WO2020203013A1 - Method for manufacturing printed matter - Google Patents

Method for manufacturing printed matter Download PDF

Info

Publication number
WO2020203013A1
WO2020203013A1 PCT/JP2020/009369 JP2020009369W WO2020203013A1 WO 2020203013 A1 WO2020203013 A1 WO 2020203013A1 JP 2020009369 W JP2020009369 W JP 2020009369W WO 2020203013 A1 WO2020203013 A1 WO 2020203013A1
Authority
WO
WIPO (PCT)
Prior art keywords
printed matter
producing
meth
lithographic printing
acrylate
Prior art date
Application number
PCT/JP2020/009369
Other languages
French (fr)
Japanese (ja)
Inventor
祐一 辻
由里香 河合
武治郎 井上
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP20783488.8A priority Critical patent/EP3950368A4/en
Priority to CN202080022301.8A priority patent/CN113557144B/en
Priority to JP2020514769A priority patent/JP7040609B2/en
Publication of WO2020203013A1 publication Critical patent/WO2020203013A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/06Lithographic printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/26Printing on other surfaces than ordinary paper
    • B41M1/30Printing on other surfaces than ordinary paper on organic plastics, horn or similar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M7/00After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
    • B41M7/0081After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock using electromagnetic radiation or waves, e.g. ultraviolet radiation, electron beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/08Damping; Neutralising or similar differentiation treatments for lithographic printing formes; Gumming or finishing solutions, fountain solutions, correction or deletion fluids, or on-press development

