WO2020202854A1 - Mesh position specifying device, printing plate manufacturing system, printing plate pattern creation device, storage medium, screen mesh stretched body, mesh position specifying method, printing plate manufacturing method, and printing plate pattern creation method - Google Patents

Mesh position specifying device, printing plate manufacturing system, printing plate pattern creation device, storage medium, screen mesh stretched body, mesh position specifying method, printing plate manufacturing method, and printing plate pattern creation method Download PDF

Info

Publication number
WO2020202854A1
WO2020202854A1 PCT/JP2020/006302 JP2020006302W WO2020202854A1 WO 2020202854 A1 WO2020202854 A1 WO 2020202854A1 JP 2020006302 W JP2020006302 W JP 2020006302W WO 2020202854 A1 WO2020202854 A1 WO 2020202854A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesh
screen
printing plate
data
pattern
Prior art date
Application number
PCT/JP2020/006302
Other languages
French (fr)
Japanese (ja)
Inventor
喜代治 田中
哲夫 法貴
Original Assignee
株式会社写真化学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社写真化学 filed Critical 株式会社写真化学
Priority to JP2021511203A priority Critical patent/JP7125174B2/en
Publication of WO2020202854A1 publication Critical patent/WO2020202854A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/14Forme preparation for stencil-printing or silk-screen printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/24Stencils; Stencil materials; Carriers therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns

