that insulates between the stator core and the three-phase windings.
    The three-phase windings are bridged over the outer peripheral portion of the insulator with the first winding, the second winding, and the third winding corresponding to each phase, and connect the windings of the same phase to each other. Including the three-phase crossovers drawn out to the outer peripheral side of the stator core.
    In the insulator provided on one side in the axial direction, the crossover of one of the three phases passes between the crossovers of the other two phases on the outer peripheral surface of the insulator. A stator having a crossover holding portion for holding the crossovers of the three phases so as to be crossed diagonally.
  2.  請求項1に記載のステータであって、
     前記渡り線保持部は、前記他の2つの相の渡り線を、前記軸方向において相互に異なる高さで、かつ、前記インシュレータの外周側から見たときに前記軸方向に相互に重ならない位置に保持する
     ステータ。
    The stator according to claim 1.
    The crossover holding portion is a position where the crossovers of the other two phases are at different heights in the axial direction and do not overlap each other in the axial direction when viewed from the outer peripheral side of the insulator. To hold the stator.
  3.  請求項1又は2に記載のステータであって、
     前記1つの相の渡り線の線長は、前記他の2つの相の渡り線の線長よりも長い
     ステータ。
    The stator according to claim 1 or 2.
    The length of the crossover of the one phase is longer than the length of the crossover of the other two phases.
  4.  請求項1~3のいずれか1つに記載のステータであって、
     前記渡り線保持部は、前記インシュレータの外周側から見たときに前記3つの相の渡り線の全てが前記軸方向に重ならないように前記3つの相の渡り線をそれぞれ保持する
     ステータ。
    The stator according to any one of claims 1 to 3.
    The crossover holding portion is a stator that holds the crossovers of the three phases so that all the crossovers of the three phases do not overlap in the axial direction when viewed from the outer peripheral side of the insulator.
  5.  請求項1~4のいずれか1つに記載のステータであって、
     前記ステータコアは、前記第1の巻線が各々巻回され相互に隣り合う第1のティース部対と、前記第2の巻線が各々巻回され相互に隣り合う第2のティース部対と、前記第3の巻線が各々巻回され相互に隣り合う第3のティース部対とが順に配置された計12個のティース部を有し、
     前記1つの相の渡り線は、前記他の2つの相の4個のティース部を間に挟んで配置される2つのティース部対の間に架け渡される
     ステータ。
    The stator according to any one of claims 1 to 4.
    The stator core includes a first pair of tooth portions in which the first winding is wound and adjacent to each other, and a second pair of tooth portions in which the second winding is wound and adjacent to each other. It has a total of 12 tooth portions in which the third winding is wound and a pair of third tooth portions adjacent to each other are arranged in order.
    The crossover of the one phase is a stator that is bridged between two pairs of tooth portions arranged so as to sandwich the four tooth portions of the other two phases.
  6.  請求項1~5のいずれか1つに記載のステータであって、
     前記渡り線保持部は、前記他の2つの相の渡り線のうち一方を引き出すための第1の切欠き溝と、前記他の2つの相の渡り線のうち他方を引き出すための第2の切欠き溝と、を有し、
     前記第1の切欠き溝及び前記第2の切欠き溝は、それぞれ前記軸方向に平行に延び、
     前記第1の切欠き溝は、前記第2の切欠き溝よりも深い
     ステータ。
    The stator according to any one of claims 1 to 5.
    The crossover holding portion has a first notch groove for pulling out one of the crossovers of the other two phases and a second notch groove for pulling out the other of the crossovers of the other two phases. With a notch groove,
    The first notch groove and the second notch groove extend parallel to the axial direction, respectively.
    The first notch groove is a stator deeper than the second notch groove.
  7.  請求項1~6のいずれか1つに記載のステータであって、
     前記渡り線保持部は、
     前記他の2つの相の渡り線のうち一方を架け渡す第1の外周部と、
     前記第1の外周部とは異なる外径位置に設けられ、前記他の2つの相の渡り線のうち他方を架け渡す第2の外周部と、を有する
     ステータ。
    The stator according to any one of claims 1 to 6.
    The crossover holding portion is
    A first outer peripheral portion that bridges one of the other two phase crossovers,
    A stator provided at a position having an outer diameter different from that of the first outer peripheral portion, and having a second outer peripheral portion that bridges the other of the crossover lines of the other two phases.
  8.  請求項1~7のいずれか1つに記載のステータを備えた電動機。 An electric motor provided with the stator according to any one of claims 1 to 7.
PCT/JP2020/011979 2019-03-29 2020-03-18 Stator and electric motor WO2020203294A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080021578.9A CN113574773A (en) 2019-03-29 2020-03-18 Stator and motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-066954 2019-03-29
JP2019066954A JP7434719B2 (en) 2019-03-29 2019-03-29 Stator and electric motor

