JPH1048554A - Optical scanning device - Google Patents

Optical scanning device

Info

Publication number
JPH1048554A
JPH1048554A JP20346296A JP20346296A JPH1048554A JP H1048554 A JPH1048554 A JP H1048554A JP 20346296 A JP20346296 A JP 20346296A JP 20346296 A JP20346296 A JP 20346296A JP H1048554 A JPH1048554 A JP H1048554A
Authority
JP
Japan
Prior art keywords
optical
optical system
light
light beam
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20346296A
Other languages
Japanese (ja)
Inventor
Koji Masuda
浩二 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP20346296A priority Critical patent/JPH1048554A/en
Publication of JPH1048554A publication Critical patent/JPH1048554A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a compact optical scanning device which is easily attached to a housing without needs for a large diameter to a second optical system focusing polarized light flux on a scanned surface. SOLUTION: Optical scanning is performed by coupling luminous fluxes from a light source part 10 through a first optical system 11a, 11b to guide the flux to a light deflection part and focusing the deflected luminous fluxes through an optical deflector on the surface to be scanned 14 in a second optical system 13 as a light spot. The reflected luminous flux to go to an optical scanning start position A is detected by a third optical detector 17 through an optical system 15, and a synchronizing signal for starting the optical scanning is generated. Conditions have been provided, under which the first through third optical systems are not mechanically interfered with each other and are able to be arranged compactly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は光走査装置に関す
る。
The present invention relates to an optical scanning device.

【0002】[0002]

【従来の技術】デジタルの複写装置や光プリンタに関連
して良く知られた光走査装置では、光走査開始位置へと
向かう偏向光束を光検出器で検出し、光走査開始のため
の同期信号を発生させることが行なわれている。光検出
器による検出を行なうのに、偏向光束をfθレンズの有
効画角外の部分を介して光検出器に導く方法が知られて
いる(特開平3−221913号公報)が、この方法で
は、光走査に必要な有効画角外に、偏向光束を光検出器
に導くための部分を必要とするため、fθレンズの画角
を光書込みに必要な画角よりも大きく取る必要があり、
fθレンズの大口径化をもたらしてしまう。また光検出
器は必然的にfθレンズの結像面に位置することになる
ので、光検出器を配備するために他の光学系のレイアウ
ト上の自由度が制限されやすい。
2. Description of the Related Art In an optical scanning apparatus which is well known in connection with a digital copying apparatus or an optical printer, a light beam which is deflected toward an optical scanning start position is detected by a photodetector, and a synchronizing signal for starting the optical scanning is used. Is occurring. In order to perform detection by a photodetector, a method is known in which a deflected light beam is guided to a photodetector through a portion outside the effective angle of view of an fθ lens (Japanese Patent Application Laid-Open No. 3-221913). In addition to the effective angle of view required for optical scanning, a part for guiding the deflected light beam to the photodetector is required, so that the angle of view of the fθ lens needs to be larger than the angle of view required for optical writing.
This results in an increase in the diameter of the fθ lens. In addition, since the photodetector is necessarily located on the image plane of the fθ lens, the degree of freedom in layout of other optical systems is likely to be limited in order to provide the photodetector.

【0003】また、特開平5−19186号公報には、
fθレンズに相当する走査用レンズ部と、偏向光束を光
検出器に導くBD結像用レンズ部とを一体に構成した光
学系が開示されており、特開平7−281113号公報
には、光源側からの光束を光偏向器の偏向反射面位置に
線像に結像させるためのシリンダレンズと偏向光束を光
検出器に導くアナモフィックなレンズとを一体に構成し
た光学系が開示されている。
[0003] Also, JP-A-5-19186 discloses that
An optical system in which a scanning lens unit corresponding to an fθ lens and a BD imaging lens unit that guides a deflected light beam to a photodetector is disclosed, is disclosed in Japanese Patent Application Laid-Open No. 7-281113. There is disclosed an optical system in which a cylinder lens for forming a light beam from the side into a linear image at the position of a deflecting reflection surface of an optical deflector and an anamorphic lens for guiding the deflecting light beam to a photodetector are integrated.

【0004】このように2つのレンズを一体として構成
すると、一体化されたレンズは一般に形状が複雑と成る
ため、これをプラスチックで成形加工する場合、金駒加
工が複雑化し、それぞれのレンズを別体に成形加工する
場合よりもコストが高くつくことになりかねない。ま
た、一体化された2つのレンズが異なる結像性能を持つ
ため、2つのレンズを別個に取り付けるよりも取付けの
精度が厳しくなりがちであり、わずかな取付け誤差があ
っても、一方もしくは双方の結像性能が劣化してしまう
虞れがある。
[0004] When the two lenses are integrally formed as described above, the shape of the integrated lens is generally complicated. Therefore, when the integrated lens is formed of plastic, the processing of the gold piece is complicated, and each lens is separately formed. This can be more costly than forming into a body. In addition, since the two integrated lenses have different imaging performances, the mounting accuracy tends to be stricter than when the two lenses are separately mounted. Even if there is a slight mounting error, one or both of the two lenses may be mounted. There is a possibility that the imaging performance is deteriorated.

【0005】[0005]

【発明が解決しようとする課題】この発明は上述した事
情に鑑み、ハウジングへの組付けが容易で、偏向光束を
被走査面上に集光する第2光学系の大口径化をもたらす
ことが無く、光学系のコンパクトな配備が可能な光走査
装置の実現を課題とする。
SUMMARY OF THE INVENTION In view of the above-mentioned circumstances, the present invention can easily be mounted on a housing and can increase the diameter of a second optical system for condensing a deflected light beam on a surface to be scanned. It is another object of the present invention to realize an optical scanning device capable of providing a compact optical system.

【0006】[0006]

【課題を解決するための手段】この発明の光走査装置
は、光源部と、第1〜第3光学系と、光偏向器および光
検出器を有する(請求項1,2)。「光源部」は光走査
用の光束を放射するもので、半導体レーザや発光ダイオ
ード等を光源とするものを好適に用いることができる。
「第1光学系」は、光源部からの光束をカップリングし
て光偏向部に導くための光学系である。第1光学系でカ
ップリングされた光束は「平行光束」もしくは「弱い集
束性の光束」あるいは「弱い発散性の光束」となる。
An optical scanning device according to the present invention includes a light source unit, first to third optical systems, an optical deflector and a photodetector. The “light source section” emits a light beam for optical scanning, and a light source using a semiconductor laser, a light emitting diode, or the like as a light source can be suitably used.
The “first optical system” is an optical system for coupling a light beam from the light source unit and guiding the light beam to the light deflection unit. The light beam coupled by the first optical system becomes a “parallel light beam”, a “weakly converging light beam”, or a “weakly divergent light beam”.