Definitions

  • the present invention relates to a method for producing a printed matter.
  • Planographic printing is a printing method that is widely used as a system for supplying printed matter at high speed, in large quantities, and at low cost.
  • active energy ray-curable lithographic printing inks lithographic printing inks that do not contain volatile components and are instantly cured by irradiation with active energy rays
  • active energy ray-curable lithographic printing inks active energy ray-curable lithographic printing inks
  • flexible packaging printing roll-to-roll printing is performed, so quick-drying of the ink is important.
  • active energy ray-curable lithographic printing using ink for active energy ray-curable lithographic printing has energy saving and high productivity because it shortens the drying process without using thermal energy. It is a thing.
  • the radiation-curable lithographic printing ink does not contain a polymerization initiator from the viewpoint of preventing content contamination.
  • the radiation-curable lithographic printing ink has low adhesion to the base material, and the adhesion to the base material is insufficient as compared with gravure printing. Therefore, the present invention provides a method for producing a printed matter, which can improve the adhesion between the ink and the base material even when the active energy ray-curable lithographic printing ink is used.
  • the present invention has the following configuration.
  • Printed matter manufacturing method A method for producing a printed matter using a lithographic printing plate in which active energy ray-curable lithographic printing ink is transferred onto a substrate and irradiated with radiation, using dampening water having a dissolved oxygen concentration of 5 ppm or less.
  • the adhesion of ink to a substrate can be improved.
  • the active energy ray-curable lithographic printing ink refers to the ink in the state before curing, and the ink refers to the ink in the state after curing.
  • the method for producing a printed matter relates to a method for producing a printed matter using a lithographic printing plate, which includes a step of transferring an active energy ray-curable lithographic printing ink onto a substrate and irradiating it with radiation. That is, dampening water is attached to the non-image area of the lithographic printing plate, active energy ray-curable lithographic printing ink is attached to the image area of the lithographic printing plate, transferred onto the substrate, and irradiated.
  • the present invention relates to a method for manufacturing a printed matter using a lithographic printing plate.
  • the method for producing a printed matter according to the present invention is characterized by using dampening water having a dissolved oxygen concentration of 5 ppm or less in the fountain solution.
  • dampening water having a dissolved oxygen concentration of 5 ppm or less in the fountain solution.
  • the fountain solution is emulsified by the active energy ray-curable lithographic printing ink and the active energy. It is dispersed in line-curable lithographic printing ink. Therefore, the higher the concentration of dissolved oxygen contained in the dampening water, the more easily the radicals generated on the surface of the base material due to irradiation are captured by the dissolved oxygen and deactivated.
  • the dissolved oxygen concentration in normal dampening water is around 10 ppm because the water temperature is kept at a low temperature of around 15 ° C.
  • the deactivation of radicals can be reduced by setting the dissolved oxygen concentration in the dampening water at 1 atm 15 ° C. to 5 ppm or less, and as a result, the active energy ray-curable type. Radical cross-linking between the lithographic printing ink and the base material progresses, and the adhesion of the ink to the base material is improved.
  • the dissolved oxygen concentration is more preferably 1 ppm or less.
  • Examples of the method for reducing the dissolved oxygen concentration in the dampening water include a bubbling method using an inert gas such as nitrogen and argon, a degassing method using hollow thread film separation, and a method using a deoxidizer. Further, these methods may be combined to reduce the dissolved oxygen concentration in the dampening water.
  • the bubbling method is preferable because it is a method for simply reducing the dissolved oxygen concentration in the dampening water to 5 ppm or less.
  • the degassing method is more preferable because it can reduce the dissolved oxygen concentration in the dampening water to 1 ppm or less. For the above reasons, the lower the dissolved oxygen concentration in the dampening water, the more preferable, but from the viewpoint of the detection sensitivity of the measuring device, 0.01 ppm or more is preferable.
  • the dampening water does not substantially contain an antioxidant.
  • the content of the antioxidant is substantially free, the content of the antioxidant is preferably 0.05% by mass or less, and more preferably 0.01% by mass or less.
  • an antioxidant was added to the dampening water in order to suppress the oil sensitivity of the printing plate.
  • the term "greasy" here means that the aluminum in the non-image area of the printing plate is oxidized and the hydrophilicity is lowered. Oxidation occurs when oxygen is added to the radicals generated in the compound. Since the antioxidant has a stronger radical scavenging ability than oxygen, it is preferable that the dampening water contains substantially no antioxidant. When the dampening water contains substantially no antioxidant, radical cross-linking between the active energy ray-curable lithographic printing ink and the base material proceeds, and the adhesion of the ink to the base material can be improved.
  • examples of the antioxidant include phenol-based, amine-based, and phosphorus-based organic antioxidants, metal-based antioxidants, and natural product-derived antioxidants.
  • examples of phenolic antioxidants include 2,6-di-t-butyl-p-cresol, 2,6-diphenyl-4-octadesiloxyphenol, and stearyl- (2,5-dimethyl-4-hydroxybenzyl).
  • amine-based antioxidants examples include monoalkyldiphenylamines having an alkyl group having 1 to 10 carbon atoms, dialkyldiphenylamines, polyalkyldiphenylamines, alkyl-substituted phenyl- ⁇ -naphthylamines, and the like.
  • phosphorus-based antioxidants examples include triphenyl phosphite, tris (nonylphenyl) phosphite, tris (monononylphenyl) phosphite, tris (dinonylphenyl) phosphite, and tris (2,4-dibutylphenyl).
  • metal-based antioxidant examples include zinc-based and molybdenum-based antioxidants, and specific examples thereof include zinc dithiophosphate, molybdenum dialkyldithiophosphate, and molybdenum dithiocarbamate.
  • antioxidants derived from natural products include tocopherol, L-ascorbic acid stearate, L-ascorbic acid palmitate, and the like.
  • Examples of the radiation source in the method for producing a printed matter of the present invention include electron beams and gamma rays. Radiation generates high-energy secondary electrons in the irradiated material, excites surrounding molecules, and produces reactive species represented by radicals. Depending on the chemical structure of the irradiated substance, the produced reactive species cause various reactions such as cross-linking and decomposition.
  • the material to be irradiated is an active energy ray-curable lithographic printing ink
  • radicals are generated in the active energy ray-curable lithographic printing ink, radical polymerization proceeds, and a curing / ink film is formed. Radiation also acts on the substrate through the transferred active energy ray-curable lithographic printing ink.
  • Radicals are also generated in the polymers that make up the base material, causing reactions such as cross-linking and decomposition between molecules.
  • radical polymerization proceeds between the active energy ray-curable lithographic printing ink and the base material, a covalent bond is formed between the ink and the base material, and high adhesion is exhibited.
  • the dampening water is preferably 90% by mass to 99% by mass.
  • the dampening water preferably contains an acid to make its pH acidic.
  • the acid include acetic acid, citric acid, oxalic acid, malic acid, tartaric acid, lactic acid, ascorbic acid, gluconic acid, hydroxyacetic acid, malonic acid, sulfanilic acid, p-toluenesulfonic acid, organic phosphonic acid, and phosphoric acid.
  • Examples include citric acid, sulfuric acid and polyphosphoric acid.
  • an alkali metal salt, an alkaline earth metal salt, an ammonium salt, an organic amine salt and the like of these acids it is possible to impart a buffering ability to the dampening water.
  • the dampening water can also contain alcohols and glycols in order to reduce the dynamic surface tension and make it easier to get wet on the printing plate surface.
  • alcohols and glycols include 3-methyl-1-butyne-3-ol, 2-butyne-1,4-diol, 3-methyl-1-pentyne-3-ol, and 2,5-dimethyl-3-hexyne-2.
  • the radiation used in the present invention is preferably an electron beam.
  • an electron beam with a low accelerating voltage because it has low permeability, energy is intensively applied to the surface layer of the object, and it is easy to handle without special qualification at the time of use.
  • the transmission depth of the electron beam is determined by the accelerating voltage, 50 kV or more is preferable, 90 kV or more is more preferable, and 110 kV or more is further preferable, since a sufficient dose is transmitted through the ink film. Further, as the depth of transmission increases, the dose given to the inside of the base material also increases, so 300 kV or less is preferable, 200 kV or less is more preferable, and 150 kV or less is further preferable.
  • the irradiation intensity is preferably 10 kGy or more and 100 kGy or less, and more preferably 20 kGy or more and 50 kGy or less. ..
  • the base material used in the present invention is preferably a plastic film.
  • the plastic film include plastic films such as polyethylene, polyester, polyamide, polyimide, polyalkyl (meth) acrylate, polystyrene, poly ⁇ -methylstyrene, polypropylene, polycarbonate, polyvinyl alcohol, polyvinyl acetal, polyvinyl chloride, and polyvinylidene fluoride.
  • plastic films laminated paper in which a plastic film is laminated on a paper
  • a metal-deposited plastic film in which a metal such as aluminum, zinc, and copper is vapor-deposited on the plastic.
  • the plastic film preferably contains a radiation-crosslinked polymer, and more preferably one in which the radiation-crosslinked polymer is present on the outermost surface of the plastic film.
  • the radiation-crosslinked polymer refers to a polymer that does not decompose and undergoes a cross-linking reaction when irradiated with radiation.
  • Specific examples thereof include polyethylene, polyester, polyamide, polyalkyl acrylate, polystyrene, polypropylene, polyvinyl alcohol, polyvinyl chloride, polyvinylidene fluoride, etc.
  • polyethylene which is a main base material in flexible packaging printing
  • Polyester and polyamide are preferable.
  • these plastic films are surface-treated by an easy-adhesion coating or corona treatment.
  • an easy-adhesion coating or corona treatment is preferable.
  • an acrylic coat or a urethane coat is preferable.
  • the thickness of the base material is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, from the mechanical strength of the base material required for printing. Further, the cost of the base material is preferably 50 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the active energy ray-curable lithographic printing ink used in the present invention contains a resin having an ethylenically unsaturated group because the reactivity with radicals existing on the film surface is improved and the adhesion is further improved. Is preferable.
  • Resins having an ethylenically unsaturated group include acrylic resin, styrene acrylic resin, styrene maleic acid resin, rosin-modified maleic acid resin, rosin-modified acrylic resin, epoxy resin, polyester resin, polyurethane resin, phenol resin and the like. Examples thereof include those having an ethylenically unsaturated group introduced therein and phthalate resins.
  • an acrylic resin having an ethylenically unsaturated group, a styrene acrylic resin, and a styrene maleic acid resin can be produced by the following method.
  • carboxyl group-containing monomers such as (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetate or their acid anhydrides, hydroxyl group-containing monomers such as 2-hydroxyethyl (meth) acrylate, Amino group-containing monomers such as dimethylaminoethyl (meth) acrylate, mercapto group-containing monomers such as (meth) acrylic acid-2- (mercaptoacetoxy) ethyl, and sulfo group-containing monomers such as (meth) acrylamide-t-butylsulfonic acid.
  • hydroxyl group-containing monomers such as 2-hydroxyethyl (meth) acrylate
  • Amino group-containing monomers such as dimethylaminoethyl (meth) acrylate
  • mercapto group-containing monomers such as (meth) acrylic acid-2- (mercaptoacetoxy) ethyl
  • a resin having a hydrophilic group can be obtained by polymerizing or copolymerizing with the above.
  • ethylenically unsaturated compound having a glycidyl group examples include glycidyl (meth) acrylate, allyl glycidyl ether, glycidyl crotonate, and glycidyl isocrotonate.
  • ethylenically unsaturated compound having an isocyanate group examples include (meth) acryloyl isocyanate and (meth) acryloyl ethyl isocyanate.
  • phthalate resin either one or two of diallyl orthophthalate and diallyl isophthalate can be mixed and obtained by carrying out a polymerization reaction in an organic solvent in the presence of a polymerization initiator. Of these, the unreacted portion remains in the resin as an ethylenically unsaturated group.
  • phthalate resin a commercially available product can be used in addition to the synthetic compound, and specific examples thereof include the Daiso Dapp (registered trademark) series manufactured by Osaka Soda Co., Ltd. and the Daiso Isodap (registered trademark).
  • the acrylic equivalent of the resin having an ethylenically unsaturated group is preferably 300 g / eq or more and 2000 g / eq or less, which improves sensitivity and provides good storage stability.
  • the acrylic equivalent of the resin is the bromine value of the ink (the number of g of bromine added to the unsaturated component in 100 g of the sample) measured based on JIS K 2605, and the ink per mole of the acryloyl group. Represents a value (unit: g / eq) converted into the number of g of.
  • the weight average molecular weight of the resin having an ethylenically unsaturated group is preferably 5,000 or more and 100,000 or less, which keeps good printability of the active energy ray-curable lithographic printing ink.
  • the weight average molecular weight of the resin can be obtained by measuring in terms of polystyrene using gel permeation chromatography (GPC).
  • good printability can be maintained by containing 5% by mass or more and 40% by mass or less of a resin having an ethylenically unsaturated group in the active energy ray-curable lithographic printing ink. preferable.
  • active energy ray-curable lithographic printing inks include EC DEVELOPMENT manufactured by Sun Chemical and XCURA EVO manufactured by Flint.
  • an active energy ray-curable lithographic printing ink When producing an active energy ray-curable lithographic printing ink, it is obtained by adding a pigment and an auxiliary agent to a resin varnish in which a resin is dissolved in a polyfunctional (meth) acrylate and kneading it with a three-roll mill.
  • the polyfunctional (meth) acrylate includes ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and tripropylene glycol di (meth) acrylate.
  • Acrylate 1,3-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate and the like. Be done.
  • Examples of the trifunctional include trimethylolpropane tri (meth) acrylate, glycerin tri (meth) acrylate, tri (meth) acrylate of isocyanuric acid, and these ethylene oxide adducts and propylene oxide adducts.
  • Examples of the tetrafunctional include pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, diglycerin tetra (meth) acrylate, and these ethylene oxide adducts and propylene oxide adducts.
  • Examples of the five-functionality or higher include dipentaerythritol hexa (meth) acrylate, these ethylene oxide adducts, and propylene oxide adducts.
  • Preferred specific examples of the polyfunctional (meth) acrylate having a hydroxy group include poly (meth) of polyhydric alcohols such as trimethylolpropane, glycerin, pentaerythritol, diglycerin, dimethylolpropane, isocyanuric acid, and dipentaerythritol. ) Acrylate and these alkylene oxide adducts.
  • trimethylolpropane di (meth) acrylate trimethylolpropane di (meth) acrylate, glycerin di (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, diglycerin di (meth) acrylate, diglycerin tri (meth).
  • the active energy ray-curable lithographic printing ink used in the present invention preferably contains a urethane compound from the viewpoint of further improving the adhesion to the substrate.
  • the urethane compound refers to a compound that can be synthesized by reacting a polyisocyanate compound with a polyol compound, and urethane (meth) acrylate having a (meth) acrylic group is particularly preferable from the viewpoint of curability.
  • Urethane (meth) acrylate can be synthesized by reacting a hydroxyl group-containing (meth) acrylic acid ester, a polyisocyanate compound, and a polyol compound.
  • the hydroxyl group-containing (meth) acrylic acid ester is not particularly limited, but is a polyhydric alcohol such as trimethylolpropane, glycerin, pentaerythritol, diglycerin, trimethylolpropane, isocyanuric acid, and dipentaerythritol. Examples include (meth) acrylates and these alkylene oxide adducts.
  • trimethylolpropane di (meth) acrylate trimethylolpropane di (meth) acrylate, glycerin di (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, diglycerin di (meth) acrylate, diglycerin tri (meth).
  • the polyisocyanate compound it is preferable to use diisocyanate in order to suppress the viscosity of the urethane compound formed by the reaction between the hydroxyl group of the polyol compound and the isocyanate group of the polyisocyanate compound and to maintain the compatibility with the resin and the monomer in the ink. ..
  • the diisocyanate is not particularly limited, and examples of the compound having an aromatic ring structure include toluene diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate.
  • Examples of the compound having an alicyclic structure include isophorone diisocyanate, 4,4-methylenebiscyclohexyldiisocyanate, and hydrogenated xylylene diisocyanate.
  • hexamethylene diisocyanate and the like can be mentioned as a compound having an aliphatic structure. These diisocyanates can be used alone or in combination of two or more.
  • Examples of the polyol compound include those having an ester structure, a carbonate structure, and a polyalkylene oxide structure.
  • the dicarboxylic acid that gives an ester structure is not particularly limited, and examples thereof include phthalic acid, isophthalic acid, terephthalic acid, adipic acid, oxalic acid, maleic acid, fumaric acid, and a reaction product of sebacic acid and diol. .. Of these, isophthalic acid and adipic acid are particularly preferable because they are relatively inexpensive, have good heat resistance, and maintain good compatibility with ink.
  • Specific examples of the carbonate structure include pentamethylene carbonate diol, hexamethylene carbonate diol, hexane carbonate diol, and decane carbonate diol.
  • Pigments include phthalocyanine pigments, soluble azo pigments, insoluble azo pigments, lake pigments, quinacridone pigments, isoindolin pigments, slene pigments, metal complex pigments, titanium oxide, zinc oxide, alumina white, calcium carbonate, Barium sulfate, red iron oxide, cadmium red, yellow lead, zinc yellow, dark blue, ultramarine, oxide-coated glass powder, oxide-coated mica, oxide-coated metal particles, aluminum powder, gold powder, silver powder, copper powder, zinc powder, stainless powder , Nickel powder, organic bentonite, iron oxide, carbon black, graphite and the like.
  • the ink may contain additives such as a photopolymerization initiator, a pigment dispersant, a defoaming agent, and a leveling agent.
  • a photopolymerization initiator such as a photopolymerization initiator, a pigment dispersant, a defoaming agent, and a leveling agent.
  • an ultraviolet curable ink it is preferable to use an ink that does not contain such a photopolymerization initiator because a photopolymerization initiator is not required for curing by radiation. This is because the decomposed products and unreacted products of the photopolymerization initiator cause odor and contamination of the contents.
  • a printing machine used in the method for producing a printed matter according to the present invention even if the base material is a thin plastic film, multicolor printing can be performed with high register accuracy, and batch curing by a radiation source becomes possible. It is preferable to use a rotary printing press equipped with a center impression cylinder. Specific examples thereof include CI-8 manufactured by COMEXI.
  • Damping water 1 90 parts by mass of pure water, 5 parts by mass of isopropanol, 4 parts by mass of propylene glycol monobutyl ether, 0.5 parts by mass of arabic gum, 0.2 parts by mass of phosphoric acid, 0.2 parts by mass of sodium phosphate, t -Butylhydroquinone 0.1 parts by mass was mixed to prepare 18 L of dampening water.
  • Damping water 2 It was prepared in the same manner as dampening water 1 except that t-butylhydroquinone was removed.
  • Damping water 3 It was prepared in the same manner as dampening water 1 except that t-butylhydroquinone was changed to 0.01 parts by mass.
  • the dissolved oxygen concentration is adjusted at 1 atm 15 ° C., and the reduction to 3 ppm is performed by nitrogen bubbling. If the concentration is less than that, use a deoxidizer (dissolved oxygen remover manufactured by Kyowa Co., Ltd.) to remove the dissolved oxygen. went.
  • the dissolved oxygen concentration was adjusted by measuring at any time with a dissolved oxygen meter (DOM2000 manufactured by GS). Further, in Comparative Example 2, the dissolved oxygen concentration was not adjusted, and in Comparative Example 3, the saturated oxygen concentration was adjusted by oxygen bubbling.
  • Ink 1 30 parts by mass of Daisodap (registered trademark) K manufactured by Osaka Soda Co., Ltd. as a resin having an ethylenically unsaturated group, 25 parts by mass of M600 manufactured by Miwon Co., Ltd. as a polyfunctional (meth) acrylate, and M3130 manufactured by Miwon Co., Ltd.
  • Ink 2 24 parts by mass of Hirosu (registered trademark) VS-1259 manufactured by Seikou PMC as a resin having no ethylenically unsaturated group, 34 parts by mass of M4004 manufactured by Miwon as a polyfunctional (meth) acrylate, and Miwon. 20 parts by mass of M262, 18 parts by mass of MogulE manufactured by Cabot as an ink pigment, 2 parts by mass of Microace P-8 manufactured by Nippon Tarku as an extender pigment, 1 part by mass of Disper BYK2013 manufactured by BYK as a dispersant, as a wax.
  • KTL-4N manufactured by Kitamura Co., Ltd. was produced by kneading an active energy ray-curable flat plate printing ink consisting of 1 part by mass with a three-roll mill.
  • Ink 3 28 parts by mass of Daisodap (registered trademark) K manufactured by Osaka Soda as a resin having an ethylenically unsaturated group, 22 parts by mass of M600 manufactured by Miwon as a polyfunctional (meth) acrylate, and M3130 manufactured by Miwon. 21 parts by mass, 8 parts by mass of Aronix (registered trademark) M-1200 manufactured by Toa Synthetic Co., Ltd. as a urethane compound, 18 parts by mass of MogulE manufactured by Cabot as a black pigment, and 2 parts by mass of Microace P-8 manufactured by Nippon Tarku Co., Ltd.
  • Base material 1 PTM (manufactured by Unitika, thickness 12 ⁇ m), film base material 2 (OPP) whose surface is polyester-coated, P2111 (manufactured by Toyobo Co., Ltd., thickness 20 ⁇ m), film base material 3 (thickness 20 ⁇ m) whose surface is corona-treated.
  • Polyamide ONM (manufactured by Unitica, thickness 15 ⁇ m), film base material 4 (PET) whose surface is urethane-coated, S-46 (manufactured by polyplex, thickness 12 ⁇ m), film base material 5 (OPP) whose surface is acrylic-coated.
  • a lithographic printing plate (XP-F, manufactured by Fuji Film Co., Ltd.) is mounted on a flexible packaging lithographic printing machine (CI-8, manufactured by Comexi), and it is activated at 150 m / min on various raw fabrics using dampening water.
  • An energy ray-curable lithographic printing ink was printed.
  • electron beam irradiator manufactured by e-beam
  • electron beam irradiation was performed at an accelerating voltage of 110 kV and an irradiation dose of 30 kGy to cure the active energy ray-curable lithographic printing ink to obtain a printed matter.
  • RTG-1210 Tensilon universal tester
  • Examples 1 to 5 and Comparative Examples 1 to 3 When the ink 1 prepared above and the dampening water 1 or the dampening water 2 having the dissolved oxygen concentration shown in Table 1 were used for lithographic printing on the base material 1, the dissolved oxygen concentration in the dampening water decreased. , There was a tendency for the adhesion to improve. The dissolved oxygen concentration was 5 ppm or less, and the laminate peeling strength exceeded 1 N / 15 mm, which was good. The results are shown in Table 1.
  • Example 6 From the conditions of Example 3, the base material 1 was changed to any of the base materials 2 to 6 and printing was performed. A film that easily generates radicals on the outermost surface tends to have higher adhesion. The results are shown in Table 2.
  • Example 11 From the conditions of Example 3, the dampening water 1 was changed to the dampening water 3 and printing was performed. By reducing the amount of antioxidant in the dampening water, a slight improvement in adhesion was observed. The results are shown in Table 3.
  • Example 12 Printing was performed by changing ink 1 to ink 2 or ink 3 from the conditions of Example 3. The results are shown in Table 3.
  • the method for producing a printed matter according to the present invention can improve the adhesion of ink to a base material.

