WO2020202867A1 - 高温部品及び高温部品の製造方法 - Google Patents

高温部品及び高温部品の製造方法 Download PDF

Info

Publication number
WO2020202867A1
WO2020202867A1 PCT/JP2020/006559 JP2020006559W WO2020202867A1 WO 2020202867 A1 WO2020202867 A1 WO 2020202867A1 JP 2020006559 W JP2020006559 W JP 2020006559W WO 2020202867 A1 WO2020202867 A1 WO 2020202867A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
passages
roughness
passage
outlet
Prior art date
Application number
PCT/JP2020/006559
Other languages
English (en)
French (fr)
Inventor
秀次 谷川
飯田 耕一郎
竜太 伊藤
太郎 徳武
祥成 脇田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020217026552A priority Critical patent/KR102606424B1/ko
Priority to US17/431,610 priority patent/US11746663B2/en
Priority to DE112020000789.8T priority patent/DE112020000789B4/de
Priority to CN202080015536.4A priority patent/CN113490788B/zh
Publication of WO2020202867A1 publication Critical patent/WO2020202867A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/08Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using solid propellants
    • F02K9/32Constructional parts; Details not otherwise provided for
    • F02K9/40Cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/60Constructional parts; Details not otherwise provided for
    • F02K9/62Combustion or thrust chambers
    • F02K9/64Combustion or thrust chambers having cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/516Surface roughness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • This disclosure relates to high temperature parts and a method for manufacturing high temperature parts.
  • the parts constituting the machine include high-temperature parts that require cooling by a cooling medium.
  • a cooling structure for such a high temperature component it is known that the high temperature component is cooled by circulating the cooling air through a plurality of delivery channels (cooling passages) through which the cooling air can flow inside the component (for example). See Patent Document 1).
  • a layered manufacturing method for obtaining a three-dimensional shape by additive manufacturing of metals has been used as a method for manufacturing various metal products.
  • a three-dimensional shape is formed by repeatedly laminating by melting and solidifying by irradiating a metal powder laid in a layer with an energy beam such as a light beam or an electron beam. In the region irradiated with the energy beam, the metal powder is rapidly melted and then rapidly cooled and solidified to form a solidified metal layer. By repeating such a process, a three-dimensionally shaped laminated model is formed.
  • the metal powder of the raw material is melted and solidified and laminated to form a laminated model, so that the surface roughness is generally rough. It becomes relatively rough. Specifically, the surface roughness is, for example, 10 ⁇ m or more in the center line average roughness Ra. Further, in the overhang portion where the region vertically below becomes a space portion during lamination, the surface roughness tends to be rougher, and the surface roughness is, for example, 30 ⁇ m or more in the center line average roughness Ra.
  • the surface roughness of the inner wall surface of the cooling passage formed inside is coarser from the viewpoint of improving cooling performance. Is desirable.
  • the surface roughness of the inner wall surface of the cooling passage is rough, the pressure loss of the cooling medium becomes large.
  • the surface roughness of the inner wall surface has a large influence on the pressure loss, and in an extreme case, the flow rate of the cooling medium. There is a possibility that the decrease will be significant.
  • At least one embodiment of the present invention aims to provide a high temperature component capable of preventing a shortage of cooling capacity.
  • the high temperature component is High temperature parts that require cooling with a cooling medium A plurality of first cooling passages through which the cooling medium can flow, and A header portion to which the downstream ends of the plurality of first cooling passages are connected, and One or more outlet passages for discharging the cooling medium flowing into the header portion to the outside of the header portion, and With The roughness of the inner wall surface of the one or more outlet passages is equal to or less than the roughness of the inner wall surface of the plurality of first cooling passages in the region where the flow path cross-sectional area of the outlet passage is minimized.
  • the roughness of the inner wall surface of the plurality of first cooling passages is equal to or higher than the roughness of the inner wall surface of the outlet passage in the region where the flow path cross-sectional area of the outlet passage is minimized. 1 Cooling performance in the cooling passage can be improved. Further, according to the configuration of (1) above, the roughness of the inner wall surface of the outlet passage in the region where the flow path cross-sectional area of the outlet passage is minimized is equal to or less than the roughness of the inner wall surface of the plurality of first cooling passages. In addition to suppressing variations in pressure loss in the outlet passage, foreign matter can easily pass through the outlet passage, and the risk of blockage of the outlet passage can be reduced.
  • the inner wall surface of the one or more outlet passages has a roughness with a center line average roughness Ra of 10 ⁇ m or less in a region where the flow path cross-sectional area of the outlet passage is minimized.
  • the inner wall surface of the plurality of first cooling passages has a roughness with a center line average roughness Ra of 10 ⁇ m or more and 20 ⁇ m or less.
  • the cooling performance in the first cooling passage can be improved. Further, according to the configuration of (2) above, since the inner wall surface of the outlet passage in the region where the flow path cross-sectional area of the outlet passage is minimized has the above roughness, it is possible to suppress the variation in pressure loss in the outlet passage. , Foreign matter can easily pass through the exit passage, and the risk of the exit passage being blocked can be reduced.
  • a plurality of second cooling passages extending in a direction intersecting the extending direction of the plurality of first cooling passages are further provided.
  • the inner wall surface of the plurality of second cooling passages has a roughness with a center line average roughness Ra of 10 ⁇ m or more and 50 ⁇ m or less.
  • the flow path cross-sectional area of the outlet passage gradually decreases toward the downstream side. Includes road cross-sectional area reduction section.
  • the minimum flow path cross-sectional area in the exit passage can be adjusted by adjusting the size in the direction orthogonal to the extending direction of the exit passage from the downstream side of the flow path cross-sectional area reduction portion. It will be easy.
  • the high temperature component is configured so as to adjust the flow rate of the cooling medium in the high temperature component by the size of the minimum flow path cross-sectional area in the outlet passage, the extending direction of the outlet passage on the downstream side of the outlet passage
  • the flow rate of the cooling medium can be controlled, so that the area where the accuracy of the cross-sectional area of the passage, that is, the dimensional accuracy of the passage should be secured can be narrowed, and the manufacturing cost of high-temperature parts can be suppressed. it can.
  • the roughness in at least a part of the inner wall surface of the header portion is the roughness of the plurality of first cooling passages. It is less than the roughness of the inner wall surface.
  • the space volume in the header portion becomes large, and the flow velocity of the cooling medium in the header portion decreases, so that the heat transfer coefficient to the cooling medium decreases. .. Therefore, when designing the high temperature component, it is considered that the cooling capacity of the header portion is lower than that of the cooling passage, that is, the contribution to the cooling of the high temperature component is relatively small. According to the configuration of (5) above, since the roughness of at least a part of the inner wall surface of the header portion is equal to or less than the roughness of the inner wall surface of the plurality of first cooling passages, the pressure loss in the header portion can be suppressed. ..
  • the header portion contributes relatively little to the cooling of the high temperature component, the influence of the reduced roughness of the header portion on the cooling of the high temperature component is small. Therefore, the pressure loss of the cooling medium can be suppressed while suppressing the influence on the cooling of the high temperature component.
  • the high temperature component is a gas composed of a plurality of divided bodies arranged in an annular shape along the circumferential direction. It is a split ring of a turbine.
  • the split ring of the gas turbine has the configuration of any one of (1) to (5) above, so that the roughness of the inner wall surface of the plurality of first cooling passages is that of the outlet passage. Since the roughness of the inner wall surface of the outlet passage is equal to or higher than that in the region where the cross-sectional area of the flow path is the minimum, the cooling performance in the first cooling passage can be improved in the split ring. Further, according to the configuration of (6) above, the roughness of the inner wall surface of the outlet passage in the region where the flow path cross-sectional area of the outlet passage is minimized is equal to or less than the roughness of the inner wall surface of the plurality of first cooling passages. In the split ring, the variation in pressure loss in the outlet passage can be suppressed, and foreign matter can easily pass through the outlet passage, reducing the risk of the outlet passage being blocked.
  • the method for manufacturing a high temperature component is A method for manufacturing high-temperature parts that requires cooling with a cooling medium.
  • the roughness of the inner wall surface of the one or more outlet passages is the inner wall surface of the plurality of first cooling passages in the region where the flow path cross-sectional area of the outlet passage is minimized.
  • the one or more outlet passages are formed so as to be equal to or less than the roughness of.
  • the roughness of the inner wall surface of the plurality of first cooling passages is equal to or higher than the roughness of the inner wall surface of the outlet passage in the region where the flow path cross-sectional area of the outlet passage is minimized. 1 Cooling performance in the cooling passage can be improved. Further, according to the method (7) above, the roughness of the inner wall surface of the outlet passage in the region where the flow path cross-sectional area of the outlet passage is minimized is equal to or less than the roughness of the inner wall surface of the plurality of first cooling passages. In addition to suppressing variations in pressure loss in the outlet passage, foreign matter can easily pass through the outlet passage, and the risk of blockage of the outlet passage can be reduced.
  • the flow path cross-sectional area of the outlet passage gradually decreases toward the downstream side.
  • the one or more exit passages are formed so as to include the reduced portion.
  • the minimum flow path cross-sectional area in the exit passage can be adjusted by adjusting the size in the direction orthogonal to the extending direction of the exit passage from the downstream side of the flow path cross-sectional area reduction portion. It will be easy.
  • the high temperature component is configured to adjust the flow rate of the cooling medium in the high temperature component by the size of the minimum flow path cross-sectional area in the outlet passage, the extending direction of the outlet passage on the downstream side of the outlet passage
  • the flow rate of the cooling medium can be controlled, so that the area where the accuracy of the cross-sectional area of the passage, that is, the dimensional accuracy of the passage should be secured can be narrowed, and the manufacturing cost of high-temperature parts can be suppressed. it can.
  • the step of forming one or more outlet passages includes the region where the flow path cross-sectional area of the outlet passage is minimized.
  • the roughness of the inner wall surface of the one or more outlet passages is equal to or less than the roughness of the inner wall surface of the plurality of first cooling passages in the region.
  • the roughness in at least a part of the exit passage including the region where the flow path cross-sectional area of the outlet passage is minimized can be easily reduced. Further, according to the method (9) above, the roughness can be easily reduced even in a region where machining is difficult from the downstream end of the outlet passage.
  • the step of reducing the roughness of the inner wall surface of the header portion to the roughness of the inner wall surface of the plurality of first cooling passages in the region is performed. Further prepare.
  • the roughness of at least a part of the inner wall surface of the header portion is equal to or less than the roughness of the inner wall surface of the plurality of first cooling passages, so that the pressure loss in the header portion can be suppressed. ..
  • the header portion since the header portion contributes relatively little to the cooling of the high temperature component, the influence of the reduced roughness of the header portion on the cooling of the high temperature component is small. Therefore, the pressure loss of the cooling medium can be suppressed while suppressing the influence on the cooling of the high temperature component.
  • the one or more outlet passages are formed by the metal additive manufacturing method or the precision casting method. Further provided is a step of machining at least a part of the inner wall surface of the one or more exit passages.
  • the manufacturing cost of high-temperature parts can be suppressed as compared with the case where the outlet passage is formed only by machining.
  • the dimensional accuracy of the inner wall surface of the outlet passage can be improved and the flow rate of the cooling medium can be adjusted as compared with the case where the outlet passage is formed only by the metal additive manufacturing method or the precision casting method. The accuracy can be improved.
  • the dimensions of the inner wall surface of the outlet passage can be adjusted while checking the flow rate of the cooling medium, so that the excess or deficiency of the flow rate of the cooling medium can be suppressed.
  • the raw material powders are laminated with the first lamination thickness by the metal additive manufacturing method to form the plurality of first cooling passages.
  • the raw material powder is laminated with a second lamination thickness equal to or less than the first lamination thickness by a metal additive manufacturing method to form the header portion.
  • the raw material powder is laminated with a third laminated thickness smaller than the first laminated thickness by a metal additive manufacturing method to form the outlet passage.
  • the second laminated thickness for forming the header portion is set to be equal to or less than the first laminated thickness for forming the first cooling passage, so that the roughness of the header portion is reduced.
  • the pressure loss of the cooling medium can be suppressed by suppressing the roughness, and the roughness of the first cooling passage can be relatively increased to improve the cooling performance.
  • the third laminated thickness forming the outlet passage By making the third laminated thickness forming the outlet passage smaller than the first laminated thickness forming the first cooling passage as in the method (12) above, the roughness of the outlet passage is suppressed. In addition to suppressing variations in pressure loss in the outlet passage, foreign matter can easily pass through the outlet passage, reducing the risk of blockage of the outlet passage. Further, as described above, the first cooling passage can have a relatively large roughness to improve the cooling performance.
  • the plurality of first cooling passages are formed by using the raw material powder having the first particle size by the metal additive manufacturing method.
  • the header portion is formed by using a raw material powder having a second particle size equal to or lower than the first particle size by a metal additive manufacturing method.
  • the outlet passage is formed by using a raw material powder having a third particle size smaller than the first particle size by a metal additive manufacturing method.
  • the particle size of the raw material powder for forming the header portion (second particle size) is set to be equal to or less than the particle size of the raw material powder for forming the first cooling passage (first particle size).
  • the particle size of the raw material powder for forming the outlet passage (third particle size) is smaller than the particle size of the raw material powder for forming the first cooling passage (first particle size).
  • the roughness can be suppressed to suppress the variation in pressure loss in the outlet passage, and foreign matter can easily pass through the outlet passage, so that the risk of the outlet passage being blocked can be reduced.
  • the first cooling passage can have a relatively large roughness to improve the cooling performance.
  • a step of laminating the raw material powder in the extending direction of the plurality of first cooling passages by the metal additive manufacturing method to form a plurality of second cooling passages extending in a direction intersecting the extending direction is further performed.
  • the overhang region where the overhang angle is equal to or greater than the predetermined angle when the raw material powders are laminated has a roughness with a center line average roughness Ra of 30 ⁇ m or more and 50 ⁇ m or less.
  • the regions other than the overhang region have a roughness with a center line average roughness Ra of 10 ⁇ m or more and 30 ⁇ m or less.
  • the roughness in the overhang region where the overhang angle is equal to or larger than the specified angle when laminating the raw material powder tends to be larger than in the region other than the overhang region.
  • the roughness of the inner wall surface of the second cooling passage can be roughened in a part of the region by utilizing the tendency as described above in the metal additive manufacturing method, and the second cooling can be performed. Cooling performance in the passage can be improved.
  • the number of the one or more outlet passages is less than the number of the plurality of first cooling passages.
  • the minimum flow path cross-sectional area of each of the one or more outlet passages is equal to or larger than the flow path cross-sectional area of each of the plurality of first cooling passages at the connection portion between the header portion and the first cooling passage.
  • the sum of the minimum flow path cross-sectional areas of each of the one or more outlet passages is smaller than the sum of the flow path cross-sectional areas of the plurality of first cooling passages at the connection portion between the header portion and the first cooling passage. ..
  • each of the plurality of first cooling passages when the flow rate of the cooling medium flowing through each is determined by the flow path cross-sectional area of each of the plurality of cooling passages, if the flow path cross-sectional area is small, there are restrictions on the manufacture of high-temperature parts. Therefore, the dimensional accuracy of the first cooling passage tends to decrease, so that the accuracy of the flow rate of the cooling medium in the first cooling passage may decrease.
  • the sum of the minimum flow path cross-sectional areas of each of the one or more outlet passages is the sum of the plurality of first cooling passages at the connection portion between the header portion and the first cooling passage.
  • the flow rate of the cooling medium in the plurality of first cooling passages can be defined by the minimum cross-sectional area of the flow path of the outlet passage.
  • the minimum flow path cross-sectional area of each of the one or more outlet passages is the flow path disconnection of each of the plurality of first cooling passages at the connection portion between the header portion and the first cooling passage. Since the area is larger than the area, it is easy to secure the dimensional accuracy of the outlet passage, and it is difficult for foreign matter to be clogged in the outlet passage. Further, according to the method (15) above, since the number of one or more outlet passages is less than the number of the plurality of first cooling passages, the accuracy of the flow path cross-sectional area, that is, the passages, is used in controlling the flow rate of the cooling medium. It is possible to reduce the number of places where the dimensional accuracy of the above should be ensured, and it is possible to suppress the manufacturing cost of high temperature parts.
