WO2020203129A1 - Scanning optical device - Google Patents

Scanning optical device Download PDF

Info

Publication number
WO2020203129A1
WO2020203129A1 PCT/JP2020/010617 JP2020010617W WO2020203129A1 WO 2020203129 A1 WO2020203129 A1 WO 2020203129A1 JP 2020010617 W JP2020010617 W JP 2020010617W WO 2020203129 A1 WO2020203129 A1 WO 2020203129A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
mirror
focal length
optical device
Prior art date
Application number
PCT/JP2020/010617
Other languages
French (fr)
Japanese (ja)
Inventor
武彦 酒井
鈴木 隆史
Original Assignee
日本電産コパル電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産コパル電子株式会社 filed Critical 日本電産コパル電子株式会社
Publication of WO2020203129A1 publication Critical patent/WO2020203129A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors

Definitions

  • An embodiment of the present invention relates to a scanning optical device applied to, for example, a three-dimensional ranging image sensor.
  • 3D-LiDER Light Detection and Ringing
  • This sensor measures the distance to an object by, for example, scanning a pulsed laser beam with a polygon mirror and detecting the reflected light from the object.
  • the polygon mirror has a pyramidal trapezoidal shape and has a plurality of reflecting surfaces. The inclination angle of each reflecting surface in the direction along the rotation axis is changed. Therefore, the laser beam applied to the reflecting surface of the rotating polygon mirror is reflected in the horizontal direction and the vertical direction and is applied to the detection region (see, for example, Patent Document 1 and Patent Document 2).
  • JP-A-11-84006 Japanese Unexamined Patent Publication No. 2016-70974 Japanese Patent Application Laid-Open No. 1-100491
  • the first stage is scanned in the Y-axis direction and the second stage is scanned in the X-axis direction. It is necessary to increase the reflective surface of the scanner that scans the direction. Specifically, when scanning the X-axis with a polygon scanner, it is necessary to increase the thickness of the polygon mirror in the Y-axis direction according to the scanning angle. Therefore, the polygon mirror becomes large and the manufacturing cost increases.
  • An embodiment of the present invention provides a scanning optical device capable of obtaining a necessary and sufficient scanning angle by using a small mirror.
  • the scanning optical device of the present embodiment has a first mirror that scans the light from the light source in the first direction within a range of a certain angle, and the first focal point, and the light from the first mirror is the first.
  • a first lens that leads to a focal point a condensing means that has a second focal point and whose second focal point coincides with the first focal point, and a second condensing means that intersects the first direction with light from the condensing means. It includes a second mirror that scans in the direction.
  • FIG. 1 shows the scanning optical device 10 according to the first embodiment.
  • the scanning optical device 10 includes, for example, a laser diode 11 as a light source, a collimating lens 12, a galvano scanner (first mirror) 13 as a scanning means in the Y-axis direction, a first lens 14, a second lens 15, for example, an X-axis direction.
  • a polygon scanner (second mirror) 16 as scanning means, a beam splitter 17, and a photodiode 18 as a light receiving unit are provided.
  • the laser diode 11 generates, for example, a pulsed laser beam (hereinafter, also simply referred to as light).
  • a pulsed laser beam hereinafter, also simply referred to as light.
  • the collimating lens 12 uses the light generated from the laser diode 11 as parallel light.
  • the galvano scanner 13 includes a mirror and a drive unit (not shown) that reciprocates the mirror within a range of a predetermined rotation angle ⁇ 1.
  • the galvano scanner 13 scans parallel light from the collimating lens 12 in the Y-axis direction within a rotation angle ⁇ 1.
  • the angle of incidence of light from the collimating lens 12 to the galvano scanner 13 is not shown.
  • the angle of incidence of light from the collimating lens 12 onto the galvano scanner 13 is determined by the position of the focal point of the second lens 15 and the position of the focal point of the light that passes through the first lens 14 and is scanned in the Y-axis direction.
  • the scanning means in the Y-axis direction is not limited to the galvano scanner 13, and for example, a resonant scanner or a MEMS scanner can be applied.
  • the first lens 14 is, for example, a condensing lens composed of an achromatic lens or an aspherical lens, and has a focal length (first focal length) f1.
  • the focal length f1 of the first lens 14 is adjusted based on the magnification of the scanning angle ⁇ 2 in the Y-axis direction with respect to the rotation angle ⁇ 1 of the galvano scanner 13.
  • the relationship between the angle of ⁇ 2 and ⁇ 1 is such that when the height A of the focal position of the first lens 14 (distance from the center of the lens) A and the height A of the focal position of the second lens 15 match.
  • the angular magnification is determined depending on the focal length of each lens.
  • the galvano scanner 13 is arranged, for example, at the position of the focal length f1 of the first lens 14, and the parallel light scanned in the Y-axis direction by the galvano scanner 13 is focused on the other focal length of the first lens 14.
  • the position of the galvano scanner 13 with respect to the first lens 14 is not limited to the position of the focal length f1 of the first lens 14, and it is sufficient that parallel light can be incident on the first lens 14. Therefore, the position of the galvano scanner 13 may be the focal length f1 or more.
  • the second lens 15 as the condensing means is, for example, a condensing lens composed of an achromatic lens or an aspherical lens, and has a focal length (second focal length) f2.
  • One focal plane of the second lens 15 (a plane passing through the focal point and perpendicular to the optical axis) coincides with the focal plane of the first lens 14, and a polygon scanner 16 is placed on, for example, the other focal plane of the second lens 15.
  • the polygon mirror 16a to be formed is arranged. Therefore, the light from the focal point of the first lens 14 is focused on the central portion of the polygon mirror 16a as parallel light by the second lens 15.
  • the positional relationship between the mirror surface of the polygon mirror 16a constituting the polygon scanner 16 and the second lens 15 is adjusted by the focal length f2 of the second lens 15, and the light from the second lens 15 is the mirror surface of the polygon mirror 16a. Any position may be used as long as it is focused in the center of. Therefore, the position of the polygon mirror 16a may be equal to or greater than the focal length f2 of the second lens 15.
  • the focal length f2 of the second lens 15 may be different from or the same as the focal length f1 of the first lens 14.
  • the focal planes of the first lens 14 and the second lens 15 are aligned with each other, but it is sufficient that the focal points of the first lens 14 and the focal points of the second lens 15 are aligned.
  • the condensing means is not limited to the second lens 15 as a condensing lens, and for example, an elliptical mirror or a parabolic mirror can be applied. In this case, if the focal point of the elliptical mirror or parabolic mirror is aligned with the focal plane of the first lens 14, the reflected light from the elliptical mirror or parabolic mirror is focused on the center of the mirror surface of the polygon mirror 16a. Good.