Abstract

The present invention provides a method for manufacturing printed matter that improves the adhesiveness of ink on a base material. This manufacturing method for printed matter uses a lithographic printing plate that applies an active energy ray curable lithographic printing ink on to the base material and irradiates same. The manufacturing method uses a dampening agent having a dissolved oxygen concentration of no more than 5 ppm.

Description

印刷物の製造方法Printed matter manufacturing method
 本発明は印刷物の製造方法に関する。 The present invention relates to a method for producing a printed matter.
 世界的な人口増加に伴い、食品、生活用品主体の包装に用いられる軟包装は、今後も需要の拡大が見込まれる。現在、軟包装印刷で主流となっているグラビア印刷では、見た目が鮮やかな印刷物が得られる。一方、グラビア印刷は、溶剤を大量に含むインキを使用することから、インキ溶剤の乾燥や排気処理に多量のエネルギーが必要となり、環境負荷が大きい。更に、従来の大量生産・大量消費から、小ロット・多品種・短納期へとマーケットのニーズが変化していることから、版代、製版代が高価で、大ロットを得意としていたグラビア印刷では生産コストアップにも繋がっている。そのため近年では、版代、製版代が安価で、小ロット・短納期の点からコスト面で優位な平版印刷を用いて、軟包装印刷を実施する試みが始まっている(特許文献1)。 With the global population increase, demand for flexible packaging used for packaging mainly for food and daily necessities is expected to continue to grow. At present, gravure printing, which is the mainstream in flexible packaging printing, can obtain printed matter with a vivid appearance. On the other hand, since gravure printing uses ink containing a large amount of solvent, a large amount of energy is required for drying the ink solvent and exhaust treatment, which has a large environmental load. Furthermore, as market needs are changing from conventional mass production and mass consumption to small lots, high-mix, and short delivery times, plate and plate making costs are expensive, and gravure printing, which was good at large lots, It also leads to an increase in production costs. Therefore, in recent years, attempts have begun to carry out flexible wrapping printing using lithographic printing, which is inexpensive in terms of plate cost and plate making cost and is superior in terms of cost in terms of small lots and short delivery time (Patent Document 1).
 平版印刷は、高速、大量、安価に印刷物を供給するシステムとして広く普及している印刷方式である。加えて近年では、環境問題への対応から平版印刷用インキに含まれる揮発成分を低減する要求がある。このため、揮発成分を含まず、活性エネルギー線の照射により瞬時に硬化する平版印刷用インキ(以下、「活性エネルギー線硬化型平版印刷用インキ」という。)の利用が進められている。軟包装印刷ではロールトゥロールで印刷するため、インキの速乾性が重要である。活性エネルギー線硬化型平版印刷用インキを用いる活性エネルギー線硬化型平版印刷は、環境面での利点に加えて、熱エネルギーを使用せずに乾燥工程を短縮するため、省エネルギーかつ高い生産性を有するものである。 Planographic printing is a printing method that is widely used as a system for supplying printed matter at high speed, in large quantities, and at low cost. In addition, in recent years, there has been a demand to reduce the volatile components contained in lithographic printing inks in order to deal with environmental problems. For this reason, the use of lithographic printing inks that do not contain volatile components and are instantly cured by irradiation with active energy rays (hereinafter referred to as "active energy ray-curable lithographic printing inks") is being promoted. In flexible packaging printing, roll-to-roll printing is performed, so quick-drying of the ink is important. In addition to environmental advantages, active energy ray-curable lithographic printing using ink for active energy ray-curable lithographic printing has energy saving and high productivity because it shortens the drying process without using thermal energy. It is a thing.
 また、軟包装印刷物の主な用途は食品の包装であるため、内容物汚染防止の観点から、放射線硬化型平版印刷用インキは、重合開始剤を含まないことが望ましい。 In addition, since the main use of flexible package printed matter is food packaging, it is desirable that the radiation-curable lithographic printing ink does not contain a polymerization initiator from the viewpoint of preventing content contamination.
日本国特開2004-358788号公報Japanese Patent Application Laid-Open No. 2004-358788
 しかしながら、一般に放射線硬化型平版印刷用インキは、基材への密着性が低く、グラビア印刷と比べて基材への密着性が不十分であった。
 そこで、本発明では、活性エネルギー線硬化型平版印刷用インキを用いても、該インキと基材の密着性を向上させることができる印刷物の製造方法を提供する。
However, in general, the radiation-curable lithographic printing ink has low adhesion to the base material, and the adhesion to the base material is insufficient as compared with gravure printing.
Therefore, the present invention provides a method for producing a printed matter, which can improve the adhesion between the ink and the base material even when the active energy ray-curable lithographic printing ink is used.
 本発明者らは、上記課題を解決するため、鋭意検討の結果、湿し水に含まれる溶存酸素濃度を低減することにより、上記課題を解決できることを見出した。すなわち、本発明は以下の構成を有する。
 活性エネルギー線硬化型平版印刷用インキを基材上に転写し、放射線を照射する平版印刷版を用いた印刷物の製造方法であって、溶存酸素濃度が5ppm以下である湿し水を使用する、印刷物の製造方法。
As a result of diligent studies, the present inventors have found that the above problems can be solved by reducing the concentration of dissolved oxygen contained in the dampening water. That is, the present invention has the following configuration.
A method for producing a printed matter using a lithographic printing plate in which active energy ray-curable lithographic printing ink is transferred onto a substrate and irradiated with radiation, using dampening water having a dissolved oxygen concentration of 5 ppm or less. Printed matter manufacturing method.
 本発明に係る印刷物の製造方法によれば、基材に対するインキの密着性を向上することができる。 According to the method for producing a printed matter according to the present invention, the adhesion of ink to a substrate can be improved.
 以下、本発明について具体的に説明する。
 本発明において、活性エネルギー線硬化型平版印刷用インキは硬化前の状態のインキを指し、インキとは硬化後の状態のインキを指す。
Hereinafter, the present invention will be specifically described.
In the present invention, the active energy ray-curable lithographic printing ink refers to the ink in the state before curing, and the ink refers to the ink in the state after curing.
 本発明に係る印刷物の製造方法は、活性エネルギー線硬化型平版印刷用インキを基材上に転写し、放射線を照射する工程を含む、平版印刷版を用いた印刷物の製造方法に関する。すなわち、平版印刷版の非画線部に湿し水を付着させ、平版印刷版の画線部に活性エネルギー線硬化型平版印刷用インキを付着させて、基材上に転写し、放射線を照射する、平版印刷版を用いた印刷物の製造方法に関する。 The method for producing a printed matter according to the present invention relates to a method for producing a printed matter using a lithographic printing plate, which includes a step of transferring an active energy ray-curable lithographic printing ink onto a substrate and irradiating it with radiation. That is, dampening water is attached to the non-image area of the lithographic printing plate, active energy ray-curable lithographic printing ink is attached to the image area of the lithographic printing plate, transferred onto the substrate, and irradiated. The present invention relates to a method for manufacturing a printed matter using a lithographic printing plate.
 本発明に係る印刷物の製造方法は、湿し水中の溶存酸素濃度が5ppm以下である湿し水を使用することを特徴とする。印刷において、平版印刷版上で隣接配置された、活性エネルギー線硬化型平版印刷用インキおよび湿し水が接触すると、湿し水は、活性エネルギー線硬化型平版印刷用インキにより乳化され、活性エネルギー線硬化型平版印刷用インキ中に分散される。そのため、湿し水に含まれる溶存酸素濃度が多いほど、放射線照射により基材表面に生成されたラジカルが溶存酸素に捕捉され失活しやすくなる。通常の湿し水中の溶存酸素濃度は、水温を15℃前後の低温度に保つことから、10ppm前後である。一方、本発明に係る印刷物の製造方法では、1気圧15℃における湿し水中の溶存酸素濃度を5ppm以下とすることで、ラジカルの失活を低減することができ、結果として活性エネルギー線硬化型平版印刷用インキと基材とのラジカル架橋が進み、インキの基材への密着性が向上する。溶存酸素濃度は1ppm以下がより好ましい。湿し水中の溶存酸素濃度を低減する方法としては、窒素やアルゴンなどの不活性ガスによるバブリング方式や、中空糸膜分離等を使用する脱気方式などや脱酸素装置を用いる方法が挙げられる。また、これらの方法を組み合わせて湿し水中の溶存酸素濃度を低減させてもよい。バブリング方式は、簡易に湿し水中の溶存酸素濃度を5ppm以下に低減させる手法であるため好ましい。脱気方式は、湿し水中の溶存酸素濃度を1ppm以下に低減することが可能であるため、より好ましい。前記の理由から湿し水中の溶存酸素濃度は低いほど好ましいが、測定機器の検出感度の点から0.01ppm以上が好ましい。 The method for producing a printed matter according to the present invention is characterized by using dampening water having a dissolved oxygen concentration of 5 ppm or less in the fountain solution. In printing, when the active energy ray-curable lithographic printing ink and the fountain solution, which are adjacently arranged on the lithographic printing plate, come into contact with each other, the fountain solution is emulsified by the active energy ray-curable lithographic printing ink and the active energy. It is dispersed in line-curable lithographic printing ink. Therefore, the higher the concentration of dissolved oxygen contained in the dampening water, the more easily the radicals generated on the surface of the base material due to irradiation are captured by the dissolved oxygen and deactivated. The dissolved oxygen concentration in normal dampening water is around 10 ppm because the water temperature is kept at a low temperature of around 15 ° C. On the other hand, in the method for producing a printed matter according to the present invention, the deactivation of radicals can be reduced by setting the dissolved oxygen concentration in the dampening water at 1 atm 15 ° C. to 5 ppm or less, and as a result, the active energy ray-curable type. Radical cross-linking between the lithographic printing ink and the base material progresses, and the adhesion of the ink to the base material is improved. The dissolved oxygen concentration is more preferably 1 ppm or less. Examples of the method for reducing the dissolved oxygen concentration in the dampening water include a bubbling method using an inert gas such as nitrogen and argon, a degassing method using hollow thread film separation, and a method using a deoxidizer. Further, these methods may be combined to reduce the dissolved oxygen concentration in the dampening water. The bubbling method is preferable because it is a method for simply reducing the dissolved oxygen concentration in the dampening water to 5 ppm or less. The degassing method is more preferable because it can reduce the dissolved oxygen concentration in the dampening water to 1 ppm or less. For the above reasons, the lower the dissolved oxygen concentration in the dampening water, the more preferable, but from the viewpoint of the detection sensitivity of the measuring device, 0.01 ppm or more is preferable.
 さらに湿し水は、酸化防止剤を実質的に含まないことが好ましい。酸化防止剤を実質的に含まないとは、酸化防止剤の含有量が、0.05質量%以下であることが好ましく、0.01質量%以下であることがより好ましい。元来、湿し水には、印刷版の感脂化を抑制するために酸化防止剤が添加されている。ここでいう感脂化とは、印刷版における非画線部のアルミが酸化され、親水性が低下することを意味する。酸化は、化合物中に生成したラジカルに酸素が付加することで発生する。酸化防止剤は酸素よりも強力なラジカル捕捉能を有するため、湿し水に酸化防止剤が実質的に含まれないことが好ましい。湿し水に酸化防止剤が実質的に含まれない場合、活性エネルギー線硬化型平版印刷用インキ-基材間のラジカル架橋が進み、インキの基材への密着性を向上させることができる。 Furthermore, it is preferable that the dampening water does not substantially contain an antioxidant. When the content of the antioxidant is substantially free, the content of the antioxidant is preferably 0.05% by mass or less, and more preferably 0.01% by mass or less. Originally, an antioxidant was added to the dampening water in order to suppress the oil sensitivity of the printing plate. The term "greasy" here means that the aluminum in the non-image area of the printing plate is oxidized and the hydrophilicity is lowered. Oxidation occurs when oxygen is added to the radicals generated in the compound. Since the antioxidant has a stronger radical scavenging ability than oxygen, it is preferable that the dampening water contains substantially no antioxidant. When the dampening water contains substantially no antioxidant, radical cross-linking between the active energy ray-curable lithographic printing ink and the base material proceeds, and the adhesion of the ink to the base material can be improved.
 本発明において、酸化防止剤とは、フェノール系、アミン系、リン系の有機酸化防止剤、金属系酸化防止剤、天然物由来の酸化防止剤等が挙げられる。例えば、フェノール系酸化防止剤としては、2,6-ジ-t-ブチル-p-クレゾール、2,6-ジフェニル-4-オクタデシロキシフェノール、ステアリル-(2,5-ジメチル-4-ヒドロキシベンジル)チオグリコレート、ステアリル-β-(4-ヒドロキシ-3,5-ジ-t-ブチルフェニル)プロピオネート、ジステアリル-3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホネート、トリエチレングリコールビス[β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート]、3,9-ビス[1,1-ジメチル-2-(β-3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、ビス[3,5-ビス(4-ヒドロキシ-3-t-ブチルフェニル)ブチリックアシド]グルコールエステル、ビス[2-t-ブチル4-メチル-6-(2-ヒドロキシ-3-t-ブチル-5-メチルベンジル)フェニル]テレフタレート、2-t-ブチル4-メチル-6-(2-ヒドロキシ-3-t-ブチル-5-メチルベンジル)フェニルアクリレート、1,3,5-トリス[β-(3,5-ジ-t-ブチル4-ヒドロキシフェニル)プロピオニルオキシエチル]イソシアヌレート等が挙げられる。 In the present invention, examples of the antioxidant include phenol-based, amine-based, and phosphorus-based organic antioxidants, metal-based antioxidants, and natural product-derived antioxidants. For example, examples of phenolic antioxidants include 2,6-di-t-butyl-p-cresol, 2,6-diphenyl-4-octadesiloxyphenol, and stearyl- (2,5-dimethyl-4-hydroxybenzyl). ) Thioglycolate, stearyl-β- (4-hydroxy-3,5-di-t-butylphenyl) propionate, distearyl-3,5-di-t-butyl-4-hydroxybenzylphosphonate, triethylene glycol bis [Β- (3-t-Butyl-4-hydroxy-5-methylphenyl) propionate], 3,9-bis [1,1-dimethyl-2- (β-3-t-butyl-4-hydroxy-5) -Methylphenyl) propionyloxyethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane, 2,2'-methylenebis (4-methyl-6-t-butylphenol), bis [3,5 -Bis (4-hydroxy-3-t-butylphenyl) butyric acid] glucole ester, bis [2-t-butyl 4-methyl-6- (2-hydroxy-3-t-butyl-5-methylbenzyl) ) Phenyl] terephthalate, 2-t-butyl 4-methyl-6- (2-hydroxy-3-t-butyl-5-methylbenzyl) phenyl acrylate, 1,3,5-tris [β- (3,5-) Di-t-butyl 4-hydroxyphenyl) propionyloxyethyl] isocyanurate and the like.
