WO2020202646A1 - Sliding nozzle plate production method - Google Patents

Sliding nozzle plate production method Download PDF

Info

Publication number
WO2020202646A1
WO2020202646A1 PCT/JP2019/048181 JP2019048181W WO2020202646A1 WO 2020202646 A1 WO2020202646 A1 WO 2020202646A1 JP 2019048181 W JP2019048181 W JP 2019048181W WO 2020202646 A1 WO2020202646 A1 WO 2020202646A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
sic
mass
sliding nozzle
alumina
Prior art date
Application number
PCT/JP2019/048181
Other languages
French (fr)
Japanese (ja)
Inventor
智博 余多分
八反田 浩勝
Original Assignee
東京窯業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京窯業株式会社 filed Critical 東京窯業株式会社
Priority to CN201980094948.9A priority Critical patent/CN113646110A/en
Priority to KR1020217031094A priority patent/KR20210144726A/en
Publication of WO2020202646A1 publication Critical patent/WO2020202646A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • B22D41/22Closures sliding-gate type, i.e. having a fixed plate and a movable plate in sliding contact with each other for selective registry of their openings
    • B22D41/28Plates therefor
    • B22D41/30Manufacturing or repairing thereof
    • B22D41/32Manufacturing or repairing thereof characterised by the materials used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/103Refractories from grain sized mixtures containing non-oxide refractory materials, e.g. carbon