  • the polygon scanner 16 includes, for example, a polygon mirror 16a having five mirrors and a drive unit (not shown) that rotates the polygon mirror 16a in a certain direction.
  • the polygon mirror 16a is not limited to a pentagonal prism, and may be a tetragonal prism or a hexagonal prism.
  • the light guided to the polygon mirror 16a by the second lens 15 is scanned in the X-axis direction as the polygon mirror 16a rotates. Therefore, the scanning space is raster-scanned by the laser beam in the X-axis direction and the Y-axis direction.
  • the light reflected from the object in the scanning space is guided to the polygon mirror 16a, and the light reflected by the polygon mirror 16a is guided in the order of the second lens 15, the first lens 14, and the galvano scanner 13.
  • the light reflected by the galvano scanner 13 is guided to the photodiode 18 by the beam splitter 17 and the third lens 19 as a condenser lens, and is converted into an electric signal by the photodiode 18.
  • the beam splitter 17 is arranged between the galvano scanner 13 and the collimating lens 12, but the present invention is not limited to this, and the beam splitter 17 may be arranged between the collimating lens 12 and the laser diode 11.
  • the separation means for separating the light from the laser diode 11 and the light from the galvano scanner 13 is not limited to the beam splitter 17, and has, for example, an opening through which the light from the laser diode 11 passes, and the galvano scanner 13 has an opening. It may be a mirror that reflects the light from the photodiode 18 in the direction of the photodiode 18.
  • the light receiving unit is not limited to the photodiode 18, but may be a line sensor or an image sensor.
  • the third lens 19 for condensing can be omitted.
  • the size of the light receiving unit becomes small, so that a third lens 19 for condensing light is required.
  • the light from the second lens 15 is focused on the central portion of the polygon mirror 16a constituting the polygon scanner 16. Therefore, the thickness T1 of the polygon mirror 16 can be reduced, and the necessary and sufficient scanning angle in the Y-axis direction can be obtained by the thin polygon mirror 16a.
  • the light from the galvano scanner 13 spreads in the Y-axis direction according to a set scanning angle, for example, ⁇ 2. Therefore, in order to satisfy the scanning angle ⁇ 2 and reduce the thickness T2 of the polygon mirror 16a, it is necessary to shorten the distance L between the polygon mirror 16a and the galvano scanner 13. However, since it is necessary to prevent the polygon mirror 16a from interfering with the galvano scanner 13, there is a limit to shortening the distance L. Therefore, in the case of the configuration of the comparative example, it is difficult to secure the scanning angle ⁇ 2 in the Y-axis direction and reduce the thickness of the polygon mirror 16a as in the first embodiment.
  • the area of one mirror is small because the thickness T1 of the polygon mirror 16a is thinner than the thickness T2 of the comparative example. Therefore, since the mirror can be easily processed, the polygon mirror 16a can be easily manufactured.
  • the thin polygon mirror 16a is lightweight, it is possible to reduce the size of the motor (not shown) that drives the polygon mirror 16a. Therefore, the polygon scanner 16 can be miniaturized, and the manufacturing cost can be reduced.
  • the size of the galvano mirror can be reduced. Therefore, even when a mirror other than the polygon scanner 16 is used, the same effect as described above can be obtained.
  • FIG. 2 shows the scanning optical device 10 according to the second embodiment.
  • the same components as those in the first embodiment operate in the same manner as in the first embodiment and can be deformed in the same manner as in the first embodiment.
  • one focal point of the second lens 15 is aligned with the focal point of the first lens 14.
  • the first lens 14 is omitted, and the collimating lens 12a has a condensing function.
  • the light from the laser diode 11 is incident on the collimating lens 12a.
  • the collimating lens 12a has a focusing function and has a focal length (third focal length) f3.
  • the light from the collimating lens 12a is scanned by the galvano scanner 13 in an angle range of ⁇ 1 in the Y-axis direction, for example. Therefore, the focal point of the light from the collimating lens 12a is scanned by the galvano scanner 13 in the angle range of ⁇ 1 in the Y-axis direction.
  • One focal plane of the second lens 15 coincides with the focal plane of the collimating lens 12a. Therefore, the light from the laser diode 11 is guided to one focal plane of the second lens 15 via the collimating lens 12a and the galvano scanner 13.
  • the angle of incidence of light from the collimating lens 12a to the galvano scanner 13 is not shown.
  • the incident angle ⁇ 2 from the collimating lens 12a to the mirror surface of the polygon mirror 16a is determined by the focal position on the incident side of the second lens 15 and the scanning angle ⁇ 1 of the galvano scanner 13 scanned in the Y-axis direction.
  • a polygon mirror 16a constituting the polygon scanner 16 is arranged on the other focal plane of the second lens 15. Therefore, the light guided by the galvano scanner 13 to the focal plane of the collimating lens 12a and one of the focal planes of the second lens 15 is focused by the second lens 15 as parallel light on the central portion of the polygon mirror 16a.
  • the position of the mirror surface of the polygon mirror 16a is optimally located slightly farther than the focal length f2 of the second lens 15 depending on the maximum angle of ⁇ 1.
  • the light guided by the polygon mirror 16a is scanned by the polygon mirror 16a in the X-axis direction. Therefore, the scanning space is raster-scanned by the laser beam in the X-axis direction and the Y-axis direction.
  • the light reflected from the object in the scanning space is guided to the polygon mirror 16a, and the light reflected by the polygon mirror 16a is guided to the second lens 15 and the galvano scanner 13 in this order.
  • the light reflected by the galvano scanner 13 is guided to the photodiode 18 by the beam splitter 17 and the third lens 19, and is converted into an electric signal by the photodiode 18.
  • the light from the galvano scanner 13 can be focused on the central portion of the polygon mirror 16a by the second lens 15. Therefore, the thickness of the polygon mirror 16a can be reduced as in the first embodiment.
  • the first lens 14 of the first embodiment can be omitted. Therefore, the optical path length can be shortened, and the scanning optical device 10 can be miniaturized.
  • the first lens 14 can be omitted, the number of parts can be reduced and the manufacturing cost can be reduced.
  • first and second embodiments have described the scanning optical device applied to the LiDER, the first and second embodiments are not limited to the LiDER and are applied to other fields of optical scanning. It is possible to do.
  • the present invention is not limited to each of the above embodiments as it is, and at the implementation stage, the components can be modified and embodied within a range that does not deviate from the gist thereof.
  • various inventions can be formed by appropriately combining the plurality of components disclosed in each of the above embodiments. For example, some components may be removed from all the components shown in the embodiments. In addition, components across different embodiments may be combined as appropriate.