 アミン系酸化防止剤としては、炭素数が1~10のアルキル基を有するモノアルキルジフェニルアミン類、ジアルキルジフェニルアミン類、ポリアルキルジフェニルアミン類、アルキル置換フェニル-α-ナフチルアミン等が挙げられ、具体的には、モノブチルジフェニルアミン、モノオクチルジフェニルアミン、モノノニルジフェニルアミン、4,4’-ジブチルジフェニルアミン、4,4’-ジペンチルジフェニルアミン、4,4’-ジヘキシルジフェニルアミン、4,4’-ジヘプチルジフェニルアミン、4,4’-ジオクチルジフェニルアミン、4,4’-ジノニルジフェニルアミン、4-ブチル-4’-オクチルジフェニルアミン、テトラブチルジフェニルアミン、テトラヘキシルジフェニルアミン、テトラオクチルジフェニルアミン、テトラノニルジフェニルアミン、ジ(2,4-ジエチルフェニル)アミン、ジ(2-エチル-4-ノニルフェニル)アミン、メチルフェニル-α-ナフチルアミン、エチルフェニル-α-ナフチルアミン、ブチルフェニル-α-ナフチルアミン、ヘキシルフェニル-α-ナフチルアミン、ヘプチルフェニル-α-ナフチルアミン、オクチルフェニル-α-ナフチルアミン、ノニルフェニル-α-ナフチルアミン、ドデシルフェニル-α-ナフチルアミン、フェニル-α-ナフチルアミン等が挙げられる。 Examples of amine-based antioxidants include monoalkyldiphenylamines having an alkyl group having 1 to 10 carbon atoms, dialkyldiphenylamines, polyalkyldiphenylamines, alkyl-substituted phenyl-α-naphthylamines, and the like. Monobutyldiphenylamine, monooctyldiphenylamine, monononyldiphenylamine, 4,4'-dibutyldiphenylamine, 4,4'-dipentyldiphenylamine, 4,4'-dihexyldiphenylamine, 4,4'-diheptyldiphenylamine, 4,4'- Dioctyldiphenylamine, 4,4'-dinonyldiphenylamine, 4-butyl-4'-octyldiphenylamine, tetrabutyldiphenylamine, tetrahexyldiphenylamine, tetraoctyldiphenylamine, tetranonyldiphenylamine, di (2,4-diethylphenyl) amine, di (2-Ethyl-4-nonylphenyl) amine, methylphenyl-α-naphthylamine, ethylphenyl-α-naphthylamine, butylphenyl-α-naphthylamine, hexylphenyl-α-naphthylamine, heptylphenyl-α-naphthylamine, octylphenyl- Examples thereof include α-naphthylamine, nonylphenyl-α-naphthylamine, dodecylphenyl-α-naphthylamine, phenyl-α-naphthylamine and the like.
 リン系酸化防止剤としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(モノノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2,4-ジブチルフェニル)ホスファイト、オクチルジフェニルホスファイト、テトラアルキルビスフェノールAジホスファイト、テトラ(トリデシル)-4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)ジホスファイト、ヘキサ(トリデシル)-1,1,3-トリス(2-メチル-5-t-ブチル-4-ヒドロキシフェニル)ブタントリホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、フェニル・ビスフェノールAペンタエリスリトールジホスファイト、ビス(2,4-ジt-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジt-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト等が挙げられる。 Examples of phosphorus-based antioxidants include triphenyl phosphite, tris (nonylphenyl) phosphite, tris (monononylphenyl) phosphite, tris (dinonylphenyl) phosphite, and tris (2,4-dibutylphenyl). Phosphite, Octyldiphenylphosphite, Tetraalkylbisphenol A Diphosphite, Tetra (tridecyl) -4,4'-butylidenebis (3-methyl-6-t-butylphenol) diphosphite, Hexa (tridecyl) -1,1,3-tris (2-Methyl-5-t-butyl-4-hydroxyphenyl) butanetriphosphite, bis (nonylphenyl) pentaerythritol diphosphite, phenyl bisphenol A pentaerythritol diphosphite, bis (2,4-dit- Examples thereof include butylphenyl) pentaerythritol diphosphite and bis (2,6-dit-butyl-4-methylphenyl) pentaerythritol diphosphite.
 金属系酸化防止剤としては、亜鉛系やモリブデン系の酸化防止剤が挙げられ、具体的には、ジチオリン酸亜鉛、ジアルキルジチオリン酸モリブデン、ジチオカルバミン酸モリブデン等が挙げられる。 Examples of the metal-based antioxidant include zinc-based and molybdenum-based antioxidants, and specific examples thereof include zinc dithiophosphate, molybdenum dialkyldithiophosphate, and molybdenum dithiocarbamate.
 天然物由来の酸化防止剤としては、トコフェロール、L-アスコルビン酸ステアレート、L-アスコルビン酸パルミテート等が挙げられる。 Examples of antioxidants derived from natural products include tocopherol, L-ascorbic acid stearate, L-ascorbic acid palmitate, and the like.
 本発明の印刷物の製造方法における放射線源としては、電子線、ガンマ線などが挙げられる。放射線は照射物質中で高エネルギーの二次電子を発生させ、周囲の分子を励起し、ラジカルに代表される反応活性種を生成する。被照射物質の化学構造によって、生成された反応活性種は架橋や分解など様々な反応を引き起こす。被照射物質が、活性エネルギー線硬化型平版印刷用インキであると、活性エネルギー線硬化型平版印刷用インキ中でラジカルが生成され、ラジカル重合が進み、硬化・インキ皮膜となる。また放射線は、転写された活性エネルギー線硬化型平版印刷用インキを透過して基材にも作用する。基材を構成する高分子でも同様にラジカルが生成し、分子間の架橋や分解などの反応を起こす。特に、ラジカル重合が活性エネルギー線硬化型平版印刷用インキ-基材間で進行することで、インキ-基材間に共有結合が形成され、高い密着性を発現する。 Examples of the radiation source in the method for producing a printed matter of the present invention include electron beams and gamma rays. Radiation generates high-energy secondary electrons in the irradiated material, excites surrounding molecules, and produces reactive species represented by radicals. Depending on the chemical structure of the irradiated substance, the produced reactive species cause various reactions such as cross-linking and decomposition. When the material to be irradiated is an active energy ray-curable lithographic printing ink, radicals are generated in the active energy ray-curable lithographic printing ink, radical polymerization proceeds, and a curing / ink film is formed. Radiation also acts on the substrate through the transferred active energy ray-curable lithographic printing ink. Radicals are also generated in the polymers that make up the base material, causing reactions such as cross-linking and decomposition between molecules. In particular, when radical polymerization proceeds between the active energy ray-curable lithographic printing ink and the base material, a covalent bond is formed between the ink and the base material, and high adhesion is exhibited.
 湿し水は90質量%~99質量%が水であることが好ましい。
 湿し水は、そのpHを酸性にするために酸を含むことが好ましい。酸の具体例としては、酢酸、クエン酸、シュウ酸、リンゴ酸、酒石酸、乳酸、アスコルビン酸、グルコン酸、ヒドロキシ酢酸、マロン酸、スルファニル酸、p-トルエンスルホン酸、有機ホスホン酸、リン酸、硝酸、硫酸、ポリリン酸が挙げられる。更にこれらの酸のアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、有機アミン塩等を含むことで、湿し水に緩衝能を付与することができる。
The dampening water is preferably 90% by mass to 99% by mass.
The dampening water preferably contains an acid to make its pH acidic. Specific examples of the acid include acetic acid, citric acid, oxalic acid, malic acid, tartaric acid, lactic acid, ascorbic acid, gluconic acid, hydroxyacetic acid, malonic acid, sulfanilic acid, p-toluenesulfonic acid, organic phosphonic acid, and phosphoric acid. Examples include citric acid, sulfuric acid and polyphosphoric acid. Further, by containing an alkali metal salt, an alkaline earth metal salt, an ammonium salt, an organic amine salt and the like of these acids, it is possible to impart a buffering ability to the dampening water.
 また湿し水は、動的表面張力を低減し、印刷版面に濡れ易くするため、アルコール類、およびグリコール類を含むことができる。具体例としては、3-メチル-1-ブチン-3-オール、2-ブチン-1,4-ジオール、3-メチル-1-ペンチン-3-オール、2,5-ジメチル-3-ヘキシン-2,5-ジオール、3,5-ジメチル-1-ヘキシン-3-オール、3,6-ジメチル-4-オクチン-3,6-ジオール、2,4,7,9-テトラメチル-5-デシン-4,7-ジオール、2,5,8,11-テトラメチル-6-ドデシン-5,8-ジオール、及びこれらのエチレンオキシド付加物及びプロピレンオキシド付加物等が挙げられる。 The dampening water can also contain alcohols and glycols in order to reduce the dynamic surface tension and make it easier to get wet on the printing plate surface. Specific examples include 3-methyl-1-butyne-3-ol, 2-butyne-1,4-diol, 3-methyl-1-pentyne-3-ol, and 2,5-dimethyl-3-hexyne-2. , 5-diol, 3,5-dimethyl-1-hexin-3-ol, 3,6-dimethyl-4-octyne-3,6-diol, 2,4,7,9-tetramethyl-5-decine- Examples thereof include 4,7-diol, 2,5,8,11-tetramethyl-6-dodecine-5,8-diol, and ethylene oxide adducts and propylene oxide adducts thereof.
 本発明に使用する放射線は、電子線であることが好ましい。特に、透過性が低く、対象物の表層に集中的にエネルギーを与えられ、また利用時の特別な資格が不要で取り扱いが容易なことから、低加速電圧による電子線を用いることが好ましい。電子線は加速電圧により、透過深度が決まるため、インキ膜を十分な線量が透過する、50kV以上が好ましく、90kV以上がより好ましく、110kV以上がさらに好ましい。また、透過深度が大きくなると、基材の内部に与える線量も増えるため、300kV以下が好ましく、200kV以下がより好ましく、150kV以下がさらに好ましい。また電子線の照射強度が高いほど、対象物質中でラジカル種の発生量が増える一方で、基材のダメージも大きくなるため、照射強度は10kGy以上100kGy以下が好ましく、20kGy以上50kGy以下がより好ましい。 The radiation used in the present invention is preferably an electron beam. In particular, it is preferable to use an electron beam with a low accelerating voltage because it has low permeability, energy is intensively applied to the surface layer of the object, and it is easy to handle without special qualification at the time of use. Since the transmission depth of the electron beam is determined by the accelerating voltage, 50 kV or more is preferable, 90 kV or more is more preferable, and 110 kV or more is further preferable, since a sufficient dose is transmitted through the ink film. Further, as the depth of transmission increases, the dose given to the inside of the base material also increases, so 300 kV or less is preferable, 200 kV or less is more preferable, and 150 kV or less is further preferable. Further, the higher the irradiation intensity of the electron beam, the greater the amount of radical species generated in the target substance, while the damage to the base material also increases. Therefore, the irradiation intensity is preferably 10 kGy or more and 100 kGy or less, and more preferably 20 kGy or more and 50 kGy or less. ..
 本発明に使用する基材は、プラスチックフィルムであることが好ましい。プラスチックフィルムとしては、ポリエチレン、ポリエステル、ポリアミド、ポリイミド、ポリアルキル(メタ)アクリレート、ポリスチレン、ポリαメチルスチレン、ポリプロピレン、ポリカーボネート、ポリビニルアルコール、ポリビニルアセタール、ポリ塩化ビニル、ポリフッ化ビニリデンなどのプラスチックフィルム、前記プラスチックフィルムが紙上にラミネートされたプラスチックフィルムラミネート紙、アルミニウム、亜鉛、銅などの金属がプラスチック上に蒸着された金属蒸着プラスチックフィルム等が挙げられる。プラスチックフィルムは、放射線架橋型高分子を含むものが好ましく、プラスチックフィルムの最表面に放射線架橋型高分子が存在しているものがより好ましい。ここで放射線架橋型高分子とは、放射線照射をした際に、分解せず、架橋反応が起こる高分子を指す。具体的には、ポリエチレン、ポリエステル、ポリアミド、ポリアルキルアクリレート、ポリスチレン、ポリプロピレン、ポリビニルアルコール、ポリ塩化ビニル、ポリフッ化ビニリデン等が挙げられ、中でも、軟包装印刷での主要な基材である、ポリエチレン、ポリエステル、ポリアミドが好ましい。 The base material used in the present invention is preferably a plastic film. Examples of the plastic film include plastic films such as polyethylene, polyester, polyamide, polyimide, polyalkyl (meth) acrylate, polystyrene, polyα-methylstyrene, polypropylene, polycarbonate, polyvinyl alcohol, polyvinyl acetal, polyvinyl chloride, and polyvinylidene fluoride. Examples thereof include a plastic film laminated paper in which a plastic film is laminated on a paper, a metal-deposited plastic film in which a metal such as aluminum, zinc, and copper is vapor-deposited on the plastic. The plastic film preferably contains a radiation-crosslinked polymer, and more preferably one in which the radiation-crosslinked polymer is present on the outermost surface of the plastic film. Here, the radiation-crosslinked polymer refers to a polymer that does not decompose and undergoes a cross-linking reaction when irradiated with radiation. Specific examples thereof include polyethylene, polyester, polyamide, polyalkyl acrylate, polystyrene, polypropylene, polyvinyl alcohol, polyvinyl chloride, polyvinylidene fluoride, etc. Among them, polyethylene, which is a main base material in flexible packaging printing, Polyester and polyamide are preferable.
 またこれらのプラスチックフィルムは易接着コートまたはコロナ処理により表面処理されたものであることが好ましい。プラスチックフィルムの最表面の材質が、放射線照射によりラジカルを発生しやすいほど、インキ-基材間でのラジカル重合による共有結合形成が進み、密着性が向上する。易接着コートとしては、アクリルコートまたはウレタンコートが好ましい。特に、電子線照射によりラジカルの発生しやすい官能基である、アクリル基を含有する、アクリルコートがより好ましい。 Further, it is preferable that these plastic films are surface-treated by an easy-adhesion coating or corona treatment. The more easily the material on the outermost surface of the plastic film generates radicals by irradiation, the more covalent bonds are formed by radical polymerization between the ink and the base material, and the adhesion is improved. As the easy-adhesion coat, an acrylic coat or a urethane coat is preferable. In particular, an acrylic coat containing an acrylic group, which is a functional group in which radicals are easily generated by electron beam irradiation, is more preferable.
 基材の厚みは、印刷に必要な基材の機械的強度から5μm以上が好ましく、10μm以上がより好ましい。また、基材のコストが安価となる50μm以下が好ましく、30μm以下がより好ましい。 The thickness of the base material is preferably 5 μm or more, more preferably 10 μm or more, from the mechanical strength of the base material required for printing. Further, the cost of the base material is preferably 50 μm or less, and more preferably 30 μm or less.
 本発明に使用する活性エネルギー線硬化型平版印刷用インキは、フィルム表面に存在するラジカルとの反応性が向上し、密着性がより向上することから、エチレン性不飽和基を有する樹脂を含むことが好ましい。 The active energy ray-curable lithographic printing ink used in the present invention contains a resin having an ethylenically unsaturated group because the reactivity with radicals existing on the film surface is improved and the adhesion is further improved. Is preferable.