  • FIG. 3 is a cross-sectional view taken along the line A4-A4 in FIG. It is an enlarged view of the vicinity of the header part in FIG.
  • FIG. 3 is a flowchart which shows an example of the production procedure at the time of producing the divided body which concerns on some Embodiments by metal additive manufacturing method. It is a figure for demonstrating the outlet passage cutting process. It is a flowchart which shows an example of the processing procedure in the manufacturing method of the divided body which concerns on another embodiment.
  • expressions such as “same”, “equal”, and “homogeneous” that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the state of existence.
  • an expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or chamfering within a range where the same effect can be obtained.
  • the shape including the part and the like shall also be represented.
  • the expressions “equipped”, “equipped”, “equipped”, “included”, or “have” one component are not exclusive expressions that exclude the existence of other components.
  • FIG. 1 is a schematic view showing an overall configuration of a gas turbine
  • FIG. 2 is a cross-sectional view showing a gas flow path of the turbine.
  • the gas turbine 10 is configured such that a compressor 11, a combustor 12, and a turbine 13 are coaxially arranged by a rotor 14, and a generator 15 is provided at one end of the rotor 14. It is connected.
  • the direction in which the axis of the rotor 14 extends is the axial Da
  • the circumferential direction around the axis of the rotor 14 is the circumferential Dc
  • the direction perpendicular to the axis Ax of the rotor 14 is the radial direction.
  • Dr the rotation direction of the rotor 14 is represented as the rotation direction R.
  • the compressor 11 generates high-temperature and high-pressure compressed air AC by passing the air AI taken in from the air intake through a plurality of stationary blades and moving blades and compressing the air AI.
  • the combustor 12 supplies a predetermined fuel FL to the compressed air AC and burns the compressed air AC to generate a high-temperature and high-pressure combustion gas FG.
  • the turbine 13 drives and rotates the rotor 14 by passing the high-temperature and high-pressure combustion gas FG generated by the combustor 12 through the plurality of stationary blades and moving blades, and drives the generator 15 connected to the rotor 14. To do.
  • the turbine stationary blade (static blade) 21 is configured such that the hub side of the airfoil portion 23 is fixed to the inner shroud 25 and the tip side is fixed to the outer shroud 27.
  • the turbine blade (moving blade) 41 is configured such that the base end portion of the airfoil portion 43 is fixed to the platform 45.
  • the outer shroud 27 and the split ring 50 arranged on the tip end side of the rotor blade 41 are supported by the vehicle interior (turbine vehicle compartment) 30 via the heat shield ring 35, and the inner shroud 25 is supported by the support ring 31.
  • the combustion gas flow path 32 through which the combustion gas FG passes is formed along the axial direction Da as a space surrounded by the inner shroud 25, the outer shroud 27, the platform 45, and the dividing ring 50.
  • the inner shroud 25, the outer shroud 27, and the split ring 50 function as gas path surface forming members.
  • the gas path surface forming member has a gas path surface that partitions the combustion gas flow path 32 and is in contact with the combustion gas FG.
  • the combustor 12, the moving blade 41 (for example, platform 45), the stationary blade 21 (for example, the inner shroud 25 and the outer shroud 27), the split ring 50, and the like are high-temperature components used in a high-temperature environment in which the combustion gas FG comes into contact. , Requires cooling with a cooling medium.
  • the cooling structure of the split ring 50 will be described as an example of the cooling structure of the high temperature component.
  • FIG. 3 is a schematic plan view of one of the divided bodies 51 constituting the divided ring 50 according to some embodiments as viewed from the outside of the radial Dr, and the rotation direction of the rotor 14 along the circumferential direction Dc. It is a schematic side view seen from the R downstream side toward the rotation direction R upstream side.
  • FIG. 4 is a cross-sectional view taken along the line A4-A4 in FIG.
  • the structure of the divided body 51 is simplified and drawn. Therefore, for example, in FIG. 3, the description of the hook or the like for attaching the split body 51 to the heat shield ring 35 is omitted.
  • FIG. 5 is an enlarged view of the vicinity of the header portion 80 in FIG.
  • the split ring 50 is composed of a plurality of split bodies 51 formed in a ring shape in the circumferential direction Dc.
  • the main component of each divided body 51 is a main body 52 having a cooling passage formed therein.
  • the divided body 51 is arranged so that the inner surface 52a of the radial Dr faces the combustion gas flow path 32 through which the combustion gas FG flows.
  • a moving blade 41 that rotates around the rotor 14 is arranged with a constant gap.
  • the split body 51 includes a plurality of axial passages (first cooling passages) 60 extending in the axial direction Da, and the split body 51 on the downstream side in the rotation direction R.
  • a plurality of side passages (second cooling passages) 90 extending in the circumferential direction Dc are formed in the vicinity of the side portions.
  • a plurality of first cooling passages 60 are arranged in parallel in the circumferential direction Dc.
  • a plurality of second cooling passages 90 are arranged in parallel in the axial direction Da.
  • the circumferential direction Dc in the first cooling passage 60 is referred to as the width direction of the first cooling passage 60.
  • the radial direction Dr orthogonal to the width direction in the first cooling passage 60 is referred to as the height direction of the first cooling passage 60.
  • the gas turbine 10 is configured such that the cooling air CA is supplied from the outer surface 52b side to each of the divided bodies 51 according to some embodiments.
  • the cooling air CA supplied to the split body 51 flows through the first cooling passage 60 and the second cooling passage 90, and convection-cools the main body 52 of the split body 51 in the process of discharging the cooling air CA into the combustion gas FG.
  • Each of the first cooling passages 60 has an upstream end connected to a cooling air manifold 55.
  • a partition wall 70 is formed which divides the first cooling passage 60 into a plurality of branch flow passages 63 from the middle.
  • the partition wall 70 divides the first cooling passage 60 into a pair of branch passages 63 in the width direction of the first cooling passage 60 from the middle.
  • the first cooling passage 60 that is, the section on the upstream side of the partition wall 70 and the branch passage 63, the first cooling when viewed from the extending direction of the first cooling passage 60.
  • the cross-sectional shape of the passage of the passage 60 may be rectangular, circular, polygonal other than rectangular, or elliptical.
  • the type of cross-sectional shape of the flow path may be different between the section on the upstream side of the partition wall 70 in the first cooling passage 60 and the branch flow path 63. That is, the cross-sectional shape of the flow path in the section upstream of the partition wall 70 may be rectangular, and the cross-sectional shape of the flow path in the branch flow path 63 may be circular.
  • the cross-sectional shape of the flow path in the branch flow path 63 may be a shape in which a circle or an ellipse is divided into two by a partition wall 70.
  • the first cooling passage 60 cools the divided body 51 by cooling the inner wall surface of the first cooling passage 60. Therefore, the first cooling passage 60 has a length of five times or more the equivalent diameter of the first cooling passage 60.
  • the equivalent diameter of the first cooling passage 60 means that when the cross-sectional shape of the first cooling passage 60 is a shape other than a circle, the first cooling passage 60 is replaced with a circular passage that is equivalent in terms of the flow of the cooling air CA. The diameter of the flow path of.
  • each of the plurality of branch flow paths 63 is connected to the header portion 80.
  • the downstream ends 65 of the six branch passages 63 in the three adjacent first cooling passages 60 are connected to the upstream inner wall 81 of one header 80.
  • the split 51 is formed with a plurality of headers 80.
  • Each header portion 80 has an upstream side inner wall portion 81 and a downstream side inner wall portion 82 which are a pair of wall portions facing each other in the axial direction Da, and side inner wall portions 83 and 84 which are a pair of wall portions facing each other in the circumferential direction Dc. It is a rectangular parallelepiped space portion surrounded by a pair of wall portions facing each other in the radial direction, an inner wall portion (not shown).
  • At least one or more outlet passages 110 for discharging the cooling air CA flowing into the header portion 80 to the outside of the header portion 80, that is, the outside of the divided body 51 are formed in the downstream inner wall portion 82 of each header portion 80. ing.
  • the upstream end 110a of the exit passage 110 is connected to the downstream inner wall portion 82 of the header portion 80, and the downstream end 100b is connected to the downstream end portion 53 in the axial direction Da of the split body 51.
  • one outlet passage 110 is formed in the header portion 80 near the center of the circumferential direction Dc in the downstream inner wall portion 82.
  • the outlet passage 110 opens into the combustion gas FG at the downstream end 53 of the split body 51.
  • the split 51 comprises one header section 80, three first cooling passages 60 with downstream ends connected to the header section 80, and one outlet connected to the header section 80.
  • a plurality of cooling passage groups 6 including the passage 110 are included. Two or more outlet passages 110 may be connected to the header portion 80 in one cooling passage group 6.
  • the cooling air CA supplied to the divided body 51 from the outside of the divided body 51 is supplied to the cooling air manifold 55 and then distributed from the cooling air manifold 55 to each first cooling passage 60.
  • the cooling air CA distributed to each first cooling passage 60 is divided by a partition wall 70 and flows into each branch passage 63.
  • the cooling air CA that has flowed into each branch passage 63 is collected by each header portion 80 and discharged from the outlet passage 110 to the outside of the split body 51.
  • each of the second cooling passages 90 is connected to the cooling air manifold 57.
  • Each of the second cooling passages 90 opens into the combustion gas FG at the end 54 of the circumferential direction Dc in the split body 51.
  • the end portion 54 of the divided body 51 faces the downstream side in the rotation direction R of the rotor 14.
  • the cooling air CA supplied to the divided body 51 from the outside of the divided body 51 is supplied to the cooling air manifold 57 and then distributed from the cooling air manifold 57 to each second cooling passage 90.
  • the cooling air CA distributed to each second cooling passage 90 is discharged to the outside of the split body 51 from the downstream end 90b.
  • the number of outlet passages 110 connected to one header 80 in the split 51 is a plurality of outlet passages 110 connected to one header 80. It is less than the number of the first cooling passages 60.
  • the number of first cooling passages 60 For example, in some embodiments, as shown in FIGS. 3 to 5, six first cooling passages 60 (six branch passages 63) divided by a partition wall 70 for one header portion 80. And one exit passage 110 are connected.
  • the exit passage 110 has an upstream region 111 and a downstream region 115.
  • a flow path cross-sectional area reduction portion 113 in which the flow path cross-sectional area gradually decreases toward the downstream side is formed.
  • the minimum flow path cross-sectional area 117 having the smallest flow path cross-sectional area is formed in the downstream side region 115.
  • the cross-sectional shape of the outlet passage 110 when viewed from the extending direction of the outlet passage 110 is circular in the upstream region 111 and the downstream region 115.
  • the cross-sectional shape of the flow path of the outlet passage 110 may be rectangular in the upstream region 111 and the downstream region 115, may be a polygon other than a rectangle, or may be an ellipse.
  • the type of cross-sectional shape of the flow path may be different between the upstream side region 111 and the downstream side region 115. That is, the cross-sectional shape of the flow path in the upstream region 111 may be rectangular, and the cross-sectional shape of the flow path in the downstream region 115 may be circular.
  • the size of the flow path in the downstream side region 115 (minimum flow path cross-sectional area 117) will be referred to in the following description.
  • the equivalent diameter of the minimum flow path cross-sectional area 117 will be described.
  • the equivalent diameter of the minimum flow path cross-sectional area 117 is replaced with a circular flow path that is equivalent in terms of the flow of the cooling air CA when the cross-sectional shape of the minimum flow path cross-sectional area 117 is a shape other than a circle. It is the diameter of the minimum flow path cross-sectional area 117 at the time.
  • the equivalent diameter of the minimum flow path cross-sectional area 117 is the diameter of the minimum flow path cross-sectional area 117.
  • the surface roughness of the inner wall surface 60a of the first cooling passage 60 formed inside improves the cooling performance. From the viewpoint of, coarser is desirable. However, if the surface roughness of the inner wall surface 60a of the first cooling passage 60 is rough, the pressure loss of the cooling air CA becomes large. In particular, when the divided body 51 may have a fine and complicated shape such as the first cooling passage 60, the surface roughness of the inner wall surface 60a has a large influence on the pressure loss, and in an extreme case. , There is a possibility that the flow rate of the cooling air CA will decrease significantly.
  • the cooling structure of the split body 51 is configured as described below so that the cooling capacity is not insufficient.
  • the roughness of the inner wall surface 110c of the outlet passage 110 is the downstream region 115, that is, the minimum flow path cross-sectional area, which is the region where the flow path cross-sectional area of the exit passage 110 is minimized.
  • the roughness of the inner wall surface 60a of the plurality of first cooling passages 60 is less than or equal to that of the inner wall surface 60a.
  • the roughness of the inner wall surface 60a of the plurality of first cooling passages 60 is equal to or higher than the roughness of the inner wall surface 115c in the downstream region 115 of the outlet passage 110. 1
  • the cooling performance in the cooling passage 60 can be improved.
  • the roughness of the inner wall surface 115c in the downstream region 115 of the outlet passage is equal to or less than the roughness of the inner wall surface 60a of the plurality of first cooling passages 60.
  • foreign matter can easily pass through the outlet passage 110, and the risk of blockage of the outlet passage 110 can be reduced.
  • the minimum flow path cross-sectional area SBmin of the outlet passage 110 is each of the plurality of first cooling passages 60 (branch flow paths 63) in the connecting portion 67 between the header portion 80 and the first cooling passage 60.
  • the flow path cross-sectional area of SA or more.
  • the cross-sectional area of each of the first cooling passages 60 is SA or more.
  • the minimum flow path cross-sectional area SBmin of the outlet passage 110 is a plurality of first cooling passages 60 (branch flow) connected to one header portion 80. It is smaller than the sum ⁇ SA of each flow path cross-sectional area SA at the connection portion 67 of the road 63).
  • the sum ⁇ SBmin of each minimum flow path cross-sectional area SBmin of each outlet passage 110 connected to one header portion 80 is one. It is smaller than the sum ⁇ SA of each flow path cross-sectional area SA in the connection portion 67 of the plurality of first cooling passages 60 connected to the header portion 80.
  • the split body 51 can be formed by, for example, a metal additive manufacturing method or a precision casting method. Therefore, if the flow path cross-sectional area SA of the first cooling passage 60 is small, the dimensional accuracy of the first cooling passage 60 tends to decrease due to manufacturing restrictions of the divided body 51.
  • the flow rate of the cooling air CA flowing through each of the plurality of first cooling passages 60 is determined by the flow path cross-sectional area SA of each of the plurality of first cooling passages 60, if the flow path cross-sectional area SA is small, As described above, the dimensional accuracy of the first cooling passage 60 may decrease, and the accuracy of the flow rate of the cooling air CA in the first cooling passage 60 may decrease.
  • the sum of the minimum flow path cross-sectional areas SBmin of each of the one or more outlet passages 110 is ⁇ SBmin of the plurality of first cooling passages 60 in the connection portion 67. Since it is smaller than the sum ⁇ SA of each flow path cross-sectional area SA, the flow rate of the cooling air CA in the plurality of first cooling passages 60 can be defined by the minimum flow path cross-sectional area SBmin of the outlet passage 110.
  • SBmin the minimum flow path cross-sectional area of the outlet passage 110.
  • the minimum flow path cross-sectional area SBmin of each of the one or more outlet passages 110 is the flow path cross-sectional area of each of the plurality of first cooling passages 60 in the connecting portion 67. Since it is SA or higher, it becomes easy to secure the dimensional accuracy in the radial direction of the outlet passage 110, and it becomes difficult for foreign matter to be clogged in the outlet passage 110. Further, according to the divided body 51 according to some embodiments, since the number of one or more outlet passages 110 is less than the number of the plurality of first cooling passages 60, the flow passages are controlled in terms of the flow rate of the cooling air CA. It is possible to reduce the number of places where the accuracy of the cross-sectional area, that is, the dimensional accuracy of the passage should be ensured, and it is possible to suppress the manufacturing cost of the divided body 51.
  • the inner wall surface 110c of the exit passage 110 has a roughness with a center line average roughness Ra of 10 ⁇ m or less in the downstream region 115.
  • the inner wall surface 60a of the plurality of first cooling passages 60 has a roughness with a center line average roughness Ra of 10 ⁇ m or more and 20 ⁇ m or less.
  • the cooling performance in the first cooling passage 60 can be improved. Further, according to the divided body 51 according to some embodiments, since the inner wall surface 115c in the downstream region 115 of the outlet passage 110 has the above roughness, the variation in the pressure loss in the outlet passage 110 can be suppressed and the variation in the pressure loss can be suppressed. Foreign matter can easily pass through the exit passage 110, and the risk of the exit passage 110 being blocked can be reduced.
  • a plurality of second cooling passages 90 extending in a direction intersecting the extending directions of the plurality of first cooling passages 60 are further provided.
  • the inner wall surface 90c of the plurality of second cooling passages 90 has a roughness with a center line average roughness Ra of 10 ⁇ m or more and 50 ⁇ m or less.
  • the cooling performance in the second cooling passage 90 can be improved.
  • the second cooling passage 90 of the second cooling passage 90 is formed.
  • the inner wall surface 90c on the downstream side of Da in the axial direction from the axis Axa is an overhang portion such that the region vertically below becomes a space portion at the time of laminated molding. Therefore, as shown in FIG.
  • the overhang angle becomes a specified angle, for example, 45 degrees or more at the time of laminating molding, that is, at the time of laminating the raw material powder.
  • the roughness in the region 91 tends to be larger than that in the region 93 other than the overhang region 91.
  • the roughness is larger in the overhang region 91 than in the other regions 93 as described above, for example, in the overhang region 91, the center line.