Definitions

  • the present invention relates to a method for manufacturing a plate for a sliding nozzle.
  • the molten steel is discharged from the container for storing the molten steel via the nozzle provided in the container.
  • the nozzle includes a sliding nozzle used to control the flow rate of the molten steel to be discharged.
  • the sliding nozzle has two sliding nozzle plates, an upper plate and a lower plate having an inner hole, or three sliding nozzle plates to which an inner plate is added, and these sliding nozzle plates are relatively slidable. As a result, the flow rate of the molten steel is controlled by adjusting the opening degree of the inner hole which is the molten steel flow path.
  • the sliding nozzle plate is made of refractory material.
  • Refractories include calcined carbon-containing plate refractories in which a raw material mainly composed of alumina is used as an aggregate, various metals, carbides, nitrides, carbon materials, etc. are added and fired at a temperature exceeding 1000 ° C.
  • Non-firing carbon-containing plate refractories heat-treated below are widely known.
  • alumina, mullite, zirconia mullite, alumina zirconia, spinel, magnesia and the like are used in combination according to the desired characteristics.
  • the structure is densified by adjusting the particle size composition, etc., to suppress the reaction between oxygen and outside air contained in the molten steel and carbon in the structure.
  • densification of the structure leads to an increase in the amount of thermal expansion of the entire refractory. As a result, the thermal shock resistance of the refractory may decrease.
  • metal powders such as Al and Al—Mg are widely known. If the particle size of these metal powders is fine, there is a risk of explosion during production, so it is difficult to use powders having a particle size smaller than a predetermined value.
  • metal powders such as Al and Al—Mg change to Al 4 C 3 in a temperature range of 1000 ° C. or higher, which causes a problem that the corrosion resistance of refractories is lowered.
  • a carbide such as B 4 C and SiC as an antioxidant. The effect of adding these carbides was not sufficiently exhibited at a high temperature of 1500 ° C. or higher, and it was difficult to continue densification of the refractory. To solve such a problem, as shown in Patent Document 1, it has been studied to contain Al 4 SiC 4 in a refractory material. Al 4 SiC 4 contributes to the densification of the structure of refractories.
  • the refractory material containing Al 4 SiC 4 has a problem that cracks are likely to occur. Specifically, a refractory material that has been heat-treated at a particularly high temperature (for example, 1200 ° C. or higher) is prone to cracking.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a plate for a sliding nozzle made of a refractory material in which the occurrence of cracks is suppressed even if heat treatment is performed at a high temperature.
  • the method for manufacturing a plate for a sliding nozzle of the present invention (hereinafter, referred to as the manufacturing method of the present invention) for solving the above problems is 2 to 23 mass% of Al 4 SiC 4 and 2 to 2 to 23 mass% when the whole is 100 mass%.
  • the temperature is 150 to 1400 ° C. It is characterized by heat treatment at the heating temperature of.
  • the plate produced by the production method of the present invention uses a phenol resin having a water content of 1% or less. According to this configuration, even if heat treatment is performed at a high temperature, the effect of forming a plate for a sliding nozzle made of a refractory material in which the generation of cracks is suppressed is exhibited.
  • a plate for a sliding nozzle is manufactured in each step shown in FIG.
  • the raw material for the sliding nozzle plate is prepared (raw material preparation step: S1). Specifically, Al 4 SiC 4 , carbon material, alumina, alumina-zirconia, zirconia mullite, magnesia, magnesia-spinel, and a phenol resin having a water content of 1% or less are prepared. Each of these raw materials is prepared in powder form.
  • Al 4 SiC 4 contributes to the densification of the structure of the manufactured plate.
  • Al 4 SiC 4 generates a gas containing Al by the reaction when exposed to a high temperature in the presence of carbon.
  • the gas containing Al diffuses throughout the voids in the plate (refractory). Then, it reacts with CO gas and recondenses as Al 2 O 3 and carbon. This recondensation (particularly the recondensation of Al 2 O 3 ) ultimately contributes to the densification of the structure. That is, the reaction of the following formula (1) proceeds.
  • Al 4 SiC 4 (s) + 6CO (g) 2Al 2 O 3 (s) + SiC (s) + 9C (s) ... (1)
  • Al 4 SiC 4 is prepared so as to be 2 to 23 mass% when the total of the prepared raw materials is 100 mass%.
  • Al 4 SiC 4 is contained in this ratio, the effect of adding Al 4 SiC 4 can be exhibited. If it is less than 2 mass%, the effect of densification cannot be fully exerted. Further, if it exceeds 23 mass%, the effect of densification can be exhibited, but cracks are likely to occur in the plate (refractory) during the heat treatment.
  • the content ratio of Al 4 SiC 4 is more preferably 3 to 20 mass%, further preferably 5 to 15 mass%.
  • the particle size (average particle size) of the Al 4 SiC 4 powder is not limited. It is preferably a powder having an average particle size of 5 ⁇ m to 200 ⁇ m.
  • the average particle size indicates the average particle size (D50) of the particle size distribution, and can be measured by a conventionally known method. When the average particle size is within this range, a dense plate (refractory) can be manufactured. If the average particle size is less than 5 ⁇ m, the particle size is too small and it becomes difficult to handle it. On the other hand, if the average particle size exceeds 200 ⁇ m, the average particle size becomes too large, and the pores formed by the decomposition of Al 4 SiC 4 become large, or the reactivity becomes low and the reaction does not proceed sufficiently. However, the effect of densification of the tissue cannot be sufficiently obtained.
  • Al 4 SiC 4 preferably has an S content of 100 ppm or less.
  • S (sulfur) contained in the manufacturing raw material for example, carbon black which is a carbon source of Al 4 SiC 4
  • the S content is 100 ppm or less, cracks in the plate (refractory) can be suppressed.
  • a large amount of S remains in Al 4 SiC 4
  • a large amount of hydrogen sulfide gas is generated by the reactions of the following equations (2) to (3). The hydrogen sulfide gas causes cracks when the plate (refractory) is heat-treated (heat treatment of the mixed powder in the subsequent step).
  • the reaction for producing aluminum sulfide proceeds, and in the formula (3), the reaction for producing hydrogen sulfide gas by hydrolysis of aluminum sulfide proceeds.
  • the carbon material serves as a carbon source for CO gas in the reaction of the above formula (1). Further, in the carbon material, voids are formed in the plate (refractory) by generating CO gas.
  • the carbon material is prepared so as to be 2 to 10 mass% when the total of the prepared raw materials is 100 mass%.
  • the carbon material is contained in this ratio, the effect of adding the carbon material can be exhibited. If it is less than 2 mass%, the effect of spalling resistance cannot be sufficiently exhibited. On the other hand, if it exceeds 10 mass%, the amount of alumina is relatively reduced, the oxidation resistance and the wear resistance are lowered, and the surface roughness of the plate (refractory) is likely to be induced.
  • the content ratio of the carbon material is more preferably 3 to 7 mass%.
  • the carbon material is a material that does not form a compound with other elements and is formed only from carbon.
  • the carbon material is preferably composed of one or more powders of scaly graphite, artificial graphite, pitch coke, and carbon black. By selecting the carbon material from these materials, CO gas can be generated in the reaction of the above formula (1).
  • the average particle size (D50) and particle size of the carbon material powder are not limited, and are preferably equal to or less than the powder of Al 4 SiC 4 .
  • Phenolic resin is added as a binder.
  • Phenolic resin has a water content of 1% or less.
  • 1% of the water content is a mass ratio when the mass of the phenol resin in the prepared and mixed state is 100 mass%.
  • the water content of the phenol resin is 1 mass% or less, the occurrence of cracks in the plate (refractory) can be suppressed. If water is contained in excess of 1 mass%, cracks will occur in the plate (refractory) in the subsequent heat treatment, especially when the heat treatment temperature is 1200 ° C. or higher.
  • the mechanism is not clear, but I think as follows.
  • Al 2 S 3 Due to the S contained (residual) in Al 4 SiC 4 , the production reaction of aluminum sulfide (Al 2 S 3 ) proceeds in some step in the refractory manufacturing process (the reaction of the above formula (2)). Then, the hydrolysis reaction of aluminum sulfide (Al 2 S 3 ) proceeds, and hydrogen sulfide gas (H 2 S) is produced (the reaction of the above formula (3)). When the heat treatment is performed, the produced Al 2 S 3 volatilizes, and at that time, the plate (refractory) is cracked.
  • the phenol resin is preferably added in an amount of 1 to 5 mass% when the total amount of the prepared raw material is 100 mass%. By having this ratio, the phenol resin functions as a binder. If the amount of phenol resin is less than 1 mass%, the amount of phenol resin contained is too small, and the function as a binder cannot be sufficiently exhibited. On the other hand, if it is contained in excess of 5 mass%, the amount of water contained in the entire plate (refractory) becomes excessively large, which may cause cracks in the plate (refractory).
  • the phenol resin may be liquid or solid, but is preferably liquid.
  • the rest is one or more of alumina, alumina-zirconia, zirconia mullite, magnesia, and magnesia-spinel. These metals or compounds form the main components of the plate (refractory).
  • the compound forming the balance is composed of powder, and its average particle size (D50) and particle size are not limited. A powder having an average particle size (particle size) sufficient for producing a conventional plate (refractory) can be used.
  • the prepared raw material may further be added with conventionally known additives.
  • this additive include a silicon compound (preferably metallic Si) for producing a residual carbon material and silicon carbide, and an antioxidant (for example, metallic Al).
  • the prepared raw materials are uniformly mixed (mixing step: S2).
  • the phenol resin (binder) is liquid, or when a liquid dispersion medium is further used, kneading is performed.
  • the specific method of uniformly mixing in this step is not limited. That is, they are uniformly mixed (kneaded) using a mixing device and a kneading device.
  • the mixture (kneaded product) is molded into a predetermined shape (molding step: S3).
  • the predetermined shape is the shape of the sliding nozzle plate.
  • the specific method of molding the mixture in this step is not limited. That is, it is molded into a predetermined shape by using a molding method such as mold molding or compression molding.
  • the molded product is heat-treated (heat treatment step). As the heat treatment in the heat treatment step, a drying step (S4) for drying the molded product and a firing step (S5) for firing the dried molded product are performed.
  • the drying step (S4) is a step of drying the molded product.
  • the drying step is a step of heating the molded body to evaporate the water content in the molded body.
  • the drying step (S4) is a process of heating the molded product so that water and volatile organic components can be evaporated, and the heating conditions are not limited. For example, heat treatment at 100 ° C. to 120 ° C. (in the air, under normal pressure conditions) can be mentioned.
  • the firing step (S5) is a step of firing the dried molded product. By firing the molded body, the reaction of the above formula (1) proceeds, and the molded body becomes a dense fired body.
  • the firing conditions in the firing step (S5) are not limited. For example, heat treatment at 150 to 1400 ° C. (under normal pressure conditions) is preferable, and heat treatment at 200 to 1300 ° C. (normal pressure conditions) is more preferable.
  • the heat treatment at 150 to 1400 ° C. (under normal pressure conditions) is preferably at least one of a heat treatment at 150 ° C. to 400 ° C. and a heat treatment at 1000 to 1400 ° C. This heating condition is selected according to the conditions required for the manufactured plate.
  • both the curing reaction of the phenol resin and the reaction of the above formula (1) proceed. Further, in the heat treatment at 1000 to 1400 ° C., the sintering reaction between the particles of the raw material powder also proceeds, and the strength of the plate becomes higher.
  • the heating temperature is 1400 ° C. or higher, the residual expansion of the plate (refractory) itself becomes large, and it becomes difficult to secure the initial strength when used as a plate.
  • the firing atmosphere may be a non-oxidizing atmosphere such as nitrogen gas or argon gas. Coke breeze may be packed in a container called a muffle and fired in it.
  • the fired body is impregnated with pitch (impregnation step: S6).
  • pitch is a general term for highly viscous hydrocarbons and includes tar.
  • the specific method of impregnating the pitch is not limited. It can be done by a conventionally known method.
  • the fired body is impregnated with pitch, but it may be impregnated with a material capable of exhibiting the same function. For example, a solution resin can be mentioned.
  • the impregnation step (S6) is an arbitrary step. That is, the plate may not be subjected to the impregnation step (S6).
  • a plate for a sliding nozzle can be manufactured by performing each of the above steps.
  • the plate produced in this embodiment is formed by molding a mixture (raw material powder) of a composite carbide, a carbon material, a metal powder, an oxide and a compound, and firing the mixture. That is, the plate produced in this embodiment has a structure in which the particles of the raw material powder are fixed or sintered in a dense state by firing, and it is difficult to specify the structure.
  • each of the above steps (S1 to S5) is performed.
  • a phenol resin added as a binder having a water content of 1% or less is used.
  • the production method of this embodiment it is possible to manufacture a plate that is dense and suppresses the occurrence of cracks.
  • Al 4 SiC 4 powder having an average particle size of 5 ⁇ m to 200 ⁇ m is used. When the average particle size is within this range, a dense plate can be manufactured.
  • Al 4 SiC 4 has an S content of 100 ppm or less. According to this configuration, the generation of hydrogen sulfide gas is suppressed, and the generation of cracks in the plate due to the hydrogen sulfide gas is suppressed.
  • the heat treatment in the firing step (S5) is a process of heating at a heating temperature of 150 to 1400 ° C. According to this configuration, a plate made of a dense fired body can be manufactured.
  • the phenol resin is added in an amount of 1 to 5 mass% when the whole is 100 mass%. According to this configuration, the phenol resin can function as a binder, and a plate having a predetermined shape can be produced.
  • the carbon material is made of one or more powders of scaly graphite, artificial graphite, pitch coke, and carbon black. According to this configuration, CO gas can be generated in the reaction of the above formula (1), and a plate made of a dense fired body can be produced.
  • a pitch impregnation step (S6) for impregnating the pitch is performed. According to this configuration, a plate having improved corrosion resistance (digestion resistance) can be manufactured.
  • the plate of this embodiment has 2 to 23 mass% of Al 4 SiC 4 and 2 to 10 mass% of carbon material, and the balance is alumina, alumina-zirconia, zirconia mullite, magnesia, magnesia-when the whole is 100 mass%.
  • the structure of the plate of this form cannot be unconditionally determined (that is, it is difficult to specify the structure).
  • Al 4 SiC 4 having an average particle size of 20 ⁇ m to 50 ⁇ m, carbon black (carbon material) having an average particle size of 20 ⁇ m to 200 ⁇ m, sintered alumina, metal Si having a particle size of 200 mesh or less, and a particle size of 200 mesh or less.
  • Metal Al of 200 mesh or less fused magnesia, solution phenol resin A (water content: 0.3 to 0.8 mass%), solution phenol resin B (water content: 1.4 to 1.8 mass) %) And prepare.
  • Al 4 SiC 4 had an S content of about 50 ppm.
  • the sintered alumina coarse particles having an average particle size of 3 to 1 mm, medium particles having an average particle size of 1 mm to 200 ⁇ m, and fine particles having an average particle size of less than 200 ⁇ m were appropriately blended. These raw materials were in powder form except for phenol resin. Then, the prepared raw materials are weighed at the ratios shown in Table 1, mixed uniformly, and molded into a block shape. The molded product was calcined in a non-oxidizing atmosphere at the temperatures shown in Table 1 for 24 hours. As described above, the test pieces of Samples 1 to 13 were produced.
  • Samples 1 to 9 are samples in which alumina (sintered alumina) is the main component and fired (heat treated) at a high temperature.
  • Samples 10 and 11 contain alumina (sintered alumina) as a main component and are fired (heat treated) at a low temperature.
  • Samples 12 and 13 are samples containing magnesia (electrofused magnesia) as a main component and calcined (heat treated) at a high temperature.
  • Samples 1 to 4, 10 and 12 correspond to the examples of the present invention.
  • Samples 5 to 9, 11 and 13 correspond to comparative examples.
  • Sample 5 does not contain Al 4 SiC 4 .
  • Sample 6 has a low content ratio of Al 4 SiC 4 .
  • Sample 7 has an excessively high content ratio of Al 4 SiC 4 .
  • Samples 5 and 8 have an excessively high water content of the phenol resin.
  • Sample 9 has an excessively high firing temperature.
  • Samples 11 and 13 do not contain Al 4 SiC
  • the appearance of the test pieces of Samples 1 to 13 was evaluated by ⁇ , ⁇ , and ⁇ , and is shown in Table 1.
  • the test piece in which no crack was confirmed was evaluated as ⁇
  • the test piece in which some crack or deformation was confirmed was evaluated as ⁇
  • the test piece in which large crack was confirmed was evaluated as ⁇ .
  • indicates a case where a small crack that can be actually used as a plate is confirmed
  • indicates a case where a large crack (deep crack) that cannot be actually used as a plate is confirmed.
  • the test piece is put into an electric furnace heated to 1200 ° C. and rapidly heated, and then the test piece is taken out and air is blown to quench it. The test piece after quenching was cut at a place where a crack was confirmed, and the depth of the crack was measured.
  • the measurement results were discriminated into large, medium, and small, and are shown in Table 1.
  • the "large” judgment result corresponds to a large number of cracks that can be seen and collapsed when touched.
  • the “middle” of the judgment result corresponds to a crack that can be seen to some extent and does not collapse even if touched.
  • “Small” in the judgment result corresponds to those in which cracks of about microcracks are visible to those in which cracks are not visible.
  • test pieces of Samples 1 to 4, 10 and 12 corresponding to the examples of the present invention all have a crack-free appearance.
  • the sample 7 having an excessively high content of Al 4 SiC 4 the sample 8 having an excessively high water content of phenol resin, and the sample 9 having an excessively high firing temperature, cracks and deformation of the test piece were confirmed. did it.
  • the test piece collapsed after the heat treatment, and the evaluation test could not be performed.
  • test pieces (main component: alumina, fired at high temperature) of Samples 1 to 4 corresponding to the examples of the present invention have an apparent porosity as the content ratio of Al 4 SiC 4 increases. It also has physical properties that reduce the bulk specific gravity and increase the bending strength.
  • the test piece of sample 10 (main component: alumina, fired at low temperature) corresponding to the embodiment of the present invention has an apparent porosity and bulk as compared with sample 11 (a sample having an excessively high water content of phenol resin). It has physical properties with low specific gravity and high bending strength.
  • test piece of sample 12 (main component: magnesia, fired at high temperature) corresponding to the embodiment of the present invention has an apparent porosity and bulk specific gravity as compared with sample 13 (sample not containing Al 4 SiC 4 ). It is small and has high bending strength.
  • sample 13 sample not containing Al 4 SiC 4
  • the physical properties of apparent porosity, bulk specific gravity, and bending strength are lower than those of each sample corresponding to the example. That is, the test piece of the example is dense and has excellent strength.
  • the test pieces (main component: alumina, fired at high temperature) of Samples 1 to 4 corresponding to the examples of the present invention have oxidation resistance as the content ratio of Al 4 SiC 4 increases. It has high physical properties.
  • the test piece of sample 10 (main component: alumina, calcined at low temperature) corresponding to the example of the present invention has physical properties having higher oxidation resistance than sample 11 (sample having an excessively high water content of phenol resin). have.
  • the test piece of sample 12 (main component: magnesia, fired at high temperature) corresponding to the example of the present invention has physical properties with high oxidation resistance as compared with sample 13 (sample not containing Al 4 SiC 4 ). are doing.
  • the index is 100 or more, and the oxidation resistance property is particularly deteriorated.
  • the test pieces (main component: alumina, fired at high temperature) of Samples 1 to 4 corresponding to the examples of the present invention have higher corrosion resistance as the content ratio of Al 4 SiC 4 increases.
  • the test piece of sample 10 (main component: alumina, calcined at low temperature) corresponding to the example of the present invention has physical properties with high corrosion resistance as compared with sample 11 (sample having an excessively high water content of phenol resin). are doing.
  • the test piece of sample 12 (main component: magnesia, fired at high temperature) corresponding to the example of the present invention has physical properties with high corrosion resistance as compared with sample 13 (sample not containing Al 4 SiC 4 ). There is.
  • the index is 100 or more, and the oxidation resistance property is particularly deteriorated.
  • the test pieces of Samples 1 to 4, 10 and 12 corresponding to the examples of the present invention are all excellent in thermal shock resistance.
  • samples 5, 11, 13, which do not contain Al 4 SiC 4 samples in which the content of Al 4 SiC 4 is excessively low 6, samples in which the content of Al 4 SiC 4 is excessively high 7, and the firing temperature are high.
  • samples 9 which is excessively high deep cracks are confirmed, and the heat impact resistance property is deteriorated.
  • the test pieces of Samples 1 to 4, 10 and 12 corresponding to the examples of the present invention are dense and have high strength, and are also excellent in oxidation resistance, corrosion resistance and heat impact resistance. It has become a sample.
  • the sample 8 in which the water content of the phenol resin is excessively large has cracks that do not occur in the sample 2 in which the water content of the phenol resin is within a predetermined range. That is, it can be seen that by setting the water content ratio of the phenol resin within a predetermined range, the plate is dense and has high strength, and is also excellent in oxidation resistance, corrosion resistance, and heat impact resistance.