Definitions

  • the present invention relates to a screen printing plate and a screen mesh upholstery used for producing the same, and more particularly to specifying a formation position of a mesh position in the screen mesh upholstery and producing a screen printing plate according to the formation position.
  • a printing plate for screen printing is such that an emulsion is applied on a mesh structure (mesh structure) woven so that mesh threads (warp threads and weft threads) made of metal or nylon wire rod intersect with each other.
  • the portion of the pattern (printing pattern) to be formed by printing has an opening (screen opening).
  • the current collecting electrode is formed by screen-printing a conductive paste (electrode paste) to form a printing pattern (paste film) on the substrate according to the electrode shape, and then firing. Although it is formed, it is required to have a uniform shape at every position and to have constant electrical characteristics.
  • bias tensioning is performed to give a predetermined inclination to the plate frame when the warp threads and the weft threads are stretched.
  • the printing pattern ( Specifically, a mode for ensuring the shape accuracy of the recognition mark pattern) is already known (see, for example, Patent Document 1).
  • the positions of the mesh threads forming the mesh structure should be regularly and evenly spaced, but in reality, the positions are slightly due to the results of the weaving process and the stretching and bonding process to the plate frame. Can vary. Therefore, it may be slightly different even between screen printing plates manufactured under the same conditions. In advancing the miniaturization of the print line width described above, the influence of such positional variation of the mesh thread cannot be ignored. However, such variation is a random phenomenon with no regularity and is not reproducible. In addition, it goes without saying that the mesh yarn has a random positional variation, and that the intersection position of the warp yarn and the weft yarn also has a random positional variation.
  • Patent Document 1 makes any disclosure or suggestion regarding dealing with such random positional variation of mesh threads.
  • the present invention has been made in view of the above problems, and it is possible to specify the arrangement position of the mesh thread provided in the screen mesh upholstery used for producing the screen printing plate, and further, the screen is arranged according to the arrangement position. It is an object of the present invention to provide a technique capable of creating pattern data of a screen opening in a state in which a specified mesh thread arrangement position can be referred to when producing a printing plate.
  • the arrangement positions of a plurality of mesh threads constituting the screen mesh stretched on the screen mesh stretched body used for producing the screen printing plate are specified.
  • an image pickup means for imaging the screen mesh of the screen mesh upholstery body which is a target for specifying the arrangement positions of the plurality of mesh threads, and an image captured by the image pickup means for the screen mesh.
  • the arrangement position of each of the plurality of mesh threads in the screen mesh upholstery is specified for each repetition unit in the screen mesh, and the coordinate value of the arrangement position specified for each repetition unit is set to the plurality of mesh threads.
  • Specific processing means for generating mesh position data described by rearranging in order along each extending direction, the mesh position data, and the screen mesh upholstery body to be imaged by the imaging means.
  • the specific processing means comprises associating means for associating the above with identification information that can be uniquely identified, and the specific processing means uses the mesh position data as the arrangement position of the plurality of mesh threads when creating pattern data for screen printing plate production. Is generated in a substantially reproducible data format.
  • a second aspect of the present invention is the mesh position specifying device according to the first aspect, wherein the specific processing means uses the position of each pair of edges of the plurality of mesh threads as the arrangement position of the screen. It is characterized in that it is specified for each repeating unit in the mesh, and the coordinate values of the arrangement position are described in the mesh position data in the order along the extending direction of each of the plurality of mesh threads.
  • a third aspect of the present invention is the mesh position specifying device according to the second aspect, wherein the specific processing means has a extending direction of each of the plurality of mesh threads in the captured image of the screen mesh.
  • the inside of a quadrilateral having substantially parallel four sides is set as a specific range of arrangement positions of the plurality of mesh threads in the captured image, and the mesh openings belonging to the same row or column within the specific range.
  • a line segment for specifying the arrangement position of each of the plurality of mesh threads is set for each array, and the position where the line segment intersects the pair of edges of each of the plurality of mesh threads is set to the plurality of meshes. It is characterized in that it is specified as each arrangement position of the thread.
  • a fourth aspect of the present invention is the mesh position specifying device according to any one of the first to third aspects, wherein the specifying processing means is described in a device coordinate system unique to the mesh position specifying device.
  • Each of the plurality of mesh threads is provided with a coordinate conversion means for converting the coordinate values to the coordinate values in the plate coordinate system unique to the screen mesh upholstery body, which is the target for specifying the arrangement position of the plurality of mesh threads.
  • the coordinate value of the arrangement position of is specified based on the device coordinate system, the specified coordinate value is converted into the coordinate value in the plate coordinate system by the coordinate conversion means, and then described in the mesh position data. , Characterized by.
  • a fifth aspect of the present invention is the mesh position specifying device according to the fourth aspect, wherein the imaging means is provided in advance on the screen mesh stretched body, and the plate is provided on the screen mesh stretched body.
  • the plate coordinate system setting mark that can be used for setting the coordinate system is imaged, and the coordinate conversion means obtains the device coordinates based on the imaging result of the plate coordinate system setting mark in the device coordinate system by the imaging means.
  • the conversion relationship between the system and the plate coordinate system is specified, and based on the conversion relationship, the coordinate values of the respective arrangement positions of the plurality of mesh threads specified based on the device coordinate system are set in the plate coordinate system. It is characterized by converting to coordinate values.
  • a sixth aspect of the present invention is the printing plate manufacturing system, wherein the mesh position specifying device according to any one of the first to fifth aspects and the screen mesh upholstery body when manufacturing the screen printing plate.
  • a printing plate pattern creating device that creates pattern data describing a pattern of a screen opening formed on a screen mesh, and forming a pattern of the screen opening on the screen mesh upholstery based on the pattern data.
  • a printing plate making apparatus for producing the screen printing plate is provided, and the printing plate pattern creating apparatus associates with the mesh position data based on the description of the mesh position data generated by the mesh position specifying device.
  • the screen mesh is reproduced by a predetermined display means so that the arrangement position of the screen mesh in the screen mesh upholstery body to be produced of the screen printing plate based on the pattern data can be reproduced.
  • the pattern data can be created with reference to the above, and the identified information associated with the mesh position data is associated with the created pattern data.
  • the pattern data is described.
  • the screen mesh stretched body corresponding to the identification information associated with the pattern data is characterized in that a pattern of the screen opening is formed based on the pattern data.
  • a seventh aspect of the present invention is the printing plate manufacturing system according to the sixth aspect, wherein in the printing plate pattern making apparatus, the screen mesh is arranged according to the arrangement position of the screen mesh reproduced by the display means. It is characterized in that the arrangement position and / or size of the components of the pattern data can be adjusted.
  • An eighth aspect of the present invention is a printing plate pattern creating device that creates pattern data describing a pattern of screen openings formed on a screen mesh of a screen mesh upholstery when producing a screen printing plate.
  • the screen printing plate based on the pattern data, which is associated with the mesh position data based on the description of the mesh position data generated in the mesh position specifying device according to any one of the first to fifth aspects.
  • the arrangement position of the screen mesh in the screen mesh upholstery to be produced can be reproduced by a predetermined display means, and the pattern data can be created while referring to the reproduced screen mesh.
  • the pattern data created is associated with the identification information associated with the mesh position data.
  • a ninth aspect of the present invention is the printing plate pattern creating apparatus according to the eighth aspect, in which the arrangement position of the component of the pattern data is arranged according to the arrangement position of the screen mesh reproduced by the display means. And / or the size is adjustable.
  • a tenth aspect of the present invention is a storage medium, in which the mesh position data generated by the mesh position specifying device according to any one of the first to fifth aspects is stored and the mesh position data is stored.
  • the identification information associated with the above is described in the mesh position data or directly attached to the mesh position data.
  • An eleventh aspect of the present invention is a screen mesh upholstery in which a pattern of screen openings is formed on a screen mesh when a screen printing plate is produced, and the mesh according to any one of the first to fifth aspects.
  • the position specifying device is characterized in that the mesh position data generated for the screen mesh stretched body is associated with the identification information.
  • a twelfth aspect of the present invention is a method for specifying the arrangement position of a plurality of mesh threads constituting the screen mesh stretched on the screen mesh stretched body used for producing a screen printing plate. Based on the imaging step of imaging the screen mesh of the screen mesh upholstery body, which is the object of specifying the arrangement position of the plurality of mesh threads, by a predetermined imaging means, and the image captured of the screen mesh obtained by the imaging step. , The arrangement position of each of the plurality of mesh threads in the screen mesh upholstery is specified for each repetition unit in the screen mesh, and the coordinate value of the arrangement position specified for each repetition unit is set to the plurality of meshes.
  • the specific processing step includes an association step of associating the body with identification information that can uniquely identify the body, and in the specific processing step, the mesh position data is used for creating pattern data for screen printing plate production of the plurality of mesh threads. It is characterized in that the arrangement position is generated in a substantially reproducible data format.
  • a thirteenth aspect of the present invention is a printing plate manufacturing method, wherein a mesh position data generation step of generating the mesh position data by the mesh position specifying method according to the twelfth aspect and a predetermined printing plate pattern creating apparatus are used.
  • a printing plate pattern creating step of creating pattern data describing a pattern of a screen opening formed on the screen mesh of the screen mesh upholstery body when producing the screen printing plate, and a predetermined printing plate producing A printing plate manufacturing step of manufacturing the screen printing plate by forming a pattern of the screen opening in the screen mesh upholstery based on the pattern data using an apparatus is provided, and the printing plate pattern is created.
  • the screen to be produced of the screen printing plate based on the pattern data which is associated with the mesh position data based on the description of the mesh position data generated in the mesh position data generation step.
  • the arrangement position of the screen mesh in the mesh stretched body can be reproduced by a predetermined display means, and the pattern data can be created while referring to the reproduced screen mesh, and the created pattern data can be created.
  • the identification information associated with the mesh position data is associated with the screen mesh upholstery body corresponding to the identification information associated with the pattern data in the printing plate manufacturing step.
  • a pattern of the screen opening is formed based on the pattern data.
  • a fourteenth aspect of the present invention is a method for creating a printing plate pattern for creating pattern data describing a pattern of screen openings formed on a screen mesh of a screen mesh upholstery when producing a screen printing plate.
  • the target for producing the screen printing plate based on the pattern data, which is associated with the mesh position data based on the description of the mesh position data generated by the mesh position specifying method according to the twelfth aspect.
  • the reproduction step of reproducing the arrangement position of the screen mesh in the screen mesh stretched body on a predetermined display means the creation step of creating the pattern data while referring to the reproduced screen mesh, and the created pattern data.
  • the association step of associating the identification information associated with the mesh position data is a method for creating a printing plate pattern for creating pattern data describing a pattern of screen openings formed on a screen mesh of a screen mesh upholstery when producing a screen printing plate.
  • the arrangement position of the mesh thread of the screen mesh which may randomly vary during tensioning, is a fine repeating unit such as an individual mesh opening. It is possible to create pattern data and print plates in consideration of the arrangement position. This makes it possible to produce a screen printing plate having excellent printing accuracy.
  • the production of the pattern data and the subsequent process of producing the screen printing plate using the pattern data can be separated temporally and spatially from the specification of the arrangement position of the mesh yarn.
  • FIG. 1 It is a figure which shows the screen mesh stretched body (mesh stretched body) 10. It is an enlarged view of the screen mesh 2. It is a figure which shows the schematic structure of the mesh position specifying apparatus 100. It is a functional block diagram which shows the functional component which concerns on the identification of the mesh position in the mesh position specifying apparatus 100. It is a figure which illustrates the relationship between the opening formation target range RE1 and the image pickup range RE2 by a camera 111. It is a figure for demonstrating the 1st coordinate conversion processing. It is a figure which shows the process procedure in the mesh position specifying process. It is a figure which illustrates the assignment of the opening address and the assignment of the mesh thread number.
  • FIG. 1 is a diagram showing a screen mesh stretched body (hereinafter, also simply referred to as a mesh stretched body) 10 which is a processing target of the invention according to the present embodiment.
  • the mesh upholstery 10 is a mesh 2 stretched on a plan-view rectangular plate frame 1 made of a metal such as aluminum.
  • the screen mesh 2 is roughly formed by weft threads 2x and warp threads arranged at equal intervals so that a large number of weft threads 2x and a large number of warp threads 2y, each of which is a mesh thread 2 m made of a metal or nylon wire, intersect (orthogonally) with each other. It has a mesh structure (mesh structure) woven so that a substantially rectangular mesh opening MO is formed by two adjacent two of 2y.
  • the mesh upholstery body 10 forms a constituent member of a screen printing plate, which is a printing plate used when performing screen printing.
  • a coating film made of an emulsion is formed on the screen mesh 2 in a manner in which a portion corresponding to a predetermined pattern (printing pattern) to be formed by screen printing is an opening (screen opening). It is configured by being provided in.
  • the mesh upholstery 10 can be said to be a semi-finished product produced in the middle of a series of processes for producing a screen printing plate.
  • the screen opening is provided not in the entire surface of the screen mesh 2 but in a predetermined range (hereinafter, opening target range) RE1 in a substantially central portion.
  • FIG. 1 (b) shows an xy coordinate system (hereinafter, plate coordinate system ⁇ ) set in the mesh upholstery body 10 shown in FIG. 1 (a).
  • the unit of the coordinate value is mm.
  • the plate coordinate system ⁇ is a coordinate system peculiar to the mesh upholstery body 10 or a screen printing plate produced by using the mesh upholstery body 10.
  • the plate coordinate system ⁇ is used, for example, when specifying the position of the mesh thread 2m constituting the screen mesh 2.
  • marks M1 and M2 for setting two coordinates are marked on two portions facing each other across the screen mesh 2 of the plate frame 1, and marks M1 and M2 are formed.
  • a mark M3 for further coordinate setting is marked on a side different from the edge, the intersection of the line segment LX connecting the marks M1 and M2 and the line segment LY passing through the mark M3 and orthogonal to the line segment LX.
  • the origin (x, y) (0, 0) of the plate coordinate system ⁇
  • the extending direction of the line segment LX is the x-axis direction
  • the extending direction of the line segment LY is the y-axis direction.
  • the plate coordinate system ⁇ is defined so that the extending direction of the weft 2x is the horizontal axis and the extending direction of the warp 2y is the vertical axis. This is because the marks M1, M2, and M3 are provided so that the line segment LX substantially coincides with the extending direction of the weft 2x and the extending direction of the line segment LY substantially coincides with the extending direction of the warp 2y. , Will be realized.
  • the plate coordinate system ⁇ is defined so that the opening target range RE1 is located in the first quadrant (the range in which both the x and y values are positive). This is not an essential aspect.
  • the extending direction of one of the two edges of the plate frame 1 orthogonal to each other coincides with the x-axis direction of the plate coordinate system ⁇ with the left-right direction in the drawing, and the extension of the other edge. It is assumed that the current direction coincides with the vertical direction in the drawing in the y-axis direction.
  • the positive side in the x-axis direction may be referred to as the right side, the negative side in the x-axis direction as the left side, the positive side in the y-axis direction as the upper side, the negative side in the y-axis direction as the lower side, and the like.
  • the method of setting the plate coordinate system ⁇ is not limited to the above mode.
  • the marks M1 to M3 may be provided on the edge portion of the plate frame 1, or may be provided in the screen mesh 2.
  • FIG. 2 is an enlarged view of the screen mesh 2.
  • the screen mesh 2 can be generally regarded as being provided so that the weft threads 2x and the warp threads 2y are provided at equal intervals and orthogonal to each other as described above.
  • the individual weft threads 2x and the warp threads 2y do not necessarily form a strict straight line, and are locally localized as shown in FIG. Displaced and meandering.
  • the intervals between the weft threads 2x and the warp threads 2y are not always constant.
  • the positions of the individual mesh threads 2m (weft thread 2x and warp thread 2y) in the mesh upholstery body 10 are specified.
  • specifying the positions of the four mesh threads 2 m forming one mesh opening MO also means specifying the positions of the mesh opening MO.
  • the specification of each mesh thread 2 m as described above is also simply referred to as the specification of the mesh position.
  • FIG. 3 is a diagram showing a schematic configuration of a mesh position specifying device 100 that specifies a mesh position in the mesh upholstery body 10 in the present embodiment.
  • FIG. 4 is a functional block diagram showing functional components related to the identification of the mesh position in the mesh position specifying device 100.
  • the mesh position specifying device 100 includes an imaging unit 110 (an imaging unit 110) including a stage 101 on which the mesh extension body 10 is placed and a camera (imaging means) 111 that images the mesh extension body 10 mounted on the stage 101 from above. FIG. 4), control of the operation of the illumination unit 120 (FIG. 4) including the illumination light source 121 that irradiates the screen mesh 2 with illumination light from below the stage 101 when imaging with the camera 111, and the operation of each unit of the mesh position specifying device 100. It is mainly provided with a processing device 130 that is responsible for the arithmetic processing necessary for specifying the mesh position.
  • the device coordinate system ⁇ (X, Y, Z) is defined in advance, and the position on the stage 101 and the arrangement position of the camera 111 and the illumination light source 121 are set in the device coordinate system ⁇ . It is designed to be described by (X, Y, Z).
  • the unit of the coordinate value is mm as in the plate coordinate system ⁇ .
  • the stage 101 is provided on the upper surface thereof so that the mesh upholstery body 10 can be placed and fixed in a horizontal posture.
  • at least the opening target range RE1 so that the illumination light from the illumination light source 121 arranged below is irradiated to at least the entire opening target range RE1 in the mounted and fixed state.
  • the portion corresponding to is made of a transparent material such as glass.
  • the imaging unit 110 includes a camera 111 and a moving mechanism 112 that moves the camera 111. By being moved by the moving mechanism 112, the camera 111 can image the mesh upholstery 10 mounted and fixed on the stage 101 at arbitrary imaging positions in the horizontal plane and in the vertical direction.
  • FIG. 5 is a diagram illustrating the relationship between the opening target range RE1 and the imaging range RE2 by the camera 111.
  • the mesh upholstery 10 is placed on the stage 101 so that the two orthogonal sides of the opening formation target range RE1 coincide with the X-axis direction and the Y-axis direction of the device coordinate system ⁇ , respectively. It shall be placed and fixed.
  • the imaging range RE2 of the camera 111 is set smaller than the opening target range RE1 of the screen mesh 2 in the mesh upholstery 10 in order to secure the resolution of the captured image. Therefore, as shown in FIG. 5A, when imaging one opening target range RE1, imaging is repeated while shifting the imaging range RE2 in the X-axis direction and the Y-axis direction. As a result, the positions of the centers (imaging centers) O of the imaging range RE2 at the individual imaging positions are arranged at equal intervals in the X-axis direction and the Y-axis direction. This is realized, for example, by moving the camera 111 so that the imaging center O sequentially moves in the order shown by the arrow AR0 in FIG. 5B each time the imaging at a certain imaging position is completed. ..
  • the camera 111 is moved in such a manner that only the X-axis coordinate of the imaging center O is different from the initial imaging position and the Y-axis coordinate is kept the same, and the camera 111 is moved at all the imaging positions in the moving direction.
  • After imaging move from the initial imaging position to a position where only the Y-axis coordinate of the imaging center O is different, and only the X-axis coordinate of the imaging center O is different from that position, and the Y-axis coordinates are kept the same.
  • the camera 111 is moved and the imaging is performed at all the imaging positions in the moving direction, and the imaging is performed at all the imaging positions.
  • the order may be out of order.
  • imaging targeting the opening formation target range RE1 is performed at different imaging positions while overlapping the edge portions of the imaging range RE2. This is to enable suitable alignment (matching) when integrating the imaging data obtained by imaging at individual imaging positions. Therefore, the moving distance (shift amount) of the camera 111 when the imaging position is changed is set to a value smaller than the size of the imaging range RE2 in the moving direction.
  • the lighting unit 120 includes a lighting light source 121 and a moving mechanism 122 that moves the lighting light source 121.
  • the illumination light source 121 is moved by the moving mechanism 122 in association with the movement of the camera 111.
  • the moving mechanism 112 of the camera 111 and the moving mechanism 122 of the illumination light source 121 may be integrated. In other words, the camera 111 and the illumination light source 121 may be attached to one moving mechanism.
  • the mesh upholstery 10 mounted and fixed on the stage 101 is imaged by the camera 111 from above with the illumination light source 121 irradiating the illumination light from below.
  • the mesh thread 2 m becomes a dark part
  • the mesh opening MO becomes a bright part.
  • the processing device 130 includes a processing control unit 131 including a CPU 131a, a ROM 131b, and a RAM 131c, a display unit 132 including a display or the like, an operation unit 133 including a keyboard or a touch panel, and a storage unit 134 including a hard disk or the like. To be equipped.
  • the processing device 130 can be realized by, for example, a general-purpose computer.
  • the image pickup processing unit 140 the movement control unit 145, the lighting control unit 150, the first coordinate conversion unit 155A, the second coordinate conversion unit 155B, the mesh position information processing unit 160, and the data integration processing.
  • the unit 165 and the association processing unit 170 are mainly realized.
  • the imaging processing unit 140 controls the imaging by the camera 111, acquires the data (imaging data) obtained as a result of the imaging from the camera 111, and performs a predetermined process in the processing control unit 131.
  • the imaging processing unit 140 causes the camera 111 to perform imaging related to the three marks M1 to M3 provided on the plate frame 1 of the mesh upholstery body 10, and marks for the respective marks M1 to M3. Acquire the imaging data D ⁇ .
  • the imaging processing unit 140 causes the camera 111 to perform imaging in the imaging range RE2 of the same size at each of a plurality of predetermined imaging positions as shown in FIG.
  • the imaging data obtained by imaging at the i-th imaging position (targeting the i-th imaging range RE2) is referred to as the i-mesh imaging data DAi.
  • the image pickup processing unit 140 also plays a role of displaying the image (live view) captured by the camera 111 on the display unit 132.
  • the movement control unit 145 controls the operation of the movement mechanism 112 of the camera 111 and the movement mechanism 122 of the illumination light source 121. Further, in the movement control unit 145, the imaging position information (information for specifying the range to be imaged) when the camera 111 performs imaging is generated based on the position of the moving mechanism 112 at the time of imaging. .. The imaging position information is added to the mark imaging data D ⁇ and the i-mesh imaging data DAi acquired by the imaging processing unit 140. Alternatively, the camera 111 itself may be provided with an imaging position specifying function such as GPS, and imaging position information based on the imaging position specifying function may be added to the imaging data generated by imaging.
  • an imaging position specifying function such as GPS
  • the illumination control unit 150 controls the irradiation of illumination light at the time of imaging by the camera 111.
  • the first coordinate conversion unit 155A determines the coordinate positions of individual pixels in the image captured by the camera 111 (the image represented by the image captured by the camera 111) based on the predetermined first coordinate conversion information IC1. , Responsible for the process of converting to coordinates in the device coordinate system ⁇ (first image conversion process).
  • the pixel positions described in the imaging data obtained by the camera 111 merely represent the positions in the captured image represented by the imaging data, when the imaging positions are different and the imaging is performed a plurality of times, the actual image is actually taken. Although the imaging positions are different, the pixel positions are not distinguished between the captured images. Therefore, in the mesh position specifying device 100, it is specified which position of the mesh upholstery body 10 which is the image pickup object corresponds to each pixel in the captured image, and the pixel value (color density value) at the pixel position is specified. Is performed in the first image conversion process so that it can be handled as a value at the pixel position described in the device coordinate system ⁇ .
  • FIG. 6 is a diagram for explaining the first coordinate conversion process.
  • FIG. 6A shows a camera coordinate system ⁇ (Column (C): Row (R)) which is a coordinate system set in the image captured by the camera 111.
  • the image captured by the camera 111 has a rectangular structure in which Nc pixels are arranged in the Column direction (C direction: horizontal direction) and Nr pixels are arranged in the Row direction (R direction: vertical direction), and has a camera coordinate system.
  • is defined so that the upper left end of the captured image is the origin (0,0) and the lower right end is the coordinates (Nc, Nr). Therefore, the coordinates of the imaging center O in the camera coordinate system ⁇ are (Nc / 2, Nr / 2).
  • an arbitrary pixel position in the camera coordinate system ⁇ is expressed as (C, R).
  • FIG. 6B shows the imaging range of the camera 111 by the device coordinate system ⁇ .
  • the coordinates of the imaging center O represented by the device coordinate system ⁇ are expressed as (Xc, Yc), and an arbitrary pixel position (C, R) in the camera coordinate system ⁇ is expressed as (X, Y) in the device coordinate system ⁇ . I decided to.
  • FIG. 6 shows an arbitrary pixel position (C, R) represented by the camera coordinate system ⁇ in the captured image obtained by performing imaging with (Xc, Yc) as the imaging center in the device coordinate system ⁇ . ) Is converted to the pixel position (X, Y) in the device coordinate system ⁇ .
  • Nc, Nr, Sc, and Sr are known values unique to the camera 111, and equations (1) and (2) including these values are stored in the storage unit 134 in advance as the first coordinate conversion information IC1. .. Since the values of Nc, Nr, Sc, and Sr are the same unless the specifications of the camera 111 (lens to be used, resolution, etc.) are changed, the first coordinate conversion information IC1 is usually the mesh position specifying device 100. Pre-specified and fixedly retained prior to use of the device.
  • the first coordinate conversion unit 155A determines the pixel positions of the imaging data (mark imaging data D ⁇ , i-mesh imaging data DAi) generated by performing imaging on a certain imaging center O (Xc, Yc). It is converted into coordinate positions (X, Y) in the device coordinate system ⁇ based on the equations (1) and (2).
  • the mark imaged data D ⁇ that has undergone coordinate conversion is further subjected to coordinate conversion in the second coordinate conversion unit 155B described below.
  • the i-th processing target data DBi is generated by performing the first coordinate conversion processing on the i-mesh imaging data DAi.
  • the second coordinate conversion unit 155B is in charge of the process of converting the coordinates represented by the device coordinate system ⁇ into the coordinates represented by the plate coordinate system ⁇ (second coordinate conversion process). Since the mesh tensioning body 10 is usually used for producing a printing plate in a device different from the mesh positioning device 100, the position coordinates of the mesh thread 2m in each mesh stretching body 10 are the mesh tensioning. It is more practical to use the plate coordinate system ⁇ , which is a coordinate system unique to the body 10.
  • the extension of the line segments LX and LY described above is performed based on the mark imaging data D ⁇ which is the imaging data of the coordinates setting marks M1 to M3 provided on the mesh extension body 10.
  • arbitrary coordinates (X, Y) in the device coordinate system ⁇ are converted into coordinates (x, y) in the plate coordinate system ⁇ by the following equation.
  • the values of the tilt angle ⁇ and the coordinates (X0, Y0) specified by the second coordinate conversion unit 155B, and the equations (3) and (4) are stored in the storage unit 134 as the second coordinate conversion information IC2. ..
  • the second coordinate conversion information IC2 is unique to each mesh upholstery body 10, and is generated each time a different mesh upholstery body 10 is targeted for specifying the mesh position.
  • the second coordinate conversion unit 155B describes all the mesh threads existing in the opening formation target range RE1 of one mesh upholstery body 10, which is described in the mesh full position data DD described later by using the device coordinate system ⁇ .
  • the coordinate position of 2 m is converted into a description using the plate coordinate system ⁇ by using the second coordinate conversion information IC2, and a process of outputting as the stretched body mesh position data DE is performed.
  • the mesh position information processing unit 160 targets the i-th processing target data DBi generated by the first coordinate conversion unit 155A and described by using the device coordinate system ⁇ , and the mesh in the captured image represented by the data. Responsible for the process of specifying the position of the thread 2 m (position in the device coordinate system ⁇ ).
  • the mesh position information processing unit 160 When the mesh position information processing unit 160 acquires the i-th processing target data DBi, the mesh position information processing unit 160 applies a known image processing method such as edge detection processing or binarization processing to the i-th processing target data DBi, and applies the i-th processing target data DBi.
  • the captured image represented by the data DBi the pixel region included in the mesh thread 2m and the pixel region included in the mesh opening MO are discriminated.
  • the mesh thread 2 m is the dark part and the mesh opening MO is the bright part. Therefore, the dark part is also formed by the image processing in the mesh position information processing unit 160.
  • the bright portion is recognized as the pixel region corresponding to the mesh thread 2 m, and the bright portion is recognized as the pixel region corresponding to the mesh opening MO.
  • the mesh position information processing unit 160 further includes an address assignment unit 161, a specific target range setting unit 162, and a mesh position coordinate identification unit 163.
  • the address assignment unit 161 assigns an address to a pixel region representing each mesh opening MO in the captured image represented by the i-th processing target data DBi, and the shape of the pixel region recognized as corresponding to the mesh thread 2 m. Based on the above, a mesh thread number is assigned to a pixel area representing each mesh thread 2 m.
  • the specific target range setting unit 162 sets a range for specifying the mesh position (position coordinate specific target range) for the captured image represented by the i-th processing target data DBi as a processing target, and further, the position coordinate specific target range. Is responsible for setting the line segment (mesh position characteristic line group) used to specify the mesh position.
  • the mesh position coordinate identification unit 163 specifies the position of the mesh thread 2 m based on the captured image represented by the i-th processing target data DBi and the mesh position characteristic line group set by the specific target range setting unit 162. Responsible for processing.
  • the generator of the i-th process target data DBi in the opening formation target range RE1 which is the total specific target range of the mesh position in the mesh extension body 10.
  • the i-th partial position information data DCi that describes the position information of the mesh thread 2m included in the imaging range RE2 for a certain captured image is generated.
  • the data integration processing unit 165 performs imaging at all imaging positions of the opening formation target range RE1, and processes each imaging data in the first coordinate conversion unit 155A and the mesh position information processing unit 160. All the i-th processing target data DBi obtained as a result of the information processing are integrated to generate a mesh full position data DD that describes the mesh position for the entire range RE1 for forming one opening.
  • the association processing unit 170 uniquely identifies the mesh upholstery body 10 whose mesh position is specified by the mesh position identification device 100 (processing target).
  • the upholstery body identification information ID is converted into the second coordinate conversion unit. It is responsible for associating the actually specified mesh position generated by 155B with the stretched body mesh position data DE described in the plate coordinate system ⁇ and outputting it as the mesh position data DF with identification information.
  • the stretched body identification information ID is information unique to the mesh stretched body 10 that can distinguish individual mesh stretched bodies 10.
  • the stretched body identification information ID is set by a predetermined number, symbol, character string, or a combination thereof.
  • FIG. 7 is a diagram showing a processing procedure in the mesh position specifying process.
  • the screen mesh 2 is stretched in the mesh stretched body 10 so that the weft threads 2x and the warp threads 2y are substantially parallel to the plate frame 1.
  • the (processing target) upholstery body identification information ID is set in advance in the mesh upholstery body 10 which is the target for specifying the mesh position and is used for the screen printing plate manufacturing process.
  • step S1 when the mesh upholstery body 10 which is the target for specifying the mesh position is placed on the stage 101 of the mesh position specifying device 100 (step S1), first, the camera 111 sequentially images the three marks M1 to M3 for setting coordinates provided in the plate frame 1 of the mesh upholstery body 10 (step S2), and the image pickup processing unit 140 captures the mark imaging data D ⁇ for each of them. Generate.
  • the stage 101 of the mesh upholstery 10 is placed so that the weft 2x is substantially along the X-axis direction of the device coordinate system ⁇ and the warp 2y is substantially along the Y-axis direction.
  • Imaging of the marks M1 to M3 is performed with the imaging center O of the camera 111 positioned at the center of each.
  • the imaging position when imaging the marks M1 to M3 is also fixed.
  • the images of the marks M1 to M3 are automatically processed by defining that the marks M1 to M3 are present within the imaging range when the imaging is performed at the position.
  • the movement control unit 145 in response to the imaging execution instruction given by the operator operating the operation unit 133 drives the movement mechanism 112 to move the camera 111 to the positions of the respective marks M1 to M3.
  • the camera 111 takes an image under the control of the image processing unit 140, which is a series of operations automatically performed.
  • the operator of the mesh position specifying device 100 performs a predetermined operation on the operation unit 133 while confirming the image pickup position of the camera 111 by visually recognizing the image captured image (live view) displayed on the display unit 132.
  • the movement control unit 145 in response to the movement instruction of the camera 111 may drive the movement mechanism 112 to move the camera 111 to the position.
  • the imaging may be performed in a state of only external light, or the mesh position specifying device 100 includes an epi-illumination light source for mark imaging (not shown), and the marks M1 to the light source are used.
  • the mode may be performed with the M3 illuminated.
  • the second coordinate conversion information IC2 that describes the conversion relationship for converting the device coordinate system ⁇ to the plate coordinate system ⁇ is specified based on them. (Step S3).
  • the first coordinate conversion unit 155A temporarily converts the mark imaging data D ⁇ described in the camera coordinate system ⁇ into data in the device coordinate system ⁇ .
  • the second coordinate conversion unit 155B specifies the coordinate positions of the marks M1 to M3 based on the mark imaging data D ⁇ after the conversion.
  • the angle (tilt angle) ⁇ formed by the extension directions of the line segments LX and LY with the X-axis and Y-axis of the device coordinate system ⁇ and the origin (x, in the plate coordinate system ⁇ ).
  • the coordinates (X0, Y0) in the device coordinate system ⁇ of y) (0,0) are specified, and the equations (3) and (4) including those values are stored as the second coordinate conversion information IC2.
  • Store in 134 the equations (3) and (4) including those values are stored as the second coordinate conversion information IC2.
  • the second coordinate conversion unit 155B also uses the coordinate values in the device coordinate system ⁇ of the three marks M1 to M3 used to obtain the tilt angle ⁇ and the coordinates (X0, Y0) as the coordinate values of the plate coordinate system ⁇ .
  • the coordinate value after the conversion is also included in the second coordinate conversion information IC2.
  • step S4 the screen mesh 2 is imaged by the camera 111 at the i-th imaging position (step S5).
  • the movement control unit 145 drives the movement mechanism 112 to move the camera 111 to the i-th imaging position. Then, when the camera 111 reaches the position, the camera 111 performs imaging in the imaging range RE2 under the control of the imaging processing unit 140, and the imaging processing unit 140 generates the i-mesh imaging data DAi. .. Further, the first coordinate conversion unit 155A converts each pixel position described in the camera coordinate system ⁇ in the i-mesh imaging data DAi into the coordinates in the device coordinate system ⁇ based on the first coordinate conversion information IC1. , Is output as the i-th processing target data DBi.
  • the position of the opening formation target range RE1 which is the specific target of the mesh position is also fixedly determined.
  • the address assigning unit 161 assigns the opening address to the captured image represented by the i-th processing target data DBi (step S6). , The mesh thread number is assigned (step S7).
  • FIG. 8 is a diagram illustrating the assignment of the opening address and the assignment of the mesh thread number for the captured image P1i represented by the i-th processing target data DBi. Since the device coordinate system ⁇ is applied to the i-th processing target data DBi, the positions of the pixels in the captured image P1i are also represented by the device coordinate system ⁇ . In other words, the position coordinates of the mesh opening MO and the image of the mesh thread 2m in the captured image P1i are obtained by imaging the i-mesh imaging data DAi, which is the generator of the i-th processing target data DBi, by imaging with the camera 111. It is the same as the actual position coordinates of the mesh opening MO and the mesh thread 2 m in the imaging range RE2 at the time.
  • FIG. 8A shows how the opening address is assigned.
  • a region having a relatively high brightness that is visually recognized in a substantially rectangular shape is an image of the opening (opening image) IMo. Since the opening image IMo is an image of the mesh opening MO of the screen mesh 2, it is naturally arranged two-dimensionally in the captured image P1i.
  • the address assigning unit 161 is an image (weft image IMx, warp image) of a mesh thread 2m (weft thread 2x, warp thread 2y) composed of regions having relatively low brightness on all sides of these opening image IMos included in the captured image P1i. An opening address is assigned only to those surrounded by IMy).
  • the opening address is not given to the opening image IMo of the mesh opening MO that is incompletely (cut off) in the outer peripheral portion of the captured image P1i.
  • the opening image IMos to which the opening addresses are assigned are arranged in a rectangular shape.
  • opening column numbers A, B, C, ... are assigned in the X-axis direction
  • opening row numbers 0, 1, 2, ... are assigned in the Y-axis direction
  • the address of each opening image IMo is determined by the combination of the column number and the opening row number.
  • 11 opening row numbers A to L are assigned from the side with the smaller X-axis coordinates, and 0 from the side with the smaller Y-axis coordinates.
  • FIG. 8B shows how the mesh thread number is assigned.
  • the mesh thread number is assigned to all the weft image IMx and the warp image IMy surrounding the opening image IMo to which the opening address is assigned.
  • weft numbers h0, h1, h2 ... are assigned from the side with the smaller Y-axis coordinates
  • warp numbers v0, v1 are given from the side with the smaller X-axis coordinates.
  • V2, ... are given.
  • nine mesh thread numbers h0 to h9 are assigned.
  • 11 opening images IMo are separated by 12 warp image IMy in the X-axis direction
  • 12 mesh thread numbers v0 to v11 are assigned.
  • Both the opening address and the mesh thread number are given as serial numbers in all the captured images obtained by capturing the images at different imaging positions.
  • the opening row number given in the alphabet after all A to Z (excluding I) are assigned, 2A to 2Z, 3A to 3Z, ... Are sequentially assigned.
  • the same opening address or mesh thread number is assigned to the opening image IMo, the weft image IMx, and the warp image IMy that are captured in duplicate. This means that unique identification information is given to all the mesh opening MO and the mesh thread 2m included in the opening formation target range RE1.
  • the specific target range setting unit 162 When the opening address and the mesh thread number are assigned, the specific target range setting unit 162 then coordinates a part of the captured image P1i represented by the i-th processing target data DBi to specify the mesh thread 2m. It is set as a range (mesh position specification target range) (step S8). Roughly speaking, a portion of the range to which the mesh thread number is assigned in the captured image P1i, excluding the peripheral portion, is set as the mesh position identification target range.
  • FIG. 9 is a diagram for explaining the setting of the mesh position specific target range by the specific target range setting unit 162.
  • the specific target range setting unit 162 is a two-dimensional (rectangular) position in the captured image P1i of all the opening image IMos to which the opening addresses are assigned.
  • a quadrilateral Q1Q2Q4Q3 composed of four points Q1 to Q4 belonging to each of the opening image IMos at the four corners is set.
  • the point Q1 is the point with the smallest X and Y coordinates among the four points
  • the point Q2 is a point set so that the line segment Q1Q2 extending from the point Q1 is substantially parallel to the weft image IMx.
  • Point Q3 is a point where the line segment Q1Q3 extending from the point Q1 is set to be substantially parallel to the warp image IMy.
  • the line segment Q2Q4 is parallel to the line segment Q1Q3 and the line segment Q3Q4. Is a point set so as to be parallel to the line segment Q1Q2.
  • the quadrilateral Q1Q2Q4Q3 is rectangular. The inside of the obtained quadrilateral Q1Q2Q4Q3 is the position coordinate identification target range.
  • the above-mentioned quadrilateral Q1Q2Q4Q3 is derived from each of the two opening image IMos that are diagonally located and therefore farthest from each other, out of all the opening image IMos to which the opening addresses are assigned.
  • the two selected points (points Q1 and Q4, or points Q2 and Q3) are defined as diagonal lines, and are specified as a quadrilateral having four sides substantially parallel to the weft image IMx and the warp image Imy.
  • FIG. 9B shows the luminance profile PF1 along the line segment Q1Q2 when the quadrilateral Q1Q2Q4Q3 is set in this way.
  • the luminance profile PF1 the luminance is high at the opening image IMo corresponding to the mesh opening MO, and the luminance is low at the warp image IMy corresponding to the mesh thread 2 m (specifically, the warp thread 2y). High and low are repeated.
  • the specific target range setting unit 162 specifies the midpoint (group) MP1 in each of the former high-luminance ranges.
  • the specific target range setting unit 162 also for each of the line segment Q3Q4, the line segment Q1Q3, and the line segment Q2Q4 at the midpoint (group) at the opening image IMo in the same manner as described above.
  • FIG. 10 is a diagram for explaining the setting of the mesh position specifying line group by the specific target range setting unit 162.
  • the specific target range setting unit 162 specifies a line segment connecting the midpoint MP1 and MP2 having the same opening row number in the midpoint group MP1 and the midpoint group MP2. More specifically, the equations of the straight lines in the device coordinate system ⁇ for these line segments are specified. Similarly, in the midpoint group MP3 and the midpoint group MP4, a line segment connecting the midpoint MP3 and MP4 having the same opening line number is specified. These line segments form a mesh position specifying line group. In the case shown in FIG. 10A, nine line segments B0-B8, C0-C8, D0-D8, E0-E8, F0-F8, G0-G8 connecting the opposing midpoints MP1 and MP2.
  • H0-H8, J0-J8, K0-K8 and seven line segments A1-L1, A2-L2, A3-L3, A4-L4, A5-L5, connecting the opposing midpoints MP3 and MP4.
  • A6-L6 and A7-L7 form a mesh position specifying line group.
  • the mesh position coordinate specifying unit 163 specifies the position coordinates (partial mesh position coordinates) of the mesh thread 2 m for the mesh position specifying line group (step S10). This is a process of identifying a portion where the brightness changes significantly as an edge (end portion) of the mesh thread 2 m in the brightness profile along each line segment forming the mesh position specifying line group.
  • the brightness profile PF2 of the line segment A1-L1 connecting the midpoints MP3 and MP4 defined in the opening image IMo whose opening addresses are A1 and L1 the brightness is high as shown in FIG. 10 (b). Areas and low-brightness areas are repeated alternately.
  • the portion that changes from the high luminance region to the low luminance region corresponds to the left end position of the warp yarn 2y, and the portion that changes from the low luminance region to the high luminance region corresponds to the right end position of the warp yarn 2y. ..
  • the luminance profile PF3 in the line segment F0-F8 connecting the midpoints MP1 and MP2 defined in the opening image IMo whose opening addresses are F0 and F8 is also high as shown in FIG. 10 (c).
  • the luminance region and the low luminance region are alternately repeated, and in the luminance profile PF3, the portion where the luminance region changes from the luminance region to the low luminance region corresponds to the lower end position of the weft 2x, and from the low luminance region to the high luminance region.
  • the part that changes with corresponds to the upper end position of the weft thread 2x.
  • the mesh position coordinate identification unit 163 targets all the mesh position identification line groups belonging to the mesh position identification target range, and from the brightness change in such a luminance profile, the positions of the left and right edges of the warp 2y and the top and bottom of the weft 2x Identify the position of the edge of.
  • the p-th left side from the side with the smaller value in the Y-axis direction is represented by v1 (p) L to v10 (p) L
  • the right edge is represented by v1 (p) R to v10 (p) R.
  • the lower edge p from the side having the smallest value in the X direction is h1 (p) D to h8 (p).
  • the upper edge is represented as h1 (p) U to h8 (p) U.
  • (p) is referred to as a point number.
  • the X coordinate of v1 (p) L is expressed as X1pL
  • the Y coordinate is expressed as Y1pL
  • the X coordinate of v1 (p) R is expressed as X1pR
  • the Y coordinate is expressed as Y1pR
  • the X coordinate of h1 (p) D is expressed as X1pD
  • the Y coordinate is expressed as Y1pD
  • the like the X coordinate of h1 (p) U is expressed as X1pU
  • the Y coordinate is expressed as Y1pU.
  • v5 (1) L (X51L, Y51L)
  • h4 (5) U (X45U, Y45U).
  • each actual coordinate value is specified as a concrete numerical value.
  • v1 (p) L to v10 (p) L v1 (p) R to v10 (p) R, h1 (p) D to h8 (p) D, h1 (p) U to h8 (p) U
  • the coordinates of the left and right edge positions of the warp thread 2y and the positions of the upper and lower edges of the weft thread 2x, which are included in the mesh position specification target range determined based on the captured image P1i represented by the i-th processing target data DBi are set.
  • the data set that describes the partial mesh position coordinates for the i-th imaging range and the partial mesh position coordinates specified based on the captured image P1i is referred to as the i-th partial position information data DCi. That is, it can be said that the mesh position coordinate specifying unit 163 is responsible for generating the i-th partial position information data DCi.
  • FIG. 11 is a diagram showing the positions of the left and right edges of the warp 2y and the positions of the upper and lower edges of the weft 2x described in the i-part position information data DCi in correspondence with the screen mesh 2.
  • the meandering of the mesh thread 2 m is exaggerated.
  • the individual coordinates described in the i-th partial position information data DCi are the positions (representative values) of the two weft threads 2x and the two warp threads 2y forming the respective mesh opening MO. ..
  • step S11 The identification of the partial mesh position coordinates for the captured image corresponding to the other imaging range remains, and the processing for the entire imaging range (that is, the entire opening target range RE1) has not been completed (that is, that is).
  • i Q
  • step S12 the image pickup position by the camera 111 is shifted by driving the movement mechanism 112 under the control of the movement control unit 145. , The processing after step S5 is repeated.
  • the camera 111 is moved so that at least two rows of mesh openings MO in the conventional imaging range overlap in the new imaging range, and the camera 111 is moved in the Y-axis direction.
  • shifting the imaging position the camera 111 is moved so that at least two rows of mesh openings MO in the conventional imaging range overlap in the new imaging range.
  • the overlapping range in each axial direction remains unchanged until imaging for the entire imaging range is complete. In such a case, if the movement amount of the camera 111 is set in advance (for example, based on the first captured image P11) in anticipation of the overlapping range, then the imaging position is automatically moved and the images are captured at all the imaging positions. Can be done.
  • the i-th partial position information data DCi (of Q) is integrated to generate one mesh full position data DD (step S13).
  • the position coordinates of the left and right edges of the warp 2y and the weft which are described for each line segment constituting the mesh position specific line group.
  • the position coordinates of the upper and lower edges of 2x are grouped into the position coordinates of the left edge and the position coordinates of the right edge for the warp threads 2y having the same mesh thread number, and the weft threads 2x have the same mesh thread number. Group to the position coordinates of the upper edge and the position coordinates of the lower edge.
  • FIG. 12 is a diagram illustrating the mesh full position data DD in a tabular format.
  • n warp threads 2y and m weft threads 2x exist in the opening formation target range RE1. That is, each warp thread 2y corresponds to a mesh thread number (warp thread number) of v1 to vm, and each weft thread 2x corresponds to a mesh thread number (weft thread number) of h1 to hm.
  • the point numbers correspond to the number of mesh openings MO (number of rows) counted from the smaller Y coordinate in the opening formation target range RE1 for the warp threads 2y, and in the opening formation target range RE1 for the weft threads 2x. It corresponds to the number of mesh opening MOs (number of columns) counted from the smaller X coordinate.
  • the coordinates of the left edge of the warp with the warp number v2 at the (j) th opening from the smallest X coordinate are (X2jL, Y2jL), and the coordinates of the right edge. Is expressed as (X2jR, Y2jR). The same applies to the weft.
  • the mesh full position data DD is the position coordinates of the edges of all the mesh threads 2 m included in the opening formation target range RE1 for each location of the mesh opening MO, in other words, for each repeating unit in the screen mesh 2.
  • the position coordinates of the edge of the above are the data described in the device coordinate system ⁇ in the order along the extending direction of the mesh thread 2 m.
  • the second coordinate conversion unit 155B uses the second coordinate conversion information IC2 to convert all the coordinate values described in the mesh full position data DD into the plate coordinate system. It is converted into the coordinate value at ⁇ (step S14).
  • the data generated by such conversion is referred to as stretched body mesh position data DE.
  • FIG. 13 is a diagram illustrating the stretched body mesh position data DE in the same tabular format as the mesh full position data DD. Therefore, the format of the stretched body mesh position data DE shown in FIG. 13 is the same as the mesh total position data DD shown in FIG. 12, but the specific coordinate values giving the positions of the edges of the respective mesh threads 2 m are specific. The values are different for both.
  • the coordinates of the left edge of the warp with the warp number v2 at the (j) th opening from the smallest X coordinate are (x2jL, y2jL), and the coordinates of the right edge. Is expressed as (x2jR, y2jR), but these specific coordinate values are the coordinates of the left edge (X2jL, Y2jL) and the coordinates of the right edge (X2jR, Y2jR) for the same position of the same warp, respectively. ) Is different from the specific value.
  • the upholstery mesh position data DE is the position coordinates of the edges of all the mesh threads 2 m included in the opening formation target range RE1 at each location of the mesh opening MO, in other words, the repetition in the screen mesh 2.
  • the data describes the edge position coordinates for each unit in the plate coordinate system ⁇ in the order along the extending direction of the mesh thread 2 m.
  • the position of the edge of the mesh thread 2 m is represented by the plate coordinate system ⁇ means that in the upholstery mesh position data DE, the position of the edge of the mesh thread 2 m is the imaging source of the data. It means that it is described in the coordinate system peculiar to the mesh upholstery body 10 for which the image is captured. Further, from the viewpoint of producing the screen printing plate, the stretched body mesh position data DE is provided on the mesh stretched body 10 created based on the mesh stretched body 10 for which the screen printing plate is manufactured. It is unique data.
  • FIG. 14 shows a contour in which the edge position (that is, the contour position) of the mesh thread 2 m is reproduced corresponding to the range shown in FIG. 11 based on the description content of the stretched body mesh position data DE. It is a figure which shows the image P2. Specifically, a coordinate point described in the stretched body mesh position data DE that gives the position of the left edge (L) or the right edge (R) having the same mesh thread number (warp thread number or weft number) is used. A continuous line formed by connecting in the order of point numbers is shown in the figure. In FIG.
  • the continuous line corresponding to the left edge of the warp number v2 is referred to as Lv2L
  • the continuous line corresponding to the right edge of the warp number v7 is referred to as Lv7R, and the like.
  • the continuous line corresponding to the upper edge of the weft number h2 is referred to as Lh2U
  • the continuous line corresponding to the lower edge of the weft number h8 is referred to as Lh8D, and the like.
  • the continuous line approximates the position of the edge of the actual mesh thread 2 m. Moreover, the positions of all the mesh openings MO are reflected in the generation process. This means that by referring to the description contents of the stretched body mesh position data DE, the specific stretched position of the mesh thread 2 m in the mesh stretched body 10 to be produced of the screen printing plate can be grasped. .. In other words, the stretched body mesh position data DE can be effectively used as data describing the mesh position of the mesh stretched body 10.
  • FIG. 15 shows a mesh redevelopment P3 that reproduces the mesh thread 2 m by filling the space between the continuous lines paired horizontally or vertically based on the contour image P2 shown in FIG. 14 (set as a low-luminance region). It is a figure which shows.
  • mesh redevelopment P3 the mesh thread 2 m and the mesh opening MO are suitably reproduced by using the stretched body mesh position data DE. It is also possible to make the shape of the mesh thread 2 m closer to the actual shape by performing the smoothing process on the continuous line.
  • the stretched body mesh position data DE itself does not include information that identifies the mesh stretched body 10 that was the creation source. Since the stretched body mesh position data DE is unique to the mesh stretched body 10 from which it was created, it has a significance of existence only when both are associated with each other. Therefore, the stretched body mesh position data DE is associated with the stretched body identification information ID that identifies (processes) the mesh stretched body 10 that is the creation source of the stretched body mesh position data DE in the association processing unit 170 (step S15).
  • the data in which the stretched body mesh position data DE and the stretched body identification information ID are associated with each other is particularly referred to as a mesh position data DF with identification information.
  • the created upholstery mesh position data DE or mesh position data DF with identification information is stored in the storage unit 134, or is connected to a storage device (hard disk, mesh position identification device 100) outside the device via a network. It is stored (stored) in a predetermined storage medium (for example, DVD-RAM, DVD-RW, USB memory, SD card, etc.) that is portable (for example, a server).
  • a predetermined storage medium for example, DVD-RAM, DVD-RW, USB memory, SD card, etc.
  • the coordinate values of the plate coordinate system ⁇ of the three marks M1 to M3 are included in the second coordinate conversion information IC2, the coordinate values are also described in the stretched body mesh position data DE. Will be done.
  • the stretched body identification information ID is set in various formats such as a predetermined number, symbol, character string, or a combination thereof, and the stretched body mesh position data by the association processing unit 170. There are also various specific modes of associating the DE with the upholstery body identification information ID.
  • the mesh position data DF with identification information is generated by adding the stretched body identification information ID set by the number or symbol as it is as one of the data items in the stretched body mesh position data DE.
  • the stretched body identification information ID is held as independent data to the last, and the information associating the data with the stretched body mesh position data DE is set as the mesh position data DF with the identification information. It may be in this mode. Further, the stretched body identification information ID may be attached as the data file name of the stretched body mesh position data DE.
  • the stretched body mesh position data DE is stored in a portable storage medium, and the stretched body identification information ID is printed or pasted on the stored storage medium itself outside the mesh position specifying device 100. It may be a mode physically attached in the mode. In that case, the stretched body identification information ID may be attached in the form of characters or symbols as they are, or may be attached in an encrypted form such as a bar code or a two-dimensional code. Good. In such a case, the association processing unit 170 is not an indispensable component in the mesh position specifying device 100.
  • the mesh position data DF with identification information does not have to be a single piece of data described in a predetermined format, and the stretcher identification information ID for a mesh stretcher 10 and the mesh stretcher It suffices as long as it is one-to-one association with the stretched body mesh position data DE created based on the structure 10.
  • FIG. 16 is a diagram showing the relationship between various data generated in the process from the identification of the mesh position to the production of the screen printing plate, which is a subsequent step, and the mesh upholstery body 10.
  • the upholstery body 10 In producing a screen printing plate using the mesh upholstery body 10, to refer to the upholstery body mesh position data DE created based on the mesh upholstery body, as shown in FIG. 16, the upholstery body In order to distinguish not only the mesh position data DE but also the mesh upholstery body 10 itself from which it was generated, in other words, the mesh upholstery body 10 and the upholstery body 10 It is necessary to give the stretched body identification information ID so that there is a one-to-one correspondence with the mesh position data DE.
  • the mesh upholstery body 10 to which the upholstery body identification information ID is given in this way prior to being used for producing the printing plate is particularly referred to as the mesh upholstery body 10A with identification information. ..
  • the stretched body identification information ID may be attached in the form of characters or symbols as they are, or may be attached in an encrypted form such as a bar code or a two-dimensional code. Good.
  • a printing plate pattern creating device such as CAD is used to create a screen opening corresponding to a predetermined pattern (printing pattern) to be formed by screen printing.
  • a pattern data DP describing the arrangement pattern for the mesh stretched body 10 is created, but in the conventional method, the positions of the individual mesh threads 2 m stretched on the mesh stretched body 10 cannot be specified in advance. Therefore, normally, the position of the mesh thread 2 m is not taken into consideration when creating the pattern data DP.
  • the size of the mesh thread 2 m and the design size of the mesh opening MO which are selected and set when the mesh upholstery body 10 is manufactured, can be grasped. That is, the actual positions of the individual mesh threads 2 m on the mesh upholstery 10 were not specified.
  • the individual mesh positioning device 100 forms the screen mesh 2 stretched on the mesh stretched body 10 which is the target for producing the screen printing plate.
  • the stretcher mesh position data DE in which the position of the mesh thread 2 m is specified in advance is generated, and the stretcher identification information ID unique to the mesh stretcher is capable of identifying each mesh stretcher 10. Is associated with the upholstery mesh position data DE.
  • the arrangement of the mesh threads 2 m can be referred to based on the stretched body mesh position data DE.
  • a layer describing continuous lines indicating the contour positions of the individual mesh threads 2 m as shown in FIG. 14 is provided based on the stretched body mesh position data DE, and the mesh threads 2 m are provided. It is realized by the aspect of designing a pattern in another layer while referring to the contour position of. Since the continuous line shown in FIG. 14 is expressed as vector data by connecting the coordinates described in the stretched body mesh position data DE in order, for example, a general print plate pattern such as CAD is created. It is fully available in the device.
  • the stretched body identification information ID is also associated with the pattern data DP created by using the stretched body mesh position data DE in the above manner.
  • the pattern data DP associated in this way is referred to as a pattern data DPA with identification information.
  • the association between the pattern data DP and the upholstery identification information ID in the pattern data DPA with identification information may be the same as the association between the upholstery mesh position data DE and the upholstery identification information ID.
  • the screen opening is based on the pattern data DP associated with the same stretched body identification information ID for the mesh stretched body 10 to which a certain stretched body identification information ID is given. A part is provided.
  • FIG. 17 is a diagram for exemplifying one aspect of using the stretched body mesh position data DE.
  • a certain printing pattern Z1 substantially rectangular in FIG. 17A
  • the tolerance range TR1 shown by the broken line is preset for the print pattern Z1. That is, if the print pattern Z1 is within the tolerance range TR1, there is a degree of freedom in the formation position (positional deviation is allowed).
  • FIG. 17B when creating the pattern data DP for producing the screen printing plate used for forming the printing pattern Z1, the screen opening OP1 ⁇ for forming the printing pattern Z1 is designed for the printing pattern Z1.
  • the initial pattern PT1 ⁇ provided at the position is shown.
  • the initial pattern PT1 ⁇ is superposed on the base pattern PT1m in which the stretched body mesh position data DE associated with the mesh stretched body 10 used for the creation is read. ing.
  • the outline of the mesh thread 2m is shown in the base pattern PT1m.
  • the right end of the screen opening OP1 ⁇ in the drawing overlaps with the intersection of the contour lines of the warp threads 2y and the contour lines of the weft threads 2x indicated by, for example, arrows AR1 and AR2.
  • the print pattern Z1 may be deformed from a desired shape and formed.
  • the information of the base pattern PT1m indicating the arrangement state of the mesh thread 2m was not obtained, so that the screen opening is tentatively arranged as shown in FIG. 17B. It was difficult to prevent this even when the part was provided.
  • the base pattern PT1m it is possible to actually realize the state of superposition as shown in FIG. 17B, and therefore, in the process of creating the pattern data DP, the base pattern PT1m Further, in the initial pattern PT1 ⁇ , there is an overlap between the intersection of the warp yarn 2y and the weft yarn 2x and the screen opening OP1 ⁇ as shown in FIG. 17B in the initial pattern PT1 ⁇ . Even if, for example, as shown by the arrow AR3 in FIG. 17C, the formation position of the screen opening OP1 is shifted so as not to overlap with the intersection within the tolerance range TR1 for printing plate formation. It can also be the pattern PT1.
  • a predetermined tolerance range is allowed for the arrangement position, while a screen printing plate is used for a print object that is required to have the shape as designed. Suitable for forming by screen printing.
  • FIG. 18 shows the schematic configuration of the printing plate manufacturing system 1000 for manufacturing the screen printing plate described above with the printing plate manufacturing target mesh upholstery 10 used for manufacturing the screen printing plate and finally prepared. It is a figure which shows with the relationship with the screen printing plate 20.
  • the printing plate manufacturing system 1000 includes a mesh position specifying device 100 already described in detail, a printing plate pattern creating CAD 200 which is a printing plate pattern creating device, and a printing plate manufacturing device 300.
  • the mesh position specifying device 100 specifies the mesh position in the opening target range RE1 of the print plate production target mesh upholstery 10 in the above-described embodiment, and provides the stretched body mesh position data DE describing the result. Output.
  • the stretched body identification information ID unique to the stretched body 10 is associated with the stretched body mesh position data DE.
  • the print plate pattern creation CAD200 is realized, for example, by loading and executing predetermined CAD software on a general-purpose computer.
  • the print plate pattern creation CAD200 as shown in FIG. 17, it is possible to design a pattern for a print plate in a state where the contour line of the mesh thread 2 m is read into the base layer based on the upholstery mesh position data DE. It is also possible to adjust the arrangement of the screen opening depending on how the screen opening and the contour line of the mesh thread 2m overlap.
  • the printing plate making apparatus 300 can coat the screen mesh 2 of the mesh upholstery 10 with an emulsion and form (exposure) a screen opening based on the pattern data DP created by the printing plate pattern making CAD200. , Known devices can be applied.
  • FIG. 19 is a diagram showing the flow of the screen printing plate manufacturing process performed by using the printing plate manufacturing system 1000, particularly the processing after the mesh position data DF with identification information is created.
  • the upholstery identification information ID of the upholstery body identification information ID of the print plate production target mesh upholstery 10 for which the mesh position data DF with identification information is created in advance, which is used for producing the screen print plate (which is the production target), is specified.
  • the printing plate pattern creation CAD (hereinafter referred to as CAD) 200 is read with the stretched body mesh position data DE associated with the stretched body identification information ID, so that the display means (not shown) of the CAD 200 is not shown.
  • the mesh position of the mesh upholstery 10 for printing plate production is visibly reproduced on the (display screen) (step S102).
  • the stretched body mesh position data DE is data in which the coordinate points of the edges of the mesh thread 2 m are described in a predetermined arrangement order.
  • FIG. 13 the stretched body mesh position data DE is shown in a tabular format, but the format is merely an example, and the actual stretched body mesh position data DE is data suitable for reading in the CAD 200. It may be described in a format.
  • the mesh position is reproduced in the base layer.
  • the mesh position may be reproduced by using the contour line as shown in FIG. 14, or a bright and dark image similar to the captured image of the actual screen mesh 2 as shown in FIG. 15 is used. You may.
  • the operator of the CAD200 designs the pattern of the screen opening and creates the pattern data DP while referring to the redevelopment of the mesh position shown on the display screen (step S103).
  • the design of the screen opening pattern referred to here includes not only the case of performing a new design but also the case of adjusting the pre-made initial pattern data DP according to the redevelopment of the mesh position.
  • the parts that make up the pattern data DP may be arranged as necessary. Fine adjustment of the size is performed.
  • Such fine adjustment may be performed automatically by image processing in the CAD 200. For example, when the degree of overlap between the end of the screen opening part constituting the pattern data DP and the intersection of the warp 2y and the weft 2x exceeds a predetermined threshold value, the arrangement of the part is predetermined. This is achieved by having the CAD 200 perform a process such as shifting within the tolerance range.
  • the created pattern data DP is associated with the stretched body identification information ID of the mesh stretched body 10, and the pattern data DPA with the identification information is created (step S104).
  • the created pattern data DPA with identification information is delivered to the printing plate making apparatus 300.
  • the operator of the print plate making apparatus 300 uses the mesh upholstery body 10 to which the same upholstery body identification information ID as the upholstery body identification information ID included in the pattern data DPA with the identification information is attached to be the target for producing the print plate. (Step S105).
  • a screen printing plate is manufactured using the pattern data DP associated with the stretched body identification information ID for the acquired mesh stretched body 10, specifically, the mesh stretched body.
  • the coating of the emulsion on the screen mesh 2 of 10 and the exposure of the formed portion of the screen opening based on the description content of the pattern data DP are performed (step S106).
  • the screen printing plate 20 is completed. Since a known technique can be applied to the screen printing plate manufacturing process in the printing plate manufacturing apparatus 300, detailed description thereof will be omitted.
  • the coordinate values of the plate coordinate system ⁇ of the three marks M1 to M3 are described in the stretched body mesh position data DE, the coordinates related to the pattern data DP generated in the CAD 200. The value is described. Then, the coordinate values coincide with the coordinate positions described in the pattern data DP by the marks M1 to M3 formed on the mesh upholstery 10 for printing plate production when the screen printing plate 20 is produced by the printing plate manufacturing apparatus 300. As such, the printing plate production target mesh upholstery body 10 is positioned. As a result, the plate coordinate system ⁇ set in the print plate production target mesh upholstery 10 is reproduced in the print plate production apparatus 300.
  • the mesh position specifying device 100 specifies the mesh position for a certain printing plate manufacturing target mesh stretching body 10, and the CAD 200 performs the mesh stretching.
  • the pattern data DP is created on the premise that the body 10 is the target for producing the screen printing plate, and the printing plate manufacturing target mesh upholstery 10 for which the pattern data DP is created in the printing plate manufacturing apparatus 300 is created. It is not always necessary to continuously produce the target screen printing plate.
  • the unique upholstery body identification information ID that uniquely identifies each of the mesh upholstery bodies 10 to be produced on the printing plate is set for all the mesh upholstery bodies 10 and is stretched.
  • body mesh position data DE and pattern data DP That is, in the CAD 200 and the printing plate making apparatus 300, the stretched body mesh position data DE or the pattern data DP of the target mesh stretched body 10 is associated with them at an appropriate timing when the processing is to be performed. It is possible to easily take out (read) from a predetermined storage location based on the upholstery body identification information ID.
  • the mesh positioning device 100, the CAD 200, and the printing plate manufacturing device 300 constituting the printing plate manufacturing system 1000 do not have to be integrated, and the data can be stored through a network or by using a portable storage medium. If delivery is possible, one mesh upholstery 10 is associated with the upholstery mesh position data DE and the pattern data DP created based on the one mesh upholstery 10 via the upholstery identification information ID. As long as it means that each may be provided separately. In such cases, it is permissible for the devices to be installed at remote locations.
  • the mesh positions of a large number of mesh upholstery bodies 10 are specified in advance, and the upholstery mesh position data DE or the mesh position data DF with identification information produced based on the mesh positions are collectively stored in a predetermined storage location, or It is also possible to store the data individually on a portable storage medium.
  • the upholstery mesh position data DE associated with the upholstery identification information ID of the mesh upholstery 10 to be produced of the screen printing plate 20 is read at the stage when it becomes necessary to perform the subsequent processing. It will be issued and used to create the pattern data DP.
  • the mesh tensioning target for producing the screen printing plate is applied in the mesh position specifying device 100.
  • the mesh position of the screen mesh 2 stretched on the body 10 is specified in advance.
  • the upholstery mesh position data DE describing the specified mesh position is associated with an upholstery identification information ID unique to the mesh upholstery that can identify the individual mesh upholstery 10.
  • the pattern of the screen opening is formed using the pattern data DP based on the stretched body mesh position data DE. It is possible to refer to the mesh arrangement for the mesh upholstery body 10. In general, when the mesh thread 2 m is stretched, the arrangement position may vary randomly. However, according to the present embodiment, the pattern data DP can be created while referring to the mesh position, so that the pattern takes the variation into consideration. Data DP can be created.
  • the arrangement position of the parts on the pattern data DP corresponding to the screen opening can be appropriately shifted as necessary. .. In such a case, it is possible to suppress the deformation of the printing pattern caused by the end portion of the screen opening being formed at the intersection position of the mesh threads in the screen printing plate.
  • the mesh position specifying device 100 and the printing plate manufacturing system 1000 including the mesh position specifying device 100 according to the present embodiment contribute to the manufacturing of a screen printing plate having excellent printing accuracy.
  • the stretched body mesh position data DE and the stretched body 10 are associated with each other by the stretched body identification information ID, the creation of the pattern data DP and the production of the screen printing plate in the printing plate manufacturing apparatus 300 can be performed. It is not necessary to continuously identify the mesh position.
  • the stretched body mesh position data DE is stored in the portable storage medium in advance, and the stretched body mesh position data DE and the stretched body identification information ID are associated with each other.
  • the worker of the print plate pattern creation CAD200 concerned at an arbitrary timing when the pattern data DP is created in the print plate pattern creation CAD200 which has passed a considerable time from the creation of the upholstery mesh position data DE. It is also possible to acquire the storage medium, read the stretched body mesh position data DE stored, and refer to it when creating the pattern data DP.
  • the stretched body mesh position data DE associated with the stretched body identification information ID is stored in advance in a storage device accessible from the outside such as a predetermined server, the screen printing plate 20 is to be produced.
  • the worker of the print plate pattern creation CAD200 that has acquired the stretched body identification information ID of the mesh stretched body 10 accesses the server and is associated with the acquired stretched body identification information ID. It is also possible to read the mesh position data DE and use it for creating the pattern data DP.
  • these measures can be taken even when the mesh position specifying device 100, the printing plate pattern creating CAD 200, and the printing plate making device 300 are remote from each other. In such a case, the delivery of the mesh upholstery body 10 and the delivery of the upholstery mesh position data DE can be performed separately.
  • the production of the pattern data DP and the subsequent process of producing the screen printing plate using the pattern data DP can be separated temporally and spatially from the identification of the mesh position.
  • the mesh upholstery body 10 for which the upholstery body mesh position data DE is generated is sold to a third party. That is, the mesh upholstery body 10 in which the mesh position is specified in advance and the upholstery mesh position data DE is generated is the upholstery body identification information for specifying the upholstery body mesh position data DE and the mesh upholstery body 10. It is possible to sell the mesh position data DF with identification information associated with the ID as a set with the storage medium in which the DF is stored. Alternatively, the mesh upholstery body 10 in which the mesh position is specified in advance and the upholstery mesh position data DE is generated and then stored in a predetermined server is used as an upholstery body for specifying the mesh upholstery body 10. It is also possible to sell the product together with the access right based on the identification information ID.
  • the current collecting electrode is an electrode provided on one main surface of the substrate for a solar cell, and is formed by a wide bus bar electrode extending in one direction and a bus bar electrode extending vertically from each of the bus bar electrodes. , It is composed of a large number of narrow finger electrodes which are repeatedly provided while being separated in the extending direction of the bus bar electrode.
  • the current collecting electrode is formed by printing and forming a pattern of an electrode paste film having a portion corresponding to each of a bus bar electrode and a finger electrode on a substrate for a solar cell, and then firing the substrate together with the substrate. It is desirable that the finger electrodes have a uniform shape (width) from the viewpoint of current collection efficiency, etc., while the formation positions are ideally evenly spaced, but individually. It is assumed that some displacement (tolerance) is allowed.
  • FIG. 20 is a diagram showing a state in which the electrode paste film Z2 ⁇ is formed on the substrate W2 for a solar cell.
  • the electrode paste film Z2 ⁇ shown in FIG. 20 includes one busbar portion Z2 ⁇ b corresponding to the busbar electrode and a large number of finger portions Z2 ⁇ f each corresponding to the finger electrode.
  • the width of the bus bar portion Z2 ⁇ b and the finger portion Z2 ⁇ f shown in FIG. 20 is larger than the actual one, and the number of finger portions Z2 ⁇ f is also considerably smaller than the actual one.
  • the finger electrodes are repeatedly arranged at equal intervals in the extending direction of the bus bar electrodes.
  • the finger portions Z2 ⁇ f being arranged at equal intervals in the electrode paste film serving as the current collecting electrode is referred to as an ideal arrangement so that the arrangement at equal intervals is realized in the current collecting electrodes.
  • the finger portion Z2 ⁇ f is formed in this ideal arrangement.
  • FIG. 21 is a diagram showing an initial design pattern PT2 ⁇ for producing a screen printing plate used for forming the electrode paste film Z2 ⁇ shown in FIG. 20.
  • the initial design pattern PT2 ⁇ includes a bus bar part PAb that serves as a screen opening for forming the bus bar portion Z2 ⁇ b, and a finger portion PAf that serves as a screen opening for forming the finger portion Z2 ⁇ f.
  • the finger portion parts PAf are arranged at equal intervals so that the ideal arrangement is realized in the finger portion Z2 ⁇ f.
  • FIG. 22 is a diagram in which layers giving the mesh position pattern PT2m are superimposed as a base layer of the layer giving the design pattern PT2 in the CAD 200 constituting the printing plate manufacturing system 1000.
  • the design pattern PT2 is a modification of a part of the initial design pattern PT2 ⁇ .
  • the ends of both are offset for convenience of illustration, but in reality, the sizes of both are the same.
  • the mesh position pattern PT2m is formed by reading the mesh position described in the stretched body mesh position data DE created based on the mesh stretched body 10 to be produced of the screen printing plate 20 into the CAD 200. ..
  • one side portion thereof is a weft line Lha representing a position where a weft thread exists in the mesh position pattern PT2m. It shows a state in which the weft is close to or intersects with the intersection Ca with the warp line Lva indicating the presence of the weft.
  • another finger part PAfb also provided in the initial design pattern PT2 ⁇ one end thereof is close to or intersects the intersection Cb of the weft line Lhb and the warp line Lvb in the mesh position pattern PT2m. ing.
  • the screen printing plate 20 is manufactured with the initial design pattern PT2 ⁇ in the ideal arrangement, the screen opening formed corresponding to the finger portion parts PAfa and PAfb is formed. In such a case, the printing film is deformed at the portion corresponding to those screen openings, and it is difficult to actually obtain the electrode paste film Z2 ⁇ having the finger portion Z2 ⁇ f having the shape shown in FIG. Conceivable.
  • FIG. 23 is a diagram illustrating a screen printing plate 20 produced by the printing plate manufacturing apparatus 300 using the design pattern PT2 in which such a shift is made in the CAD 200.
  • the emulsion film 3 is formed on the screen mesh 2 (not shown), and the screen opening OPz is formed in the manner set in the design pattern PT2.
  • the shape of the screen opening OPz of the screen printing plate 20 shown in FIG. 23 reflects the shift of the finger portion parts PAfa and PAfb shown in FIG. 22, and the positions of the corresponding finger openings OPfa and OPfb are other. It shifts from the evenly spaced arrangement of the openings.
  • FIG. 24 is a diagram showing a state in which the electrode paste film Z2 is formed on the substrate W2 for a solar cell by using the screen printing plate 20 shown in FIG. 23.
  • the formation positions of the unit finger portions Zfa and Zfb are shifted from the equidistant arrangement formed by the other unit finger portions in accordance with the shift of the finger openings OPfa and OPfb.
  • the shapes of the unit finger portions Zfa and Zfb are kept uniform.
  • the mesh position specifying device 100 specifies the coordinates of the portion of the mesh thread 2 m (weft thread 2x and warp thread 2y) forming the mesh opening MO, whereby the stretched body mesh position is specified.
  • Data DE was generated, but instead of this, the coordinates of the intersection of the weft 2x and the warp 2y (the center point of the intersection of the two) were specified, and the stretched body mesh position data was used as the data describing the coordinates. It may be an aspect of generating DE. Also in such a case, the position coordinates for each repeating unit in the screen mesh 2 can be described in the order along the extending direction of the mesh thread 2 m.
  • the coordinates of the center line of the mesh thread 2m and the line width are derived from the coordinates of the left and right edges of the warp thread 2y and the coordinates of the upper and lower edges of the weft thread 2x, and the stretched body mesh position is used as the data describing these. It may be an aspect of generating data DE.
  • the two points selected from are set as diagonal lines, and the inside of the quadrilateral having four sides substantially parallel to the weft image IMx and the warp image Imy is set as the position coordinate specification target range for specifying the mesh position.
  • an opening image IMo at a position deviated from the diagonal position may be selected to specify the quadrilateral, and the inside thereof may be set as the position coordinate specification target range.
  • the position coordinate identification target range is set as the position coordinate identification target range.
  • the mesh thread 2 whose mesh position is specified based on the range is only a part of the mesh thread 2m shown in the captured image P1i, and is the same. It becomes necessary to repeat the identification while specifying different position coordinate identification target ranges. Therefore, from the viewpoint of efficiency, it can be said that the method of the above-described embodiment is excellent.
  • the mesh position in the mesh upholstery body 10 before the coating with the emulsion is applied is specified by the mesh position specifying device 100, but instead of this, the screen mesh 2 is previously used.
  • the screen mesh 2 of the mesh stretched body (coated mesh stretched body) coated with an emulsion may be the target for specifying the mesh position by the mesh position specifying device 100.
  • the mesh position is set based on the captured image in the same manner as in the above-described embodiment. Can be identified.
  • step S106 of FIG. 19 only the exposure of the formed portion of the screen opening based on the description content of the pattern data DP is performed.

