WO2020203071A1 - Copper material and heat-dissipating member - Google Patents

Copper material and heat-dissipating member Download PDF

Info

Publication number
WO2020203071A1
WO2020203071A1 PCT/JP2020/010018 JP2020010018W WO2020203071A1 WO 2020203071 A1 WO2020203071 A1 WO 2020203071A1 JP 2020010018 W JP2020010018 W JP 2020010018W WO 2020203071 A1 WO2020203071 A1 WO 2020203071A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper material
heat treatment
less
crystal grains
grain size
Prior art date
Application number
PCT/JP2020/010018
Other languages
French (fr)
Japanese (ja)
Inventor
航世 福岡
優樹 伊藤
広行 森
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to EP20783133.0A priority Critical patent/EP3950981A4/en
Priority to JP2021511309A priority patent/JP7248104B2/en
Priority to CN202080024700.8A priority patent/CN113631742A/en
Publication of WO2020203071A1 publication Critical patent/WO2020203071A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the present invention relates to a copper material and a heat-dissipating member suitable for electric / electronic parts such as a heat sink and a thick copper circuit, and more particularly to a copper material and a heat-dissipating member in which coarsening of crystal grains during heating is suppressed.
  • the present application claims priority based on Japanese Patent Application No. 2019-068349 filed in Japan on March 29, 2019, the contents of which are incorporated herein by reference.
  • an insulating circuit board in which a copper material is bonded to a ceramic substrate to form the above-mentioned heat sink or thick copper circuit is used.
  • the joining temperature is often set to 800 ° C. or higher, and there is a risk that the crystal grains of the copper material constituting the heat sink or the thick copper circuit may become coarse at the time of joining.
  • crystal grains tend to become coarse.
  • the crystal grains become coarse in the heat sink or the thick copper circuit after bonding, the crystal grains become coarse, which may cause a problem in appearance.
  • Patent Document 1 proposes a copper material for the purpose of suppressing the growth of crystal grains when heated to a high temperature.
  • Patent Document 1 it is described that by containing 0.0006 to 0.0015 wt% of S, it is possible to adjust the crystal grains to a certain size even if the heat treatment is performed at a recrystallization temperature or higher.
  • Patent Document 1 the coarsening of crystal grains is suppressed by specifying the content of S, but even if the content of S is simply specified, a sufficient effect of suppressing the coarsening of crystal grains can be obtained. I could't.
  • the crystal grains may be locally coarsened and the crystal structure may become non-uniform. Further, when the S content is increased in order to suppress the coarsening of crystal grains, there is a problem that the hot workability is greatly lowered and the production yield of the copper material is greatly lowered. there were.
  • the present invention has been made in view of the above-mentioned circumstances, and provides a copper material capable of suppressing coarsening and non-uniformity of crystal grains even after heating, and a heat radiating member made of the copper material.
  • the purpose is to do.
  • Ca-based compounds compounds (hereinafter referred to as Ca-based compounds) are produced with S, Se, and Te containing Ca as unavoidable impurities, and a part of the Ca-based compounds is 800 ° C. or higher.
  • Decomposition at temperature and solid solution of Ca and S, Se, Te in the parent phase makes it possible to suppress the growth of crystal grains by these Ca, S, Se, and Te.
  • the copper material of the present invention has a composition in which the Ca content is in the range of 3 mass ppm or more and 400 mass ppm or less, and the balance is Cu and unavoidable impurities.
  • the content of is X (massppm) and the total content of O, S, Se, and Te contained as the unavoidable impurities is Y (massppm)
  • the average crystal grain size A is 200 ⁇ m or less, and the area ratio of crystal grains in the range of 50 ⁇ m or more and 300 ⁇ m or less is 60% or more. ..
  • the Ca content is in the range of 3 mass ppm or more and 400 mass ppm or less. Therefore, at the time of casting, Ca reacts with S, Se, and Te contained as unavoidable impurities to form a Ca compound. Is generated.
  • this Ca-based compound is heated at a high temperature, it decomposes into Ca and S, Se, Te and dissolves in the parent phase, and the solid-dissolved Ca and S, Se, Te inhibit the growth of crystal grains. .. Therefore, secondary recrystallization that occurs on the high temperature side (for example, 800 ° C. or higher) can be sufficiently suppressed, and coarsening and non-uniformity of crystal grains can be suppressed even after heating.
  • the Ca content is X (mass ppm) and the total content of O, S, Se, and Te contained as the unavoidable impurities is Y (mass ppm)
  • X / Y> 2 is set. Even if Ca is preferentially oxidized and consumed, Ca that reacts with S, Se, and Te can be secured, and a Ca-based compound can be sufficiently produced.
  • the average crystal grain size A is set to 200 ⁇ m or less, and the area ratio of the crystal grains in the range of 50 ⁇ m or more and 300 ⁇ m or less is set to 60% or more. Therefore, even when heated to 800 ° C. or higher, coarsening and non-uniformity of crystal grains can be reliably suppressed.
  • the average crystal grain size after the heat treatment held at 800 ° C. for 1 hour is defined as A
  • the average crystal grain size after the heat treatment held at 1000 ° C. for 1 hour is defined as A.
  • B it is preferable that B / A ⁇ 2.
  • the difference between the average crystal grain size B after the heat treatment held at 1000 ° C. for 1 hour and the average crystal grain size A after the heat treatment held at 800 ° C. for 1 hour is small, and the mixture is heated to a high temperature. Even so, coarsening and non-uniformity of crystal grains can be sufficiently suppressed.
  • the total amount of the above-mentioned unavoidable impurities excluding the above-mentioned O, S, Se and Te is preferably 0.1 mass% or less.
  • the heat radiating member of the present invention is characterized by being made of the above-mentioned copper material. According to the heat radiating member having this structure, since it is made of the above-mentioned copper material, it is possible to suppress coarsening and non-uniformity of crystal grains even when heated to a high temperature of 800 ° C. or higher at the time of joining. it can.
  • the present invention it is possible to provide a copper material capable of suppressing coarsening and non-uniformity of crystal grains even after heating, and a heat radiating member made of this copper material.
  • the copper material according to the embodiment of the present invention will be described below.
  • the copper material of the present embodiment is used as a material for electric / electronic parts such as a heat sink and a thick copper circuit, and is used by being bonded to a ceramic substrate, for example, when molding the above-mentioned electric / electronic parts. It is a thing.
  • the copper material of the present embodiment has a composition in which the Ca content is in the range of 3 mass ppm or more and 400 mass ppm or less, and the balance is Cu and unavoidable impurities, and the Ca content is X (mass ppm) and is included as unavoidable impurities.
  • the total content of O, S, Se, and Te is Y (mass ppm)
  • the relationship of X / Y> 2 is satisfied.
  • the average crystal grain size A is set to 200 ⁇ m or less, and the crystal grains in the range of 50 ⁇ m or more and 300 ⁇ m or less.
  • the area ratio of is 60% or more.
  • the average crystal grain size after the heat treatment held at 800 ° C. for 1 hour is A, and the average crystal grain size after the heat treatment held at 1000 ° C. for 1 hour is set.
  • B it is preferable that B / A ⁇ 2.
  • the total amount of unavoidable impurities excluding O, S, Se and Te is 0.1 mass% or less.
  • Ca content 3 massppm or more and 400 massppm or less
  • Ca produces S, Se, Te and Ca compounds contained as unavoidable impurities. Since a part of this compound is decomposed at a high temperature and Ca and S, Se, Te are solid-solved, it is possible to suppress the growth of crystal grains by the solid-dissolved Ca and S, Se, Te. ..
  • the Ca content is less than 3 mass ppm, there is a possibility that the Ca-based compound cannot be sufficiently produced.
  • the Ca content exceeds 400 mass ppm, a coarse Ca-based compound may be produced and the processability may be significantly reduced.
  • the Ca content is set within the range of 3 mass ppm or more and 400 mass ppm or less.
  • the lower limit of the Ca content is preferably 3.5 mass ppm or more, and more preferably 4 mass ppm or more.
  • the upper limit of the Ca content is preferably 350 mass ppm or less, and more preferably 300 mass ppm or less. More preferably, it is 100 mass ppm or less.
  • the ratio X / Y of the Ca content X and the total content Y of O, S, Se, and Te is preferably 2.2 or more, and more preferably 2.5 or more.
  • the upper limit of X / Y is not particularly limited, but is substantially 50 or less.
  • unavoidable impurities include Ag, B, Bi, Sc, rare earth elements (excluding Sc and Y), V, Nb, Ta, Cr, Mg, Sr, Ba, Ti and Zr. , Hf, Y, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pb, Pd, Pt, Au, Zn, Cd, Hg, Al, Ga, In, Ge, Sn , As, Sb, Tl, Be, N, C, Si, Li, H and the like. Since these unavoidable impurities may lower the thermal conductivity, the total amount is preferably 0.1 mass% or less.
  • the average crystal grain size after the heat treatment held at 800 ° C. for 1 hour is preferably 180 ⁇ m or less, and more preferably 150 ⁇ m or less. Further, the lower limit of the average crystal grain size after the heat treatment held at 800 ° C. for 1 hour is not particularly limited, but is substantially 50 ⁇ m or more.
  • the copper material of the present embodiment when the area ratio of the crystal grains in the range of 50 ⁇ m or more and 300 ⁇ m or less is 60% or more after the heat treatment held at 800 ° C. for 1 hour, the copper material is heated to 800 ° C. or more. Even if it is, it is possible to surely suppress the non-uniformity of the crystal grains. Further, the minimum particle size in the range of the particle size within 60% or more of the area ratio of the crystal after the heat treatment held at 800 ° C. for 1 hour is preferably 75 ⁇ m or more, and more preferably 100 ⁇ m or more.
  • the difference between the two is small, and even when heated to a high temperature, coarsening and non-uniformity of crystal grains can be sufficiently suppressed.
  • the ratio B / A of the average crystal grain size A after the heat treatment held at 800 ° C. for 1 hour and the average crystal grain size B after the heat treatment held at 1000 ° C. for 1 hour is 1.9. It is preferably less than or equal to, and more preferably 1.5 or less. Further, the lower limit of B / A is not particularly limited, but is substantially 0.8 or more.
  • the copper raw material is melted to produce a molten copper.
  • the copper raw material for example, it is preferable to use oxygen-free copper having a purity of 99.99 mass% or more and oxygen-free copper having a purity of 99.999 mass% or more.
  • Ca is added to the obtained molten copper so as to have a predetermined concentration to prepare the components.
  • a simple substance of Ca, a Cu—Ca mother alloy, or the like can be used.
  • oxygen-free copper having a purity of 99.99 mass% or more and oxygen-free copper having a purity of 99.999 mass% or more it is preferable to use oxygen-free copper having a purity of 99.99 mass% or more and oxygen-free copper having a purity of 99.999 mass% or more.
  • a molten copper whose composition has been adjusted is injected into a mold to produce an ingot.
  • a continuous casting method or a semi-continuous casting method it is preferable to use a continuous casting method or a semi-continuous casting method.
  • a part of the added Ca reacts with S, Se, and Te contained as unavoidable impurities to generate a Ca-based compound.
  • the heating in this hot working step is preferably carried out in a non-oxidizing or reducing atmosphere.