Abstract

The objective of the invention is to provide a production method and a plate for a sliding nozzle plate comprising a refractory wherein the occurrence of cracks has been suppressed even when high temperature heat treatment is performed. This sliding nozzle plate production method is characterized by comprising: mixing (S1 and S2), when 100% by mass is the total, 2 to 23% by mass of Al4SiC4, and 2 to 10% by mass of a carbon material, the remainder being a phenol resin with a moisture content of 1% or lower and one or more from among alumina, alumina-zirconia, zirconia mullite, magnesia, and magnesia-spinel; and thereafter, heat treating (S4 and S5) at a heating temperature of 150 to 1,400°C. The plate of the present invention is characterized by being produced by this production method.

Description

スライディングノズル用プレートの製造方法Manufacturing method of plate for sliding nozzle
 本発明は、スライディングノズル用プレートの製造方法に関する。 The present invention relates to a method for manufacturing a plate for a sliding nozzle.
 溶鋼は、溶鋼を貯留する容器から、容器に設けたノズルを経由して排出される。ノズルは、排出する溶鋼の流量制御に使用されるスライディングノズルを備えている。スライディングノズルは、内孔を設けた上プレートと下プレートの2枚、またはそれに中プレートが加わった3枚のスライディングノズル用プレートを有し、これらのスライディングノズル用プレートを相対的に摺動動作させることにより、溶鋼流路である内孔の開度を調整することで、溶鋼の流量制御を行う。 The molten steel is discharged from the container for storing the molten steel via the nozzle provided in the container. The nozzle includes a sliding nozzle used to control the flow rate of the molten steel to be discharged. The sliding nozzle has two sliding nozzle plates, an upper plate and a lower plate having an inner hole, or three sliding nozzle plates to which an inner plate is added, and these sliding nozzle plates are relatively slidable. As a result, the flow rate of the molten steel is controlled by adjusting the opening degree of the inner hole which is the molten steel flow path.
 スライディングノズル用プレートは、耐火物より形成される。耐火物としては、アルミナなどを主体とした原料を骨材として各種金属、炭化物、窒化物、炭素材料等を添加して1000℃を超えた温度で焼成した焼成カーボン含有プレート耐火物や、1000℃以下で熱処理した不焼成カーボン含有プレート耐火物が、広く知られている。耐火物の骨材原料としては、アルミナ、ムライト、ジルコニアムライト、アルミナジルコニア、スピネル、マグネシアなどが、目的とする特性に応じて組み合わせて使用されている。 The sliding nozzle plate is made of refractory material. Refractories include calcined carbon-containing plate refractories in which a raw material mainly composed of alumina is used as an aggregate, various metals, carbides, nitrides, carbon materials, etc. are added and fired at a temperature exceeding 1000 ° C. Non-firing carbon-containing plate refractories heat-treated below are widely known. As the raw material for the aggregate of refractories, alumina, mullite, zirconia mullite, alumina zirconia, spinel, magnesia and the like are used in combination according to the desired characteristics.
 この耐火物では、粒度配合の調整などで組織を緻密化することで、溶鋼に含まれる酸素や外気と組織内の炭素とが反応することを抑制している。しかし、組織の緻密化は、耐火物全体の熱膨張量の増大につながる。この結果、耐火物の耐熱衝撃性が低下するおそれがあった。 In this refractory, the structure is densified by adjusting the particle size composition, etc., to suppress the reaction between oxygen and outside air contained in the molten steel and carbon in the structure. However, densification of the structure leads to an increase in the amount of thermal expansion of the entire refractory. As a result, the thermal shock resistance of the refractory may decrease.
 また、酸化しにくい炭素材料を耐火物に含有させることや、酸化物、炭化物、窒化物、金属等の酸化防止剤を含有させることで、耐火物の溶損につながる脱炭反応の抑制が図られている。しかし、上記のような使用条件では、繰り返しの受熱(熱履歴)による組織の緩みや炭素材料の酸化反応により、溶鋼と接する稼働面では組織脆化が発生し易くなっていた。そうすると、溶鋼に含まれる成分が稼働面から組織内部に浸潤し、耐火物の溶損につながるおそれがあった。 In addition, by incorporating a carbon material that is difficult to oxidize into the refractory and by adding an antioxidant such as oxides, carbides, nitrides, and metals, the decarburization reaction that leads to melting damage of the refractory can be suppressed. Has been done. However, under the above-mentioned usage conditions, tissue embrittlement is likely to occur on the working surface in contact with the molten steel due to the loosening of the structure due to repeated heat reception (heat history) and the oxidation reaction of the carbon material. Then, the components contained in the molten steel may infiltrate into the structure from the operating surface, leading to melting damage of the refractory.
 さらに、酸化防止剤としては、AlやAl-Mg等の金属粉末が広く知られている。これらの金属粉末は、粒度が細かいと製造時に爆発のおそれがあることから、所定以下の粒度の粉末を使用することが困難となっている。加えて、AlやAl-Mg等の金属粉末は、1000℃以上の温度域ではAlに変化し、耐火物の耐食性が低下する問題が出てくる。また、酸化防止剤としてBCやSiCのような炭化物も知られている。これらの炭化物は、1500℃以上の高温下では添加の効果が十分に発揮されず、耐火物の緻密化を継続することが困難であった。
 このような問題に対し、特許文献1に示すように、AlSiCを耐火物に含有することが検討されている。AlSiCは、耐火物の組織の緻密化に寄与する。
Further, as an antioxidant, metal powders such as Al and Al—Mg are widely known. If the particle size of these metal powders is fine, there is a risk of explosion during production, so it is difficult to use powders having a particle size smaller than a predetermined value. In addition, metal powders such as Al and Al—Mg change to Al 4 C 3 in a temperature range of 1000 ° C. or higher, which causes a problem that the corrosion resistance of refractories is lowered. Also known is a carbide, such as B 4 C and SiC as an antioxidant. The effect of adding these carbides was not sufficiently exhibited at a high temperature of 1500 ° C. or higher, and it was difficult to continue densification of the refractory.
To solve such a problem, as shown in Patent Document 1, it has been studied to contain Al 4 SiC 4 in a refractory material. Al 4 SiC 4 contributes to the densification of the structure of refractories.
特開平8-119719号公報Japanese Patent Application Laid-Open No. 8-119719
 しかしながら、AlSiCを含有する耐火物は、亀裂が発生しやすいという問題があった。具体的には、特に高い温度(例えば、1200℃以上)での熱処理を施された耐火物で亀裂が発生しやすかった。 However, the refractory material containing Al 4 SiC 4 has a problem that cracks are likely to occur. Specifically, a refractory material that has been heat-treated at a particularly high temperature (for example, 1200 ° C. or higher) is prone to cracking.
 本発明は上記実情に鑑みてなされたものであり、高温での熱処理を行っても亀裂の発生が抑えられた耐火物よりなるスライディングノズル用プレートの製造方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a plate for a sliding nozzle made of a refractory material in which the occurrence of cracks is suppressed even if heat treatment is performed at a high temperature.
 上記課題を解決する本発明のスライディングノズル用プレートの製造方法(以下、本発明の製造方法と称する)は、全体を100mass%としたときに、2~23mass%のAlSiCと、2~10mass%の炭素材料と、残部がアルミナ,アルミナ-ジルコニア,ジルコニアムライト,マグネシア,マグネシア-スピネルの1種以上と、水分含有量が1%以下のフェノールレジンと、を混合した後、150~1400℃の加熱温度で熱処理することを特徴とする。 The method for manufacturing a plate for a sliding nozzle of the present invention (hereinafter, referred to as the manufacturing method of the present invention) for solving the above problems is 2 to 23 mass% of Al 4 SiC 4 and 2 to 2 to 23 mass% when the whole is 100 mass%. After mixing 10 mass% of carbon material, one or more of alumina, alumina-zirconia, zirconia mullite, magnesia, magnesia-spinel with the balance, and phenol resin having a water content of 1% or less, the temperature is 150 to 1400 ° C. It is characterized by heat treatment at the heating temperature of.
 本発明の製造方法で製造したプレートは、水分含有量が1%以下のフェノールレジンを用いている。この構成によると、高温での熱処理を行っても亀裂の発生が抑えられた耐火物よりなるスライディングノズル用プレートとなる効果を発揮する。 The plate produced by the production method of the present invention uses a phenol resin having a water content of 1% or less. According to this configuration, even if heat treatment is performed at a high temperature, the effect of forming a plate for a sliding nozzle made of a refractory material in which the generation of cracks is suppressed is exhibited.
実施形態の製造方法の各工程を示すフローチャートである。It is a flowchart which shows each process of the manufacturing method of an embodiment.
 以下、実施の形態を用いて本発明を具体的に説明する。
 [製造方法]
 本形態の製造方法は、図1に示す各工程で、スライディングノズル用プレートを製造する。
 まず、スライディングノズル用プレートの原料を準備する(原料準備工程:S1)。具体的には、AlSiC、炭素材料、アルミナ,アルミナ-ジルコニア,ジルコニアムライト,マグネシア,マグネシア-スピネルの1種以上、水分含有量が1%以下のフェノールレジンと、を準備する。これらの原料は、それぞれが粉末状体で準備する。
Hereinafter, the present invention will be specifically described with reference to embodiments.
[Production method]
In the manufacturing method of this embodiment, a plate for a sliding nozzle is manufactured in each step shown in FIG.
First, the raw material for the sliding nozzle plate is prepared (raw material preparation step: S1). Specifically, Al 4 SiC 4 , carbon material, alumina, alumina-zirconia, zirconia mullite, magnesia, magnesia-spinel, and a phenol resin having a water content of 1% or less are prepared. Each of these raw materials is prepared in powder form.
 AlSiCは、製造されるプレートの組織の緻密化に寄与する。AlSiCは、炭素共存下で高温にさらされると、反応によってAlを含むガスを発生する。Alを含むガスは、プレート(耐火物)中の空隙全体に拡散する。そして、COガスと反応してAlと炭素として再凝縮する。この再凝縮(特に、Alの再凝縮)が、最終的に組織の緻密化に寄与する。すなわち、下記の(1)式の反応が進行する。
 AlSiC(s) + 6CO(g) = 2Al(s) + SiC(s) + 9C(s) ・・・(1)
Al 4 SiC 4 contributes to the densification of the structure of the manufactured plate. Al 4 SiC 4 generates a gas containing Al by the reaction when exposed to a high temperature in the presence of carbon. The gas containing Al diffuses throughout the voids in the plate (refractory). Then, it reacts with CO gas and recondenses as Al 2 O 3 and carbon. This recondensation (particularly the recondensation of Al 2 O 3 ) ultimately contributes to the densification of the structure. That is, the reaction of the following formula (1) proceeds.
Al 4 SiC 4 (s) + 6CO (g) = 2Al 2 O 3 (s) + SiC (s) + 9C (s) ... (1)
 AlSiCを添加する場合には、気相を介して生成した生成物が、プレート(耐火物)の空隙を充填している。この結果、緻密化が進行しても材料の線変化が生じない。このため、従来の金属AlやSiC等の酸化防止剤を添加した場合よりも、高温でも緻密化が維持される。しかも、気相を介して生成した生成物が、熱衝撃につながり難い性質を持つ効果を発揮する。
 上記の(1)式で示した反応が進行すると、原料粉末の粒子同士の間に空孔が形成され、当該空孔の内表面(乃至当該空孔の内部)にアルミナが再凝縮した構成を有するものとなる。この構造の特定は、困難である。
When Al 4 SiC 4 is added, the product produced through the gas phase fills the voids in the plate (refractory). As a result, the linear change of the material does not occur even if the densification progresses. For this reason, densification is maintained even at high temperatures, as compared with the case where an antioxidant such as conventional metal Al or SiC is added. Moreover, the product produced through the gas phase exerts the effect of having the property of being less likely to lead to thermal shock.
When the reaction represented by the above formula (1) proceeds, pores are formed between the particles of the raw material powder, and alumina is recondensed on the inner surface (or inside of the pores) of the pores. Will have. Identifying this structure is difficult.
 AlSiCは、準備した原料の全体を100mass%としたときに、2~23mass%となるように準備する。AlSiCがこの割合で含まれることで、AlSiCを添加することの効果を発揮できる。2mass%未満では、緻密化の効果を十分に発揮できなくなる。また、23mass%を超えると、緻密化の効果は発揮できるが、熱処理時にプレート(耐火物)に亀裂が発生しやすくなる。AlSiCの含有割合は、3~20mass%がより好ましく、5~15mass%が更に好ましい。 Al 4 SiC 4 is prepared so as to be 2 to 23 mass% when the total of the prepared raw materials is 100 mass%. When Al 4 SiC 4 is contained in this ratio, the effect of adding Al 4 SiC 4 can be exhibited. If it is less than 2 mass%, the effect of densification cannot be fully exerted. Further, if it exceeds 23 mass%, the effect of densification can be exhibited, but cracks are likely to occur in the plate (refractory) during the heat treatment. The content ratio of Al 4 SiC 4 is more preferably 3 to 20 mass%, further preferably 5 to 15 mass%.