【0007】「光偏向器」は、光偏向部の近傍に偏向反
射面を有し、この偏向反射面により第1光学系からの光
束を反射させ、反射光束を偏向させる。従って、偏向光
束は上記光偏向部を「偏向の起点」として偏向する。
The "optical deflector" has a deflecting / reflecting surface near the light deflecting unit, and reflects the light beam from the first optical system by this deflecting / reflecting surface to deflect the reflected light beam. Therefore, the deflected light beam is deflected by using the light deflector as the “start point of deflection”.

【0008】光偏向器により理想的に偏向された偏向光
束に直交する面を任意に想定し、この面上において、偏
向光束の変位する方向を「走査方向」とよび、光源部か
らの光偏向部に到る光路上で、走査方向に対応する方向
を「走査対応方向」とよび、上記面内で走査方向に直交
する方向を「走査直交方向」、上記光源部から光偏向部
に到る光路上で走査直交方向と対応する方向を「走査直
交対応方向」と呼ぶ。被走査面上では「走査方向が主走
査方向」で「走査直交方向が副走査方向」であることは
容易に理解されるであろう。光偏向器としては周知の
「ポリゴンミラーや回転2面鏡、回転単面鏡等」を用い
ることができる。
A surface orthogonal to the deflected light beam ideally deflected by the optical deflector is arbitrarily assumed. On this surface, the direction in which the deflected light beam is displaced is referred to as a “scanning direction”, and the light deflected from the light source unit is deflected. On the optical path to the section, a direction corresponding to the scanning direction is called a “scanning direction”, a direction orthogonal to the scanning direction in the plane is a “scanning orthogonal direction”, and the light source section reaches the light deflection section. The direction corresponding to the scanning orthogonal direction on the optical path is referred to as “scanning orthogonal corresponding direction”. It will be easily understood that “the scanning direction is the main scanning direction” and “the scanning orthogonal direction is the sub-scanning direction” on the surface to be scanned. As the optical deflector, a known “polygon mirror, rotating two-sided mirror, rotating single-sided mirror, or the like” can be used.

【0009】「第2光学系」は、光偏向器により偏向さ
れた光束を被走査面上に光スポットとして集光させる光
学系であり、第1光学系からの光束が走査対応方向にお
いて平行光束であれば所謂「fθレンズ」を用いること
ができる。第2光学系としては、上記機能を持つレンズ
系(単レンズでも副数枚で構成されてもよい)もしく
は、上記機能を持つ凹面鏡を利用することができる。
The "second optical system" is an optical system for condensing the light beam deflected by the optical deflector as a light spot on the surface to be scanned. The light beam from the first optical system is a parallel light beam in the scanning corresponding direction. If so, a so-called “fθ lens” can be used. As the second optical system, a lens system having the above function (a single lens or a sub lens may be used) or a concave mirror having the above function can be used.

【0010】「光検出器」は、光走査開始位置へと向か
う偏向光束を検出して出力を発し、この出力に基づき光
走査開始のための同期信号が生成される。「第3光学
系」は、光走査開始位置へと向かう偏向光束を光検出器
に導く。第1、第2および第3光学系は互いに別体で、
第3光学系は、第1光学系と第2光学系の間に配置され
る。即ち、光偏向器により偏向された偏向光束は、上記
光偏向部を偏向の起点として、第1光学系の光軸から遠
ざかる方向へ偏向し、第2光学系への入射に先立って第
3光学系に入射する。
[0010] The "photodetector" detects a deflected light beam heading for the optical scanning start position and emits an output. Based on this output, a synchronizing signal for starting the optical scanning is generated. The "third optical system" guides the deflected light beam toward the optical scanning start position to the photodetector. The first, second and third optical systems are separate from each other,
The third optical system is disposed between the first optical system and the second optical system. That is, the deflected light beam deflected by the optical deflector is deflected in a direction away from the optical axis of the first optical system using the optical deflector as a starting point of the deflection, and is deflected in the third optical system before entering the second optical system. Inject into the system.

【0011】請求項1記載の光走査装置は、このような
「基本的な光学系構成」において以下の如き特徴を有す
る。即ち、第1光学系光軸と第3光学系光軸とがなす角
をθ13、第3光学系光軸と「光走査開始位置に集光する
べく第2光学系へ向かう偏向光束の主光線」とのなす角
をθ32とする。また、第1光学系を構成する結像素子の
うちで最も光偏向部側の結像素子に就いて、その走査対
応方向における光軸から第3光学系側の素子幅をS13
光偏向器側の面から光偏向部までの距離をL11とする。
さらに、第3光学系を構成する結像素子のうちで最も光
偏向部側の結像素子に就いて、その走査対応方向におけ
る光軸から第1光学系側の素子幅をS31、上記光軸から
第2光学系側の素子幅をS32、光偏向器側の面から光偏
向部までの距離をL31とする。
The optical scanning device according to the first aspect has the following features in such a “basic optical system configuration”. That is, the angle formed by the first optical system optical axis and the third optical system optical axis is θ 13 , and the third optical system optical axis and the main beam of the deflected light beam directed to the second optical system to converge to the optical scanning start position. The angle made with the “light beam” is θ 32 . Further, among the imaging elements constituting the first optical system, with respect to the imaging element closest to the light deflection unit, the element width from the optical axis in the scanning corresponding direction to the third optical system side is S 13 ,
The distance from the surface of the optical deflector side and the light deflection unit and L 11.
Further, among the image forming elements constituting the third optical system, the image forming element closest to the light deflecting section has an element width S 31 from the optical axis in the scanning corresponding direction to the first optical system side. The element width on the second optical system side from the axis is S 32 , and the distance from the surface on the optical deflector side to the optical deflector is L 31 .