  • the divided body 51 may be formed so that the average roughness Ra has a roughness of 30 ⁇ m or more and 50 ⁇ m or less. Further, in the other region 93, the divided body 51 may be formed so that the center line average roughness Ra has a roughness of 10 ⁇ m or more and 30 ⁇ m or less. That is, the roughness of the inner wall surface 90c of the second cooling passage 90 can be made rough in a part of the region by utilizing the above-mentioned tendency in the metal additive manufacturing method.
  • the cooling performance in the second cooling passage 90 can be improved. If the pressure loss of the cooling air CA becomes too large by increasing the roughness of the inner wall surface 90c of the second cooling passage 90, the inner diameter of the second cooling passage 90 may be larger than the design value.
  • the divided body 51 may be formed.
  • the outlet passage 110 includes a flow path cross-sectional area reduction section 113 in which the flow path cross-sectional area of the exit passage 110 gradually decreases toward the downstream side.
  • the minimum flow path cross-sectional area SBmin in the outlet passage 110 can be easily adjusted by adjusting the size in the direction orthogonal to the extending direction of the outlet passage 110 from the downstream side of the flow path cross-sectional area reduction portion 113. ..
  • the outlet passage 110 If the dimensions in the direction orthogonal to the extending direction of the outlet passage 110 on the downstream side of the passage are managed, the flow rate of the cooling air CA can be controlled. It can be narrowed, and the manufacturing cost of the divided body 51 can be suppressed.
  • the roughness of the inner wall surface 80a of the header portion 80 in at least a part of the region may be equal to or less than the roughness of the inner wall surface 60a of the plurality of first cooling passages 60.
  • the header portion 80 since the downstream ends 65 of the plurality of first cooling passages 60 are connected, the space volume in the header portion 80 becomes large, and the flow velocity of the cooling air CA in the header portion 80 decreases, so that the cooling air is cooled.
  • the heat transfer coefficient to is reduced. Therefore, when designing the divided body 51, it is considered that the header portion 80 has a lower cooling capacity than the first cooling passage 60, that is, the contribution of the divided body 51 to cooling is relatively small.
  • the roughness of the inner wall surface 80a of the header portion 80 in at least a part of the region is equal to or less than the roughness of the inner wall surface 60a of the plurality of first cooling passages 60.
  • the pressure loss in the header portion 80 can be suppressed.
  • the header portion 80 since the header portion 80 contributes relatively little to the cooling of the divided body 51, the influence of the small roughness of the header portion 80 on the cooling of the divided body 51 is small. Therefore, the pressure loss of the cooling air CA can be suppressed while suppressing the influence on the cooling of the divided body 51.
  • the region of the inner wall surface 80a of the header portion 80 that is equal to or less than the roughness of the inner wall surface 60a of the first cooling passage 60 is the upstream end 110a of the outlet passage 110, more preferably. , It is good that it is connected to the downstream area 115.
  • FIG. 6 is a flowchart showing an example of a production procedure when the divided body 51 according to some embodiments is produced by the metal additive manufacturing method.
  • the method for manufacturing the divided body 51 according to some embodiments includes a cooling passage forming step S10, a header portion forming step S20, an outlet passage forming step S30, and an outlet passage cutting step S40.
  • the method for forming the split body 51 may be, for example, a powder bed method, a metal deposit method, a binder jet method, or other methods other than those described above. Other methods may be used. In the following description, a case where the method of forming the split body 51 according to some embodiments is, for example, a powder bed method or a metal deposit method will be described.
  • the cooling passage forming step S10 is a step of forming a plurality of first cooling passages 60 and second cooling passages 90 through which cooling air CA can flow.
  • the raw material powders are laminated from the upstream side of the axial Da to the downstream side of the axial Da to form the divided body 51 up to the downstream end 65 of the first cooling passage 60.
  • the header portion forming step S20 is a step of forming the header portion 80 to which the downstream ends 65 of the plurality of first cooling passages 60 are connected.
  • the raw material powder is laminated from the upstream side of the axial Da to the downstream side of the axial Da to form the divided body 51 up to the inner wall portion 82 on the downstream side of the header portion 80. To do.
  • the outlet passage forming step S30 is a step of forming one or more outlet passages 110 for discharging the cooling air CA flowing into the header portion 80 to the outside of the header portion 80.
  • the raw material powder is laminated from the upstream side of the axial Da to the downstream side of the axial Da to form the divided body 51 up to the downstream end 110b of the outlet passage 110.
  • the outlet passage 110 is formed so as to include the flow path cross-sectional area reduction portion 113 in which the flow path cross-sectional area of the exit passage 110 gradually decreases toward the downstream side.
  • FIG. 7 is a diagram for explaining the outlet passage cutting step S40, which will be described later.
  • the shape of the downstream side of the exit passage 110 and the triangular drill 19 before the exit passage 110 is cut by the triangular drill 19 in the outlet passage cutting step S40 are drawn by a two-dot chain line.
  • the dimension in the direction orthogonal to the extending direction of the exit passage 110 on the downstream side of the exit passage 110 is smaller than the diameter Dd of the triangular drill 19. It forms the downstream side of the exit passage 110.
  • the extending direction of the outlet passage 110 on the most downstream side of the flow path cross-sectional area reduction portion 113 is formed so that the dimension M in the orthogonal direction is smaller than the diameter Dd of the triangular drill 19.
  • the outlet passage cutting step S40 is a step of machining at least a part of the inner wall surface 110c of the outlet passage 110. Specifically, the outlet passage cutting step S40 is a step of cutting the outlet passage 110 with a triangular drill 19. In the outlet passage cutting step S40, the outlet passage 110 is machined from the downstream end 110b of the outlet passage 110 toward the upstream end 110a by a triangular drill 19. As a result, the inner diameter of a part of the section upstream from the downstream end 110b becomes constant, and the section becomes the downstream side region 115.
  • the cooling passage forming step S10 and the header portion forming step S20 do not necessarily have to be carried out by the metal additive manufacturing method, but may be carried out by the precision casting method. Then, the outlet passage forming step S30 may be carried out by the metal additive manufacturing method. Further, the cooling passage forming step S10 to the outlet passage forming step S30 may be carried out by a precision casting method.
  • the number of outlet passages 110 connected to one header portion 80 is the number of the plurality of first cooling passages 60 connected to one header portion 80.
  • the divided body 51 is formed so as to be less than the number.
  • the minimum flow path cross-sectional area SBmin of the outlet passage 110 is a plurality of first cooling passages in the connecting portion 67 between the header portion 80 and the first cooling passage 60.
  • the divided body 51 is formed so as to have a cross-sectional area SA or more of each flow path of 60 (branch flow path 63).
  • a plurality of first cooling passages 60 (branch passages) in which the minimum flow path cross-sectional area SBmin of the outlet passage 110 is connected to one header portion 80.
  • the divided body 51 is formed so as to be smaller than the sum ⁇ SA of each flow path cross-sectional area SA at the connecting portion 67 of 63).
  • the divided body 51 When the divided body 51 is formed so that two or more outlet passages 110 are connected to one header portion 80, the minimum flow path disconnection of each of the exit passages 110 connected to one header portion 80 is cut.
  • the divided body 51 is formed so that the area SBmin is equal to or larger than the passage cross-sectional area SA of each of the plurality of first cooling passages 60 in the connecting portion 67. Further, when the divided body 51 is formed so that two or more outlet passages 110 are connected to one header portion 80, the minimum flow path disconnection of each of the exit passages 110 connected to one header portion 80 is cut.
  • the divided body 51 is formed so that the sum ⁇ SBmin of the area SBmin is smaller than the sum ⁇ SA of each flow path cross-sectional area SA in the connecting portions 67 of the plurality of first cooling passages 60 connected to one header portion 80. ..
  • the sum ⁇ SBmin of the minimum flow path cross-sectional areas SBmin of each of the one or more outlet passages 110 is each of the plurality of first cooling passages 60 in the connection portion 67. Since it is smaller than the sum ⁇ SA of the flow path cross-sectional areas SA, the flow rate of the cooling air CA in the plurality of first cooling passages 60 can be defined by the minimum flow path cross-sectional area SBmin of the outlet passage 110. As a result, in each of the plurality of first cooling passages 60, it is not necessary to make the flow path cross-sectional area smaller than necessary for adjusting the flow rate of the cooling air CA, so that the dimensional accuracy of the first cooling passage 60 is improved.
  • the minimum flow path cross-sectional area SBmin of each of the one or more outlet passages 110 is set to the flow of each of the plurality of first cooling passages 60 in the connecting portion 67. Since the road cross-sectional area can be SA or more, the dimensional accuracy of the exit passage 110 can be easily ensured, and foreign matter is less likely to be clogged in the exit passage 110.
  • the number of one or more outlet passages 110 is less than the number of the plurality of first cooling passages 60, so that the flow rate of the cooling air CA can be controlled.
  • the accuracy of the cross-sectional area of the flow path, that is, the location where the dimensional accuracy of the passage should be ensured can be reduced, and the manufacturing cost of the divided body 51 can be suppressed.
  • the roughness of the inner wall surface 110c of the outlet passage 110 is a plurality of second. 1
  • the outlet passage is formed so as to have a roughness equal to or less than the roughness of the inner wall surface 60a of the cooling passage 60.
  • the roughness of the inner wall surface 60a of the plurality of first cooling passages 60 is equal to or higher than the roughness of the inner wall surface 115c in the downstream region 115 of the outlet passage 110. Therefore, the cooling performance in the first cooling passage 60 can be improved. Further, according to the manufacturing method of the divided body 51 according to some embodiments, the roughness of the inner wall surface 115c in the downstream region 115 of the outlet passage 110 is equal to or less than the roughness of the inner wall surface 60a of the plurality of first cooling passages 60. Therefore, it is possible to suppress the variation in the pressure loss in the outlet passage 110, and it is easy for foreign matter to pass through the outlet passage 110, so that the risk of the outlet passage 110 being blocked can be reduced.
  • the size of the outlet passage 110 is adjusted from the downstream side of the flow path cross-sectional area reduction portion 113 in the direction orthogonal to the extending direction of the outlet passage 110.
  • the minimum flow path cross-sectional area SBmin in 110 can be easily adjusted. Therefore, when the split body 51 is configured to adjust the flow rate of the cooling air CA in the split body 51 with the size of the minimum flow path cross-sectional area SBmin in the outlet passage 110, the outlet on the downstream side of the outlet passage 110.
  • the flow rate of the cooling air CA can be controlled, so that the accuracy of the cross-sectional area of the passage, that is, the region where the dimensional accuracy of the passage should be ensured can be narrowed. , The manufacturing cost of the divided body 51 can be suppressed.
  • the manufacturing cost of the split body 51 can be suppressed as compared with the case where the outlet passage 110 is formed only by machining. Further, according to the manufacturing method of the divided body 51 according to some embodiments, the dimensional accuracy of the inner wall surface 110c of the outlet passage 110 is higher than that in the case where the outlet passage 110 is formed only by the metal lamination molding method or the precision casting method. Can be improved, and the accuracy of adjusting the flow rate of the cooling air CA can be improved.
  • the dimensions of the inner wall surface 110c of the outlet passage 110 can be adjusted while checking the flow rate of the cooling air CA, so that the flow rate of the cooling air CA is excessive or insufficient. Can be suppressed.
  • the diameter Dd of the triangular drill 19 is used to determine the dimensions of the inner wall surface 110c of the outlet passage 110, more specifically, the inner diameter Di of the minimum flow path cross-sectional area 117. Since it can be specified, the divided body 51 can be easily manufactured.
  • the roughness of the inner wall surface 110c of the exit passage 110 is increased in the region.
  • the outlet passage 110 may be formed so as to have a roughness equal to or less than the roughness of the inner wall surface 60a of the plurality of first cooling passages 60.
  • the roughness in at least a part of the exit passage 110 including the downstream region 115 can be easily reduced. Further, the roughness can be easily reduced even in a region where machining is difficult from the downstream end 110b of the outlet passage 110.
  • FIG. 8 is a flowchart showing an example of a processing procedure in the manufacturing method of the divided body 51 according to another embodiment.
  • the method for manufacturing the divided body 51 includes a cooling passage forming step S10, a header portion forming step S20, an outlet passage forming step S30, and a header portion etching step S50.
  • the cooling passage forming step S10, the header portion forming step S20, and the outlet passage forming step S30 are the same as the cooling passage forming step S10, the header portion forming step S20, and the outlet passage forming step S30 shown in FIG.
  • the outlet passage cutting step S40 shown in FIG. 6 may be performed after the header portion etching step S50 according to another embodiment.
  • the header portion etching step S50 etches at least a part of the inner wall surface 80a of the header portion 80, thereby forming the inside of the header portion 80 in the region.
  • This is a step of setting the roughness of the wall surface 80a to be equal to or less than the roughness of the inner wall surface 60a of the plurality of first cooling passages 60.
  • the roughness of at least a part of the inner wall surface of the header portion becomes equal to or less than the roughness of the inner wall surface of the plurality of first cooling passages, so that the pressure loss in the header portion can be suppressed.
  • the header portion contributes relatively little to the cooling of the high temperature component, the influence of the reduced roughness of the header portion on the cooling of the high temperature component is small. Therefore, the pressure loss of the cooling medium can be suppressed while suppressing the influence on the cooling of the high temperature component.
  • the raw material powder is laminated with the first lamination thickness t1 by the metal additive manufacturing method, and a plurality of first cooling passages 60 are laminated. May be formed.
  • the raw material powder in the header portion forming step S20, is laminated with a second laminated thickness t2 having a first laminated thickness t1 or less by a metal additive manufacturing method to form a header. Part 80 may be formed.
  • the raw material powder in the outlet passage forming step S30, is laminated with a third laminated thickness t3 smaller than the first laminated thickness t1 by the metal additive manufacturing method to exit.
  • the passage 110 may be formed.
  • the first laminated thickness t1 may be 75 ⁇ m or more and 100 ⁇ m or less.
  • the third laminated thickness t3 may be 20 ⁇ m or more and 30 ⁇ m or less.
  • the second laminated thickness t2 may be 20 ⁇ m or more and 100 ⁇ m or less.
  • a part of the header portion 80 is formed by laminating at the first laminated thickness t1, and for example, the header portion 80 is laminated at the third laminated thickness t3. At least a part may be formed.
  • the second laminated thickness t2 forming the header portion 80 By setting the second laminated thickness t2 forming the header portion 80 to be equal to or less than the first laminated thickness t1 forming the first cooling passage 60, the roughness of the header portion 80 is suppressed and the cooling air CA The pressure loss can be suppressed, and the roughness of the first cooling passage 60 can be made relatively large to improve the cooling performance. Further, by making the third laminated thickness t3 forming the outlet passage 110 smaller than the first laminated thickness t1 forming the first cooling passage 60, the roughness of the outlet passage 110 is suppressed and the outlet is exited. In addition to suppressing variations in pressure loss in the passage 110, foreign matter can easily pass through the outlet passage 110, and the risk of blockage of the outlet passage 110 can be reduced. Further, as described above, the first cooling passage 60 can have a relatively large roughness to improve the cooling performance.
  • a plurality of first cooling passages 60 are formed by using the raw material powder having the first particle size S1 by the metal additive manufacturing method. You may.
  • the header portion 80 is formed by using the raw material powder having the second particle size S2 having the first particle size S1 or less by the metal additive manufacturing method. You may.
  • the outlet passage 110 is formed by using the raw material powder having the third particle size S3 smaller than the first particle size S1 by the metal additive manufacturing method. You may.
  • the particle size of the raw material powder for forming the header portion 80 (second particle size S2) is set to be equal to or less than the particle size of the raw material powder for forming the first cooling passage 60 (first particle size S1). Can suppress the roughness and the pressure loss of the cooling air CA, and the roughness of the first cooling passage 60 can be relatively increased to improve the cooling performance. Further, by making the particle size of the raw material powder for forming the outlet passage 110 (third particle size S3) smaller than the particle size of the raw material powder for forming the first cooling passage 60 (first particle size S1), the outlet passage is formed.
  • the roughness can be suppressed, the variation in the pressure loss in the outlet passage 110 can be suppressed, and the foreign matter can easily pass through the outlet passage 110, and the risk of the outlet passage 110 being blocked can be reduced.
  • the first cooling passage 60 can have a relatively large roughness to improve the cooling performance.
  • the present invention is not limited to the above-described embodiment, and includes a modification of the above-described embodiment and a combination of these embodiments as appropriate.
  • the split ring 50 has been described as an example of a high-temperature component that requires cooling by a cooling medium, but the present invention is not limited to this, and the combustor 12, moving blade, and the like are described. It can also be applied to other high temperature components such as blade 41 (eg platform 45), stationary blade 21 (eg inner shroud 25 and outer shroud 27).
  • the high-temperature parts to which the present invention can be applied are not limited to the components in the gas turbine 10, and may be components in various machines that handle high-temperature media such as boilers and rocket engines.
  • Cooling passage group 10 Gas turbine 12 Combustor 13 Turbine 21 Turbine stationary blade (static blade) 41 Turbine blades (moving blades) 50 Divided ring 51 Divided body 52 Main body 52b Outer surface (heated surface) 60 Axial passage (first cooling passage, cooling passage) 63 Branch passage 65 Downstream end 67 Connection 70 Partition wall 80 Header 90 Side passage (second cooling passage) 110 exit passage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