 エチレン性不飽和基を有する樹脂としては、アクリル樹脂、スチレンアクリル樹脂、スチレンマレイン酸樹脂、ロジン変性マレイン酸樹脂、ロジン変性アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、フェノール樹脂等の側鎖にエチレン性不飽和基を導入したものや、フタレート樹脂等が挙げられる。例えば、エチレン性不飽和基を有するアクリル樹脂、スチレンアクリル樹脂、スチレンマレイン酸樹脂は、次の方法により作製できる。すなわち、(メタ)アクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、酢酸ビニルまたはこれらの酸無水物などのカルボキシル基含有モノマー、2-ヒドロキシエチル(メタ)アクリレートなどのヒドロキシル基含有モノマー、ジメチルアミノエチル(メタ)アクリレートなどのアミノ基含有モノマー、(メタ)アクリル酸-2-(メルカプトアセトキシ)エチルなどのメルカプト基含有モノマー、(メタ)アクリルアミド-t-ブチルスルホン酸などのスルホ基含有モノマー、2-(メタ)アクロイロキシエチルアシッドホスフェートなどのリン酸基含有モノマー、(メタ)アクリル酸エステル、スチレン、(メタ)アクリロニトリル、酢酸ビニル等の中から選択された化合物を、ラジカル重合開始剤を用いて重合または共重合させることで親水性基を有する樹脂が得られる。さらに前記親水性基を有する樹脂中の活性水素含有基であるメルカプト基、アミノ基、ヒドロキシ基やカルボキシ基に対して、グリシジル基やイソシアネート基を有するエチレン性不飽和化合物やアクリル酸クロライド、メタクリル酸クロライドまたはアリルクロライドを付加反応させることにより、エチレン性不飽和基を有する樹脂が得られる。ただし、これらの方法に限定されるものではない。 Resins having an ethylenically unsaturated group include acrylic resin, styrene acrylic resin, styrene maleic acid resin, rosin-modified maleic acid resin, rosin-modified acrylic resin, epoxy resin, polyester resin, polyurethane resin, phenol resin and the like. Examples thereof include those having an ethylenically unsaturated group introduced therein and phthalate resins. For example, an acrylic resin having an ethylenically unsaturated group, a styrene acrylic resin, and a styrene maleic acid resin can be produced by the following method. That is, carboxyl group-containing monomers such as (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetate or their acid anhydrides, hydroxyl group-containing monomers such as 2-hydroxyethyl (meth) acrylate, Amino group-containing monomers such as dimethylaminoethyl (meth) acrylate, mercapto group-containing monomers such as (meth) acrylic acid-2- (mercaptoacetoxy) ethyl, and sulfo group-containing monomers such as (meth) acrylamide-t-butylsulfonic acid. , 2-A compound selected from a phosphate group-containing monomer such as (meth) acryloxyethyl acid phosphate, (meth) acrylic acid ester, styrene, (meth) acrylonitrile, vinyl acetate, etc., is used as a radical polymerization initiator. A resin having a hydrophilic group can be obtained by polymerizing or copolymerizing with the above. Further, with respect to the mercapto group, amino group, hydroxy group and carboxy group which are active hydrogen-containing groups in the resin having a hydrophilic group, an ethylenically unsaturated compound having a glycidyl group and an isocyanate group, acrylic acid chloride and methacrylic acid By adding chloride or allyl chloride, a resin having an ethylenically unsaturated group can be obtained. However, the method is not limited to these methods.
 また、グリシジル基を有するエチレン性不飽和化合物の具体例としては、(メタ)アクリル酸グリシジル、アリルグリシジルエーテル、クロトン酸グリシジル、イソクロトン酸グリシジルなどが挙げられる。 Specific examples of the ethylenically unsaturated compound having a glycidyl group include glycidyl (meth) acrylate, allyl glycidyl ether, glycidyl crotonate, and glycidyl isocrotonate.
 また、イソシアネート基を有するエチレン性不飽和化合物の具体例としては、(メタ)アクリロイルイソシアネート、(メタ)アクリロイルエチルイソシアネートなどが挙げられる。 Specific examples of the ethylenically unsaturated compound having an isocyanate group include (meth) acryloyl isocyanate and (meth) acryloyl ethyl isocyanate.
 フタレート樹脂としては、ジアリルオルソフタレートおよびジアリルイソフタレートのいずれか一方、または2種混合して有機溶媒中、重合開始剤の存在下、重合反応を行うことにより得ることができる。このうち未反応部分がエチレン性不飽和基として樹脂中に残る。フタレート樹脂は、合成化合物以外にも市販品を用いることができ、具体例として、大阪ソーダ社製のダイソーダップ(登録商標)シリーズや、ダイソーイソダップ(登録商標)が挙げられる。 As the phthalate resin, either one or two of diallyl orthophthalate and diallyl isophthalate can be mixed and obtained by carrying out a polymerization reaction in an organic solvent in the presence of a polymerization initiator. Of these, the unreacted portion remains in the resin as an ethylenically unsaturated group. As the phthalate resin, a commercially available product can be used in addition to the synthetic compound, and specific examples thereof include the Daiso Dapp (registered trademark) series manufactured by Osaka Soda Co., Ltd. and the Daiso Isodap (registered trademark).
 エチレン性不飽和基を有する樹脂のアクリル当量は、感度が向上し、かつ良好な保存安定性が得られる、300g/eq以上2000g/eq以下であることが好ましい。本明細書において、樹脂のアクリル当量は、JIS K 2605に基づいて測定される、インキの臭素価(試料100g中の不飽和成分に付加する臭素のg数)を、アクリロイル基1モルあたりのインキのg数に換算した値(単位:g/eq)を表す。 The acrylic equivalent of the resin having an ethylenically unsaturated group is preferably 300 g / eq or more and 2000 g / eq or less, which improves sensitivity and provides good storage stability. In the present specification, the acrylic equivalent of the resin is the bromine value of the ink (the number of g of bromine added to the unsaturated component in 100 g of the sample) measured based on JIS K 2605, and the ink per mole of the acryloyl group. Represents a value (unit: g / eq) converted into the number of g of.
 エチレン性不飽和基を有する樹脂の重量平均分子量は、活性エネルギー線硬化型平版印刷用インキの印刷適性が良好に保たれる、5,000以上100,000以下が好ましい。なお、樹脂の重量平均分子量はゲル浸透クロマトグラフィー(GPC)を用い、ポリスチレン換算で測定を行い、得ることができる。 The weight average molecular weight of the resin having an ethylenically unsaturated group is preferably 5,000 or more and 100,000 or less, which keeps good printability of the active energy ray-curable lithographic printing ink. The weight average molecular weight of the resin can be obtained by measuring in terms of polystyrene using gel permeation chromatography (GPC).
 本発明の印刷物の製造方法において、活性エネルギー線硬化型平版印刷用インキ中、エチレン性不飽和基を有する樹脂を5質量%以上40質量%以下含むことで印刷適性を良好に保つことが出来るため好ましい。 In the method for producing a printed matter of the present invention, good printability can be maintained by containing 5% by mass or more and 40% by mass or less of a resin having an ethylenically unsaturated group in the active energy ray-curable lithographic printing ink. preferable.
 活性エネルギー線硬化型平版印刷用インキとして、市販品の具体例としては、Sun Chemical社製EC DEVELOPMENTや、Flint社製XCURA EVOなどが挙げられる。 Specific examples of commercially available products as active energy ray-curable lithographic printing inks include EC DEVELOPMENT manufactured by Sun Chemical and XCURA EVO manufactured by Flint.
 活性エネルギー線硬化型平版印刷用インキを作製する場合、樹脂を多官能(メタ)アクリレートに溶解した樹脂ワニスに、顔料、助剤を加えて三本ロールミルで混練することで得られる。 When producing an active energy ray-curable lithographic printing ink, it is obtained by adding a pigment and an auxiliary agent to a resin varnish in which a resin is dissolved in a polyfunctional (meth) acrylate and kneading it with a three-roll mill.
 多官能(メタ)アクリレートは、2官能では、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等が挙げられる。3官能では、トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、イソシアヌル酸トリ(メタ)アクリレートや、これらのエチレンオキシド付加物、プロピレンオキシド付加物前記等が挙げられる。4官能ではペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジグリセリンテトラ(メタ)アクリレートや、これらのエチレンオキシド付加物、プロピレンオキシド付加物が挙げられる。5官能以上ではジペンタエリスリトールヘキサ(メタ)アクリレート、これらのエチレンオキシド付加物、プロピレンオキシド付加物が挙げられる。またヒドロキシ基を有する多官能(メタ)アクリレートの好ましい具体例としては、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ジグリセリン、ジトリメチロールプロパン、イソシアヌル酸、およびジペンタエリスリトール等の多価アルコールのポリ(メタ)アクリレート、およびこれらのアルキレンオキシド付加物が挙げられる。より具体的には、トリメチロールプロパンジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジグリセリンジ(メタ)アクリレート、ジグリセリントリ(メタ)アクリレート、ジトリメチロールプロパンジ(メタ)アクリレートジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールジ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、およびこれらのエチレンオキシド付加体、プロピレンオキシド付加体、テトラエチレンオキシド付加体等が挙げられる。また、これらを2種以上含んでもよい。 In bifunctionality, the polyfunctional (meth) acrylate includes ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, and tripropylene glycol di (meth) acrylate. ) Acrylate, 1,3-butylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate and the like. Be done. Examples of the trifunctional include trimethylolpropane tri (meth) acrylate, glycerin tri (meth) acrylate, tri (meth) acrylate of isocyanuric acid, and these ethylene oxide adducts and propylene oxide adducts. Examples of the tetrafunctional include pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, diglycerin tetra (meth) acrylate, and these ethylene oxide adducts and propylene oxide adducts. Examples of the five-functionality or higher include dipentaerythritol hexa (meth) acrylate, these ethylene oxide adducts, and propylene oxide adducts. Preferred specific examples of the polyfunctional (meth) acrylate having a hydroxy group include poly (meth) of polyhydric alcohols such as trimethylolpropane, glycerin, pentaerythritol, diglycerin, dimethylolpropane, isocyanuric acid, and dipentaerythritol. ) Acrylate and these alkylene oxide adducts. More specifically, trimethylolpropane di (meth) acrylate, glycerin di (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, diglycerin di (meth) acrylate, diglycerin tri (meth). Acrylate, ditrimethylolpropane di (meth) acrylate Ditrimethylolpropane di (meth) acrylate, dipentaerythritol di (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta Examples thereof include (meth) acrylates and their ethylene oxide adducts, propylene oxide adducts, tetraethylene oxide adducts and the like. Moreover, these may contain 2 or more types.
 本発明に使用する活性エネルギー線硬化型平版印刷用インキは、基材との密着性をより向上させることができる点から、ウレタン化合物を含むことが好ましい。ウレタン化合物としては、ポリイソシアネート化合物とポリオール化合物とを反応させることにより合成できるものを指し、特に硬化性の観点から、(メタ)アクリル基を有するウレタン(メタ)アクリレートが好ましい。 The active energy ray-curable lithographic printing ink used in the present invention preferably contains a urethane compound from the viewpoint of further improving the adhesion to the substrate. The urethane compound refers to a compound that can be synthesized by reacting a polyisocyanate compound with a polyol compound, and urethane (meth) acrylate having a (meth) acrylic group is particularly preferable from the viewpoint of curability.
 ウレタン(メタ)アクリレートは、水酸基含有(メタ)アクリル酸エステル、ポリイソシアネート化合物、およびポリオール化合物を反応させることにより合成することができる。水酸基含有(メタ)アクリル酸エステルとしては、特に限定されるものではないが、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ジグリセリン、ジトリメチロールプロパン、イソシアヌル酸、およびジペンタエリスリトール等の多価アルコールのポリ(メタ)アクリレート、並びにこれらのアルキレンオキシド付加物が挙げられる。より具体的には、トリメチロールプロパンジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジグリセリンジ(メタ)アクリレート、ジグリセリントリ(メタ)アクリレート、ジトリメチロールプロパンジ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールジ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、並びにこれらのエチレンオキシド付加体、プロピレンオキシド付加体、テトラエチレンオキシド付加体等が挙げられる。これらのうち、ペンタエリスリトールトリアクリレートが特に好ましく用いることができる。これらのアクリル基を2つ以上有する水酸基含有アクリル酸エステルを1種又は2種以上を組み合わせて用いることができる。 Urethane (meth) acrylate can be synthesized by reacting a hydroxyl group-containing (meth) acrylic acid ester, a polyisocyanate compound, and a polyol compound. The hydroxyl group-containing (meth) acrylic acid ester is not particularly limited, but is a polyhydric alcohol such as trimethylolpropane, glycerin, pentaerythritol, diglycerin, trimethylolpropane, isocyanuric acid, and dipentaerythritol. Examples include (meth) acrylates and these alkylene oxide adducts. More specifically, trimethylolpropane di (meth) acrylate, glycerin di (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, diglycerin di (meth) acrylate, diglycerin tri (meth). Acrylate, ditrimethylolpropane di (meth) acrylate, ditrimethylolpropane di (meth) acrylate, dipentaerythritol di (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol Examples thereof include penta (meth) acrylates, and these ethylene oxide adducts, propylene oxide adducts, tetraethylene oxide adducts and the like. Of these, pentaerythritol triacrylate can be particularly preferably used. One type or a combination of two or more types of hydroxyl group-containing acrylic acid esters having two or more of these acrylic groups can be used.
 ポリイソシアネート化合物は、ポリオール化合物の水酸基とポリイソシアネート化合物のイソシアネート基とが反応してなるウレタン化合物の粘度の抑制や、インキ中の樹脂やモノマーとの相溶性を保つため、ジイソシアネートを用いるのが好ましい。ジイソシアネートとしては、特に限定されるものではないが、芳香環構造をもつ化合物として、トルエンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネートが挙げられる。脂環構造をもつ化合物としてイソホロンジイソシアネート、4,4-メチレンビスシクロへキシルジイソシアネート、水添キシリレンジイソシアネートがあげられる。また、脂肪族構造をもつ化合物としてヘキサメチレンジイソシアネート等が挙げられる。これらのジイソシアネートは1種または2種以上を組み合わせて用いることが出来る。 As the polyisocyanate compound, it is preferable to use diisocyanate in order to suppress the viscosity of the urethane compound formed by the reaction between the hydroxyl group of the polyol compound and the isocyanate group of the polyisocyanate compound and to maintain the compatibility with the resin and the monomer in the ink. .. The diisocyanate is not particularly limited, and examples of the compound having an aromatic ring structure include toluene diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate. Examples of the compound having an alicyclic structure include isophorone diisocyanate, 4,4-methylenebiscyclohexyldiisocyanate, and hydrogenated xylylene diisocyanate. In addition, hexamethylene diisocyanate and the like can be mentioned as a compound having an aliphatic structure. These diisocyanates can be used alone or in combination of two or more.