【0012】このとき、上記角:θ13,θ32、距離:L
11,L31、素子幅:S13,S32は、条件: (1) θ13>max{S13/L11,S31/L31} (2) θ32>S32/L31 を満足する。条件(1)において、max{S13
11,S31/L31}は、S13/L11とS31/L31のうち
で大なる方を意味する。条件(1)は、第1光学系と第
2光学系とが干渉しないための条件であり、条件(2)
は、第2光学系と第3光学系が干渉しないための条件で
ある。
At this time, the angles: θ 13 and θ 32 , and the distance: L
11 , L 31 , element widths: S 13 , S 32 satisfy the following conditions: (1) θ 13 > max {S 13 / L 11 , S 31 / L 31 } (2) θ 32 > S 32 / L 31 I do. In condition (1), max {S 13 /
L 11 , S 31 / L 31 } means the larger one of S 13 / L 11 and S 31 / L 31 . The condition (1) is a condition for preventing the first optical system and the second optical system from interfering with each other, and the condition (2)
Is a condition for preventing the second optical system and the third optical system from interfering with each other.

【0013】請求項2記載の光走査装置は、上記基本的
な光学系構成において、以下の如き特徴を有する。即
ち、光偏向部から第2光学系の最も光偏向器側の面に到
る(第2光学系の)光軸上の距離をL21、光偏向部から
(第2光学系光軸にそって)被走査面に到る距離をL22
とし、光偏向部から第3光学系の最も光偏向部側の面に
到る光軸上の距離をL31、光偏向部から(第3光学系光
軸にそって)光検出器の受光面に到る距離をL32とする
とき、これらは条件: (3)√2・L21<L31<L22 (4)√2・L21<L32<L22 を満足する。これら条件(3),(4)は安定な同期信
号を得るのに適正な位置に第3光学系と光検出器を配備
するための条件である。
An optical scanning device according to a second aspect of the present invention has the following features in the basic optical system configuration. That is, the distance on the optical axis (of the second optical system) from the light deflector to the surface of the second optical system closest to the optical deflector is L 21 , and the distance from the light deflector to the second optical system (along the optical axis). T) The distance to the surface to be scanned is L 22
The distance on the optical axis from the light deflecting unit to the surface closest to the light deflecting unit of the third optical system is L 31 , and the light detector receives light from the light deflecting unit (along the third optical system optical axis). Assuming that the distance to the surface is L 32 , these satisfy the condition: (3) √2 · L 21 <L 31 <L 22 (4) √2 · L 21 <L 32 <L 22 These conditions (3) and (4) are conditions for disposing the third optical system and the photodetector at an appropriate position to obtain a stable synchronization signal.

【0014】請求項3記載の光走査装置は、上記基本的
な光学系構成において、上記の条件(1),(2),
(3),(4)が満足されることを特徴とする。
According to a third aspect of the present invention, in the above-mentioned basic optical system configuration, the above conditions (1), (2),
(3) and (4) are satisfied.

【0015】上記請求項1〜3の任意の1に記載の光走
査装置において、第1光学系によりカップリングされた
光束は、前述のように平行光束もしくは弱い発散性もし
くは弱い集束性の光束となるが、このようにカップリン
グした光束をさらに、走査直交対応方向に集束させて、
光偏向部に、走査対応方向に長い線像として結像させる
ようにしてもよい。
In the optical scanning device according to any one of claims 1 to 3, the light beam coupled by the first optical system may be a parallel light beam or a light beam having a weak divergence or a weak converging light as described above. However, the light beam thus coupled is further focused in the scanning orthogonal direction,
The light deflector may be formed as a long line image in the scanning corresponding direction.

【0016】即ち、この場合、第1光学系は「カップリ
ングレンズと、このカップリングレンズによりカップリ
ングされた光束を、光偏向部に、走査対応方向に長い線
像に結像させる線像結像光学系」とを有することにな
る。このようにする場合には、偏向光束は「走査直交方
向に発散性」で「走査方向には平行光束もしくは弱い発
散性もしくは弱い集束性」の光束であるので、第2光学
系と第3光学系とは、それぞれ走査直交方向により強い
正のパワーを持つアナモフィックなレンズとなり、特に
これらをアナモフィックな単レンズとすることができる
(請求項4)。
That is, in this case, the first optical system includes a “coupling lens and a line image forming unit that forms the light beam coupled by the coupling lens into a long line image in the scanning corresponding direction on the light deflection unit. Image optical system ". In this case, the deflected light beam is “divergent in the scanning orthogonal direction” and “parallel light beam or weakly divergent or weakly converging light beam in the scanning direction”. The system is an anamorphic lens having a stronger positive power in the scanning orthogonal direction, and in particular, these can be an anamorphic single lens.

【0017】請求項5記載の光走査装置は、上記請求項
1または2または3または4記載の光走査装置におい
て、光源部から第1光学系を介して光偏向部に到る距離
をL12、光偏向部から第3光学系を介して光検出器の受
光面に到る距離をL32とするとき、これらが条件: (5) 4/5<L32/L12<6/5 を満足することを特徴とする。
According to a fifth aspect of the present invention, in the optical scanning device according to the first or second or third or fourth aspect, the distance from the light source unit to the light deflecting unit via the first optical system is L 12. , when the distance extending from the light deflection unit via the third optical system on the light receiving surface of the photodetector and L 32, these conditions: a (5) 4/5 <L 32 / L 12 <6/5 It is characterized by satisfaction.

【0018】条件(5)を満足すると、光源部と光検出
器とを互いに近接させることができるので、「光源部
と、光源部を駆動する光源用駆動回路と、光検出器と、
光検出器を制御する検出器用駆動回路とを、同一基板に
配置する(請求項6)」ことが可能になる。
When the condition (5) is satisfied, the light source unit and the photodetector can be brought close to each other, so that “the light source unit, the light source driving circuit for driving the light source unit, the photodetector,
It is possible to arrange a detector driving circuit for controlling the photodetector on the same substrate (claim 6).