一実施形態に係る高温部品は、冷却媒体による冷却を必要とする高温部品であって、前記冷却媒体が流通可能な複数の第1冷却通路と、前記複数の第1冷却通路の下流端が接続されたヘッダ部と、前記ヘッダ部に流入した前記冷却媒体を前記ヘッダ部の外部に排出するための1以上の出口通路と、を備え、前記1以上の出口通路の内壁面の粗度は、前記出口通路の流路断面積が最小となる領域において、前記複数の第1冷却通路の内壁面の粗度以下である。

Description

高温部品及び高温部品の製造方法
 本開示は、高温部品及び高温部品の製造方法に関する。
 例えば、ガスタービンやロケットエンジン等、高温の作動ガスが内部を流れる機械では、その機械を構成する部品には、冷却媒体による冷却を必要とする高温部品が含まれる。このような高温部品の冷却構造として、部品の内部に冷却空気が流通可能な複数の配送チャネル(冷却通路)に冷却空気を流通させることで高温部品の冷却を行うことが知られている(例えば特許文献1参照)。
 また、近年、金属を積層造形して三次元形状物を得る積層造形法が種々の金属製品の製造方法として利用されている。例えば、パウダーベッド法による積層造形法では、層状に敷設された金属粉末に光ビームや電子ビーム等のエネルギービームを照射することによって、溶融固化を繰り返し積層することにより三次元形状物を形成する。
 エネルギービームが照射される領域内では、金属粉末が急速に溶融され、その後、急速に冷却・凝固されることで、金属凝固層が形成される。このような過程が繰り返されることによって、立体的に造形された積層造形物が形成される。
 そして最近では、例えばタービン翼のような複雑形状の高温部品の製造方法として、複雑な製造工程を経ずに直接造形が可能な積層造形法を適用する試みがなされている(例えば特許文献2等)。
特開2015-48848号公報 特開2017-20422号公報
 特許文献2に記載された金属積層造形法のように、原料の金属粉末を溶融及び固化させて積層していくことで、積層造形物を形成するため、一般的には、表面の粗さが比較的粗くなる。具体的には、表面粗さが例えば中心線平均粗さRaで10μm以上となる。また、積層時に鉛直下方の領域が空間部分となるようなオーバーハング部分では、表面の粗さがより粗くなる傾向にあり、表面粗さが例えば中心線平均粗さRaで30μm以上となる。
 特許文献1に記載されたタービン部品のように、冷却媒体による冷却を必要とする高温部品では、内部に形成された冷却通路の内壁面の表面粗さは、冷却性能向上の観点からは粗い方が望ましい。しかし、冷却通路の内壁面の表面粗さが粗いと冷却媒体の圧力損失が大きくなってしまう。特に、タービン部品における冷却通路のように、微細で複雑な形状を有することがある場合には、内壁面の表面粗さが圧力損失に及ぼす影響が大きく、極端な場合には、冷却媒体の流量低下が著しくなってしまうおそれもある。
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、冷却能力が不足しないようにすることができる高温部品を提供することを目的とする。
(1)本発明の少なくとも一実施形態に係る高温部品は、
 冷却媒体による冷却を必要とする高温部品であって、
 前記冷却媒体が流通可能な複数の第1冷却通路と、
 前記複数の第1冷却通路の下流端が接続されたヘッダ部と、
 前記ヘッダ部に流入した前記冷却媒体を前記ヘッダ部の外部に排出するための1以上の出口通路と、
を備え、
 前記1以上の出口通路の内壁面の粗度は、前記出口通路の流路断面積が最小となる領域において、前記複数の第1冷却通路の内壁面の粗度以下である。
 上記(1)の構成によれば、複数の第1冷却通路の内壁面の粗度が出口通路の流路断面積が最小となる領域における出口通路の内壁面の粗度以上であるので、第1冷却通路における冷却性能を向上できる。また、上記(1)の構成によれば、出口通路の流路断面積が最小となる領域における出口通路の内壁面の粗度が複数の第1冷却通路の内壁面の粗度以下であるので、出口通路における圧力損失のばらつきを抑制できるとともに、出口通路において異物が通過し易くなり、出口通路が閉塞するリスクを低減できる。
(2)幾つかの実施形態では、上記(1)の構成において、
 前記1以上の出口通路の内壁面は、前記出口通路の流路断面積が最小となる領域において、中心線平均粗さRaが10μm以下の粗度を有し、
 前記複数の第1冷却通路の内壁面は、中心線平均粗さRaが10μm以上20μm以下の粗度を有する。
 上記(2)の構成によれば、複数の第1冷却通路の内壁面が上記の粗度を有するので、第1冷却通路における冷却性能を向上できる。また、上記(2)の構成によれば、出口通路の流路断面積が最小となる領域における出口通路の内壁面が上記の粗度を有するので、出口通路における圧力損失のばらつきを抑制できるとともに、出口通路において異物が通過し易くなり、出口通路が閉塞するリスクを低減できる。
(3)幾つかの実施形態では、上記(2)の構成において、
 前記複数の第1冷却通路の延在方向と交差する方向に延在する複数の第2冷却通路をさらに備え、
 前記複数の第2冷却通路の内壁面は、中心線平均粗さRaが10μm以上50μm以下の粗度を有する。
 上記(3)の構成によれば、複数の第2冷却通路の内壁面が上記の粗度を有するので、第2冷却通路における冷却性能を向上できる。
(4)幾つかの実施形態では、上記(1)乃至(3)の何れかの構成において、前記1以上の出口通路は、前記出口通路の流路断面積が下流側に向かって漸減する流路断面積縮小部を含む。
 上記(4)の構成によれば、流路断面積縮小部の下流側から出口通路の延在方向と直交する方向の大きさを調節することで、出口通路における最小流路断面積の調節が容易となる。したがって、高温部品における冷却媒体の流量を出口通路における最小流路断面積の大きさで調整するように高温部品が構成されている場合には、出口通路の下流側における出口通路の延在方向と直交する方向の寸法を管理すれば、冷却媒体の流量を管理できるので、流路断面積の精度、すなわち通路の寸法精度を確保すべき領域を狭くすることができ、高温部品の製造コストを抑制できる。
(5)幾つかの実施形態では、上記(1)乃至(4)の何れかの構成において、前記ヘッダ部の内壁面の少なくとも一部の領域における粗度は、前記複数の第1冷却通路の内壁面の粗度以下である。
 ヘッダ部では、複数の冷却通路の下流端が接続されていることから、ヘッダ部における空間容積が大きくなり、ヘッダ部における冷却媒体の流速が低下するので、冷却媒体への熱伝達率が低下する。したがって、高温部品の設計時には、ヘッダ部では冷却通路に比べて冷却能力が低下すること、すなわち高温部品の冷却への寄与が比較的少ないことが考慮されている。
 上記(5)の構成によれば、ヘッダ部の内壁面の少なくとも一部の領域における粗度が複数の第1冷却通路の内壁面の粗度以下であるので、ヘッダ部における圧力損失を抑制できる。上述したように、ヘッダ部では高温部品の冷却への寄与が比較的少ないことから、ヘッダ部の粗度が小さくなることによる高温部品の冷却への影響は小さい。したがって、高温部品の冷却への影響を抑制しつつ、冷却媒体の圧力損失を抑制できる。
(6)幾つかの実施形態では、上記(1)乃至(5)の何れかの構成において、前記高温部品は、複数の分割体が周方向に沿って環状に配設されて構成されるガスタービンの分割環である。
 上記(6)の構成によれば、ガスタービンの分割環が上記(1)乃至(5)の何れかの構成を備えることで、複数の第1冷却通路の内壁面の粗度が出口通路の流路断面積が最小となる領域における出口通路の内壁面の粗度以上となるので、分割環において第1冷却通路における冷却性能を向上できる。また、上記(6)の構成によれば、出口通路の流路断面積が最小となる領域における出口通路の内壁面の粗度が複数の第1冷却通路の内壁面の粗度以下であるので、分割環において出口通路における圧力損失のばらつきを抑制できるとともに、出口通路において異物が通過し易くなり、出口通路が閉塞するリスクを低減できる。
(7)本発明の少なくとも一実施形態に係る高温部品の製造方法は、
 冷却媒体による冷却を必要とする高温部品の製造方法であって、
 前記冷却媒体が流通可能な複数の第1冷却通路を形成するステップと、
 前記複数の第1冷却通路の下流端が接続されたヘッダ部を形成するステップと、
 前記ヘッダ部に流入した前記冷却媒体を前記ヘッダ部の外部に排出するための1以上の出口通路を形成するステップと、
を備え、
 前記1以上の出口通路を形成するステップは、前記出口通路の流路断面積が最小となる領域において、前記1以上の出口通路の内壁面の粗度が前記複数の第1冷却通路の内壁面の粗度以下となるように前記1以上の出口通路を形成する。
 上記(7)の方法によれば、複数の第1冷却通路の内壁面の粗度が出口通路の流路断面積が最小となる領域における出口通路の内壁面の粗度以上となるので、第1冷却通路における冷却性能を向上できる。また、上記(7)の方法によれば、出口通路の流路断面積が最小となる領域における出口通路の内壁面の粗度が複数の第1冷却通路の内壁面の粗度以下となるので、出口通路における圧力損失のばらつきを抑制できるとともに、出口通路において異物が通過し易くなり、出口通路が閉塞するリスクを低減できる。
(8)幾つかの実施形態では、上記(7)の方法において、前記1以上の出口通路を形成するステップは、前記出口通路の流路断面積が下流側に向かって漸減する流路断面積縮小部を含むように前記1以上の出口通路を形成する。
 上記(8)の方法によれば、流路断面積縮小部の下流側から出口通路の延在方向と直交する方向の大きさを調節することで、出口通路における最小流路断面積の調節が容易となる。したがって、高温部品における冷却媒体の流量を出口通路における最小流路断面積の大きさで調整するように高温部品が構成されている場合には、出口通路の下流側における出口通路の延在方向と直交する方向の寸法を管理すれば、冷却媒体の流量を管理できるので、流路断面積の精度、すなわち通路の寸法精度を確保すべき領域を狭くすることができ、高温部品の製造コストを抑制できる。
(9)幾つかの実施形態では、上記(7)又は(8)の方法において、前記1以上の出口通路を形成するステップは、前記出口通路の流路断面積が最小となる領域を含む前記出口通路の少なくとも一部の区間をエッチングすることで、該領域において、前記1以上の出口通路の内壁面の粗度が前記複数の第1冷却通路の内壁面の粗度以下となるように前記1以上の出口通路を形成する。
 上記(9)の方法によれば、出口通路の流路断面積が最小となる領域を含む出口通路の少なくとも一部の区間における粗度を容易に低下できる。また、上記(9)の方法によれば、出口通路の下流端からでは機械加工が難しい領域であっても、粗度を容易に低下できる。
(10)幾つかの実施形態では、上記(9)の方法において、
 前記ヘッダ部の内壁面の少なくとも一部の領域をエッチングすることで、該領域において、前記ヘッダ部の内壁面の粗度を前記複数の第1冷却通路の内壁面の粗度以下とするステップ
をさらに備える。
 上記(10)の方法によれば、ヘッダ部の内壁面の少なくとも一部の領域における粗度が複数の第1冷却通路の内壁面の粗度以下となるので、ヘッダ部における圧力損失を抑制できる。上述したように、ヘッダ部では高温部品の冷却への寄与が比較的少ないことから、ヘッダ部の粗度が小さくなることによる高温部品の冷却への影響は小さい。したがって、高温部品の冷却への影響を抑制しつつ、冷却媒体の圧力損失を抑制できる。
(11)幾つかの実施形態では、上記(7)乃至(10)の何れかの方法において、
 前記1以上の出口通路を形成するステップは、金属積層造形法又は精密鋳造法によって、前記1以上の出口通路を形成し、
 前記1以上の出口通路の内壁面の少なくとも一部に機械加工を施すステップ
をさらに備える。
 上記(11)の方法によれば、出口通路を機械加工だけによって形成する場合と比べて、高温部品の製造コストを抑制できる。また、上記(11)の方法によれば、出口通路を金属積層造形法又は精密鋳造法だけによって形成する場合と比べて、出口通路の内壁面の寸法精度を向上でき、冷却媒体の流量の調節精度を向上できる。さらに、上記(11)の方法によれば、出口通路の内壁面の寸法を冷却媒体の流量を確認しながら調節できるので、冷却媒体の流量の過不足を抑制できる。
(12)幾つかの実施形態では、上記(7)乃至(11)の何れかの方法において、
 前記複数の第1冷却通路を形成するステップは、金属積層造形法によって、原料粉末を第1積層厚さで積層して前記複数の第1冷却通路を形成し、
 前記ヘッダ部を形成するステップは、金属積層造形法によって、前記原料粉末を前記第1積層厚さ以下の第2積層厚さで積層して前記ヘッダ部を形成し、
 前記出口通路を形成するステップは、金属積層造形法によって、前記原料粉末を前記第1積層厚さより小さい第3積層厚さで積層して前記出口通路を形成する。
 一般的には、金属積層造形法における積層厚さを厚くすると、造形物における表面粗さが大きくなる傾向にある。すなわち、金属積層造形法における積層厚さを薄くすると、造形物における表面粗さが小さくなる傾向にある。
 そこで、上記(12)の方法のように、ヘッダ部を形成する第2積層厚さを、第1冷却通路を形成する第1積層厚さ以下とすることで、ヘッダ部については、粗度を抑制して冷却媒体の圧力損失を抑制でき、第1冷却通路については、粗度を比較的大きくして冷却性能を向上できる。
 上記(12)の方法のように、出口通路を形成する第3積層厚さを、第1冷却通路を形成する第1積層厚さより小さくすることで、出口通路については、粗度を抑制して、出口通路における圧力損失のばらつきを抑制できるとともに、出口通路において異物が通過し易くなり、出口通路が閉塞するリスクを低減できる。また、第1冷却通路については、上述したように、粗度を比較的大きくして冷却性能を向上できる。
(13)幾つかの実施形態では、上記(7)乃至(12)の何れかの方法において、
 前記複数の第1冷却通路を形成するステップは、金属積層造形法によって、第1粒度を有する原料粉末を用いて前記複数の第1冷却通路を形成し、
 前記ヘッダ部を形成するステップは、金属積層造形法によって、前記第1粒度以下の第2粒度を有する原料粉末を用いて前記ヘッダ部を形成し、