Abstract

A mirror 13 moves light from a light source 11 in a first direction within a fixed angle range. A first lens 14 has a first focal point and guides light from the mirror to the first focal point. A light converging means 15 has a second focal point that matches the first focal point. A second mirror 16 moves light from the converging means in a second direction that intersects the first direction.

Description

走査光学装置Scanning optics
 本発明の実施形態は、例えば3次元測距画像センサに適用される走査光学装置に関する。 An embodiment of the present invention relates to a scanning optical device applied to, for example, a three-dimensional ranging image sensor.
 例えば物体までの距離を3次元的に測定する所謂3D-LiDER(Light Detection and Ranging)と称する3次元測距画像センサが開発されている。このセンサは、例えばパルス状のレーザ光を、ポリゴンミラーを用いて走査し、物体からの反射光を検出することにより、物体までの距離を測定する。ポリゴンミラーは、角錐台形状であり、複数の反射面を有している。各反射面は、回転軸に沿った方向の傾斜角がそれぞれ変化されている。このため、回転するポリゴンミラーに反射面に照射されたレーザ光は、水平方向及び垂直方向に反射され、検出領域に照射される(例えば特許文献1、特許文献2参照)。 For example, a so-called 3D-LiDER (Light Detection and Ringing), which measures the distance to an object in three dimensions, has been developed. This sensor measures the distance to an object by, for example, scanning a pulsed laser beam with a polygon mirror and detecting the reflected light from the object. The polygon mirror has a pyramidal trapezoidal shape and has a plurality of reflecting surfaces. The inclination angle of each reflecting surface in the direction along the rotation axis is changed. Therefore, the laser beam applied to the reflecting surface of the rotating polygon mirror is reflected in the horizontal direction and the vertical direction and is applied to the detection region (see, for example, Patent Document 1 and Patent Document 2).
 また、角錐台形状ポリゴンミラーを使う替わりに、2台のポリゴンスキャナ、ガルバノスキャナ、レゾナントスキャナ、MEMS(Micro Electro Mechanical Systems)スキャナを水平方向及び垂直方向に1台ずつ配置した構成で、3次元画像を取得する技術も開発されている(例えば特許文献3参照)。 In addition, instead of using a prismatic polygon mirror, two polygon scanners, a galvano scanner, a resonant scanner, and a MEMS (Micro Electro Mechanical Systems) scanner are arranged one by one in the horizontal direction and one in the vertical direction, and a three-dimensional image is displayed. (See, for example, Patent Document 3).
特開平11-84006号公報JP-A-11-84006 特開2016-70974号公報Japanese Unexamined Patent Publication No. 2016-70974 特開平1-100491号公報Japanese Patent Application Laid-Open No. 1-100491
 一般に、レーザ光により水平方向(X軸方向)及び垂直方向(Y軸方向)に2次元走査する場合において、1段目をY軸方向、2段目をX軸方向に走査する場合、X軸方向を走査するスキャナの反射面を大きくする必要がある。具体的には、X軸をポリゴンスキャナで走査する場合、ポリゴンミラーのY軸方向の厚みを走査角に応じて厚くする必要がある。このため、ポリゴンミラーが大型化し、製造コストが増加する。 Generally, when two-dimensional scanning is performed in the horizontal direction (X-axis direction) and the vertical direction (Y-axis direction) by laser light, the first stage is scanned in the Y-axis direction and the second stage is scanned in the X-axis direction. It is necessary to increase the reflective surface of the scanner that scans the direction. Specifically, when scanning the X-axis with a polygon scanner, it is necessary to increase the thickness of the polygon mirror in the Y-axis direction according to the scanning angle. Therefore, the polygon mirror becomes large and the manufacturing cost increases.
 本発明の実施形態は、小型のミラーを用いて必要且つ十分な走査角を得ることが可能な走査光学装置を提供する。 An embodiment of the present invention provides a scanning optical device capable of obtaining a necessary and sufficient scanning angle by using a small mirror.
 本実施形態の走査光学装置は、光源からの光を一定の角度の範囲内で第1方向に走査する第1ミラーと、第1焦点を有し、前記第1ミラーからの光を前記第1焦点に導く第1レンズと、第2焦点を有し、前記第2焦点が前記第1焦点と一致された集光手段と、前記集光手段からの光を前記第1方向と交差する第2方向に走査する第2ミラーと、を具備する。 The scanning optical device of the present embodiment has a first mirror that scans the light from the light source in the first direction within a range of a certain angle, and the first focal point, and the light from the first mirror is the first. A first lens that leads to a focal point, a condensing means that has a second focal point and whose second focal point coincides with the first focal point, and a second condensing means that intersects the first direction with light from the condensing means. It includes a second mirror that scans in the direction.
第1実施形態に係る走査光学装置の一例を示す構成図。The block diagram which shows an example of the scanning optical apparatus which concerns on 1st Embodiment. 第2実施形態に係る走査光学装置の一例を示す構成図。The block diagram which shows an example of the scanning optical apparatus which concerns on 2nd Embodiment. 比較例に係る走査光学装置の一例を示す構成図。The block diagram which shows an example of the scanning optical apparatus which concerns on a comparative example.
 以下、実施の形態について、図面を参照して説明する。図面において、同一部分には同一符号を付している。 Hereinafter, embodiments will be described with reference to the drawings. In the drawings, the same parts are designated by the same reference numerals.
 (第1実施形態)
 図1は、第1実施形態に係る走査光学装置10を示している。走査光学装置10は、例えば光源としてのレーザダイオード11、コリメートレンズ12、例えばY軸方向の走査手段としてのガルバノスキャナ(第1ミラー)13、第1レンズ14、第2レンズ15、例えばX軸方向の走査手段としてのポリゴンスキャナ(第2ミラー)16、ビームスプリッタ17、受光部としてのフォトダイオード18を具備している。
(First Embodiment)
FIG. 1 shows the scanning optical device 10 according to the first embodiment. The scanning optical device 10 includes, for example, a laser diode 11 as a light source, a collimating lens 12, a galvano scanner (first mirror) 13 as a scanning means in the Y-axis direction, a first lens 14, a second lens 15, for example, an X-axis direction. A polygon scanner (second mirror) 16 as scanning means, a beam splitter 17, and a photodiode 18 as a light receiving unit are provided.
 レーザダイオード11は、例えばパルス状のレーザ光(以下、単に光とも言う)を発生する。 The laser diode 11 generates, for example, a pulsed laser beam (hereinafter, also simply referred to as light).
 コリメートレンズ12は、レーザダイオード11から発生された光を平行光とする。 
 ガルバノスキャナ13は、ミラーと、ミラーを所定の回転角度θ1の範囲内で往復運動させる図示せぬ駆動部を具備している。ガルバノスキャナ13は、コリメートレンズ12からの平行光をY軸方向に回転角度θ1の範囲で走査させる。
The collimating lens 12 uses the light generated from the laser diode 11 as parallel light.
The galvano scanner 13 includes a mirror and a drive unit (not shown) that reciprocates the mirror within a range of a predetermined rotation angle θ1. The galvano scanner 13 scans parallel light from the collimating lens 12 in the Y-axis direction within a rotation angle θ1.
