JP2020132487A - Production method of magnesia carbon brick for lining of steel refining furnace - Google Patents

Production method of magnesia carbon brick for lining of steel refining furnace Download PDF

Info

Publication number
JP2020132487A
JP2020132487A JP2019029580A JP2019029580A JP2020132487A JP 2020132487 A JP2020132487 A JP 2020132487A JP 2019029580 A JP2019029580 A JP 2019029580A JP 2019029580 A JP2019029580 A JP 2019029580A JP 2020132487 A JP2020132487 A JP 2020132487A
Authority
JP
Japan
Prior art keywords
raw material
binder
magnesia
mass
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019029580A
Other languages
Japanese (ja)
Inventor
敦久 飯田
Atsuhisa Iida
敦久 飯田
昌佳 柿原
Masayoshi Kakihara
昌佳 柿原
彰平 古谷
Shohei Furuya
彰平 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP2019029580A priority Critical patent/JP2020132487A/en
Publication of JP2020132487A publication Critical patent/JP2020132487A/en
Pending legal-status Critical Current

Links

Abstract

To provide a production method of brick for lining of steel refining furnace sufficient in damage reduction even when a heat processing temperature is 300°C or lower.SOLUTION: A production method of magnesia carbon brick for lining of steel refining furnace includes steps of: obtaining a compact by kneading and molding a compound containing a magnesia raw material, a graphite raw material, and a binder; heat treating the compact at a temperature of 200°C or higher and lower than 300°C; and impregnating one kind or more selected from the group consisting of tar and pitch to the compact, in which the magnesia raw material and the graphite raw material are main component of the compound, a content of the binder is 0.5 to 2.8 mass% relative to a total content 100 mass% of the magnesia raw material and the graphite raw material.SELECTED DRAWING: None

Description

本発明は、鉄鋼精錬炉内張り用マグネシアカーボンれんがの製造方法に関する。 The present invention relates to a method for producing magnesia carbon brick for steel smelting furnace lining.

近年、鉄鋼製品のさらなる高品質化に伴い、鉄鋼精錬炉の稼働温度は極めて高温となっている。さらに、生産性向上のための稼働率向上の要請や地球環境への負荷低減という社会的要請も強くなっている。このため、鉄鋼製造プロセスは耐火物にとってますます過酷化している。鉄鋼精錬炉内張り用耐火物として広く使用されているマグネシアカーボンれんがについても損傷低減が強く求められている。 In recent years, the operating temperature of steel smelting furnaces has become extremely high with the further improvement of quality of steel products. Furthermore, there are increasing social demands for improving the operating rate to improve productivity and reducing the burden on the global environment. As a result, the steel manufacturing process is becoming more and more demanding for refractories. Damage reduction is also strongly required for magnesia carbon bricks, which are widely used as refractories for steel smelting furnace linings.

特開2007−076980号公報Japanese Unexamined Patent Publication No. 2007-076980 特開2002−114567号公報JP-A-2002-114567

特許文献1は、耐熱衝撃性(耐熱スポール性)及び耐食性に優れるマグネシアカーボンれんがとして、マグネシア系原料を主成分とする耐火原料配合物に有機バインダー(バインダー)を加えて混練成形し、300〜1000℃で熱処理した後、タール又はピッチを含浸したマグネシアカーボンれんがを開示する。しかし、300〜1000℃で熱処理を行うと有機バインダーの分解による強度低下が大きく、搬送時や築炉時等での破損、欠け等の問題があり、経済性にも劣る。一方、特許文献1は、熱処理温度が300℃未満では有機バインダーの分解が不十分で密閉気孔がれんがに残存し、開放気孔が十分形成されないため、タール又はピッチがれんがの中心まで含浸されにくいことも開示する(段落0024)。 Patent Document 1 describes magnesia carbon bricks having excellent heat impact resistance (heat resistance spall properties) and corrosion resistance, which are kneaded and molded by adding an organic binder to a fireproof raw material compound containing a magnesia-based raw material as a main component. Disclosed are magnesia carbon bricks impregnated with tar or pitch after heat treatment at ° C. However, when the heat treatment is performed at 300 to 1000 ° C., the strength is greatly reduced due to the decomposition of the organic binder, and there are problems such as breakage and chipping during transportation and furnace construction, and the economy is also inferior. On the other hand, in Patent Document 1, when the heat treatment temperature is less than 300 ° C., the decomposition of the organic binder is insufficient, the closed pores remain in the brick, and the open pores are not sufficiently formed, so that tar or pitch is not easily impregnated to the center of the brick. Also disclosed (paragraph 0024).