  • the hot working temperature is not particularly limited, but is preferably in the range of 500 ° C. or higher and 1000 ° C. or lower. It is desirable that the hot working start temperature be 700 ° C. or higher in consideration of machining heat generation in order to uniformly generate Ca-based compounds in a later step. More preferably, it is 750 ° C. or higher. Further, the total processing rate of hot working is preferably 40% or more, more preferably 60% or more, and even more preferably 70% or more.
  • the hot working end temperature is preferably less than 700 ° C. More preferably, it is 650 ° C.
  • the cooling method after hot working is not particularly limited, but air cooling or water cooling is preferable.
  • the processing method in the hot processing step S02 is not particularly limited, and for example, rolling, extrusion, groove rolling, forging, pressing, or the like can be adopted.
  • rolling is preferably adopted, when the final shape is a line or rod, extrusion or groove rolling is preferably adopted, and when the final shape is a bulk material, forging or forging or It is preferable to use a press.
  • the copper material after the hot working step S02 is cold-worked to be processed into a predetermined shape.
  • the temperature condition in this cold working step S03 is not particularly limited, but it is preferably performed in the range of ⁇ 200 ° C. or higher and 200 ° C. or lower. Further, the processing ratio in the cold processing step S03 is appropriately selected so as to approximate the final shape, but it is preferably 30% or more in order to improve the productivity. Further, the processing method in the cold processing step S03 is not particularly limited, and for example, rolling, extrusion, groove rolling, forging, pressing, or the like can be adopted.
  • the final shape is a plate or strip
  • rolling is preferably adopted
  • the final shape is a line or rod
  • extrusion or groove rolling is preferably adopted
  • the final shape is a bulk material, forging or forging or It is preferable to use a press.
  • the copper material after the cold working step S03 is heat-treated for the purpose of recrystallization.
  • the recrystallized grains after the recrystallization heat treatment step S04 are fine, the growth of the crystal grains and the non-uniformity of the structure may be promoted when the recrystallized grains are subsequently heated to 800 ° C. or higher. Therefore, it is preferable that the average crystal grain size of the recrystallized grains after the recrystallization heat treatment step S04 is 10 ⁇ m or more. It is more preferably 15 ⁇ m or more, still more preferably 20 ⁇ m or more.
  • the upper limit of the particle size at the time of recrystallization is not particularly defined, but is substantially 200 ⁇ m or less.
  • the heat treatment conditions of the recrystallization heat treatment step S04 are not particularly limited, but it is preferable to keep the heat treatment temperature in the range of 200 ° C. or higher and 850 ° C. or lower in the range of 1 second or more and 24 hours or less. In this case, it is preferable to perform a short-time heat treatment at a high temperature and a long-time heat treatment at a low temperature so that the particle size after recrystallization falls within the above range.
  • the cooling rate is not particularly specified, but when the heat treatment is performed at a temperature of 800 ° C. or higher, the cooling rate may be 10 ° C./sec or lower at a temperature of 500 ° C. or higher and lower than 800 ° C., and preferably 5 ° C./sec. Hereinafter, it may be more preferably 1 ° C./sec or less. Further, in order to make the recrystallization structure uniform, the cold processing step S03 and the recrystallization heat treatment step S04 may be repeated twice or more.
  • the copper material after the recrystallization heat treatment step S04 may be tempered. If it is not necessary to increase the material strength, the tempering process may not be performed.
  • the processing rate of the tempering process is not particularly limited, but it is preferable to carry out the tempering process within a range of more than 0% and 50% or less in order to adjust the material strength. Further, if necessary, further heat treatment may be performed after the tempering process in order to remove the residual strain.
  • the Ca content is in the range of 3 mass ppm or more and 400 mass ppm or less, so that it is inevitable with Ca during casting, hot working, and recrystallization heat treatment.
  • Ca-based compounds are produced by reacting with S, Se, and Te contained as impurities.
  • this Ca-based compound is heated to 800 ° C. or higher, it decomposes into Ca and S, Se, Te and dissolves in solid solution, and the solid-dissolved Ca and S, Se, Te inhibit the growth of crystal grains. Therefore, even when the copper material is heated to, for example, 800 ° C. or higher, secondary recrystallization can be sufficiently suppressed, and coarsening and non-uniformity of crystal grains can be suppressed even after heating.
  • the ratio X / Y of the Ca content X (mass ppm) and the total content Y (mass ppm) of O, S, Se, and Te contained as unavoidable impurities is 2 or more. Is also set to a large value, so even if Ca preferentially reacts with oxygen and is consumed, the amount of residual Ca that reacts with S, Se, and Te can be secured, and a Ca-based compound can be sufficiently produced. Can be done.
  • the average crystal grain size A is 200 ⁇ m or less after the heat treatment held at 800 ° C. for 1 hour. Therefore, when the copper material is heated to 800 ° C. or higher. Even so, it is possible to surely suppress the coarsening of crystal grains. Further, in the copper material of the present embodiment, after the heat treatment held at 800 ° C. for 1 hour, the area ratio of the crystal grains in the range of 50 ⁇ m or more and 300 ⁇ m or less is set to 60% or more. Even when the material is heated to 800 ° C. or higher, non-uniformity of crystal grains can be reliably suppressed.
  • the average crystal grain size A after the heat treatment held at 800 ° C. for 1 hour and the average crystal grain size B after the heat treatment held at 1000 ° C. for 1 hour When the ratio B / A is 2 or less, the average crystal grain size B after the heat treatment held at 1000 ° C. for 1 hour and the average crystal grain size after the heat treatment held at 800 ° C. for 1 hour.
  • the difference from the diameter A is small, and even if it is heated to a high temperature of 1000 ° C. or higher, coarsening and non-uniformity of crystal grains can be sufficiently suppressed.
  • the present invention is not limited to this, and can be appropriately changed without departing from the technical idea of the present invention.
  • an example of a method for producing a copper material has been described, but the method for producing a copper material is not limited to the one described in the embodiment, and an existing production method is appropriately selected. It may be manufactured.
  • a copper raw material made of oxygen-free copper having a purity of 99.99 mass% or more was charged into a high-purity graphite crucible and melted at high frequency in an atmosphere furnace having an Ar gas atmosphere.
  • Cu-1 mass% Ca mother alloy was added to the obtained molten copper to prepare the component composition shown in Table 1.
  • the obtained molten copper was poured into a mold to produce an ingot.
  • the size of the ingot was about 25 mm in thickness ⁇ about 70 mm in width ⁇ about 160 to 190 mm in length.
  • the obtained ingot was heated at 800 ° C. for 1 hour in an Ar gas atmosphere and hot-rolled to a thickness of 15 mm.
  • the copper material after hot rolling was cut and surface grinding was performed to remove the oxide film on the surface.
  • the thickness of the copper material to be subjected to cold rolling was adjusted so that the final thickness was 0.8 mm in consideration of the rolling ratio of the subsequent cold rolling and temper rolling.
  • the copper material whose thickness was adjusted as described above was cold-rolled under the condition of a processing rate of 90%.
  • the copper material after cold rolling was subjected to recrystallization heat treatment under the condition of holding at 600 to 850 ° C. for 5 seconds.
  • the copper material after the recrystallization heat treatment was temper-rolled under the condition of a processing rate of 5 to 50% to produce a copper material having a thickness of 0.8 mm and a width of 60 mm.
  • a grain boundary map was created with the grain boundaries between the measurement points where the orientation difference between the points is 15 ° or more.
  • the measurement points where the CI value was 0.1 or less were excluded.
  • 5 line segments of a predetermined length are drawn vertically and horizontally on the above-mentioned crystal grain boundary map, and the number of crystal grains completely cut by the line segments is counted. , The average value of the cutting length was taken as the average crystal grain size.
  • the crystal grain size of each crystal grain was obtained from the grain boundary map created at the time of the above measurement of the crystal grain size A using analysis software (OIM Analysis 7 ⁇ 64 manufactured by TSL), and all the crystal grains were found from the Area Fraction. From the total area, the area ratio of the crystal grains having a particle size of 50 ⁇ m or more and 300 ⁇ m or less was calculated.
  • a test piece was collected from the obtained copper material and heat-treated at 1000 ° C. for 1 hour.
  • a 50 mm ⁇ 50 mm sample was cut out from this test piece, and the average crystal grain size B after heat treatment at 1000 ° C. for 1 h was obtained by the same procedure as the above-mentioned “Average crystal grain size A after heat treatment at 800 ° C. for 1 h”. Calculated.
  • Comparative Example 1 Ca was not added, and the average crystal grain size A after heat treatment at 800 ° C. for 1 h was 215 ⁇ m, and the average crystal grain size B after heat treatment at 1000 ° C. for 1 h was 478 ⁇ m. The grains became coarse.
  • the area ratio of crystals having a particle size of 50 ⁇ m or more and 300 ⁇ m or less after heat treatment at 800 ° C. for 1 h was as low as 55%, and the crystal grains after heat treatment were non-uniform.
  • the ratio of the Ca content X (mass ppm) to the total content Y (mass ppm) of O, S, Se, and Te contained as unavoidable impurities is 0.2, and 1 h at 800 ° C.
  • the average crystal grain size A after the heat treatment was 204 ⁇ m
  • the average crystal grain size B after the heat treatment at 1000 ° C. for 1 h was 506 ⁇ m
  • the crystal grains were coarsened after the heat treatment.
  • the area ratio of crystals having a particle size of 50 ⁇ m or more and 300 ⁇ m or less after heat treatment at 800 ° C. for 1 h was as low as 49%, and the crystal grains after heat treatment were non-uniform.
  • the ratio of the Ca content X (mass ppm) to the total content Y (mass ppm) of O, S, Se, and Te contained as unavoidable impurities is 1.5, and 1 h at 800 ° C.
  • the average crystal grain size A after the heat treatment was 233 ⁇ m
  • the average crystal grain size B after the heat treatment at 1000 ° C. for 1 h was 557 ⁇ m
  • the crystal grains were coarsened after the heat treatment.
  • the area ratio of the crystal grains in the range of 50 ⁇ m or more and 300 ⁇ m or less after the heat treatment at 800 ° C. for 1 h was as low as 51%, and the crystal grains after the heat treatment were non-uniform.
  • the composition is such that the Ca content is in the range of 3 mass ppm or more and 400 mass ppm or less, and the balance is Cu and unavoidable impurities, and the Ca content X (mass ppm) and O, S, Se contained as unavoidable impurities.
  • the average crystal grain size A after heat treatment at 800 ° C. for 1 h is 155 ⁇ m or less, at 1000 ° C.
  • the average crystal grain size B after the heat treatment for 1 h was 183 ⁇ m or less, and the coarsening of the crystal grains after the heat treatment was suppressed.
  • the area ratio of the crystals having a particle size of 50 ⁇ m or more and 300 ⁇ m or less after the heat treatment at 800 ° C. for 1 h was 60% or more, and the crystal grains after the heat treatment were uniform.
  • the copper material and the heat radiating member of the present invention are preferably used for members in which it is preferable to suppress coarsening of crystal grains to prevent changes in appearance, for example, electric / electronic parts provided with a heat sink, a thick copper circuit, or the like. be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