【0019】[0019]

【発明の実施の形態】図1において、「半導体レーザ」
を光源として用いる光源部10から放射された発散性の
光束は、カップリングレンズ11aによりカップリング
されて平行光束または弱い集束性もしくは弱い発散性の
光束に変換され、シリンダレンズ11bにより副走査対
応方向にのみ集束傾向を与えられ、「ポリゴンミラー」
である光偏向器12の偏向反射面12aの近傍の「光偏
向部」に「走査対応方向に長い線像」として結像する
(請求項4)。カップリングレンズ11aとシリンダレ
ンズ11bは「第1光学系」を構成するが、第1光学系
はこの形態に限らず「他のレンズ構成」とすることも可
能である。
FIG. 1 shows a "semiconductor laser".
The divergent light beam emitted from the light source unit 10 using the light source as a light source is coupled by a coupling lens 11a and converted into a parallel light beam or a weakly convergent or weakly divergent light beam. `` Polygon mirror ''
Then, an image is formed as a "line image long in the scanning corresponding direction" on the "light deflecting unit" near the deflecting reflection surface 12a of the optical deflector 12 (claim 4). The coupling lens 11a and the cylinder lens 11b constitute a "first optical system". However, the first optical system is not limited to this mode, and may have "another lens configuration".

【0020】偏向反射面12aにより反射された光束
は、光偏向器12の矢印方向への等速回転に伴い等角速
度的に時計回りに偏向する偏向光束となる。偏向光束
は、第2光学系13により被走査面14上に光スポット
として集光し、被走査面14を光走査する。第2光学系
13は光スポットの走査速度を等速化する機能を有す
る。上記線像は偏向反射面12aの近傍の光偏向部に結
像し、第2光学系13は、副走査対応方向に関して上記
線像を物点として光スポットを被走査面上に結像させる
から、図1の光走査装置は偏向反射面12aの「面倒
れ」を補正する機能を有している。
The light beam reflected by the deflecting / reflecting surface 12a becomes a deflecting light beam that deflects clockwise at a constant angular velocity as the light deflector 12 rotates at a constant speed in the direction of the arrow. The deflected light beam is condensed as a light spot on the surface 14 to be scanned by the second optical system 13 and optically scans the surface 14 to be scanned. The second optical system 13 has a function of equalizing the scanning speed of the light spot. The line image is formed on the light deflecting unit near the deflecting / reflecting surface 12a, and the second optical system 13 forms a light spot on the surface to be scanned with the line image as an object point in the sub-scanning corresponding direction. The optical scanning device shown in FIG. 1 has a function of correcting "surface tilt" of the deflecting / reflecting surface 12a.

【0021】第2光学系13は図1の実施の形態におい
ては単玉構成であるが、2枚以上のレンズで構成しても
良く、これらのレンズと同様の結像作用のある凹面鏡に
より構成することもできる。第2光学系を単玉構成とす
ることにはコスト上のメリットがあることは言うまでも
ない。
Although the second optical system 13 has a single lens configuration in the embodiment of FIG. 1, it may be composed of two or more lenses, and is composed of a concave mirror having an image forming action similar to these lenses. You can also. Needless to say, there is a cost advantage to forming the second optical system in a single lens configuration.

【0022】偏向光束は、第2光学系により被走査面1
4を光走査するのに先立ち、第3光学系15を介して光
検出器17に入射する。「受光素子」である光検出器1
7はこのようにして偏向光束を受光すると出力を発し、
この出力に基づき光走査開始のための同期信号が生成さ
れる。この同期信号に基づき、偏向光束による光走査
が、被走査面14における光走査開始位置Aから開始さ
れる。
The deflected light beam is transmitted to the scanning surface 1 by the second optical system.
Prior to optical scanning of 4, the light enters the photodetector 17 via the third optical system 15. Photodetector 1 as "light receiving element"
7 emits an output upon receiving the deflected light beam in this way,
Based on this output, a synchronization signal for starting optical scanning is generated. On the basis of this synchronization signal, optical scanning with the deflected light beam is started from the optical scanning start position A on the surface 14 to be scanned.

【0023】図1の実施の形態では、第2光学系13、
第3光学系15ともに単玉構成であり(請求項4)、こ
れらは共にプラスチックにより成形されたレンズであ
る。
In the embodiment shown in FIG. 1, the second optical system 13,
Both the third optical system 15 has a single lens configuration (claim 4), and both are lenses molded from plastic.

【0024】上記光走査開始位置Aを一定に保つために
は、上記同期信号が安定していなければならない。この
ため第3光学系は、光走査開始位置Aへ向かう偏向光束
を、ある程度小さいスポット径を持つ光スポットとして
光検出器の受光面に形成しなければならない。安定した
同期信号を生成するには、光検出器の出力が時間的に急
峻であるほど良いが、光検出器17の受光面上に形成さ
れる光スポットの径が大きくなると、光検出器17の出
力の時間的な急峻性が悪くなり、同期信号が不安定にな
るからである。
In order to keep the optical scanning start position A constant, the synchronizing signal must be stable. For this reason, the third optical system must form the deflected light beam toward the optical scanning start position A as a light spot having a spot diameter that is somewhat small on the light receiving surface of the photodetector. In order to generate a stable synchronizing signal, it is better that the output of the photodetector is steep in time. However, if the diameter of the light spot formed on the light receiving surface of the photodetector 17 is large, the photodetector 17 This is because the temporal steepness of the output becomes worse and the synchronization signal becomes unstable.

【0025】このため光検出器17の受光面は、第3光
学系15による「偏向光束の結像位置近傍」に位置され
ることになる。必要に応じて、上記受光面と第3光学系
15との間にナイフエッジやスリットを設けて受光面に
入射する偏向光束を制限することにより、光検出器の出
力の時間的な急峻性を高めても良く、これらスリットや
ナイフエッジを光走査装置のハウジングに一体に設ける
こともできる。
For this reason, the light receiving surface of the photodetector 17 is positioned “near the image forming position of the deflected light beam” by the third optical system 15. If necessary, a knife edge or a slit may be provided between the light receiving surface and the third optical system 15 to restrict the deflecting light flux incident on the light receiving surface, thereby reducing the time sharpness of the output of the photodetector. These slits and knife edges may be provided integrally with the housing of the optical scanning device.

【0026】偏向光束は、走査方向には平行光束または
弱い集束性もしくは発散性の光束で、走査直交方向には
発散性であるから、光検出器の受光面に適当なスポット
径を持つ光スポットとして偏向光束を結像させるために
は、第2光学系および第3光学系は「走査直交方向によ
り強い正のパワーを持つアナモフィックなレンズ」であ
る必要がある。
The deflected light beam is a parallel light beam or a weakly convergent or divergent light beam in the scanning direction, and is divergent in the scanning orthogonal direction. Therefore, a light spot having an appropriate spot diameter on the light receiving surface of the photodetector. In order to form an image of a deflected light beam, the second optical system and the third optical system need to be “anamorphic lenses having stronger positive power in the scanning orthogonal direction”.