特許文献2は、転炉出鋼部に配設されるスリーブと、スリーブ周囲に配設されるブロックで構成される転炉出鋼口用耐火物に関し、スピネル原料及びマグネシア原料からなる配合物に対し、外掛で3〜20質量%の結合剤(バインダー)を添加、混練、成形、200℃の乾燥処理後、ピッチ含浸処理を行った実施例を開示する。なお、乾燥処理の目的は結合剤の硬化及び/または結合剤中の揮発分の除去と記載されている。スリーブは中空部を有する円筒形状であるため、ピッチはスリーブ外周面と内周面の両方から含浸し、かつ、肉厚が薄いため、300℃以下の比較的低温の乾燥処理の後でもピッチを肉厚の中心部まで均一に含浸できる場合がある。しかし、鉄鋼精錬炉内張り用れんがは中空部を有さず、かつ、肉厚が厚い。したがって、乾燥処理温度が300℃以下の場合、ピッチをれんがの中心部まで均一に含浸することは困難であり、鉄鋼精錬炉内張り用れんがとして損傷低減が十分ではなかった。 Patent Document 2 relates to a refractory material for a converter outlet, which is composed of a sleeve arranged in a converter steel part and a block arranged around the sleeve, as a compound composed of a spinel raw material and a magnesia raw material. On the other hand, an example in which 3 to 20% by mass of a binder (binder) is added, kneaded, molded, dried at 200 ° C., and then pitch-impregnated is disclosed. The purpose of the drying treatment is described as curing the binder and / or removing volatile components in the binder. Since the sleeve has a cylindrical shape with a hollow portion, the pitch is impregnated from both the outer peripheral surface and the inner peripheral surface of the sleeve, and because the wall thickness is thin, the pitch can be adjusted even after a relatively low temperature drying treatment of 300 ° C. or lower. In some cases, it can be evenly impregnated up to the center of the wall thickness. However, the brick for lining of a steel smelting furnace does not have a hollow part and is thick. Therefore, when the drying treatment temperature is 300 ° C. or lower, it is difficult to uniformly impregnate the pitch to the center of the brick, and the damage reduction is not sufficient as the brick for lining the steel smelting furnace.

本発明の態様は上記実状を鑑みてなされたものであり、本発明の目的は、熱処理温度が300℃以下であっても損傷低減が十分な鉄鋼精錬炉内張り用れんがの製造方法を提供することである。 Aspects of the present invention have been made in view of the above circumstances, and an object of the present invention is to provide a method for producing bricks for steel smelting furnace lining, which can sufficiently reduce damage even when the heat treatment temperature is 300 ° C. or lower. Is.

本発明の一の態様は、マグネシア原料と、黒鉛原料と、バインダーと、を含む配合物を混練、成形して成形体を得るステップと、成形体を200℃以上300℃未満の温度で熱処理するステップと、成形体に、タール及びピッチからなる群から選ばれる1種以上を含浸するステップと、を有し、マグネシア原料と黒鉛原料が配合物の主成分であり、バインダーの含有量は、マグネシア原料及び黒鉛原料の合計含有量100質量%に対して外掛で0.5〜2.8質量%であることを特徴とする鉄鋼精錬炉内張り用マグネシアカーボンれんがの製造方法に関する。 One aspect of the present invention is a step of kneading and molding a compound containing a magnesia raw material, a graphite raw material, and a binder to obtain a molded product, and heat-treating the molded product at a temperature of 200 ° C. or higher and lower than 300 ° C. It has a step and a step of impregnating the molded product with one or more selected from the group consisting of tar and pitch, and the magnesia raw material and the graphite raw material are the main components of the compound, and the content of the binder is magnesia. The present invention relates to a method for producing magnesia carbon brick for lining of a steel smelting furnace, which is characterized in that the total content of the raw material and the graphite raw material is 0.5 to 2.8% by mass with respect to 100% by mass.