Provided are: a copper material which can be prevented from the growth and non-uniformization of crystal grains even after heating; and a heat-dissipating member which comprises the copper material. The copper material has a composition containing Ca at a content of 3 to 400 massppm inclusive and a remainder made up by Cu and unavoidable impurities, wherein, when the content of Ca is defined as X (massppm) and the total content of O, S, Se and Te that are contained as the unavoidable impurities is defined as Y (massppm), the requirement represented by the formula: X/Y > 2 is satisfied, the average crystal grain diameter is 200 μm or less when the copper material is subjected to a heating treatment of retaining at 800ºC for 1 hour, and the area ratio of crystal grains each having a grain diameter of 50 to 300 μm inclusive is 60% or more.

Description

銅材及び放熱部材Copper material and heat dissipation member
 本発明は、ヒートシンクや厚銅回路等の電気・電子部品に適した銅材及び放熱部材であって、特に、加熱時における結晶粒の粗大化が抑制された銅材及び放熱部材に関する。
 本願は、2019年3月29日に日本に出願された特願2019-068349号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a copper material and a heat-dissipating member suitable for electric / electronic parts such as a heat sink and a thick copper circuit, and more particularly to a copper material and a heat-dissipating member in which coarsening of crystal grains during heating is suppressed.
The present application claims priority based on Japanese Patent Application No. 2019-068349 filed in Japan on March 29, 2019, the contents of which are incorporated herein by reference.
 従来、ヒートシンクや厚銅回路等の電気・電子部品には、導電性の高い銅又は銅合金が用いられている。
 最近は、電子機器や電気機器等の大電流化にともない、電流密度の低減およびジュール発熱による熱の拡散のために、これら電子機器や電気機器等に使用される電気・電子部品の大型化、厚肉化が図られている。
Conventionally, highly conductive copper or copper alloy has been used for electric / electronic parts such as heat sinks and thick copper circuits.
Recently, as the current of electronic devices and electrical devices has increased, the size of electrical and electronic components used in these electronic devices and electrical devices has increased due to the reduction of current density and the diffusion of heat due to Joule heat generation. The wall is thickened.
 ここで、半導体装置においては、例えば、セラミックス基板に銅材を接合し、上述のヒートシンクや厚銅回路を構成した絶縁回路基板等が用いられている。
 セラミックス基板と銅板を接合する際には、接合温度が800℃以上とされることが多く、接合時にヒートシンクや厚銅回路を構成する銅材の結晶粒が粗大化してしまうおそれがあった。特に、導電性及び放熱性に特に優れた純銅からなる銅材においては、結晶粒が粗大化しやすい傾向にある。
 接合後のヒートシンクや厚銅回路において結晶粒が粗大化した場合には、結晶粒が粗大化することで、外観上問題となるおそれがあった。
Here, in the semiconductor device, for example, an insulating circuit board in which a copper material is bonded to a ceramic substrate to form the above-mentioned heat sink or thick copper circuit is used.
When joining a ceramic substrate and a copper plate, the joining temperature is often set to 800 ° C. or higher, and there is a risk that the crystal grains of the copper material constituting the heat sink or the thick copper circuit may become coarse at the time of joining. In particular, in a copper material made of pure copper having particularly excellent conductivity and heat dissipation, crystal grains tend to become coarse.
When the crystal grains become coarse in the heat sink or the thick copper circuit after bonding, the crystal grains become coarse, which may cause a problem in appearance.
 そこで、例えば特許文献1には、高温に加熱した際の結晶粒の成長の抑制を目的とした銅材が提案されている。
 この特許文献1においては、Sを0.0006~0.0015wt%含有することにより、再結晶温度以上で熱処理しても、一定の大きさの結晶粒に調整可能であると記載されている。
Therefore, for example, Patent Document 1 proposes a copper material for the purpose of suppressing the growth of crystal grains when heated to a high temperature.
In Patent Document 1, it is described that by containing 0.0006 to 0.0015 wt% of S, it is possible to adjust the crystal grains to a certain size even if the heat treatment is performed at a recrystallization temperature or higher.
特開平06-002058号公報Japanese Patent Application Laid-Open No. 06-002058
 ところで、特許文献1においては、Sの含有量を規定することで結晶粒の粗大化を抑制しているが、単にSの含有量を規定しても、十分な結晶粒粗大化抑制効果を得ることができなかった。また、加熱後に、局所的に結晶粒が粗大化してしまい、結晶組織が不均一となることがあった。
 さらに、結晶粒の粗大化を抑制するために、Sの含有量を増加させた場合には、熱間加工性が大きく低下してしまい、銅材の製造歩留まりが大きく低下してしまうといった問題があった。
By the way, in Patent Document 1, the coarsening of crystal grains is suppressed by specifying the content of S, but even if the content of S is simply specified, a sufficient effect of suppressing the coarsening of crystal grains can be obtained. I couldn't. In addition, after heating, the crystal grains may be locally coarsened and the crystal structure may become non-uniform.
Further, when the S content is increased in order to suppress the coarsening of crystal grains, there is a problem that the hot workability is greatly lowered and the production yield of the copper material is greatly lowered. there were.
 この発明は、前述した事情に鑑みてなされたものであって、加熱後においても結晶粒の粗大化及び不均一化を抑制することができる銅材、及び、この銅材からなる放熱部材を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and provides a copper material capable of suppressing coarsening and non-uniformity of crystal grains even after heating, and a heat radiating member made of the copper material. The purpose is to do.
 この課題を解決するために、本発明者らが鋭意検討した結果、以下のような知見を得た。
 銅材を塑性加工した後に加熱すると、低温側で起こる一次再結晶によってひずみが解放されて均一な組織となり、高温側(例えば800℃以上)で起こる二次再結晶によって一部の結晶粒が粗大化して不均一な組織となる。このため、高温側における二次再結晶を抑制することにより、結晶粒の粗大化及び不均一化を抑制することが可能となる。
 そして、Caを適量添加した銅材においては、Caが不可避不純物として含まれるS,Se,Teとそれぞれ化合物(以下Ca系化合物という)を生成し、このCa系化合物の一部が800℃以上の温度で分解し、CaとS,Se,Teが母相に固溶することにより、これらCa及びS,Se,Teによって結晶粒の成長を抑制することが可能となる。
As a result of diligent studies by the present inventors in order to solve this problem, the following findings were obtained.
When the copper material is plastically processed and then heated, the strain is released by the primary recrystallization that occurs on the low temperature side to form a uniform structure, and some of the crystal grains are coarse due to the secondary recrystallization that occurs on the high temperature side (for example, 800 ° C or higher). It becomes a non-uniform structure. Therefore, by suppressing the secondary recrystallization on the high temperature side, it is possible to suppress the coarsening and non-uniformity of the crystal grains.
Then, in the copper material to which an appropriate amount of Ca is added, compounds (hereinafter referred to as Ca-based compounds) are produced with S, Se, and Te containing Ca as unavoidable impurities, and a part of the Ca-based compounds is 800 ° C. or higher. Decomposition at temperature and solid solution of Ca and S, Se, Te in the parent phase makes it possible to suppress the growth of crystal grains by these Ca, S, Se, and Te.
 本発明は、上述の知見に基づいてなされたものであって、本発明の銅材は、Caの含有量が3massppm以上400massppm以下の範囲内、残部がCu及び不可避不純物とした組成とされ、Caの含有量をX(massppm)、前記不可避不純物として含まれるO,S,Se,Teの合計含有量をY(massppm)としたときに、X/Y>2とされており、800℃で1時間保持の熱処理を行った後において、平均結晶粒径Aが200μm以下とされるとともに、粒径50μm以上300μm以下の範囲の結晶粒の面積率が60%以上とされていることを特徴としている。  The present invention has been made based on the above findings, and the copper material of the present invention has a composition in which the Ca content is in the range of 3 mass ppm or more and 400 mass ppm or less, and the balance is Cu and unavoidable impurities. When the content of is X (massppm) and the total content of O, S, Se, and Te contained as the unavoidable impurities is Y (massppm), X / Y> 2 and 1 at 800 ° C. After the time-holding heat treatment, the average crystal grain size A is 200 μm or less, and the area ratio of crystal grains in the range of 50 μm or more and 300 μm or less is 60% or more. ..
 この構成の銅材によれば、Caの含有量が3massppm以上400massppm以下の範囲内とされているので、鋳造時に、Caと不可避不純物として含まれるS,Se,Teとが反応してCa系化合物が生成される。このCa系化合物は高温で加熱すると、CaとS,Se,Teに分解して母相に固溶し、固溶したCaとS,Se,Teによって結晶粒の成長が阻害されることになる。よって、高温側(例えば800℃以上)で起こる二次再結晶を十分に抑制でき、加熱後においても結晶粒の粗大化及び不均一化を抑制することができる。
 また、Caの含有量をX(massppm)、前記不可避不純物として含まれるO,S,Se,Teの合計含有量をY(massppm)としたときに、X/Y>2とされているので、Caが優先的に酸化して消費されても、S,Se,Teと反応するCaを確保することができ、Ca系化合物を十分に生成することができる。
 そして、800℃で1時間保持の熱処理を行った後において、平均結晶粒径Aが200μm以下とされるとともに、粒径50μm以上300μm以下の範囲の結晶粒の面積率が60%以上とされているので、800℃以上に加熱した場合であっても、確実に、結晶粒の粗大化及び不均一化を抑制することができる。
According to the copper material having this structure, the Ca content is in the range of 3 mass ppm or more and 400 mass ppm or less. Therefore, at the time of casting, Ca reacts with S, Se, and Te contained as unavoidable impurities to form a Ca compound. Is generated. When this Ca-based compound is heated at a high temperature, it decomposes into Ca and S, Se, Te and dissolves in the parent phase, and the solid-dissolved Ca and S, Se, Te inhibit the growth of crystal grains. .. Therefore, secondary recrystallization that occurs on the high temperature side (for example, 800 ° C. or higher) can be sufficiently suppressed, and coarsening and non-uniformity of crystal grains can be suppressed even after heating.
Further, when the Ca content is X (mass ppm) and the total content of O, S, Se, and Te contained as the unavoidable impurities is Y (mass ppm), X / Y> 2 is set. Even if Ca is preferentially oxidized and consumed, Ca that reacts with S, Se, and Te can be secured, and a Ca-based compound can be sufficiently produced.
After the heat treatment held at 800 ° C. for 1 hour, the average crystal grain size A is set to 200 μm or less, and the area ratio of the crystal grains in the range of 50 μm or more and 300 μm or less is set to 60% or more. Therefore, even when heated to 800 ° C. or higher, coarsening and non-uniformity of crystal grains can be reliably suppressed.
 ここで、本発明の銅材においては、800℃で1時間保持の熱処理を行った後の平均結晶粒径をAとし、1000℃で1時間保持の熱処理を行った後の平均結晶粒径をBとした場合に、B/A≦2であることが好ましい。
 この場合、1000℃で1時間保持の熱処理を行った後の平均結晶粒径Bと、800℃で1時間保持の熱処理を行った後の平均結晶粒径Aとの差が小さく、高温に加熱しても十分に結晶粒の粗大化及び不均一化を抑制することができる。
Here, in the copper material of the present invention, the average crystal grain size after the heat treatment held at 800 ° C. for 1 hour is defined as A, and the average crystal grain size after the heat treatment held at 1000 ° C. for 1 hour is defined as A. When B is set, it is preferable that B / A ≦ 2.
In this case, the difference between the average crystal grain size B after the heat treatment held at 1000 ° C. for 1 hour and the average crystal grain size A after the heat treatment held at 800 ° C. for 1 hour is small, and the mixture is heated to a high temperature. Even so, coarsening and non-uniformity of crystal grains can be sufficiently suppressed.
 また、本発明の銅材においては、上述のO,S,Se,Teを除いた上述の不可避不純物は、総量で0.1mass%以下であることが好ましい。 Further, in the copper material of the present invention, the total amount of the above-mentioned unavoidable impurities excluding the above-mentioned O, S, Se and Te is preferably 0.1 mass% or less.
 本発明の放熱部材は、上述の銅材からなることを特徴とする。
 この構成の放熱部材によれば、上述の銅材で構成されているので、接合時に800℃以上の高温に加熱した場合であっても、結晶粒の粗大化及び不均一化を抑制することができる。
The heat radiating member of the present invention is characterized by being made of the above-mentioned copper material.