 前記出口通路を形成するステップは、金属積層造形法によって、前記第1粒度より小さい第3粒度を有する原料粉末を用いて前記出口通路を形成する。
 一般的には、金属積層造形法における原料粉末の粒度を大きくすると、造形物における表面粗さが大きくなる傾向にある。すなわち、金属積層造形法における原料粉末の粒度を小さくすると、造形物における表面粗さが小さくなる傾向にある。
 そこで、上記(13)の方法のように、ヘッダ部を形成するための原料粉末の粒度(第2粒度)を、第1冷却通路を形成するための原料粉末の粒度(第1粒度)以下とすることで、ヘッダ部については、粗度を抑制して冷却媒体の圧力損失を抑制でき、第1冷却通路については、粗度を比較的大きくして冷却性能を向上できる。
 上記(13)の方法のように、出口通路を形成するための原料粉末の粒度(第3粒度)を、第1冷却通路を形成するための原料粉末の粒度(第1粒度)より小さくすることで、出口通路については、粗度を抑制して、出口通路における圧力損失のばらつきを抑制できるとともに、出口通路において異物が通過し易くなり、出口通路が閉塞するリスクを低減できる。また、第1冷却通路については、上述したように、粗度を比較的大きくして冷却性能を向上できる。
(14)幾つかの実施形態では、上記(7)乃至(13)の何れかの方法において、
 金属積層造形法によって、前記複数の第1冷却通路の延在方向に前記原料粉末を積層して、該延在方向と交差する方向に延在する複数の第2冷却通路を形成するステップ
をさらに備え、
 前記複数の第2冷却通路の内壁面のうち前記原料粉末の積層の際にオーバーハング角度が既定角度以上となるオーバーハング領域は、中心線平均粗さRaが30μm以上50μm以下の粗度を有し、
 前記複数の第2冷却通路の内壁面のうち前記オーバーハング領域以外の領域は、中心線平均粗さRaが10μm以上30μm以下の粗度を有する。
 一般的に、金属積層造形法では、原料粉末の積層の際にオーバーハング角度が規定角度以上となるオーバーハング領域における粗度は、オーバーハング領域以外の領域と比べて大きくなる傾向にある。上記(14)の方法によれば、金属積層造形法における上述したような傾向を利用して、第2冷却通路の内壁面の粗度を一部の領域において粗くすることができ、第2冷却通路における冷却性能を向上できる。
(15)幾つかの実施形態では、上記(7)乃至(14)の何れかの方法において、
 前記1以上の出口通路の数は、前記複数の第1冷却通路の数未満であり、
 前記1以上の出口通路の各々の最小流路断面積は、前記ヘッダ部と前記第1冷却通路との接続部における前記複数の第1冷却通路の各々の流路断面積以上であり、
 前記1以上の出口通路の各々の最小流路断面積の和は、前記ヘッダ部と前記第1冷却通路との接続部における前記複数の第1冷却通路の各々の流路断面積の和より小さい。
 複数第1の冷却通路の各々において、それぞれを流れる冷却媒体の流量を複数の冷却通路の各々の流路断面積で決定しようとすると、流路断面積が小さいと、高温部品の製造上の制約から第1冷却通路の寸法精度が低下する傾向があるため、第1冷却通路における冷却媒体の流量の精度が低下するおそれがある。
 これに対して、上記(15)の方法によれば、1以上の出口通路の各々の最小流路断面積の和がヘッダ部と第1冷却通路との接続部における複数の第1冷却通路の各々の流路断面積の和より小さいので、複数の第1冷却通路における冷却媒体の流量を出口通路の最小流路断面積によって規定できる。これにより、複数の第1冷却通路のそれぞれでは、冷却媒体の流量調整のために流路断面積を必要以上に小さくしなくてもよくなるので、第1冷却通路の寸法精度が向上し、複数の第1冷却通路同士での冷却媒体の流量のばらつきを抑制できる。したがって、過剰な冷却を抑制しつつ、冷却能力が不足しないようにすることができる。
 また、上記(15)の方法によれば、1以上の出口通路の各々の最小流路断面積がヘッダ部と第1冷却通路との接続部における複数の第1冷却通路の各々の流路断面積以上であるので、出口通路の寸法精度が確保し易くなるとともに、出口通路において異物の詰まりも起こし難くなる。
 さらに、上記(15)の方法によれば、1以上の出口通路の数が複数の第1冷却通路の数未満であるので、冷却媒体の流量の管理上、流路断面積の精度、すなわち通路の寸法精度を確保すべき箇所を少なくすることができ、高温部品の製造コストを抑制できる。
 本発明の少なくとも一実施形態によれば、冷却能力が不足しないようにすることができる高温部品を提供できる。
ガスタービンの全体構成を表す概略図である。 タービンのガス流路を表す断面図である。 幾つかの実施形態に係る分割体を径方向外側から見た模式的な平面図、及び、周方向に沿ってロータの回転方向下流側から回転方向上流側に向かって見た模式的な側面図である。 図3におけるA4-A4矢視断面図である。 図4におけるヘッダ部近傍の拡大図である。 幾つかの実施形態に係る分割体を金属積層造形法で作成する場合の作成手順の一例を示すフローチャートである。 出口通路切削工程について説明するための図である。 他の実施形態に係る分割体の製造方法における処理の手順の一例を示すフローチャートである。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 以下の説明では、ガスタービンに用いられる高温部品を例に挙げて、幾つかの実施形態に係る高温部品について説明する。
 図1は、ガスタービンの全体構成を表す概略図であり、図2は、タービンのガス流路を表す断面図である。
 本実施形態において、図1に示すように、ガスタービン10は、圧縮機11と燃焼器12とタービン13がロータ14により同軸上に配置されて構成され、ロータ14の一端部に発電機15が連結されている。なお、以下の説明では、ロータ14の軸線が延びる方向を軸方向Da、このロータ14の軸線を中心とした周方向を周方向Dcとし、ロータ14の軸線Axに対して垂直な方向を径方向Drとする。また、周方向Dcのうち、ロータ14の回転方向を回転方向Rとして表す。
 圧縮機11は、空気取入口から取り込まれた空気AIが複数の静翼及び動翼を通過して圧縮されることで高温・高圧の圧縮空気ACを生成する。燃焼器12は、この圧縮空気ACに対して所定の燃料FLを供給し、燃焼することで高温・高圧の燃焼ガスFGが生成される。タービン13は、燃焼器12で生成された高温・高圧の燃焼ガスFGが複数の静翼及び動翼を通過することでロータ14を駆動回転し、このロータ14に連結された発電機15を駆動する。
 また、図2に示すように、タービン13にて、タービン静翼(静翼)21は、翼型部23のハブ側が内側シュラウド25に固定され、先端側が外側シュラウド27に固定されて構成されている。タービン動翼(動翼)41は、翼型部43の基端部がプラットフォーム45に固定されて構成されている。そして、外側シュラウド27と動翼41の先端部側に配置される分割環50とが遮熱環35を介して車室(タービン車室)30に支持され、内側シュラウド25がサポートリング31に支持されている。そのため、燃焼ガスFGが通過する燃焼ガス流路32は、内側シュラウド25と、外側シュラウド27と、プラットフォーム45と、分割環50とにより囲まれた空間として軸方向Daに沿って形成される。
 なお、内側シュラウド25、外側シュラウド27及び分割環50は、ガスパス面形成部材として機能する。ガスパス面形成部材とは、燃焼ガス流路32を区画すると共に燃焼ガスFGが接触するガスパス面を有するものである。
 燃焼器12、動翼41(例えばプラットフォーム45)、静翼21(例えば内側シュラウド25や外側シュラウド27)及び分割環50等は、燃焼ガスFGが接触する高温環境下で使用される高温部品であり、冷却媒体による冷却を必要とする。以下の説明では、高温部品の冷却構造の例として、分割環50の冷却構造について説明する。
 図3は、幾つかの実施形態に係る分割環50を構成する分割体51の一つを径方向Dr外側から見た模式的な平面図、及び、周方向Dcに沿ってロータ14の回転方向R下流側から回転方向R上流側に向かって見た模式的な側面図である。図4は、図3におけるA4-A4矢視断面図である。なお、図3では、分割体51の構造を簡略化して描いている。したがって、例えば図3では、分割体51を遮熱環35に取り付けるためのフック等の記載を省略している。図5は、図4におけるヘッダ部80近傍の拡大図である。
 幾つかの実施形態に係る分割環50は、周方向Dcに環状に形成された複数の分割体51から構成される。各分割体51は、内部に冷却通路が形成された本体52を主要な構成品とする。図2に示すように、分割体51は、径方向Drの内表面52aが燃焼ガスFGが流れる燃焼ガス流路32に面するように配置される。分割体51の径方向Dr内側には、一定の隙間を設けて、ロータ14を中心に回転する動翼41が配置されている。高温の燃焼ガスFGによる熱損傷を防止するため、分割体51には、軸方向Daに延在する複数の軸方向通路(第1冷却通路)60と、分割体51の回転方向R下流側の側部の近傍において周方向Dcに延在する複数の側部通路(第2冷却通路)90とが形成されている。
 第1冷却通路60は、周方向Dcに並列させて複数配設されている。第2冷却通路90は、軸方向Daに並列させて複数配設されている。
 幾つかの実施形態では、第1冷却通路60における周方向Dcを第1冷却通路60の幅方向と呼ぶ。また、幾つかの実施形態では、第1冷却通路60において該幅方向に直交する径方向Drを第1冷却通路60の高さ方向と呼ぶ。
 図示はしないが、一実施形態に係るガスタービン10では、幾つかの実施形態に係る各分割体51には、外表面52b側から冷却空気CAが供給されるように構成されている。分割体51に供給された冷却空気CAは、第1冷却通路60及び第2冷却通路90を流通し、燃焼ガスFG中に排出する過程で、分割体51の本体52を対流冷却している。
 以下、幾つかの実施形態に係る分割体51の冷却構造について説明する。
 幾つかの実施形態に係る第1冷却通路60のそれぞれは、上流端が冷却空気マニホールド55に接続されている。幾つかの実施形態に係る第1冷却通路60のそれぞれの内部には、第1冷却通路60を途中から複数の分岐流路63に分割する仕切壁70が形成されている。幾つかの実施形態では、仕切壁70は、第1冷却通路60を途中から第1冷却通路60の幅方向に一対の分岐流路63に分割する。
 幾つかの実施形態に係る第1冷却通路60、すなわち、仕切壁70よりも上流側の区間、及び、分岐流路63において、第1冷却通路60の延在方向から見たときの第1冷却通路60の流路の断面形状は、矩形であってもよく、円形であってもよく、矩形以外の多角形であってもよく、楕円形であってもよい。また、第1冷却通路60における仕切壁70よりも上流側の区間と分岐流路63とで、流路の断面形状の種類が異なっていてもよい。すなわち、仕切壁70よりも上流側の区間における流路の断面形状が矩形であり、分岐流路63における流路の断面形状が円形であってもよい。また、分岐流路63における流路の断面形状は、円や楕円を仕切壁70で2分割したような形状であってもよい。
 第1冷却通路60は、第1冷却通路60の内壁面を冷却することで分割体51を冷却する。そのため、第1冷却通路60は、第1冷却通路60の等価直径の5倍以上の長さを有する。なお、第1冷却通路60の等価直径とは、第1冷却通路60の断面形状が円形以外の形状である場合に、冷却空気CAの流動の点から等価となる円形の流路に置き換えたときの流路の直径である。
 複数の分岐流路63のそれぞれは、下流端65がヘッダ部80に接続されている。幾つかの実施形態では、例えば、それぞれ隣り合う3つの第1冷却通路60における6つの分岐流路63の下流端65が1つのヘッダ部80の上流側内壁部81に接続されている。幾つかの実施形態では、分割体51には、複数のヘッダ部80が形成されている。
 各ヘッダ部80は、軸方向Daで対向する一対の壁部である上流側内壁部81及び下流側内壁部82と、周方向Dcで対向する一対の壁部である側方内壁部83、84と、径方向Dr対向する一対の壁部である不図示の内壁部とによって囲まれた、直方体状の空間部である。
 各ヘッダ部80の下流側内壁部82には、ヘッダ部80に流入した冷却空気CAをヘッダ部80の外部、すなわち分割体51の外部に排出するための少なくとも1以上の出口通路110が形成されている。出口通路110の上流端110aは、ヘッダ部80の下流側内壁部82に接続され、下流端100bは、分割体51における軸方向Daの下流側端部53に接続されている。
 なお、図3~図5に示す実施形態では、ヘッダ部80には、下流側内壁部82における周方向Dcの中央近傍に1つの出口通路110が形成されている。出口通路110は、分割体51の下流側端部53で燃焼ガスFG中に開口する。
 幾つかの実施形態では、分割体51は、1つのヘッダ部80と、該ヘッダ部80に下流端が接続された3つの第1冷却通路60と、該ヘッダ部80に接続された1つの出口通路110とを含む冷却通路グループ6を複数含む。なお、一つの冷却通路グループ6におけるヘッダ部80は2つ以上の出口通路110が接続されていてもよい。
 分割体51の外部から分割体51に供給される冷却空気CAは、冷却空気マニホールド55に供給された後、冷却空気マニホールド55から各第1冷却通路60に分配される。各第1冷却通路60に分配された冷却空気CAは、仕切壁70で分割されて、各分岐流路63に流れ込む。各分岐流路63に流れ込んだ冷却空気CAは、各ヘッダ部80で集められて、出口通路110から分割体51の外部に排出される。
 幾つかの実施形態に係る第2冷却通路90のそれぞれは、上流端90aが冷却空気マニホールド57に接続されている。第2冷却通路90のそれぞれは、分割体51における周方向Dcの端部54で燃焼ガスFG中に開口する。なお、分割体51の端部54は、ロータ14の回転方向Rの下流側を向いている。
 分割体51の外部から分割体51に供給される冷却空気CAは、冷却空気マニホールド57に供給された後、冷却空気マニホールド57から各第2冷却通路90に分配される。各第2冷却通路90に分配された冷却空気CAは下流端90bから分割体51の外部に排出される。