 AlSiCの粉末の粒度(平均粒径)は、限定されない。平均粒径が5μm~200μmの粉末であることが好ましい。平均粒径は、粒度分布の平均粒径(D50)を示し、従来公知の方法で測定できる。平均粒径がこの範囲内にあることで、緻密なプレート(耐火物)を製造できる。平均粒径が5μm未満となると、粒度が小さすぎて、その取り扱いに困難を生じる。また、平均粒径が200μmを超えると、平均粒径が大きくなりすぎ、AlSiCが分解して形成される空孔が大きくなったり、反応性が低くなって十分に反応が進まなくなったりし、組織の緻密化の効果が十分に得られなくなる。 The particle size (average particle size) of the Al 4 SiC 4 powder is not limited. It is preferably a powder having an average particle size of 5 μm to 200 μm. The average particle size indicates the average particle size (D50) of the particle size distribution, and can be measured by a conventionally known method. When the average particle size is within this range, a dense plate (refractory) can be manufactured. If the average particle size is less than 5 μm, the particle size is too small and it becomes difficult to handle it. On the other hand, if the average particle size exceeds 200 μm, the average particle size becomes too large, and the pores formed by the decomposition of Al 4 SiC 4 become large, or the reactivity becomes low and the reaction does not proceed sufficiently. However, the effect of densification of the tissue cannot be sufficiently obtained.
 AlSiCは、Sの含有割合が100ppm以下であることが好ましい。AlSiCは、その製造原料(例えば、AlSiCのカーボン源となるカーボンブラック等)に含まれるS(硫黄)が不可避不純物として残留していることがある。Sの含有割合が100ppm以下となることで、プレート(耐火物)に亀裂が発生することが抑えられる。AlSiCにSが多く残留していると、下記の(2)~(3)式の反応により硫化水素ガスが多く発生する。硫化水素ガスは、プレート(耐火物)に熱処理(その後の工程での混合粉末の熱処理)を行ったときに、亀裂を発生させる。なお、(2)式では硫化アルミニウムの生成反応が、(3)式では硫化アルミニウムの加水分解による硫化水素ガスの生成反応が、それぞれ進行する。
 2Al3+ + 3S2- → Al  ・・・(2)
 Al + 6HO → 2Al(OH) + 3HS ・・・(3)
 炭素材料は、上記の(1)式の反応において、COガスのカーボン源となる。また、炭素材料は、COガスを生成することにより、プレート(耐火物)中に空隙が形成される。
Al 4 SiC 4 preferably has an S content of 100 ppm or less. In Al 4 SiC 4 , S (sulfur) contained in the manufacturing raw material (for example, carbon black which is a carbon source of Al 4 SiC 4 ) may remain as an unavoidable impurity. When the S content is 100 ppm or less, cracks in the plate (refractory) can be suppressed. When a large amount of S remains in Al 4 SiC 4 , a large amount of hydrogen sulfide gas is generated by the reactions of the following equations (2) to (3). The hydrogen sulfide gas causes cracks when the plate (refractory) is heat-treated (heat treatment of the mixed powder in the subsequent step). In the formula (2), the reaction for producing aluminum sulfide proceeds, and in the formula (3), the reaction for producing hydrogen sulfide gas by hydrolysis of aluminum sulfide proceeds.
2Al 3+ + 3S 2- → Al 2 S 3 ··· (2)
Al 2 S 3 + 6H 2 O → 2 Al (OH) 3 + 3H 2 S ・ ・ ・ (3)
The carbon material serves as a carbon source for CO gas in the reaction of the above formula (1). Further, in the carbon material, voids are formed in the plate (refractory) by generating CO gas.
 炭素材料は、準備した原料の全体を100mass%としたときに、2~10mass%となるように準備する。炭素材料がこの割合で含まれることで、炭素材料を添加することの効果を発揮できる。2mass%未満では、耐スポーリング性の効果を十分に発揮できなくなる。また、10mass%を超えると、相対的にアルミナの量が減少し、耐酸化性や耐摩耗性が低下し、プレート(耐火物)の面荒れを誘発しやすくなる。炭素材料の含有割合は、3~7mass%がより好ましい。 The carbon material is prepared so as to be 2 to 10 mass% when the total of the prepared raw materials is 100 mass%. When the carbon material is contained in this ratio, the effect of adding the carbon material can be exhibited. If it is less than 2 mass%, the effect of spalling resistance cannot be sufficiently exhibited. On the other hand, if it exceeds 10 mass%, the amount of alumina is relatively reduced, the oxidation resistance and the wear resistance are lowered, and the surface roughness of the plate (refractory) is likely to be induced. The content ratio of the carbon material is more preferably 3 to 7 mass%.
 炭素材料は、他の元素との化合物を形成しておらず、炭素のみから形成される材料である。炭素材料は、鱗状黒鉛,人造黒鉛,ピッチコークス,カーボンブラックの1種以上の粉末よりなることが好ましい。炭素材料がこれらの材料から選択されることで、上記の(1)式の反応において、COガスを発生することができる。炭素材料粉末の平均粒径(D50)や粒度は限定されず、AlSiCの粉末と同等程度あるいはそれ以下であることが好ましい。 The carbon material is a material that does not form a compound with other elements and is formed only from carbon. The carbon material is preferably composed of one or more powders of scaly graphite, artificial graphite, pitch coke, and carbon black. By selecting the carbon material from these materials, CO gas can be generated in the reaction of the above formula (1). The average particle size (D50) and particle size of the carbon material powder are not limited, and are preferably equal to or less than the powder of Al 4 SiC 4 .
 フェノールレジンは、バインダとして添加される。フェノールレジンは、水分含有量が1%以下である。ここで、水分含有量の1%とは、準備して混合される状態でのフェノールレジンの質量を100mass%としたときの質量割合である。フェノールレジンの水分含有量が1mass%以下となることで、プレート(耐火物)の割れの発生を抑えることができる。1mass%を超えて水分が含有すると、その後の熱処理において、特に熱処理温度が1200℃以上の場合に、プレート(耐火物)に亀裂が生じる。そのメカニズムははっきりとわかっていないが、以下のように考える。
 AlSiCに含有(残留)しているSにより、耐火物の製造工程内のどこかの工程で硫化アルミニウム(Al)の生成反応が進行する(上記の(2)式の反応)。そして、硫化アルミニウム(Al)の加水分解反応が進行し、硫化水素ガス(HS)が生成する(上記の(3)式の反応)。熱処理を行うと、生成したAlが揮発し、その際にプレート(耐火物)に亀裂を生じさせる。
Phenolic resin is added as a binder. Phenolic resin has a water content of 1% or less. Here, 1% of the water content is a mass ratio when the mass of the phenol resin in the prepared and mixed state is 100 mass%. When the water content of the phenol resin is 1 mass% or less, the occurrence of cracks in the plate (refractory) can be suppressed. If water is contained in excess of 1 mass%, cracks will occur in the plate (refractory) in the subsequent heat treatment, especially when the heat treatment temperature is 1200 ° C. or higher. The mechanism is not clear, but I think as follows.
Due to the S contained (residual) in Al 4 SiC 4 , the production reaction of aluminum sulfide (Al 2 S 3 ) proceeds in some step in the refractory manufacturing process (the reaction of the above formula (2)). ). Then, the hydrolysis reaction of aluminum sulfide (Al 2 S 3 ) proceeds, and hydrogen sulfide gas (H 2 S) is produced (the reaction of the above formula (3)). When the heat treatment is performed, the produced Al 2 S 3 volatilizes, and at that time, the plate (refractory) is cracked.
 フェノールレジンは、準備した原料の全体を100mass%としたときに、1~5mass%で加えられることが好ましい。この割合で現有することで、フェノールレジンがバインダとして機能する。フェノールレジンが1mass%未満では、含まれるフェノールレジンの量が少なすぎ、バインダとしても機能が十分に発揮できない。また、5mass%を超えて含有されると、プレート(耐火物)の全体に含まれる水分量が過剰に多くなり、プレート(耐火物)に亀裂を生じさせるおそれが生じる。
 フェノールレジンは、液状であっても、固形状であっても、いずれでもよいが、液状であることが好ましい。
The phenol resin is preferably added in an amount of 1 to 5 mass% when the total amount of the prepared raw material is 100 mass%. By having this ratio, the phenol resin functions as a binder. If the amount of phenol resin is less than 1 mass%, the amount of phenol resin contained is too small, and the function as a binder cannot be sufficiently exhibited. On the other hand, if it is contained in excess of 5 mass%, the amount of water contained in the entire plate (refractory) becomes excessively large, which may cause cracks in the plate (refractory).
The phenol resin may be liquid or solid, but is preferably liquid.
 残部は、アルミナ,アルミナ-ジルコニア,ジルコニアムライト,マグネシア,マグネシア-スピネルの1種以上である。これらの金属あるいは化合物は、プレート(耐火物)の主成分を形成する。残部を形成する化合物は粉末よりなり、その平均粒径(D50)や粒度は限定されない。従来のプレート(耐火物)の製造に用いられる程度の平均粒径(粒度)の粉末を用いることができる。 The rest is one or more of alumina, alumina-zirconia, zirconia mullite, magnesia, and magnesia-spinel. These metals or compounds form the main components of the plate (refractory). The compound forming the balance is composed of powder, and its average particle size (D50) and particle size are not limited. A powder having an average particle size (particle size) sufficient for producing a conventional plate (refractory) can be used.
 準備した原料は、更に、従来公知の添加剤を添加してもよい。この添加剤としては、残存する炭素材料と炭化ケイ素を生成するためのケイ素化合物(好ましくは、金属Si)や、酸化防止剤(例えば、金属Al)を例示できる。 The prepared raw material may further be added with conventionally known additives. Examples of this additive include a silicon compound (preferably metallic Si) for producing a residual carbon material and silicon carbide, and an antioxidant (for example, metallic Al).
 そして、準備した原料(原料粉末)を均一に混合する(混合工程:S2)。フェノールレジン(バインダ)が液状である場合や、液体の分散媒を更に用いる場合には、混練となる。本工程で均一に混合する具体的な方法は、限定されない。すなわち、混合装置,混練装置を用いて均一に混合(混練)する。 Then, the prepared raw materials (raw material powder) are uniformly mixed (mixing step: S2). When the phenol resin (binder) is liquid, or when a liquid dispersion medium is further used, kneading is performed. The specific method of uniformly mixing in this step is not limited. That is, they are uniformly mixed (kneaded) using a mixing device and a kneading device.
 そして、混合物(混練物)を所定の形状に成形する(成形工程:S3)。所定の形状とは、スライディングノズル用プレートの形状である。本工程で混合物を成形する具体的な方法は、限定されない。すなわち、型成形,圧縮成形等の成形方法を用いて所定の形状に成形する。
 その後、成形体に熱処理を施す(熱処理工程)。熱処理工程での熱処理としては、成形体を乾燥する乾燥工程(S4)と、乾燥した成形体を焼成する焼成工程(S5)と、が施される。
Then, the mixture (kneaded product) is molded into a predetermined shape (molding step: S3). The predetermined shape is the shape of the sliding nozzle plate. The specific method of molding the mixture in this step is not limited. That is, it is molded into a predetermined shape by using a molding method such as mold molding or compression molding.
Then, the molded product is heat-treated (heat treatment step). As the heat treatment in the heat treatment step, a drying step (S4) for drying the molded product and a firing step (S5) for firing the dried molded product are performed.
 乾燥工程(S4)は、成形体を乾燥する工程である。乾燥工程は、成形体を加熱して成形体中の水分を蒸発する工程である。乾燥工程(S4)は、成形体中の水分や揮発性の有機成分を蒸発できるように加熱する処理を施すものであり、その加熱条件は限定されない。例えば、100℃~120℃での加熱処理(大気中、常圧条件下)を挙げることができる。 The drying step (S4) is a step of drying the molded product. The drying step is a step of heating the molded body to evaporate the water content in the molded body. The drying step (S4) is a process of heating the molded product so that water and volatile organic components can be evaporated, and the heating conditions are not limited. For example, heat treatment at 100 ° C. to 120 ° C. (in the air, under normal pressure conditions) can be mentioned.
 焼成工程(S5)は、乾燥した成形体を焼成する工程である。成形体を焼成することで、上記の(1)式の反応が進行し、成形体が緻密な焼成体となる。焼成工程(S5)の焼成条件は、限定されない。例えば、150~1400℃での加熱処理(常圧条件下)が好ましく、200~1300℃での加熱処理(常圧条件下)がより好ましい。
 150~1400℃での加熱処理(常圧条件下)は、150℃~400℃での加熱処理、1000~1400℃での加熱処理の少なくとも一方であることが好ましい。この加熱条件は、製造されるプレートに求められる条件により選択する。
The firing step (S5) is a step of firing the dried molded product. By firing the molded body, the reaction of the above formula (1) proceeds, and the molded body becomes a dense fired body. The firing conditions in the firing step (S5) are not limited. For example, heat treatment at 150 to 1400 ° C. (under normal pressure conditions) is preferable, and heat treatment at 200 to 1300 ° C. (normal pressure conditions) is more preferable.