 ポリオール化合物としては、エステル構造やカーボネート構造、ポリアルキレンオキシド構造を有するものが挙げられる。エステル構造を与えるジカルボン酸としては、特に限定されるものではないが、フタル酸、イソフタル酸、テレフタル酸、アジピン酸、シュウ酸、マレイン酸、フマル酸、セバシン酸とジオールの反応物等が挙げられる。このうち、比較的安価であること、良好な耐熱性を持つこと、インキへの良好な相溶性を保つことから、イソフタル酸とアジピン酸が特に好ましい。またカーボネート構造として、具体的には、ペンタメチレンカーボネートジオール、ヘキサメチレンカーボネートジオール、ヘキサンカーボネートジオール、デカンカーボネートジオール等が挙げられる。 Examples of the polyol compound include those having an ester structure, a carbonate structure, and a polyalkylene oxide structure. The dicarboxylic acid that gives an ester structure is not particularly limited, and examples thereof include phthalic acid, isophthalic acid, terephthalic acid, adipic acid, oxalic acid, maleic acid, fumaric acid, and a reaction product of sebacic acid and diol. .. Of these, isophthalic acid and adipic acid are particularly preferable because they are relatively inexpensive, have good heat resistance, and maintain good compatibility with ink. Specific examples of the carbonate structure include pentamethylene carbonate diol, hexamethylene carbonate diol, hexane carbonate diol, and decane carbonate diol.
 顔料は、フタロシアニン系顔料、溶性アゾ系顔料、不溶性アゾ系顔料、レーキ顔料、キナクリドン系顔料、イソインドリン系顔料、スレン系顔料、金属錯体系顔料、酸化チタン、酸化亜鉛、アルミナホワイト、炭酸カルシウム、硫酸バリウム、ベンガラ、カドミウムレッド、黄鉛、亜鉛黄、紺青、群青、酸化物被覆ガラス粉末、酸化物被覆雲母、酸化物被覆金属粒子、アルミニウム粉、金粉、銀粉、銅粉、亜鉛粉、ステンレス粉、ニッケル粉、有機ベントナイト、酸化鉄、カーボンブラック、グラファイト等が挙げられる。 Pigments include phthalocyanine pigments, soluble azo pigments, insoluble azo pigments, lake pigments, quinacridone pigments, isoindolin pigments, slene pigments, metal complex pigments, titanium oxide, zinc oxide, alumina white, calcium carbonate, Barium sulfate, red iron oxide, cadmium red, yellow lead, zinc yellow, dark blue, ultramarine, oxide-coated glass powder, oxide-coated mica, oxide-coated metal particles, aluminum powder, gold powder, silver powder, copper powder, zinc powder, stainless powder , Nickel powder, organic bentonite, iron oxide, carbon black, graphite and the like.
 その他に、光重合開始剤や、顔料分散剤、消泡剤、レベリング剤等の添加剤をインキに含んでいてもよい。また紫外線硬化型インキを用いることもできるが、放射線による硬化では光重合開始剤が不要となるため、こうした光重合開始剤を含まないインキを用いることが好ましい。光重合開始剤の分解物や未反応物は、臭気や内容物汚染の原因になるためである。 In addition, the ink may contain additives such as a photopolymerization initiator, a pigment dispersant, a defoaming agent, and a leveling agent. Although an ultraviolet curable ink can be used, it is preferable to use an ink that does not contain such a photopolymerization initiator because a photopolymerization initiator is not required for curing by radiation. This is because the decomposed products and unreacted products of the photopolymerization initiator cause odor and contamination of the contents.
 本発明に係る印刷物の製造方法において用いられる印刷機としては、基材が薄膜のプラスチックフィルムであっても、高い見当精度で多色印刷可能で、放射線源による一括硬化が可能になることから、センターインプレッション胴を備えた輪転印刷機を用いることが好ましい。具体的には、COMEXI社製CI-8が挙げられる。 As a printing machine used in the method for producing a printed matter according to the present invention, even if the base material is a thin plastic film, multicolor printing can be performed with high register accuracy, and batch curing by a radiation source becomes possible. It is preferable to use a rotary printing press equipped with a center impression cylinder. Specific examples thereof include CI-8 manufactured by COMEXI.
 以下、本発明を実施例により具体的に説明する。ただし、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited thereto.
 <湿し水の作製>
 湿し水1:純水90質量部、イソプロパノール5質量部、プロピレングリコールモノブチルエーテル4質量部、アラビアガム0.5質量部、リン酸0.2質量部、リン酸ナトリウム0.2質量部、t-ブチルヒドロキノン0.1質量部を混合することで、18Lの湿し水を作製した。
 湿し水2:t-ブチルヒドロキノンを除いたこと以外は湿し水1と同様に作製した。
 湿し水3:t-ブチルヒドロキノンを0.01質量部に変更したこと以外は湿し水1と同様に作製した。
<Making dampening water>
Damping water 1: 90 parts by mass of pure water, 5 parts by mass of isopropanol, 4 parts by mass of propylene glycol monobutyl ether, 0.5 parts by mass of arabic gum, 0.2 parts by mass of phosphoric acid, 0.2 parts by mass of sodium phosphate, t -Butylhydroquinone 0.1 parts by mass was mixed to prepare 18 L of dampening water.
Damping water 2: It was prepared in the same manner as dampening water 1 except that t-butylhydroquinone was removed.
Damping water 3: It was prepared in the same manner as dampening water 1 except that t-butylhydroquinone was changed to 0.01 parts by mass.
 溶存酸素濃度の調整は、1気圧15℃において、3ppmまでの低減は窒素バブリングにより行い、それ以下にする場合は、脱酸素装置(共和社製、溶存酸素除去装置)を用いて溶存酸素除去を行った。溶存酸素濃度の調整は、溶存酸素計(GS社製DOM2000)にて随時測定することで実施した。また、比較例2においては溶存酸素濃度の調整は行っておらず、比較例3においては、酸素バブリングをすることで、飽和酸素濃度に調節した。 The dissolved oxygen concentration is adjusted at 1 atm 15 ° C., and the reduction to 3 ppm is performed by nitrogen bubbling. If the concentration is less than that, use a deoxidizer (dissolved oxygen remover manufactured by Kyowa Co., Ltd.) to remove the dissolved oxygen. went. The dissolved oxygen concentration was adjusted by measuring at any time with a dissolved oxygen meter (DOM2000 manufactured by GS). Further, in Comparative Example 2, the dissolved oxygen concentration was not adjusted, and in Comparative Example 3, the saturated oxygen concentration was adjusted by oxygen bubbling.
 <活性エネルギー線硬化型平版印刷用インキの作製>
 インキ1:エチレン性不飽和基を有する樹脂として大阪ソーダ社製ダイソーダップ(登録商標)Kが30質量部、多官能(メタ)アクリレートとしてMiwon社製M600が25質量部、およびMiwon社製M3130が23質量部、墨顔料としてCabot社製MogulEが18質量部、体質顔料として日本タルク社製ミクロエースP-8が2質量部、分散剤としてBYK社製造Disper BYK2013が1質量部、ワックスとして喜多村社製KTL-4Nが1質量部からなる活性エネルギー線硬化型平版印刷用インキを三本ロールミルで混練することで作製した。
<Manufacturing ink for active energy ray-curable lithographic printing>
Ink 1: 30 parts by mass of Daisodap (registered trademark) K manufactured by Osaka Soda Co., Ltd. as a resin having an ethylenically unsaturated group, 25 parts by mass of M600 manufactured by Miwon Co., Ltd. as a polyfunctional (meth) acrylate, and M3130 manufactured by Miwon Co., Ltd. 23 parts by mass, 18 parts by mass of MogulE manufactured by Cabot as an ink pigment, 2 parts by mass of Microace P-8 manufactured by Nippon Tarku as an extender pigment, 1 part by mass of Disper BYK2013 manufactured by BYK as a dispersant, and Kitamura as a wax. It was produced by kneading an active energy ray-curable flat plate printing ink having 1 part by mass of KTL-4N manufactured by KTL-4N with a three-roll mill.
 インキ2:エチレン性不飽和基を持たない樹脂として星光PMC社製ハイロスー(登録商標)VS-1259が24質量部、多官能(メタ)アクリレートとしてMiwon社製M4004が34質量部、およびMiwon社製M262が20質量部、墨顔料としてCabot社製MogulEが18質量部、体質顔料として日本タルク社製ミクロエースP-8が2質量部、分散剤としてBYK社製造Disper BYK2013が1質量部、ワックスとして喜多村社製KTL-4Nが1質量部からなる活性エネルギー線硬化型平版印刷用インキを三本ロールミルで混練することで作製した。 Ink 2: 24 parts by mass of Hirosu (registered trademark) VS-1259 manufactured by Seikou PMC as a resin having no ethylenically unsaturated group, 34 parts by mass of M4004 manufactured by Miwon as a polyfunctional (meth) acrylate, and Miwon. 20 parts by mass of M262, 18 parts by mass of MogulE manufactured by Cabot as an ink pigment, 2 parts by mass of Microace P-8 manufactured by Nippon Tarku as an extender pigment, 1 part by mass of Disper BYK2013 manufactured by BYK as a dispersant, as a wax. KTL-4N manufactured by Kitamura Co., Ltd. was produced by kneading an active energy ray-curable flat plate printing ink consisting of 1 part by mass with a three-roll mill.
 インキ3:エチレン性不飽和基を有する樹脂として大阪ソーダ社製ダイソーダップ(登録商標)Kが28質量部、多官能(メタ)アクリレートとしてMiwon社製M600が22質量部、およびMiwon社製M3130が21質量部、ウレタン化合物として東亞合成社製アロニックス(登録商標)M-1200が8質量部、墨顔料としてCabot社製MogulEが18質量部、体質顔料として日本タルク社製ミクロエースP-8が2質量部、分散剤としてBYK社製造Disper BYK2013が1質量部、ワックスとして喜多村社製KTL-4Nが1質量部からなる活性エネルギー線硬化型平版印刷用インキを三本ロールミルで混練することで作製した。 Ink 3: 28 parts by mass of Daisodap (registered trademark) K manufactured by Osaka Soda as a resin having an ethylenically unsaturated group, 22 parts by mass of M600 manufactured by Miwon as a polyfunctional (meth) acrylate, and M3130 manufactured by Miwon. 21 parts by mass, 8 parts by mass of Aronix (registered trademark) M-1200 manufactured by Toa Synthetic Co., Ltd. as a urethane compound, 18 parts by mass of MogulE manufactured by Cabot as a black pigment, and 2 parts by mass of Microace P-8 manufactured by Nippon Tarku Co., Ltd. It was produced by kneading an active energy ray-curable flat plate printing ink consisting of 1 part by mass of Disper BYK2013 manufactured by BYK as a dispersant and 1 part by mass of KTL-4N manufactured by Kitamura as a wax with a three-roll mill. ..
 <使用基材>
基材1(PET):PTM(ユニチカ社製、厚み12μm)、表面をポリエステルコートしたフィルム
基材2(OPP):P2111(東洋紡社製、厚み20μm)、表面をコロナ処理したフィルム
基材3(ポリアミド):ONM(ユニチカ社製、厚み15μm)、表面をウレタンコートしたフィルム
基材4(PET):S-46(polyplex社製、厚み12μm)、表面をアクリルコートしたフィルム
基材5(OPP):P2002(東洋紡社製、厚み40μm)、未処理表面のフィルム
基材6(ポリビニルアルコール):エバールEF-XL(クラレ社製、厚み12μm)、未処理表面のフィルム
<Base material used>
Base material 1 (PET): PTM (manufactured by Unitika, thickness 12 μm), film base material 2 (OPP) whose surface is polyester-coated, P2111 (manufactured by Toyobo Co., Ltd., thickness 20 μm), film base material 3 (thickness 20 μm) whose surface is corona-treated. Polyamide): ONM (manufactured by Unitica, thickness 15 μm), film base material 4 (PET) whose surface is urethane-coated, S-46 (manufactured by polyplex, thickness 12 μm), film base material 5 (OPP) whose surface is acrylic-coated. : P2002 (manufactured by Toyobo Co., Ltd., thickness 40 μm), untreated surface film base material 6 (polyvinyl alcohol): EVAL EF-XL (manufactured by Kuraray Co., Ltd., thickness 12 μm), untreated surface film
 <印刷試験>
 平版印刷版(XP-F、富士フィルム(株)社製)を軟包装平版印刷機(CI-8、Comexi社製)に装着し、湿し水を用い、各種原反に150m/分で活性エネルギー線硬化型平版印刷用インキを印刷した。その後、e-beam社製電子線照射装置を用いて、加速電圧110kV、照射線量30kGyで電子線照射し、活性エネルギー線硬化型平版印刷用インキを硬化させ、印刷物を得た。
<Printing test>
A lithographic printing plate (XP-F, manufactured by Fuji Film Co., Ltd.) is mounted on a flexible packaging lithographic printing machine (CI-8, manufactured by Comexi), and it is activated at 150 m / min on various raw fabrics using dampening water. An energy ray-curable lithographic printing ink was printed. Then, using an electron beam irradiator manufactured by e-beam, electron beam irradiation was performed at an accelerating voltage of 110 kV and an irradiation dose of 30 kGy to cure the active energy ray-curable lithographic printing ink to obtain a printed matter.
 <密着性の測定>
 印刷試験にて得られた印刷物に、三井化学社製タケラックA969V/タケネートA-5(質量比5/1)混合ラミネート接着剤を、膜厚3.0g/m2で塗工し、無延伸ポリプロピレンフィルム(CPP、東洋紡社製P1128 厚み30μm)でラミネートした。その後、40℃で3日間エージングすることで、ラミネートサンプルを得た。ラミネートサンプル中のインキ濃度100%のベタ部を15mm幅で短冊状にカットし、テンシロン万能試験機(オリエンテック社製 RTG-1210)にて300mm/分90度角で剥離した際の、剥離強度を測定した。剥離強度が1N/15mm以上が良好な結果で、3N/15mm以上または基材破断が極めて良好な結果である。
<Measurement of adhesion>
Takelac A969V / Takenate A-5 (mass ratio 5/1) mixed laminate adhesive manufactured by Mitsui Kagaku Co., Ltd. was applied to the printed matter obtained in the printing test at a thickness of 3.0 g / m 2 , and unstretched polypropylene. It was laminated with a film (CPP, P1128 manufactured by Toyo Boseki Co., Ltd., thickness 30 μm). Then, it was aged at 40 ° C. for 3 days to obtain a laminated sample. Peeling strength when a solid part with 100% ink concentration in a laminate sample is cut into strips with a width of 15 mm and peeled off at a 300 mm / min 90 degree angle with a Tensilon universal tester (RTG-1210 manufactured by Orientec). Was measured. A peel strength of 1N / 15 mm or more is a good result, and a peel strength of 3N / 15 mm or more or a substrate breakage is an extremely good result.
 [実施例1~5、および比較例1~3]
 上記で作製したインキ1、および表1に示した溶存酸素濃度を有する湿し水1または湿し水2を用いて、基材1に平板印刷したところ、湿し水中の溶存酸素濃度の低下とともに、密着性が向上する傾向が見られた。溶存酸素濃度が5ppm以下でラミネート剥離強度も1N/15mmを越え、良好であった。結果を表1に示す。
[Examples 1 to 5 and Comparative Examples 1 to 3]
When the ink 1 prepared above and the dampening water 1 or the dampening water 2 having the dissolved oxygen concentration shown in Table 1 were used for lithographic printing on the base material 1, the dissolved oxygen concentration in the dampening water decreased. , There was a tendency for the adhesion to improve. The dissolved oxygen concentration was 5 ppm or less, and the laminate peeling strength exceeded 1 N / 15 mm, which was good. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [実施例6~10]
 実施例3の条件から基材1を、基材2~6のいずれかに変更して印刷を行った。最表面でラジカル生成しやすいフィルムほど密着性が高い傾向が見られた。結果を表2に示す。
[Examples 6 to 10]
From the conditions of Example 3, the base material 1 was changed to any of the base materials 2 to 6 and printing was performed. A film that easily generates radicals on the outermost surface tends to have higher adhesion. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [実施例11]
 実施例3の条件から湿し水1を、湿し水3に変更して印刷を行った。湿し水中の酸化防止剤の量を低減することで、若干の密着性向上が見られた。結果を表3に示す。
[Example 11]
From the conditions of Example 3, the dampening water 1 was changed to the dampening water 3 and printing was performed. By reducing the amount of antioxidant in the dampening water, a slight improvement in adhesion was observed. The results are shown in Table 3.
 [実施例12および13]
 実施例3の条件からインキ1を、インキ2またはインキ3に変更して印刷を行った。結果を表3に示す。
[Examples 12 and 13]
Printing was performed by changing ink 1 to ink 2 or ink 3 from the conditions of Example 3. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明に係る印刷物の製造方法は、基材に対するインキの密着性を向上することができる。 The method for producing a printed matter according to the present invention can improve the adhesion of ink to a base material.