 幾つかの実施形態では、図3~図5に示すように、分割体51において、1つのヘッダ部80に接続されている出口通路110の数は、1つのヘッダ部80に接続されている複数の第1冷却通路60の数未満である。例えば、幾つかの実施形態では、図3~図5に示すように、1つのヘッダ部80に対して、仕切壁70で分割された6つの第1冷却通路60(6つの分岐流路63)と、1つの出口通路110とが接続されている。
 幾つかの実施形態では、図5によく示すように、出口通路110は、上流側領域111と下流側領域115とを有する。上流側領域111には、下流側に向かって流路断面積が漸減する流路断面積縮小部113が形成されている。下流側領域115には、流路断面積が最も小さくなる最小流路断面積部117が形成されている。
 幾つかの実施形態では、出口通路110の延在方向から見たときの出口通路110の流路の断面形状は、上流側領域111及び下流側領域115において円形である。しかし、出口通路110の流路の断面形状は、上流側領域111及び下流側領域115において矩形であってもよく、矩形以外の多角形であってもよく、楕円形であってもよい。また、上流側領域111と下流側領域115とで、流路の断面形状の種類が異なっていてもよい。すなわち、上流側領域111における流路の断面形状が矩形であり、下流側領域115における流路の断面形状が円形であってもよい。
 なお、下流側領域115における流路の断面形状が円形以外である場合も考慮して、以下の説明では、下流側領域115(最小流路断面積部117)において流路の大きさについて言及する場合、最小流路断面積部117の等価直径によって説明する。
 最小流路断面積部117の等価直径とは、最小流路断面積部117の断面形状が円形以外の形状である場合に、冷却空気CAの流動の点から等価となる円形の流路に置き換えたときの最小流路断面積部117の直径である。なお、最小流路断面積部117の断面形状が円形である場合、最小流路断面積部117の等価直径とは、最小流路断面積部117の直径である。
 幾つかの実施形態に係る分割体51のように、冷却空気CAによる冷却を必要とする高温部品では、内部に形成された第1冷却通路60の内壁面60aの表面粗さは、冷却性能向上の観点からは粗い方が望ましい。しかし、第1冷却通路60の内壁面60aの表面粗さが粗いと冷却空気CAの圧力損失が大きくなってしまう。特に、分割体51の第1冷却通路60のように、微細で複雑な形状を有することがある場合には、内壁面60aの表面粗さが圧力損失に及ぼす影響が大きく、極端な場合には、冷却空気CAの流量低下が著しくなってしまうおそれもある。
 そこで、幾つかの実施形態では、分割体51における冷却構造を以下で述べるような構成とすることで、冷却能力が不足しないようにしている。
 幾つかの実施形態では、分割体51において、出口通路110の内壁面110cの粗度は、出口通路110の流路断面積が最小となる領域である下流側領域115、すなわち最小流路断面積部117において、複数の第1冷却通路60の内壁面60aの粗度以下である。
 幾つかの実施形態に係る分割体51によれば、複数の第1冷却通路60の内壁面60aの粗度が出口通路110の下流側領域115における内壁面115cの粗度以上であるので、第1冷却通路60における冷却性能を向上できる。また、幾つかの実施形態に係る分割体51によれば、出口通路の下流側領域115におけるの内壁面115cの粗度が複数の第1冷却通路60の内壁面60aの粗度以下であるので、出口通路110における圧力損失のばらつきを抑制できるとともに、出口通路110において異物が通過し易くなり、出口通路110が閉塞するリスクを低減できる。
 なお、幾つかの実施形態に係る分割体51が以下の(A)及び(B)の構成を有していれば、以下で説明するように、冷却空気CAの流量の調節精度を向上できる。
(A)分割体51において、出口通路110の最小流路断面積SBminは、ヘッダ部80と第1冷却通路60との接続部67における複数の第1冷却通路60(分岐流路63)の各々の流路断面積SA以上である。
 1つのヘッダ部80に対して2以上の出口通路110が接続されていた場合、1つのヘッダ部80に接続されている出口通路110の各々の最小流路断面積SBminは、接続部67における複数の第1冷却通路60の各々の流路断面積SA以上である。
(B)図3~図5に示すように、分割体51において、出口通路110の最小流路断面積SBminは、1つのヘッダ部80に接続されている複数の第1冷却通路60(分岐流路63)の接続部67における各々の流路断面積SAの和ΣSAより小さい。
 1つのヘッダ部80に対して2以上の出口通路110が接続されていた場合、1つのヘッダ部80に接続されている出口通路110の各々の最小流路断面積SBminの和ΣSBminは、1つのヘッダ部80に接続されている複数の第1冷却通路60の接続部67における各々の流路断面積SAの和ΣSAより小さい。
 後述するように、分割体51は、例えば金属積層造形法や精密鋳造法によって形成できる。そのため、第1冷却通路60の流路断面積SAが小さいと、分割体51の製造上の制約から第1冷却通路60の寸法精度が低下する傾向がある。
 複数の第1冷却通路60の各々において、それぞれを流れる冷却空気CAの流量を複数の第1冷却通路60の各々の流路断面積SAで決定しようとすると、流路断面積SAが小さいと、上述したように第1冷却通路60の寸法精度が低下して第1冷却通路60における冷却空気CAの流量の精度が低下するおそれがある。
 これに対して、幾つかの実施形態に係る分割体51によれば、1以上の出口通路110の各々の最小流路断面積SBminの和ΣSBminが接続部67における複数の第1冷却通路60の各々の流路断面積SAの和ΣSAより小さいので、複数の第1冷却通路60における冷却空気CAの流量を出口通路110の最小流路断面積SBminによって規定できる。これにより、複数の第1冷却通路60のそれぞれでは、冷却空気CAの流量調整のために流路断面積SAを必要以上に小さくしなくてもよくなるので、第1冷却通路60の寸法精度が向上し、複数の第1冷却通路60同士での冷却空気CAの流量のばらつきを抑制できる。したがって、過剰な冷却を抑制しつつ、冷却能力が不足しないようにすることができる。
 また、幾つかの実施形態に係る分割体51によれば、1以上の出口通路110の各々の最小流路断面積SBminが接続部67における複数の第1冷却通路60の各々の流路断面積SA以上であるので、出口通路110の径方向の寸法精度が確保し易くなるとともに、出口通路110において異物の詰まりも起こし難くなる。
 さらに、幾つかの実施形態に係る分割体51によれば、1以上の出口通路110の数が複数の第1冷却通路60の数未満であるので、冷却空気CAの流量の管理上、流路断面積の精度、すなわち通路の寸法精度を確保すべき箇所を少なくすることができ、分割体51の製造コストを抑制できる。
 そして、上述したように、出口通路110の内壁面110cの粗度を上述のようにすることで、出口通路110における圧力損失のばらつきが小さくなるので、冷却空気CAの流量の調節精度を向上できる。
 幾つかの実施形態では、出口通路110の内壁面110cは、下流側領域115において、中心線平均粗さRaが10μm以下の粗度を有する。また、幾つかの実施形態では、複数の第1冷却通路60の内壁面60aは、中心線平均粗さRaが10μm以上20μm以下の粗度を有する。
 幾つかの実施形態に係る分割体51によれば、複数の第1冷却通路60の内壁面60cが上記の粗度を有するので、第1冷却通路60における冷却性能を向上できる。また、幾つかの実施形態に係る分割体51によれば、出口通路110の下流側領域115における内壁面115cが上記の粗度を有するので、出口通路110における圧力損失のばらつきを抑制できるとともに、出口通路110において異物が通過し易くなり、出口通路110路が閉塞するリスクを低減できる。
 幾つかの実施形態では、複数の第1冷却通路60の延在方向と交差する方向に延在する複数の第2冷却通路90をさらに備える。幾つかの実施形態では、複数の第2冷却通路90の内壁面90cは、中心線平均粗さRaが10μm以上50μm以下の粗度を有する。
 幾つかの実施形態に係る分割体51によれば、複数の第2冷却通路90の内壁面90cが上記の粗度を有するので、第2冷却通路90における冷却性能を向上できる。
 なお、後述するように、金属積層造形法によって第1冷却通路60の上流側から下流側に向かって積層させて分割体51を形成する場合、第2冷却通路90のうち、第2冷却通路90の軸線Axaよりも軸方向Da下流側の内壁面90cは、積層造形の際に鉛直下方の領域が空間部分となるようなオーバーハング部分となる。そのため、図3に示すように、第2冷却通路90の内壁面90cのうち、積層造形の際に、すなわち原料粉末の積層の際にオーバーハング角度が規定角度、例えば45度以上となるオーバーハング領域91における粗度は、オーバーハング領域91以外の領域93と比べて大きくなる傾向にある。
 そこで、幾つかの実施形態に係る分割体51では、上述したようにオーバーハング領域91において他の領域93よりも粗度が大きくなることを利用して、例えば、オーバーハング領域91において、中心線平均粗さRaが30μm以上50μm以下の粗度を有するように、分割体51を形成してもよい。また、他の領域93において、中心線平均粗さRaが10μm以上30μm以下の粗度を有するように、分割体51を形成してもよい。すなわち、金属積層造形法における上述したような傾向を利用して、第2冷却通路90の内壁面90cの粗度を一部の領域において粗くすることができる。これにより、第2冷却通路90における冷却性能を向上できる。
 なお、第2冷却通路90の内壁面90cの粗度を大きくすることで冷却空気CAの圧力損失が大きくなり過ぎる場合には、第2冷却通路90の内径を設計値よりも大きくなるように、分割体51を形成してもよい。
 幾つかの実施形態では、出口通路110は、出口通路110の流路断面積が下流側に向かって漸減する流路断面積縮小部113を含む。
 これにより、流路断面積縮小部113の下流側から出口通路110の延在方向と直交する方向の大きさを調節することで、出口通路110における最小流路断面積SBminの調節が容易となる。したがって、分割体51における冷却空気CAの流量を、上述したように出口通路110における最小流路断面積SBminの大きさで調整するように分割体51が構成されている場合には、出口通路110の下流側における出口通路110の延在方向と直交する方向の寸法を管理すれば、冷却空気CAの流量を管理できるので、流路断面積の精度、すなわち通路の寸法精度を確保すべき領域を狭くすることができ、分割体51の製造コストを抑制できる。
 幾つかの実施形態では、ヘッダ部80の内壁面80aの少なくとも一部の領域における粗度は、複数の第1冷却通路60の内壁面60aの粗度以下としてもよい。
 ヘッダ部80では、複数の第1冷却通路60の下流端65が接続されていることから、ヘッダ部80における空間容積が大きくなり、ヘッダ部80における冷却空気CAの流速が低下するので、冷却空気への熱伝達率が低下する。したがって、分割体51の設計時には、ヘッダ部80では第1冷却通路60に比べて冷却能力が低下すること、すなわち分割体51の冷却への寄与が比較的少ないことが考慮されている。
 幾つかの実施形態に係る分割体51によれば、ヘッダ部80の内壁面80aの少なくとも一部の領域における粗度が複数の第1第1冷却通路60の内壁面60aの粗度以下であるので、ヘッダ部80における圧力損失を抑制できる。上述したように、ヘッダ部80では分割体51の冷却への寄与が比較的少ないことから、ヘッダ部80の粗度が小さくなることによる分割体51の冷却への影響は小さい。したがって、分割体51の冷却への影響を抑制しつつ、冷却空気CAの圧力損失を抑制できる。
 なお、冷却空気CAの圧力損失抑制の観点から、ヘッダ部80の内壁面80aにおける第1冷却通路60の内壁面60aの粗度以下となる領域は、出口通路110の上流端110a、より好ましくは、下流側領域115までつながっているとよい。
(分割体51の製造方法について)
 以下、上述した幾つかの実施形態に係る分割体51の製造方法について説明する。幾つかの実施形態に係る分割体51は、例えば金属積層造形法や精密鋳造法によって製作できる。図6は、幾つかの実施形態に係る分割体51を金属積層造形法で作成する場合の作成手順の一例を示すフローチャートである。幾つかの実施形態に係る分割体51の製造方法は、冷却通路形成工程S10と、ヘッダ部形成工程S20と、出口通路形成工程S30と、出口通路切削工程S40とを備える。
 幾つかの実施形態に係る分割体51の形成方法は、例えば、パウダーベッド方式であってもよく、メタルデポジッション方式であってもよく、バインダージェット方式であってもよく、上述した方式以外の他の方式であってもよい。以下の説明では、幾つかの実施形態に係る分割体51の形成方法が、例えば、パウダーベッド方式や、メタルデポジッション方式である場合について説明する。
 冷却通路形成工程S10は、冷却空気CAが流通可能な複数の第1冷却通路60及び第2冷却通路90を形成するステップである。冷却通路形成工程S10では、例えば、軸方向Da上流側から軸方向Da下流側に向かって原料粉末を積層させて分割体51を第1冷却通路60の下流端65まで形成する。
 ヘッダ部形成工程S20は、複数の第1冷却通路60の下流端65が接続されたヘッダ部80を形成するステップである。ヘッダ部形成工程S20では、冷却通路形成工程S10に続いて軸方向Da上流側から軸方向Da下流側に向かって原料粉末を積層させて分割体51をヘッダ部80の下流側内壁部82まで形成する。
 出口通路形成工程S30は、ヘッダ部80に流入した冷却空気CAをヘッダ部80の外部に排出するための1以上の出口通路110を形成するステップである。出口通路形成工程S30では、ヘッダ部形成工程S20に続いて軸方向Da上流側から軸方向Da下流側に向かって原料粉末を積層させて分割体51を出口通路110の下流端110bまで形成する。
 なお、出口通路形成工程S30では、出口通路110の流路断面積が下流側に向かって漸減する流路断面積縮小部113を含むように出口通路110を形成する。