 図1は、光軸を直線で近似しているため、コリメートレンズ12からガルバノスキャナ13への光の入射角度が示されていない。コリメートレンズ12からガルバノスキャナ13への光の入射角度は、第2レンズ15の焦点の位置と、第1レンズ14を通過してY軸方向に走査される光の焦点の位置により決定される。 Since the optical axis is approximated by a straight line in FIG. 1, the angle of incidence of light from the collimating lens 12 to the galvano scanner 13 is not shown. The angle of incidence of light from the collimating lens 12 onto the galvano scanner 13 is determined by the position of the focal point of the second lens 15 and the position of the focal point of the light that passes through the first lens 14 and is scanned in the Y-axis direction.
 Y軸方向の走査手段としては、ガルバノスキャナ13に限定されるものではなく、例えば、レゾナントスキャナやMEMSスキャナを適用することも可能である。 The scanning means in the Y-axis direction is not limited to the galvano scanner 13, and for example, a resonant scanner or a MEMS scanner can be applied.
 第1レンズ14は、アクロマティックレンズ又は非球面レンズにより構成された例えば集光レンズであり、焦点距離(第1焦点距離)f1を有している。第1レンズ14の焦点距離f1は、ガルバノスキャナ13の回転角度θ1に対するY軸方向の走査角度θ2の倍率に基づき調整される。 The first lens 14 is, for example, a condensing lens composed of an achromatic lens or an aspherical lens, and has a focal length (first focal length) f1. The focal length f1 of the first lens 14 is adjusted based on the magnification of the scanning angle θ2 in the Y-axis direction with respect to the rotation angle θ1 of the galvano scanner 13.
 具体的には、θ2の角度とθ1の関係は、第1レンズ14の焦点位置の高さ(レンズ中心からの距離)Aと、第2レンズ15の焦点位置の高さAが一致する場合、各レンズの焦点距離に依存して角度倍率が決定される。 Specifically, the relationship between the angle of θ2 and θ1 is such that when the height A of the focal position of the first lens 14 (distance from the center of the lens) A and the height A of the focal position of the second lens 15 match. The angular magnification is determined depending on the focal length of each lens.
 ガルバノスキャナ13は、例えば第1レンズ14の焦点距離f1の位置に配置され、ガルバノスキャナ13によりY軸方向に走査された平行光は、第1レンズ14の他方の焦点に集光される。 The galvano scanner 13 is arranged, for example, at the position of the focal length f1 of the first lens 14, and the parallel light scanned in the Y-axis direction by the galvano scanner 13 is focused on the other focal length of the first lens 14.
 第1レンズ14に対するガルバノスキャナ13の位置は、第1レンズ14の焦点距離f1の位置に限定されるものではなく、第1レンズ14に平行光を入射できればよい。このため、ガルバノスキャナ13の位置は、焦点距離f1以上であってもよい。 The position of the galvano scanner 13 with respect to the first lens 14 is not limited to the position of the focal length f1 of the first lens 14, and it is sufficient that parallel light can be incident on the first lens 14. Therefore, the position of the galvano scanner 13 may be the focal length f1 or more.
 集光手段としての第2レンズ15は、例えばアクロマティックレンズ又は非球面レンズにより構成された集光レンズであり、焦点距離(第2焦点距離)f2を有している。第2レンズ15の一方の焦点面(焦点を通り光軸に垂直な面)は、第1レンズ14の焦点面に一致され、第2レンズ15の例えば他方の焦点面には、ポリゴンスキャナ16を構成するポリゴンミラー16aが配置される。このため、第1レンズ14の焦点からの光は、第2レンズ15により平行光としてポリゴンミラー16aの中央部に集光される。 The second lens 15 as the condensing means is, for example, a condensing lens composed of an achromatic lens or an aspherical lens, and has a focal length (second focal length) f2. One focal plane of the second lens 15 (a plane passing through the focal point and perpendicular to the optical axis) coincides with the focal plane of the first lens 14, and a polygon scanner 16 is placed on, for example, the other focal plane of the second lens 15. The polygon mirror 16a to be formed is arranged. Therefore, the light from the focal point of the first lens 14 is focused on the central portion of the polygon mirror 16a as parallel light by the second lens 15.
 第1レンズ14と第2レンズ15との間の各光軸が中心軸に平行な場合、第1レンズ14から第2レンズ15に入射される光は、第2焦点距離f2の位置に集光されるため、ポリゴンミラー16aのミラー面を第2レンズ15の焦点面と一致させることが有効である。しかし、ポリゴンスキャナ16を構成するポリゴンミラー16aのミラー面と第2レンズ15の位置関係は、第2レンズ15の焦点距離f2により調整され、第2レンズ15からの光がポリゴンミラー16aのミラー面の中央に集光される位置であればよい。このため、ポリゴンミラー16aの位置は、第2レンズ15の焦点距離f2以上であってもよい。 When each optical axis between the first lens 14 and the second lens 15 is parallel to the central axis, the light incident on the first lens 14 to the second lens 15 is focused on the position of the second focal length f2. Therefore, it is effective to make the mirror surface of the polygon mirror 16a coincide with the focal surface of the second lens 15. However, the positional relationship between the mirror surface of the polygon mirror 16a constituting the polygon scanner 16 and the second lens 15 is adjusted by the focal length f2 of the second lens 15, and the light from the second lens 15 is the mirror surface of the polygon mirror 16a. Any position may be used as long as it is focused in the center of. Therefore, the position of the polygon mirror 16a may be equal to or greater than the focal length f2 of the second lens 15.
 第2レンズ15の焦点距離f2は、第1レンズ14の焦点距離f1と異なっていても、同一であってもよい。 The focal length f2 of the second lens 15 may be different from or the same as the focal length f1 of the first lens 14.
 第1レンズ14と第2レンズ15は、それぞれ焦点面を一致させたが、第1レンズ14の焦点と第2レンズ15の焦点が一致していればよい。 The focal planes of the first lens 14 and the second lens 15 are aligned with each other, but it is sufficient that the focal points of the first lens 14 and the focal points of the second lens 15 are aligned.
 集光手段としては、集光レンズとしての第2レンズ15に限定されるものではなく、例えば楕円ミラーや放物面ミラーなどを適用することも可能である。この場合、楕円ミラーや放物面ミラーの焦点を第1レンズ14の焦点面に一致させ、楕円ミラーや放物面ミラーからの反射光をポリゴンミラー16aのミラー面の中央に集光させればよい。 The condensing means is not limited to the second lens 15 as a condensing lens, and for example, an elliptical mirror or a parabolic mirror can be applied. In this case, if the focal point of the elliptical mirror or parabolic mirror is aligned with the focal plane of the first lens 14, the reflected light from the elliptical mirror or parabolic mirror is focused on the center of the mirror surface of the polygon mirror 16a. Good.
 ポリゴンスキャナ16は、例えば5つのミラーを有するポリゴンミラー16aと、ポリゴンミラー16aを一定の方向に回転させる図示せぬ駆動部とを具備する。ポリゴンミラー16aは、5角柱に限定されるものではなく、4角柱や6角柱であってもよい。 The polygon scanner 16 includes, for example, a polygon mirror 16a having five mirrors and a drive unit (not shown) that rotates the polygon mirror 16a in a certain direction. The polygon mirror 16a is not limited to a pentagonal prism, and may be a tetragonal prism or a hexagonal prism.
 さらに、ポリゴンスキャナ16に替えてガルバノスキャナやレゾナントスキャナなどを適用することも可能である。 Furthermore, it is also possible to apply a galvano scanner, a resonant scanner, or the like instead of the polygon scanner 16.