【0027】図1に示すように、第1光学系11a,1
1bの光軸と第3光学系15の光軸とがなす角をθ13
第3光学系15の光軸と、光走査開始位置Aに集光する
べく第2光学系13へ向かう偏向光束の主光線のなす角
をθ32、第1光学系を構成する結像素子のうちで最も光
偏向部側の結像素子11bに就いて、その走査対応方向
における光軸から第3光学系側の素子幅をS13、光偏向
器側の面から光偏向部までの距離をL11、第3光学系1
5に就いて、光軸から第1光学系側の素子幅をS31、光
軸から第2光学系側の素子幅をS32、光偏向器側の面か
ら光偏向部までの距離をL31とする。これらは前述の条
件(1),(2)を満足する。
As shown in FIG. 1, the first optical system 11a, 11a
The angle formed by the optical axis of 1b and the optical axis of the third optical system 15 is θ 13 ,
The angle between the optical axis of the third optical system 15 and the principal ray of the deflected light beam directed to the second optical system 13 for focusing on the optical scanning start position A is θ 32 , and the angle of the imaging element forming the first optical system is Of the imaging element 11b closest to the light deflecting unit side, the element width on the third optical system side from the optical axis in the scanning corresponding direction is S 13 , and the distance from the surface on the light deflector side to the light deflecting unit is L 11 , third optical system 1
Regarding 5, the element width on the first optical system side from the optical axis is S 31 , the element width on the second optical system side from the optical axis is S 32 , and the distance from the surface on the optical deflector side to the optical deflector is L. 31 . These satisfy the conditions (1) and (2) described above.

【0028】条件(1)が満足されないと、シリンダレ
ンズ11bが第3光学系15の光軸を遮ったり、第3光
学系15が第1光学系の光軸を遮ったりする。条件
(2)が満足されないと、第2光学系13と第3光学系
15が互いに干渉しあい、第3光学系15への入射偏向
光束が第2光学系13によりケラれたり、光走査開始位
置Aへ向かう偏向光束が第3光学系15にケラれたりす
る。
If the condition (1) is not satisfied, the cylinder lens 11b blocks the optical axis of the third optical system 15, or the third optical system 15 blocks the optical axis of the first optical system. If the condition (2) is not satisfied, the second optical system 13 and the third optical system 15 interfere with each other, and the deflected light beam incident on the third optical system 15 is vignetted by the second optical system 13 or the optical scanning start position. The deflected light beam toward A is vignetted by the third optical system 15.

【0029】図2において、図1におけると同一の符号
は、図1におけると同じものを示している。図2に示す
ように、光偏向部から第2光学系13の光偏向器12側
の面に到る光軸上の距離をL21、上記光偏向部から被走
査面に到る(上記光軸上の)距離をL22、光偏向部から
第3光学系15の光偏向部側の面に到る光軸上の距離を
31、光偏向部から光検出器17の受光面に到る(第3
光学系15の光軸に沿った)距離をL32とするとき、こ
れらは、前述の条件(3),(4)を満足する(請求項
2)。
In FIG. 2, the same reference numerals as those in FIG. 1 indicate the same as those in FIG. As shown in FIG. 2, the distance on the optical axis from the light deflector to the surface of the second optical system 13 on the side of the light deflector 12 is L 21 , and the distance from the light deflector to the surface to be scanned (the light The distance on the optical axis from the light deflecting unit to the light deflecting unit side surface of the third optical system 15 is L 31 , and the distance from the light deflecting unit to the light receiving surface of the photodetector 17 is L 22 . (Third
When the) distance along the optical axis of the optical system 15 and L 32, these are the above conditions (3), thereby satisfying the expression (4) (Claim 2).

【0030】光走査装置では一般に、第3光学系に入射
する偏向光束の偏向角はおおよそ±90度程度が限度で
ある。従って、√2・L21は、第3光学系の「光走査開
始側の実質的な端部」と光偏向部との間の距離を示す。
条件(3),(4)の下限を越えることは、第3光学系
と光検出器とを共に、光偏向部と第2光学系との間に配
備することを意味し、これはレイアウトの自由度を著し
く損なうことになる。
In an optical scanning device, the deflection angle of the deflected light beam incident on the third optical system is generally limited to about ± 90 degrees. Therefore, √2 · L 21 indicates the distance between the “substantial end on the optical scanning start side” of the third optical system and the light deflecting unit.
Exceeding the lower limits of the conditions (3) and (4) means that both the third optical system and the photodetector are disposed between the light deflecting unit and the second optical system. The degree of freedom will be significantly impaired.

【0031】また、条件(3),(4)の上限を越える
ことは、第3光学系および光検出器を共に、被走査面よ
り遠方に配備することを意味し、これは光走査光学系を
配備するハウジングの大型化を招来し、結果的に光走査
装置の大型化につながる。
Exceeding the upper limits of the conditions (3) and (4) means that both the third optical system and the photodetector are arranged farther from the surface to be scanned, which means that the optical scanning optical system is provided. Causes an increase in the size of the housing in which the optical scanning device is provided, and consequently leads to an increase in the size of the optical scanning device.

【0032】また、光検出器17を偏向光束が走査する
とき、走査位置が走査直交方向に変動して「偏向光束の
走査直交方向の一部が受光面に入射しない」ようなこと
があると、光検出器の信号が適正なものにならず同期信
号に誤差が発生し、ジターの原因になる。これを避ける
ためには、第3光学系15の横倍率を小さくするのがよ
く、このためには第3光学系15を光検出器側に近付け
ることが望ましい。
Further, when the deflected light beam scans the photodetector 17, the scanning position may fluctuate in the scanning orthogonal direction, and "a part of the deflected light beam in the scanning orthogonal direction may not enter the light receiving surface". However, the signal of the photodetector is not proper and an error occurs in the synchronization signal, which causes jitter. To avoid this, it is preferable to reduce the lateral magnification of the third optical system 15, and for this purpose, it is desirable to bring the third optical system 15 closer to the photodetector.