 図7は、後述する出口通路切削工程S40について説明するための図である。図7では、出口通路切削工程S40において出口通路110を三角ドリル19によって切削する前の出口通路110の下流側の形状及び三角ドリル19を二点鎖線で描いている。
 幾つかの実施形態に係る出口通路形成工程S30では、出口通路110の下流側における、出口通路110の延在方向と直交する方向の寸法が、三角ドリル19の直径Ddよりも小さくなるように、出口通路110の下流側を形成する。すなわち、幾つかの実施形態に係る出口通路形成工程S30では、出口通路切削工程S40の実施前の出口通路110において、流路断面積縮小部113の最も下流側における出口通路110の延在方向と直交する方向の寸法Mが、三角ドリル19の直径Ddよりも小さくなるように、流路断面積縮小部113を形成する。
 出口通路切削工程S40は、出口通路110の内壁面110cの少なくとも一部に機械加工を施すステップである。具体的には、出口通路切削工程S40は、出口通路110を三角ドリル19によって切削するステップである。出口通路切削工程S40では、出口通路110の下流端110bから上流端110aに向かって三角ドリル19によって出口通路110に機械加工を施す。これにより、下流端110bから上流側に遡った一部の区間の内径が一定となり、該区間が下流側領域115となる。
 なお、冷却通路形成工程S10及びヘッダ部形成工程S20は、必ずしも金属積層造形法によって実施する必要はなく、精密鋳造法によって実施してもよい。そして、出口通路形成工程S30を金属積層造形法によって実施してもよい。また、冷却通路形成工程S10から出口通路形成工程S30までを精密鋳造法によって実施してもよい。
 幾つかの実施形態に係る分割体51の製造方法では、1つのヘッダ部80に接続されている出口通路110の数が、1つのヘッダ部80に接続されている複数の第1冷却通路60の数未満となるように分割体51を形成する。
 また、幾つかの実施形態に係る分割体51の製造方法では、出口通路110の最小流路断面積SBminが、ヘッダ部80と第1冷却通路60との接続部67における複数の第1冷却通路60(分岐流路63)の各々の流路断面積SA以上となるように分割体51を形成する。
 さらに、幾つかの実施形態に係る分割体51の製造方法では、出口通路110の最小流路断面積SBminが、1つのヘッダ部80に接続されている複数の第1冷却通路60(分岐流路63)の接続部67における各々の流路断面積SAの和ΣSAより小さくなるように分割体51を形成する。
 なお、1つのヘッダ部80に対して2以上の出口通路110が接続されるように分割体51を形成する場合、1つのヘッダ部80に接続されている出口通路110の各々の最小流路断面積SBminが、接続部67における複数の第1冷却通路60の各々の流路断面積SA以上となるように分割体51を形成する。
 また、1つのヘッダ部80に対して2以上の出口通路110が接続されるように分割体51を形成する場合、1つのヘッダ部80に接続されている出口通路110の各々の最小流路断面積SBminの和ΣSBminが、1つのヘッダ部80に接続されている複数の第1冷却通路60の接続部67における各々の流路断面積SAの和ΣSAより小さくなるように分割体51を形成する。
 幾つかの実施形態に係る分割体51の製造方法によれば、1以上の出口通路110の各々の最小流路断面積SBminの和ΣSBminが接続部67における複数の第1冷却通路60の各々の流路断面積SAの和ΣSAより小さくなるので、複数の第1冷却通路60における冷却空気CAの流量を出口通路110の最小流路断面積SBminによって規定できる。これにより、複数の第1冷却通路60のそれぞれでは、冷却空気CAの流量調整のために流路断面積を必要以上に小さくしなくてもよくなるので、第1冷却通路60の寸法精度が向上し、複数の第1冷却通路60同士での冷却空気CAの流量のばらつきを抑制できる。したがって、過剰な冷却を抑制しつつ、冷却能力が不足しないようにすることができる。
 また、幾つかの実施形態に係る分割体51の製造方法によれば、1以上の出口通路110の各々の最小流路断面積SBminを接続部67における複数の第1冷却通路60の各々の流路断面積SA以上とすることができるので、出口通路110の寸法精度が確保し易くなるとともに、出口通路110において異物の詰まりも起こし難くなる。
 さらに、幾つかの実施形態に係る分割体51の製造方法によれば、1以上の出口通路110の数が複数の第1冷却通路60の数未満となるので、冷却空気CAの流量の管理上、流路断面積の精度、すなわち通路の寸法精度を確保すべき箇所を少なくすることができ、分割体51の製造コストを抑制できる。
 幾つかの実施形態に係る分割体51の製造方法では、出口通路110の流路断面積が最小となる領域である下流側領域115において、出口通路110の内壁面110cの粗度が複数の第1冷却通路60の内壁面60aの粗度以下となるように出口通路を形成する。
 幾つかの実施形態に係る分割体51の製造方法によれば、複数の第1冷却通路60の内壁面60aの粗度が出口通路110の下流側領域115における内壁面115cの粗度以上となるので、第1冷却通路60における冷却性能を向上できる。また、幾つかの実施形態に係る分割体51の製造方法によれば、出口通路110の下流側領域115における内壁面115cの粗度が複数の第1冷却通路60の内壁面60aの粗度以下となるので、出口通路110における圧力損失のばらつきを抑制できるとともに、出口通路110において異物が通過し易くなり、出口通路110が閉塞するリスクを低減できる。
 幾つかの実施形態に係る分割体51の製造方法によれば、流路断面積縮小部113の下流側から出口通路110の延在方向と直交する方向の大きさを調節することで、出口通路110における最小流路断面積SBminの調節が容易となる。したがって、分割体51における冷却空気CAの流量を出口通路110における最小流路断面積SBminの大きさで調整するように分割体51が構成されている場合には、出口通路110の下流側における出口通路110の延在方向と直交する方向の寸法を管理すれば、冷却空気CAの流量を管理できるので、流路断面積の精度、すなわち通路の寸法精度を確保すべき領域を狭くすることができ、分割体51の製造コストを抑制できる。
 幾つかの実施形態に係る分割体51の製造方法によれば、出口通路110を機械加工だけによって形成する場合と比べて、分割体51の製造コストを抑制できる。また、幾つかの実施形態に係る分割体51の製造方法によれば、出口通路110を金属積層造形法又は精密鋳造法だけによって形成する場合と比べて、出口通路110の内壁面110cの寸法精度を向上でき、冷却空気CAの流量の調節精度を向上できる。さらに、幾つかの実施形態に係る分割体51の製造方法によれば、出口通路110の内壁面110cの寸法を冷却空気CAの流量を確認しながら調節できるので、冷却空気CAの流量の過不足を抑制できる。
 幾つかの実施形態に係る分割体51の製造方法によれば、三角ドリル19の直径Ddによって出口通路110の内壁面110cの寸法、より具体的には最小流路断面積部117の内径Diを規定できるので、分割体51の製造が容易となる。
 幾つかの実施形態に係る出口通路形成工程S30において、下流側領域115を含む出口通路110の少なくとも一部の区間をエッチングすることで、該領域において、出口通路110の内壁面110cの粗度が複数の第1冷却通路60の内壁面60aの粗度以下となるように出口通路110を形成してもよい。
 これにより、下流側領域115を含む出口通路110の少なくとも一部の区間における粗度を容易に低下できる。また、出口通路110の下流端110bからでは機械加工が難しい領域であっても、粗度を容易に低下できる。
 図8は、他の実施形態に係る分割体51の製造方法における処理の手順の一例を示すフローチャートである。幾つかの実施形態に係る分割体51の製造方法は、冷却通路形成工程S10と、ヘッダ部形成工程S20と、出口通路形成工程S30と、ヘッダ部エッチング工程S50を備える。冷却通路形成工程S10、ヘッダ部形成工程S20、及び、出口通路形成工程S30は、図6に示した冷却通路形成工程S10、ヘッダ部形成工程S20、及び、出口通路形成工程S30と同じである。なお、他の実施形態に係るヘッダ部エッチング工程S50の後で、図6に示した出口通路切削工程S40を実施してもよい。
 幾つかの実施形態に係る分割体51の製造方法において、ヘッダ部エッチング工程S50は、ヘッダ部80の内壁面80aの少なくとも一部の領域をエッチングすることで、該領域において、ヘッダ部80の内壁面80aの粗度を複数の第1冷却通路60の内壁面60aの粗度以下とするステップである。
 これにより、ヘッダ部の内壁面の少なくとも一部の領域における粗度が複数の第1冷却通路の内壁面の粗度以下となるので、ヘッダ部における圧力損失を抑制できる。上述したように、ヘッダ部では高温部品の冷却への寄与が比較的少ないことから、ヘッダ部の粗度が小さくなることによる高温部品の冷却への影響は小さい。したがって、高温部品の冷却への影響を抑制しつつ、冷却媒体の圧力損失を抑制できる。
(金属積層造形法における形成領域によって積層厚さを変更する場合について)
 一般的には、金属積層造形法における積層厚さを厚くすると、造形物における表面粗さが大きくなる傾向にある。すなわち、金属積層造形法における積層厚さを薄くすると、造形物における表面粗さが小さくなる傾向にある。
 そこで、幾つかの実施形態に係る分割体51の製造方法では、冷却通路形成工程S10において、金属積層造形法によって、原料粉末を第1積層厚さt1で積層して複数の第1冷却通路60を形成してもよい。
 幾つかの実施形態に係る分割体51の製造方法では、ヘッダ部形成工程S20において、金属積層造形法によって、原料粉末を第1積層厚さt1以下の第2積層厚さt2で積層してヘッダ部80を形成してもよい。
 幾つかの実施形態に係る分割体51の製造方法では、出口通路形成工程S30において、金属積層造形法によって、原料粉末を第1積層厚さt1より小さい第3積層厚さt3で積層して出口通路110を形成してもよい。
 例えば上記第1積層厚さt1は、75μm以上100μm以下であってもよい。また、例えば上記第3積層厚さt3は、20μm以上30μm以下であってもよい。例えば上記第2積層厚さt2は、20μm以上100μm以下であってもよい。
 なお、ヘッダ部形成工程S20において、例えば上記第1積層厚さt1で積層してヘッダ部80の一部を形成し、例えば上記第3積層厚さt3で積層してヘッダ部80残部のうちの少なくとも一部を形成してもよい。
 ヘッダ部80を形成する第2積層厚さt2を、第1冷却通路60を形成する第1積層厚さt1以下とすることで、ヘッダ部80については、粗度を抑制して冷却空気CAの圧力損失を抑制でき、第1冷却通路60については、粗度を比較的大きくして冷却性能を向上できる。
 また、出口通路110を形成する第3積層厚さt3を、第1冷却通路60を形成する第1積層厚さt1より小さくすることで、出口通路110については、粗度を抑制して、出口通路110における圧力損失のばらつきを抑制できるとともに、出口通路110において異物が通過し易くなり、出口通路110が閉塞するリスクを低減できる。また、第1冷却通路60については、上述したように、粗度を比較的大きくして冷却性能を向上できる。
(金属積層造形法における形成領域によって原料粉末の粒度を変更する場合について)
 一般的には、金属積層造形法における原料粉末の粒度を大きくすると、造形物における表面粗さが大きくなる傾向にある。すなわち、金属積層造形法における原料粉末の粒度を小さくすると、造形物における表面粗さが小さくなる傾向にある。
 そこで、幾つかの実施形態に係る分割体51の製造方法では、冷却通路形成工程S10において、金属積層造形法によって、第1粒度S1を有する原料粉末を用いて複数の第1冷却通路60を形成してもよい。
 幾つかの実施形態に係る分割体51の製造方法では、ヘッダ部形成工程S20において、金属積層造形法によって、第1粒度S1以下の第2粒度S2を有する原料粉末を用いてヘッダ部80を形成してもよい。
 幾つかの実施形態に係る分割体51の製造方法では、出口通路形成工程S30において、金属積層造形法によって、第1粒度S1より小さい第3粒度S3を有する原料粉末を用いて出口通路110を形成してもよい。
 ヘッダ部80を形成するための原料粉末の粒度(第2粒度S2)を、第1冷却通路60を形成するための原料粉末の粒度(第1粒度S1)以下とすることで、ヘッダ部80については、粗度を抑制して冷却空気CAの圧力損失を抑制でき、第1冷却通路60については、粗度を比較的大きくして冷却性能を向上できる。
 また、出口通路110を形成するための原料粉末の粒度(第3粒度S3)を、第1冷却通路60を形成するための原料粉末の粒度(第1粒度S1)より小さくすることで、出口通路110については、粗度を抑制して、出口通路110における圧力損失のばらつきを抑制できるとともに、出口通路110において異物が通過し易くなり、出口通路110が閉塞するリスクを低減できる。また、第1冷却通路60については、上述したように、粗度を比較的大きくして冷却性能を向上できる。
 本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 例えば、上述した幾つかの実施形態では、冷却媒体による冷却を必要とする高温部品の例として分割環50を例に挙げて説明したが、本発明はこれに限定されず、燃焼器12、動翼41(例えばプラットフォーム45)、静翼21(例えば内側シュラウド25や外側シュラウド27)等、他の高温部品についても適用できる。また、本発明が適用できる高温部品は、ガスタービン10における構成部品に限定されず、ボイラやロケットエンジン等、高温の媒体を扱う様々な機械における構成部品であってもよい。
6 冷却通路グループ
10 ガスタービン
12 燃焼器
13 タービン
21 タービン静翼(静翼)
41 タービン動翼(動翼)
50 分割環
51 分割体
52 本体
52b 外表面(被加熱面)
60 軸方向通路(第1冷却通路、冷却通路)
63 分岐流路
65 下流端
67 接続部
70 仕切壁
80 ヘッダ部
90 側部通路(第2冷却通路)
110 出口通路