Abstract

According to the present invention, it is possible to specify the arrangement position of a mesh yarn provided in a mesh stretched body for manufacturing a screen printing plate, and refer to the arrangement position when creating pattern data for a screen opening. This mesh position specifying device comprises: an image capturing means for capturing an image of a screen mesh; a specific processing means for specifying, on the basis of the obtained captured image, the respective arrangement positions of a plurality of the mesh yarns in the mesh stretched body, for each repeating unit in the screen mesh, and generating mesh position data described by rearranging the coordinate values of the arrangement positions specified for each repeating unit in the order along the extending direction of the mesh yarn; and an associating means for associating the mesh position data with identification information for uniquely identifying the mesh stretched body to be image-captured, wherein the specific processing means generates the mesh position data in a data format by which the arrangement positions of the plurality of mesh yarns can be substantially reproduced when creating the pattern data.

Description

メッシュ位置特定装置、印刷版作製システム、印刷版パターン作成装置、記憶媒体、スクリーンメッシュ張設体、メッシュ位置特定方法、印刷版作製方法、および印刷版パターン作成方法Mesh position identification device, printing plate making system, printing plate pattern making device, storage medium, screen mesh upholstery, mesh position specifying method, printing plate making method, and printing plate pattern making method
 本発明は、スクリーン印刷版およびその作製に用いるスクリーンメッシュ張設体に関し、特に、スクリーンメッシュ張設体におけるメッシュ位置の形成位置の特定と、当該形成位置に応じたスクリーン印刷版の作製に関する。 The present invention relates to a screen printing plate and a screen mesh upholstery used for producing the same, and more particularly to specifying a formation position of a mesh position in the screen mesh upholstery and producing a screen printing plate according to the formation position.
 スクリーン印刷用の印刷版(スクリーン印刷版)は、金属またはナイロン線材からなるメッシュ糸(縦糸および横糸)が互いに交差するように製織された網目構造(メッシュ構造)のうえに乳剤が塗布され、係る乳剤によって形成された塗布膜のうち、印刷によって形成しようとするパターン(印刷パターン)の部分が開口部(スクリーン開口部)とされた構成を有する。スクリーン印刷で高精細な印刷を行う場合、例えば、電子デバイスの製造過程において行われる微細な配線パターンの印刷など、使用するスクリーン印刷版におけるこのような網目構造の状態が、最終製品の品質に影響を与えることがある。 A printing plate for screen printing (screen printing plate) is such that an emulsion is applied on a mesh structure (mesh structure) woven so that mesh threads (warp threads and weft threads) made of metal or nylon wire rod intersect with each other. Among the coating films formed by the emulsion, the portion of the pattern (printing pattern) to be formed by printing has an opening (screen opening). When high-definition printing is performed by screen printing, the state of such a mesh structure in the screen printing plate used, for example, printing of fine wiring patterns performed in the manufacturing process of electronic devices, affects the quality of the final product. May be given.
 一例として、太陽電池の集電電極(バスバー電極およびフィンガー電極)の形成が挙げられる。係る集電電極は、コストメリットなどの観点から、導電性ペースト(電極ペースト)のスクリーン印刷により基板上に電極形状に応じた印刷パターン(ペースト膜)を形成し、その後焼成する、という手法にて形成されるが、どの位置においても均一な形状をなし、電気的な特性についても一定であることが求められる。 One example is the formation of current collecting electrodes (busbar electrodes and finger electrodes) of a solar cell. From the viewpoint of cost merit, the current collecting electrode is formed by screen-printing a conductive paste (electrode paste) to form a printing pattern (paste film) on the substrate according to the electrode shape, and then firing. Although it is formed, it is required to have a uniform shape at every position and to have constant electrical characteristics.
 しかしながら、そのような集電電極形成用のスクリーン印刷版において、電極パターンに対応させて設けられたスクリーン開口部が縦糸と横糸との交点上に位置する場合、係るスクリーン印刷版を用いた印刷によって形成される幅細のペースト膜に、太り細りなどの変形が生じてしまうことが知られている。係る場合、形成された集電電極において個々のバスバー電極およびフィンガー電極の導電特性に違いが生じ、極端な場合には、断線などの欠陥を生じることにも繋がる。それゆえ、太陽電池の集電電極の形成に関しては、スクリーン開口部がメッシュ糸の交点位置に重ならないようにパターン設計を行うことで、集電電極の特性ばらつきの回避が図られている。 However, in such a screen printing plate for forming a current collecting electrode, when the screen opening provided corresponding to the electrode pattern is located at the intersection of the warp and the weft, printing using the screen printing plate is performed. It is known that the narrow paste film formed is deformed such as thickened and thinned. In such a case, the conductive characteristics of the individual bus bar electrodes and the finger electrodes differ in the formed current collecting electrodes, and in an extreme case, defects such as disconnection may occur. Therefore, regarding the formation of the current collecting electrode of the solar cell, the pattern design is performed so that the screen opening does not overlap with the intersection position of the mesh thread, thereby avoiding the variation in the characteristics of the current collecting electrode.
 また、このような、スクリーン印刷による印刷パターンの形成に際しメッシュ糸の交点近傍においてパターンが変形するという課題に関し、縦糸と横糸と張設する際に版枠に対し所定の傾きを与えるバイアス張りを行い、かつ、印刷パターンに対応するスクリーン開口部の大きさをスクリーンメッシュの目開きサイズとメッシュ糸の直径のとの総和の整数倍としたスクリーンのスクリーン印刷版を用いることによって対応し、印刷パターン(具体的には認識マークのパターン)の形状精度を確保する態様が、すでに公知である(例えば、特許文献1参照)。 Further, regarding the problem that the pattern is deformed in the vicinity of the intersection of the mesh threads when forming the print pattern by screen printing, bias tensioning is performed to give a predetermined inclination to the plate frame when the warp threads and the weft threads are stretched. And, by using a screen printing plate of the screen in which the size of the screen opening corresponding to the printing pattern is an integral multiple of the sum of the opening size of the screen mesh and the diameter of the mesh thread, the printing pattern ( Specifically, a mode for ensuring the shape accuracy of the recognition mark pattern) is already known (see, for example, Patent Document 1).
 一方で、メッシュ糸として芯材の周囲に除去可能な被覆層を形成したものが採用され、かつ、スクリーン開口部において露出するメッシュ糸の被覆層が除去されたパターン印刷版を用いることによって、印刷精度を確保しようとする態様も、すでに公知である(例えば、特許文献2参照)。 On the other hand, printing is performed by using a pattern printing plate in which a removable coating layer is formed around the core material as the mesh yarn and the coating layer of the mesh yarn exposed at the screen opening is removed. A mode for ensuring accuracy is already known (see, for example, Patent Document 2).
 近年、電子デバイスの小型化、高集積化、高効率化などの要請から、スクリーン印刷の際の印刷線幅の微細化が求められてきている。例えば、上述した太陽電池の集電電極の例であれば、発電効率の向上を目的として、電極線幅の微細化が求められてきている。 In recent years, there has been a demand for miniaturization of the print line width during screen printing due to demands for miniaturization, high integration, and high efficiency of electronic devices. For example, in the case of the above-mentioned example of the current collecting electrode of a solar cell, miniaturization of the electrode line width has been required for the purpose of improving power generation efficiency.
 一方で、スクリーン印刷版において網目構造をなすメッシュ糸の位置は、本来的に規則正しく等間隔であるべきところ、実際には、製織工程や版枠への張設接着工程の結果によりわずかではあるがばらつき得る。そのため、同一の条件で作製されたスクリーン印刷版の間においても、わずかに異なることがある。上述した印刷線幅の微細化を進めるうえにおいて、このようなメッシュ糸の位置ばらつきの影響が、無視できなくなってきている。しかしながら、係るばらつきは、規則性のないランダムな現象であって再現性がない。また、メッシュ糸にランダムな位置ばらつきがあるということは当然ながら、縦糸と横糸の交点位置にもランダムな位置ばらつきがあるということである。 On the other hand, in the screen printing plate, the positions of the mesh threads forming the mesh structure should be regularly and evenly spaced, but in reality, the positions are slightly due to the results of the weaving process and the stretching and bonding process to the plate frame. Can vary. Therefore, it may be slightly different even between screen printing plates manufactured under the same conditions. In advancing the miniaturization of the print line width described above, the influence of such positional variation of the mesh thread cannot be ignored. However, such variation is a random phenomenon with no regularity and is not reproducible. In addition, it goes without saying that the mesh yarn has a random positional variation, and that the intersection position of the warp yarn and the weft yarn also has a random positional variation.
 特許文献1および特許文献2のいずれにも、このようなメッシュ糸のランダムな位置ばらつきへの対処につき、何らの開示も示唆もなされてはいない。 Neither Patent Document 1 nor Patent Document 2 makes any disclosure or suggestion regarding dealing with such random positional variation of mesh threads.
特開2000-347424号公報Japanese Unexamined Patent Publication No. 2000-347424 特開平10-315648号公報JP-A-10-315648
 本発明は上記課題に鑑みてなされたものであり、スクリーン印刷版の作製に用いるスクリーンメッシュ張設体に備わるメッシュ糸の配置位置を特定することができ、さらには、係る配置位置に応じてスクリーン印刷版を作製する際に、特定されたメッシュ糸の配置位置を参照可能な状態でスクリーン開口部のパターンデータを作成可能な技術を提供することを、目的とする。 The present invention has been made in view of the above problems, and it is possible to specify the arrangement position of the mesh thread provided in the screen mesh upholstery used for producing the screen printing plate, and further, the screen is arranged according to the arrangement position. It is an object of the present invention to provide a technique capable of creating pattern data of a screen opening in a state in which a specified mesh thread arrangement position can be referred to when producing a printing plate.
 上記課題を解決するため、本発明の第1の態様は、スクリーン印刷版の作製に用いられるスクリーンメッシュ張設体に張設されたスクリーンメッシュを構成する、複数のメッシュ糸の配置位置を、特定する装置であって、前記複数のメッシュ糸の配置位置の特定対象である前記スクリーンメッシュ張設体の前記スクリーンメッシュを撮像する撮像手段と、前記撮像手段による前記スクリーンメッシュの撮像画像に基づいて、前記スクリーンメッシュ張設体における前記複数のメッシュ糸のそれぞれの配置位置を前記スクリーンメッシュにおける繰り返し単位ごとに特定し、前記繰り返し単位ごとに特定された前記配置位置の座標値を、前記複数のメッシュ糸のそれぞれの延在方向に沿った順序に再配列して記述したメッシュ位置データを生成する特定処理手段と、前記メッシュ位置データと、前記撮像手段による撮像の対象とされた前記スクリーンメッシュ張設体を一意に識別可能な識別情報とを関連付ける、関連付け手段と、を備え、前記特定処理手段は、前記メッシュ位置データを、スクリーン印刷版作製用のパターンデータの作成に際して前記複数のメッシュ糸の配置位置を実質的に再現可能なデータ形式にて生成する、ことを特徴とする。 In order to solve the above problems, in the first aspect of the present invention, the arrangement positions of a plurality of mesh threads constituting the screen mesh stretched on the screen mesh stretched body used for producing the screen printing plate are specified. Based on an image pickup means for imaging the screen mesh of the screen mesh upholstery body, which is a target for specifying the arrangement positions of the plurality of mesh threads, and an image captured by the image pickup means for the screen mesh. The arrangement position of each of the plurality of mesh threads in the screen mesh upholstery is specified for each repetition unit in the screen mesh, and the coordinate value of the arrangement position specified for each repetition unit is set to the plurality of mesh threads. Specific processing means for generating mesh position data described by rearranging in order along each extending direction, the mesh position data, and the screen mesh upholstery body to be imaged by the imaging means. The specific processing means comprises associating means for associating the above with identification information that can be uniquely identified, and the specific processing means uses the mesh position data as the arrangement position of the plurality of mesh threads when creating pattern data for screen printing plate production. Is generated in a substantially reproducible data format.
 本発明の第2の態様は、第1の態様に係るメッシュ位置特定装置であって、前記特定処理手段は、前記複数のメッシュ糸のそれぞれの一対のエッジの位置を、前記配置位置として前記スクリーンメッシュにおける繰り返し単位ごとに特定し、かつ、前記メッシュ位置データにおいて、前記配置位置の座標値を前記複数のメッシュ糸のそれぞれの延在方向に沿った順序で記述する、ことを特徴とする。 A second aspect of the present invention is the mesh position specifying device according to the first aspect, wherein the specific processing means uses the position of each pair of edges of the plurality of mesh threads as the arrangement position of the screen. It is characterized in that it is specified for each repeating unit in the mesh, and the coordinate values of the arrangement position are described in the mesh position data in the order along the extending direction of each of the plurality of mesh threads.
 本発明の第3の態様は、第2の態様に係るメッシュ位置特定装置であって、前記特定処理手段は、前記スクリーンメッシュの前記撮像画像において、前記複数のメッシュ糸のそれぞれの延在方向と略平行な四辺を有する四辺形の内側を、前記撮像画像における前記複数のメッシュ糸のそれぞれの配置位置の特定範囲として設定し、前記特定範囲内で同一の行あるいは列に属する前記メッシュ開口部の配列ごとに前記複数のメッシュ糸のそれぞれの配置位置を特定するための線分を設定し、前記線分が前記複数のメッシュ糸のそれぞれの前記一対のエッジと交差する位置を、前記複数のメッシュ糸のそれぞれの配置位置として特定する、ことを特徴とする。 A third aspect of the present invention is the mesh position specifying device according to the second aspect, wherein the specific processing means has a extending direction of each of the plurality of mesh threads in the captured image of the screen mesh. The inside of a quadrilateral having substantially parallel four sides is set as a specific range of arrangement positions of the plurality of mesh threads in the captured image, and the mesh openings belonging to the same row or column within the specific range. A line segment for specifying the arrangement position of each of the plurality of mesh threads is set for each array, and the position where the line segment intersects the pair of edges of each of the plurality of mesh threads is set to the plurality of meshes. It is characterized in that it is specified as each arrangement position of the thread.
 本発明の第4の態様は、第1ないし第3の態様のいずれかに係るメッシュ位置特定装置であって、前記特定処理手段が、前記メッシュ位置特定装置に固有の装置座標系で記述されてなる座標値を、前記複数のメッシュ糸の配置位置の特定対象である前記スクリーンメッシュ張設体に固有の版座標系における座標値に変換する座標変換手段、を備え、前記複数のメッシュ糸のそれぞれの配置位置の座標値を前記装置座標系に基づいて特定し、当該特定された座標値を、前記座標変換手段において前記版座標系における座標値に変換したうえで、前記メッシュ位置データに記述する、ことを特徴とする。 A fourth aspect of the present invention is the mesh position specifying device according to any one of the first to third aspects, wherein the specifying processing means is described in a device coordinate system unique to the mesh position specifying device. Each of the plurality of mesh threads is provided with a coordinate conversion means for converting the coordinate values to the coordinate values in the plate coordinate system unique to the screen mesh upholstery body, which is the target for specifying the arrangement position of the plurality of mesh threads. The coordinate value of the arrangement position of is specified based on the device coordinate system, the specified coordinate value is converted into the coordinate value in the plate coordinate system by the coordinate conversion means, and then described in the mesh position data. , Characterized by.
 本発明の第5の態様は、第4の態様に係るメッシュ位置特定装置であって、前記撮像手段が、前記スクリーンメッシュ張設体にあらかじめ設けられてなる、前記スクリーンメッシュ張設体に前記版座標系の設定に利用可能な版座標系設定用マークを撮像し、前記座標変換手段は、前記撮像手段による、前記装置座標系における前記版座標系設定用マークの撮像結果に基づいて前記装置座標系と前記版座標系との変換関係を特定し、前記変換関係に基づいて、前記装置座標系に基づいて特定された前記複数のメッシュ糸のそれぞれの配置位置の座標値を前記版座標系における座標値に変換する、ことを特徴とする。 A fifth aspect of the present invention is the mesh position specifying device according to the fourth aspect, wherein the imaging means is provided in advance on the screen mesh stretched body, and the plate is provided on the screen mesh stretched body. The plate coordinate system setting mark that can be used for setting the coordinate system is imaged, and the coordinate conversion means obtains the device coordinates based on the imaging result of the plate coordinate system setting mark in the device coordinate system by the imaging means. The conversion relationship between the system and the plate coordinate system is specified, and based on the conversion relationship, the coordinate values of the respective arrangement positions of the plurality of mesh threads specified based on the device coordinate system are set in the plate coordinate system. It is characterized by converting to coordinate values.
 本発明の第6の態様は、印刷版作製システムであって、第1ないし第5の態様のいずれかに係るメッシュ位置特定装置と、前記スクリーン印刷版の作製に際して前記スクリーンメッシュ張設体の前記スクリーンメッシュ上に形成されるスクリーン開口部のパターンを記述したパターンデータを作成する印刷版パターン作成装置と、前記パターンデータに基づいて前記スクリーンメッシュ張設体に前記スクリーン開口部のパターンを形成することにより前記スクリーン印刷版を作製する印刷版作製装置と、を備え、前記印刷版パターン作成装置が、前記メッシュ位置特定装置において生成された前記メッシュ位置データの記述に基づいて、前記メッシュ位置データと関連付けられ、かつ、前記パターンデータに基づく前記スクリーン印刷版の作製対象となる前記スクリーンメッシュ張設体における前記スクリーンメッシュの配置位置を所定の表示手段に再現可能とされてなり、再現された前記スクリーンメッシュを参照しつつ前記パターンデータを作成可能であり、かつ、作成した前記パターンデータに、前記メッシュ位置データと関連付けられた前記識別情報を関連付けるようになっており、前記印刷版作製装置においては、前記パターンデータと関連づけられてなる前記識別情報に対応する前記スクリーンメッシュ張設体に対し、前記パターンデータに基づいて前記スクリーン開口部のパターンを形成する、ことを特徴とする。 A sixth aspect of the present invention is the printing plate manufacturing system, wherein the mesh position specifying device according to any one of the first to fifth aspects and the screen mesh upholstery body when manufacturing the screen printing plate. A printing plate pattern creating device that creates pattern data describing a pattern of a screen opening formed on a screen mesh, and forming a pattern of the screen opening on the screen mesh upholstery based on the pattern data. A printing plate making apparatus for producing the screen printing plate is provided, and the printing plate pattern creating apparatus associates with the mesh position data based on the description of the mesh position data generated by the mesh position specifying device. The screen mesh is reproduced by a predetermined display means so that the arrangement position of the screen mesh in the screen mesh upholstery body to be produced of the screen printing plate based on the pattern data can be reproduced. The pattern data can be created with reference to the above, and the identified information associated with the mesh position data is associated with the created pattern data. In the printing plate manufacturing apparatus, the pattern data is described. The screen mesh stretched body corresponding to the identification information associated with the pattern data is characterized in that a pattern of the screen opening is formed based on the pattern data.
 本発明の第7の態様は、第6の態様に係る印刷版作製システムであって、前記印刷版パターン作成装置においては、前記表示手段に再現された前記スクリーンメッシュの配置位置に応じて、前記パターンデータの構成要素の配置位置および/またはサイズを調整可能である、ことを特徴とする。 A seventh aspect of the present invention is the printing plate manufacturing system according to the sixth aspect, wherein in the printing plate pattern making apparatus, the screen mesh is arranged according to the arrangement position of the screen mesh reproduced by the display means. It is characterized in that the arrangement position and / or size of the components of the pattern data can be adjusted.
 本発明の第8の態様は、スクリーン印刷版の作製に際してスクリーンメッシュ張設体のスクリーンメッシュ上に形成されるスクリーン開口部のパターンを記述したパターンデータを作成する印刷版パターン作成装置であって、第1ないし第5の態様のいずれかに係るメッシュ位置特定装置において生成された前記メッシュ位置データの記述に基づいて、前記メッシュ位置データと関連付けられてなる、前記パターンデータに基づく前記スクリーン印刷版の作製対象となる前記スクリーンメッシュ張設体における前記スクリーンメッシュの配置位置を所定の表示手段に再現可能とされてなり、再現された前記スクリーンメッシュを参照しつつ前記パターンデータを作成可能であり、かつ、作成した前記パターンデータに、前記メッシュ位置データと関連付けられた前記識別情報を関連付ける、ことを特徴とする。 An eighth aspect of the present invention is a printing plate pattern creating device that creates pattern data describing a pattern of screen openings formed on a screen mesh of a screen mesh upholstery when producing a screen printing plate. The screen printing plate based on the pattern data, which is associated with the mesh position data based on the description of the mesh position data generated in the mesh position specifying device according to any one of the first to fifth aspects. The arrangement position of the screen mesh in the screen mesh upholstery to be produced can be reproduced by a predetermined display means, and the pattern data can be created while referring to the reproduced screen mesh. The pattern data created is associated with the identification information associated with the mesh position data.
 本発明の第9の態様は、第8の態様に係る印刷版パターン作成装置であって、前記表示手段に再現された前記スクリーンメッシュの配置位置に応じて、前記パターンデータの構成要素の配置位置および/またはサイズを調整可能である、ことを特徴とする。 A ninth aspect of the present invention is the printing plate pattern creating apparatus according to the eighth aspect, in which the arrangement position of the component of the pattern data is arranged according to the arrangement position of the screen mesh reproduced by the display means. And / or the size is adjustable.
 本発明の第10の態様は、記憶媒体であって、第1ないし第5の態様のいずれかに係るメッシュ位置特定装置において生成された前記メッシュ位置データが格納されてなるともに、前記メッシュ位置データと関連付けられた前記識別情報が前記メッシュ位置データに記述されてなるかあるいは直接に付与されてなる、ことを特徴とする。 A tenth aspect of the present invention is a storage medium, in which the mesh position data generated by the mesh position specifying device according to any one of the first to fifth aspects is stored and the mesh position data is stored. The identification information associated with the above is described in the mesh position data or directly attached to the mesh position data.
 本発明の第11の態様は、スクリーン印刷版の作製に際してスクリーンメッシュ上にスクリーン開口部のパターンが形成されるスクリーンメッシュ張設体であって、第1ないし第5の態様のいずれかに係るメッシュ位置特定装置において、当該スクリーンメッシュ張設体を対象として生成された前記メッシュ位置データと、前記識別情報により関連付けられてなる、ことを特徴とする。 An eleventh aspect of the present invention is a screen mesh upholstery in which a pattern of screen openings is formed on a screen mesh when a screen printing plate is produced, and the mesh according to any one of the first to fifth aspects. The position specifying device is characterized in that the mesh position data generated for the screen mesh stretched body is associated with the identification information.
 本発明の第12の態様は、スクリーン印刷版の作製に用いられるスクリーンメッシュ張設体に張設されたスクリーンメッシュを構成する、複数のメッシュ糸の配置位置を、特定する方法であって、前記複数のメッシュ糸の配置位置の特定対象である前記スクリーンメッシュ張設体の前記スクリーンメッシュを所定の撮像手段によって撮像する撮像工程と、前記撮像工程よって得られた前記スクリーンメッシュの撮像画像に基づいて、前記スクリーンメッシュ張設体における前記複数のメッシュ糸のそれぞれの配置位置を前記スクリーンメッシュにおける繰り返し単位ごとに特定し、前記繰り返し単位ごとに特定された前記配置位置の座標値を、前記複数のメッシュ糸のそれぞれの延在方向に沿った順序に再配列して記述したメッシュ位置データを生成する特定処理工程と、前記メッシュ位置データと、前記撮像手段による撮像の対象とされた前記スクリーンメッシュ張設体を一意に識別可能な識別情報とを関連付ける、関連付け工程と、を備え、前記特定処理工程においては、前記メッシュ位置データを、スクリーン印刷版作製用のパターンデータの作成に際して前記複数のメッシュ糸の配置位置を実質的に再現可能なデータ形式にて生成する、ことを特徴とする。 A twelfth aspect of the present invention is a method for specifying the arrangement position of a plurality of mesh threads constituting the screen mesh stretched on the screen mesh stretched body used for producing a screen printing plate. Based on the imaging step of imaging the screen mesh of the screen mesh upholstery body, which is the object of specifying the arrangement position of the plurality of mesh threads, by a predetermined imaging means, and the image captured of the screen mesh obtained by the imaging step. , The arrangement position of each of the plurality of mesh threads in the screen mesh upholstery is specified for each repetition unit in the screen mesh, and the coordinate value of the arrangement position specified for each repetition unit is set to the plurality of meshes. A specific processing step of generating mesh position data described by rearranging the threads in the order along the extending direction of each thread, the mesh position data, and the screen mesh upholstery to be imaged by the imaging means. The specific processing step includes an association step of associating the body with identification information that can uniquely identify the body, and in the specific processing step, the mesh position data is used for creating pattern data for screen printing plate production of the plurality of mesh threads. It is characterized in that the arrangement position is generated in a substantially reproducible data format.
 本発明の第13の態様は、印刷版作製方法であって、第12の態様に係るメッシュ位置特定方法によって前記メッシュ位置データを生成するメッシュ位置データ生成工程と、所定の印刷版パターン作成装置を用いて、前記スクリーン印刷版の作製に際して前記スクリーンメッシュ張設体の前記スクリーンメッシュ上に形成されるスクリーン開口部のパターンを記述したパターンデータを作成する印刷版パターン作成工程と、所定の印刷版作製装置を用いて、前記パターンデータに基づいて前記スクリーンメッシュ張設体に前記スクリーン開口部のパターンを形成することにより前記スクリーン印刷版を作製する印刷版作製工程と、を備え、前記印刷版パターン作成工程においては、前記メッシュ位置データ生成工程において生成された前記メッシュ位置データの記述に基づいて、前記メッシュ位置データと関連付けられてなる、前記パターンデータに基づく前記スクリーン印刷版の作製対象となる前記スクリーンメッシュ張設体における前記スクリーンメッシュの配置位置を所定の表示手段に再現可能とされてなり、再現された前記スクリーンメッシュを参照しつつ前記パターンデータを作成可能であり、かつ、作成した前記パターンデータに、前記メッシュ位置データと関連付けられた前記識別情報を関連付けるようになっており、前記印刷版作製工程においては、前記パターンデータと関連づけられてなる前記識別情報に対応する前記スクリーンメッシュ張設体に対し、前記パターンデータに基づいて前記スクリーン開口部のパターンを形成する、ことを特徴とする。 A thirteenth aspect of the present invention is a printing plate manufacturing method, wherein a mesh position data generation step of generating the mesh position data by the mesh position specifying method according to the twelfth aspect and a predetermined printing plate pattern creating apparatus are used. A printing plate pattern creating step of creating pattern data describing a pattern of a screen opening formed on the screen mesh of the screen mesh upholstery body when producing the screen printing plate, and a predetermined printing plate producing A printing plate manufacturing step of manufacturing the screen printing plate by forming a pattern of the screen opening in the screen mesh upholstery based on the pattern data using an apparatus is provided, and the printing plate pattern is created. In the step, the screen to be produced of the screen printing plate based on the pattern data, which is associated with the mesh position data based on the description of the mesh position data generated in the mesh position data generation step. The arrangement position of the screen mesh in the mesh stretched body can be reproduced by a predetermined display means, and the pattern data can be created while referring to the reproduced screen mesh, and the created pattern data can be created. In addition, the identification information associated with the mesh position data is associated with the screen mesh upholstery body corresponding to the identification information associated with the pattern data in the printing plate manufacturing step. On the other hand, it is characterized in that a pattern of the screen opening is formed based on the pattern data.
 本発明の第14の態様は、スクリーン印刷版の作製に際してスクリーンメッシュ張設体のスクリーンメッシュ上に形成されるスクリーン開口部のパターンを記述したパターンデータを作成する印刷版パターンの作成方法であって、第12の態様に係るメッシュ位置特定方法によって生成された前記メッシュ位置データの記述に基づいて、前記メッシュ位置データと関連付けられてなる、前記パターンデータに基づく前記スクリーン印刷版の作製対象となる前記スクリーンメッシュ張設体における前記スクリーンメッシュの配置位置を所定の表示手段に再現する再現工程と、再現された前記スクリーンメッシュを参照しつつ前記パターンデータを作成する作成工程と、作成した前記パターンデータに、前記メッシュ位置データと関連付けられた前記識別情報を関連付ける関連付け工程と、を備えることを特徴とする。 A fourteenth aspect of the present invention is a method for creating a printing plate pattern for creating pattern data describing a pattern of screen openings formed on a screen mesh of a screen mesh upholstery when producing a screen printing plate. , The target for producing the screen printing plate based on the pattern data, which is associated with the mesh position data based on the description of the mesh position data generated by the mesh position specifying method according to the twelfth aspect. In the reproduction step of reproducing the arrangement position of the screen mesh in the screen mesh stretched body on a predetermined display means, the creation step of creating the pattern data while referring to the reproduced screen mesh, and the created pattern data. , The association step of associating the identification information associated with the mesh position data.
 本発明の第1ないし第9および第12ないし第14の態様によれば、張設に際してランダムにばらつきが生じ得るスクリーンメッシュのメッシュ糸の配置位置が例えば個々のメッシュ開口部などの微細な繰り返し単位ごとに特定され、さらには、係る配置位置を鑑みたパターンデータの作成さらには印刷版の作製が可能となる。これにより、印刷精度の優れたスクリーン印刷版を作製することが可能となる。 According to the first to ninth and twelfth to fourteenth aspects of the present invention, the arrangement position of the mesh thread of the screen mesh, which may randomly vary during tensioning, is a fine repeating unit such as an individual mesh opening. It is possible to create pattern data and print plates in consideration of the arrangement position. This makes it possible to produce a screen printing plate having excellent printing accuracy.
 また、第10および第11の態様によれば、パターンデータの作成を、メッシュ位置データの生成に続けて行う必要がなく、また、その後に行うスクリーン印刷版の作製も含め、それぞれの処理を遠隔した場所で行うことも可能となる。すなわち、パターンデータの作成さらにはその後工程である当該パターンデータを用いたスクリーン印刷版の作製を、メッシュ糸の配置位置の特定と時間的および空間的に分離することが出来る。 Further, according to the tenth and eleventh aspects, it is not necessary to create the pattern data following the generation of the mesh position data, and each process is remotely performed, including the subsequent production of the screen printing plate. It is also possible to do it in the place where it was done. That is, the production of the pattern data and the subsequent process of producing the screen printing plate using the pattern data can be separated temporally and spatially from the specification of the arrangement position of the mesh yarn.
スクリーンメッシュ張設体(メッシュ張設体)10を示す図である。It is a figure which shows the screen mesh stretched body (mesh stretched body) 10. スクリーンメッシュ2の拡大図である。It is an enlarged view of the screen mesh 2. メッシュ位置特定装置100の概略的な構成を示す図である。It is a figure which shows the schematic structure of the mesh position specifying apparatus 100. メッシュ位置特定装置100においてメッシュ位置の特定に関わる機能的構成要素を示す、機能ブロック図である。It is a functional block diagram which shows the functional component which concerns on the identification of the mesh position in the mesh position specifying apparatus 100. 開口部形成対象範囲RE1とカメラ111による撮像範囲RE2との関係を例示する図である。It is a figure which illustrates the relationship between the opening formation target range RE1 and the image pickup range RE2 by a camera 111. 第1座標変換処理について説明するための図である。It is a figure for demonstrating the 1st coordinate conversion processing. メッシュ位置特定処理における処理の手順を示す図である。It is a figure which shows the process procedure in the mesh position specifying process. 開口部アドレスの付与とメッシュ糸番号の付与について例示する図である。It is a figure which illustrates the assignment of the opening address and the assignment of the mesh thread number. 特定対象範囲設定部162によるメッシュ位置特定対象範囲の設定について、説明するための図である。It is a figure for demonstrating the setting of the mesh position specific target range by the specific target range setting unit 162. 特定対象範囲設定部162によるメッシュ位置特定線群の設定について、説明するための図である。It is a figure for demonstrating the setting of the mesh position specific line group by the specific target range setting unit 162. 縦糸2yの左右のエッジの位置と、横糸2xの上下のエッジの位置とを、スクリーンメッシュ2と対応させて示す図である。It is a figure which shows the position of the left and right edge of a warp thread 2y, and the position of the upper and lower edge of a weft thread 2x corresponding to the screen mesh 2. メッシュ全位置データDDを表形式にて例示した図である。It is a figure which illustrated the mesh full position data DD in tabular form. 張設体メッシュ位置データDEを表形式にて例示した図である。It is a figure which illustrated the stretch body mesh position data DE in tabular form. 張設体メッシュ位置データDEの記述内容に基づいて、メッシュ糸2mのエッジの位置を再現した輪郭像P2を示す図である。It is a figure which shows the contour image P2 which reproduced the position of the edge of the mesh thread 2m based on the description content of the stretched body mesh position data DE. メッシュ糸2mを再現したメッシュ再現像P3を示す図である。It is a figure which shows the mesh redevelopment P3 which reproduced the mesh thread 2m. メッシュ位置の特定から後工程であるスクリーン印刷版の作製に至るプロセスにおいて生成される種々のデータと、メッシュ張設体10との関連性を、示す図である。It is a figure which shows the relationship between various data generated in the process from the identification of a mesh position to the production of a screen printing plate which is a post-process, and the mesh upholstery body 10. 張設体メッシュ位置データDEの利用の一態様を例示するための図である。It is a figure for demonstrating one aspect of using the stretch body mesh position data DE. 印刷版作製システム1000についての概略構成を、スクリーン印刷版の作製に供される印刷版作製対象メッシュ張設体10および最終的に作製されるスクリーン印刷版20との関係とともに示す図である。It is a figure which shows the schematic structure about the printing plate making system 1000 together with the relationship between the mesh upholstery body 10 to make a printing plate which is used for making a screen printing plate, and the screen printing plate 20 which is finally made. 印刷版作製システム1000を用いて行われる、スクリーン印刷版の作製処理について、特に、識別情報付きメッシュ位置データDFが作成された後の処理について、その流れを示す図である。It is a figure which shows the flow of the screen printing plate manufacturing process performed by using the printing plate manufacturing system 1000, particularly about the process after the mesh position data DF with identification information is created. 太陽電池用の基板W2の上に、電極ペースト膜Z2βを形成した状態を示す図である。It is a figure which shows the state which formed the electrode paste film Z2β on the substrate W2 for a solar cell. 電極ペースト膜Z2βの形成に使用するスクリーン印刷版を作製するための、初期設計パターンPT2βを示す図である。It is a figure which shows the initial design pattern PT2β for making the screen printing plate used for forming the electrode paste film Z2β. CAD200において、設計パターンPT2を与えるレイヤーの下地レイヤーとして、メッシュ位置パターンPT2mを与えるレイヤーを、重ね合わせた図である。It is the figure which superposed the layer which gives a mesh position pattern PT2m as the base layer of the layer which gives a design pattern PT2 in CAD200. 設計パターンPT2に基づいて作製されたスクリーン印刷版20を例示する図である。It is a figure which illustrates the screen printing plate 20 produced based on the design pattern PT2. 太陽電池用の基板W2の上に電極ペースト膜Z2を形成した状態を示す図である。It is a figure which shows the state which formed the electrode paste film Z2 on the substrate W2 for a solar cell.
  <スクリーンメッシュ張設体>
 図1は、本実施の形態に係る発明の処理対象であるスクリーンメッシュ張設体(以下、単にメッシュ張設体とも称する)10を示す図である。メッシュ張設体10は、図1(a)に示すように、アルミなどの金属からなる平面視矩形状の版枠1に、スクリーンメッシュ2が張設されたものである。
<Screen mesh upholstery>
FIG. 1 is a diagram showing a screen mesh stretched body (hereinafter, also simply referred to as a mesh stretched body) 10 which is a processing target of the invention according to the present embodiment. As shown in FIG. 1A, the mesh upholstery 10 is a mesh 2 stretched on a plan-view rectangular plate frame 1 made of a metal such as aluminum.
 スクリーンメッシュ2は概略、それぞれが金属またはナイロン線材からなるメッシュ糸2mである多数の横糸2xおよび多数の縦糸2yが互いに交差(直交)するように、かつ、等間隔に配置された横糸2xと縦糸2yのそれぞれの隣り合う2つによって略矩形状のメッシュ開口部MOが形成されるように製織された、網目構造(メッシュ構造)を有してなる。 The screen mesh 2 is roughly formed by weft threads 2x and warp threads arranged at equal intervals so that a large number of weft threads 2x and a large number of warp threads 2y, each of which is a mesh thread 2 m made of a metal or nylon wire, intersect (orthogonally) with each other. It has a mesh structure (mesh structure) woven so that a substantially rectangular mesh opening MO is formed by two adjacent two of 2y.
 係るメッシュ張設体10は、スクリーン印刷を行う際に用いられる印刷版である、スクリーン印刷版の構成部材をなすものである。スクリーン印刷版は、概略、スクリーン印刷によって形成しようとする所定のパターン(印刷パターン)に対応する部分を開口部(スクリーン開口部)とする態様にて、乳剤からなる塗布膜がスクリーンメッシュ2の上に設けられることによって、構成される。換言すれば、メッシュ張設体10は、スクリーン印刷版を作製する一連のプロセスの途中において生成される半製品であるともいえる。 The mesh upholstery body 10 forms a constituent member of a screen printing plate, which is a printing plate used when performing screen printing. In the screen printing plate, a coating film made of an emulsion is formed on the screen mesh 2 in a manner in which a portion corresponding to a predetermined pattern (printing pattern) to be formed by screen printing is an opening (screen opening). It is configured by being provided in. In other words, the mesh upholstery 10 can be said to be a semi-finished product produced in the middle of a series of processes for producing a screen printing plate.
 通常、スクリーン開口部は、スクリーンメッシュ2の全面ではなく、略中央部分の所定範囲(以下、開口部形成対象範囲)RE1の中に設けられる。 Normally, the screen opening is provided not in the entire surface of the screen mesh 2 but in a predetermined range (hereinafter, opening target range) RE1 in a substantially central portion.
 また、図1(b)は、図1(a)に示すメッシュ張設体10に設定されるxy座標系(以下、版座標系α)を示している。なお、版座標系αにおいては、座標値の単位をmmとする。 Further, FIG. 1 (b) shows an xy coordinate system (hereinafter, plate coordinate system α) set in the mesh upholstery body 10 shown in FIG. 1 (a). In the plate coordinate system α, the unit of the coordinate value is mm.
 版座標系αは、メッシュ張設体10あるいはさらにこれを用いて作製されるスクリーン印刷版に固有の座標系である。版座標系αは例えば、スクリーンメッシュ2を構成するメッシュ糸2mの位置を特定する際に用いられる。 The plate coordinate system α is a coordinate system peculiar to the mesh upholstery body 10 or a screen printing plate produced by using the mesh upholstery body 10. The plate coordinate system α is used, for example, when specifying the position of the mesh thread 2m constituting the screen mesh 2.
 例えば、図1(b)に示すように、版枠1のスクリーンメッシュ2を挟んで対向する2つの部分に2つの座標設定用のマークM1とM2とをマーキングするとともに、マークM1、M2が形成された辺とは異なる辺にさらなる座標設定用のマークM3をマーキングした場合であれば、マークM1とM2を結ぶ線分LXと、マークM3を通り線分LXと直交する線分LYとの交点が、版座標系αの原点(x、y)=(0、0)となり、線分LXの延在方向がx軸方向となり、線分LYの延在方向がy軸方向となる。 For example, as shown in FIG. 1B, marks M1 and M2 for setting two coordinates are marked on two portions facing each other across the screen mesh 2 of the plate frame 1, and marks M1 and M2 are formed. If a mark M3 for further coordinate setting is marked on a side different from the edge, the intersection of the line segment LX connecting the marks M1 and M2 and the line segment LY passing through the mark M3 and orthogonal to the line segment LX. Is the origin (x, y) = (0, 0) of the plate coordinate system α, the extending direction of the line segment LX is the x-axis direction, and the extending direction of the line segment LY is the y-axis direction.
 本実施の形態においては、横糸2xの延在方向が横軸となり、縦糸2yの延在方向が縦軸となるように、版座標系αが規定されるものとする。これは、線分LXが横糸2xの延在方向と略一致し、線分LYの延在方向が縦糸2yの延在方向と略一致するように、マークM1、M2、およびM3を設けることで、実現される。なお、図1(b)においては、開口部形成対象範囲RE1が第1象限(x、yの値がともに正となる範囲)に位置するように、版座標系αが定められているが、これは必須の態様ではない。 In the present embodiment, the plate coordinate system α is defined so that the extending direction of the weft 2x is the horizontal axis and the extending direction of the warp 2y is the vertical axis. This is because the marks M1, M2, and M3 are provided so that the line segment LX substantially coincides with the extending direction of the weft 2x and the extending direction of the line segment LY substantially coincides with the extending direction of the warp 2y. , Will be realized. In FIG. 1B, the plate coordinate system α is defined so that the opening target range RE1 is located in the first quadrant (the range in which both the x and y values are positive). This is not an essential aspect.
 また、本実施の形態においては便宜上、版枠1の互いに直交する2つの縁の一方の延在方向が、版座標系αのx軸方向が図面視左右方向と一致し、他方の縁の延在方向が、y軸方向が図面視上下方向と一致するものとする。これにより、x軸方向正の側を右側、x軸方向負の側を左側、y軸方向正の側を上側、y軸方向負の側を下側、などと称することがある。 Further, in the present embodiment, for convenience, the extending direction of one of the two edges of the plate frame 1 orthogonal to each other coincides with the x-axis direction of the plate coordinate system α with the left-right direction in the drawing, and the extension of the other edge. It is assumed that the current direction coincides with the vertical direction in the drawing in the y-axis direction. As a result, the positive side in the x-axis direction may be referred to as the right side, the negative side in the x-axis direction as the left side, the positive side in the y-axis direction as the upper side, the negative side in the y-axis direction as the lower side, and the like.
 なお、版座標系αの設定の仕方は上述の態様に限られるものではない。例えば、マークM1~M3が版枠1のエッジ部分に設けられてもよいし、スクリーンメッシュ2内に設けられる態様であってもよい。 Note that the method of setting the plate coordinate system α is not limited to the above mode. For example, the marks M1 to M3 may be provided on the edge portion of the plate frame 1, or may be provided in the screen mesh 2.
 図2は、スクリーンメッシュ2の拡大図である。スクリーンメッシュ2は、概略的には、上述したように横糸2xと縦糸2yとが等間隔で互いに直交するように設けられてなるものとみなせる。しかしながら、より厳密にいえば、個々の横糸2xと縦糸2yとは必ずしも厳密に直線をなしているわけではなく、互いを交互に上下させつつ交差させる製織の過程で、図2に示すように局所的に変位し、蛇行している。加えて、それぞれの横糸2x同士、縦糸2y同士の間隔も、必ずしも一定ではない。 FIG. 2 is an enlarged view of the screen mesh 2. The screen mesh 2 can be generally regarded as being provided so that the weft threads 2x and the warp threads 2y are provided at equal intervals and orthogonal to each other as described above. However, more strictly speaking, the individual weft threads 2x and the warp threads 2y do not necessarily form a strict straight line, and are locally localized as shown in FIG. Displaced and meandering. In addition, the intervals between the weft threads 2x and the warp threads 2y are not always constant.
 それゆえ、例えばメッシュ張設体10を作製するに際して本来意図されている横糸2xと縦糸2yの配置位置および間隔が既知であったとしても、それだけでは、このような局所的なずれが生じているメッシュ張設体10のメッシュ糸2mの実際の位置を特定したことにはならない。 Therefore, for example, even if the arrangement positions and spacings of the weft threads 2x and the warp threads 2y, which are originally intended when the mesh upholstery body 10 is manufactured, are known, such a local deviation occurs by itself. It does not mean that the actual position of the mesh thread 2 m of the mesh upholstery body 10 is specified.
 本実施の形態においては、後述する装置および手順を適用することによって、メッシュ開口部MOを構成する横糸2xの(図面視)上端位置Ex1および(図面視)下端位置Ex2と、縦糸2yの(図面視)左端位置Ey1および(図面視)右端位置Ey2との座標をそれぞれ求めることで、メッシュ張設体10における個々のメッシュ糸2m(横糸2xおよび縦糸2y)の位置を特定する。 In the present embodiment, by applying the apparatus and procedure described later, the (drawing view) upper end position Ex1 and the (drawing view) lower end position Ex2 of the weft thread 2x constituting the mesh opening MO, and the warp thread 2y (drawing). By obtaining the coordinates of the left end position Ey1 (viewing) and the right end position Ey2 (viewing the drawing), the positions of the individual mesh threads 2m (weft thread 2x and warp thread 2y) in the mesh upholstery body 10 are specified.