The heat treatment at 150 to 1400 ° C. (under normal pressure conditions) is preferably at least one of a heat treatment at 150 ° C. to 400 ° C. and a heat treatment at 1000 to 1400 ° C. This heating condition is selected according to the conditions required for the manufactured plate.
 150℃~400℃での加熱処理では、フェノールレジンの硬化反応のみが進行し、上記の(1)式の反応は進行しない。この場合、更なる熱処理またはプレートを実使用した時の受熱により、上記の(1)式の反応を進行させる。 In the heat treatment at 150 ° C. to 400 ° C., only the curing reaction of the phenol resin proceeds, and the reaction of the above formula (1) does not proceed. In this case, the reaction of the above formula (1) is allowed to proceed by further heat treatment or heat reception when the plate is actually used.
 1000~1400℃での加熱処理では、フェノールレジンの硬化反応と、上記の(1)式の反応と、の両反応を進行する。さらに、1000~1400℃での加熱処理では、原料粉末の粒子同士の焼結反応も進行し、プレートの強度がより高くなる。なお、加熱温度が1400℃以上となると、プレート(耐火物)自体の残存膨張が大きくなり、プレートとして使用する際の初期強度が担保できにくくなる。
 また、焼成雰囲気についても、窒素ガスやアルゴンガス等の非酸化性雰囲気であればよい。マッフルとよばれる容器の中にコークスブリーズを詰め、その中で焼成してもよい。
In the heat treatment at 1000 to 1400 ° C., both the curing reaction of the phenol resin and the reaction of the above formula (1) proceed. Further, in the heat treatment at 1000 to 1400 ° C., the sintering reaction between the particles of the raw material powder also proceeds, and the strength of the plate becomes higher. When the heating temperature is 1400 ° C. or higher, the residual expansion of the plate (refractory) itself becomes large, and it becomes difficult to secure the initial strength when used as a plate.
Further, the firing atmosphere may be a non-oxidizing atmosphere such as nitrogen gas or argon gas. Coke breeze may be packed in a container called a muffle and fired in it.
 焼成体に、ピッチを含浸する(含浸工程:S6)。ここで、ピッチは、粘性の高い炭化水素を総称するものであり、タールを含む。焼成体に、ピッチを含浸することで、プレートの耐食性(耐消化性)が向上する。ピッチを含浸する具体的な方法は限定されない。従来知られた方法で行うことができる。本含浸工程では、焼成体にピッチを含浸したが、同等の機能を発揮できるものを含浸してもよい。例えば、溶液状の樹脂を挙げることができる。
 なお、含浸工程(S6)は、任意の工程である。つまり、プレートは、含浸工程(S6)を施さないものとしてもよい。
 本形態の製造方法は、以上の各工程を施すことでスライディングノズル用プレートを製造できる。
The fired body is impregnated with pitch (impregnation step: S6). Here, pitch is a general term for highly viscous hydrocarbons and includes tar. By impregnating the fired body with pitch, the corrosion resistance (digestion resistance) of the plate is improved. The specific method of impregnating the pitch is not limited. It can be done by a conventionally known method. In this impregnation step, the fired body is impregnated with pitch, but it may be impregnated with a material capable of exhibiting the same function. For example, a solution resin can be mentioned.
The impregnation step (S6) is an arbitrary step. That is, the plate may not be subjected to the impregnation step (S6).
In the manufacturing method of this embodiment, a plate for a sliding nozzle can be manufactured by performing each of the above steps.
 なお、本形態で製造されるプレートは、複合炭化物と炭素材料と金属粉末と酸化物と化合物との混合物(原料粉末)を成形し、焼成してなるものである。つまり、本形態で製造されるプレートは、焼成により原料粉末の粒子同士が緻密な状態で固着乃至焼結した構成を有しており、その構造の特定が困難となっている。 The plate produced in this embodiment is formed by molding a mixture (raw material powder) of a composite carbide, a carbon material, a metal powder, an oxide and a compound, and firing the mixture. That is, the plate produced in this embodiment has a structure in which the particles of the raw material powder are fixed or sintered in a dense state by firing, and it is difficult to specify the structure.
 (本形態の効果)
 本形態の製造方法は、上記の各工程(S1~S5)を施している。特に、バインダとして添加されるフェノールレジンが、水分含有量が1%以下のものが用いられている。このフェノールレジンを用いていることで、焼成工程(S5)において高温に加熱されても、水和反応によるプレートの亀裂の発生が抑えられている。すなわち、本形態の製造方法によると、緻密で亀裂の発生が抑えられたプレートを製造できる。
 本形態の製造方法は、平均粒径が5μm~200μmのAlSiC粉末が用いられている。平均粒径がこの範囲内にあることで、緻密なプレートを製造できる。
 本形態の製造方法は、AlSiCは、Sの含有割合が100ppm以下である。この構成によると、硫化水素ガスの発生が抑えられ、硫化水素ガスによるプレートの亀裂の発生が抑えられる。
 本形態の製造方法は、焼成工程(S5)での熱処理が、150~1400℃の加熱温度で加熱する処理である。この構成によると、緻密な焼成体よりなるプレートを製造できる。
(Effect of this form)
In the manufacturing method of this embodiment, each of the above steps (S1 to S5) is performed. In particular, a phenol resin added as a binder having a water content of 1% or less is used. By using this phenol resin, even if it is heated to a high temperature in the firing step (S5), the generation of cracks in the plate due to the hydration reaction is suppressed. That is, according to the manufacturing method of this embodiment, it is possible to manufacture a plate that is dense and suppresses the occurrence of cracks.
In the production method of this embodiment, Al 4 SiC 4 powder having an average particle size of 5 μm to 200 μm is used. When the average particle size is within this range, a dense plate can be manufactured.
In the production method of this embodiment, Al 4 SiC 4 has an S content of 100 ppm or less. According to this configuration, the generation of hydrogen sulfide gas is suppressed, and the generation of cracks in the plate due to the hydrogen sulfide gas is suppressed.
In the production method of this embodiment, the heat treatment in the firing step (S5) is a process of heating at a heating temperature of 150 to 1400 ° C. According to this configuration, a plate made of a dense fired body can be manufactured.
 本形態の製造方法は、フェノールレジンが、全体を100mass%としたときに、1~5mass%で加えられる。この構成によると、フェノールレジンがバインダとして機能でき、所定の形状のプレートを製造できる。 In the production method of this embodiment, the phenol resin is added in an amount of 1 to 5 mass% when the whole is 100 mass%. According to this configuration, the phenol resin can function as a binder, and a plate having a predetermined shape can be produced.
 本形態の製造方法は、炭素材料は、鱗状黒鉛,人造黒鉛,ピッチコークス,カーボンブラックの1種以上の粉末よりなる。この構成によると、上記の(1)式の反応において、COガスを発生することができ、緻密な焼成体よりなるプレートを製造できる。
 本形態の製造方法では、焼成工程(S5)での熱処理後に、ピッチを含浸するピッチ含浸工程(S6)を施している。この構成によると、耐食性(耐消化性)が向上したプレートを製造できる。
In the production method of this embodiment, the carbon material is made of one or more powders of scaly graphite, artificial graphite, pitch coke, and carbon black. According to this configuration, CO gas can be generated in the reaction of the above formula (1), and a plate made of a dense fired body can be produced.
In the production method of this embodiment, after the heat treatment in the firing step (S5), a pitch impregnation step (S6) for impregnating the pitch is performed. According to this configuration, a plate having improved corrosion resistance (digestion resistance) can be manufactured.
 [プレート]
 本形態のプレートは、全体を100mass%としたときに、2~23mass%のAlSiCと、2~10mass%の炭素材料と、残部がアルミナ,アルミナ-ジルコニア,ジルコニアムライト,マグネシア,マグネシア-スピネルの1種以上と、水分含有量が1%以下のフェノールレジンと、の混合物を、150~1400℃の加熱温度で熱処理してなる焼成体である。
 すなわち、本形態のプレートは、上記の製造方法で製造されてなるものであり、上記の効果を発揮する。
[plate]
The plate of this embodiment has 2 to 23 mass% of Al 4 SiC 4 and 2 to 10 mass% of carbon material, and the balance is alumina, alumina-zirconia, zirconia mullite, magnesia, magnesia-when the whole is 100 mass%. A calcined product obtained by heat-treating a mixture of one or more types of spinels and a phenol resin having a water content of 1% or less at a heating temperature of 150 to 1400 ° C.
That is, the plate of this embodiment is manufactured by the above-mentioned manufacturing method, and exhibits the above-mentioned effect.
 本形態のプレートは、上記したように、その構造が一概に決定できるものではない(すなわち、構造の特定が困難となっている)。 As described above, the structure of the plate of this form cannot be unconditionally determined (that is, it is difficult to specify the structure).
 以下、実施例を用いて本発明を説明する。
 [実施例及び比較例]
 実施例及び比較例として、平均粒径が20μm~50μmのAlSiC、平均粒径が20μm~200μmのカーボンブラック(炭素材料)、焼結アルミナ,粒度が200メッシュ以下の金属Si,粒度が200メッシュ以下の金属Al,電融マグネシア,溶液状のフェノールレジンA(水分含有割合:0.3~0.8mass%),溶液状のフェノールレジンB(水分含有割合:1.4~1.8mass%)と、を準備する。AlSiCは、Sの含有割合が約50ppmであった。焼結アルミナは、平均粒径が3~1mmの粗粒,1mm~200μmの中粒,200μm未満の微細粒を適宜粒度配合させたものを用いた。これらの原料は、フェノールレジン以外は、粉末状体であった。
 そして、準備した原料を表1に示した割合で秤量し、均一に混合し、ブロック状に成形する。成形体を、非酸化性雰囲気下で表1に示した温度で24時間焼成した。
 以上により、試料1~13の試験片が製造された。
Hereinafter, the present invention will be described with reference to examples.
[Examples and Comparative Examples]
As an example and a comparative example, Al 4 SiC 4 having an average particle size of 20 μm to 50 μm, carbon black (carbon material) having an average particle size of 20 μm to 200 μm, sintered alumina, metal Si having a particle size of 200 mesh or less, and a particle size of 200 mesh or less. Metal Al of 200 mesh or less, fused magnesia, solution phenol resin A (water content: 0.3 to 0.8 mass%), solution phenol resin B (water content: 1.4 to 1.8 mass) %) And prepare. Al 4 SiC 4 had an S content of about 50 ppm. As the sintered alumina, coarse particles having an average particle size of 3 to 1 mm, medium particles having an average particle size of 1 mm to 200 μm, and fine particles having an average particle size of less than 200 μm were appropriately blended. These raw materials were in powder form except for phenol resin.
Then, the prepared raw materials are weighed at the ratios shown in Table 1, mixed uniformly, and molded into a block shape. The molded product was calcined in a non-oxidizing atmosphere at the temperatures shown in Table 1 for 24 hours.
As described above, the test pieces of Samples 1 to 13 were produced.
 試料1~9は、アルミナ(焼結アルミナ)を主成分とし、高温で焼成(熱処理)を行った試料である。試料10,11は、アルミナ(焼結アルミナ)を主成分とし、低温で焼成(熱処理)を行った試料である。試料12、13は、マグネシア(電融マグネシア)を主成分とし、高温で焼成(熱処理)を行った試料である。
 試料1~4,10,12が本発明の実施例に相当する。試料5~9,11,13が比較例に相当する。なお、試料5は、AlSiCを含有していない。試料6は、AlSiCの含有割合が少ない。試料7は、AlSiCの含有割合が過剰に多い。試料5,8は、フェノールレジンの水分含有割合が過剰に多い。試料9は、焼成温度が過剰に高い。試料11,13は、AlSiCを含有していない。
Samples 1 to 9 are samples in which alumina (sintered alumina) is the main component and fired (heat treated) at a high temperature. Samples 10 and 11 contain alumina (sintered alumina) as a main component and are fired (heat treated) at a low temperature. Samples 12 and 13 are samples containing magnesia (electrofused magnesia) as a main component and calcined (heat treated) at a high temperature.
Samples 1 to 4, 10 and 12 correspond to the examples of the present invention. Samples 5 to 9, 11 and 13 correspond to comparative examples. Sample 5 does not contain Al 4 SiC 4 . Sample 6 has a low content ratio of Al 4 SiC 4 . Sample 7 has an excessively high content ratio of Al 4 SiC 4 . Samples 5 and 8 have an excessively high water content of the phenol resin. Sample 9 has an excessively high firing temperature. Samples 11 and 13 do not contain Al 4 SiC 4 .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [評価]
 各試料の試験片に対し、下記の評価を行った。なお、焼成温度が250℃の試料10~13の試験片は、非酸化性ガス雰囲気下で1200℃、3時間の還元焼成を行った後に、全ての評価を行った。
[Evaluation]
The following evaluations were performed on the test pieces of each sample. The test pieces of Samples 10 to 13 having a firing temperature of 250 ° C. were all evaluated after being reduced and fired at 1200 ° C. for 3 hours in a non-oxidizing gas atmosphere.
 (外観)
 試料1~13の試験片の外観を〇,△,×で評価し、表1に合わせて示した。亀裂が確認できなかった試験片は○、若干の亀裂や変形が確認された試験片は△、大きな亀裂が確認できた試験片は×と評価した。なお、△は、プレートとして実使用できる程度の小さな亀裂が確認された場合であり、×は、プレートとして実使用できない大きな亀裂(深い亀裂)が確認された場合である。
(appearance)