Claims (15)

  1.  冷却媒体による冷却を必要とする高温部品であって、
     前記冷却媒体が流通可能な複数の第1冷却通路と、
     前記複数の第1冷却通路の下流端が接続されたヘッダ部と、
     前記ヘッダ部に流入した前記冷却媒体を前記ヘッダ部の外部に排出するための1以上の出口通路と、
    を備え、
     前記1以上の出口通路の内壁面の粗度は、前記出口通路の流路断面積が最小となる領域において、前記複数の第1冷却通路の内壁面の粗度以下である
    高温部品。
  2.  前記1以上の出口通路の内壁面は、前記出口通路の流路断面積が最小となる領域において、中心線平均粗さRaが10μm以下の粗度を有し、
     前記複数の第1冷却通路の内壁面は、中心線平均粗さRaが10μm以上20μm以下の粗度を有する
    請求項1に記載の高温部品。
  3.  前記複数の第1冷却通路の延在方向と交差する方向に延在する複数の第2冷却通路をさらに備え、
     前記複数の第2冷却通路の内壁面は、中心線平均粗さRaが10μm以上50μm以下の粗度を有する
    請求項2に記載の高温部品。
  4.  前記1以上の出口通路は、前記出口通路の流路断面積が下流側に向かって漸減する流路断面積縮小部を含む
    請求項1乃至3の何れか一項に記載の高温部品。
  5.  前記ヘッダ部の内壁面の少なくとも一部の領域における粗度は、前記複数の第1冷却通路の内壁面の粗度以下である
    請求項1乃至4の何れか一項に記載の高温部品。
  6.  前記高温部品は、複数の分割体が周方向に沿って環状に配設されて構成されるガスタービンの分割環である、
    請求項1乃至5の何れか一項に記載の高温部品。
  7.  冷却媒体による冷却を必要とする高温部品の製造方法であって、
     前記冷却媒体が流通可能な複数の第1冷却通路を形成するステップと、
     前記複数の第1冷却通路の下流端が接続されたヘッダ部を形成するステップと、
     前記ヘッダ部に流入した前記冷却媒体を前記ヘッダ部の外部に排出するための1以上の出口通路を形成するステップと、
    を備え、
     前記1以上の出口通路を形成するステップは、前記出口通路の流路断面積が最小となる領域において、前記1以上の出口通路の内壁面の粗度が前記複数の第1冷却通路の内壁面の粗度以下となるように前記1以上の出口通路を形成する
    高温部品の製造方法。
  8.  前記1以上の出口通路を形成するステップは、前記出口通路の流路断面積が下流側に向かって漸減する流路断面積縮小部を含むように前記1以上の出口通路を形成する
    請求項7に記載の高温部品の製造方法。
  9.  前記1以上の出口通路を形成するステップは、前記出口通路の流路断面積が最小となる領域を含む前記出口通路の少なくとも一部の区間をエッチングすることで、該領域において、前記1以上の出口通路の内壁面の粗度が前記複数の第1冷却通路の内壁面の粗度以下となるように前記1以上の出口通路を形成する
    請求項7又は8に記載の高温部品の製造方法。
  10.  前記ヘッダ部の内壁面の少なくとも一部の領域をエッチングすることで、該領域において、前記ヘッダ部の内壁面の粗度を前記複数の第1冷却通路の内壁面の粗度以下とするステップ
    をさらに備える
    請求項9に記載の高温部品の製造方法。
  11.  前記1以上の出口通路を形成するステップは、金属積層造形法又は精密鋳造法によって、前記1以上の出口通路を形成し、
     前記1以上の出口通路の内壁面の少なくとも一部に機械加工を施すステップ
    をさらに備える
    請求項7乃至10の何れか一項に記載の高温部品の製造方法。
  12.  前記複数の第1冷却通路を形成するステップは、金属積層造形法によって、原料粉末を第1積層厚さで積層して前記複数の第1冷却通路を形成し、
     前記ヘッダ部を形成するステップは、金属積層造形法によって、前記原料粉末を前記第1積層厚さ以下の第2積層厚さで積層して前記ヘッダ部を形成し、
     前記出口通路を形成するステップは、金属積層造形法によって、前記原料粉末を前記第1積層厚さより小さい第3積層厚さで積層して前記出口通路を形成する
    請求項7乃至11の何れか一項に記載の高温部品の製造方法。
  13.  前記複数の第1冷却通路を形成するステップは、金属積層造形法によって、第1粒度を有する原料粉末を用いて前記複数の第1冷却通路を形成し、
     前記ヘッダ部を形成するステップは、金属積層造形法によって、前記第1粒度以下の第2粒度を有する原料粉末を用いて前記ヘッダ部を形成し、
     前記出口通路を形成するステップは、金属積層造形法によって、前記第1粒度より小さい第3粒度を有する原料粉末を用いて前記出口通路を形成する
    請求項7乃至12の何れか一項に記載の高温部品の製造方法。
  14.  金属積層造形法によって、前記複数の第1冷却通路の延在方向に前記原料粉末を積層して、該延在方向と交差する方向に延在する複数の第2冷却通路を形成するステップをさらに備え、
     前記複数の第2冷却通路の内壁面のうち前記原料粉末の積層の際にオーバーハング角度が既定角度以上となるオーバーハング領域は、中心線平均粗さRaが30μm以上50μm以下の粗度を有し、
     前記複数の第2冷却通路の内壁面のうち前記オーバーハング領域以外の領域は、中心線平均粗さRaが10μm以上30μm以下の粗度を有する
    請求項7乃至13の何れか一項に記載の高温部品の製造方法。
  15.  前記1以上の出口通路の数は、前記複数の第1冷却通路の数未満であり、
     前記1以上の出口通路の各々の最小流路断面積は、前記ヘッダ部と前記第1冷却通路との接続部における前記複数の第1冷却通路の各々の流路断面積以上であり、
     前記1以上の出口通路の各々の最小流路断面積の和は、前記ヘッダ部と前記第1冷却通路との接続部における前記複数の第1冷却通路の各々の流路断面積の和より小さい
    請求項7乃至14の何れか一項に記載の高温部品の製造方法。
PCT/JP2020/006559 2019-03-29 2020-02-19 高温部品及び高温部品の製造方法 WO2020202867A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217026552A KR102606424B1 (ko) 2019-03-29 2020-02-19 고온 부품 및 고온 부품의 제조 방법
US17/431,610 US11746663B2 (en) 2019-03-29 2020-02-19 High-temperature component and method of producing the high-temperature component
DE112020000789.8T DE112020000789B4 (de) 2019-03-29 2020-02-19 Hochtemperaturbauteil und verfahren zur herstellung des hochtemperaturbauteils
CN202080015536.4A CN113490788B (zh) 2019-03-29 2020-02-19 高温部件以及高温部件的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019065817A JP6666500B1 (ja) 2019-03-29 2019-03-29 高温部品及び高温部品の製造方法
JP2019-065817 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020202867A1 true WO2020202867A1 (ja) 2020-10-08

Family

ID=70000442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006559 WO2020202867A1 (ja) 2019-03-29 2020-02-19 高温部品及び高温部品の製造方法

Country Status (7)

Country Link
US (1) US11746663B2 (ja)
JP (1) JP6666500B1 (ja)
KR (1) KR102606424B1 (ja)
CN (1) CN113490788B (ja)
DE (1) DE112020000789B4 (ja)
TW (1) TWI737187B (ja)
WO (1) WO2020202867A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6666500B1 (ja) * 2019-03-29 2020-03-13 三菱重工業株式会社 高温部品及び高温部品の製造方法
RU2758022C1 (ru) * 2021-02-05 2021-10-25 Федеральное государственное бюджетное образовательное учреждение высшего образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") Устройство для измерения температуры сопла жидкостного ракетного двигателя
RU2766960C1 (ru) * 2021-02-09 2022-03-16 Федеральное государственное бюджетное образовательное учреждение высшего образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") Устройство для измерения температуры сопла ракетного двигателя
US20220316352A1 (en) * 2021-03-31 2022-10-06 Raytheon Technologies Corporation Flow diverter for mid-turbine frame cooling air delivery
JP2022177600A (ja) 2021-05-18 2022-12-01 三菱重工業株式会社 付加造形物の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005090512A (ja) * 2003-09-17 2005-04-07 General Electric Co <Ge> ネットワーク冷却された被膜壁
US20120057968A1 (en) * 2010-09-07 2012-03-08 Ching-Pang Lee Ring segment with serpentine cooling passages
JP2015017608A (ja) * 2013-07-11 2015-01-29 ゼネラル・エレクトリック・カンパニイ ガスタービン・シュラウド冷却
JP2015105656A (ja) * 2013-12-02 2015-06-08 シーメンス エナジー インコーポレイテッド 壁近傍のマイクロサーキット縁部冷却を有するタービンブレード
US20160319678A1 (en) * 2014-01-17 2016-11-03 United Technologies Corporation A workpiece manufactured from an additive manufacturing system having a particle separator and method of operation
JP2017096616A (ja) * 2015-11-13 2017-06-01 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH 空力的形状の本体及び高温流体流中に設けられる本体を冷却する方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3816022A (en) 1972-09-01 1974-06-11 Gen Electric Power augmenter bucket tip construction for open-circuit liquid cooled turbines
US7411150B2 (en) * 2002-06-12 2008-08-12 Alstom Technology Ltd. Method of producing a composite component
FR2857406B1 (fr) * 2003-07-10 2005-09-30 Snecma Moteurs Refroidissement des anneaux de turbine
US7131818B2 (en) * 2004-11-02 2006-11-07 United Technologies Corporation Airfoil with three-pass serpentine cooling channel and microcircuit
JP2008274774A (ja) 2007-04-25 2008-11-13 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器およびガスタービン
JP4634528B1 (ja) * 2010-01-26 2011-02-23 三菱重工業株式会社 分割環冷却構造およびガスタービン
US9103225B2 (en) * 2012-06-04 2015-08-11 United Technologies Corporation Blade outer air seal with cored passages
JP5518235B2 (ja) * 2013-05-10 2014-06-11 三菱重工業株式会社 分割環冷却構造およびガスタービン
US9416662B2 (en) 2013-09-03 2016-08-16 General Electric Company Method and system for providing cooling for turbine components
EP2910887B1 (en) * 2014-02-21 2019-06-26 Rolls-Royce Corporation Microchannel heat exchangers for gas turbine intercooling and condensing as well as corresponding method
EP2910765B1 (en) * 2014-02-21 2017-10-25 Rolls-Royce Corporation Single phase micro/mini channel heat exchangers for gas turbine intercooling and corresponding method
JP6466793B2 (ja) 2015-07-10 2019-02-06 株式会社東芝 タービン部品製造方法、タービン部品、およびタービン部品製造装置
WO2017077955A1 (ja) 2015-11-05 2017-05-11 三菱日立パワーシステムズ株式会社 燃焼用筒、ガスタービン燃焼器及びガスタービン
US10443437B2 (en) 2016-11-03 2019-10-15 General Electric Company Interwoven near surface cooled channels for cooled structures
US10677079B2 (en) * 2016-11-17 2020-06-09 Raytheon Technologies Corporation Airfoil with ceramic airfoil piece having internal cooling circuit
US10422229B2 (en) * 2017-03-21 2019-09-24 United Technologies Corporation Airfoil cooling
US11021967B2 (en) * 2017-04-03 2021-06-01 General Electric Company Turbine engine component with a core tie hole
US10753232B2 (en) * 2017-06-16 2020-08-25 General Electric Company Assemblies and methods for cooling flowpath support structure and flowpath components
US10539026B2 (en) * 2017-09-21 2020-01-21 United Technologies Corporation Gas turbine engine component with cooling holes having variable roughness
JP6666500B1 (ja) * 2019-03-29 2020-03-13 三菱重工業株式会社 高温部品及び高温部品の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005090512A (ja) * 2003-09-17 2005-04-07 General Electric Co <Ge> ネットワーク冷却された被膜壁
US20120057968A1 (en) * 2010-09-07 2012-03-08 Ching-Pang Lee Ring segment with serpentine cooling passages
JP2015017608A (ja) * 2013-07-11 2015-01-29 ゼネラル・エレクトリック・カンパニイ ガスタービン・シュラウド冷却
JP2015105656A (ja) * 2013-12-02 2015-06-08 シーメンス エナジー インコーポレイテッド 壁近傍のマイクロサーキット縁部冷却を有するタービンブレード
US20160319678A1 (en) * 2014-01-17 2016-11-03 United Technologies Corporation A workpiece manufactured from an additive manufacturing system having a particle separator and method of operation
JP2017096616A (ja) * 2015-11-13 2017-06-01 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH 空力的形状の本体及び高温流体流中に設けられる本体を冷却する方法

Also Published As

Publication number Publication date
CN113490788A (zh) 2021-10-08
JP6666500B1 (ja) 2020-03-13
TW202037808A (zh) 2020-10-16
DE112020000789T5 (de) 2021-11-25
DE112020000789B4 (de) 2024-03-21
KR102606424B1 (ko) 2023-11-24
JP2020165360A (ja) 2020-10-08
US11746663B2 (en) 2023-09-05
TWI737187B (zh) 2021-08-21
US20220074313A1 (en) 2022-03-10
CN113490788B (zh) 2023-07-25
KR20210114525A (ko) 2021-09-23

Similar Documents

Publication Publication Date Title
WO2020202867A1 (ja) 高温部品及び高温部品の製造方法
US10184728B2 (en) Additively manufactured heat exchanger including flow turbulators defining internal fluid passageways
US10670349B2 (en) Additively manufactured heat exchanger
US20180347468A1 (en) Additively manufactured heat exchanger
US20220162963A1 (en) Additively Manufactured Component Including an Impingement Structure
US20190024988A1 (en) Header assembly for a heat exchanger
US20180193920A1 (en) Method for manufacturing a blade comprising a bathtub tip integrating a small wall
US20210376687A1 (en) Conformal cooling devices for rotating generator elements and additive manufacturing processes for fabricating the same
JP7317944B2 (ja) ガスタービンエンジンの高温ガス経路構成部品を形成する方法
US20200040743A1 (en) Turbomachine Cooling Trench
WO2020202863A1 (ja) 高温部品、高温部品の製造方法及び流量調節方法
US11643969B2 (en) Split casings and methods of forming and cooling casings
WO2020202866A1 (ja) 高温部品及び高温部品の製造方法
US11566532B2 (en) Turbine clearance control system
US11859550B2 (en) Compound angle accelerator
JP2022099908A (ja) 高温部品及び回転機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20781944

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217026552

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20781944

Country of ref document: EP

Kind code of ref document: A1