 なお、一のメッシュ開口部MOをなす4つのメッシュ糸2mの位置を特定するということは、当該メッシュ開口部MOの位置を特定することでもある。この点も鑑み、以降においては、上述のような個々のメッシュ糸2mの特定を単に、メッシュ位置の特定、とも称する。 It should be noted that specifying the positions of the four mesh threads 2 m forming one mesh opening MO also means specifying the positions of the mesh opening MO. In view of this point, hereinafter, the specification of each mesh thread 2 m as described above is also simply referred to as the specification of the mesh position.
  <メッシュ位置特定装置>
 図3は、本実施の形態においてメッシュ張設体10におけるメッシュ位置の特定を行う、メッシュ位置特定装置100の概略的な構成を示す図である。図4は、メッシュ位置特定装置100においてメッシュ位置の特定に関わる機能的構成要素を示す、機能ブロック図である。
<Mesh position identification device>
FIG. 3 is a diagram showing a schematic configuration of a mesh position specifying device 100 that specifies a mesh position in the mesh upholstery body 10 in the present embodiment. FIG. 4 is a functional block diagram showing functional components related to the identification of the mesh position in the mesh position specifying device 100.
 メッシュ位置特定装置100は、メッシュ張設体10が載置されるステージ101と、ステージ101に載置されたメッシュ張設体10を上方から撮像するカメラ(撮像手段)111を含む撮像部110(図4)と、カメラ111による撮像に際しステージ101の下方からスクリーンメッシュ2に対し照明光を照射する照明光源121を含む照明部120(図4)と、メッシュ位置特定装置100の各部の動作の制御とメッシュ位置の特定に必要な演算処理とを担う処理装置130とを、主として備える。 The mesh position specifying device 100 includes an imaging unit 110 (an imaging unit 110) including a stage 101 on which the mesh extension body 10 is placed and a camera (imaging means) 111 that images the mesh extension body 10 mounted on the stage 101 from above. FIG. 4), control of the operation of the illumination unit 120 (FIG. 4) including the illumination light source 121 that irradiates the screen mesh 2 with illumination light from below the stage 101 when imaging with the camera 111, and the operation of each unit of the mesh position specifying device 100. It is mainly provided with a processing device 130 that is responsible for the arithmetic processing necessary for specifying the mesh position.
 なお、メッシュ位置特定装置100においては、装置座標系β(X,Y,Z)があらかじめ規定されてなり、ステージ101上の位置と、カメラ111および照明光源121の配置位置は、装置座標系β(X,Y,Z)によって記述されるようになっている。なお、装置座標系βにおいても、版座標系αと同様、座標値の単位をmmとする。 In the mesh position specifying device 100, the device coordinate system β (X, Y, Z) is defined in advance, and the position on the stage 101 and the arrangement position of the camera 111 and the illumination light source 121 are set in the device coordinate system β. It is designed to be described by (X, Y, Z). In the device coordinate system β as well, the unit of the coordinate value is mm as in the plate coordinate system α.
 ステージ101は、その上面にメッシュ張設体10を水平姿勢にて載置固定出来るように設けられてなる。加えて、係る載置固定がなされた状態で、下方に配置されてなる照明光源121からの照明光が少なくとも開口部形成対象範囲RE1の全体に照射されるよう、少なくとも当該開口部形成対象範囲RE1に対応する部分については、例えばガラスなどの透明な材料で構成される。 The stage 101 is provided on the upper surface thereof so that the mesh upholstery body 10 can be placed and fixed in a horizontal posture. In addition, at least the opening target range RE1 so that the illumination light from the illumination light source 121 arranged below is irradiated to at least the entire opening target range RE1 in the mounted and fixed state. The portion corresponding to is made of a transparent material such as glass.
 撮像部110は、カメラ111と、カメラ111の移動を担う移動機構112とを備える。カメラ111は、移動機構112によって移動させられることにより、水平面内および鉛直方向における任意の撮像位置で、ステージ101に載置固定されたメッシュ張設体10を撮像することが可能となっている。 The imaging unit 110 includes a camera 111 and a moving mechanism 112 that moves the camera 111. By being moved by the moving mechanism 112, the camera 111 can image the mesh upholstery 10 mounted and fixed on the stage 101 at arbitrary imaging positions in the horizontal plane and in the vertical direction.
 図5は、開口部形成対象範囲RE1とカメラ111による撮像範囲RE2との関係を例示する図である。なお、説明の簡単のため、開口部形成対象範囲RE1の直交する2辺がそれぞれ、装置座標系βのX軸方向とY軸方向のそれぞれに一致するよう、メッシュ張設体10がステージ101に載置固定されてなるものとする。 FIG. 5 is a diagram illustrating the relationship between the opening target range RE1 and the imaging range RE2 by the camera 111. For the sake of simplicity, the mesh upholstery 10 is placed on the stage 101 so that the two orthogonal sides of the opening formation target range RE1 coincide with the X-axis direction and the Y-axis direction of the device coordinate system β, respectively. It shall be placed and fixed.
 カメラ111の撮像範囲RE2は、撮像画像の解像度を確保するべく、メッシュ張設体10におけるスクリーンメッシュ2の開口部形成対象範囲RE1に比して小さく設定される。それゆえ、図5(a)に示すように、一の開口部形成対象範囲RE1を撮像する際は、X軸方向およびY軸方向において撮像範囲RE2をシフトさせつつ撮像が繰り返される。これにより、X軸方向およびY軸方向において、個々の撮像位置における撮像範囲RE2の中心(撮像中心)Oの位置が、等間隔に配列することになる。これは例えば、ある撮像位置における撮像が完了する都度、撮像中心Oが図5(b)に矢印AR0にて示すような順序で順次に移動するようにカメラ111を移動させることによって、実現される。なお、図5(b)においては、初期撮像位置から撮像中心OのX軸座標のみを違えY軸座標については同一に保つ態様にてカメラ111を移動させ、当該移動方向における全ての撮像位置における撮像を行った後、初期撮像位置から撮像中心OのY軸座標のみを違えた位置に移動し、当該位置から撮像中心OのX軸座標のみを違えY軸座標については同一に保つ態様にてカメラ111を移動させ、当該移動方向における全ての撮像位置における撮像を行う、ということを繰り返す態様にて、全ての撮像位置における撮像を行うようにしているが、これは必須の態様ではなく、撮像順序は違えられてよい。 The imaging range RE2 of the camera 111 is set smaller than the opening target range RE1 of the screen mesh 2 in the mesh upholstery 10 in order to secure the resolution of the captured image. Therefore, as shown in FIG. 5A, when imaging one opening target range RE1, imaging is repeated while shifting the imaging range RE2 in the X-axis direction and the Y-axis direction. As a result, the positions of the centers (imaging centers) O of the imaging range RE2 at the individual imaging positions are arranged at equal intervals in the X-axis direction and the Y-axis direction. This is realized, for example, by moving the camera 111 so that the imaging center O sequentially moves in the order shown by the arrow AR0 in FIG. 5B each time the imaging at a certain imaging position is completed. .. In FIG. 5B, the camera 111 is moved in such a manner that only the X-axis coordinate of the imaging center O is different from the initial imaging position and the Y-axis coordinate is kept the same, and the camera 111 is moved at all the imaging positions in the moving direction. After imaging, move from the initial imaging position to a position where only the Y-axis coordinate of the imaging center O is different, and only the X-axis coordinate of the imaging center O is different from that position, and the Y-axis coordinates are kept the same. The camera 111 is moved and the imaging is performed at all the imaging positions in the moving direction, and the imaging is performed at all the imaging positions. However, this is not an essential aspect and the imaging is performed. The order may be out of order.
 より詳細には、図5(a)に示すように、開口部形成対象範囲RE1を対象とする撮像は、撮像範囲RE2の端縁部同士を重複させつつ異なる撮像位置で行われる。これは、個々の撮像位置における撮像によって得られる撮像データを統合する際に、位置合わせ(マッチング)を好適に行えるようにするためである。それゆえ、撮像位置を違える際のカメラ111の移動距離(シフト量)は、当該移動方向における撮像範囲RE2のサイズに比して小さい値に定められる。 More specifically, as shown in FIG. 5A, imaging targeting the opening formation target range RE1 is performed at different imaging positions while overlapping the edge portions of the imaging range RE2. This is to enable suitable alignment (matching) when integrating the imaging data obtained by imaging at individual imaging positions. Therefore, the moving distance (shift amount) of the camera 111 when the imaging position is changed is set to a value smaller than the size of the imaging range RE2 in the moving direction.
 照明部120は、照明光源121と、照明光源121の移動を担う移動機構122とを備える。上述したように、一の開口部形成対象範囲RE1の撮像に際しては、撮像位置を違えつつ撮像が繰り返されるところ、照明光は、撮像位置によらず同じ条件で照射される必要がある。それゆえ、照明光源121は、移動機構122によって、カメラ111の移動に付随して移動させられる。なお、カメラ111の移動機構112と照明光源121の移動機構122とが一体となっていてもよい。換言すれば、一の移動機構に、カメラ111と照明光源121とが付設されてなる態様であってもよい。 The lighting unit 120 includes a lighting light source 121 and a moving mechanism 122 that moves the lighting light source 121. As described above, when imaging the one opening target range RE1, the imaging is repeated while changing the imaging position, and the illumination light needs to be irradiated under the same conditions regardless of the imaging position. Therefore, the illumination light source 121 is moved by the moving mechanism 122 in association with the movement of the camera 111. The moving mechanism 112 of the camera 111 and the moving mechanism 122 of the illumination light source 121 may be integrated. In other words, the camera 111 and the illumination light source 121 may be attached to one moving mechanism.
 メッシュ位置特定装置100においては、ステージ101に載置固定されたメッシュ張設体10に対し、照明光源121が下方から照明光を照射した状態で、上方からカメラ111による撮像を行うことから、得られる撮像画像においては、メッシュ糸2mが暗部となり、メッシュ開口部MOが明部となる。 In the mesh position specifying device 100, the mesh upholstery 10 mounted and fixed on the stage 101 is imaged by the camera 111 from above with the illumination light source 121 irradiating the illumination light from below. In the captured image, the mesh thread 2 m becomes a dark part, and the mesh opening MO becomes a bright part.
 処理装置130は、CPU131aと、ROM131bと、RAM131cとを含む処理制御部131と、例えばディスプレイなどからなる表示部132と、キーボードやタッチパネルなどからなる操作部133と、ハードディスクなどからなる記憶部134とを備える。処理装置130は、例えば汎用のコンピュータによって実現可能である。 The processing device 130 includes a processing control unit 131 including a CPU 131a, a ROM 131b, and a RAM 131c, a display unit 132 including a display or the like, an operation unit 133 including a keyboard or a touch panel, and a storage unit 134 including a hard disk or the like. To be equipped. The processing device 130 can be realized by, for example, a general-purpose computer.
 メッシュ位置特定装置100においては、記憶部134に記憶されてなる図示しない所定の処理プログラムが処理制御部131によって実行されることにより、図4に示す種々の機能的構成要素が、処理制御部131において仮想的な構成要素として実現されるようになっている。 In the mesh position specifying device 100, when a predetermined processing program (not shown) stored in the storage unit 134 is executed by the processing control unit 131, various functional components shown in FIG. 4 are combined with the processing control unit 131. It has come to be realized as a virtual component in.
 具体的には、撮像処理部140と、移動制御部145と、照明制御部150と、第1座標変換部155Aと、第2座標変換部155Bと、メッシュ位置情報処理部160と、データ統合処理部165と、関連付け処理部170とが、主として実現される。 Specifically, the image pickup processing unit 140, the movement control unit 145, the lighting control unit 150, the first coordinate conversion unit 155A, the second coordinate conversion unit 155B, the mesh position information processing unit 160, and the data integration processing. The unit 165 and the association processing unit 170 are mainly realized.
 撮像処理部140は、カメラ111による撮像を制御するとともに、撮像の結果得られたデータ(撮像データ)をカメラ111から取得し、処理制御部131内における所定の処理に供する。 The imaging processing unit 140 controls the imaging by the camera 111, acquires the data (imaging data) obtained as a result of the imaging from the camera 111, and performs a predetermined process in the processing control unit 131.
 具体的には、撮像処理部140は、カメラ111に、メッシュ張設体10の版枠1に設けられた3つのマークM1~M3に係る撮像を実行させ、それぞれのマークM1~M3についてのマーク撮像データDαを取得する。 Specifically, the imaging processing unit 140 causes the camera 111 to perform imaging related to the three marks M1 to M3 provided on the plate frame 1 of the mesh upholstery body 10, and marks for the respective marks M1 to M3. Acquire the imaging data Dα.
 また、詳細は後述するが、撮像処理部140は、カメラ111に対し、図5に示すようにあらかじめ定められた複数の撮像位置のそれぞれにおいて、同じサイズの撮像範囲RE2での撮像を実行させる。本実施の形態においては、i番目の撮像位置における(i番目の撮像範囲RE2を対象とする)撮像により得られる撮像データを、第iメッシュ撮像データDAiと称する。 Further, as will be described in detail later, the imaging processing unit 140 causes the camera 111 to perform imaging in the imaging range RE2 of the same size at each of a plurality of predetermined imaging positions as shown in FIG. In the present embodiment, the imaging data obtained by imaging at the i-th imaging position (targeting the i-th imaging range RE2) is referred to as the i-mesh imaging data DAi.
 なお、撮像処理部140は、カメラ111にて撮像される像(ライブビュー)を表示部132に表示させる役割も担う。 The image pickup processing unit 140 also plays a role of displaying the image (live view) captured by the camera 111 on the display unit 132.
 移動制御部145は、カメラ111の移動機構112と照明光源121の移動機構122の動作を制御する。また、移動制御部145においては、カメラ111が撮像を行う際の撮像位置情報(撮像対象となっている範囲を特定する情報)が、当該撮像時の移動機構112の位置に基づいて生成される。係る撮像位置情報は、撮像処理部140によって取得されたマーク撮像データDαや第iメッシュ撮像データDAiに付加される。あるいは、カメラ111自体に例えばGPSなどの撮像位置特定機能が備わっており、撮像によって生成される撮像データに撮像位置特定機能に基づく撮像位置情報が付加される態様であってもよい。 The movement control unit 145 controls the operation of the movement mechanism 112 of the camera 111 and the movement mechanism 122 of the illumination light source 121. Further, in the movement control unit 145, the imaging position information (information for specifying the range to be imaged) when the camera 111 performs imaging is generated based on the position of the moving mechanism 112 at the time of imaging. .. The imaging position information is added to the mark imaging data Dα and the i-mesh imaging data DAi acquired by the imaging processing unit 140. Alternatively, the camera 111 itself may be provided with an imaging position specifying function such as GPS, and imaging position information based on the imaging position specifying function may be added to the imaging data generated by imaging.
 照明制御部150は、カメラ111による撮像の際の、照明光の照射を制御する。 The illumination control unit 150 controls the irradiation of illumination light at the time of imaging by the camera 111.
 第1座標変換部155Aは、カメラ111による撮像画像(カメラ111によって生成された撮像データによって表現される画像)における、個々の画素の座標位置を、あらかじめ定められた第1座標変換情報IC1に基づき、装置座標系βにおける座標に変換する処理(第1画像変換処理)を担う。 The first coordinate conversion unit 155A determines the coordinate positions of individual pixels in the image captured by the camera 111 (the image represented by the image captured by the camera 111) based on the predetermined first coordinate conversion information IC1. , Responsible for the process of converting to coordinates in the device coordinate system β (first image conversion process).
 カメラ111によって得られる撮像データに記述されてなる画素位置はあくまで、当該撮像データによって表現される撮像画像における位置を表すに過ぎないため、撮像位置を違えつつ複数回の撮像を行う場合、実際の撮像位置は異なるにもかかわらず、それぞれの撮像画像の間で画素位置は区別されない。そのため、メッシュ位置特定装置100においては、撮像画像における個々の画素が、撮像対象物であるメッシュ張設体10のどの位置に対応するかを特定し、当該画素位置における画素値(色濃度値)を、装置座標系βで記述される画素位置における値として取り扱えるようにするべく、第1画像変換処理を行う。 Since the pixel positions described in the imaging data obtained by the camera 111 merely represent the positions in the captured image represented by the imaging data, when the imaging positions are different and the imaging is performed a plurality of times, the actual image is actually taken. Although the imaging positions are different, the pixel positions are not distinguished between the captured images. Therefore, in the mesh position specifying device 100, it is specified which position of the mesh upholstery body 10 which is the image pickup object corresponds to each pixel in the captured image, and the pixel value (color density value) at the pixel position is specified. Is performed in the first image conversion process so that it can be handled as a value at the pixel position described in the device coordinate system β.
 図6は、第1座標変換処理について説明するための図である。図6(a)は、カメラ111による撮像画像に設定された座標系であるカメラ座標系γ(Column(C):Row(R))を示している。カメラ111による撮像画像は、Column方向(C方向:横方向)にNc個、Row方向(R方向:縦方向)にNr個の画素が配列した矩形状の構成を有しており、カメラ座標系γは、係る撮像画像の左上端部を原点(0,0)とし、右下端部が(Nc,Nr)なる座標となるように定められてなる。それゆえ、撮像中心Oのカメラ座標系γにおける座標は(Nc/2,Nr/2)となる。また、図6(a)に示すように、カメラ座標系γにおける任意の画素位置を(C,R)と表現することとする。 FIG. 6 is a diagram for explaining the first coordinate conversion process. FIG. 6A shows a camera coordinate system γ (Column (C): Row (R)) which is a coordinate system set in the image captured by the camera 111. The image captured by the camera 111 has a rectangular structure in which Nc pixels are arranged in the Column direction (C direction: horizontal direction) and Nr pixels are arranged in the Row direction (R direction: vertical direction), and has a camera coordinate system. γ is defined so that the upper left end of the captured image is the origin (0,0) and the lower right end is the coordinates (Nc, Nr). Therefore, the coordinates of the imaging center O in the camera coordinate system γ are (Nc / 2, Nr / 2). Further, as shown in FIG. 6A, an arbitrary pixel position in the camera coordinate system γ is expressed as (C, R).
 一方、図6(b)は、カメラ111の撮像範囲を装置座標系βによって示すものである。いま、装置座標系βによって表される撮像中心Oの座標を(Xc,Yc)とし、カメラ座標系γにおける任意の画素位置(C,R)を装置座標系βでは(X,Y)と表現することとする。 On the other hand, FIG. 6B shows the imaging range of the camera 111 by the device coordinate system β. Now, the coordinates of the imaging center O represented by the device coordinate system β are expressed as (Xc, Yc), and an arbitrary pixel position (C, R) in the camera coordinate system γ is expressed as (X, Y) in the device coordinate system β. I decided to.
 換言すれば、図6は、装置座標系βにおいて(Xc,Yc)を撮像中心として撮像を行うことで得られる撮像画像における、カメラ座標系γにて表された任意の画素位置(C,R)を、装置座標系βにおける画素位置(X,Y)に変換する場合を対象としていることになる。 In other words, FIG. 6 shows an arbitrary pixel position (C, R) represented by the camera coordinate system γ in the captured image obtained by performing imaging with (Xc, Yc) as the imaging center in the device coordinate system β. ) Is converted to the pixel position (X, Y) in the device coordinate system β.
 係る場合、カメラ111の撮像画像における画素サイズがC方向についてSc(μm)、R方向についてSr(μm)であるとすると、
    X=Xc+(C-Nc/2)・Sc/1000  ・・・(1)
    Y=Yc-(R-Nr/2)・Sr/1000  ・・・(2)
が成り立つ。
In this case, assuming that the pixel size in the image captured by the camera 111 is Sc (μm) in the C direction and Sr (μm) in the R direction.
X = Xc + (C-Nc / 2) · Sc / 1000 ... (1)
Y = Yc- (R-Nr / 2) ・ Sr / 1000 ・ ・ ・ (2)
Is established.
 Nc、Nr、Sc、Srはカメラ111に固有の既知の値であり、これらの値を含む式(1)および式(2)が、あらかじめ第1座標変換情報IC1として記憶部134に記憶される。なおNc、Nr、Sc、Srの値は、カメラ111の仕様(使用するレンズ、解像度など)が変更されない限りは同じであることから、第1座標変換情報IC1は通常、メッシュ位置特定装置100の装置の使用に先立ってあらかじめ特定され、固定的に保持される。 Nc, Nr, Sc, and Sr are known values unique to the camera 111, and equations (1) and (2) including these values are stored in the storage unit 134 in advance as the first coordinate conversion information IC1. .. Since the values of Nc, Nr, Sc, and Sr are the same unless the specifications of the camera 111 (lens to be used, resolution, etc.) are changed, the first coordinate conversion information IC1 is usually the mesh position specifying device 100. Pre-specified and fixedly retained prior to use of the device.
 そして、第1座標変換部155Aは、ある撮像中心O(Xc,Yc)について撮像が行われることで生成された撮像データ(マーク撮像データDα、第iメッシュ撮像データDAi)につき、その画素位置を式(1)および式(2)に基づいて装置座標系βにおける座標位置(X,Y)に変換する。なお、座標変換がなされたマーク撮像データDαはさらに、次述する第2座標変換部155Bにおける座標変換に供される。一方、第iメッシュ撮像データDAiを対象とする第1座標変換処理がなされることで、第i処理対象データDBiが生成される。 Then, the first coordinate conversion unit 155A determines the pixel positions of the imaging data (mark imaging data Dα, i-mesh imaging data DAi) generated by performing imaging on a certain imaging center O (Xc, Yc). It is converted into coordinate positions (X, Y) in the device coordinate system β based on the equations (1) and (2). The mark imaged data Dα that has undergone coordinate conversion is further subjected to coordinate conversion in the second coordinate conversion unit 155B described below. On the other hand, the i-th processing target data DBi is generated by performing the first coordinate conversion processing on the i-mesh imaging data DAi.
 第2座標変換部155Bは、装置座標系βで表されている座標を、版座標系αで表される座標に変換する処理(第2座標変換処理)を担う。メッシュ張設体10は通常、メッシュ位置特定装置100とは異なる装置において印刷版の作製に用いられるものであることから、個々のメッシュ張設体10におけるメッシュ糸2mの位置座標は、当該メッシュ張設体10に固有の座標系である版座標系αにて表す方が実用的である。 The second coordinate conversion unit 155B is in charge of the process of converting the coordinates represented by the device coordinate system β into the coordinates represented by the plate coordinate system α (second coordinate conversion process). Since the mesh tensioning body 10 is usually used for producing a printing plate in a device different from the mesh positioning device 100, the position coordinates of the mesh thread 2m in each mesh stretching body 10 are the mesh tensioning. It is more practical to use the plate coordinate system α, which is a coordinate system unique to the body 10.
 第2座標変換部155Bにおいては、まず、メッシュ張設体10に設けられた座標設定用のマークM1~M3の撮像データであるマーク撮像データDαに基づいて、上述した線分LX、LYの延在方向が装置座標系βのX軸、Y軸となす角(傾き角)θと、版座標系αにおける原点(x、y)=(0、0)の装置座標系βにおける座標(X0,Y0)が特定される。このとき、装置座標系βにおける任意の座標(X,Y)は、以下の式によって版座標系αの座標(x,y)に変換される。 In the second coordinate conversion unit 155B, first, the extension of the line segments LX and LY described above is performed based on the mark imaging data Dα which is the imaging data of the coordinates setting marks M1 to M3 provided on the mesh extension body 10. The angle (tilt angle) θ formed by the X-axis and Y-axis of the device coordinate system β in the current direction and the coordinates (X0, 0,) in the device coordinate system β at the origin (x, y) = (0, 0) in the plate coordinate system α. Y0) is specified. At this time, arbitrary coordinates (X, Y) in the device coordinate system β are converted into coordinates (x, y) in the plate coordinate system α by the following equation.
   x=(X-X0)cosθ+(YーY0)sinθ   ・・・(3)
   y=-(X-X0)sinθ+(Y-Y0)cosθ  ・・・(4)
x = (XX0) cosθ + (Y−Y0) sinθ ・ ・ ・ (3)
y =-(XX0) sinθ + (Y-Y0) cosθ ... (4)
 第2座標変換部155Bによって特定された傾き角θおよび座標(X0,Y0)の値と、式(3)および式(4)とが、第2座標変換情報IC2として記憶部134に記憶される。第2座標変換情報IC2は、個々のメッシュ張設体10に固有のものであり、相異なるメッシュ張設体10がメッシュ位置の特定対象とされる都度、生成される。 The values of the tilt angle θ and the coordinates (X0, Y0) specified by the second coordinate conversion unit 155B, and the equations (3) and (4) are stored in the storage unit 134 as the second coordinate conversion information IC2. .. The second coordinate conversion information IC2 is unique to each mesh upholstery body 10, and is generated each time a different mesh upholstery body 10 is targeted for specifying the mesh position.
 そして、第2座標変換部155Bは、後述するメッシュ全位置データDDに装置座標系βを用いて記述された、一のメッシュ張設体10の開口部形成対象範囲RE1に存在する全てのメッシュ糸2mの座標位置を、第2座標変換情報IC2を用いて版座標系αを用いた記述に変換し、張設体メッシュ位置データDEとして出力する処理を行う。 Then, the second coordinate conversion unit 155B describes all the mesh threads existing in the opening formation target range RE1 of one mesh upholstery body 10, which is described in the mesh full position data DD described later by using the device coordinate system β. The coordinate position of 2 m is converted into a description using the plate coordinate system α by using the second coordinate conversion information IC2, and a process of outputting as the stretched body mesh position data DE is performed.
 メッシュ位置情報処理部160は、第1座標変換部155Aによって生成された、装置座標系βを用いて記述されてなる第i処理対象データDBiを対象に、当該データによって表現される撮像画像におけるメッシュ糸2mの位置(装置座標系βにおける位置)を特定する処理を担う。 The mesh position information processing unit 160 targets the i-th processing target data DBi generated by the first coordinate conversion unit 155A and described by using the device coordinate system β, and the mesh in the captured image represented by the data. Responsible for the process of specifying the position of the thread 2 m (position in the device coordinate system β).
 メッシュ位置情報処理部160は、第i処理対象データDBiを取得すると、係る第i処理対象データDBiに対しエッジ検出処理や二値化処理などの公知の画像処理手法を適用し、第i処理対象データDBiによって表現される撮像画像において、メッシュ糸2mに含まれる画素領域とメッシュ開口部MOに含まれる画素領域とを判別する。上述したように、カメラ111による撮像によって得られる撮像画像においてはメッシュ糸2mが暗部となり、メッシュ開口部MOが明部となっているので、メッシュ位置情報処理部160における画像処理によっても、暗部がメッシュ糸2mに該当する画素領域として認識され、明部がメッシュ開口部MOに該当する画素領域として認識されることになる。 When the mesh position information processing unit 160 acquires the i-th processing target data DBi, the mesh position information processing unit 160 applies a known image processing method such as edge detection processing or binarization processing to the i-th processing target data DBi, and applies the i-th processing target data DBi. In the captured image represented by the data DBi, the pixel region included in the mesh thread 2m and the pixel region included in the mesh opening MO are discriminated. As described above, in the image captured by the image captured by the camera 111, the mesh thread 2 m is the dark part and the mesh opening MO is the bright part. Therefore, the dark part is also formed by the image processing in the mesh position information processing unit 160. The bright portion is recognized as the pixel region corresponding to the mesh thread 2 m, and the bright portion is recognized as the pixel region corresponding to the mesh opening MO.
 メッシュ位置情報処理部160はさらに、アドレス付与部161と、特定対象範囲設定部162と、メッシュ位置座標特定部163とを備える。 The mesh position information processing unit 160 further includes an address assignment unit 161, a specific target range setting unit 162, and a mesh position coordinate identification unit 163.
 アドレス付与部161は、第i処理対象データDBiによって表現される撮像画像において、個々のメッシュ開口部MOを表す画素領域にアドレスを付与するとともに、メッシュ糸2mに該当すると認識された画素領域の形状に基づき、個々のメッシュ糸2mを表す画素領域にメッシュ糸番号を付与する。 The address assignment unit 161 assigns an address to a pixel region representing each mesh opening MO in the captured image represented by the i-th processing target data DBi, and the shape of the pixel region recognized as corresponding to the mesh thread 2 m. Based on the above, a mesh thread number is assigned to a pixel area representing each mesh thread 2 m.
 特定対象範囲設定部162は、第i処理対象データDBiによって表現される撮像画像を処理対象として、メッシュ位置を特定する範囲(位置座標特定対象範囲)を設定し、さらには、位置座標特定対象範囲においてメッシュ位置の特定に用いる線分(メッシュ位置特性線群)を設定する処理を担う。 The specific target range setting unit 162 sets a range for specifying the mesh position (position coordinate specific target range) for the captured image represented by the i-th processing target data DBi as a processing target, and further, the position coordinate specific target range. Is responsible for setting the line segment (mesh position characteristic line group) used to specify the mesh position.
 メッシュ位置座標特定部163は、第i処理対象データDBiによって表現される撮像画像と、特定対象範囲設定部162によって設定されたメッシュ位置特性線群とに基づいて、メッシュ糸2mの位置を特定する処理を担う。 The mesh position coordinate identification unit 163 specifies the position of the mesh thread 2 m based on the captured image represented by the i-th processing target data DBi and the mesh position characteristic line group set by the specific target range setting unit 162. Responsible for processing.
 メッシュ位置情報処理部160におけるこれらの種々の処理の結果として、メッシュ張設体10におけるメッシュ位置の全特定対象範囲である開口部形成対象範囲RE1のうち、第i処理対象データDBiの生成元である撮像画像についての撮像範囲RE2に含まれるメッシュ糸2mの位置情報を記述してなる第i部分位置情報データDCiが、生成される。 As a result of these various processes in the mesh position information processing unit 160, the generator of the i-th process target data DBi in the opening formation target range RE1 which is the total specific target range of the mesh position in the mesh extension body 10. The i-th partial position information data DCi that describes the position information of the mesh thread 2m included in the imaging range RE2 for a certain captured image is generated.
 データ統合処理部165は、開口部形成対象範囲RE1の全ての撮像位置における撮像が行われ、かつ、それぞれの撮像データを対象に第1座標変換部155Aおよびメッシュ位置情報処理部160における処理が行われた結果として得られた、全ての第i処理対象データDBiを統合して、一の開口部形成対象範囲RE1の全体についてのメッシュ位置を記述してなるメッシュ全位置データDDを生成する。 The data integration processing unit 165 performs imaging at all imaging positions of the opening formation target range RE1, and processes each imaging data in the first coordinate conversion unit 155A and the mesh position information processing unit 160. All the i-th processing target data DBi obtained as a result of the information processing are integrated to generate a mesh full position data DD that describes the mesh position for the entire range RE1 for forming one opening.
 関連付け処理部170は、メッシュ位置特定装置100においてメッシュ位置の特定対象とされたメッシュ張設体10を一意に識別する情報である(処理対象)張設体識別情報IDを、第2座標変換部155Bによって生成された、実際に特定されたメッシュ位置を版座標系αにて記述してなる張設体メッシュ位置データDEに関連付けし、識別情報付きメッシュ位置データDFとして出力する処理を担う。 The association processing unit 170 uniquely identifies the mesh upholstery body 10 whose mesh position is specified by the mesh position identification device 100 (processing target). The upholstery body identification information ID is converted into the second coordinate conversion unit. It is responsible for associating the actually specified mesh position generated by 155B with the stretched body mesh position data DE described in the plate coordinate system α and outputting it as the mesh position data DF with identification information.
 張設体識別情報IDは、個々のメッシュ張設体10を区別可能な、当該メッシュ張設体10に固有の情報である。張設体識別情報IDは、所定の番号、記号、文字列、あるいはさらにこれらの組み合わせなどで設定される。 The stretched body identification information ID is information unique to the mesh stretched body 10 that can distinguish individual mesh stretched bodies 10. The stretched body identification information ID is set by a predetermined number, symbol, character string, or a combination thereof.
  <メッシュ位置特定処理>
 次に、メッシュ位置特定装置100において実行されるメッシュ位置特定処理について説明する。以降においては、当該処理によってメッシュ位置が特定されたメッシュ張設体10を作製対象としてスクリーン印刷版が作製されることを想定して、説明を行う。
<Mesh position identification process>
Next, the mesh position specifying process executed by the mesh position specifying device 100 will be described. In the following, the description will be made on the assumption that a screen printing plate is produced for the mesh upholstery body 10 whose mesh position is specified by the process.
 図7は、メッシュ位置特定処理における処理の手順を示す図である。なお、以降の説明においては、スクリーンメッシュ2はメッシュ張設体10において横糸2xおよび縦糸2yが版枠1と略平行となるように張設されているものとする。また、カメラ111による撮像範囲RE2での撮像が、全Q箇所の撮像位置にて行われるものとする。すなわち、i=1~Qとする。また、メッシュ位置の特定対象とされ、さらにはスクリーン印刷版の作製処理に供されるメッシュ張設体10にはあらかじめ、(処理対象)張設体識別情報IDが設定されているものとする。 FIG. 7 is a diagram showing a processing procedure in the mesh position specifying process. In the following description, it is assumed that the screen mesh 2 is stretched in the mesh stretched body 10 so that the weft threads 2x and the warp threads 2y are substantially parallel to the plate frame 1. Further, it is assumed that the image pickup in the image pickup range RE2 by the camera 111 is performed at the image pickup positions of all Q points. That is, i = 1 to Q. Further, it is assumed that the (processing target) upholstery body identification information ID is set in advance in the mesh upholstery body 10 which is the target for specifying the mesh position and is used for the screen printing plate manufacturing process.
 図7に示すように、メッシュ位置特定処理においては、メッシュ位置の特定対象であるメッシュ張設体10が、メッシュ位置特定装置100のステージ101に載置される(ステップS1)と、まず、カメラ111が、係るメッシュ張設体10の版枠1に設けられた3つの座標設定用のマークM1~M3を順次に撮像し(ステップS2)、撮像処理部140が、それぞれについてマーク撮像データDαを生成する。 As shown in FIG. 7, in the mesh position specifying process, when the mesh upholstery body 10 which is the target for specifying the mesh position is placed on the stage 101 of the mesh position specifying device 100 (step S1), first, the camera 111 sequentially images the three marks M1 to M3 for setting coordinates provided in the plate frame 1 of the mesh upholstery body 10 (step S2), and the image pickup processing unit 140 captures the mark imaging data Dα for each of them. Generate.
 好ましくは、メッシュ張設体10のステージ101の載置は、横糸2xが装置座標系βのX軸方向に概ね沿うように、かつ、縦糸2yがY軸方向に概ね沿うように、行われる。 Preferably, the stage 101 of the mesh upholstery 10 is placed so that the weft 2x is substantially along the X-axis direction of the device coordinate system β and the warp 2y is substantially along the Y-axis direction.
 マークM1~M3の撮像は、それぞれの中心にカメラ111の撮像中心Oを位置させた状態で行われる。好ましくは、メッシュ張設体10におけるマークM1~M3の形成位置およびステージ101におけるメッシュ張設体10の載置位置を固定的に定めることで、マークM1~M3を撮像する際の撮像位置も固定的に定まっており、当該位置における撮像を行えば撮像範囲内にマークM1~M3が存在するように定められることで、マークM1~M3の撮像は自動処理にてなされる。係る場合、操作者が操作部133を操作することによって与えられた撮像実行指示に応答した移動制御部145が、移動機構112を駆動させてカメラ111をそれぞれのマークM1~M3の位置に移動させ、カメラ111が当該位置に到達する都度、撮像処理部140による制御のもとカメラ111が撮像を行う、という一連の動作が自動的に行われることになる。 Imaging of the marks M1 to M3 is performed with the imaging center O of the camera 111 positioned at the center of each. Preferably, by fixing the formation position of the marks M1 to M3 on the mesh stretched body 10 and the mounting position of the mesh stretched body 10 on the stage 101, the imaging position when imaging the marks M1 to M3 is also fixed. The images of the marks M1 to M3 are automatically processed by defining that the marks M1 to M3 are present within the imaging range when the imaging is performed at the position. In such a case, the movement control unit 145 in response to the imaging execution instruction given by the operator operating the operation unit 133 drives the movement mechanism 112 to move the camera 111 to the positions of the respective marks M1 to M3. Each time the camera 111 reaches the position, the camera 111 takes an image under the control of the image processing unit 140, which is a series of operations automatically performed.
 あるいは、メッシュ位置特定装置100の操作者が、表示部132に表示される撮像画像(ライブビュー)を視認することによってカメラ111の撮像位置を確認しながら、操作部133において所定の操作を行うことによってカメラ111の移動指示を与え、これに応答した移動制御部145が移動機構112を駆動させてカメラ111を当該位置に移動させる、という態様であってもよい。 Alternatively, the operator of the mesh position specifying device 100 performs a predetermined operation on the operation unit 133 while confirming the image pickup position of the camera 111 by visually recognizing the image captured image (live view) displayed on the display unit 132. The movement control unit 145 in response to the movement instruction of the camera 111 may drive the movement mechanism 112 to move the camera 111 to the position.
 なお、照明光源121からの照明光は金属製の版枠1を透過しないため、係るマークM1~M3の撮像に際し、係る照明光の照射は必須ではない。それゆえ、係る撮像は、外光のみの状態でなされる態様であってもよいし、メッシュ位置特定装置100が図示しないマーク撮像用の落射照明光源を備えており、当該光源にてマークM1~M3を照明した状態で、なされる態様であってもよい。 Since the illumination light from the illumination light source 121 does not pass through the metal plate frame 1, it is not essential to irradiate the illumination light when imaging the marks M1 to M3. Therefore, the imaging may be performed in a state of only external light, or the mesh position specifying device 100 includes an epi-illumination light source for mark imaging (not shown), and the marks M1 to the light source are used. The mode may be performed with the M3 illuminated.
 マークM1~M3のそれぞれについてマーク撮像データDαが生成されると、それらに基づいて、装置座標系βを版座標系αに変換するための変換関係を記述した第2座標変換情報IC2が特定される(ステップS3)。 When the mark imaging data Dα is generated for each of the marks M1 to M3, the second coordinate conversion information IC2 that describes the conversion relationship for converting the device coordinate system β to the plate coordinate system α is specified based on them. (Step S3).
 具体的には、まず、第1座標変換部155Aが、カメラ座標系γにて記述されてなるマーク撮像データDαをいったん装置座標系βによるデータに変換する。係る変換がなされると、第2座標変換部155Bが、当該変換後のマーク撮像データDαに基づいてマークM1~M3の座標位置を特定する。そして、特定されたそれらの座標位置から、線分LX、LYの延在方向が装置座標系βのX軸、Y軸となす角(傾き角)θと、版座標系αにおける原点(x、y)=(0、0)の装置座標系βにおける座標(X0,Y0)とを特定し、それらの値を含む式(3)および式(4)を、第2座標変換情報IC2として記憶部134に記憶する。 Specifically, first, the first coordinate conversion unit 155A temporarily converts the mark imaging data Dα described in the camera coordinate system γ into data in the device coordinate system β. When such conversion is performed, the second coordinate conversion unit 155B specifies the coordinate positions of the marks M1 to M3 based on the mark imaging data Dα after the conversion. Then, from those specified coordinate positions, the angle (tilt angle) θ formed by the extension directions of the line segments LX and LY with the X-axis and Y-axis of the device coordinate system β and the origin (x, in the plate coordinate system α). The coordinates (X0, Y0) in the device coordinate system β of y) = (0,0) are specified, and the equations (3) and (4) including those values are stored as the second coordinate conversion information IC2. Store in 134.
 好ましくは、第2座標変換部155Bは、傾き角θと座標(X0,Y0)を求めるために使用した3つのマークM1~M3の装置座標系βにおける座標値についても版座標系αの座標値に変換し、係る変換後の座標値についても、第2座標変換情報IC2に含まれるようにする。 Preferably, the second coordinate conversion unit 155B also uses the coordinate values in the device coordinate system β of the three marks M1 to M3 used to obtain the tilt angle θ and the coordinates (X0, Y0) as the coordinate values of the plate coordinate system α. The coordinate value after the conversion is also included in the second coordinate conversion information IC2.
 次に、i=1を初期値として(ステップS4)、i番目の撮像位置において、カメラ111によりスクリーンメッシュ2の撮像が行われる(ステップS5)。 Next, with i = 1 as the initial value (step S4), the screen mesh 2 is imaged by the camera 111 at the i-th imaging position (step S5).
 具体的には、移動制御部145が、移動機構112を駆動させてカメラ111をi番目の撮像位置に移動させる。そして、カメラ111が当該位置に到達すれば、撮像処理部140による制御のもと、カメラ111により撮像範囲RE2での撮像が行われ、撮像処理部140によって第iメッシュ撮像データDAiが生成される。さらには、第1座標変換部155Aが、係る第iメッシュ撮像データDAiにカメラ座標系γにて記述された各画素位置を第1座標変換情報IC1に基づいて装置座標系βにおける座標に変換し、第i処理対象データDBiとして出力する。 Specifically, the movement control unit 145 drives the movement mechanism 112 to move the camera 111 to the i-th imaging position. Then, when the camera 111 reaches the position, the camera 111 performs imaging in the imaging range RE2 under the control of the imaging processing unit 140, and the imaging processing unit 140 generates the i-mesh imaging data DAi. .. Further, the first coordinate conversion unit 155A converts each pixel position described in the camera coordinate system γ in the i-mesh imaging data DAi into the coordinates in the device coordinate system β based on the first coordinate conversion information IC1. , Is output as the i-th processing target data DBi.
 係る撮像は例えば、操作者による操作部133の操作によって、i=1である1番目の撮像位置と、ある撮像位置における撮像が終了した後に次の撮像位置にカメラ111を移動させる際のシフト量とが、撮像範囲RE2のサイズに応じてあらかじめ設定されたうえで、自動処理にて行われる。 In such imaging, for example, the shift amount when moving the camera 111 to the first imaging position where i = 1 and the next imaging position after the imaging at a certain imaging position is completed by the operation of the operation unit 133 by the operator. Is set in advance according to the size of the imaging range RE2, and is automatically processed.
 あるいは、ステージ101におけるメッシュ張設体10の載置位置が固定的に定められることで、メッシュ位置の特定対象である開口部形成対象範囲RE1の位置も固定的に定められてなる場合であれば、i=1の場合も含め、開口部形成対象範囲RE1に比して小さい撮像範囲RE2での撮像を撮像位置をシフトさせつつ繰り返す際のi番目の撮像位置も、あらかじめ定めておくことが可能であるので、係る場合は、当該位置へのカメラ111の移動および当該位置における撮像を全て、自動処理にて行うことができる。 Alternatively, if the placement position of the mesh upholstery body 10 on the stage 101 is fixedly determined, the position of the opening formation target range RE1 which is the specific target of the mesh position is also fixedly determined. The i-th imaging position when repeating imaging in the imaging range RE2, which is smaller than the opening formation target range RE1 while shifting the imaging position, including the case of i = 1, can also be determined in advance. Therefore, in such a case, the movement of the camera 111 to the position and the imaging at the position can all be performed by automatic processing.
 第i処理対象データDBiが生成されると、メッシュ位置情報処理部160により公知の画像処理手法が適用され、第i処理対象データDBiによって表現される撮像画像において、メッシュ糸2mに対応する画素領域とメッシュ開口部MOに対応する画素領域とが判別されたうえで、アドレス付与部161により、第i処理対象データDBiによって表される撮像画像を対象に、開口部アドレスの付与(ステップS6)と、メッシュ糸番号の付与(ステップS7)とが行われる。 When the i-th processing target data DBi is generated, a known image processing method is applied by the mesh position information processing unit 160, and in the captured image represented by the i-th processing target data DBi, the pixel area corresponding to the mesh thread 2m is applied. After the pixel area corresponding to the mesh opening MO is determined, the address assigning unit 161 assigns the opening address to the captured image represented by the i-th processing target data DBi (step S6). , The mesh thread number is assigned (step S7).
 図8は、ある第i処理対象データDBiによって表される撮像画像P1iを対象とした、開口部アドレスの付与とメッシュ糸番号の付与について例示する図である。なお、第i処理対象データDBiに対しては装置座標系βが適用されているので、撮像画像P1iにおける画素の位置も、装置座標系βにて表現されることになる。換言すれば、撮像画像P1iにおけるメッシュ開口部MOおよびメッシュ糸2mの像の位置座標は、第i処理対象データDBiの生成元となった第iメッシュ撮像データDAiがカメラ111による撮像にて得られた際の撮像範囲RE2における実際のメッシュ開口部MOおよびメッシュ糸2mの位置座標と同じとなっている。 FIG. 8 is a diagram illustrating the assignment of the opening address and the assignment of the mesh thread number for the captured image P1i represented by the i-th processing target data DBi. Since the device coordinate system β is applied to the i-th processing target data DBi, the positions of the pixels in the captured image P1i are also represented by the device coordinate system β. In other words, the position coordinates of the mesh opening MO and the image of the mesh thread 2m in the captured image P1i are obtained by imaging the i-mesh imaging data DAi, which is the generator of the i-th processing target data DBi, by imaging with the camera 111. It is the same as the actual position coordinates of the mesh opening MO and the mesh thread 2 m in the imaging range RE2 at the time.
 図8(a)は、開口部アドレスの付与の様子を示している。撮像画像P1iにおいては、略矩形状に視認される相対的に輝度が高い領域が開口部の像(開口部像)IMoとなっている。開口部像IMoは、スクリーンメッシュ2のメッシュ開口部MOの像であることから、当然ながら撮像画像P1iにおいて二次元的に配列している。アドレス付与部161は、撮像画像P1iに含まれるこれら開口部像IMoのうち、四方を相対的に輝度の低い領域からなるメッシュ糸2m(横糸2x、縦糸2y)の像(横糸像IMx、縦糸像IMy)に囲繞されているもののみを対象に、開口部アドレスを付与する。換言すれば、開口部アドレスは、撮像画像P1iの外周部分に不完全に(見切れて)写っているメッシュ開口部MOの開口部像IMoには付与されない。また、開口部アドレスが付与された開口部像IMoは矩形状に配列する。 FIG. 8A shows how the opening address is assigned. In the captured image P1i, a region having a relatively high brightness that is visually recognized in a substantially rectangular shape is an image of the opening (opening image) IMo. Since the opening image IMo is an image of the mesh opening MO of the screen mesh 2, it is naturally arranged two-dimensionally in the captured image P1i. The address assigning unit 161 is an image (weft image IMx, warp image) of a mesh thread 2m (weft thread 2x, warp thread 2y) composed of regions having relatively low brightness on all sides of these opening image IMos included in the captured image P1i. An opening address is assigned only to those surrounded by IMy). In other words, the opening address is not given to the opening image IMo of the mesh opening MO that is incompletely (cut off) in the outer peripheral portion of the captured image P1i. Further, the opening image IMos to which the opening addresses are assigned are arranged in a rectangular shape.