 第2レンズ15によりポリゴンミラー16aに導かれた光は、ポリゴンミラー16aの回転に伴い、X軸方向に走査される。このため、走査空間がレーザ光によりX軸方向及びY軸方向にラスタスキャンされる。 The light guided to the polygon mirror 16a by the second lens 15 is scanned in the X-axis direction as the polygon mirror 16a rotates. Therefore, the scanning space is raster-scanned by the laser beam in the X-axis direction and the Y-axis direction.
 走査空間内の物体から反射された光は、ポリゴンミラー16aに導かれ、ポリゴンミラー16aにより反射された光は、第2レンズ15、第1レンズ14、ガルバノスキャナ13の順に導かれる。ガルバノスキャナ13により反射された光は、ビームスプリッタ17及び集光レンズとしての第3レンズ19によりフォトダイオード18に導かれ、フォトダイオード18により電気信号に変換される。 The light reflected from the object in the scanning space is guided to the polygon mirror 16a, and the light reflected by the polygon mirror 16a is guided in the order of the second lens 15, the first lens 14, and the galvano scanner 13. The light reflected by the galvano scanner 13 is guided to the photodiode 18 by the beam splitter 17 and the third lens 19 as a condenser lens, and is converted into an electric signal by the photodiode 18.
 ビームスプリッタ17は、ガルバノスキャナ13とコリメートレンズ12との間に配置したが、これに限定されるものではなく、コリメートレンズ12とレーザダイオード11との間に配置してもよい。 The beam splitter 17 is arranged between the galvano scanner 13 and the collimating lens 12, but the present invention is not limited to this, and the beam splitter 17 may be arranged between the collimating lens 12 and the laser diode 11.
 レーザダイオード11からの光とガルバノスキャナ13からの光を分離する分離手段としては、ビームスプリッタ17に限定されるものではなく、例えばレーザダイオード11からの光を通過する開口を有し、ガルバノスキャナ13からの光をフォトダイオード18方向に反射するミラーであってもよい。 The separation means for separating the light from the laser diode 11 and the light from the galvano scanner 13 is not limited to the beam splitter 17, and has, for example, an opening through which the light from the laser diode 11 passes, and the galvano scanner 13 has an opening. It may be a mirror that reflects the light from the photodiode 18 in the direction of the photodiode 18.
 受光部は、フォトダイオード18に限定されるものではなく、ラインセンサやイメージセンサであってもよい。 The light receiving unit is not limited to the photodiode 18, but may be a line sensor or an image sensor.
 受光部としてのフォトダイオード18の径が、ビームスプリッタ17からの光の径より大きい場合、集光用の第3レンズ19は、省略可能である。しかし、受光部の高速応答を考慮した場合、受光部のサイズが小さくなるため、集光用の第3レンズ19が必要となる。
(第1実施形態の効果)
 上記第1実施形態に係る走査光学装置10によれば、ガルバノスキャナ13により、Y軸方向に走査された光を焦点面が一致された第1レンズ14及び第2レンズ15により、ポリゴンスキャナ16を構成するポリゴンミラー16aに導き、ポリゴンスキャナ16によりX軸方向に走査させている。第2レンズ15からの光は、ポリゴンスキャナ16を構成するポリゴンミラー16aの中央部に集光される。このため、ポリゴンミラー16の厚みT1を薄くすることができ、薄いポリゴンミラー16aにより必要且つ十分なY軸方向の走査角度を得ることができる。
When the diameter of the photodiode 18 as the light receiving portion is larger than the diameter of the light from the beam splitter 17, the third lens 19 for condensing can be omitted. However, considering the high-speed response of the light receiving unit, the size of the light receiving unit becomes small, so that a third lens 19 for condensing light is required.
(Effect of the first embodiment)
According to the scanning optical device 10 according to the first embodiment, the polygon scanner 16 is operated by the first lens 14 and the second lens 15 whose focal planes are aligned with the light scanned in the Y-axis direction by the galvano scanner 13. It is guided to the constituent polygon mirror 16a and scanned in the X-axis direction by the polygon scanner 16. The light from the second lens 15 is focused on the central portion of the polygon mirror 16a constituting the polygon scanner 16. Therefore, the thickness T1 of the polygon mirror 16 can be reduced, and the necessary and sufficient scanning angle in the Y-axis direction can be obtained by the thin polygon mirror 16a.
 図3に示す比較例の場合、ガルバノスキャナ13からの光は、設定された走査角度、例えばθ2に従ってY軸方向に広がる。このため、走査角度θ2を満たし、ポリゴンミラー16aの厚みT2を薄くするためには、ポリゴンミラー16aとガルバノスキャナ13との間の距離Lを短くする必要がある。しかし、ポリゴンミラー16aとガルバノスキャナ13との干渉を防止する必要があるため、距離Lを短縮するには、限界がある。したがって、比較例の構成の場合、Y軸方向の走査角度θ2を確保してポリゴンミラー16aの厚みを第1実施形態のように薄くすることは困難である。 In the case of the comparative example shown in FIG. 3, the light from the galvano scanner 13 spreads in the Y-axis direction according to a set scanning angle, for example, θ2. Therefore, in order to satisfy the scanning angle θ2 and reduce the thickness T2 of the polygon mirror 16a, it is necessary to shorten the distance L between the polygon mirror 16a and the galvano scanner 13. However, since it is necessary to prevent the polygon mirror 16a from interfering with the galvano scanner 13, there is a limit to shortening the distance L. Therefore, in the case of the configuration of the comparative example, it is difficult to secure the scanning angle θ2 in the Y-axis direction and reduce the thickness of the polygon mirror 16a as in the first embodiment.
 また、第1実施形態によれば、ポリゴンミラー16aの厚みT1が比較例の厚みT2に比べて薄いため、1つのミラーの面積が小さい。したがって、ミラーの加工が容易であるため、ポリゴンミラー16aの製造が容易である。 Further, according to the first embodiment, the area of one mirror is small because the thickness T1 of the polygon mirror 16a is thinner than the thickness T2 of the comparative example. Therefore, since the mirror can be easily processed, the polygon mirror 16a can be easily manufactured.
 さらに、薄いポリゴンミラー16aは軽量であるため、ポリゴンミラー16aを駆動する図示せぬモータも小型化することが可能である。したがって、ポリゴンスキャナ16を小型化でき、製造コストを低廉化することができる。 Furthermore, since the thin polygon mirror 16a is lightweight, it is possible to reduce the size of the motor (not shown) that drives the polygon mirror 16a. Therefore, the polygon scanner 16 can be miniaturized, and the manufacturing cost can be reduced.
 また、ポリゴンスキャナ16に替えて、ガルバノスキャナやレゾナントスキャナなどを適用した場合においても、ガルバノミラーのサイズを小型化することが可能である。このため、ポリゴンスキャナ16以外のミラーを用いる場合においても、上記と同様の効果を得ることができる。 Further, even when a galvano scanner, a resonant scanner, or the like is applied instead of the polygon scanner 16, the size of the galvano mirror can be reduced. Therefore, even when a mirror other than the polygon scanner 16 is used, the same effect as described above can be obtained.
 (第2実施形態)
 図2は、第2実施形態に係る走査光学装置10を示している。第2実施形態において、第1実施形態と同一の構成部分は、第1実施形態と同様に作用し、第1実施形態と同様に変形することが可能である。
(Second Embodiment)
FIG. 2 shows the scanning optical device 10 according to the second embodiment. In the second embodiment, the same components as those in the first embodiment operate in the same manner as in the first embodiment and can be deformed in the same manner as in the first embodiment.
 第1実施形態は、第2レンズ15の一方の焦点を第1レンズ14の焦点に一致させた。これに対して、第2実施形態において、第1レンズ14が省略され、コリメートレンズ12aが集光機能を有している。 In the first embodiment, one focal point of the second lens 15 is aligned with the focal point of the first lens 14. On the other hand, in the second embodiment, the first lens 14 is omitted, and the collimating lens 12a has a condensing function.