【0033】また、安定した同期信号を生成するには、
光検出器の出力が時間的に急峻であるほど良いから、第
3光学系15の走査方向の焦点距離を大きくし、光検出
器17の受光面に集光する光スポットの走査速度が大き
くなるようにするのがよく、この目的のためには、第3
光学系15をなるべく光偏向器12側に近付けるのが望
ましい。上記条件(3),(4)を満足することで、第
3光学系15、光偏向器17の好ましい配設が可能であ
る。
In order to generate a stable synchronization signal,
The sharper the output of the photodetector is, the better the time is. Therefore, the focal length of the third optical system 15 in the scanning direction is increased, and the scanning speed of the light spot focused on the light receiving surface of the photodetector 17 is increased. And for this purpose a third
It is desirable to bring the optical system 15 as close to the optical deflector 12 as possible. By satisfying the above conditions (3) and (4), a preferable arrangement of the third optical system 15 and the optical deflector 17 is possible.

【0034】勿論、図2の実施の形態においても、前述
の条件(1),(2)は満足されている(請求項3)。
Of course, also in the embodiment of FIG. 2, the aforementioned conditions (1) and (2) are satisfied (claim 3).

【0035】図2に示すように、光源部10から第1光
学系11a,11bを介して光偏向部に到る距離をL12
とするとき、これと前述の距離:L32は前述の条件
(5)を満足する(請求項5)。
As shown in FIG. 2, the distance from the light source unit 10 to the light deflection unit via the first optical systems 11a and 11b is represented by L 12.
When a, which the above-mentioned distance: L 32 satisfies the above conditions (5) (claim 5).

【0036】条件(5)が満足されると、図2に示すよ
うに、光偏向器12による偏向の起点である光偏向部か
ら、光源部10、光検出器17に到る距離が互いに近く
なるので、光源部10と光検出器17とを同一の基板1
8に配備することができる。条件(5)の範囲外では、
光源部10と光検出器17とを同一基板に配備すること
は難しく、ハーネス等が必要になる。基板18には、図
3に示すように、光源部10と、光源部10を駆動する
光源用駆動回路19と、光検出器17と、光検出器17
を制御する検出器用駆動回路20とが設けられている
(請求項6)。
When the condition (5) is satisfied, as shown in FIG. 2, the distance from the light deflector, which is the starting point of deflection by the light deflector 12, to the light source unit 10 and the photodetector 17 is short. Therefore, the light source unit 10 and the photodetector 17 are
8 can be deployed. Out of the range of the condition (5),
It is difficult to dispose the light source unit 10 and the photodetector 17 on the same substrate, and a harness or the like is required. As shown in FIG. 3, the substrate 18 includes a light source unit 10, a light source driving circuit 19 for driving the light source unit 10, a photodetector 17, and a photodetector 17.
And a detector drive circuit 20 for controlling the power supply (claim 6).

【0037】[0037]

【発明の効果】以上に説明したように、この発明によれ
ば新規な光走査装置を実現できる。この発明の光走査装
置では、同期信号発生のために偏向光束を光検出器に導
く第3光学系を、偏向光束を被走査面上に集光させる第
2光学系と別体としたので、第2光学系を介して偏向光
束を光検出器に導く場合に比して、第2光学系の口径を
小さくでき、第1〜第3光学系の個々を別個にハウジン
グに取付けるので、各光学系の取付け態位を独立に精度
良く容易に調整できる(請求項1〜6)。
As described above, according to the present invention, a novel optical scanning device can be realized. In the optical scanning device according to the present invention, the third optical system that guides the deflected light beam to the photodetector for generating the synchronization signal is separate from the second optical system that focuses the deflected light beam on the surface to be scanned. As compared with the case where the deflected light beam is guided to the photodetector via the second optical system, the aperture of the second optical system can be reduced, and each of the first to third optical systems is separately mounted on the housing. The mounting position of the system can be adjusted easily and accurately independently (claims 1 to 6).

【0038】また、請求項1記載の発明では条件
(1),(2)が満足されることにより、第1〜第3光
学系を、互いに干渉しあわない程度に近接させて光走査
装置のコンパクト化が可能であり、請求項2記載の発明
では条件(3),(4)が満足されることにより、第3
光学系および光検出器を適切な位置に配備でき、同期信
号の信頼性を高めることができる。請求項3記載の発明
では、条件(1)〜(4)が満足されることにより、光
走査装置をコンパクトにでき、且つ、同期信号の信頼性
を高めることができる。
According to the first aspect of the present invention, when the conditions (1) and (2) are satisfied, the first to third optical systems are brought close to each other so as not to interfere with each other, and the According to the second aspect of the present invention, since the conditions (3) and (4) are satisfied, the third aspect can be realized.
The optical system and the photodetector can be arranged at appropriate positions, and the reliability of the synchronization signal can be increased. According to the third aspect of the present invention, when the conditions (1) to (4) are satisfied, the optical scanning device can be made compact and the reliability of the synchronization signal can be increased.

【0039】請求項4記載の発明では、光偏向器におけ
る面倒れの補正を行ないつつ、第2,第3光学系を単レ
ンズとすることにより光走査装置のコンパクト化・低コ
スト化が可能である。請求項5,6の発明によれば、光
走査装置の電気的系統を同一基板に組み就けることによ
り光走査装置をコンパクト化できる。
According to the fourth aspect of the present invention, the optical scanning device can be made compact and low-cost by using a single lens for the second and third optical systems while correcting surface tilt in the optical deflector. is there. According to the fifth and sixth aspects of the present invention, the electrical system of the optical scanning device can be mounted on the same substrate, thereby making the optical scanning device compact.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の光走査装置の実施の1形態を説明す
るための図である。
FIG. 1 is a diagram for explaining one embodiment of an optical scanning device of the present invention.