 具体的には、X軸方向について開口部列番号A、B、C、・・・を付与し、Y軸方向について開口部行番号0、1、2、・・・を付与し、これら開口部列番号と開口部行番号との組み合わせで、それぞれの開口部像IMoのアドレスを定める。図8(a)に示す撮像画像P1iにおいては、X軸座標の小さい側からA~L(ただしIは不使用)の11個の開口部列番号が付与され、Y軸座標の小さい側から0~8の9個の開口部行番号が付与されている。すなわち、撮像画像P1iには11×9=99個の開口部像IMoが存在している。 Specifically, opening column numbers A, B, C, ... Are assigned in the X-axis direction, and opening row numbers 0, 1, 2, ... Are assigned in the Y-axis direction, and these openings are assigned. The address of each opening image IMo is determined by the combination of the column number and the opening row number. In the captured image P1i shown in FIG. 8A, 11 opening row numbers A to L (however, I is not used) are assigned from the side with the smaller X-axis coordinates, and 0 from the side with the smaller Y-axis coordinates. Nine opening line numbers of ~ 8 are assigned. That is, 11 × 9 = 99 opening images IMo exist in the captured image P1i.
 一方、図8(b)は、メッシュ糸番号の付与の様子を示している。メッシュ糸番号は、開口部アドレスが付与された開口部像IMoを囲繞する全ての横糸像IMxおよび縦糸像IMyを対象に付与される。 On the other hand, FIG. 8B shows how the mesh thread number is assigned. The mesh thread number is assigned to all the weft image IMx and the warp image IMy surrounding the opening image IMo to which the opening address is assigned.
 具体的には、横糸像IMxについては、Y軸座標の小さい側から横糸番号h0、h1、h2・・・を付与し、縦糸像IMyについては、X軸座標の小さい側から縦糸番号v0、v1、v2、・・・を付与する。図8(b)に示す撮像画像P1iにおいては、Y軸方向において9本の横糸像IMxにより8個の開口部像IMoが区切られていることから、9個のメッシュ糸番号h0~h9が付与されている。また、X軸方向において12本の縦糸像IMyにより11個の開口部像IMoが区切られていることから、12個のメッシュ糸番号v0~v11が付与されている。 Specifically, for the weft image IMx, weft numbers h0, h1, h2 ... Are assigned from the side with the smaller Y-axis coordinates, and for the warp image IMy, the warp numbers v0, v1 are given from the side with the smaller X-axis coordinates. , V2, ... Are given. In the captured image P1i shown in FIG. 8B, since eight opening images IMo are separated by nine weft image IMx in the Y-axis direction, nine mesh thread numbers h0 to h9 are assigned. Has been done. Further, since 11 opening images IMo are separated by 12 warp image IMy in the X-axis direction, 12 mesh thread numbers v0 to v11 are assigned.
 なお、開口部アドレスおよびメッシュ糸番号はともに、異なる撮像位置において撮像されることで得られる全ての撮像画像において、通し番号として付与される。ただし、アルファベットで与えられる開口部列番号の場合、A~Zが全て(ただしIは除く)付与された後は、2A~2Z、3A~3Z、・・・が順次付与される。ただし、重複して撮像される開口部像IMoと横糸像IMxおよび縦糸像IMyには、同一の開口部アドレスまたはメッシュ糸番号が付与される。これはすなわち、開口部形成対象範囲RE1に含まれる全てのメッシュ開口部MOおよびメッシュ糸2mに、固有の識別情報が付与されることを意味する。 Both the opening address and the mesh thread number are given as serial numbers in all the captured images obtained by capturing the images at different imaging positions. However, in the case of the opening row number given in the alphabet, after all A to Z (excluding I) are assigned, 2A to 2Z, 3A to 3Z, ... Are sequentially assigned. However, the same opening address or mesh thread number is assigned to the opening image IMo, the weft image IMx, and the warp image IMy that are captured in duplicate. This means that unique identification information is given to all the mesh opening MO and the mesh thread 2m included in the opening formation target range RE1.
 開口部アドレスおよびメッシュ糸番号が付与されると、次に、特定対象範囲設定部162が、第i処理対象データDBiによって表される撮像画像P1iの一部を、メッシュ糸2mの特定を行う座標範囲(メッシュ位置特定対象範囲)として設定する(ステップS8)。概略的にいえば、撮像画像P1iにおいてメッシュ糸番号が付与されている範囲のうち、周縁部を除いた部分が、メッシュ位置特定対象範囲として設定される。図9は、特定対象範囲設定部162によるメッシュ位置特定対象範囲の設定について、説明するための図である。 When the opening address and the mesh thread number are assigned, the specific target range setting unit 162 then coordinates a part of the captured image P1i represented by the i-th processing target data DBi to specify the mesh thread 2m. It is set as a range (mesh position specification target range) (step S8). Roughly speaking, a portion of the range to which the mesh thread number is assigned in the captured image P1i, excluding the peripheral portion, is set as the mesh position identification target range. FIG. 9 is a diagram for explaining the setting of the mesh position specific target range by the specific target range setting unit 162.
 特定対象範囲設定部162は、図9(a)に示すように、撮像画像P1iにおいて2次元的に(矩形状に)位置してなる、開口部アドレスが付与された全ての開口部像IMoのうち、四隅の開口部像IMoのそれぞれに属する4つの点Q1~Q4からなる、四辺形Q1Q2Q4Q3を設定する。点Q1は4つの点のうちX座標、Y座標が最も小さい点であり、点Q2は、点Q1から延在する線分Q1Q2が横糸像IMxと略平行になるように設定される点であり、点Q3は、点Q1から延在する線分Q1Q3が縦糸像IMyと略平行になるように設定される点であり、点Q4は、線分Q2Q4が線分Q1Q3と平行でかつ線分Q3Q4が線分Q1Q2と平行となるように設定される点である。好ましくは、四辺形Q1Q2Q4Q3は矩形とされる。得られた四辺形Q1Q2Q4Q3の内側が、位置座標特定対象範囲となる。 As shown in FIG. 9A, the specific target range setting unit 162 is a two-dimensional (rectangular) position in the captured image P1i of all the opening image IMos to which the opening addresses are assigned. Among them, a quadrilateral Q1Q2Q4Q3 composed of four points Q1 to Q4 belonging to each of the opening image IMos at the four corners is set. The point Q1 is the point with the smallest X and Y coordinates among the four points, and the point Q2 is a point set so that the line segment Q1Q2 extending from the point Q1 is substantially parallel to the weft image IMx. , Point Q3 is a point where the line segment Q1Q3 extending from the point Q1 is set to be substantially parallel to the warp image IMy. At the point Q4, the line segment Q2Q4 is parallel to the line segment Q1Q3 and the line segment Q3Q4. Is a point set so as to be parallel to the line segment Q1Q2. Preferably, the quadrilateral Q1Q2Q4Q3 is rectangular. The inside of the obtained quadrilateral Q1Q2Q4Q3 is the position coordinate identification target range.
 より詳細には、上述の四辺形Q1Q2Q4Q3は、開口部アドレスが付与された全ての開口部像IMoのうち、対角に位置しそれゆえに互いに最も遠い位置にある2つの開口部像IMoのそれぞれから選択される2点(点Q1と点Q4、または、点Q2と点Q3)を対角線とし、横糸像IMxと縦糸像Imyと略平行な四辺を有する四辺形として、特定される。 More specifically, the above-mentioned quadrilateral Q1Q2Q4Q3 is derived from each of the two opening image IMos that are diagonally located and therefore farthest from each other, out of all the opening image IMos to which the opening addresses are assigned. The two selected points (points Q1 and Q4, or points Q2 and Q3) are defined as diagonal lines, and are specified as a quadrilateral having four sides substantially parallel to the weft image IMx and the warp image Imy.
 図9(b)は、このように四辺形Q1Q2Q4Q3を設定したときの、線分Q1Q2に沿った輝度プロファイルPF1を示している。係る輝度プロファイルPF1においては、メッシュ開口部MOに相当する開口部像IMoのところで輝度が高く、メッシュ糸2m(具体的には縦糸2y)に相当する縦糸像IMyのところで輝度が低いという、輝度の高低が繰り返されてなる。そして、特定対象範囲設定部162は、前者の高輝度の範囲のそれぞれにおいて、中点(群)MP1を特定する。 FIG. 9B shows the luminance profile PF1 along the line segment Q1Q2 when the quadrilateral Q1Q2Q4Q3 is set in this way. In the luminance profile PF1, the luminance is high at the opening image IMo corresponding to the mesh opening MO, and the luminance is low at the warp image IMy corresponding to the mesh thread 2 m (specifically, the warp thread 2y). High and low are repeated. Then, the specific target range setting unit 162 specifies the midpoint (group) MP1 in each of the former high-luminance ranges.
 特定対象範囲設定部162はさらに、図9(a)に示すように、線分Q3Q4、線分Q1Q3、線分Q2Q4のそれぞれについても、上記と同様に、開口部像IMoのところで中点(群)MP2、中点(群)MP3、中点(群)MP4を特定する。 Further, as shown in FIG. 9A, the specific target range setting unit 162 also for each of the line segment Q3Q4, the line segment Q1Q3, and the line segment Q2Q4 at the midpoint (group) at the opening image IMo in the same manner as described above. ) Specify MP2, midpoint (group) MP3, and midpoint (group) MP4.
 中点(群)MP1~MP4が特定されると、続いて、特定対象範囲設定部162は、メッシュ位置特定線群を設定する(ステップS9)。図10は、特定対象範囲設定部162によるメッシュ位置特定線群の設定について、説明するための図である。 When the midpoints (groups) MP1 to MP4 are specified, the specific target range setting unit 162 subsequently sets the mesh position specifying line group (step S9). FIG. 10 is a diagram for explaining the setting of the mesh position specifying line group by the specific target range setting unit 162.
 具体的には、特定対象範囲設定部162は、中点群MP1と中点群MP2において開口部列番号が同じ中点MP1とMP2同士を結ぶ線分を特定する。より具体的には、これらの線分についての装置座標系βにおける直線の式を特定する。同様に、中点群MP3と中点群MP4において開口部行番号が同じ中点MP3とMP4同士を結ぶ線分を特定する。これらの線分が、メッシュ位置特定線群となる。図10(a)に示す場合であれば、対向する中点MP1とMP2同士を結ぶ9個の線分B0-B8、C0-C8、D0-D8、E0-E8、F0-F8、G0-G8、H0-H8、J0-J8、K0-K8、および、対向する中点MP3とMP4同士を結ぶ7個の線分A1-L1、A2-L2、A3-L3、A4-L4、A5-L5、A6-L6、A7-L7がメッシュ位置特定線群を構成する。 Specifically, the specific target range setting unit 162 specifies a line segment connecting the midpoint MP1 and MP2 having the same opening row number in the midpoint group MP1 and the midpoint group MP2. More specifically, the equations of the straight lines in the device coordinate system β for these line segments are specified. Similarly, in the midpoint group MP3 and the midpoint group MP4, a line segment connecting the midpoint MP3 and MP4 having the same opening line number is specified. These line segments form a mesh position specifying line group. In the case shown in FIG. 10A, nine line segments B0-B8, C0-C8, D0-D8, E0-E8, F0-F8, G0-G8 connecting the opposing midpoints MP1 and MP2. , H0-H8, J0-J8, K0-K8, and seven line segments A1-L1, A2-L2, A3-L3, A4-L4, A5-L5, connecting the opposing midpoints MP3 and MP4. A6-L6 and A7-L7 form a mesh position specifying line group.
 メッシュ位置特定線群が設定されると、メッシュ位置座標特定部163がメッシュ位置特定線群を対象に、メッシュ糸2mの位置座標(部分メッシュ位置座標)を特定する(ステップS10)。これは、メッシュ位置特定線群をなすそれぞれの線分に沿った輝度プロファイルにおいて、輝度変化の顕著な箇所をメッシュ糸2mのエッジ(端部)として特定する処理である。 When the mesh position specifying line group is set, the mesh position coordinate specifying unit 163 specifies the position coordinates (partial mesh position coordinates) of the mesh thread 2 m for the mesh position specifying line group (step S10). This is a process of identifying a portion where the brightness changes significantly as an edge (end portion) of the mesh thread 2 m in the brightness profile along each line segment forming the mesh position specifying line group.
 例えば、開口部アドレスがA1とL1である開口部像IMoに定められた中点MP3とMP4とを結ぶ線分A1-L1における輝度プロファイルPF2においては、図10(b)のように、高輝度領域と低輝度領域とが交互に繰り返される。係る輝度プロファイルPF2において高輝度領域から低輝度領域へと変化する箇所が、縦糸2yの左端位置に相当し、低輝度領域から高輝度領域へと変化する箇所が、縦糸2yの右端位置に相当する。 For example, in the brightness profile PF2 of the line segment A1-L1 connecting the midpoints MP3 and MP4 defined in the opening image IMo whose opening addresses are A1 and L1, the brightness is high as shown in FIG. 10 (b). Areas and low-brightness areas are repeated alternately. In the luminance profile PF2, the portion that changes from the high luminance region to the low luminance region corresponds to the left end position of the warp yarn 2y, and the portion that changes from the low luminance region to the high luminance region corresponds to the right end position of the warp yarn 2y. ..
 同様に、開口部アドレスがF0とF8である開口部像IMoに定められた中点MP1とMP2とを結ぶ線分F0-F8における輝度プロファイルPF3においても、図10(c)のように、高輝度領域と低輝度領域とが交互に繰り返され、係る輝度プロファイルPF3において、高輝度領域から低輝度領域へと変化する箇所が、横糸2xの下端位置に相当し、低輝度領域から高輝度領域へと変化する箇所が、横糸2xの上端位置に相当する。 Similarly, the luminance profile PF3 in the line segment F0-F8 connecting the midpoints MP1 and MP2 defined in the opening image IMo whose opening addresses are F0 and F8 is also high as shown in FIG. 10 (c). The luminance region and the low luminance region are alternately repeated, and in the luminance profile PF3, the portion where the luminance region changes from the luminance region to the low luminance region corresponds to the lower end position of the weft 2x, and from the low luminance region to the high luminance region. The part that changes with corresponds to the upper end position of the weft thread 2x.
 メッシュ位置座標特定部163は、メッシュ位置特定対象範囲に属する全てのメッシュ位置特定線群を対象に、このような輝度プロファイルにおける輝度変化から、縦糸2yの左右のエッジの位置と、横糸2xの上下のエッジの位置とを特定する。 The mesh position coordinate identification unit 163 targets all the mesh position identification line groups belonging to the mesh position identification target range, and from the brightness change in such a luminance profile, the positions of the left and right edges of the warp 2y and the top and bottom of the weft 2x Identify the position of the edge of.
 なお、以降においては、メッシュ位置特定対象範囲に属するメッシュ糸番号v1~v10の縦糸2yとメッシュ位置特定線群とが交差する箇所のうち、Y軸方向における値が小さい側からp番目の左側のエッジをv1(p)L~v10(p)Lと表し、右側のエッジをv1(p)R~v10(p)Rと表すこととする。また、メッシュ糸番号h1~h8の横糸2xとメッシュ位置特定線群とが交差する箇所のうち、X方向における値が小さい側からp番目の下側のエッジをh1(p)D~h8(p)Dと表し、上側のエッジをh1(p)U~h8(p)Uと表すこととする。ここで、(p)を点番号と称する。 In the following, among the points where the warp threads 2y of the mesh thread numbers v1 to v10 belonging to the mesh position identification target range and the mesh position identification line group intersect, the p-th left side from the side with the smaller value in the Y-axis direction. The edge is represented by v1 (p) L to v10 (p) L, and the right edge is represented by v1 (p) R to v10 (p) R. Further, among the points where the weft threads 2x of the mesh thread numbers h1 to h8 and the mesh position specifying line group intersect, the lower edge p from the side having the smallest value in the X direction is h1 (p) D to h8 (p). ) D, and the upper edge is represented as h1 (p) U to h8 (p) U. Here, (p) is referred to as a point number.
 そして、係る場合においては、例えば、v1(p)LのX座標をX1pL、Y座標をY1pLなどと表し、v1(p)RのX座標をX1pR、Y座標をY1pRなどと表すこととする。さらに、h1(p)DのX座標をX1pD、Y座標をY1pDなどと表し、h1(p)UのX座標をX1pU、Y座標をY1pUなどと表すこととする。例えば、図10(b)に示すように、v5(1)L=(X51L,Y51L)であり、図10(c)に示すように、h4(5)U=(X45U,Y45U)である。当然ながら、実際のそれぞれの座標値は具体的な数値として特定される。 In such a case, for example, the X coordinate of v1 (p) L is expressed as X1pL, the Y coordinate is expressed as Y1pL, and the X coordinate of v1 (p) R is expressed as X1pR, and the Y coordinate is expressed as Y1pR. Further, the X coordinate of h1 (p) D is expressed as X1pD, the Y coordinate is expressed as Y1pD, and the like, the X coordinate of h1 (p) U is expressed as X1pU, and the Y coordinate is expressed as Y1pU. For example, as shown in FIG. 10 (b), v5 (1) L = (X51L, Y51L), and as shown in FIG. 10 (c), h4 (5) U = (X45U, Y45U). As a matter of course, each actual coordinate value is specified as a concrete numerical value.
 これらv1(p)L~v10(p)L、v1(p)R~v10(p)R、h1(p)D~h8(p)D、h1(p)U~h8(p)Uのような、第i処理対象データDBiの表す撮像画像P1iに基づき定められたメッシュ位置特定対象範囲に含まれる、縦糸2yの左右のエッジの位置と横糸2xの上下のエッジの位置のそれぞれの座標を、i番目の撮像範囲についての部分メッシュ位置座標と称し、そして、撮像画像P1iに基づき特定された部分メッシュ位置座標を記述してなるデータセットを、第i部分位置情報データDCiと称する。すなわち、メッシュ位置座標特定部163は、第i部分位置情報データDCiの生成を担っているともいえる。 Like these v1 (p) L to v10 (p) L, v1 (p) R to v10 (p) R, h1 (p) D to h8 (p) D, h1 (p) U to h8 (p) U The coordinates of the left and right edge positions of the warp thread 2y and the positions of the upper and lower edges of the weft thread 2x, which are included in the mesh position specification target range determined based on the captured image P1i represented by the i-th processing target data DBi, are set. The data set that describes the partial mesh position coordinates for the i-th imaging range and the partial mesh position coordinates specified based on the captured image P1i is referred to as the i-th partial position information data DCi. That is, it can be said that the mesh position coordinate specifying unit 163 is responsible for generating the i-th partial position information data DCi.
 図11は、第i部分位置情報データDCiに記述された、縦糸2yの左右のエッジの位置と、横糸2xの上下のエッジの位置とを、スクリーンメッシュ2と対応させて示す図である。ただし、図11においては、メッシュ糸2mの蛇行が誇張されている。 FIG. 11 is a diagram showing the positions of the left and right edges of the warp 2y and the positions of the upper and lower edges of the weft 2x described in the i-part position information data DCi in correspondence with the screen mesh 2. However, in FIG. 11, the meandering of the mesh thread 2 m is exaggerated.
 図11に示すように、第i部分位置情報データDCiに記述された個々の座標は、それぞれのメッシュ開口部MOをなす2つの横糸2xおよび2つの縦糸2yの位置(代表値)となっている。 As shown in FIG. 11, the individual coordinates described in the i-th partial position information data DCi are the positions (representative values) of the two weft threads 2x and the two warp threads 2y forming the respective mesh opening MO. ..
 部分メッシュ位置座標が特定され、第i部分位置情報データDCiが生成されると、i番目の撮像範囲に対応する撮像画像P1iに基づく処理は終了する。 When the partial mesh position coordinates are specified and the i-th partial position information data DCi is generated, the processing based on the captured image P1i corresponding to the i-th imaging range ends.
 他の撮像範囲に対応する撮像画像を対象とする部分メッシュ位置座標の特定が残っており、全ての撮像範囲(つまりは開口部形成対象範囲RE1全体)に対する処理の終了には至っていない(つまりはi=Qではない)場合(ステップS11でNO)、i=i+1とされ(ステップS12)、移動制御部145の制御による移動機構112の駆動により、カメラ111による撮像位置がシフトさせられたうえで、ステップS5以降の処理が繰り返される。 The identification of the partial mesh position coordinates for the captured image corresponding to the other imaging range remains, and the processing for the entire imaging range (that is, the entire opening target range RE1) has not been completed (that is, that is). When (not i = Q) (NO in step S11), i = i + 1 (step S12), and the image pickup position by the camera 111 is shifted by driving the movement mechanism 112 under the control of the movement control unit 145. , The processing after step S5 is repeated.
 ただし、X軸方向に撮像位置をシフトさせる場合においては、従前の撮像範囲の少なくとも2列のメッシュ開口部MOが新たな撮像範囲において重複するようにカメラ111の移動が行われ、Y軸方向に撮像位置をシフトさせる場合においては、従前の撮像範囲の少なくとも2行のメッシュ開口部MOが新たな撮像範囲において重複するようにカメラ111の移動が行われる。好ましくは、ひとたび定められたそれぞれの軸方向における重複範囲は、全ての撮像範囲に対する撮像が完了するまでの間、変更されることなく維持される。係る場合、あらかじめ(例えば、1番目の撮像画像P11に基づき)当該重複範囲を見越してカメラ111の移動量を設定すれば、その後は、自動的に撮像位置を移動させつつ全ての撮像位置において撮像を行うことが出来る。 However, when the imaging position is shifted in the X-axis direction, the camera 111 is moved so that at least two rows of mesh openings MO in the conventional imaging range overlap in the new imaging range, and the camera 111 is moved in the Y-axis direction. When shifting the imaging position, the camera 111 is moved so that at least two rows of mesh openings MO in the conventional imaging range overlap in the new imaging range. Preferably, once defined, the overlapping range in each axial direction remains unchanged until imaging for the entire imaging range is complete. In such a case, if the movement amount of the camera 111 is set in advance (for example, based on the first captured image P11) in anticipation of the overlapping range, then the imaging position is automatically moved and the images are captured at all the imaging positions. Can be done.
 全ての撮像範囲に対する、撮像から部分メッシュ位置座標の特定に至るまでの処理が終了した(つまりはi=Qである)場合(ステップS11でYES)、データ統合処理部165が、全ての(全Q個の)第i部分位置情報データDCiを統合して、一のメッシュ全位置データDDを生成する(ステップS13)。 When the processing from imaging to the identification of the partial mesh position coordinates for the entire imaging range is completed (that is, i = Q) (YES in step S11), the data integration processing unit 165 performs all (all). The i-th partial position information data DCi (of Q) is integrated to generate one mesh full position data DD (step S13).
 具体的には、1=1~Qの全ての第i部分位置情報データDCiにおいてはメッシュ位置特定線群を構成する線分ごとに記述されていた、縦糸2yの左右のエッジの位置座標と横糸2xの上下のエッジの位置座標とを、縦糸2yについてはメッシュ糸番号が同じものについての左側のエッジの位置座標および右側のエッジの位置座標にグルーピングし、横糸2xについてはメッシュ糸番号が同じものについての上側のエッジの位置座標および下側のエッジの位置座標にグルーピングする。 Specifically, in all the i-th partial position information data DCi of 1 = 1 to Q, the position coordinates of the left and right edges of the warp 2y and the weft, which are described for each line segment constituting the mesh position specific line group. The position coordinates of the upper and lower edges of 2x are grouped into the position coordinates of the left edge and the position coordinates of the right edge for the warp threads 2y having the same mesh thread number, and the weft threads 2x have the same mesh thread number. Group to the position coordinates of the upper edge and the position coordinates of the lower edge.
 図12は、メッシュ全位置データDDを表形式にて例示した図である。図12においては、開口部形成対象範囲RE1にn本の縦糸2yとm本の横糸2xとが存在している場合を想定している。すなわち、それぞれの縦糸2yにはv1~vmのメッシュ糸番号(縦糸番号)が対応し、それぞれの横糸2xにはh1~hmのメッシュ糸番号(横糸番号)が対応している。また、点番号は、縦糸2yについては開口部形成対象範囲RE1においてY座標の小さい方から数えたメッシュ開口部MOの数(行数)に相当し、横糸2xについては開口部形成対象範囲RE1においてX座標の小さい方から数えたメッシュ開口部MOの数(列数)に相当する。 FIG. 12 is a diagram illustrating the mesh full position data DD in a tabular format. In FIG. 12, it is assumed that n warp threads 2y and m weft threads 2x exist in the opening formation target range RE1. That is, each warp thread 2y corresponds to a mesh thread number (warp thread number) of v1 to vm, and each weft thread 2x corresponds to a mesh thread number (weft thread number) of h1 to hm. The point numbers correspond to the number of mesh openings MO (number of rows) counted from the smaller Y coordinate in the opening formation target range RE1 for the warp threads 2y, and in the opening formation target range RE1 for the weft threads 2x. It corresponds to the number of mesh opening MOs (number of columns) counted from the smaller X coordinate.
 図12においては、例えば、縦糸番号v2が付された縦糸の、X座標の小さい方から(j)番目の開口部における左側のエッジの座標が(X2jL,Y2jL)であり、右側のエッジの座標が(X2jR,Y2jR)と表されている。横糸についても同様である。 In FIG. 12, for example, the coordinates of the left edge of the warp with the warp number v2 at the (j) th opening from the smallest X coordinate are (X2jL, Y2jL), and the coordinates of the right edge. Is expressed as (X2jR, Y2jR). The same applies to the weft.
 メッシュ全位置データDDは、開口部形成対象範囲RE1に含まれる全てのメッシュ糸2mについての、メッシュ開口部MOの存在箇所ごとのエッジの位置座標を、換言すれば、スクリーンメッシュ2における繰り返し単位ごとのエッジの位置座標を、当該メッシュ糸2mの延在方向に沿った順序で、装置座標系βにて記述したデータとなっている。 The mesh full position data DD is the position coordinates of the edges of all the mesh threads 2 m included in the opening formation target range RE1 for each location of the mesh opening MO, in other words, for each repeating unit in the screen mesh 2. The position coordinates of the edge of the above are the data described in the device coordinate system β in the order along the extending direction of the mesh thread 2 m.
 係る態様にてメッシュ全位置データDDが生成されると、第2座標変換部155Bが、第2座標変換情報IC2を用いてメッシュ全位置データDDに記述された全ての座標値を、版座標系αにおける座標値に変換する(ステップS14)。係る変換により生成されるデータを張設体メッシュ位置データDEと称する。 When the mesh full position data DD is generated in such an embodiment, the second coordinate conversion unit 155B uses the second coordinate conversion information IC2 to convert all the coordinate values described in the mesh full position data DD into the plate coordinate system. It is converted into the coordinate value at α (step S14). The data generated by such conversion is referred to as stretched body mesh position data DE.
 図13は、係る張設体メッシュ位置データDEを、メッシュ全位置データDDと同じ表形式にて例示した図である。それゆえ、図13に示す張設体メッシュ位置データDEの形式は図12に示したメッシュ全位置データDDと同一であるが、それぞれのメッシュ糸2mのエッジの位置を与える座標値の具体的な値は、両者において異なっている。 FIG. 13 is a diagram illustrating the stretched body mesh position data DE in the same tabular format as the mesh full position data DD. Therefore, the format of the stretched body mesh position data DE shown in FIG. 13 is the same as the mesh total position data DD shown in FIG. 12, but the specific coordinate values giving the positions of the edges of the respective mesh threads 2 m are specific. The values are different for both.
 例えば、図13においては、縦糸番号v2が付された縦糸の、X座標の小さい方から(j)番目の開口部における左側のエッジの座標が(x2jL,y2jL)であり、右側のエッジの座標が(x2jR,y2jR)と表されているが、これらの具体的な座標値はそれぞれ、同じ縦糸の同じ位置についての左側のエッジの座標(X2jL,Y2jL)および右側のエッジの座標(X2jR,Y2jR)の具体的な値とは異なっている。 For example, in FIG. 13, the coordinates of the left edge of the warp with the warp number v2 at the (j) th opening from the smallest X coordinate are (x2jL, y2jL), and the coordinates of the right edge. Is expressed as (x2jR, y2jR), but these specific coordinate values are the coordinates of the left edge (X2jL, Y2jL) and the coordinates of the right edge (X2jR, Y2jR) for the same position of the same warp, respectively. ) Is different from the specific value.
 張設体メッシュ位置データDEは、開口部形成対象範囲RE1に含まれる全てのメッシュ糸2mについての、メッシュ開口部MOの存在箇所ごとのエッジの位置座標を、換言すれば、スクリーンメッシュ2における繰り返し単位ごとのエッジの位置座標を、当該メッシュ糸2mの延在方向に沿った順序で、版座標系αにて記述したデータとなっている。 The upholstery mesh position data DE is the position coordinates of the edges of all the mesh threads 2 m included in the opening formation target range RE1 at each location of the mesh opening MO, in other words, the repetition in the screen mesh 2. The data describes the edge position coordinates for each unit in the plate coordinate system α in the order along the extending direction of the mesh thread 2 m.
 メッシュ糸2mのエッジの位置が版座標系αにて表されているということは、張設体メッシュ位置データDEにおいては、メッシュ糸2mのエッジの位置が、当該データの生成元となった撮像画像の撮像対象とされたメッシュ張設体10に固有の座標系にて記述されているということを意味する。また、スクリーン印刷版の作製という観点からみれば、張設体メッシュ位置データDEは、スクリーン印刷版の作製対象とされるメッシュ張設体10に基づいて作成された、当該メッシュ張設体10に固有のデータとなっている。 The fact that the position of the edge of the mesh thread 2 m is represented by the plate coordinate system α means that in the upholstery mesh position data DE, the position of the edge of the mesh thread 2 m is the imaging source of the data. It means that it is described in the coordinate system peculiar to the mesh upholstery body 10 for which the image is captured. Further, from the viewpoint of producing the screen printing plate, the stretched body mesh position data DE is provided on the mesh stretched body 10 created based on the mesh stretched body 10 for which the screen printing plate is manufactured. It is unique data.
 このことは、張設体メッシュ位置データDEの記述内容を読み出すことで、その作成元となったメッシュ張設体10において開口部形成対象範囲RE1に含まれる全てのメッシュ糸2mのエッジの位置を、把握できることを意味する。 This means that by reading the description content of the stretched body mesh position data DE, the positions of the edges of all the mesh threads 2 m included in the opening formation target range RE1 in the mesh stretched body 10 from which the stretched body is created can be determined. , Means to be able to grasp.
 一方、図14は、張設体メッシュ位置データDEの記述内容に基づいて、メッシュ糸2mのエッジの位置(つまりは輪郭の位置)を、図11に示された範囲に対応させて再現した輪郭像P2を示す図である。具体的には、張設体メッシュ位置データDEに記述された、メッシュ糸番号(縦糸番号または横糸番号)が同じで左側のエッジ(L)または右側のエッジ(R)の位置を与える座標点を点番号順につなぐことで形成される連続線が、図示されている。図14においては例えば、縦糸番号v2の左側のエッジに相当する連続線をLv2L、縦糸番号v7の右側のエッジに相当する連続線をLv7R、などと称している。同様に、横糸番号h2の上側のエッジに相当する連続線をLh2U、横糸番号h8の下側のエッジに相当する連続線をLh8D、などと称している。 On the other hand, FIG. 14 shows a contour in which the edge position (that is, the contour position) of the mesh thread 2 m is reproduced corresponding to the range shown in FIG. 11 based on the description content of the stretched body mesh position data DE. It is a figure which shows the image P2. Specifically, a coordinate point described in the stretched body mesh position data DE that gives the position of the left edge (L) or the right edge (R) having the same mesh thread number (warp thread number or weft number) is used. A continuous line formed by connecting in the order of point numbers is shown in the figure. In FIG. 14, for example, the continuous line corresponding to the left edge of the warp number v2 is referred to as Lv2L, the continuous line corresponding to the right edge of the warp number v7 is referred to as Lv7R, and the like. Similarly, the continuous line corresponding to the upper edge of the weft number h2 is referred to as Lh2U, the continuous line corresponding to the lower edge of the weft number h8 is referred to as Lh8D, and the like.
 係る連続線は、実際のメッシュ糸2mのエッジの位置を、近似的に再現するものとなっている。しかも、その生成過程上、全てのメッシュ開口部MOの位置が、反映されたものとなっている。このことは、張設体メッシュ位置データDEの記述内容を参照することで、スクリーン印刷版の作製対象たるメッシュ張設体10におけるメッシュ糸2mの具体的な張設位置を、把握できることを意味する。換言すれば、張設体メッシュ位置データDEは事実上、メッシュ張設体10のメッシュ位置を記述したデータとして用いることができる。 The continuous line approximates the position of the edge of the actual mesh thread 2 m. Moreover, the positions of all the mesh openings MO are reflected in the generation process. This means that by referring to the description contents of the stretched body mesh position data DE, the specific stretched position of the mesh thread 2 m in the mesh stretched body 10 to be produced of the screen printing plate can be grasped. .. In other words, the stretched body mesh position data DE can be effectively used as data describing the mesh position of the mesh stretched body 10.
 図15は、図14に示した輪郭像P2に基づき、左右あるいは上下で対になった連続線の間を塗りつぶす(低輝度領域とする)ことで、メッシュ糸2mを再現したメッシュ再現像P3を示す図である。メッシュ再現像P3に示すように、張設体メッシュ位置データDEを用いることで、メッシュ糸2mとメッシュ開口部MOとが好適に再現される。なお、連続線に対しスムージング処理を行うことで、より実際のメッシュ糸2mの形状に近づけることも可能である。 FIG. 15 shows a mesh redevelopment P3 that reproduces the mesh thread 2 m by filling the space between the continuous lines paired horizontally or vertically based on the contour image P2 shown in FIG. 14 (set as a low-luminance region). It is a figure which shows. As shown in mesh redevelopment P3, the mesh thread 2 m and the mesh opening MO are suitably reproduced by using the stretched body mesh position data DE. It is also possible to make the shape of the mesh thread 2 m closer to the actual shape by performing the smoothing process on the continuous line.
 ただし、張設体メッシュ位置データDEそのものには作成元となったメッシュ張設体10を特定する情報は含まれていない。張設体メッシュ位置データDEは、作成元のメッシュ張設体10に固有のものであることから、両者が関連付けられることで初めて、存在意義を有する。そこで、張設体メッシュ位置データDEは、関連付け処理部170において、その作成元となったメッシュ張設体10を特定する(処理対象)張設体識別情報IDと関連付けられる(ステップS15)。本実施の形態においては、張設体メッシュ位置データDEと張設体識別情報IDが関連付けられたデータを特に、識別情報付きメッシュ位置データDFと称する。係る関連付けがなされることで、メッシュ位置特定装置100におけるメッシュ位置特定処理は終了する。関連付けの詳細については次述する。 However, the stretched body mesh position data DE itself does not include information that identifies the mesh stretched body 10 that was the creation source. Since the stretched body mesh position data DE is unique to the mesh stretched body 10 from which it was created, it has a significance of existence only when both are associated with each other. Therefore, the stretched body mesh position data DE is associated with the stretched body identification information ID that identifies (processes) the mesh stretched body 10 that is the creation source of the stretched body mesh position data DE in the association processing unit 170 (step S15). In the present embodiment, the data in which the stretched body mesh position data DE and the stretched body identification information ID are associated with each other is particularly referred to as a mesh position data DF with identification information. When such an association is made, the mesh position specifying process in the mesh position specifying device 100 is completed. The details of the association will be described below.
 作成された張設体メッシュ位置データDEあるいは識別情報付きメッシュ位置データDFは、記憶部134に格納されるか、あるいは、装置外部の記憶装置(ハードディスク、メッシュ位置特定装置100とネットワークで接続されたサーバーなど)や、可搬性のある所定の記憶媒体(例えば、DVD-RAM、DVD-RW、USBメモリ、SDカードなど)に記憶(格納)される。 The created upholstery mesh position data DE or mesh position data DF with identification information is stored in the storage unit 134, or is connected to a storage device (hard disk, mesh position identification device 100) outside the device via a network. It is stored (stored) in a predetermined storage medium (for example, DVD-RAM, DVD-RW, USB memory, SD card, etc.) that is portable (for example, a server).
 なお、上述したように、3つのマークM1~M3の版座標系αの座標値が第2座標変換情報IC2に含まれてなる場合は、係る座標値についても張設体メッシュ位置データDEに記述される。 As described above, when the coordinate values of the plate coordinate system α of the three marks M1 to M3 are included in the second coordinate conversion information IC2, the coordinate values are also described in the stretched body mesh position data DE. Will be done.
   <関連付けの詳細>
 張設体識別情報IDは、上述したように、所定の番号、記号、文字列、あるいはさらにこれらの組み合わせなど、種々の形式にて設定されるが、関連付け処理部170による張設体メッシュ位置データDEと張設体識別情報IDとの関連付けの具体的な態様についても、種々のものがある。
<Details of association>
As described above, the stretched body identification information ID is set in various formats such as a predetermined number, symbol, character string, or a combination thereof, and the stretched body mesh position data by the association processing unit 170. There are also various specific modes of associating the DE with the upholstery body identification information ID.
 例えば、番号や記号にて設定された張設体識別情報IDがそのまま、張設体メッシュ位置データDE内にデータ項目の1つとして書き加えられることで、識別情報付きメッシュ位置データDFが生成される態様であってもよいし、張設体識別情報IDがあくまで独立のデータとして保持され、当該データと張設体メッシュ位置データDEとを関連付ける情報が、識別情報付きメッシュ位置データDFとして設定される態様であってもよい。また、張設体メッシュ位置データDEのデータファイル名として張設体識別情報IDが付される態様であってもよい。 For example, the mesh position data DF with identification information is generated by adding the stretched body identification information ID set by the number or symbol as it is as one of the data items in the stretched body mesh position data DE. The stretched body identification information ID is held as independent data to the last, and the information associating the data with the stretched body mesh position data DE is set as the mesh position data DF with the identification information. It may be in this mode. Further, the stretched body identification information ID may be attached as the data file name of the stretched body mesh position data DE.
 あるいはさらに、張設体メッシュ位置データDEが可搬性のある記憶媒体に格納され、メッシュ位置特定装置100の外部において、格納された記憶媒体そのものに、張設体識別情報IDが印刷、貼付などの態様にて物理的に付される態様であってもよい。その場合、張設体識別情報IDは、文字や記号そのままのかたちで付されてもよいし、あるいは、バーコードあるいは二次元コードのような暗号化されたかたちで付される態様であってもよい。係る場合、メッシュ位置特定装置100において関連付け処理部170は必須の構成要素ではない。 Further, the stretched body mesh position data DE is stored in a portable storage medium, and the stretched body identification information ID is printed or pasted on the stored storage medium itself outside the mesh position specifying device 100. It may be a mode physically attached in the mode. In that case, the stretched body identification information ID may be attached in the form of characters or symbols as they are, or may be attached in an encrypted form such as a bar code or a two-dimensional code. Good. In such a case, the association processing unit 170 is not an indispensable component in the mesh position specifying device 100.
 詰まるところ、識別情報付きメッシュ位置データDFは、それ自体が所定の形式で記述された一のデータである必要はなく、あるメッシュ張設体10についての張設体識別情報IDと、当該メッシュ張設体10に基づいて作成された張設体メッシュ位置データDEとが何らかの態様にて1対1で関連付けられたものであればよい。 In the end, the mesh position data DF with identification information does not have to be a single piece of data described in a predetermined format, and the stretcher identification information ID for a mesh stretcher 10 and the mesh stretcher It suffices as long as it is one-to-one association with the stretched body mesh position data DE created based on the structure 10.
 図16は、メッシュ位置の特定から後工程であるスクリーン印刷版の作製に至るプロセスにおいて生成される種々のデータと、メッシュ張設体10との関連性を、示す図である。 FIG. 16 is a diagram showing the relationship between various data generated in the process from the identification of the mesh position to the production of the screen printing plate, which is a subsequent step, and the mesh upholstery body 10.
 メッシュ張設体10を用いてスクリーン印刷版を作製するにあたって、当該メッシュ張設体に基づいて作成された張設体メッシュ位置データDEを参照するには、図16に示すように、張設体メッシュ位置データDEのみならず、その生成元となったメッシュ張設体10そのものにも、他のメッシュ張設体10との区別のために、換言すれば、メッシュ張設体10と張設体メッシュ位置データDEとが一対一に対応するように、張設体識別情報IDが付与される必要がある。本実施の形態においては、印刷版の作製に供されるに先立って、このように張設体識別情報IDが付与されたメッシュ張設体10を特に、識別情報付きメッシュ張設体10Aと称する。 In producing a screen printing plate using the mesh upholstery body 10, to refer to the upholstery body mesh position data DE created based on the mesh upholstery body, as shown in FIG. 16, the upholstery body In order to distinguish not only the mesh position data DE but also the mesh upholstery body 10 itself from which it was generated, in other words, the mesh upholstery body 10 and the upholstery body 10 It is necessary to give the stretched body identification information ID so that there is a one-to-one correspondence with the mesh position data DE. In the present embodiment, the mesh upholstery body 10 to which the upholstery body identification information ID is given in this way prior to being used for producing the printing plate is particularly referred to as the mesh upholstery body 10A with identification information. ..
 メッシュ張設体10への張設体識別情報IDの付与についても、印刷、貼付、刻印など、種々の態様が想定される。その場合、張設体識別情報IDは、文字や記号そのままのかたちで付されてもよいし、あるいは、バーコードあるいは二次元コードのような暗号化されたかたちで付される態様であってもよい。 Regarding the assignment of the stretched body identification information ID to the mesh stretched body 10, various modes such as printing, pasting, and engraving are assumed. In that case, the stretched body identification information ID may be attached in the form of characters or symbols as they are, or may be attached in an encrypted form such as a bar code or a two-dimensional code. Good.
 一般に、メッシュ張設体10を用いてスクリーン印刷版を作製する場合、CADなどの印刷版パターン作成装置により、スクリーン印刷によって形成しようとする所定のパターン(印刷パターン)に対応するスクリーン開口部の、当該メッシュ張設体10に対する配置パターンを記述したパターンデータDPが作成されるが、従来手法では、メッシュ張設体10に張設されてなる個々のメッシュ糸2mの位置があらかじめ特定されることはなく、それゆえ通常は、パターンデータDPの作成に際しメッシュ糸2mの位置が考慮されることはない。せいぜい、メッシュ張設体10を作製する際に選択・設定される、メッシュ糸2mのサイズや、メッシュ開口部MOの設計上のサイズが把握できるに過ぎない。すなわち、メッシュ張設体10における個々のメッシュ糸2mの実際の位置が、特定されることはなかった。 Generally, when a screen printing plate is produced using the mesh upholstery body 10, a printing plate pattern creating device such as CAD is used to create a screen opening corresponding to a predetermined pattern (printing pattern) to be formed by screen printing. A pattern data DP describing the arrangement pattern for the mesh stretched body 10 is created, but in the conventional method, the positions of the individual mesh threads 2 m stretched on the mesh stretched body 10 cannot be specified in advance. Therefore, normally, the position of the mesh thread 2 m is not taken into consideration when creating the pattern data DP. At best, the size of the mesh thread 2 m and the design size of the mesh opening MO, which are selected and set when the mesh upholstery body 10 is manufactured, can be grasped. That is, the actual positions of the individual mesh threads 2 m on the mesh upholstery 10 were not specified.
 これに対し、本実施の形態においては、図16に示すように、メッシュ位置特定装置100によって、スクリーン印刷版の作製対象とされるメッシュ張設体10に張設されたスクリーンメッシュ2をなす個々のメッシュ糸2mの位置があらかじめ特定された張設体メッシュ位置データDEが生成され、かつ、個々のメッシュ張設体10を識別可能な、当該メッシュ張設体に固有の張設体識別情報IDが張設体メッシュ位置データDEと関連付けられる。これにより、スクリーン開口部の配置パターンを定めるパターンデータDPの作成に際して、張設体メッシュ位置データDEに基づきメッシュ糸2mの配置を参照することが出来る。 On the other hand, in the present embodiment, as shown in FIG. 16, the individual mesh positioning device 100 forms the screen mesh 2 stretched on the mesh stretched body 10 which is the target for producing the screen printing plate. The stretcher mesh position data DE in which the position of the mesh thread 2 m is specified in advance is generated, and the stretcher identification information ID unique to the mesh stretcher is capable of identifying each mesh stretcher 10. Is associated with the upholstery mesh position data DE. As a result, when creating the pattern data DP that determines the arrangement pattern of the screen opening, the arrangement of the mesh threads 2 m can be referred to based on the stretched body mesh position data DE.
 係る参照は例えば、パターンデータDPの作成に際して張設体メッシュ位置データDEに基づき図14に示したような個々のメッシュ糸2mの輪郭位置を示す連続線を記述したレイヤーを設け、係るメッシュ糸2mの輪郭位置を参照しつつ他のレイヤーにおいてパターン設計を行う、という態様によって実現される。図14に示した連続線は、張設体メッシュ位置データDEに記述された座標を順につないだ、ベクターデータとして表現されるものであることから、例えば、CADなどの一般的な印刷版パターン作成装置において十分に利用可能なものである。 For example, when creating the pattern data DP, a layer describing continuous lines indicating the contour positions of the individual mesh threads 2 m as shown in FIG. 14 is provided based on the stretched body mesh position data DE, and the mesh threads 2 m are provided. It is realized by the aspect of designing a pattern in another layer while referring to the contour position of. Since the continuous line shown in FIG. 14 is expressed as vector data by connecting the coordinates described in the stretched body mesh position data DE in order, for example, a general print plate pattern such as CAD is created. It is fully available in the device.
 以上のような態様にて張設体メッシュ位置データDEを利用して作成されたパターンデータDPに対しても、張設体識別情報IDが関連付けられる。このように関連付けがなされたパターンデータDPを、識別情報付きパターンデータDPAと称する。識別情報付きパターンデータDPAにおける関連付けのパターンデータDPと張設体識別情報IDとの関連付けは、張設体メッシュ位置データDEと張設体識別情報IDとの関連付けと同様になされればよい。 The stretched body identification information ID is also associated with the pattern data DP created by using the stretched body mesh position data DE in the above manner. The pattern data DP associated in this way is referred to as a pattern data DPA with identification information. The association between the pattern data DP and the upholstery identification information ID in the pattern data DPA with identification information may be the same as the association between the upholstery mesh position data DE and the upholstery identification information ID.
 そして、スクリーン印刷版を作製するに際しては、ある張設体識別情報IDが付与されたメッシュ張設体10に対し、同じ張設体識別情報IDが関連付けられたパターンデータDPに基づいて、スクリーン開口部が設けられる。 Then, when producing the screen printing plate, the screen opening is based on the pattern data DP associated with the same stretched body identification information ID for the mesh stretched body 10 to which a certain stretched body identification information ID is given. A part is provided.