According to the heat radiating member having this structure, since it is made of the above-mentioned copper material, it is possible to suppress coarsening and non-uniformity of crystal grains even when heated to a high temperature of 800 ° C. or higher at the time of joining. it can.
 本発明によれば、加熱後においても結晶粒の粗大化及び不均一化を抑制することができる銅材、及び、この銅材からなる放熱部材を提供することができる。 According to the present invention, it is possible to provide a copper material capable of suppressing coarsening and non-uniformity of crystal grains even after heating, and a heat radiating member made of this copper material.
本実施形態である銅材の製造方法のフロー図である。It is a flow chart of the manufacturing method of the copper material which is this embodiment.
 以下に、本発明の一実施形態である銅材について説明する。
 本実施形態である銅材は、ヒートシンクや厚銅回路等の電気・電子部品の素材として用いられるものであり、前述の電気・電子部品を成形する際に、例えばセラミックス基板に接合されて使用されるものである。
The copper material according to the embodiment of the present invention will be described below.
The copper material of the present embodiment is used as a material for electric / electronic parts such as a heat sink and a thick copper circuit, and is used by being bonded to a ceramic substrate, for example, when molding the above-mentioned electric / electronic parts. It is a thing.
 本実施形態である銅材は、Caの含有量が3massppm以上400massppm以下の範囲内、残部がCu及び不可避不純物とした組成とされており、Caの含有量をX(massppm)、不可避不純物として含まれるO,S,Se,Teの合計含有量をY(massppm)としたときに、X/Y>2の関係を満足するものとされている。 The copper material of the present embodiment has a composition in which the Ca content is in the range of 3 mass ppm or more and 400 mass ppm or less, and the balance is Cu and unavoidable impurities, and the Ca content is X (mass ppm) and is included as unavoidable impurities. When the total content of O, S, Se, and Te is Y (mass ppm), the relationship of X / Y> 2 is satisfied.
 そして、本実施形態である銅材においては、800℃で1時間保持の熱処理を行った後において、平均結晶粒径Aが200μm以下とされるとともに、粒径50μm以上300μm以下の範囲の結晶粒の面積率が60%以上とされている。
 さらに、本実施形態である銅材においては、800℃で1時間保持の熱処理を行った後の平均結晶粒径をA、1000℃で1時間保持の熱処理を行った後の平均結晶粒径をBとした場合に、B/A≦2であることが好ましい。
 また、本実施形態である銅材においては、O,S,Se,Teを除いた不可避不純物は、総量で0.1mass%以下とされている。
In the copper material of the present embodiment, after the heat treatment held at 800 ° C. for 1 hour, the average crystal grain size A is set to 200 μm or less, and the crystal grains in the range of 50 μm or more and 300 μm or less. The area ratio of is 60% or more.
Further, in the copper material of the present embodiment, the average crystal grain size after the heat treatment held at 800 ° C. for 1 hour is A, and the average crystal grain size after the heat treatment held at 1000 ° C. for 1 hour is set. When B is set, it is preferable that B / A ≦ 2.
Further, in the copper material of the present embodiment, the total amount of unavoidable impurities excluding O, S, Se and Te is 0.1 mass% or less.
 ここで、本実施形態の銅材において、上述のように成分組成、熱処理後の結晶粒径を規定した理由について以下に説明する。 Here, in the copper material of the present embodiment, the reason why the component composition and the crystal grain size after the heat treatment are defined as described above will be described below.
(Caの含有量:3massppm以上400massppm以下)
 Caは、不可避不純物として含まれるS,Se,TeとCa系化合物を生成する。この化合物の一部が高温で分解し、CaとS,Se,Teが固溶することになるため、固溶したCa及びS,Se,Teによって結晶粒の成長を抑制することが可能となる。
 ここで、Caの含有量が3massppm未満では、Ca系化合物を十分に生成することができなくなるおそれがある。一方、Caの含有量が400massppmを超える場合では、粗大なCa系化合物が生成し、加工性が大きく低下するおそれがある。
 このため、本実施形態では、Caの含有量を3massppm以上400massppm以下の範囲内としている。
 なお、Caの含有量の下限は3.5massppm以上とすることが好ましく、4massppm以上とすることがさらに好ましい。Caの含有量の上限は350massppm以下とすることが好ましく、300massppm以下とすることがさらに好ましい。より好ましくは100massppm以下である。
(Ca content: 3 massppm or more and 400 massppm or less)
Ca produces S, Se, Te and Ca compounds contained as unavoidable impurities. Since a part of this compound is decomposed at a high temperature and Ca and S, Se, Te are solid-solved, it is possible to suppress the growth of crystal grains by the solid-dissolved Ca and S, Se, Te. ..
Here, if the Ca content is less than 3 mass ppm, there is a possibility that the Ca-based compound cannot be sufficiently produced. On the other hand, when the Ca content exceeds 400 mass ppm, a coarse Ca-based compound may be produced and the processability may be significantly reduced.
Therefore, in the present embodiment, the Ca content is set within the range of 3 mass ppm or more and 400 mass ppm or less.
The lower limit of the Ca content is preferably 3.5 mass ppm or more, and more preferably 4 mass ppm or more. The upper limit of the Ca content is preferably 350 mass ppm or less, and more preferably 300 mass ppm or less. More preferably, it is 100 mass ppm or less.
(Caの含有量XとO,S,Se,Teの合計含有量Yとの比:X/Y>2)
 上述のCaは、S,Se,TeよりもOとの反応性が高く、優先的に酸化してCaが消費されることになる。
 そこで、Caの含有量Xと不可避不純物として含まれるO,S,Se,Teの合計含有量Yとの比X/Yを2よりも大きくすることにより、Caが酸化によって消費された後の残存Ca量が十分に確保され、S,Se,Teと残存Caが反応することにより、Ca系化合物を十分に生成することが可能となる。
 なお、Caの含有量XとO,S,Se,Teの合計含有量Yとの比X/Yは、2.2以上であることが好ましく、2.5以上であることがさらに好ましい。X/Yの上限に特に制限はないが、実質的には50以下となる。
(Ratio of Ca content X to total content Y of O, S, Se, Te: X / Y> 2)
The above-mentioned Ca has higher reactivity with O than S, Se, and Te, and is preferentially oxidized to consume Ca.
Therefore, by making the ratio X / Y of the Ca content X to the total content Y of O, S, Se, and Te contained as unavoidable impurities larger than 2, Ca remains after being consumed by oxidation. A sufficient amount of Ca is secured, and when S, Se, Te react with the residual Ca, a Ca-based compound can be sufficiently produced.
The ratio X / Y of the Ca content X and the total content Y of O, S, Se, and Te is preferably 2.2 or more, and more preferably 2.5 or more. The upper limit of X / Y is not particularly limited, but is substantially 50 or less.
(その他の不可避不純物)
 上述した元素以外のその他の不可避的不純物としては、Ag,B,Bi,Sc,希土類元素(但し、Sc,Yを除く),V,Nb,Ta,Cr,Mg,Sr,Ba,Ti,Zr,Hf,Y,Mo,W,Mn,Re,Fe,Ru,Os,Co,Rh,Ir,Ni,Pb,Pd,Pt,Au,Zn,Cd,Hg,Al,Ga,In,Ge,Sn,As,Sb,Tl,Be,N,C,Si,Li,H等が挙げられる。これらの不可避不純物は、熱伝導性を低下させるおそれがあることから、総量で0.1mass%以下とすることが好ましい。
(Other unavoidable impurities)
Other unavoidable impurities other than the above-mentioned elements include Ag, B, Bi, Sc, rare earth elements (excluding Sc and Y), V, Nb, Ta, Cr, Mg, Sr, Ba, Ti and Zr. , Hf, Y, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pb, Pd, Pt, Au, Zn, Cd, Hg, Al, Ga, In, Ge, Sn , As, Sb, Tl, Be, N, C, Si, Li, H and the like. Since these unavoidable impurities may lower the thermal conductivity, the total amount is preferably 0.1 mass% or less.
(800℃で1時間保持の熱処理後の平均結晶粒径A:200μm以下)
 本実施形態である銅材において、800℃で1時間保持の熱処理後の結晶粒径が200μm以下である場合には、800℃以上に加熱した場合であっても、結晶粒が粗大化することを確実に抑制できる。
 なお、800℃で1時間保持の熱処理後の平均結晶粒径は180μm以下であることが好ましく、150μm以下であることがさらに好ましい。また、800℃で1時間保持の熱処理後の平均結晶粒径の下限に特に制限はないが、実質的には、50μm以上となる。
(Average crystal grain size A after heat treatment held at 800 ° C. for 1 hour: 200 μm or less)
In the copper material of the present embodiment, when the crystal grain size after the heat treatment held at 800 ° C. for 1 hour is 200 μm or less, the crystal grains are coarsened even when heated to 800 ° C. or higher. Can be reliably suppressed.
The average crystal grain size after the heat treatment held at 800 ° C. for 1 hour is preferably 180 μm or less, and more preferably 150 μm or less. Further, the lower limit of the average crystal grain size after the heat treatment held at 800 ° C. for 1 hour is not particularly limited, but is substantially 50 μm or more.
(800℃で1時間保持の熱処理後の粒径50μm以上300μm以下の範囲の結晶粒の面積率:60%以上)
 本実施形態である銅材において、800℃で1時間保持の熱処理後に、粒径50μm以上300μm以下の範囲の結晶粒の面積率が60%以上である場合には、800℃以上に加熱した場合であっても、結晶粒が不均一化することを確実に抑制できる。
 また、800℃で1時間保持の熱処理後の結晶の面積率の60%以上に収まる粒径の範囲の最小粒径は75μm以上であることが好ましく、100μm以上であることがさらに好ましい。
(Area ratio of crystal grains in the range of 50 μm or more and 300 μm or less after heat treatment held at 800 ° C. for 1 hour: 60% or more)
In the copper material of the present embodiment, when the area ratio of the crystal grains in the range of 50 μm or more and 300 μm or less is 60% or more after the heat treatment held at 800 ° C. for 1 hour, the copper material is heated to 800 ° C. or more. Even if it is, it is possible to surely suppress the non-uniformity of the crystal grains.
Further, the minimum particle size in the range of the particle size within 60% or more of the area ratio of the crystal after the heat treatment held at 800 ° C. for 1 hour is preferably 75 μm or more, and more preferably 100 μm or more.
(800℃で1時間保持の熱処理を行った後の平均結晶粒径Aと、1000℃で1時間保持の熱処理を行った後の平均結晶粒径Bとの比:B/A≦2)
 本実施形態である銅材において、800℃で1時間保持の熱処理を行った後の平均結晶粒径Aと1000℃で1時間保持の熱処理を行った後の平均結晶粒径Bとの比B/Aが2以下である場合には、1000℃で1時間保持の熱処理を行った後の平均結晶粒径Bと、800℃で1時間保持の熱処理を行った後の平均結晶粒径Aとの差が小さく、高温に加熱しても十分に結晶粒の粗大化及び不均一化を抑制することができる。
 なお、800℃で1時間保持の熱処理を行った後の平均結晶粒径Aと1000℃で1時間保持の熱処理を行った後の平均結晶粒径Bとの比B/Aは、1.9以下であることが好ましく、1.5以下であることがさらに好ましい。また、B/Aの下限に特に制限はないが、実質的に0.8以上となる。
(Ratio of average crystal grain size A after heat treatment held at 800 ° C. for 1 hour and average crystal grain size B after heat treatment held at 1000 ° C. for 1 hour: B / A ≦ 2)
In the copper material of the present embodiment, the ratio B of the average crystal grain size A after the heat treatment held at 800 ° C. for 1 hour and the average crystal grain size B after the heat treatment held at 1000 ° C. for 1 hour. When / A is 2 or less, the average crystal grain size B after the heat treatment held at 1000 ° C. for 1 hour and the average crystal grain size A after the heat treatment held at 800 ° C. for 1 hour. The difference between the two is small, and even when heated to a high temperature, coarsening and non-uniformity of crystal grains can be sufficiently suppressed.
The ratio B / A of the average crystal grain size A after the heat treatment held at 800 ° C. for 1 hour and the average crystal grain size B after the heat treatment held at 1000 ° C. for 1 hour is 1.9. It is preferably less than or equal to, and more preferably 1.5 or less. Further, the lower limit of B / A is not particularly limited, but is substantially 0.8 or more.
 次に、このような構成とされた本実施形態である銅材の製造方法について、図1に示すフロー図を参照して説明する。 Next, the method for manufacturing the copper material according to the present embodiment having such a configuration will be described with reference to the flow chart shown in FIG.
(溶解・鋳造工程S01)
 まず、銅原料を溶解し、銅溶湯を製出する。なお、銅原料としては、例えば、純度が99.99mass%以上の無酸素銅、純度が99.999mass%以上の無酸素銅を用いることが好ましい。
 次いで、得られた銅溶湯に、所定の濃度となるようにCaを添加して、成分調製を行う。なお、Caを添加する際には、Ca単体やCu-Ca母合金等を用いることができる。また、Cu-Ca母合金を製造する際にも、純度が99.99mass%以上の無酸素銅、純度が99.999mass%以上の無酸素銅を用いることが好ましい。
 そして、成分調整された銅溶湯を鋳型に注入して鋳塊を製出する。なお、量産を考慮した場合には、連続鋳造法または半連続鋳造法を用いることが好ましい。
 この溶解・鋳造工程S01の過程で、添加したCaの一部と不可避不純物として含まれるS,Se,Teとが反応して、Ca系化合物が生成する。
(Melting / Casting Step S01)
First, the copper raw material is melted to produce a molten copper. As the copper raw material, for example, it is preferable to use oxygen-free copper having a purity of 99.99 mass% or more and oxygen-free copper having a purity of 99.999 mass% or more.