このようにして得られた鉄鋼精錬炉内張り用マグネシアカーボンれんがは、耐食性、耐摩耗性が向上するとともに、亀裂剥離を低減することができる。これは、熱処理温度が200℃以上300℃未満であるため、バインダーの分解による強度低下がほとんどなく、逆に、バインダーの硬化によって強度が向上したためと考えられる。さらに、バインダーの含有量がマグネシア原料及び黒鉛原料の合計含有量100質量%に対して外掛で0.5〜2.8質量%であると、余剰のバインダーによる塗膜が成形体の周囲に形成されず、タール及びピッチからなる群から選ばれる1種以上のれんがへの含浸が妨げられないためと考えられる。さらに、成形体から抜けるバインダー中の揮発分が適度であるため、適度な量と大きさの気孔が形成され、タール及びピッチからなる群から選ばれる1種以上をれんがの中心部まで均一に含浸できるためと考えられる。さらに、鉄鋼精錬炉の内張りとして300℃以上に昇温した際、バインダーの熱分解によるサンプル内の気孔が少なく、れんが自体の強度低下が小さいためと考えられる。 The magnesia carbon brick for lining of a steel smelting furnace thus obtained can improve corrosion resistance and abrasion resistance, and can reduce crack peeling. It is considered that this is because the heat treatment temperature is 200 ° C. or higher and lower than 300 ° C., so that there is almost no decrease in strength due to decomposition of the binder, and conversely, the strength is improved by curing the binder. Further, when the content of the binder is 0.5 to 2.8% by mass on the outer surface with respect to the total content of the magnesia raw material and the graphite raw material of 100% by mass, a coating film of excess binder is formed around the molded body. It is considered that this is because the impregnation of one or more kinds of bricks selected from the group consisting of tar and pitch is not hindered. Furthermore, since the volatile content in the binder that escapes from the molded product is appropriate, pores of an appropriate amount and size are formed, and one or more selected from the group consisting of tar and pitch is uniformly impregnated up to the center of the brick. It is thought that it can be done. Further, it is considered that when the temperature is raised to 300 ° C. or higher as the lining of the steel smelting furnace, there are few pores in the sample due to thermal decomposition of the binder, and the decrease in strength of the brick itself is small.

以下、本発明の好適な実施形態について詳細に説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成のすべてが本発明の解決手段として必須であるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail. It should be noted that the present embodiment described below does not unreasonably limit the content of the present invention described in the claims, and all the configurations described in the present embodiment are essential as a means for solving the present invention. Is not always the case.

本実施形態の鉄鋼精錬炉内張り用マグネシアカーボンれんがの製造方法は、マグネシア原料と、黒鉛原料と、バインダーと、を含む配合物を混練、成形して成形体を得るステップと、成形体を200℃以上300℃未満の温度で熱処理するステップと、成形体に、タール及びピッチからなる群から選ばれる1種以上を含浸するステップと、を有し、マグネシア原料と黒鉛原料が配合物の主成分であり、バインダーの含有量は、マグネシア原料及び黒鉛原料の合計含有量100質量%に対して外掛で0.5〜2.8質量%である。 The method for producing magnesia carbon brick for steel smelting furnace lining of the present embodiment includes a step of kneading and molding a compound containing a magnesia raw material, a graphite raw material, and a binder to obtain a molded product, and the molded product at 200 ° C. It has a step of heat-treating at a temperature of more than 300 ° C. and a step of impregnating the molded product with one or more selected from the group consisting of tar and pitch, and the magnesia raw material and the graphite raw material are the main components of the compound. Yes, the content of the binder is 0.5 to 2.8% by mass in the outer case with respect to the total content of the magnesia raw material and the graphite raw material of 100% by mass.

[配合物]
配合物はマグネシア原料と、黒鉛原料と、バインダーとを含む。マグネシア原料と黒鉛原料が配合物の主成分である。マグネシア原料は酸化マグネシウム(MgO)の供給源である。マグネシア原料は一般的にマグネシアカーボンれんがに使用されるものであればよく、例えば、電融マグネシア、焼結マグネシア等が挙げられる。マグネシア原料の含有量は、マグネシア原料と黒鉛原料の合計含有量に対して30〜99質量%が好ましい。黒鉛原料は黒鉛の供給源である。黒鉛原料は一般的にマグネシアカーボンれんがに使用されるものであればよく、例えば、人造黒鉛、天然黒鉛、鱗状黒鉛等が挙げられる。黒鉛原料の含有量は、マグネシア原料と黒鉛原料の合計含有量に対して1〜70質量%が好ましい。
[Compound]
The formulation comprises a magnesia raw material, a graphite raw material and a binder. The magnesia raw material and the graphite raw material are the main components of the compound. The magnesia raw material is a source of magnesium oxide (MgO). The magnesia raw material may be any material generally used for magnesia carbon bricks, and examples thereof include fused magnesia and sintered magnesia. The content of the magnesia raw material is preferably 30 to 99% by mass with respect to the total content of the magnesia raw material and the graphite raw material. The graphite raw material is a source of graphite. The graphite raw material may be any material generally used for magnesia carbon bricks, and examples thereof include artificial graphite, natural graphite, and scaly graphite. The content of the graphite raw material is preferably 1 to 70% by mass with respect to the total content of the magnesia raw material and the graphite raw material.