 図17は、張設体メッシュ位置データDEの利用の一態様を例示するための図である。いま、図17(a)に示すように、ある印刷対象物(ワーク)W1に対し、ある印刷パターンZ1(図17(a)においては略矩形状)をペーストのスクリーン印刷により形成したい場合を考える。係る印刷パターンZ1については、破線にて示す公差範囲TR1があらかじめ設定されているとする。すなわち、印刷パターンZ1は、公差範囲TR1の中であれば、形成位置の自由度がある(位置ずれが許容されている)ということになる。 FIG. 17 is a diagram for exemplifying one aspect of using the stretched body mesh position data DE. Now, as shown in FIG. 17A, consider a case where a certain printing pattern Z1 (substantially rectangular in FIG. 17A) is desired to be formed by screen printing of a paste on a certain printing object (work) W1. .. It is assumed that the tolerance range TR1 shown by the broken line is preset for the print pattern Z1. That is, if the print pattern Z1 is within the tolerance range TR1, there is a degree of freedom in the formation position (positional deviation is allowed).
 一方、図17(b)には、印刷パターンZ1の形成に用いるスクリーン印刷版を作製するためのパターンデータDPの作成に際して、印刷パターンZ1を形成するためのスクリーン開口部OP1βを印刷パターンZ1の設計位置通りに設けた、初期パターンPT1βを示している。ただし、図17(b)においては、初期パターンPT1βを、係る作成に供するメッシュ張設体10と関連付けられた張設体メッシュ位置データDEが読み込まれた下地パターンPT1mの上に、重ね合わせて示している。下地パターンPT1mには、メッシュ糸2mの輪郭線が示されている。 On the other hand, in FIG. 17B, when creating the pattern data DP for producing the screen printing plate used for forming the printing pattern Z1, the screen opening OP1β for forming the printing pattern Z1 is designed for the printing pattern Z1. The initial pattern PT1β provided at the position is shown. However, in FIG. 17B, the initial pattern PT1β is superposed on the base pattern PT1m in which the stretched body mesh position data DE associated with the mesh stretched body 10 used for the creation is read. ing. The outline of the mesh thread 2m is shown in the base pattern PT1m.
 図17(b)に示す場合においては、スクリーン開口部OP1βの図面視右端部が、例えば矢印AR1およびAR2にて指し示す縦糸2yの輪郭線と横糸2xの輪郭線との交点と重複している。このままの配置にてスクリーン開口部が設けられたスクリーン印刷版を用いてスクリーン印刷を行った場合、印刷パターンZ1が所望する形状から変形して形成されてしまうおそれがある。 In the case shown in FIG. 17B, the right end of the screen opening OP1β in the drawing overlaps with the intersection of the contour lines of the warp threads 2y and the contour lines of the weft threads 2x indicated by, for example, arrows AR1 and AR2. When screen printing is performed using a screen printing plate provided with a screen opening in this arrangement, the print pattern Z1 may be deformed from a desired shape and formed.
 従来手法におけるパターンデータDPの作成プロセスでは、このようなメッシュ糸2mの配置状態を示す下地パターンPT1mの情報を得てはいなかったため、仮に図17(b)に示すような配置関係にてスクリーン開口部が設けられるような場合であっても、これを防ぐことは困難であった。 In the process of creating the pattern data DP in the conventional method, the information of the base pattern PT1m indicating the arrangement state of the mesh thread 2m was not obtained, so that the screen opening is tentatively arranged as shown in FIG. 17B. It was difficult to prevent this even when the part was provided.
 これに対し、本実施の形態では、実際に図17(b)に示すような重ね合わせの状態を実現することが可能であり、それゆえ、パターンデータDPの作成プロセスの過程で、下地パターンPT1mにおけるメッシュ糸2mの輪郭線の配置を参照することができ、さらには、初期パターンPT1βにおいて図17(b)に示すような縦糸2yと横糸2xとの交点とスクリーン開口部OP1βとの重なりがあったとしても、例えば図17(c)において矢印AR3にて示すように、公差範囲TR1内において当該交点と重ならないようにスクリーン開口部OP1の形成位置をシフトさせたものを、印刷版形成用のパターンPT1とすることもできる。 On the other hand, in the present embodiment, it is possible to actually realize the state of superposition as shown in FIG. 17B, and therefore, in the process of creating the pattern data DP, the base pattern PT1m Further, in the initial pattern PT1β, there is an overlap between the intersection of the warp yarn 2y and the weft yarn 2x and the screen opening OP1β as shown in FIG. 17B in the initial pattern PT1β. Even if, for example, as shown by the arrow AR3 in FIG. 17C, the formation position of the screen opening OP1 is shifted so as not to overlap with the intersection within the tolerance range TR1 for printing plate formation. It can also be the pattern PT1.
 このようなスクリーン開口部OP1の形成位置のシフトは、配置位置については所定の公差範囲が許容されている一方で、形状について設計通りであることが求められる印刷対象物を、スクリーン印刷版を用いたスクリーン印刷によって形成する場合に適している。 For such a shift of the formation position of the screen opening OP1, a predetermined tolerance range is allowed for the arrangement position, while a screen printing plate is used for a print object that is required to have the shape as designed. Suitable for forming by screen printing.
  <印刷版作製システム>
 図18は、上述したスクリーン印刷版の作製を行うための印刷版作製システム1000についての概略構成を、スクリーン印刷版の作製に供される印刷版作製対象メッシュ張設体10および最終的に作製されるスクリーン印刷版20との関係とともに示す図である。
<Printing plate making system>
FIG. 18 shows the schematic configuration of the printing plate manufacturing system 1000 for manufacturing the screen printing plate described above with the printing plate manufacturing target mesh upholstery 10 used for manufacturing the screen printing plate and finally prepared. It is a figure which shows with the relationship with the screen printing plate 20.
 印刷版作製システム1000は、すでに詳述したメッシュ位置特定装置100と、印刷版パターン作成装置である印刷版パターン作成CAD200と、印刷版作製装置300とを備える。 The printing plate manufacturing system 1000 includes a mesh position specifying device 100 already described in detail, a printing plate pattern creating CAD 200 which is a printing plate pattern creating device, and a printing plate manufacturing device 300.
 メッシュ位置特定装置100は、印刷版作製対象メッシュ張設体10について、上述した態様にてその開口部形成対象範囲RE1におけるメッシュ位置を特定し、その結果を記述した張設体メッシュ位置データDEを出力する。係る張設体メッシュ位置データDEには、当該メッシュ張設体10に固有の張設体識別情報IDが関連付けられる。 The mesh position specifying device 100 specifies the mesh position in the opening target range RE1 of the print plate production target mesh upholstery 10 in the above-described embodiment, and provides the stretched body mesh position data DE describing the result. Output. The stretched body identification information ID unique to the stretched body 10 is associated with the stretched body mesh position data DE.
 また、印刷版パターン作成CAD200は、例えば、汎用のコンピュータに所定のCAD用ソフトウェアが読み込まれ、実行されることにより実現されるものである。 Further, the print plate pattern creation CAD200 is realized, for example, by loading and executing predetermined CAD software on a general-purpose computer.
 印刷版パターン作成CAD200においては、図17に示したように、張設体メッシュ位置データDEに基づきメッシュ糸2mの輪郭線を下地レイヤーに読み込んだ状態で、印刷版用のパターンを設計することができ、スクリーン開口部とメッシュ糸2mの輪郭線との重なり方によっては、スクリーン開口部の配置を調整することも可能となっている。 In the print plate pattern creation CAD200, as shown in FIG. 17, it is possible to design a pattern for a print plate in a state where the contour line of the mesh thread 2 m is read into the base layer based on the upholstery mesh position data DE. It is also possible to adjust the arrangement of the screen opening depending on how the screen opening and the contour line of the mesh thread 2m overlap.
 印刷版作製装置300は、メッシュ張設体10のスクリーンメッシュ2に対する乳剤のコーティングと、印刷版パターン作成CAD200によって作成されたパターンデータDPに基づくスクリーン開口部の形成(露光)とを行えるものであり、公知の装置を適用可能である。 The printing plate making apparatus 300 can coat the screen mesh 2 of the mesh upholstery 10 with an emulsion and form (exposure) a screen opening based on the pattern data DP created by the printing plate pattern making CAD200. , Known devices can be applied.
 図19は、印刷版作製システム1000を用いて行われる、スクリーン印刷版の作製処理について、特に、識別情報付きメッシュ位置データDFが作成された後の処理について、その流れを示す図である。 FIG. 19 is a diagram showing the flow of the screen printing plate manufacturing process performed by using the printing plate manufacturing system 1000, particularly the processing after the mesh position data DF with identification information is created.
 まず、スクリーン印刷版の作製に使用する(作製対象とされる)、あらかじめ識別情報付きメッシュ位置データDFが作成されてなる印刷版作製対象メッシュ張設体10の張設体識別情報IDが特定され(ステップS101)、印刷版パターン作成CAD(以下、CADとする)200に、当該張設体識別情報IDと関連付けられた張設体メッシュ位置データDEが読み込まれることで、CAD200の図示しない表示手段(表示画面)上に、印刷版作製対象メッシュ張設体10のメッシュ位置が視認可能に再現される(ステップS102)。張設体メッシュ位置データDEは、図13に例示したように、メッシュ糸2mのエッジの座標点を所定の配置順序で記述してなるデータであるので、CAD200において係るデータに基づき、図14に例示したような連続線としてメッシュ糸2mのエッジの位置を再現することは、容易である。なお、図13においては、表形式にて張設体メッシュ位置データDEを示しているが、係る形式はあくまで例示であり、実際の張設体メッシュ位置データDEは、CAD200における読み込みに適したデータ形式にて記述されていてよい。 First, the upholstery identification information ID of the upholstery body identification information ID of the print plate production target mesh upholstery 10 for which the mesh position data DF with identification information is created in advance, which is used for producing the screen print plate (which is the production target), is specified. (Step S101), the printing plate pattern creation CAD (hereinafter referred to as CAD) 200 is read with the stretched body mesh position data DE associated with the stretched body identification information ID, so that the display means (not shown) of the CAD 200 is not shown. The mesh position of the mesh upholstery 10 for printing plate production is visibly reproduced on the (display screen) (step S102). As illustrated in FIG. 13, the stretched body mesh position data DE is data in which the coordinate points of the edges of the mesh thread 2 m are described in a predetermined arrangement order. Therefore, based on the data in the CAD 200, FIG. It is easy to reproduce the position of the edge of the mesh thread 2 m as a continuous line as illustrated. In FIG. 13, the stretched body mesh position data DE is shown in a tabular format, but the format is merely an example, and the actual stretched body mesh position data DE is data suitable for reading in the CAD 200. It may be described in a format.
 好ましくは、メッシュ位置の再現は下地レイヤーにおいてなされる。なお、係るメッシュ位置の再現は、図14に示すような輪郭線を用いて行われもよいし、図15に示すような、実際のスクリーンメッシュ2の撮像画像に類似した明暗像が、用いられてもよい。 Preferably, the mesh position is reproduced in the base layer. The mesh position may be reproduced by using the contour line as shown in FIG. 14, or a bright and dark image similar to the captured image of the actual screen mesh 2 as shown in FIG. 15 is used. You may.
 メッシュ位置が再現されると、CAD200の作業者が、表示画面に示されたメッシュ位置の再現像を参照しつつ、スクリーン開口部のパターンを設計し、パターンデータDPを作成する(ステップS103)。なお、ここでいうスクリーン開口部のパターンの設計とは、新規な設計を行う場合のみならず、あらかじめ作製された初期パターンデータDPを、メッシュ位置の再現像に応じて調整する場合も含まれる。 When the mesh position is reproduced, the operator of the CAD200 designs the pattern of the screen opening and creates the pattern data DP while referring to the redevelopment of the mesh position shown on the display screen (step S103). The design of the screen opening pattern referred to here includes not only the case of performing a new design but also the case of adjusting the pre-made initial pattern data DP according to the redevelopment of the mesh position.
 係るパターンデータDPの作成の際には、上述のように、パターンデータDPを構成するスクリーン開口部用のパーツ(パターンデータの構成要素)の端部が縦糸2yと横糸2xとの交点と重なる場合など、そのままの配置にてスクリーン印刷版を作製した場合には実際の印刷時に不具合が生じる可能性があると判断される場合には、必要に応じて、パターンデータDPを構成するパーツの配置やサイズの微調整などが行われる。 When creating the pattern data DP, as described above, when the end of the screen opening part (component of the pattern data) constituting the pattern data DP overlaps with the intersection of the warp 2y and the weft 2x. For example, if it is judged that a problem may occur during actual printing when the screen printing plate is produced with the same arrangement, the parts that make up the pattern data DP may be arranged as necessary. Fine adjustment of the size is performed.
 なお、このような微調整が、CAD200において画像処理により自動的に行われる態様であってもよい。これは例えば、パターンデータDPを構成するスクリーン開口部用のパーツの端部と、縦糸2yと横糸2xとの交点との重なり度合いが所定の閾値を超える場合に、当該パーツの配置をあらかじめ定めた公差範囲内でシフトさせる、といった処理をCAD200に行わせることによって実現される。 Note that such fine adjustment may be performed automatically by image processing in the CAD 200. For example, when the degree of overlap between the end of the screen opening part constituting the pattern data DP and the intersection of the warp 2y and the weft 2x exceeds a predetermined threshold value, the arrangement of the part is predetermined. This is achieved by having the CAD 200 perform a process such as shifting within the tolerance range.
 作成されたパターンデータDPは、メッシュ張設体10の張設体識別情報IDと関連付けられ、識別情報付きパターンデータDPAが作成される(ステップS104)。 The created pattern data DP is associated with the stretched body identification information ID of the mesh stretched body 10, and the pattern data DPA with the identification information is created (step S104).
 作成された識別情報付きパターンデータDPAは、印刷版作製装置300に受け渡される。印刷版作製装置300の作業者は、係る識別情報付きパターンデータDPAに含まれる張設体識別情報IDと同じ張設体識別情報IDが付されたメッシュ張設体10を、印刷版の作製対象として取得する(ステップS105)。 The created pattern data DPA with identification information is delivered to the printing plate making apparatus 300. The operator of the print plate making apparatus 300 uses the mesh upholstery body 10 to which the same upholstery body identification information ID as the upholstery body identification information ID included in the pattern data DPA with the identification information is attached to be the target for producing the print plate. (Step S105).
 印刷版作製装置300においては、取得したメッシュ張設体10に対し、張設体識別情報IDと関連付けられたパターンデータDPを用いたスクリーン印刷版の作製、具体的には、当該メッシュ張設体10のスクリーンメッシュ2に対する乳剤のコーティングと、パターンデータDPの記述内容に基づくスクリーン開口部の形成箇所の露光などが行われる(ステップS106)。これにより、スクリーン印刷版20が完成する。印刷版作製装置300におけるスクリーン印刷版の作製処理については、公知技術を適用可能であるので、詳細な説明は省略する。 In the printing plate manufacturing apparatus 300, a screen printing plate is manufactured using the pattern data DP associated with the stretched body identification information ID for the acquired mesh stretched body 10, specifically, the mesh stretched body. The coating of the emulsion on the screen mesh 2 of 10 and the exposure of the formed portion of the screen opening based on the description content of the pattern data DP are performed (step S106). As a result, the screen printing plate 20 is completed. Since a known technique can be applied to the screen printing plate manufacturing process in the printing plate manufacturing apparatus 300, detailed description thereof will be omitted.
 なお、上述したように、3つのマークM1~M3の版座標系αの座標値が張設体メッシュ位置データDEに記述されてなる場合には、CAD200において生成されるパターンデータDPにも係る座標値が記述される。そして、当該座標値は、印刷版作製装置300におけるスクリーン印刷版20の作製に際して、印刷版作製対象メッシュ張設体10に形成されたマークM1~M3がパターンデータDPに記述された座標位置と一致するように、印刷版作製対象メッシュ張設体10の位置決めを行う。これにより、印刷版作製対象メッシュ張設体10に設定された版座標系αが、印刷版作製装置300において再現されることになる。 As described above, when the coordinate values of the plate coordinate system α of the three marks M1 to M3 are described in the stretched body mesh position data DE, the coordinates related to the pattern data DP generated in the CAD 200. The value is described. Then, the coordinate values coincide with the coordinate positions described in the pattern data DP by the marks M1 to M3 formed on the mesh upholstery 10 for printing plate production when the screen printing plate 20 is produced by the printing plate manufacturing apparatus 300. As such, the printing plate production target mesh upholstery body 10 is positioned. As a result, the plate coordinate system α set in the print plate production target mesh upholstery 10 is reproduced in the print plate production apparatus 300.
 本実施の形態に係る印刷版作製システム1000においては、メッシュ位置特定装置100における、ある一の印刷版作製対象メッシュ張設体10を対象としたメッシュ位置の特定と、CAD200における、当該メッシュ張設体10をスクリーン印刷版の作製対象とすることを前提としたパターンデータDPの作成と、印刷版作製装置300における、当該パターンデータDPの作成対象とされた印刷版作製対象メッシュ張設体10を対象とするスクリーン印刷版の作製とを、必ずしも連続的に行う必要はない。 In the printing plate manufacturing system 1000 according to the present embodiment, the mesh position specifying device 100 specifies the mesh position for a certain printing plate manufacturing target mesh stretching body 10, and the CAD 200 performs the mesh stretching. The pattern data DP is created on the premise that the body 10 is the target for producing the screen printing plate, and the printing plate manufacturing target mesh upholstery 10 for which the pattern data DP is created in the printing plate manufacturing apparatus 300 is created. It is not always necessary to continuously produce the target screen printing plate.
 これは、上述したように、それぞれの印刷版作製対象メッシュ張設体10を一意に識別する固有の張設体識別情報IDが、全てのメッシュ張設体10に対し定められ、かつ、張設体メッシュ位置データDEおよびパターンデータDPと関連付けられていることによる。すなわち、CAD200および印刷版作製装置300においては、処理を行おうとする適宜のタイミングで、対象となるメッシュ張設体10についての張設体メッシュ位置データDEあるいはパターンデータDPを、それらに関連付けられた張設体識別情報IDに基づき所定の格納場所から容易に取り出す(読み出す)ことが可能となっている。 As described above, the unique upholstery body identification information ID that uniquely identifies each of the mesh upholstery bodies 10 to be produced on the printing plate is set for all the mesh upholstery bodies 10 and is stretched. By being associated with body mesh position data DE and pattern data DP. That is, in the CAD 200 and the printing plate making apparatus 300, the stretched body mesh position data DE or the pattern data DP of the target mesh stretched body 10 is associated with them at an appropriate timing when the processing is to be performed. It is possible to easily take out (read) from a predetermined storage location based on the upholstery body identification information ID.
 このことは、印刷版作製システム1000を構成するメッシュ位置特定装置100とCAD200と印刷版作製装置300とが、一体である必要はなく、ネットワークを通じて、あるいは可搬性の記憶媒体を用いて、データの受け渡しが可能であるのならば、張設体識別情報IDを介して一のメッシュ張設体10とこれに基づいて作成された張設体メッシュ位置データDEとパターンデータDPとが関連付けられている限り、それぞれが別体に設けられていてもよいことを意味している。係る場合においては、各装置が互いに遠隔した場所に設けられることも許容される。 This means that the mesh positioning device 100, the CAD 200, and the printing plate manufacturing device 300 constituting the printing plate manufacturing system 1000 do not have to be integrated, and the data can be stored through a network or by using a portable storage medium. If delivery is possible, one mesh upholstery 10 is associated with the upholstery mesh position data DE and the pattern data DP created based on the one mesh upholstery 10 via the upholstery identification information ID. As long as it means that each may be provided separately. In such cases, it is permissible for the devices to be installed at remote locations.
 また、別の見方をすれば、このことは、張設体識別情報IDによる個々のメッシュ張設体10と張設体メッシュ位置データDEとパターンデータDPとの関連付けがなされている限り、それぞれのメッシュ張設体10についてのメッシュ位置特定装置100における張設体メッシュ位置データDEと、パターンデータDPと、印刷版作製装置300におけるスクリーン印刷版20の作製とが、独立のタイミングで繰り返されてもよいということでもある。 From another point of view, this means that as long as the individual mesh upholstery 10 by the upholstery identification information ID, the upholstery mesh position data DE, and the pattern data DP are associated with each other. Even if the upholstery mesh position data DE in the mesh position specifying device 100 for the mesh upholstery 10, the pattern data DP, and the screen printing plate 20 in the printing plate making apparatus 300 are repeated at independent timings. It also means that it is good.
 例えば、あらかじめ多数のメッシュ張設体10についてメッシュ位置を特定し、これに基づき作製される張設体メッシュ位置データDEあるいは識別情報付きメッシュ位置データDFを、所定の格納場所にまとめて、あるいは、可搬性の記憶媒体に個別に、記憶しておくことも可能である。係る場合、後段の処理を行う必要が生じた段階で、スクリーン印刷版20の作製対象とされるメッシュ張設体10の張設体識別情報IDと関連付けられた張設体メッシュ位置データDEが読み出され、パターンデータDPの作成に用いられることになる。 For example, the mesh positions of a large number of mesh upholstery bodies 10 are specified in advance, and the upholstery mesh position data DE or the mesh position data DF with identification information produced based on the mesh positions are collectively stored in a predetermined storage location, or It is also possible to store the data individually on a portable storage medium. In such a case, the upholstery mesh position data DE associated with the upholstery identification information ID of the mesh upholstery 10 to be produced of the screen printing plate 20 is read at the stage when it becomes necessary to perform the subsequent processing. It will be issued and used to create the pattern data DP.
 以上、説明したように、本実施の形態に係るメッシュ位置特定装置100およびこれを含む印刷版作製システム1000によれば、メッシュ位置特定装置100において、スクリーン印刷版の作製対象とされるメッシュ張設体10に張設されたスクリーンメッシュ2のメッシュ位置があらかじめ特定される。加えて、特定されたメッシュ位置を記述した張設体メッシュ位置データDEが、個々のメッシュ張設体10を識別可能な、当該メッシュ張設体に固有の張設体識別情報IDと関連付けられる。 As described above, according to the mesh position specifying device 100 and the printing plate manufacturing system 1000 including the mesh position specifying device 100 according to the present embodiment, in the mesh position specifying device 100, the mesh tensioning target for producing the screen printing plate is applied. The mesh position of the screen mesh 2 stretched on the body 10 is specified in advance. In addition, the upholstery mesh position data DE describing the specified mesh position is associated with an upholstery identification information ID unique to the mesh upholstery that can identify the individual mesh upholstery 10.
 これにより、印刷版パターン作成CAD200においてスクリーン開口部の配置パターンを定めるパターンデータDPを作成するに際して、張設体メッシュ位置データDEに基づき、当該パターンデータDPを用いたスクリーン開口部のパターンの形成対象とされるメッシュ張設体10について、メッシュ配置を参照することができる。一般に、メッシュ糸2mの張設に際してはその配置位置にランダムにばらつきが生じ得るが、本実施の形態によれば、メッシュ位置を参照しつつパターンデータDPを作成できるので、当該ばらつきを考慮したパターンデータDPの作成が可能である。 As a result, when creating the pattern data DP that determines the arrangement pattern of the screen opening in the printing plate pattern creation CAD200, the pattern of the screen opening is formed using the pattern data DP based on the stretched body mesh position data DE. It is possible to refer to the mesh arrangement for the mesh upholstery body 10. In general, when the mesh thread 2 m is stretched, the arrangement position may vary randomly. However, according to the present embodiment, the pattern data DP can be created while referring to the mesh position, so that the pattern takes the variation into consideration. Data DP can be created.
 特に、あるスクリーン開口部の端部がメッシュ糸の交点と重なるような場合、必要に応じて、当該スクリーン開口部に相当するパターンデータDP上のパーツの配置位置を、適宜にシフトさせることも出来る。係る場合、スクリーン印刷版においてスクリーン開口部の端部がメッシュ糸の交点位置に形成されてしまうことに起因した、印刷パターンの変形を、抑制することが出来る。 In particular, when the end of a certain screen opening overlaps with the intersection of the mesh threads, the arrangement position of the parts on the pattern data DP corresponding to the screen opening can be appropriately shifted as necessary. .. In such a case, it is possible to suppress the deformation of the printing pattern caused by the end portion of the screen opening being formed at the intersection position of the mesh threads in the screen printing plate.
 すなわち、本実施の形態に係るメッシュ位置特定装置100およびこれを含む印刷版作製システム1000は、印刷精度の優れたスクリーン印刷版の作製に資するものである。 That is, the mesh position specifying device 100 and the printing plate manufacturing system 1000 including the mesh position specifying device 100 according to the present embodiment contribute to the manufacturing of a screen printing plate having excellent printing accuracy.
 また、張設体メッシュ位置データDEとメッシュ張設体10とは張設体識別情報IDにより関連付けられているので、パターンデータDPの作成さらには印刷版作製装置300におけるスクリーン印刷版の作製は、メッシュ位置の特定に連続して行う必要はない。 Further, since the stretched body mesh position data DE and the stretched body 10 are associated with each other by the stretched body identification information ID, the creation of the pattern data DP and the production of the screen printing plate in the printing plate manufacturing apparatus 300 can be performed. It is not necessary to continuously identify the mesh position.
 例えば、上述のように張設体メッシュ位置データDEがあらかじめ可搬性の記憶媒体に格納されてなり、かつ、張設体メッシュ位置データDEと張設体識別情報IDとが関連付けられているような場合であれば、張設体メッシュ位置データDEの作成から相当の時間が経過した、印刷版パターン作成CAD200においてパターンデータDPの作成を行う任意のタイミングで、印刷版パターン作成CAD200の作業者が当該記憶媒体を取得して格納されている張設体メッシュ位置データDEを読み出し、パターンデータDPの作成に際して参照することも可能である。 For example, as described above, the stretched body mesh position data DE is stored in the portable storage medium in advance, and the stretched body mesh position data DE and the stretched body identification information ID are associated with each other. In this case, the worker of the print plate pattern creation CAD200 concerned at an arbitrary timing when the pattern data DP is created in the print plate pattern creation CAD200, which has passed a considerable time from the creation of the upholstery mesh position data DE. It is also possible to acquire the storage medium, read the stretched body mesh position data DE stored, and refer to it when creating the pattern data DP.
 あるいは、張設体識別情報IDと関連付けられた張設体メッシュ位置データDEがあらかじめ所定のサーバー等の外部からアクセス可能な記憶装置に格納されている場合であれば、スクリーン印刷版20の作製対象とするメッシュ張設体10の張設体識別情報IDを取得した印刷版パターン作成CAD200の作業者が、当該サーバーにアクセスして、取得した張設体識別情報IDと関連付けられてなる張設体メッシュ位置データDEを読み出し、パターンデータDPの作成に用いることも可能である。 Alternatively, if the stretched body mesh position data DE associated with the stretched body identification information ID is stored in advance in a storage device accessible from the outside such as a predetermined server, the screen printing plate 20 is to be produced. The worker of the print plate pattern creation CAD200 that has acquired the stretched body identification information ID of the mesh stretched body 10 accesses the server and is associated with the acquired stretched body identification information ID. It is also possible to read the mesh position data DE and use it for creating the pattern data DP.
 しかもこれらの対応は、メッシュ位置特定装置100と印刷版パターン作成CAD200と印刷版作製装置300とが、互いに遠隔しているような場合においても、行い得るものである。係る場合においては、メッシュ張設体10の受け渡しと、張設体メッシュ位置データDEの受け渡しとを、別個に行うこともできる。 Moreover, these measures can be taken even when the mesh position specifying device 100, the printing plate pattern creating CAD 200, and the printing plate making device 300 are remote from each other. In such a case, the delivery of the mesh upholstery body 10 and the delivery of the upholstery mesh position data DE can be performed separately.
 すなわち、パターンデータDPの作成さらにはその後工程である当該パターンデータDPを用いたスクリーン印刷版の作製を、メッシュ位置の特定と時間的および空間的に分離することが出来る。 That is, the production of the pattern data DP and the subsequent process of producing the screen printing plate using the pattern data DP can be separated temporally and spatially from the identification of the mesh position.
 また、これは例えば、張設体メッシュ位置データDEが生成されたメッシュ張設体10を第三者に販売するような場合にも適用可能である。すなわち、あらかじめメッシュ位置が特定され張設体メッシュ位置データDEが生成されたメッシュ張設体10を、当該張設体メッシュ位置データDEとメッシュ張設体10を特定するための張設体識別情報IDとが関連付けられた識別情報付きメッシュ位置データDFが格納された記憶媒体とセットで販売する対応が可能となる。あるいはまた、あらかじめメッシュ位置が特定され張設体メッシュ位置データDEが生成されたうえで所定のサーバーに格納されてなるメッシュ張設体10を、メッシュ張設体10を特定するための張設体識別情報IDに基づくアクセス権とともに販売する対応も、可能となる。 This is also applicable to, for example, the case where the mesh upholstery body 10 for which the upholstery body mesh position data DE is generated is sold to a third party. That is, the mesh upholstery body 10 in which the mesh position is specified in advance and the upholstery mesh position data DE is generated is the upholstery body identification information for specifying the upholstery body mesh position data DE and the mesh upholstery body 10. It is possible to sell the mesh position data DF with identification information associated with the ID as a set with the storage medium in which the DF is stored. Alternatively, the mesh upholstery body 10 in which the mesh position is specified in advance and the upholstery mesh position data DE is generated and then stored in a predetermined server is used as an upholstery body for specifying the mesh upholstery body 10. It is also possible to sell the product together with the access right based on the identification information ID.
  <太陽電池の電極印刷用印刷版への適用例>
 以下においては、印刷版作製システム1000を用いたスクリーン印刷版20の作製の一例として、太陽電池の集電電極となる電極ペースト膜の印刷形成に用いられるスクリーン印刷版20を作製する場合について説明する。
<Example of application of solar cells to printing plates for electrode printing>
In the following, as an example of producing the screen printing plate 20 using the printing plate manufacturing system 1000, a case where the screen printing plate 20 used for printing the electrode paste film to be the current collecting electrode of the solar cell is manufactured will be described. ..
 集電電極は、太陽電池用の基板の一方主面に設けられる電極であり、一の方向に延在する幅太のバスバー電極と、それぞれが係るバスバー電極から垂直に延在してなり、かつ、バスバー電極の延在方向において離間しつつ繰り返し設けられた多数の幅細のフィンガー電極とから、構成されるものである。係る集電電極は、バスバー電極とフィンガー電極のそれぞれに対応した部分を有する電極ペースト膜のパターンが太陽電池用の基板に印刷形成された後、基板ともども焼成されることによって、形成される。なお、フィンガー電極については、集電効率等の観点から、均一な形状(幅)を有することが望ましいとされる一方、形成位置については、等間隔であることを理想としつつも、個々には多少の変位(公差)が認められているものとする。 The current collecting electrode is an electrode provided on one main surface of the substrate for a solar cell, and is formed by a wide bus bar electrode extending in one direction and a bus bar electrode extending vertically from each of the bus bar electrodes. , It is composed of a large number of narrow finger electrodes which are repeatedly provided while being separated in the extending direction of the bus bar electrode. The current collecting electrode is formed by printing and forming a pattern of an electrode paste film having a portion corresponding to each of a bus bar electrode and a finger electrode on a substrate for a solar cell, and then firing the substrate together with the substrate. It is desirable that the finger electrodes have a uniform shape (width) from the viewpoint of current collection efficiency, etc., while the formation positions are ideally evenly spaced, but individually. It is assumed that some displacement (tolerance) is allowed.
 図20は、太陽電池用の基板W2の上に、電極ペースト膜Z2βを形成した状態を示す図である。図20に示す電極ペースト膜Z2βは、バスバー電極に対応する一のバスバー部Z2βbと、それぞれがフィンガー電極に対応する多数のフィンガー部Z2βfとを備えている。なお、図示および説明の都合上、図20に示すバスバー部Z2βbとフィンガー部Z2βfの幅は実際のものよりも大きく、また、フィンガー部Z2βfの個数についても実際のものに比して相当に少ない。 FIG. 20 is a diagram showing a state in which the electrode paste film Z2β is formed on the substrate W2 for a solar cell. The electrode paste film Z2β shown in FIG. 20 includes one busbar portion Z2βb corresponding to the busbar electrode and a large number of finger portions Z2βf each corresponding to the finger electrode. For convenience of illustration and explanation, the width of the bus bar portion Z2βb and the finger portion Z2βf shown in FIG. 20 is larger than the actual one, and the number of finger portions Z2βf is also considerably smaller than the actual one.
 フィンガー電極は設計上、バスバー電極の延在方向において等間隔に繰り返し配置されるのが理想的である。以降、集電電極において係る等間隔の配置が実現されるよう、集電電極となる電極ペースト膜においてフィンガー部Z2βfが等間隔に配置されることを、理想配置と称する。図20に示す電極ペースト膜Z2βにおいては、フィンガー部Z2βfがこの理想配置にて形成されてなる。 By design, it is ideal that the finger electrodes are repeatedly arranged at equal intervals in the extending direction of the bus bar electrodes. Hereinafter, the finger portions Z2βf being arranged at equal intervals in the electrode paste film serving as the current collecting electrode is referred to as an ideal arrangement so that the arrangement at equal intervals is realized in the current collecting electrodes. In the electrode paste film Z2β shown in FIG. 20, the finger portion Z2βf is formed in this ideal arrangement.
 ただし、個々のフィンガー部Z2βfについては、個々のフィンガー電極の公差に対応した、所定の公差範囲内における理想配置からの変位は、許容されているものとする。 However, for each finger portion Z2βf, it is assumed that displacement from the ideal arrangement within a predetermined tolerance range corresponding to the tolerance of each finger electrode is allowed.
 図21は、図20に示した電極ペースト膜Z2βの形成に使用するスクリーン印刷版を作製するための、初期設計パターンPT2βを示す図である。初期設計パターンPT2βは、バスバー部Z2βbを形成するためのスクリーン開口部となるバスバー部用パーツPAbと、フィンガー部Z2βfを形成するためのスクリーン開口部となるフィンガー部用パーツPAfとを備える。初期設計パターンPT2βにおいては、フィンガー部Z2βfにおいて理想配置が実現されるよう、フィンガー部用パーツPAfが等間隔に配置されてなる。 FIG. 21 is a diagram showing an initial design pattern PT2β for producing a screen printing plate used for forming the electrode paste film Z2β shown in FIG. 20. The initial design pattern PT2β includes a bus bar part PAb that serves as a screen opening for forming the bus bar portion Z2βb, and a finger portion PAf that serves as a screen opening for forming the finger portion Z2βf. In the initial design pattern PT2β, the finger portion parts PAf are arranged at equal intervals so that the ideal arrangement is realized in the finger portion Z2βf.
 図22は、印刷版作製システム1000を構成するCAD200において、設計パターンPT2を与えるレイヤーの下地レイヤーとして、メッシュ位置パターンPT2mを与えるレイヤーを、重ね合わせた図である。設計パターンPT2は、初期設計パターンPT2βの一部を修正したものである。なお、図22においては図示の都合上、両者の端部をずらしているが、実際には、両者のサイズは同じである。 FIG. 22 is a diagram in which layers giving the mesh position pattern PT2m are superimposed as a base layer of the layer giving the design pattern PT2 in the CAD 200 constituting the printing plate manufacturing system 1000. The design pattern PT2 is a modification of a part of the initial design pattern PT2β. In FIG. 22, the ends of both are offset for convenience of illustration, but in reality, the sizes of both are the same.
 メッシュ位置パターンPT2mは、スクリーン印刷版20の作製対象たるメッシュ張設体10に基づいて作成された張設体メッシュ位置データDEに記述されてなるメッシュ位置を、CAD200に読み込むことで形成されてなる。 The mesh position pattern PT2m is formed by reading the mesh position described in the stretched body mesh position data DE created based on the mesh stretched body 10 to be produced of the screen printing plate 20 into the CAD 200. ..
 図22に示す場合においては、初期設計パターンPT2βに設けられていたある一のフィンガー部用パーツPAfaについて、その一方の側部が、メッシュ位置パターンPT2mにおける横糸の存在する箇所を表す横糸線Lhaと横糸の存在する箇所を表す縦糸線Lvaとの交点Caと近接あるいは交差している様子を示している。また、同じく初期設計パターンPT2βに設けられていたある別のフィンガー部用パーツPAfbについて、その一方の端部が、メッシュ位置パターンPT2mにおける横糸線Lhbと縦糸線Lvbとの交点Cbと近接あるいは交差している。 In the case shown in FIG. 22, with respect to one finger part part PAfa provided in the initial design pattern PT2β, one side portion thereof is a weft line Lha representing a position where a weft thread exists in the mesh position pattern PT2m. It shows a state in which the weft is close to or intersects with the intersection Ca with the warp line Lva indicating the presence of the weft. Further, with respect to another finger part PAfb also provided in the initial design pattern PT2β, one end thereof is close to or intersects the intersection Cb of the weft line Lhb and the warp line Lvb in the mesh position pattern PT2m. ing.
 それゆえ、理想配置の初期設計パターンPT2βのままでスクリーン印刷版20を作製した場合、それらフィンガー部用パーツPAfaおよびPAfbに対応させて形成されたスクリーン開口部が形成されることになる。係る場合、それらのスクリーン開口部に対応する箇所においては印刷膜の変形が生じてしまい、図20に示したような形状のフィンガー部Z2βfを有する電極ペースト膜Z2βを実際に得ることは、難しいと考えられる。 Therefore, when the screen printing plate 20 is manufactured with the initial design pattern PT2β in the ideal arrangement, the screen opening formed corresponding to the finger portion parts PAfa and PAfb is formed. In such a case, the printing film is deformed at the portion corresponding to those screen openings, and it is difficult to actually obtain the electrode paste film Z2β having the finger portion Z2βf having the shape shown in FIG. Conceivable.
 このような不具合を回避するには、図22において矢印AR4およびAR5にて示すように、端部が縦糸2yと横糸2xとの交点と近接あるいは交差するフィンガー部用パーツPAfaおよびPAfbの配置位置について、(公差範囲内で)係る近接あるいは交差が解消されるようにシフトさせた設計パターンPT2を用いることが好ましい。 In order to avoid such a problem, as shown by arrows AR4 and AR5 in FIG. 22, regarding the arrangement position of the finger portion parts PAfa and PAfb whose ends are close to or intersect with the intersection of the warp 2y and the weft 2x. , It is preferable to use the design pattern PT2 shifted so that such proximity or intersection is eliminated (within the tolerance range).
 図23は、CAD200においてこのようなシフトがなされた設計パターンPT2を用いて、印刷版作製装置300において作製された、スクリーン印刷版20を例示する図である。スクリーン印刷版20においては、図示を省略しているスクリーンメッシュ2の上に、乳剤膜3が形成され、かつ、設計パターンPT2において設定された態様にて、スクリーン開口部OPzが形成されてなる。図23に示すスクリーン印刷版20のスクリーン開口部OPzの形状は、図22に示したフィンガー部用パーツPAfaおよびPAfbのシフトを反映し、これらに対応するフィンガー開口部OPfaおよびOPfbの位置が他の開口部のなす等間隔の配置からシフトしている。 FIG. 23 is a diagram illustrating a screen printing plate 20 produced by the printing plate manufacturing apparatus 300 using the design pattern PT2 in which such a shift is made in the CAD 200. In the screen printing plate 20, the emulsion film 3 is formed on the screen mesh 2 (not shown), and the screen opening OPz is formed in the manner set in the design pattern PT2. The shape of the screen opening OPz of the screen printing plate 20 shown in FIG. 23 reflects the shift of the finger portion parts PAfa and PAfb shown in FIG. 22, and the positions of the corresponding finger openings OPfa and OPfb are other. It shifts from the evenly spaced arrangement of the openings.
 図24は、太陽電池用の基板W2の上に、図23に示したスクリーン印刷版20を用いて電極ペースト膜Z2を形成した状態を、示す図である。係る電極ペースト膜Z2においては、フィンガー開口部OPfaおよびOPfbのシフトに応じて、単位フィンガー部ZfaおよびZfbの形成位置が、他の単位フィンガー部のなす等間隔の配置からシフトしている。ただし、単位フィンガー部ZfaおよびZfbのそれぞれの形状は、均一に保たれる。 FIG. 24 is a diagram showing a state in which the electrode paste film Z2 is formed on the substrate W2 for a solar cell by using the screen printing plate 20 shown in FIG. 23. In the electrode paste film Z2, the formation positions of the unit finger portions Zfa and Zfb are shifted from the equidistant arrangement formed by the other unit finger portions in accordance with the shift of the finger openings OPfa and OPfb. However, the shapes of the unit finger portions Zfa and Zfb are kept uniform.
  <変形例>
 上述の実施の形態においては、メッシュ位置特定装置100が、メッシュ糸2m(横糸2xおよび縦糸2y)のうち、メッシュ開口部MOを形作っている箇所の座標を特定することで、張設体メッシュ位置データDEを生成していたが、これに代わり、横糸2xと縦糸2yの交点(両者の交差する箇所の中心点)の座標を特定し、当該座標を記述したデータとして、張設体メッシュ位置データDEを生成する態様であってもよい。係る場合も、スクリーンメッシュ2における繰り返し単位ごとの位置座標を、メッシュ糸2mの延在方向に沿った順序で記述することが出来る。
<Modification example>
In the above-described embodiment, the mesh position specifying device 100 specifies the coordinates of the portion of the mesh thread 2 m (weft thread 2x and warp thread 2y) forming the mesh opening MO, whereby the stretched body mesh position is specified. Data DE was generated, but instead of this, the coordinates of the intersection of the weft 2x and the warp 2y (the center point of the intersection of the two) were specified, and the stretched body mesh position data was used as the data describing the coordinates. It may be an aspect of generating DE. Also in such a case, the position coordinates for each repeating unit in the screen mesh 2 can be described in the order along the extending direction of the mesh thread 2 m.
 あるいは、縦糸2yの左右のエッジの座標および横糸2xの上下のエッジの座標から、メッシュ糸2mの中心線の座標と、線幅とを導出し、これらを記述したデータとして、張設体メッシュ位置データDEを生成する態様であってもよい。 Alternatively, the coordinates of the center line of the mesh thread 2m and the line width are derived from the coordinates of the left and right edges of the warp thread 2y and the coordinates of the upper and lower edges of the weft thread 2x, and the stretched body mesh position is used as the data describing these. It may be an aspect of generating data DE.
 上述の実施の形態においては、撮像画像P1iにおいて開口部アドレスが付与されてなる全ての開口部像IMoのうち、対角に位置しそれゆえに互いに最も遠い位置にある2つの開口部像IMoのそれぞれから選択される2点を対角線とし、横糸像IMxと縦糸像Imyと略平行な四辺を有する四辺形の内側を、メッシュ位置を特定するための位置座標特定対象範囲として設定しているが、これは必須の態様ではない。例えば、対角の位置からずれた位置の開口部像IMoを選択して四辺形を特定し、その内側を位置座標特定対象範囲として設定する態様であってもよい。少なくとも、開口部アドレスが付与された開口部像IMoを横糸2xの延在方向と縦糸2yの延在方向のそれぞれにおいて3個以上含む四辺形の内側が、位置座標特定対象範囲として設定されればよい。ただし、このように位置座標特定対象範囲を定めた場合、当該範囲に基づいてメッシュ位置が特定されるメッシュ糸2は、撮像画像P1iに写っているメッシュ糸2mの一部に過ぎず、同様の特定を、異なる位置座標特定対象範囲を特定しつつ繰り返す必要が生じる。それゆえ、効率の点からは、上述の実施の形態の手法が優れているといえる。 In the above-described embodiment, among all the opening image IMos to which the opening addresses are assigned in the captured image P1i, each of the two opening image IMos located diagonally and therefore farthest from each other. The two points selected from are set as diagonal lines, and the inside of the quadrilateral having four sides substantially parallel to the weft image IMx and the warp image Imy is set as the position coordinate specification target range for specifying the mesh position. Is not an essential aspect. For example, an opening image IMo at a position deviated from the diagonal position may be selected to specify the quadrilateral, and the inside thereof may be set as the position coordinate specification target range. If at least the inside of the quadrilateral containing three or more opening image IMos to which the opening addresses are given in each of the extending direction of the weft 2x and the extending direction of the warp 2y is set as the position coordinate identification target range. Good. However, when the position coordinate specification target range is determined in this way, the mesh thread 2 whose mesh position is specified based on the range is only a part of the mesh thread 2m shown in the captured image P1i, and is the same. It becomes necessary to repeat the identification while specifying different position coordinate identification target ranges. Therefore, from the viewpoint of efficiency, it can be said that the method of the above-described embodiment is excellent.
 上述の実施の形態においては、乳剤によるコーティングが施される前のメッシュ張設体10におけるメッシュ位置が、メッシュ位置特定装置100による特定の対象とされているが、これに代わり、あらかじめスクリーンメッシュ2に対し乳剤によるコーティングが施されたメッシュ張設体(コーティング済みメッシュ張設体)の当該スクリーンメッシュ2が、メッシュ位置特定装置100によるメッシュ位置の特定の対象とされてもよい。その際には、カメラ111により撮像を行う際の照明光源121による照明光の設定を、専用のものとすることで、上述の実施の形態と同様の態様にて、撮像画像に基づきメッシュ位置の特定を行うことができる。その場合、図19のステップS106としては、パターンデータDPの記述内容に基づくスクリーン開口部の形成箇所の露光のみが行われる。 In the above-described embodiment, the mesh position in the mesh upholstery body 10 before the coating with the emulsion is applied is specified by the mesh position specifying device 100, but instead of this, the screen mesh 2 is previously used. On the other hand, the screen mesh 2 of the mesh stretched body (coated mesh stretched body) coated with an emulsion may be the target for specifying the mesh position by the mesh position specifying device 100. In that case, by setting the illumination light by the illumination light source 121 when imaging with the camera 111 to a dedicated one, the mesh position is set based on the captured image in the same manner as in the above-described embodiment. Can be identified. In that case, in step S106 of FIG. 19, only the exposure of the formed portion of the screen opening based on the description content of the pattern data DP is performed.