Next, Ca is added to the obtained molten copper so as to have a predetermined concentration to prepare the components. When adding Ca, a simple substance of Ca, a Cu—Ca mother alloy, or the like can be used. Further, also when producing a Cu—Ca mother alloy, it is preferable to use oxygen-free copper having a purity of 99.99 mass% or more and oxygen-free copper having a purity of 99.999 mass% or more.
Then, a molten copper whose composition has been adjusted is injected into a mold to produce an ingot. In consideration of mass production, it is preferable to use a continuous casting method or a semi-continuous casting method.
In the process of this melting / casting step S01, a part of the added Ca reacts with S, Se, and Te contained as unavoidable impurities to generate a Ca-based compound.
(熱間加工工程S02)
 次に、組織の均一化のために、熱間加工を実施する。この熱間加工工程における加熱時は非酸化性または還元性雰囲気中で実施することが好ましい。
 熱間加工温度については、特に制限はないが、500℃以上1000℃以下の範囲内とすることが好ましい。後の工程でCa系化合物を均一に生成させるため熱間加工開始温度は加工発熱も考慮して700℃以上となる温度とすることが望ましい。より好ましくは750℃以上である。
 また、熱間加工の総加工率は40%以上とすることが好ましく、60%以上とすることがさらに好ましく、70%以上であることがより好ましい。
 熱間加工終了温度は700℃未満とすることが好ましく。より好ましくは650℃以下である。
 さらに、熱間加工後の冷却方法については、特に制限はないが、空冷又は水冷を行うことが好ましい。
 また、熱間加工工程S02における加工方法に特に限定はなく、例えば圧延、押出、溝圧延、鍛造、プレス等を採用することができる。最終形状が板、条の場合には圧延を採用することが好ましく、最終形状が線、棒の場合には押出や溝圧延を採用することが好ましく、最終形状がバルク材の場合には鍛造やプレスを採用することが好ましい。
(Hot working process S02)
Next, hot working is performed to make the structure uniform. The heating in this hot working step is preferably carried out in a non-oxidizing or reducing atmosphere.
The hot working temperature is not particularly limited, but is preferably in the range of 500 ° C. or higher and 1000 ° C. or lower. It is desirable that the hot working start temperature be 700 ° C. or higher in consideration of machining heat generation in order to uniformly generate Ca-based compounds in a later step. More preferably, it is 750 ° C. or higher.
Further, the total processing rate of hot working is preferably 40% or more, more preferably 60% or more, and even more preferably 70% or more.
The hot working end temperature is preferably less than 700 ° C. More preferably, it is 650 ° C. or lower.
Further, the cooling method after hot working is not particularly limited, but air cooling or water cooling is preferable.
Further, the processing method in the hot processing step S02 is not particularly limited, and for example, rolling, extrusion, groove rolling, forging, pressing, or the like can be adopted. When the final shape is a plate or strip, rolling is preferably adopted, when the final shape is a line or rod, extrusion or groove rolling is preferably adopted, and when the final shape is a bulk material, forging or forging or It is preferable to use a press.
(冷間加工工程S03)
 次に、熱間加工工程S02後の銅素材に対して、冷間加工を実施して所定の形状に加工する。なお、この冷間加工工程S03における温度条件は特に限定はないが、-200℃以上200℃以下の範囲で行うことが好ましい。また、この冷間加工工程S03における加工率は、最終形状に近似するように適宜選択されることになるが、生産性を向上させるためには30%以上とすることが好ましい。
 また、冷間加工工程S03における加工方法に特に限定はなく、例えば圧延、押出、溝圧延、鍛造、プレス等を採用することができる。最終形状が板、条の場合には圧延を採用することが好ましく、最終形状が線、棒の場合には押出や溝圧延を採用することが好ましく、最終形状がバルク材の場合には鍛造やプレスを採用することが好ましい。
(Cold working process S03)
Next, the copper material after the hot working step S02 is cold-worked to be processed into a predetermined shape. The temperature condition in this cold working step S03 is not particularly limited, but it is preferably performed in the range of −200 ° C. or higher and 200 ° C. or lower. Further, the processing ratio in the cold processing step S03 is appropriately selected so as to approximate the final shape, but it is preferably 30% or more in order to improve the productivity.
Further, the processing method in the cold processing step S03 is not particularly limited, and for example, rolling, extrusion, groove rolling, forging, pressing, or the like can be adopted. When the final shape is a plate or strip, rolling is preferably adopted, when the final shape is a line or rod, extrusion or groove rolling is preferably adopted, and when the final shape is a bulk material, forging or forging or It is preferable to use a press.
(再結晶熱処理工程S04)
 次に、冷間加工工程S03後の銅素材に対して、再結晶を目的とした熱処理を行う。ここで、再結晶熱処理工程S04後の再結晶粒が微細であると、その後に800℃以上に加熱した際に、結晶粒の成長、組織の不均一化が促進されてしまうおそれがある。このため、再結晶熱処理工程S04後の再結晶粒の平均結晶粒径を10μm以上とすることが好ましい。より好ましくは15μm以上、さらに好ましくは20μm以上とすることが好ましい。再結晶時の粒径の上限は特に定めないが、実質的には200μm以下である。
 再結晶熱処理工程S04の熱処理条件は、特に限定しないが、200℃以上850℃以下の範囲の熱処理温度で、1秒以上24時間以下の範囲で保持することが好ましい。この場合、再結晶後の粒径が上述した範囲にはいるように高温では短時間の熱処理、低温では長時間の熱処理とするのが好ましい。冷却速度は特に定めないが、800℃以上の温度で熱処理をした場合は500℃以上800℃未満の温度で、10℃/秒以下の冷却速度とすればよい、また、望ましくは5℃/秒以下、さらに好ましくは1℃/秒以下とすればよい。
 また、再結晶組織の均一化のために、冷間加工工程S03と再結晶熱処理工程S04を2回以上繰り返して行っても良い。
(Recrystallization Heat Treatment Step S04)
Next, the copper material after the cold working step S03 is heat-treated for the purpose of recrystallization. Here, if the recrystallized grains after the recrystallization heat treatment step S04 are fine, the growth of the crystal grains and the non-uniformity of the structure may be promoted when the recrystallized grains are subsequently heated to 800 ° C. or higher. Therefore, it is preferable that the average crystal grain size of the recrystallized grains after the recrystallization heat treatment step S04 is 10 μm or more. It is more preferably 15 μm or more, still more preferably 20 μm or more. The upper limit of the particle size at the time of recrystallization is not particularly defined, but is substantially 200 μm or less.
The heat treatment conditions of the recrystallization heat treatment step S04 are not particularly limited, but it is preferable to keep the heat treatment temperature in the range of 200 ° C. or higher and 850 ° C. or lower in the range of 1 second or more and 24 hours or less. In this case, it is preferable to perform a short-time heat treatment at a high temperature and a long-time heat treatment at a low temperature so that the particle size after recrystallization falls within the above range. The cooling rate is not particularly specified, but when the heat treatment is performed at a temperature of 800 ° C. or higher, the cooling rate may be 10 ° C./sec or lower at a temperature of 500 ° C. or higher and lower than 800 ° C., and preferably 5 ° C./sec. Hereinafter, it may be more preferably 1 ° C./sec or less.
Further, in order to make the recrystallization structure uniform, the cold processing step S03 and the recrystallization heat treatment step S04 may be repeated twice or more.
(調質加工工程S05) 
 次に、材料強度を調整するために、再結晶熱処理工程S04後の銅素材に対して調質加工を行ってもよい。なお、材料強度を高くする必要がない場合は、調質加工を行わなくてもよい。
 調質加工の加工率は特に限定しないが、材料強度を調整するために0%超え50%以下の範囲内で実施することが好ましい。また、必要に応じて、残留ひずみの除去のために、調質加工後にさらに熱処理を行ってもよい。
(Taking process S05)
Next, in order to adjust the material strength, the copper material after the recrystallization heat treatment step S04 may be tempered. If it is not necessary to increase the material strength, the tempering process may not be performed.
The processing rate of the tempering process is not particularly limited, but it is preferable to carry out the tempering process within a range of more than 0% and 50% or less in order to adjust the material strength. Further, if necessary, further heat treatment may be performed after the tempering process in order to remove the residual strain.
 このようにして、本実施形態である銅材が製出されることになる。 In this way, the copper material according to the present embodiment is produced.
 以上のような構成とされた本実施形態である銅材においては、Caの含有量が3massppm以上400massppm以下の範囲内とされているので、鋳造や熱間加工および再結晶熱処理時に、Caと不可避不純物として含まれるS,Se,Teと反応してCa系化合物が生成される。このCa系化合物は800℃以上に加熱すると、CaとS,Se,Teに分解して固溶し、固溶したCaとS,Se,Teによって結晶粒の成長が阻害される。よって、この銅材を例えば800℃以上に加熱した場合であっても、二次再結晶を十分に抑制でき、加熱後においても結晶粒の粗大化及び不均一化を抑制することができる。 In the copper material of the present embodiment having the above configuration, the Ca content is in the range of 3 mass ppm or more and 400 mass ppm or less, so that it is inevitable with Ca during casting, hot working, and recrystallization heat treatment. Ca-based compounds are produced by reacting with S, Se, and Te contained as impurities. When this Ca-based compound is heated to 800 ° C. or higher, it decomposes into Ca and S, Se, Te and dissolves in solid solution, and the solid-dissolved Ca and S, Se, Te inhibit the growth of crystal grains. Therefore, even when the copper material is heated to, for example, 800 ° C. or higher, secondary recrystallization can be sufficiently suppressed, and coarsening and non-uniformity of crystal grains can be suppressed even after heating.
 また、本実施形態である銅材においては、Caの含有量X(massppm)と不可避不純物として含まれるO,S,Se,Teの合計含有量Y(massppm)との比X/Yが2よりも大きく設定されているので、Caが優先的に酸素と反応して消費されても、S,Se,Teと反応する残存Ca量を確保することができ、Ca系化合物を十分に生成することができる。 Further, in the copper material of the present embodiment, the ratio X / Y of the Ca content X (mass ppm) and the total content Y (mass ppm) of O, S, Se, and Te contained as unavoidable impurities is 2 or more. Is also set to a large value, so even if Ca preferentially reacts with oxygen and is consumed, the amount of residual Ca that reacts with S, Se, and Te can be secured, and a Ca-based compound can be sufficiently produced. Can be done.
 さらに、本実施形態である銅材においては、800℃で1時間保持の熱処理を行った後において、平均結晶粒径Aが200μm以下とされているので、銅材を800℃以上に加熱した場合であっても、確実に、結晶粒の粗大化を抑制することができる。
 また、本実施形態である銅材においては、800℃で1時間保持の熱処理を行った後に、粒径50μm以上300μm以下の範囲の結晶粒の面積率が60%以上とされているので、銅材を800℃以上に加熱した場合であっても、確実に、結晶粒の不均一化を抑制することができる。
Further, in the copper material of the present embodiment, the average crystal grain size A is 200 μm or less after the heat treatment held at 800 ° C. for 1 hour. Therefore, when the copper material is heated to 800 ° C. or higher. Even so, it is possible to surely suppress the coarsening of crystal grains.
Further, in the copper material of the present embodiment, after the heat treatment held at 800 ° C. for 1 hour, the area ratio of the crystal grains in the range of 50 μm or more and 300 μm or less is set to 60% or more. Even when the material is heated to 800 ° C. or higher, non-uniformity of crystal grains can be reliably suppressed.
 さらに、本実施形態である銅材において、800℃で1時間保持の熱処理を行った後の平均結晶粒径Aと、1000℃で1時間保持の熱処理を行った後の平均結晶粒径Bとの比B/Aが2以下である場合には、1000℃で1時間保持の熱処理を行った後の平均結晶粒径Bと、800℃で1時間保持の熱処理を行った後の平均結晶粒径Aとの差が小さく、1000℃以上の高温にまで加熱しても十分に結晶粒の粗大化及び不均一化を抑制することができる。 Further, in the copper material of the present embodiment, the average crystal grain size A after the heat treatment held at 800 ° C. for 1 hour and the average crystal grain size B after the heat treatment held at 1000 ° C. for 1 hour When the ratio B / A is 2 or less, the average crystal grain size B after the heat treatment held at 1000 ° C. for 1 hour and the average crystal grain size after the heat treatment held at 800 ° C. for 1 hour The difference from the diameter A is small, and even if it is heated to a high temperature of 1000 ° C. or higher, coarsening and non-uniformity of crystal grains can be sufficiently suppressed.
 以上、本発明の実施形態である銅材について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、上述の実施形態では、銅材の製造方法の一例について説明したが、銅材の製造方法は、実施形態に記載したものに限定されることはなく、既存の製造方法を適宜選択して製造してもよい。