Publications (1)

Publication Number Publication Date
WO2020203294A1 true WO2020203294A1 (en) 2020-10-08

Family

ID=72668766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011979 WO2020203294A1 (en) 2019-03-29 2020-03-18 Stator and electric motor

Country Status (3)

Country Link
JP (1) JP7434719B2 (en)
CN (1) CN113574773A (en)
WO (1) WO2020203294A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114172292B (en) * 2022-02-09 2022-06-21 宁波圣龙汽车动力系统股份有限公司 Motor stator assembly and winding method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300725A (en) * 2006-04-28 2007-11-15 Asmo Co Ltd Stator, brushless motor, and winding method
JP2008167604A (en) * 2006-12-28 2008-07-17 Ichinomiya Denki:Kk Stator of inner rotor type mold brushless motor
JP2010246353A (en) * 2009-04-10 2010-10-28 Mitsubishi Electric Corp Stator and rotating electrical machine using the same
JP2017118671A (en) * 2015-12-24 2017-06-29 アイシン精機株式会社 Rotary electric machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002291191A (en) * 2001-03-29 2002-10-04 Mitsubishi Electric Corp Stator
JP4270307B2 (en) * 2007-06-25 2009-05-27 トヨタ自動車株式会社 Crossover module
US20130200742A1 (en) * 2012-02-08 2013-08-08 Asmo Co., Ltd. Stator, brushless motor, stator manufacturing method
JP6229580B2 (en) * 2014-04-16 2017-11-15 日本電産株式会社 motor
CN104467235A (en) * 2014-12-23 2015-03-25 广东美芝制冷设备有限公司 Motor stator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300725A (en) * 2006-04-28 2007-11-15 Asmo Co Ltd Stator, brushless motor, and winding method
JP2008167604A (en) * 2006-12-28 2008-07-17 Ichinomiya Denki:Kk Stator of inner rotor type mold brushless motor
JP2010246353A (en) * 2009-04-10 2010-10-28 Mitsubishi Electric Corp Stator and rotating electrical machine using the same
JP2017118671A (en) * 2015-12-24 2017-06-29 アイシン精機株式会社 Rotary electric machine

Also Published As

Publication number Publication date
JP2020167847A (en) 2020-10-08
CN113574773A (en) 2021-10-29
JP7434719B2 (en) 2024-02-21

Similar Documents

Publication Publication Date Title
JP6977555B2 (en) Rotating machine
US7408281B2 (en) Stator and brushless motor
WO2020217790A1 (en) Stator and electric motor
EP2973943B1 (en) Axial flux electric machine and methods of assembling the same
US20180013336A1 (en) Stators and coils for axial-flux dynamoelectric machines
US20090001843A1 (en) Rotating electrical machine
US20090102314A1 (en) Rotating electrical machinery
US9923420B2 (en) Claw pole stator motor and blower
JPH1198791A (en) Brushless dc motor
WO2019008848A1 (en) Rotating electric machine and direct-acting electric motor
WO2020203294A1 (en) Stator and electric motor
JP2009106044A (en) Rotating electric machine
KR102527294B1 (en) Axial field flow rotating machine
US20240128813A1 (en) Double rotor brushless direct-current motor with fluid cooling
KR20190007907A (en) Motor
JP2009118636A (en) Dynamo-electric machine and manufacturing method of dynamo-electric machine
JP7095550B2 (en) Rotating electric machine control device and rotating electric machine control method
KR101079050B1 (en) Stator having structure of division type skew core, BLDC motor using the same, and battery cooling apparatus
JP7001483B2 (en) Axial gap type transverse flux type rotary electric machine
US10284034B2 (en) Armature, rotating electric machine, crossflow fan
JP2005130685A (en) Permanent magnet electric motor with annular stator coil
JP3818338B2 (en) Permanent magnet motor
JP2016111771A (en) Motor and manufacturing method of stator
JP2007306745A (en) Polyphase motor
JPH09322455A (en) Permanent magnet type electric rotating machine having concentrated winding stator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20784647

Country of ref document: EP

Kind code of ref document: A1