Claims (14)

  1.  スクリーン印刷版の作製に用いられるスクリーンメッシュ張設体に張設されたスクリーンメッシュを構成する、複数のメッシュ糸の配置位置を、特定する装置であって、
     前記複数のメッシュ糸の配置位置の特定対象である前記スクリーンメッシュ張設体の前記スクリーンメッシュを撮像する撮像手段と、
     前記撮像手段による前記スクリーンメッシュの撮像画像に基づいて、前記スクリーンメッシュ張設体における前記複数のメッシュ糸のそれぞれの配置位置を前記スクリーンメッシュにおける繰り返し単位ごとに特定し、前記繰り返し単位ごとに特定された前記配置位置の座標値を、前記複数のメッシュ糸のそれぞれの延在方向に沿った順序に再配列して記述したメッシュ位置データを生成する特定処理手段と、
     前記メッシュ位置データと、前記撮像手段による撮像の対象とされた前記スクリーンメッシュ張設体を一意に識別可能な識別情報とを関連付ける、関連付け手段と、
    を備え、
     前記特定処理手段は、前記メッシュ位置データを、スクリーン印刷版作製用のパターンデータの作成に際して前記複数のメッシュ糸の配置位置を実質的に再現可能なデータ形式にて生成する、
    ことを特徴とする、メッシュ位置特定装置。
    A device for specifying the arrangement position of a plurality of mesh threads constituting the screen mesh stretched on the screen mesh stretcher used for producing a screen printing plate.
    An imaging means for imaging the screen mesh of the screen mesh upholstery body, which is a target for specifying the arrangement positions of the plurality of mesh threads, and
    Based on the image of the screen mesh captured by the imaging means, the arrangement position of each of the plurality of mesh threads in the screen mesh upholstery is specified for each repeating unit in the screen mesh, and is specified for each repeating unit. A specific processing means for generating mesh position data in which the coordinate values of the arranged positions are rearranged in the order along the extending directions of the plurality of mesh threads and described.
    An association means for associating the mesh position data with identification information that can uniquely identify the screen mesh upholstery body to be imaged by the imaging means.
    With
    The specific processing means generates the mesh position data in a data format in which the arrangement positions of the plurality of mesh threads are substantially reproducible when creating pattern data for screen printing plate production.
    A mesh positioning device characterized by this.
  2.  請求項1に記載のメッシュ位置特定装置であって、
     前記特定処理手段は、前記複数のメッシュ糸のそれぞれの一対のエッジの位置を、前記配置位置として前記スクリーンメッシュにおける繰り返し単位ごとに特定し、かつ、前記メッシュ位置データにおいて、前記配置位置の座標値を前記複数のメッシュ糸のそれぞれの延在方向に沿った順序で記述する、
    ことを特徴とする、メッシュ位置特定装置。
    The mesh position specifying device according to claim 1.
    The specific processing means specifies the position of each pair of edges of the plurality of mesh threads as the arrangement position for each repeating unit in the screen mesh, and in the mesh position data, the coordinate value of the arrangement position. Is described in the order along the extending direction of each of the plurality of mesh threads.
    A mesh positioning device characterized by this.
  3.  請求項2に記載のメッシュ位置特定装置であって、
     前記特定処理手段は、
      前記スクリーンメッシュの前記撮像画像において、前記複数のメッシュ糸のそれぞれの延在方向と略平行な四辺を有する四辺形の内側を、前記撮像画像における前記複数のメッシュ糸のそれぞれの配置位置の特定範囲として設定し、
      前記特定範囲内で同一の行あるいは列に属する前記メッシュ開口部の配列ごとに前記複数のメッシュ糸のそれぞれの配置位置を特定するための線分を設定し、
      前記線分が前記複数のメッシュ糸のそれぞれの前記一対のエッジと交差する位置を、前記複数のメッシュ糸のそれぞれの配置位置として特定する、
    ことを特徴とする、メッシュ位置特定装置。
    The mesh positioning device according to claim 2.
    The specific processing means is
    In the captured image of the screen mesh, the inside of the quadrilateral having four sides substantially parallel to the extending direction of each of the plurality of mesh threads is a specific range of the respective arrangement positions of the plurality of mesh threads in the captured image. Set as
    A line segment for specifying the arrangement position of each of the plurality of mesh threads is set for each arrangement of the mesh openings belonging to the same row or column within the specific range.
    A position where the line segment intersects the pair of edges of each of the plurality of mesh threads is specified as a position of each of the plurality of mesh threads.
    A mesh positioning device characterized by this.
  4.  請求項1ないし請求項3のいずれかに記載のメッシュ位置特定装置であって、
     前記特定処理手段が、
      前記メッシュ位置特定装置に固有の装置座標系で記述されてなる座標値を、前記複数のメッシュ糸の配置位置の特定対象である前記スクリーンメッシュ張設体に固有の版座標系における座標値に変換する座標変換手段、
    を備え、
     前記複数のメッシュ糸のそれぞれの配置位置の座標値を前記装置座標系に基づいて特定し、当該特定された座標値を、前記座標変換手段において前記版座標系における座標値に変換したうえで、前記メッシュ位置データに記述する、
    ことを特徴とする、メッシュ位置特定装置。
    The mesh positioning device according to any one of claims 1 to 3.
    The specific processing means
    The coordinate value described in the device coordinate system peculiar to the mesh position specifying device is converted into the coordinate value in the plate coordinate system peculiar to the screen mesh upholstery body which is the target for specifying the arrangement position of the plurality of mesh threads. Coordinate conversion means,
    With
    The coordinate values of the respective arrangement positions of the plurality of mesh threads are specified based on the device coordinate system, and the specified coordinate values are converted into the coordinate values in the plate coordinate system by the coordinate conversion means. Described in the mesh position data,
    A mesh positioning device characterized by this.
  5.  請求項4に記載のメッシュ位置特定装置であって、
     前記撮像手段が、前記スクリーンメッシュ張設体にあらかじめ設けられてなる、前記スクリーンメッシュ張設体に前記版座標系の設定に利用可能な版座標系設定用マークを撮像し、
     前記座標変換手段は、前記撮像手段による、前記装置座標系における前記版座標系設定用マークの撮像結果に基づいて前記装置座標系と前記版座標系との変換関係を特定し、前記変換関係に基づいて、前記装置座標系に基づいて特定された前記複数のメッシュ糸のそれぞれの配置位置の座標値を前記版座標系における座標値に変換する、
    ことを特徴とする、メッシュ位置特定装置。
    The mesh position specifying device according to claim 4.
    The imaging means images a plate coordinate system setting mark that can be used for setting the plate coordinate system on the screen mesh stretched body, which is provided in advance on the screen mesh stretched body.
    The coordinate conversion means specifies the conversion relationship between the device coordinate system and the plate coordinate system based on the imaging result of the plate coordinate system setting mark in the device coordinate system by the image pickup means, and the conversion relationship is established. Based on this, the coordinate values of the respective arrangement positions of the plurality of mesh threads specified based on the device coordinate system are converted into the coordinate values in the plate coordinate system.
    A mesh positioning device characterized by this.
  6.  請求項1ないし請求項5のいずれかに記載のメッシュ位置特定装置と、
     前記スクリーン印刷版の作製に際して前記スクリーンメッシュ張設体の前記スクリーンメッシュ上に形成されるスクリーン開口部のパターンを記述したパターンデータを作成する印刷版パターン作成装置と、
     前記パターンデータに基づいて前記スクリーンメッシュ張設体に前記スクリーン開口部のパターンを形成することにより前記スクリーン印刷版を作製する印刷版作製装置と、
    を備え、
     前記印刷版パターン作成装置が、
      前記メッシュ位置特定装置において生成された前記メッシュ位置データの記述に基づいて、前記メッシュ位置データと関連付けられ、かつ、前記パターンデータに基づく前記スクリーン印刷版の作製対象となる前記スクリーンメッシュ張設体における前記スクリーンメッシュの配置位置を所定の表示手段に再現可能とされてなり、
      再現された前記スクリーンメッシュを参照しつつ前記パターンデータを作成可能であり、かつ、
      作成した前記パターンデータに、前記メッシュ位置データと関連付けられた前記識別情報を関連付けるようになっており、
     前記印刷版作製装置においては、前記パターンデータと関連づけられてなる前記識別情報に対応する前記スクリーンメッシュ張設体に対し、前記パターンデータに基づいて前記スクリーン開口部のパターンを形成する、
    ことを特徴とする印刷版作製システム。
    The mesh position identifying device according to any one of claims 1 to 5.
    A printing plate pattern creating device for creating pattern data describing a pattern of screen openings formed on the screen mesh of the screen mesh upholstery when producing the screen printing plate.
    A printing plate making apparatus for manufacturing the screen printing plate by forming a pattern of the screen opening in the screen mesh upholstery based on the pattern data.
    With
    The printing plate pattern creating device
    In the screen mesh upholstery that is associated with the mesh position data based on the description of the mesh position data generated by the mesh position specifying device and is the target for producing the screen printing plate based on the pattern data. The arrangement position of the screen mesh can be reproduced by a predetermined display means.
    The pattern data can be created while referring to the reproduced screen mesh, and
    The identification information associated with the mesh position data is associated with the created pattern data.
    In the printing plate making apparatus, a pattern of the screen opening is formed on the screen mesh upholstery corresponding to the identification information associated with the pattern data based on the pattern data.
    A printing plate making system characterized by this.
  7.  請求項6に記載の印刷版作製システムであって、
     前記印刷版パターン作成装置においては、前記表示手段に再現された前記スクリーンメッシュの配置位置に応じて、前記パターンデータの構成要素の配置位置および/またはサイズを調整可能である、
    ことを特徴とする印刷版作製システム。
    The printing plate manufacturing system according to claim 6.
    In the printing plate pattern creating device, the arrangement position and / or size of the component of the pattern data can be adjusted according to the arrangement position of the screen mesh reproduced by the display means.
    A printing plate making system characterized by this.
  8.  スクリーン印刷版の作製に際してスクリーンメッシュ張設体のスクリーンメッシュ上に形成されるスクリーン開口部のパターンを記述したパターンデータを作成する印刷版パターン作成装置であって、
     請求項1ないし請求項5のいずれかに記載のメッシュ位置特定装置において生成された前記メッシュ位置データの記述に基づいて、前記メッシュ位置データと関連付けられてなる、前記パターンデータに基づく前記スクリーン印刷版の作製対象となる前記スクリーンメッシュ張設体における前記スクリーンメッシュの配置位置を所定の表示手段に再現可能とされてなり、
     再現された前記スクリーンメッシュを参照しつつ前記パターンデータを作成可能であり、かつ、
     作成した前記パターンデータに、前記メッシュ位置データと関連付けられた前記識別情報を関連付ける、
    ことを特徴とする印刷版パターン作成装置。
    It is a printing plate pattern creating device that creates pattern data describing a pattern of screen openings formed on the screen mesh of a screen mesh upholstery when producing a screen printing plate.
    The screen printing plate based on the pattern data, which is associated with the mesh position data based on the description of the mesh position data generated by the mesh position specifying device according to any one of claims 1 to 5. The arrangement position of the screen mesh in the screen mesh upholstery body to be produced can be reproduced by a predetermined display means.
    The pattern data can be created while referring to the reproduced screen mesh, and
    The identification information associated with the mesh position data is associated with the created pattern data.
    A printing plate pattern creation device characterized by this.
  9.  請求項8に記載の印刷版パターン作成装置であって、
     前記表示手段に再現された前記スクリーンメッシュの配置位置に応じて、前記パターンデータの構成要素の配置位置および/またはサイズを調整可能である、
    ことを特徴とする印刷版パターン作成装置。
    The printing plate pattern creating apparatus according to claim 8.
    The arrangement position and / or size of the component of the pattern data can be adjusted according to the arrangement position of the screen mesh reproduced by the display means.
    A printing plate pattern creation device characterized by this.
  10.  請求項1ないし請求項5のいずれかに記載のメッシュ位置特定装置において生成された前記メッシュ位置データが格納されてなるともに、前記メッシュ位置データと関連付けられた前記識別情報が前記メッシュ位置データに記述されてなるかあるいは直接に付与されてなる、ことを特徴とする記憶媒体。 The mesh position data generated by the mesh position specifying device according to any one of claims 1 to 5 is stored, and the identification information associated with the mesh position data is described in the mesh position data. A storage medium, characterized in that it is made or directly attached.
  11.  スクリーン印刷版の作製に際してスクリーンメッシュ上にスクリーン開口部のパターンが形成されるスクリーンメッシュ張設体であって、
     請求項1ないし請求項5のいずれかに記載のメッシュ位置特定装置において、当該スクリーンメッシュ張設体を対象として生成された前記メッシュ位置データと、前記識別情報により関連付けられてなる、ことを特徴とするスクリーンメッシュ張設体。
    A screen mesh upholstery in which a pattern of screen openings is formed on the screen mesh when the screen printing plate is produced.
    The mesh position specifying device according to any one of claims 1 to 5, is characterized in that the mesh position data generated for the screen mesh upholstery body is associated with the identification information. Screen mesh upholstery.
  12.  スクリーン印刷版の作製に用いられるスクリーンメッシュ張設体に張設されたスクリーンメッシュを構成する、複数のメッシュ糸の配置位置を、特定する方法であって、
     前記複数のメッシュ糸の配置位置の特定対象である前記スクリーンメッシュ張設体の前記スクリーンメッシュを所定の撮像手段によって撮像する撮像工程と、
     前記撮像工程よって得られた前記スクリーンメッシュの撮像画像に基づいて、前記スクリーンメッシュ張設体における前記複数のメッシュ糸のそれぞれの配置位置を前記スクリーンメッシュにおける繰り返し単位ごとに特定し、前記繰り返し単位ごとに特定された前記配置位置の座標値を、前記複数のメッシュ糸のそれぞれの延在方向に沿った順序に再配列して記述したメッシュ位置データを生成する特定処理工程と、
     前記メッシュ位置データと、前記撮像手段による撮像の対象とされた前記スクリーンメッシュ張設体を一意に識別可能な識別情報とを関連付ける、関連付け工程と、
    を備え、
     前記特定処理工程においては、前記メッシュ位置データを、スクリーン印刷版作製用のパターンデータの作成に際して前記複数のメッシュ糸の配置位置を実質的に再現可能なデータ形式にて生成する、
    ことを特徴とする、メッシュ位置特定方法。
    It is a method of specifying the arrangement position of a plurality of mesh threads constituting the screen mesh stretched on the screen mesh stretcher used for producing the screen printing plate.
    An imaging step of imaging the screen mesh of the screen mesh upholstery body, which is a target for specifying the arrangement positions of the plurality of mesh threads, by a predetermined imaging means.
    Based on the captured image of the screen mesh obtained by the imaging step, the arrangement position of each of the plurality of mesh threads in the screen mesh upholstery is specified for each repeating unit in the screen mesh, and for each repeating unit. A specific processing step of generating mesh position data described by rearranging the coordinate values of the arrangement positions specified in the above in the order along the extending directions of the plurality of mesh threads, and
    An association step of associating the mesh position data with identification information that can uniquely identify the screen mesh upholstery body to be imaged by the imaging means.
    With
    In the specific processing step, the mesh position data is generated in a data format in which the arrangement positions of the plurality of mesh threads are substantially reproducible when creating pattern data for screen printing plate production.
    A method for identifying a mesh position, which is characterized in that.
  13.  請求項12に記載のメッシュ位置特定方法によって前記メッシュ位置データを生成するメッシュ位置データ生成工程と、
     所定の印刷版パターン作成装置を用いて、前記スクリーン印刷版の作製に際して前記スクリーンメッシュ張設体の前記スクリーンメッシュ上に形成されるスクリーン開口部のパターンを記述したパターンデータを作成する印刷版パターン作成工程と、
     所定の印刷版作製装置を用いて、前記パターンデータに基づいて前記スクリーンメッシュ張設体に前記スクリーン開口部のパターンを形成することにより前記スクリーン印刷版を作製する印刷版作製工程と、
    を備え、
     前記印刷版パターン作成工程においては、
      前記メッシュ位置データ生成工程において生成された前記メッシュ位置データの記述に基づいて、前記メッシュ位置データと関連付けられてなる、前記パターンデータに基づく前記スクリーン印刷版の作製対象となる前記スクリーンメッシュ張設体における前記スクリーンメッシュの配置位置を所定の表示手段に再現可能とされてなり、
      再現された前記スクリーンメッシュを参照しつつ前記パターンデータを作成可能であり、かつ、
      作成した前記パターンデータに、前記メッシュ位置データと関連付けられた前記識別情報を関連付けるようになっており、
     前記印刷版作製工程においては、前記パターンデータと関連づけられてなる前記識別情報に対応する前記スクリーンメッシュ張設体に対し、前記パターンデータに基づいて前記スクリーン開口部のパターンを形成する、
    ことを特徴とする、印刷版作製方法。
    A mesh position data generation step of generating the mesh position data by the mesh position specifying method according to claim 12.
    Using a predetermined printing plate pattern creating device, a printing plate pattern is created that describes pattern data of a screen opening formed on the screen mesh of the screen mesh upholstery when the screen printing plate is produced. Process and
    A printing plate manufacturing step of manufacturing the screen printing plate by forming a pattern of the screen opening in the screen mesh upholstery based on the pattern data using a predetermined printing plate manufacturing device.
    With
    In the printing plate pattern creation process,
    Based on the description of the mesh position data generated in the mesh position data generation step, the screen mesh upholstery body to be produced of the screen printing plate based on the pattern data, which is associated with the mesh position data. The arrangement position of the screen mesh in the above can be reproduced by a predetermined display means.
    The pattern data can be created while referring to the reproduced screen mesh, and
    The identification information associated with the mesh position data is associated with the created pattern data.
    In the printing plate manufacturing step, a pattern of the screen opening is formed on the screen mesh stretched body corresponding to the identification information associated with the pattern data based on the pattern data.
    A method for producing a printing plate, which is characterized in that.
  14.  スクリーン印刷版の作製に際してスクリーンメッシュ張設体のスクリーンメッシュ上に形成されるスクリーン開口部のパターンを記述したパターンデータを作成する印刷版パターンの作成方法であって、
     請求項12に記載のメッシュ位置特定方法によって生成された前記メッシュ位置データの記述に基づいて、前記メッシュ位置データと関連付けられてなる、前記パターンデータに基づく前記スクリーン印刷版の作製対象となる前記スクリーンメッシュ張設体における前記スクリーンメッシュの配置位置を所定の表示手段に再現する再現工程と、
     再現された前記スクリーンメッシュを参照しつつ前記パターンデータを作成する作成工程と、
     作成した前記パターンデータに、前記メッシュ位置データと関連付けられた前記識別情報を関連付ける関連付け工程と、
    を備えることを特徴とする、印刷版パターン作成方法。
    It is a method of creating a printing plate pattern that creates pattern data that describes a pattern of screen openings formed on the screen mesh of a screen mesh upholstery when producing a screen printing plate.
    The screen to be produced of the screen printing plate based on the pattern data, which is associated with the mesh position data based on the description of the mesh position data generated by the mesh position specifying method according to claim 12. A reproduction step of reproducing the arrangement position of the screen mesh in the mesh stretched body on a predetermined display means, and
    The creation process of creating the pattern data while referring to the reproduced screen mesh, and
    An association step of associating the created pattern data with the identification information associated with the mesh position data, and
    A printing plate pattern creation method, characterized in that.
PCT/JP2020/006302 2019-03-29 2020-02-18 Mesh position specifying device, printing plate manufacturing system, printing plate pattern creation device, storage medium, screen mesh stretched body, mesh position specifying method, printing plate manufacturing method, and printing plate pattern creation method WO2020202854A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021511203A JP7125174B2 (en) 2019-03-29 2020-02-18 Mesh locating device, printing plate making system, printing plate pattern making device, storage medium, mesh locating method, printing plate making method, and printing plate pattern making method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-065687 2019-03-29
JP2019065687 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020202854A1 true WO2020202854A1 (en) 2020-10-08