 レーザダイオード11からの光は、コリメートレンズ12aに入射される。コリメートレンズ12aは、集光機能を有し、焦点距離(第3焦点距離)f3を有している。コリメートレンズ12aからの光は、ガルバノスキャナ13により例えばY軸方向にθ1の角度範囲で走査される。このため、コリメートレンズ12aからの光の焦点は、ガルバノスキャナ13によりY軸方向にθ1の角度範囲で走査される。 The light from the laser diode 11 is incident on the collimating lens 12a. The collimating lens 12a has a focusing function and has a focal length (third focal length) f3. The light from the collimating lens 12a is scanned by the galvano scanner 13 in an angle range of θ1 in the Y-axis direction, for example. Therefore, the focal point of the light from the collimating lens 12a is scanned by the galvano scanner 13 in the angle range of θ1 in the Y-axis direction.
 第2レンズ15の一方の焦点面は、コリメートレンズ12aの焦点面と一致されている。このため、レーザダイオード11からの光は、コリメートレンズ12a、ガルバノスキャナ13を経由して第2レンズ15の一方の焦点面に導かれる。 One focal plane of the second lens 15 coincides with the focal plane of the collimating lens 12a. Therefore, the light from the laser diode 11 is guided to one focal plane of the second lens 15 via the collimating lens 12a and the galvano scanner 13.
 図2は、光軸を直線で近似しているため、コリメートレンズ12aからガルバノスキャナ13への光の入射角度が示されていない。コリメートレンズ12aからポリゴンミラー16aのミラー面への入射角θ2は、第2レンズ15の入射側の焦点位置と、Y軸方向に走査されるガルバノスキャナ13の走査角θ1により決定される。 Since the optical axis is approximated by a straight line in FIG. 2, the angle of incidence of light from the collimating lens 12a to the galvano scanner 13 is not shown. The incident angle θ2 from the collimating lens 12a to the mirror surface of the polygon mirror 16a is determined by the focal position on the incident side of the second lens 15 and the scanning angle θ1 of the galvano scanner 13 scanned in the Y-axis direction.
 具体的には、図2に示す第2実施形態の場合、第1実施形態に示す第1レンズ14が無く、焦点位置の高さBは、ガルバノスキャナ13によって走査された終端と一致する。このため、コリメートレンズ12aの焦点距離f3と第2レンズ15の焦点距離f2との関係と、θ1とθ2との関係に相関関係は無く、ポリゴンミラー16aのミラー面への入射角θ2の角度は、第2レンズ15に入射される光の傾き(中心を0度とするとθ1)と、ガルバノスキャナ13によって走査された終端の高さB、及び第2レンズ15の焦点距離f2により決定されることとなる。 Specifically, in the case of the second embodiment shown in FIG. 2, there is no first lens 14 shown in the first embodiment, and the height B of the focal position coincides with the end scanned by the galvano scanner 13. Therefore, there is no correlation between the focal length f3 of the collimating lens 12a and the focal length f2 of the second lens 15 and the relationship between θ1 and θ2, and the angle of incidence θ2 on the mirror surface of the polygon mirror 16a is , Determined by the inclination of the light incident on the second lens 15 (θ1 when the center is 0 degrees), the height B of the end scanned by the galvano scanner 13, and the focal length f2 of the second lens 15. It becomes.
 第2レンズ15の他方の焦点面には、ポリゴンスキャナ16を構成するポリゴンミラー16aが配置される。このため、ガルバノスキャナ13によりコリメートレンズ12aの焦点面と第2レンズ15の一方の焦点面に導かれた光は、第2レンズ15により平行光としてポリゴンミラー16aの中央部に集光される。 A polygon mirror 16a constituting the polygon scanner 16 is arranged on the other focal plane of the second lens 15. Therefore, the light guided by the galvano scanner 13 to the focal plane of the collimating lens 12a and one of the focal planes of the second lens 15 is focused by the second lens 15 as parallel light on the central portion of the polygon mirror 16a.
 また、ポリゴンミラー16aのミラー面の位置は、θ1の最大角度に依存して、第2レンズ15の焦点距離f2より若干遠い位置が最適となる。 Further, the position of the mirror surface of the polygon mirror 16a is optimally located slightly farther than the focal length f2 of the second lens 15 depending on the maximum angle of θ1.
 ポリゴンミラー16aに導かれた光は、ポリゴンミラー16aによりX軸方向に走査される。このため、走査空間がレーザ光によりX軸方向及びY軸方向にラスタスキャンされる。 The light guided by the polygon mirror 16a is scanned by the polygon mirror 16a in the X-axis direction. Therefore, the scanning space is raster-scanned by the laser beam in the X-axis direction and the Y-axis direction.
 一方、走査空間内の物体から反射された光は、ポリゴンミラー16aに導かれ、ポリゴンミラー16aにより反射された光は、第2レンズ15、ガルバノスキャナ13の順に導かれる。ガルバノスキャナ13により反射された光は、ビームスプリッタ17、第3レンズ19によりフォトダイオード18に導かれ、フォトダイオード18により電気信号に変換される。
(第2実施形態の効果)
 上記第2実施形態によっても、ガルバノスキャナ13からの光を第2レンズ15によりポリゴンミラー16aの中央部に集光させることができる。このため、第1実施形態と同様にポリゴンミラー16aの厚みを薄くすることができる。
On the other hand, the light reflected from the object in the scanning space is guided to the polygon mirror 16a, and the light reflected by the polygon mirror 16a is guided to the second lens 15 and the galvano scanner 13 in this order. The light reflected by the galvano scanner 13 is guided to the photodiode 18 by the beam splitter 17 and the third lens 19, and is converted into an electric signal by the photodiode 18.
(Effect of the second embodiment)
Also in the second embodiment, the light from the galvano scanner 13 can be focused on the central portion of the polygon mirror 16a by the second lens 15. Therefore, the thickness of the polygon mirror 16a can be reduced as in the first embodiment.
 しかも、第2実施形態によれば、第1実施形態の第1レンズ14を省略することができる。このため、光路長を短縮することができ、走査光学装置10を小型化することが可能である。 Moreover, according to the second embodiment, the first lens 14 of the first embodiment can be omitted. Therefore, the optical path length can be shortened, and the scanning optical device 10 can be miniaturized.
 さらに、第2実施形態によれば、第1レンズ14を省略することができるため、部品点数を削減でき、製造コストを低廉化することが可能である。 Further, according to the second embodiment, since the first lens 14 can be omitted, the number of parts can be reduced and the manufacturing cost can be reduced.
 尚、第1、第2実施形態は、LiDERに適用される走査光学装置を説明したが、第1、第2実施形態は、LiDERに限定されるものではなく、その他の光学走査の分野に適用することが可能である。 Although the first and second embodiments have described the scanning optical device applied to the LiDER, the first and second embodiments are not limited to the LiDER and are applied to other fields of optical scanning. It is possible to do.
 その他、本発明は上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 In addition, the present invention is not limited to each of the above embodiments as it is, and at the implementation stage, the components can be modified and embodied within a range that does not deviate from the gist thereof. In addition, various inventions can be formed by appropriately combining the plurality of components disclosed in each of the above embodiments. For example, some components may be removed from all the components shown in the embodiments. In addition, components across different embodiments may be combined as appropriate.