The appearance of the test pieces of Samples 1 to 13 was evaluated by 〇, Δ, and ×, and is shown in Table 1. The test piece in which no crack was confirmed was evaluated as ◯, the test piece in which some crack or deformation was confirmed was evaluated as Δ, and the test piece in which large crack was confirmed was evaluated as ×. In addition, Δ indicates a case where a small crack that can be actually used as a plate is confirmed, and × indicates a case where a large crack (deep crack) that cannot be actually used as a plate is confirmed.
 (物性)
 試料1~13の試験片の物性値として見掛気孔率,かさ比重,曲げ強度を測定し、表1に合わせて示した。
 見掛気孔率及びかさ比重は、JIS R 2205に、曲げ強度は、JIS R 2213に、それぞれ準拠する方法により測定する。
(Physical properties)
Apparent porosity, bulk specific gravity, and bending strength were measured as physical property values of the test pieces of Samples 1 to 13, and are shown in Table 1.
The apparent porosity and bulk specific gravity are measured according to JIS R 2205, and the bending strength is measured according to JIS R 2213.
 (特性)
 (耐酸化性試験)
 試験片を電気炉内に配置し、大気雰囲気下で約4℃/分の昇温速度で1000℃まで昇温し、3時間電気炉内で保持(酸化焼成)し、放冷後の試験片の表面に、20メッシュ以下の粒度のSiC粉末を30秒間照射する。SiC粉末の照射前後の重量減少値を求め、嵩比重をかけた値を指数化し(試料5の値を100として指数化した)、表1に合わせて示した。なお、耐酸化性試験の結果は、数値が小さいほど、良好なものとなっている(耐酸化性に優れる)。
(Characteristic)
(Oxidation resistance test)
The test piece is placed in an electric furnace, heated to 1000 ° C. at a heating rate of about 4 ° C./min in an air atmosphere, held in the electric furnace for 3 hours (oxidation firing), and allowed to cool. The surface of the above is irradiated with SiC powder having a particle size of 20 mesh or less for 30 seconds. The weight loss value before and after irradiation of the SiC powder was obtained, and the value multiplied by the bulk specific gravity was indexed (the value of sample 5 was indexed as 100) and shown in Table 1. The smaller the value of the oxidation resistance test, the better the result (excellent in oxidation resistance).
 (耐食性試験)
 1580~1650℃に保持した高周波誘導炉に、C(CaO)とS(SiO)とがC/Sの原子数比で1.0のスラグを入れ溶融する。溶融したスラグに試験片を浸漬し、50rpmで試験片を300分間回転する。取り出した試験片の溶損量を測定し、試料5の溶損量を100として指数化し、表1に合わせて示した。なお、耐食性試験の結果は、数値が小さいほど良好なものとなっている(溶損量が小さく、耐食性に優れる)。
(Corrosion resistance test)
A slag in which C (CaO) and S (SiO 2 ) have an atomic number ratio of C / S of 1.0 is put into a high-frequency induction furnace maintained at 1580 to 1650 ° C. and melted. The test piece is immersed in the molten slag, and the test piece is rotated at 50 rpm for 300 minutes. The amount of erosion of the taken-out test piece was measured, and the amount of erosion of sample 5 was indexed as 100 and shown in Table 1. The result of the corrosion resistance test is better as the value is smaller (the amount of erosion is small and the corrosion resistance is excellent).
 (耐熱衝撃性試験)
 1200℃に加熱した電気炉内に試験片を投入して急加熱し、その後、試験片を取り出してエアーを吹き付けて急冷する。急冷後の試験片を亀裂の確認できた箇所で切断し、亀裂の深さを測定した。その測定結果を大,中,小で判別し、表1に合わせて示した。判定結果の「大」は、多数の亀裂が視認でき、触れると崩れてしまうものが該当する。判定結果の「中」は、多少量の亀裂が視認でき、触れても崩れないものが該当する。判定結果の「小」は、マイクロクラック程度の亀裂が視認できるもの~亀裂が視認できないものが該当する。
(Heat-resistant impact test)
The test piece is put into an electric furnace heated to 1200 ° C. and rapidly heated, and then the test piece is taken out and air is blown to quench it. The test piece after quenching was cut at a place where a crack was confirmed, and the depth of the crack was measured. The measurement results were discriminated into large, medium, and small, and are shown in Table 1. The "large" judgment result corresponds to a large number of cracks that can be seen and collapsed when touched. The "middle" of the judgment result corresponds to a crack that can be seen to some extent and does not collapse even if touched. “Small” in the judgment result corresponds to those in which cracks of about microcracks are visible to those in which cracks are not visible.
 (評価結果)
 表1に示すように、本発明の実施例に相当する試料1~4,10,12の試験片は、いずれも亀裂のない外観を有している。対して、AlSiCの含有割合が過剰に多い試料7,フェノールレジンの水分含有割合が過剰に多い試料8,焼成温度が過剰に高い試料9では、亀裂の発生や試験片の変形が確認できた。特に、試料8は、試験片が熱処理後に崩壊し、評価試験を行えなかった。
(Evaluation results)
As shown in Table 1, the test pieces of Samples 1 to 4, 10 and 12 corresponding to the examples of the present invention all have a crack-free appearance. On the other hand, in the sample 7 having an excessively high content of Al 4 SiC 4, the sample 8 having an excessively high water content of phenol resin, and the sample 9 having an excessively high firing temperature, cracks and deformation of the test piece were confirmed. did it. In particular, in sample 8, the test piece collapsed after the heat treatment, and the evaluation test could not be performed.
 表1に示すように、本発明の実施例に相当する試料1~4の試験片(主成分:アルミナ、高温で焼成)は、AlSiCの含有割合が増加するにつれて、見掛気孔率及びかさ比重が小さくなり、曲げ強度が大きくなる物性を有している。
 本発明の実施例に相当する試料10の試験片(主成分:アルミナ、低温で焼成)は、試料11(フェノールレジンの含水量が過剰に多い試料)と比較して、見掛気孔率及びかさ比重が小さく、曲げ強度が大きい物性を有している。
 本発明の実施例に相当する試料12の試験片(主成分:マグネシア、高温で焼成)は、試料13(AlSiCを含有しない試料)と比較して、見掛気孔率及びかさ比重が小さく、曲げ強度が大きい物性を有している。
 対して、比較例に相当する各試料では、実施例に相当する各試料と比較して、見掛気孔率,かさ比重,曲げ強度の物性が低下している。すなわち、実施例の試験片は、緻密で強度に優れたものとなっている。
As shown in Table 1, the test pieces (main component: alumina, fired at high temperature) of Samples 1 to 4 corresponding to the examples of the present invention have an apparent porosity as the content ratio of Al 4 SiC 4 increases. It also has physical properties that reduce the bulk specific gravity and increase the bending strength.
The test piece of sample 10 (main component: alumina, fired at low temperature) corresponding to the embodiment of the present invention has an apparent porosity and bulk as compared with sample 11 (a sample having an excessively high water content of phenol resin). It has physical properties with low specific gravity and high bending strength.
The test piece of sample 12 (main component: magnesia, fired at high temperature) corresponding to the embodiment of the present invention has an apparent porosity and bulk specific gravity as compared with sample 13 (sample not containing Al 4 SiC 4 ). It is small and has high bending strength.
On the other hand, in each sample corresponding to the comparative example, the physical properties of apparent porosity, bulk specific gravity, and bending strength are lower than those of each sample corresponding to the example. That is, the test piece of the example is dense and has excellent strength.
 表1に示すように、本発明の実施例に相当する試料1~4の試験片(主成分:アルミナ、高温で焼成)は、AlSiCの含有割合が増加するにつれて、耐酸化性が高くなる物性を有している。
 本発明の実施例に相当する試料10の試験片(主成分:アルミナ、低温で焼成)は、試料11(フェノールレジンの含水量が過剰に多い試料)と比較して、耐酸化性が高い物性を有している。
 本発明の実施例に相当する試料12の試験片(主成分:マグネシア、高温で焼成)は、試料13(AlSiCを含有しない試料)と比較して、耐酸化性が高い物性を有している。
 対して、AlSiCの含有割合が過剰に少ない試料6,焼成温度が過剰に高い試料9では、指数が100以上となり、特に耐酸化性の特性が悪化している。
As shown in Table 1, the test pieces (main component: alumina, fired at high temperature) of Samples 1 to 4 corresponding to the examples of the present invention have oxidation resistance as the content ratio of Al 4 SiC 4 increases. It has high physical properties.
The test piece of sample 10 (main component: alumina, calcined at low temperature) corresponding to the example of the present invention has physical properties having higher oxidation resistance than sample 11 (sample having an excessively high water content of phenol resin). have.
The test piece of sample 12 (main component: magnesia, fired at high temperature) corresponding to the example of the present invention has physical properties with high oxidation resistance as compared with sample 13 (sample not containing Al 4 SiC 4 ). are doing.
On the other hand, in the sample 6 in which the content ratio of Al 4 SiC 4 is excessively low 6 and the sample 9 in which the firing temperature is excessively high, the index is 100 or more, and the oxidation resistance property is particularly deteriorated.
 表1に示すように、本発明の実施例に相当する試料1~4の試験片(主成分:アルミナ、高温で焼成)は、AlSiCの含有割合が増加するにつれて、耐食性が高くなる物性を有している。
 本発明の実施例に相当する試料10の試験片(主成分:アルミナ、低温で焼成)は、試料11(フェノールレジンの含水量が過剰に多い試料)と比較して、耐食性が高い物性を有している。
 本発明の実施例に相当する試料12の試験片(主成分:マグネシア、高温で焼成)は、試料13(AlSiCを含有しない試料)と比較して、耐食性が高い物性を有している。
 対して、AlSiCの含有割合が過剰に少ない試料6,焼成温度が過剰に高い試料9では、指数が100以上となり、特に耐酸化性の特性が悪化している。
As shown in Table 1, the test pieces (main component: alumina, fired at high temperature) of Samples 1 to 4 corresponding to the examples of the present invention have higher corrosion resistance as the content ratio of Al 4 SiC 4 increases. Has physical properties.
The test piece of sample 10 (main component: alumina, calcined at low temperature) corresponding to the example of the present invention has physical properties with high corrosion resistance as compared with sample 11 (sample having an excessively high water content of phenol resin). are doing.
The test piece of sample 12 (main component: magnesia, fired at high temperature) corresponding to the example of the present invention has physical properties with high corrosion resistance as compared with sample 13 (sample not containing Al 4 SiC 4 ). There is.
On the other hand, in the sample 6 in which the content ratio of Al 4 SiC 4 is excessively low 6 and the sample 9 in which the firing temperature is excessively high, the index is 100 or more, and the oxidation resistance property is particularly deteriorated.
 表1に示すように、本発明の実施例に相当する試料1~4,10,12の試験片は、いずれも耐熱衝撃性に優れたものとなっている。対して、AlSiCを含有していない試料5,11,13,AlSiCの含有割合が過剰に少ない試料6,AlSiCの含有割合が過剰に多い試料7,焼成温度が過剰に高い試料9では、深い亀裂が確認されており、耐熱衝撃性の特性が悪化している。 As shown in Table 1, the test pieces of Samples 1 to 4, 10 and 12 corresponding to the examples of the present invention are all excellent in thermal shock resistance. On the other hand, samples 5, 11, 13, which do not contain Al 4 SiC 4 , samples in which the content of Al 4 SiC 4 is excessively low 6, samples in which the content of Al 4 SiC 4 is excessively high 7, and the firing temperature are high. In the sample 9 which is excessively high, deep cracks are confirmed, and the heat impact resistance property is deteriorated.
 (まとめ)
 上記の各試験の結果から、本発明の実施例に相当する試料1~4,10,12の試験片は、緻密かつ高強度であり、更に耐酸化性,耐食性,耐熱衝撃性のいずれも優れたものとなっている。
 特に、フェノールレジンの含水割合が過剰に大きい試料8は、フェノールレジンの含水割合が所定の範囲にある試料2では生じない割れが発生している。つまり、フェノールレジンの水分の含有割合を所定の範囲とすることで、緻密かつ高強度であり、更に耐酸化性,耐食性,耐熱衝撃性のいずれも優れたプレートとなることがわかる。
(Summary)
From the results of each of the above tests, the test pieces of Samples 1 to 4, 10 and 12 corresponding to the examples of the present invention are dense and have high strength, and are also excellent in oxidation resistance, corrosion resistance and heat impact resistance. It has become a sample.
In particular, the sample 8 in which the water content of the phenol resin is excessively large has cracks that do not occur in the sample 2 in which the water content of the phenol resin is within a predetermined range. That is, it can be seen that by setting the water content ratio of the phenol resin within a predetermined range, the plate is dense and has high strength, and is also excellent in oxidation resistance, corrosion resistance, and heat impact resistance.