Claims (10)

  1. 活性エネルギー線硬化型平版印刷用インキを基材上に転写し、放射線を照射する平版印刷版を用いた印刷物の製造方法であって、溶存酸素濃度が5ppm以下である湿し水を使用する、印刷物の製造方法。 A method for producing a printed matter using a lithographic printing plate in which active energy ray-curable lithographic printing ink is transferred onto a substrate and irradiated with radiation, and using dampening water having a dissolved oxygen concentration of 5 ppm or less. Printed matter manufacturing method.
  2. 前記湿し水が、酸化防止剤を実質的に含まない、請求項1に記載の印刷物の製造方法。 The method for producing a printed matter according to claim 1, wherein the dampening water does not substantially contain an antioxidant.
  3. 前記放射線が、電子線である、請求項1または2に記載の印刷物の製造方法。 The method for producing a printed matter according to claim 1 or 2, wherein the radiation is an electron beam.
  4. 前記基材が、プラスチックフィルムである、請求項1~3のいずれかに記載の印刷物の製造方法。 The method for producing a printed matter according to any one of claims 1 to 3, wherein the base material is a plastic film.
  5. 前記プラスチックフィルムが、放射線架橋型高分子を含む、請求項4に記載の印刷物の製造方法。 The method for producing a printed matter according to claim 4, wherein the plastic film contains a radiation-crosslinked polymer.
  6. 前記プラスチックフィルムが、易接着コートまたはコロナ処理により表面処理がされたものである、請求項4または5に記載の印刷物の製造方法。 The method for producing a printed matter according to claim 4 or 5, wherein the plastic film is surface-treated by an easy-adhesion coating or a corona treatment.
  7. 前記易接着コートが、ウレタンコートまたはアクリルコートである、請求項6に記載の印刷物の製造方法。 The method for producing a printed matter according to claim 6, wherein the easy-adhesion coating is a urethane coating or an acrylic coating.
  8. 前記活性エネルギー線硬化型平版印刷用インキが、エチレン性不飽和基を有する樹脂を含む、請求項1~7のいずれかに記載の印刷物の製造方法。 The method for producing a printed matter according to any one of claims 1 to 7, wherein the active energy ray-curable lithographic printing ink contains a resin having an ethylenically unsaturated group.
  9. 前記活性エネルギー線硬化型平版印刷用インキが、ウレタン化合物を含む、請求項1~8のいずれかに記載の印刷物の製造方法。 The method for producing a printed matter according to any one of claims 1 to 8, wherein the active energy ray-curable lithographic printing ink contains a urethane compound.
  10. センターインプレッション胴を備えた輪転印刷機を用いる、請求項1~9のいずれかに記載の印刷物の製造方法。 The method for producing a printed matter according to any one of claims 1 to 9, wherein a rotary printing press provided with a center impression cylinder is used.
PCT/JP2020/009369 2019-03-29 2020-03-05 Method for manufacturing printed matter WO2020203013A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20783488.8A EP3950368A4 (en) 2019-03-29 2020-03-05 Method for manufacturing printed matter
CN202080022301.8A CN113557144B (en) 2019-03-29 2020-03-05 Method for manufacturing printed matter
JP2020514769A JP7040609B2 (en) 2019-03-29 2020-03-05 Printed matter manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019066803 2019-03-29
JP2019-066803 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203013A1 true WO2020203013A1 (en) 2020-10-08