Claims (13)

  1.  光源からの光を一定の角度の範囲内で第1方向に走査する第1ミラーと、
     第1焦点距離の第1焦点を有し、前記第1ミラーからの光を前記第1焦点に導く第1レンズと、
     第2焦点距離の第2焦点を有し、前記第2焦点が前記第1焦点と一致された集光手段と、
     前記集光手段からの光を前記第1方向と交差する第2方向に走査する第2ミラーと、
     を具備することを特徴とする走査光学装置。
    A first mirror that scans the light from the light source in the first direction within a certain angle range,
    A first lens having a first focal length with a first focal length and guiding light from the first mirror to the first focal point.
    A condensing means having a second focal length with a second focal length and having the second focal point coincided with the first focal length.
    A second mirror that scans the light from the condensing means in a second direction that intersects the first direction,
    A scanning optical device comprising.
  2.  前記第1ミラーは、ガルバノスキャナ、レゾナントスキャナ、及びMEMSスキャナのうちの1つであることを特徴とする請求項1記載の走査光学装置。 The scanning optical device according to claim 1, wherein the first mirror is one of a galvano scanner, a resonant scanner, and a MEMS scanner.
  3.  前記集光手段は、集光レンズとしての第2レンズ、楕円ミラー、放物面ミラーのうちの1つであることを特徴とする請求項1記載の走査光学装置。 The scanning optical device according to claim 1, wherein the condensing means is one of a second lens as a condensing lens, an elliptical mirror, and a parabolic mirror.
  4.  前記第2ミラーは、ポリゴンスキャナ、ガルバノスキャナ、レゾナントスキャナのうちの1つであることを特徴とする請求項1記載の走査光学装置。 The scanning optical device according to claim 1, wherein the second mirror is one of a polygon scanner, a galvano scanner, and a resonant scanner.
  5.  前記第1焦点距離と、前記第2焦点距離は、異なることを特徴とする請求項1記載の走査光学装置。 The scanning optical device according to claim 1, wherein the first focal length and the second focal length are different.
  6.  前記第1焦点距離と、前記第2焦点距離は、等しいことを特徴とする請求項1記載の走査光学装置。 The scanning optical device according to claim 1, wherein the first focal length and the second focal length are equal to each other.
  7.  前記光源からの光と前記第1ミラーからの光を分離する分離手段と、
     前記分離手段からの光を受光する受光部と、
     をさらに具備することを特徴とする請求項1記載の走査光学装置。
    A separating means for separating the light from the light source and the light from the first mirror,
    A light receiving unit that receives light from the separation means and
    The scanning optical device according to claim 1, further comprising.
  8.  第1焦点距離の第1焦点を有し、光源からの光を前記第1焦点に導く第1レンズと、
     前記第1レンズからの光を一定の角度範囲内で前記第1焦点に向けて第1方向に走査する第1ミラーと、
     第2焦点距離の第2焦点を有し、前記第2焦点が前記第1焦点と一致された集光手段と、
     前記集光手段からの光を前記第1方向と交差する第2方向に走査する第2ミラーと、
     を具備することを特徴とする走査光学装置。
    A first lens having a first focal length with a first focal length and guiding light from a light source to the first focal point.
    A first mirror that scans the light from the first lens in the first direction toward the first focal point within a certain angle range, and
    A condensing means having a second focal length and having the second focal point coincided with the first focal length.
    A second mirror that scans the light from the condensing means in a second direction that intersects the first direction,
    A scanning optical device comprising.
  9.  前記第1ミラーは、ガルバノスキャナ、レゾナントスキャナ、及びMEMSスキャナのうちの1つであることを特徴とする請求項8記載の走査光学装置。 The scanning optical device according to claim 8, wherein the first mirror is one of a galvano scanner, a resonant scanner, and a MEMS scanner.
  10.  前記集光手段は、集光レンズとしての第2レンズ、楕円ミラー、放物面ミラーのうちの1つであることを特徴とする請求項8記載の走査光学装置。 The scanning optical device according to claim 8, wherein the condensing means is one of a second lens as a condensing lens, an elliptical mirror, and a parabolic mirror.
  11.  前記第2ミラーは、ポリゴンスキャナ、ガルバノスキャナ、レゾナントスキャナのうちの1つであることを特徴とする請求項8記載の走査光学装置。 The scanning optical device according to claim 8, wherein the second mirror is one of a polygon scanner, a galvano scanner, and a resonant scanner.
  12.  前記光源からの光と前記第1ミラーからの光を分離する分離手段と、
     前記分離手段からの光を受光する受光部と、
     をさらに具備することを特徴とする請求項8記載の走査光学装置。
    A separating means for separating the light from the light source and the light from the first mirror,
    A light receiving unit that receives light from the separation means and
    8. The scanning optical device according to claim 8, further comprising.
  13.  前記第2ミラーは、前記集光手段の前記第2焦点距離から離れた位置に配置されることを特徴とする請求項11記載の走査光学装置。 The scanning optical device according to claim 11, wherein the second mirror is arranged at a position away from the second focal length of the light collecting means.
PCT/JP2020/010617 2019-04-01 2020-03-11 Scanning optical device WO2020203129A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-070091 2019-04-01
JP2019070091A JP2020170049A (en) 2019-04-01 2019-04-01 Optical scanning device