【図2】請求項4記載の発明の実施の形態の特徴部分を
説明するための図である。
FIG. 2 is a diagram for explaining a characteristic portion of the embodiment of the invention described in claim 4;

【図3】請求項6記載の発明の実施の形態の特徴部分を
説明するための図である。
FIG. 3 is a diagram for explaining a characteristic portion of the embodiment of the invention described in claim 6;

【符号の説明】[Explanation of symbols]

10 光源部 11a,11b 第1光学系 12 光偏向器 12a 偏向反射面 13 第2光学系 14 被走査面 A 光走査開始位置 15 第3光学系 17 光検出器 DESCRIPTION OF SYMBOLS 10 Light source part 11a, 11b 1st optical system 12 Optical deflector 12a Deflection / reflection surface 13 2nd optical system 14 Scanning surface A Optical scanning start position 15 3rd optical system 17 Photodetector

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】光源部と、この光源部からの光束をカップ
リングして光偏向部へ導く第1光学系と、上記光偏向部
の近傍に偏向反射面を有し、第1光学系からの光束を偏
向させる光偏向器と、偏向された光束を被走査面上に光
スポットとして集光させる第2光学系と、光走査開始位
置へと向かう偏向光束を検出し、光走査開始のための同
期信号を発生するための光検出器と、上記光走査開始位
置へと向かう偏向光束を上記光検出器に導く第3光学系
とを有し、 上記第1、第2および第3光学系は互いに別体であっ
て、第3光学系が第1光学系と第2光学系の間に配置さ
れ、 第1光学系光軸と第3光学系光軸とがなす角をθ13、 第3光学系光軸と、光走査開始位置に集光するべく第2
光学系へ向かう偏向光束の主光線のなす角をθ32、 第1光学系を構成する結像素子のうちで最も光偏向部側
の結像素子に就いて、その走査対応方向における光軸か
ら第3光学系側の素子幅をS13、光偏向器側の面から光
偏向部までの距離をL11とし、 第3光学系を構成する結像素子のうちで最も光偏向部側
の結像素子に就いて、その走査方向における光軸から第
1光学系側の素子幅をS31、上記光軸から第2光学系側
の素子幅をS32、光偏向器側の面から光偏向部までの距
離をL31とするとき、 これらが条件: (1) θ13>max{S13/L11,S31/L31} (2) θ32>S32/L31 を満足することを特徴とする光走査装置。
A light source section; a first optical system for coupling a light beam from the light source section to guide the light beam to a light deflecting section; and a deflecting / reflecting surface near the light deflecting section. A light deflector for deflecting the light beam, a second optical system for condensing the deflected light beam as a light spot on the surface to be scanned, and detecting the deflected light beam heading for the optical scanning start position to start optical scanning. And a third optical system for guiding the deflected light beam toward the optical scanning start position to the photodetector, the first, second, and third optical systems. Are separate from each other, the third optical system is disposed between the first optical system and the second optical system, and the angle between the optical axis of the first optical system and the optical axis of the third optical system is θ 13 , 3 optical system optical axis and 2nd to focus on optical scanning start position
The angle formed by the principal ray of the deflected light beam toward the optical system is θ 32 , and among the imaging elements constituting the first optical system, the imaging element closest to the light deflecting unit is located from the optical axis in the scanning corresponding direction. The element width on the third optical system side is S 13 , the distance from the surface on the optical deflector side to the optical deflecting unit is L 11, and the image forming element on the optical deflecting unit side is the most image forming element of the third optical system. Regarding the image element, the element width on the first optical system side from the optical axis in the scanning direction is S 31 , the element width on the second optical system side from the optical axis is S 32 , and the light is deflected from the surface on the optical deflector side. when the distance to the part and L 31, these conditions: (1) θ 13> max {S 13 / L 11, S 31 / L 31} (2) θ 32> satisfies the S 32 / L 31 An optical scanning device characterized by the above-mentioned.
【請求項2】光源部と、この光源部からの光束をカップ
リングして光偏向部へ導く第1光学系と、上記光偏向部
の近傍に偏向反射面を有し、第1光学系からの光束を偏
向させる光偏向器と、偏向された光束を被走査面上に光
スポットとして集光させる第2光学系と、光走査開始位
置へと向かう偏向光束を検出し、光走査開始のための同
期信号を発生するための光検出器と、上記光走査開始位
置へと向かう偏向光束を上記光検出器に導く第3光学系
とを有し、 上記第1、第2および第3光学系は互いに別体であっ
て、第3光学系が第1光学系と第2光学系の間に配置さ
れ、 光偏向部から第2光学系の最も光偏向器側の面に到る光
軸上の距離をL21、上記光偏向部から被走査面に到る距
離をL22、 上記光偏向部から第3光学系の最も光偏向部側の面に到
る光軸上の距離をL31、上記光偏向部から光検出器の受
光面に到る距離をL32とするとき、これらが、条件: (3)√2・L21<L31<L22 (4)√2・L21<L32<L22 を満足することを特徴とする光走査装置。
2. A light source, a first optical system for coupling a light beam from the light source and guiding the light to a light deflecting unit, and a deflecting / reflecting surface near the light deflecting unit; A light deflector for deflecting the light beam, a second optical system for condensing the deflected light beam as a light spot on the surface to be scanned, and detecting the deflected light beam heading for the optical scanning start position to start optical scanning. And a third optical system for guiding the deflected light beam toward the optical scanning start position to the photodetector, the first, second, and third optical systems. Are separate from each other, the third optical system is disposed between the first optical system and the second optical system, and on the optical axis extending from the light deflecting unit to the surface of the second optical system closest to the optical deflector. the distance L 21, the distance reaching the surface to be scanned from the light deflecting section L 22, most light deflecting unit of the third optical system from the light deflection unit L 31 a distance on the optical axis leading to the surface of, when the distance reaches the light receiving surface of the photodetector from the light deflection unit and the L 32, these conditions: (3) √2 · L 21 < An optical scanning device characterized by satisfying L 31 <L 22 (4) √2 · L 21 <L 32 <L 22 .
【請求項3】請求項1記載の光走査装置において、 光偏向部から第2光学系の最も光偏向器側の面に到る光
軸上の距離をL21、上記光偏向部から被走査面に到る距
離をL22、 上記光偏向部から第3光学系の最も光偏向部側の面に到
る光軸上の距離をL31、上記光偏向部から光検出器の受
光面に到る距離をL32とするとき、これらが、条件: (3)√2・L21<L31<L22 (4)√2・L21<L32<L22 を満足することを特徴とする光走査装置。
3. The optical scanning device according to claim 1, wherein a distance on the optical axis from the light deflecting unit to the surface of the second optical system closest to the light deflector is L 21 , and scanning is performed from the light deflecting unit. L 22 is the distance to the surface, L 31 is the distance on the optical axis from the light deflecting unit to the surface closest to the light deflecting unit of the third optical system, and L is the light receiving surface of the photodetector from the light deflecting unit. When the reaching distance is defined as L 32 , these satisfy the condition: (3) √2 · L 21 <L 31 <L 22 (4) √2 · L 21 <L 32 <L 22 Optical scanning device.
【請求項4】請求項1または2または3記載の光走査装
置において、 第1光学系が、カップリングレンズと、このカップリン
グレンズによりカップリングされた光束を走査対応方向
に長い線像として光偏向部に結像させる線像結像光学系
とを有し、 第2光学系と第3光学系とは、それぞれ走査直交方向に
より強い正のパワーを持つアナモフィックな単レンズで
あることを特徴とする光走査装置。
4. The optical scanning device according to claim 1, wherein the first optical system uses a coupling lens and a light beam coupled by the coupling lens as a linear image long in a scanning corresponding direction. A linear image forming optical system for forming an image on the deflecting unit, wherein the second optical system and the third optical system are anamorphic single lenses each having a stronger positive power in the scanning orthogonal direction. Optical scanning device.
【請求項5】請求項1または2または3または4記載の
光走査装置において、 光源部から第1光学系を介して光偏向部に到る距離をL
12、光偏向部から第3光学系を介して光検出器の受光面
に到る距離をL32とするとき、これらが条件: (5) 4/5<L32/L12<6/5 を満足することを特徴とする光走査装置。
5. The optical scanning device according to claim 1, wherein the distance from the light source to the light deflection unit via the first optical system is L.
12, when the distance extending from the light deflection unit via the third optical system on the light receiving surface of the photodetector and L 32, these are conditions: (5) 4/5 <L 32 / L 12 <6/5 An optical scanning device characterized by satisfying the following.
【請求項6】請求項5記載の光走査装置において、 光源部と、この光源部を駆動する光源用駆動回路と、光
検出器と、この光検出器を制御する検出器用駆動回路と
が、同一基板に配置されていることを特徴とする光走査
装置。
6. The optical scanning device according to claim 5, wherein the light source unit, a light source driving circuit for driving the light source unit, a photodetector, and a detector driving circuit for controlling the photodetector, An optical scanning device which is arranged on the same substrate.
JP20346296A 1996-08-01 1996-08-01 Optical scanning device Pending JPH1048554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20346296A JPH1048554A (en) 1996-08-01 1996-08-01 Optical scanning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20346296A JPH1048554A (en) 1996-08-01 1996-08-01 Optical scanning device