Although the copper material according to the embodiment of the present invention has been described above, the present invention is not limited to this, and can be appropriately changed without departing from the technical idea of the present invention.
For example, in the above-described embodiment, an example of a method for producing a copper material has been described, but the method for producing a copper material is not limited to the one described in the embodiment, and an existing production method is appropriately selected. It may be manufactured.
 以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
 純度が99.99mass%以上の無酸素銅からなる銅原料を高純度グラファイト坩堝内に装入して、Arガス雰囲気とされた雰囲気炉内において高周波溶解した。得られた銅溶湯に、Cu-1mass%Ca母合金を投入し、表1に示す成分組成に調製した。
 得られた銅溶湯を、鋳型に注湯して鋳塊を製出した。なお、鋳塊の大きさは、厚さ約25mm×幅約70mm×長さ約160~190mmとした。
The results of the confirmation experiment conducted to confirm the effect of the present invention will be described below.
A copper raw material made of oxygen-free copper having a purity of 99.99 mass% or more was charged into a high-purity graphite crucible and melted at high frequency in an atmosphere furnace having an Ar gas atmosphere. Cu-1 mass% Ca mother alloy was added to the obtained molten copper to prepare the component composition shown in Table 1.
The obtained molten copper was poured into a mold to produce an ingot. The size of the ingot was about 25 mm in thickness × about 70 mm in width × about 160 to 190 mm in length.
 得られた鋳塊に対して、Arガス雰囲気中において、800℃で1時間の加熱を行い、熱間圧延を実施し、厚さ15mmとした。
 熱間圧延後の銅素材を切断するとともに表面の酸化被膜を除去するために表面研削を実施した。このとき、その後の冷間圧延、調質圧延の圧延率を考慮して、最終厚さが0.8mmとなるように、冷間圧延に供する銅素材の厚さを調整した。
The obtained ingot was heated at 800 ° C. for 1 hour in an Ar gas atmosphere and hot-rolled to a thickness of 15 mm.
The copper material after hot rolling was cut and surface grinding was performed to remove the oxide film on the surface. At this time, the thickness of the copper material to be subjected to cold rolling was adjusted so that the final thickness was 0.8 mm in consideration of the rolling ratio of the subsequent cold rolling and temper rolling.
 上述のように厚さを調整した銅素材に対して、加工率90%の条件で冷間圧延を行った。
 次に、冷間圧延後の銅素材に対して、600~850℃で5秒保持の条件により、再結晶熱処理を実施した。
 そして、再結晶熱処理後の銅素材に対して、加工率5~50%の条件で調質圧延を行い、厚さ0.8mm、幅60mmの銅材を製造した。
The copper material whose thickness was adjusted as described above was cold-rolled under the condition of a processing rate of 90%.
Next, the copper material after cold rolling was subjected to recrystallization heat treatment under the condition of holding at 600 to 850 ° C. for 5 seconds.
Then, the copper material after the recrystallization heat treatment was temper-rolled under the condition of a processing rate of 5 to 50% to produce a copper material having a thickness of 0.8 mm and a width of 60 mm.
 そして、以下の項目について評価を実施した。評価結果を表2に示す。 Then, the following items were evaluated. The evaluation results are shown in Table 2.
(銅材の組成分析)
 得られた銅材から測定試料を採取し、ICP-MS分析装置(AGILENT社製 7500CX)によって組成分析を行った。その結果、表1に示す組成であることを確認した。
(Copper composition analysis)
A measurement sample was collected from the obtained copper material, and the composition was analyzed by an ICP-MS analyzer (7500CX manufactured by Agilent). As a result, it was confirmed that the composition was shown in Table 1.
(800℃で1hの熱処理後の平均結晶粒径A)
 得られた銅材に800℃で1時間保持の熱処理を実施した。この試験片より、50mm×50mmのサンプルを切り出し、耐水研磨紙、ダイヤモンド砥粒を用いて機械研磨を行った後、コロイダルシリカ溶液を用いて仕上げ研磨を行った。
 EBSD測定装置(FEI社製 QUANTA 450 EFG,EDAX/TSL社製 AMETEK9424)と、解析ソフト(TSL社製 OIM Analysis7×64)を用いて、測定間隔5μmステップで1000μmの測定面積において、隣接する測定点間の方位差が15°以上となる測定点間を結晶粒界として、結晶粒界マップを作成した。結晶粒界マップを作成する際にはCI値が0.1以下となる測定点は除外した。
 JIS H 0501の切断法に準拠し、上述の結晶粒界マップに対して、縦、横に所定長さの線分を5本ずつ引き、線分で完全に切られる結晶粒の数をカウントし、その切断長さの平均値を平均結晶粒径とした。
(Average crystal grain size A after heat treatment at 800 ° C. for 1 h)
The obtained copper material was heat-treated at 800 ° C. for 1 hour. A 50 mm × 50 mm sample was cut out from this test piece, mechanically polished with water-resistant abrasive paper and diamond abrasive grains, and then finish-polished with a colloidal silica solution.
Adjacent measurements at a measurement area of 1000 μm 2 at a measurement interval of 5 μm using an EBSD measuring device (QUANTA 450 EFG, EDAX / TSL AMETEK9424) and analysis software (TSL OIM Analysis 7 × 64). A grain boundary map was created with the grain boundaries between the measurement points where the orientation difference between the points is 15 ° or more. When creating the grain boundary map, the measurement points where the CI value was 0.1 or less were excluded.
In accordance with the cutting method of JIS H 0501, 5 line segments of a predetermined length are drawn vertically and horizontally on the above-mentioned crystal grain boundary map, and the number of crystal grains completely cut by the line segments is counted. , The average value of the cutting length was taken as the average crystal grain size.
(800℃で1hの熱処理後の粒径50μm以上300μm以下の結晶粒の面積率)
 上記の結晶粒径Aの測定の際に作成した粒界マップから解析ソフト(TSL社製 OIM Analysis7×64)を用いて、各結晶粒の結晶粒径を求め、そのAreaFractionから全ての結晶粒の全面積から、粒径50μm以上300μm以下となる結晶粒の面積割合を計算した。
(Area ratio of crystal grains having a particle size of 50 μm or more and 300 μm or less after heat treatment at 800 ° C. for 1 h)
The crystal grain size of each crystal grain was obtained from the grain boundary map created at the time of the above measurement of the crystal grain size A using analysis software (OIM Analysis 7 × 64 manufactured by TSL), and all the crystal grains were found from the Area Fraction. From the total area, the area ratio of the crystal grains having a particle size of 50 μm or more and 300 μm or less was calculated.
(1000℃で1hの熱処理後の平均結晶粒径B)
 得られた銅材から試験片を採取し、1000℃で1時間保持の熱処理を実施した。この試験片より、50mm×50mmのサンプルを切り出し、上述した「800℃で1hの熱処理後の平均結晶粒径A」と同様の手順によって、1000℃で1hの熱処理後の平均結晶粒径Bを算出した。
(Average crystal grain size B after heat treatment at 1000 ° C. for 1 h)
A test piece was collected from the obtained copper material and heat-treated at 1000 ° C. for 1 hour. A 50 mm × 50 mm sample was cut out from this test piece, and the average crystal grain size B after heat treatment at 1000 ° C. for 1 h was obtained by the same procedure as the above-mentioned “Average crystal grain size A after heat treatment at 800 ° C. for 1 h”. Calculated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 比較例1においては、Caを添加しておらず、800℃で1hの熱処理後の平均結晶粒径Aが215μm、1000℃で1hの熱処理後の平均結晶粒径Bが478μmとなり、熱処理後に結晶粒が粗大化した。また、800℃で1hの熱処理後の粒径50μm以上300μm以下の結晶の面積率が55%と低く、熱処理後の結晶粒が不均一であった。 In Comparative Example 1, Ca was not added, and the average crystal grain size A after heat treatment at 800 ° C. for 1 h was 215 μm, and the average crystal grain size B after heat treatment at 1000 ° C. for 1 h was 478 μm. The grains became coarse. In addition, the area ratio of crystals having a particle size of 50 μm or more and 300 μm or less after heat treatment at 800 ° C. for 1 h was as low as 55%, and the crystal grains after heat treatment were non-uniform.
 比較例2においては、Caの含有量X(massppm)と不可避不純物として含まれるO,S,Se,Teの合計含有量Y(massppm)の比が0.2とされており、800℃で1hの熱処理後の平均結晶粒径Aが204μm、1000℃で1hの熱処理後の平均結晶粒径Bが506μmとなり、熱処理後に結晶粒が粗大化した。また、800℃で1hの熱処理後の粒径50μm以上300μm以下の結晶の面積率が49%と低く、熱処理後の結晶粒が不均一であった。 In Comparative Example 2, the ratio of the Ca content X (mass ppm) to the total content Y (mass ppm) of O, S, Se, and Te contained as unavoidable impurities is 0.2, and 1 h at 800 ° C. The average crystal grain size A after the heat treatment was 204 μm, the average crystal grain size B after the heat treatment at 1000 ° C. for 1 h was 506 μm, and the crystal grains were coarsened after the heat treatment. In addition, the area ratio of crystals having a particle size of 50 μm or more and 300 μm or less after heat treatment at 800 ° C. for 1 h was as low as 49%, and the crystal grains after heat treatment were non-uniform.
 比較例3においては、Caの含有量X(massppm)と不可避不純物として含まれるO,S,Se,Teの合計含有量Y(massppm)の比が1.5とされており、800℃で1hの熱処理後の平均結晶粒径Aが233μm、1000℃で1hの熱処理後の平均結晶粒径Bが557μmとなり、熱処理後に結晶粒が粗大化した。また、800℃で1hの熱処理後の粒径50μm以上300μm以下の範囲の結晶粒の面積率が51%と低く、熱処理後の結晶粒が不均一であった。 In Comparative Example 3, the ratio of the Ca content X (mass ppm) to the total content Y (mass ppm) of O, S, Se, and Te contained as unavoidable impurities is 1.5, and 1 h at 800 ° C. The average crystal grain size A after the heat treatment was 233 μm, the average crystal grain size B after the heat treatment at 1000 ° C. for 1 h was 557 μm, and the crystal grains were coarsened after the heat treatment. Further, the area ratio of the crystal grains in the range of 50 μm or more and 300 μm or less after the heat treatment at 800 ° C. for 1 h was as low as 51%, and the crystal grains after the heat treatment were non-uniform.
 比較例4においては、Caの含有量が543massppmとされており、加工時に割れが発生した。このため、その後の評価を中止した。鋳造時に、粗大なCa系化合物が生成したためと推測される。 In Comparative Example 4, the Ca content was 543 mass ppm, and cracks occurred during processing. Therefore, the subsequent evaluation was stopped. It is presumed that a coarse Ca-based compound was produced during casting.
 これに対して、Caの含有量が3massppm以上400massppm以下の範囲内、残部がCu及び不可避不純物とした組成とされ、Caの含有量X(massppm)と、不可避不純物として含まれるO,S,Se,Teの合計含有量Y(massppm)との比X/Yが2よりも大きい本発明例1-15においては、800℃で1hの熱処理後の平均結晶粒径Aが155μm以下、1000℃で1hの熱処理後の平均結晶粒径Bが183μm以下となり、熱処理後における結晶粒の粗大化が抑制されていた。また、800℃で1hの熱処理後の粒径50μm以上300μm以下の結晶の面積率が60%以上であり、熱処理後の結晶粒が均一であった。 On the other hand, the composition is such that the Ca content is in the range of 3 mass ppm or more and 400 mass ppm or less, and the balance is Cu and unavoidable impurities, and the Ca content X (mass ppm) and O, S, Se contained as unavoidable impurities. In Example 1-15 of the present invention in which the ratio X / Y to the total content Y (mass ppm) of Te is larger than 2, the average crystal grain size A after heat treatment at 800 ° C. for 1 h is 155 μm or less, at 1000 ° C. The average crystal grain size B after the heat treatment for 1 h was 183 μm or less, and the coarsening of the crystal grains after the heat treatment was suppressed. Further, the area ratio of the crystals having a particle size of 50 μm or more and 300 μm or less after the heat treatment at 800 ° C. for 1 h was 60% or more, and the crystal grains after the heat treatment were uniform.
 以上のことから、本発明例によれば、加熱後においても、結晶粒の粗大化及び不均一化を抑制することができる銅材を提供可能であることが確認された。 From the above, it was confirmed that according to the example of the present invention, it is possible to provide a copper material capable of suppressing coarsening and non-uniformity of crystal grains even after heating.
産業上利用の可能性Possibility of industrial use
 本発明の銅材及び放熱部材は、結晶粒の粗大化を抑制して外観の変化を防止することが好ましい部材、例えば、ヒートシンクや厚銅回路等を備えた電気・電子部品に好適に利用することができる。 The copper material and the heat radiating member of the present invention are preferably used for members in which it is preferable to suppress coarsening of crystal grains to prevent changes in appearance, for example, electric / electronic parts provided with a heat sink, a thick copper circuit, or the like. be able to.