Family

ID=72668575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006302 WO2020202854A1 (en) 2019-03-29 2020-02-18 Mesh position specifying device, printing plate manufacturing system, printing plate pattern creation device, storage medium, screen mesh stretched body, mesh position specifying method, printing plate manufacturing method, and printing plate pattern creation method

Country Status (2)

Country Link
JP (1) JP7125174B2 (en)
WO (1) WO2020202854A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10315648A (en) * 1997-05-22 1998-12-02 Toppan Printing Co Ltd Screen printing plate for screen printing and its manufacture
JP2000347424A (en) * 1999-06-04 2000-12-15 Nippon Avionics Co Ltd Recognition mark and bias-stretched mesh screen
JP2008162277A (en) * 2006-12-06 2008-07-17 Bonmaaku:Kk Mask and its manufacturing method
US20110283904A1 (en) * 2010-05-19 2011-11-24 Gallus Ferd. Rueesch Ag Two-dimensional screen material and screen
JP2018176490A (en) * 2017-04-07 2018-11-15 理想科学工業株式会社 Screen printing plate and method of manufacturing screen printing plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10315648A (en) * 1997-05-22 1998-12-02 Toppan Printing Co Ltd Screen printing plate for screen printing and its manufacture
JP2000347424A (en) * 1999-06-04 2000-12-15 Nippon Avionics Co Ltd Recognition mark and bias-stretched mesh screen
JP2008162277A (en) * 2006-12-06 2008-07-17 Bonmaaku:Kk Mask and its manufacturing method
US20110283904A1 (en) * 2010-05-19 2011-11-24 Gallus Ferd. Rueesch Ag Two-dimensional screen material and screen
JP2018176490A (en) * 2017-04-07 2018-11-15 理想科学工業株式会社 Screen printing plate and method of manufacturing screen printing plate

Also Published As

Publication number Publication date
JPWO2020202854A1 (en) 2021-11-25
JP7125174B2 (en) 2022-08-24

Similar Documents

Publication Publication Date Title
JP6284961B2 (en) Stereolithography method and photocuring method of photosensitive resin
US9032342B2 (en) Method and apparatus for alignment optimization with respect to plurality of layers
JP4744610B2 (en) 3D measuring device
JP5209544B2 (en) Drawing apparatus, data processing apparatus for drawing apparatus, and drawing data generation method for drawing apparatus
US5764793A (en) Method of and apparatus for inspecting pattern defects
CN102621816B (en) Method of adopting gray scale mode in write-through photoetching system to improve exposure graph quality
JP2002118060A (en) Charged particle beam projection aligner, charged particle beam exposure method, exposure data creation method, computer-readable recording medium with program for creating exposure data stored, and computer with exposure data stored therein
KR20120083854A (en) Adjustment apparatus, laser machining apparatus, and adjustment method
CN108351510A (en) For the patterned Sutureless direct imaging of high-resolution electronics
JP5957575B1 (en) 3D measuring device
KR20080029894A (en) Method and apparatus for obtaining drawing point data, and drawing method and apparatus
CN1086512C (en) Charged-beam exposure mask and charged-beam exposure method
CN105204297A (en) Two-dimensional splicing treatment method for inclined scanning type photoetching machine during stepping type exposure
WO2020202854A1 (en) Mesh position specifying device, printing plate manufacturing system, printing plate pattern creation device, storage medium, screen mesh stretched body, mesh position specifying method, printing plate manufacturing method, and printing plate pattern creation method
CN102902164B (en) Two-dimensional mosaic processing method for direct writing lithography machine in step printing
JP4946544B2 (en) Image generation method for measurement processing and substrate visual inspection apparatus using this method
TW201537283A (en) Data correction apparatus, drawing apparatus, data correction method, and drawing method
CN109690402A (en) The manufacturing method of photomask, photo mask manufacturing method and the colour filter using photomask
KR20140113449A (en) Drawing data generating method, drawing method, drawing data generating apparatus and drawing apparatus
JP7133379B2 (en) Drawing device and drawing method
JP6114151B2 (en) Drawing apparatus, substrate processing system, and drawing method
JP4560762B2 (en) Honeycomb filter plugging method
TW202209084A (en) Circuit board information display method and device capable of improving the processing delay of the display screen
CN117745770A (en) Template generation device, drawing system, template generation method, and storage medium
JP2992081B2 (en) Pattern creation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782663

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511203

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20782663

Country of ref document: EP

Kind code of ref document: A1