Claims (5)

  1.  全体を100mass%としたときに、2~23mass%のAlSiCと、2~10mass%の炭素材料と、残部がアルミナ,アルミナ-ジルコニア,ジルコニアムライト,マグネシア,マグネシア-スピネルの1種以上と、水分含有量が1%以下のフェノールレジンと、を混合した後、150~1400℃の加熱温度で熱処理することを特徴とするスライディングノズル用プレートの製造方法。 When the whole is 100 mass%, 2 to 23 mass% of Al 4 SiC 4 , 2 to 10 mass% of carbon material, and the balance is one or more of alumina, alumina-zirconia, zirconia mullite, magnesia, magnesia-spinel. A method for producing a plate for a sliding nozzle, which comprises mixing a phenol resin having a water content of 1% or less and then heat-treating it at a heating temperature of 150 to 1400 ° C.
  2.  前記AlSiCは、平均粒径が5μm~200μmの粉末である請求項1記載のスライディングノズル用プレートの製造方法。 The method for manufacturing a plate for a sliding nozzle according to claim 1, wherein the Al 4 SiC 4 is a powder having an average particle size of 5 μm to 200 μm.
  3.  前記AlSiCは、Sの含有割合が100ppm以下である請求項1~2のいずれか1項に記載のスライディングノズル用プレートの製造方法。 The method for manufacturing a plate for a sliding nozzle according to any one of claims 1 to 2, wherein the Al 4 SiC 4 has an S content of 100 ppm or less.
  4.  前記フェノールレジンは、全体を100mass%としたときに、1~5mass%で加えられる請求項1~3のいずれか1項に記載のスライディングノズル用プレートの製造方法。 The method for manufacturing a plate for a sliding nozzle according to any one of claims 1 to 3, wherein the phenol resin is added at 1 to 5 mass% when the whole is 100 mass%.
  5.  前記炭素材料は、鱗状黒鉛,人造黒鉛,ピッチコークス,カーボンブラックの1種以上の粉末よりなる請求項1~4のいずれか1項に記載のスライディングノズル用プレートの製造方法。 The method for manufacturing a plate for a sliding nozzle according to any one of claims 1 to 4, wherein the carbon material is made of one or more powders of scaly graphite, artificial graphite, pitch coke, and carbon black.
PCT/JP2019/048181 2019-03-29 2019-12-10 Sliding nozzle plate production method WO2020202646A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980094948.9A CN113646110A (en) 2019-03-29 2019-12-10 Method for manufacturing plate for slide nozzle
KR1020217031094A KR20210144726A (en) 2019-03-29 2019-12-10 Manufacturing method of plate for sliding nozzle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-068567 2019-03-29
JP2019068567A JP6646779B1 (en) 2019-03-29 2019-03-29 Manufacturing method of plate for sliding nozzle