Publications (1)

Publication Number Publication Date
WO2020203129A1 true WO2020203129A1 (en) 2020-10-08

Family

ID=72667895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010617 WO2020203129A1 (en) 2019-04-01 2020-03-11 Scanning optical device

Country Status (2)

Country Link
JP (1) JP2020170049A (en)
WO (1) WO2020203129A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417745U (en) * 1978-06-21 1979-02-05
JPH01100491A (en) * 1987-10-14 1989-04-18 Matsushita Electric Ind Co Ltd Laser radar image former
US5760951A (en) * 1992-09-01 1998-06-02 Arthur Edward Dixon Apparatus and method for scanning laser imaging of macroscopic samples
JP2011099816A (en) * 2009-11-09 2011-05-19 Sony Corp Condenser lens and three-dimensional distance measuring device
JP2014219330A (en) * 2013-05-09 2014-11-20 国立大学法人東京大学 Measurement system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5417745U (en) * 1978-06-21 1979-02-05
JPH01100491A (en) * 1987-10-14 1989-04-18 Matsushita Electric Ind Co Ltd Laser radar image former
US5760951A (en) * 1992-09-01 1998-06-02 Arthur Edward Dixon Apparatus and method for scanning laser imaging of macroscopic samples
JP2011099816A (en) * 2009-11-09 2011-05-19 Sony Corp Condenser lens and three-dimensional distance measuring device
JP2014219330A (en) * 2013-05-09 2014-11-20 国立大学法人東京大学 Measurement system

Also Published As

Publication number Publication date
JP2020170049A (en) 2020-10-15

Similar Documents

Publication Publication Date Title
JP2018529102A (en) LIDAR sensor
TWI451132B (en) Projector to project an image and corresponding method
EP3543770B1 (en) Optical scanner, image projection apparatus, mobile object, and optical scanner manufacturing method
US7190499B2 (en) Laser scanning unit
JP7355171B2 (en) Optical device, distance measuring device using the same, and moving object
JP6680109B2 (en) Video projection device and head-up display device including the same
JP7230443B2 (en) Distance measuring device and moving object
US11079477B2 (en) Optical scanning system
WO2013110665A1 (en) Scanning device
US7463394B2 (en) Linear optical scanner
WO2020203129A1 (en) Scanning optical device
JP6146965B2 (en) Optical scanning apparatus and endoscope apparatus
US20090051995A1 (en) Linear Optical Scanner
JP4400429B2 (en) Laser beam scanner
JP4246981B2 (en) Laser processing equipment
WO2019181300A1 (en) Optical scanning device
JP3450579B2 (en) Scanning optical system and image forming apparatus having the same
JP2014202775A (en) Optical scanner and endoscope device
KR101913947B1 (en) Scanning device and optical micorscopy system including the same
JP2005181927A (en) Optical deflection device and image display device using same
US20230296869A1 (en) Optical scanning device and image forming device
JPH1048554A (en) Optical scanning device
JP6776748B2 (en) Light source device, image display device
KR20060097717A (en) An optical arrangement with oscillating reflector
JP4558969B2 (en) Light beam synthesis method, lens for synthesized light beam, multi-beam light source device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20784741

Country of ref document: EP

Kind code of ref document: A1