Claims (4)

  1.  Caの含有量が3massppm以上400massppm以下の範囲内、残部がCu及び不可避不純物とした組成とされ、
     Caの含有量をX(massppm)、前記不可避不純物として含まれるO,S,Se,Teの合計含有量をY(massppm)としたときに、X/Y>2とされており、
     800℃で1時間保持の熱処理を行った後において、平均結晶粒径が200μm以下とされるとともに、粒径50μm以上300μm以下の範囲の結晶粒の面積率が60%以上とされていることを特徴とする銅材。
    The composition is such that the Ca content is within the range of 3 mass ppm or more and 400 mass ppm or less, and the balance is Cu and unavoidable impurities.
    When the Ca content is X (mass ppm) and the total content of O, S, Se, and Te contained as the unavoidable impurities is Y (mass ppm), X / Y> 2.
    After the heat treatment held at 800 ° C. for 1 hour, the average crystal grain size is 200 μm or less, and the area ratio of the crystal grains in the range of 50 μm or more and 300 μm or less is 60% or more. Characteristic copper material.
  2.  800℃で1時間保持の熱処理を行った後の平均結晶粒径をAとし、1000℃で1時間保持の熱処理を行った後の平均結晶粒径をBとした場合に、B/A≦2であることを特徴とする請求項1に記載の銅材。 B / A ≦ 2 when the average crystal grain size after the heat treatment held at 800 ° C. for 1 hour is A and the average crystal grain size after the heat treatment held at 1000 ° C. for 1 hour is B. The copper material according to claim 1, wherein the copper material is characterized by the above.
  3.  前記O,S,Se,Teを除いた前記不可避不純物は、総量で0.1mass%以下であることを特徴とする請求項1に記載の銅材。 The copper material according to claim 1, wherein the unavoidable impurities excluding the O, S, Se, and Te are 0.1 mass% or less in total.
  4.  請求項1から3のいずれか一項に記載の銅材からなることを特徴とする放熱部材。 A heat radiating member made of the copper material according to any one of claims 1 to 3.
PCT/JP2020/010018 2019-03-29 2020-03-09 Copper material and heat-dissipating member WO2020203071A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20783133.0A EP3950981A4 (en) 2019-03-29 2020-03-09 Copper material and heat-dissipating member
JP2021511309A JP7248104B2 (en) 2019-03-29 2020-03-09 Rolled copper materials and heat dissipation materials
CN202080024700.8A CN113631742A (en) 2019-03-29 2020-03-09 Copper material and heat dissipation component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-068349 2019-03-29
JP2019068349 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203071A1 true WO2020203071A1 (en) 2020-10-08