Publications (1)

Publication Number Publication Date
WO2020202646A1 true WO2020202646A1 (en) 2020-10-08

Family

ID=69568062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048181 WO2020202646A1 (en) 2019-03-29 2019-12-10 Sliding nozzle plate production method

Country Status (4)

Country Link
JP (1) JP6646779B1 (en)
KR (1) KR20210144726A (en)
CN (1) CN113646110A (en)
WO (1) WO2020202646A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7467371B2 (en) * 2021-03-08 2024-04-15 東京窯業株式会社 Method for producing Al4SiC4 composition or Al4SiC4 powder
CN113979761B (en) * 2021-11-23 2023-01-17 马鞍山利尔开元新材料有限公司 Ternary composite self-repairing baking-free sliding plate brick and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08119719A (en) * 1994-10-27 1996-05-14 Kyushu Refract Co Ltd Brick containing carbon and aluminum silicon carbide
JP2014156366A (en) * 2013-02-14 2014-08-28 Nippon Steel & Sumitomo Metal METHOD FOR MANUFACTURING AN Al4SiC4 POWDER, METHOD FOR MANUFACTURING AN MgO-C BRICK, AND MgO-C BRICK
JP2015196637A (en) * 2014-03-31 2015-11-09 一般財団法人岡山セラミックス技術振興財団 Composite carbide-containing refractory material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08169771A (en) * 1994-12-15 1996-07-02 Kyushu Refract Co Ltd Monolithic refractory containing aluminum silicon carbide
JP3017666B2 (en) * 1995-08-11 2000-03-13 松下電工株式会社 Refractory composition
KR101206947B1 (en) * 2008-03-25 2012-11-30 구로사키 하리마 코포레이션 Plate brick and manufacturing method therefor
JP2012192430A (en) * 2011-03-16 2012-10-11 Shinagawa Refractories Co Ltd Alumina carbon-based slide gate plate
CN105801143A (en) * 2016-04-01 2016-07-27 瑞泰科技股份有限公司 Silicon carbide brick with high corrosion resistance and preparation method of silicon carbide brick

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08119719A (en) * 1994-10-27 1996-05-14 Kyushu Refract Co Ltd Brick containing carbon and aluminum silicon carbide
JP2014156366A (en) * 2013-02-14 2014-08-28 Nippon Steel & Sumitomo Metal METHOD FOR MANUFACTURING AN Al4SiC4 POWDER, METHOD FOR MANUFACTURING AN MgO-C BRICK, AND MgO-C BRICK
JP2015196637A (en) * 2014-03-31 2015-11-09 一般財団法人岡山セラミックス技術振興財団 Composite carbide-containing refractory material

Also Published As

Publication number Publication date
CN113646110A (en) 2021-11-12
KR20210144726A (en) 2021-11-30
JP2020163458A (en) 2020-10-08
JP6646779B1 (en) 2020-02-14

Similar Documents

Publication Publication Date Title
JP4634263B2 (en) Magnesia carbon brick
TWI558683B (en) Magnesium oxide carbon brick
TWI606993B (en) Magnesia carbon brick
JP5565907B2 (en) Plate brick and manufacturing method thereof
CN109996772B (en) Magnesia carbon brick and its making process
WO2020202646A1 (en) Sliding nozzle plate production method
JP6215109B2 (en) Magnesia carbon brick
JP6193793B2 (en) Cast refractories, and casting nozzle and sliding nozzle plate using the same
JP6219729B2 (en) Magnesia carbon brick
JP5737503B2 (en) Plate refractory for sliding nozzle
JP2020055726A (en) Spinel-magnesia-carbon brick for vacuum degassing apparatus, and vacuum degassing apparatus having the same lined on sidewall of lower vessel thereof
JP6190730B2 (en) Magnesia carbon brick
JP2012192430A (en) Alumina carbon-based slide gate plate
JP6541607B2 (en) Method of manufacturing carbon-containing plate refractories for sliding nozzle
JP7100278B2 (en) Stainless Steel Ladle Magnesia-Spinel-Carbon Brick for Slag Line
JP6744555B2 (en) Sliding gate type plate refractory
JP6923824B2 (en) Manufacturing method of magnesia carbon refractory
JP2017154146A (en) Refractory for casting, and plate for sliding nozzle device
KR101605758B1 (en) Refractories for closing tap hole of blast furnace and closer using the same
TW202128595A (en) Refractory material
CN114728852A (en) Refractory material
JP2020132487A (en) Production method of magnesia carbon brick for lining of steel refining furnace

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923292

Country of ref document: EP

Kind code of ref document: A1