Family

ID=72668321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009369 WO2020203013A1 (en) 2019-03-29 2020-03-05 Method for manufacturing printed matter

Country Status (4)

Country Link
EP (1) EP3950368A4 (en)
JP (1) JP7040609B2 (en)
CN (1) CN113557144B (en)
WO (1) WO2020203013A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022182875A (en) * 2021-05-28 2022-12-08 東京インキ株式会社 Moistening water composition for offset-printing, and concentrated moistening water composition
WO2023166915A1 (en) * 2022-03-03 2023-09-07 東レ株式会社 Method for manufacturing printed matter, laminate using same, and method for manufacturing packaging bag

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209880A (en) * 1994-01-18 1995-08-11 Dainippon Ink & Chem Inc Aqueous alkalie developing solution for wash-off type photosensitive material and its manufacture
JPH09193490A (en) * 1995-10-19 1997-07-29 Tecnicas Especiales De Oxigenacion Sl Improvement in offset printing wetting system and mechanism for applying it
EP0876910A1 (en) * 1997-05-01 1998-11-11 Ruprecht Handels AG Method for processing fountain solutions for offset printing
JP2004358788A (en) 2003-06-04 2004-12-24 Kaname Sangyo Kk Method and apparatus for manufacturing packaging material
JP2005015755A (en) * 2003-06-03 2005-01-20 Toyo Ink Mfg Co Ltd Active energy beam-curing dry type planographic printing ink composition, method for printing and printed matter of the same
JP2011073193A (en) * 2009-09-29 2011-04-14 Fujifilm Corp Dampening water composition for lithographic printing and heat-set-off rotary printing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062969A (en) * 1996-08-13 1998-03-06 Toray Ind Inc Original plate for photosensitive planographic printing plate and production of planographic printing plate
JP2004322576A (en) * 2003-04-28 2004-11-18 Mitsui Chemicals Inc Method for preparing optimal dampening water and method for printing using dampening water
DE602004016042D1 (en) * 2003-12-26 2008-10-02 Mitsui Chemicals Inc FLAT PRINT ORIGINAL PLATE AND FLAT PRESSURE PLATE
US7886665B2 (en) * 2004-03-31 2011-02-15 Sun Chemical Corporation Method of manufacturing of low-odor packaging materials
JP4227573B2 (en) * 2004-08-10 2009-02-18 三井化学株式会社 Lithographic fountain solution composition and lithographic fountain solution
JP2006137100A (en) * 2004-11-12 2006-06-01 Fuji Photo Film Co Ltd Original plate of lithographic printing plate
US11117391B2 (en) * 2013-04-03 2021-09-14 Sun Chemical Corporation UV-curable inkjet and overprint varnish combination
EP3466704B1 (en) * 2016-05-27 2023-03-15 Toray Industries, Inc. Method for producing printed matter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209880A (en) * 1994-01-18 1995-08-11 Dainippon Ink & Chem Inc Aqueous alkalie developing solution for wash-off type photosensitive material and its manufacture
JPH09193490A (en) * 1995-10-19 1997-07-29 Tecnicas Especiales De Oxigenacion Sl Improvement in offset printing wetting system and mechanism for applying it
EP0876910A1 (en) * 1997-05-01 1998-11-11 Ruprecht Handels AG Method for processing fountain solutions for offset printing
JP2005015755A (en) * 2003-06-03 2005-01-20 Toyo Ink Mfg Co Ltd Active energy beam-curing dry type planographic printing ink composition, method for printing and printed matter of the same
JP2004358788A (en) 2003-06-04 2004-12-24 Kaname Sangyo Kk Method and apparatus for manufacturing packaging material
JP2011073193A (en) * 2009-09-29 2011-04-14 Fujifilm Corp Dampening water composition for lithographic printing and heat-set-off rotary printing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3950368A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022182875A (en) * 2021-05-28 2022-12-08 東京インキ株式会社 Moistening water composition for offset-printing, and concentrated moistening water composition
WO2023166915A1 (en) * 2022-03-03 2023-09-07 東レ株式会社 Method for manufacturing printed matter, laminate using same, and method for manufacturing packaging bag

Also Published As

Publication number Publication date
JPWO2020203013A1 (en) 2020-10-08
EP3950368A1 (en) 2022-02-09
CN113557144B (en) 2022-11-01
JP7040609B2 (en) 2022-03-23
EP3950368A4 (en) 2023-07-05
CN113557144A (en) 2021-10-26

Similar Documents

Publication Publication Date Title
JP7040609B2 (en) Printed matter manufacturing method
JP6631964B1 (en) Organic solvent-based printing ink having detachability, printed matter and laminate
CN114364542B (en) Method for producing printed matter
US20080108760A1 (en) Active Energy Curable Ink Composition for Multicoat Printing
CN113710755B (en) Low migration electron beam curable primer
EP3277505B1 (en) Polymeric gravure printing form and process for preparing the same with curable composition having a multifunctional urethane
EP2388146A2 (en) Printing method, method for preparing overprint, method for processing laminate, light-emitting diode curable coating composition, and light-emitting diode curable ink composition
WO2020235557A1 (en) Printing ink, method for producing printed work using said ink, and printed work
JP7416060B2 (en) Coating agent for printing film, laminate, and method for producing printed matter
JPWO2018117079A1 (en) Active energy ray curable printing ink composition and printing method using the same
JP7302602B2 (en) Actinic energy ray-curable lithographic printing ink and method for producing printed matter using the same
US20030118838A1 (en) Laminate, adhering method and active energy ray-curable composition
JP7131919B2 (en) LASER MARKER LABEL AND LASER MARKER LABEL MANUFACTURING METHOD
TW202043386A (en) Method for manufacturing printed matter
EP4189022B1 (en) Low migration eb curable inks with bio-renewable content
JP7036099B2 (en) Organic solvent-based printing inks, printed matter and laminates
JP7036098B2 (en) Organic solvent-based printing inks, printed matter and laminates
JP2021126896A (en) Manufacturing method of printed matter
US20220055392A1 (en) Decorative material having excellent printing properties and method of manufacturing the same
JP2022025217A (en) Method for producing printed matter
JP2006021376A (en) Manufacturing method of decorative metallic tone film
JP2023172495A (en) Active ray-curable resin composition and desorption layer
JP2022182014A (en) Laminated film for three-dimensional molding decoration, its manufacturing method and three-dimensional molding decoration method
WO2023054026A1 (en) Method for manufacturing printed matter
CN116783260A (en) Pressure-sensitive adhesive sheet

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020514769

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020783488

Country of ref document: EP

Effective date: 20211029