Publications (1)

Publication Number Publication Date
JPH1048554A true JPH1048554A (en) 1998-02-20

Family

ID=16474535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20346296A Pending JPH1048554A (en) 1996-08-01 1996-08-01 Optical scanning device

Country Status (1)

Country Link
JP (1) JPH1048554A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8654165B2 (en) 2010-06-23 2014-02-18 Ricoh Company, Limited Optical scanning device and image forming apparatus
US9125829B2 (en) 2012-08-17 2015-09-08 Hallstar Innovations Corp. Method of photostabilizing UV absorbers, particularly dibenzyolmethane derivatives, e.g., Avobenzone, with cyano-containing fused tricyclic compounds
US9145383B2 (en) 2012-08-10 2015-09-29 Hallstar Innovations Corp. Compositions, apparatus, systems, and methods for resolving electronic excited states
US9867800B2 (en) 2012-08-10 2018-01-16 Hallstar Innovations Corp. Method of quenching singlet and triplet excited states of pigments, such as porphyrin compounds, particularly protoporphyrin IX, with conjugated fused tricyclic compounds have electron withdrawing groups, to reduce generation of reactive oxygen species, particularly singlet oxygen

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8654165B2 (en) 2010-06-23 2014-02-18 Ricoh Company, Limited Optical scanning device and image forming apparatus
US9145383B2 (en) 2012-08-10 2015-09-29 Hallstar Innovations Corp. Compositions, apparatus, systems, and methods for resolving electronic excited states
US9611246B2 (en) 2012-08-10 2017-04-04 Hallstar Innovations Corp. Compositions, apparatus, systems, and methods for resolving electronic excited states
US9765051B2 (en) 2012-08-10 2017-09-19 Hallstar Innovations Corp. Compositions, apparatus, systems, and methods for resolving electronic excited states
US9867800B2 (en) 2012-08-10 2018-01-16 Hallstar Innovations Corp. Method of quenching singlet and triplet excited states of pigments, such as porphyrin compounds, particularly protoporphyrin IX, with conjugated fused tricyclic compounds have electron withdrawing groups, to reduce generation of reactive oxygen species, particularly singlet oxygen
US9926289B2 (en) 2012-08-10 2018-03-27 Hallstar Innovations Corp. Compositions, apparatus, systems, and methods for resolving electronic excited states
US10632096B2 (en) 2012-08-10 2020-04-28 HallStar Beauty and Personal Care Innovations Company Method of quenching singlet and triplet excited states of photodegradable pigments, such as porphyrin compounds, particularly protoporphyrin IX, with conjugated fused tricyclic compounds having electron withdrawing groups, to reduce generation of singlet oxygen
US9125829B2 (en) 2012-08-17 2015-09-08 Hallstar Innovations Corp. Method of photostabilizing UV absorbers, particularly dibenzyolmethane derivatives, e.g., Avobenzone, with cyano-containing fused tricyclic compounds

Similar Documents

Publication Publication Date Title
EP0676658B1 (en) Scanning optical apparatus
JP2006259098A (en) Optical scanner
JPH0631980A (en) Semiconductor laser array recording device
JP2690642B2 (en) Scanning optical system
JP4006153B2 (en) Multi-beam optical scanning optical system and image forming apparatus using the same
JP2830670B2 (en) Optical scanning device
JP3073801B2 (en) Optical scanning lens and optical scanning device
JP4024952B2 (en) Optical scanning device
JP4109878B2 (en) Scanning optical device
JPH1048554A (en) Optical scanning device
JPH10239609A (en) Optical scanner
JP3288970B2 (en) Optical scanning device
JP2971005B2 (en) Optical scanning device
KR100529339B1 (en) Laser scanning unit
JP3205264B2 (en) Optical scanning optical system
JP3254367B2 (en) Optical scanning optical system
JPH09197317A (en) Optical scanning device and lens unit for the same
JP3432178B2 (en) Optical scanning optical system and image forming apparatus using the same
JP2935464B2 (en) Optical scanning device
JP2002040340A (en) Laser beam scanner
JP2001350114A (en) Optical scanner
JPH09203876A (en) Optical scanning device
JP2822255B2 (en) Scanning optical device
JP3128860B2 (en) Laser scanning device
US6980344B2 (en) Scanning optical system