Family

ID=72668260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010018 WO2020203071A1 (en) 2019-03-29 2020-03-09 Copper material and heat-dissipating member

Country Status (5)

Country Link
EP (1) EP3950981A4 (en)
JP (1) JP7248104B2 (en)
CN (1) CN113631742A (en)
TW (1) TWI842854B (en)
WO (1) WO2020203071A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224940A1 (en) * 2021-04-19 2022-10-27 株式会社 Kmct Corrosion-resistant copper alloy, copper alloy pipe and heat exchanger
JP2022165385A (en) * 2021-04-19 2022-10-31 株式会社Kmct Corrosion resistant copper alloy, copper alloy pipe, and heat exchanger
WO2024024898A1 (en) 2022-07-29 2024-02-01 三菱マテリアル株式会社 Pure copper material, insulating substrate and electronic device
WO2024024909A1 (en) 2022-07-29 2024-02-01 三菱マテリアル株式会社 Pure copper material, insulating substrate, and electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062058A (en) 1992-06-23 1994-01-11 Furukawa Electric Co Ltd:The Crystal grain growth suppressing oxygen free copper
JP2000212660A (en) * 1999-01-18 2000-08-02 Nippon Mining & Metals Co Ltd Rolled copper foil for flexible printed circuit board and its production
JP2014189817A (en) * 2013-03-26 2014-10-06 Mitsubishi Materials Corp Pure copper plate and heat radiation substrate
JP2016125115A (en) * 2015-01-07 2016-07-11 三菱マテリアル株式会社 Superconducting wire and superconducting coil
JP2017188339A (en) * 2016-04-06 2017-10-12 三菱マテリアル株式会社 Superconductive stabilization material, superconductive wire and superconductive coil
JP2019068349A (en) 2017-10-04 2019-04-25 株式会社リコー Information processing system, information processing apparatus, information processing method, and information processing program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519775B2 (en) * 2004-01-29 2010-08-04 日鉱金属株式会社 Ultra-high purity copper and method for producing the same
JP5866411B2 (en) * 2013-08-09 2016-02-17 三菱マテリアル株式会社 Copper alloy sheet and method for producing copper alloy sheet
JP6299803B2 (en) * 2016-04-06 2018-03-28 三菱マテリアル株式会社 Superconducting wire and superconducting coil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062058A (en) 1992-06-23 1994-01-11 Furukawa Electric Co Ltd:The Crystal grain growth suppressing oxygen free copper
JP2000212660A (en) * 1999-01-18 2000-08-02 Nippon Mining & Metals Co Ltd Rolled copper foil for flexible printed circuit board and its production
JP2014189817A (en) * 2013-03-26 2014-10-06 Mitsubishi Materials Corp Pure copper plate and heat radiation substrate
JP2016125115A (en) * 2015-01-07 2016-07-11 三菱マテリアル株式会社 Superconducting wire and superconducting coil
JP2017188339A (en) * 2016-04-06 2017-10-12 三菱マテリアル株式会社 Superconductive stabilization material, superconductive wire and superconductive coil
JP2019068349A (en) 2017-10-04 2019-04-25 株式会社リコー Information processing system, information processing apparatus, information processing method, and information processing program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3950981A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224940A1 (en) * 2021-04-19 2022-10-27 株式会社 Kmct Corrosion-resistant copper alloy, copper alloy pipe and heat exchanger
JP2022165385A (en) * 2021-04-19 2022-10-31 株式会社Kmct Corrosion resistant copper alloy, copper alloy pipe, and heat exchanger
JP7491960B2 (en) 2021-04-19 2024-05-28 株式会社Kmct Corrosion-resistant copper alloys, copper alloy tubes and heat exchangers
WO2024024898A1 (en) 2022-07-29 2024-02-01 三菱マテリアル株式会社 Pure copper material, insulating substrate and electronic device
WO2024024909A1 (en) 2022-07-29 2024-02-01 三菱マテリアル株式会社 Pure copper material, insulating substrate, and electronic device
KR20240132097A (en) 2022-07-29 2024-09-02 미쓰비시 마테리알 가부시키가이샤 Pure copper, insulating substrate, electronic device
KR20240134029A (en) 2022-07-29 2024-09-05 미쓰비시 마테리알 가부시키가이샤 Pure copper, insulating substrate, electronic device

Also Published As

Publication number Publication date
CN113631742A (en) 2021-11-09
JP7248104B2 (en) 2023-03-29
TWI842854B (en) 2024-05-21
JPWO2020203071A1 (en) 2020-10-08
EP3950981A1 (en) 2022-02-09
TW202104604A (en) 2021-02-01
EP3950981A4 (en) 2023-04-26

Similar Documents

Publication Publication Date Title
WO2020203071A1 (en) Copper material and heat-dissipating member
JP7380550B2 (en) pure copper plate
JP7020595B2 (en) Pure copper plate
JP6984799B1 (en) Pure copper plate, copper / ceramic joint, insulated circuit board
WO2021177469A1 (en) Pure copper plate
KR102474714B1 (en) Copper alloy for electronic/electrical device, copper alloy plastically worked material for electronic/electrical device, component for electronic/electrical device, terminal, and busbar
WO2020122230A1 (en) Pure copper sheet, member for electronic/electric device, and member for heat dissipation
WO2021177461A1 (en) Pure copper plate, copper/ceramic joined body, and insulated circuit substrate
JPWO2021107096A1 (en) Copper alloys, plastic working materials for copper alloys, parts for electronic and electrical equipment, terminals, bus bars, heat dissipation boards
WO2022004791A1 (en) Copper alloy, copper alloy plastic working material, component for electronic/electrical devices, terminal, bus bar, lead frame and heat dissipation substrate
JP6981587B2 (en) Copper alloys, plastic working materials for copper alloys, parts for electronic and electrical equipment, terminals, bus bars, heat dissipation boards
JP2022072355A (en) Copper alloy, copper alloy plastic working material, component for electronic/electric apparatus, terminal, bus bar, lead frame and heat dissipation substrate
WO2022004779A1 (en) Copper alloy, copper alloy plastic working material, component for electronic/electrical device, terminal, bus bar, lead frame, and heat dissipation substrate
WO2024024909A1 (en) Pure copper material, insulating substrate, and electronic device
JP7078091B2 (en) Copper alloys, copper alloy plastic processed materials, parts for electronic and electrical equipment, terminals, bus bars, lead frames, heat dissipation boards
JP7473066B2 (en) Pure copper materials, insulating substrates, electronic devices
JP7446975B2 (en) Copper alloys, plastic processed copper alloy materials, parts for electronic and electrical equipment, terminals, bus bars, lead frames, heat dissipation boards
WO2022004789A1 (en) Plastic copper alloy working material, copper alloy wire material, component for electronic and electrical equipment, and terminal
KR20240131989A (en) Copper alloy heteromorphic materials, electronic and electrical equipment components, terminals, bus bars, lead frames, heat-dissipating substrates
JP2015014040A (en) METHOD OF PRODUCING Ti-CONTAINING COPPER ALLOY

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783133

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511309

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020783133

Country of ref document: EP

Effective date: 20211029