バインダーは一般的にマグネシアカーボンれんがに使用されるものであればよく、例えば、熱硬化性(レゾール型)又は熱可塑性(ノボラック型)フェノール樹脂、エチレングリコール等が挙げられる。バインダーは、樹脂以外にも、一般的に不焼成れんがに使用されるものであればよく、例えば、糖蜜等の多糖類溶液、けい酸塩等が挙げられる。バインダーはノボラック型フェノール樹脂が特に好ましい。バインダーが常温での粘性が低い液体の場合、含有量が少量でも配合物に均一に分散させることができる。バインダーの常温での粘性が高い場合、加熱によってバインダーの粘性を低下させて配合物に均一に分散させてもよい。 The binder may be any binder generally used for magnesia carbon bricks, and examples thereof include thermosetting (resole type) or thermoplastic (novolac type) phenolic resins and ethylene glycol. In addition to the resin, the binder may be any binder generally used for non-firing bricks, and examples thereof include polysaccharide solutions such as molasses and silicates. The binder is particularly preferably a novolak type phenol resin. When the binder is a liquid having low viscosity at room temperature, even a small amount of the binder can be uniformly dispersed in the formulation. When the viscosity of the binder at room temperature is high, the viscosity of the binder may be reduced by heating to uniformly disperse the binder in the formulation.

バインダーの含有量はマグネシア原料と黒鉛原料の合計含有量100質量%に対して外掛で0.5〜2.8質量%であり、好ましくは1.0〜2.6質量%であり、さらに好ましくは1.5〜2.5質量%であり、特に好ましくは1.7〜2.2質量%である。余剰のバインダーによる塗膜が成形体の周囲に形成されず、タール及びピッチからなる群から選ばれる1種以上のれんがへの含浸が妨げられないと考えられる。さらに、成形体から抜けるバインダー中の揮発分が適度であるため、適度な量と大きさの気孔が形成され、タール及びピッチからなる群から選ばれる1種以上をれんがの中心部まで均一に含浸できると考えられる。さらに、鉄鋼精錬炉の内張りとして300℃以上に昇温した際、バインダーの熱分解によるサンプル内の気孔が少なく、れんが自体の強度低下が小さいと考えられる。バインダーの含有量が外掛で0.5質量%を下回るとバインダーが不足し、緻密な成形体が得られない。一方、バインダーの含有量が外掛で2.8質量%を上回ると、余剰のバインダーが成形体の周囲に塗膜を形成し、タール及びピッチからなる群から選ばれる1種以上のれんがへの均一な含浸を妨げると考えられる。また、バインダー中の揮発分が抜けた後に、多量かつ大きな気孔が形成され、成形体の強度低下、酸化、溶鋼侵入等を招くと考えられる。さらに、鉄鋼精錬炉の内張りとして300℃以上に昇温した際、バインダーの熱分解によるサンプル内の気孔が増加し、れんが自体の強度低下が大きいと考えられる。 The content of the binder is 0.5 to 2.8% by mass, preferably 1.0 to 2.6% by mass, more preferably 1.0 to 2.6% by mass, based on 100% by mass of the total content of the magnesia raw material and the graphite raw material. Is 1.5 to 2.5% by mass, and particularly preferably 1.7 to 2.2% by mass. It is considered that the coating film due to the excess binder is not formed around the molded product, and the impregnation of one or more bricks selected from the group consisting of tar and pitch is not prevented. Furthermore, since the volatile content in the binder that escapes from the molded product is appropriate, pores of an appropriate amount and size are formed, and one or more selected from the group consisting of tar and pitch is uniformly impregnated up to the center of the brick. It is thought that it can be done. Further, when the temperature is raised to 300 ° C. or higher as the lining of the steel smelting furnace, it is considered that there are few pores in the sample due to thermal decomposition of the binder, and the decrease in strength of the brick itself is small. If the content of the binder is less than 0.5% by mass in the outer cover, the binder is insufficient and a dense molded product cannot be obtained. On the other hand, when the content of the binder exceeds 2.8% by mass in the outer cover, the excess binder forms a coating film around the molded product, and is uniform to one or more types of bricks selected from the group consisting of tar and pitch. It is considered to prevent the impregnation. Further, it is considered that a large amount of large pores are formed after the volatile matter in the binder is removed, which causes a decrease in the strength of the molded body, oxidation, penetration of molten steel and the like. Further, when the temperature is raised to 300 ° C. or higher as the lining of the steel smelting furnace, the pores in the sample increase due to the thermal decomposition of the binder, and it is considered that the strength of the brick itself is greatly reduced.

配合物は必要に応じて添加物をさらに含んでもよい。添加物としては、例えば、カーボンの酸化防止剤が挙げられる。酸化防止剤は一般的にマグネシアカーボンれんがに使用されるものであればよく、例えば、Al、Si、Al−Mg合金等が挙げられる。酸化防止剤の含有量はマグネシア原料と黒鉛原料の合計含有量100質量%に対して外掛で0.5〜3.0質量%であり、好ましくは1.0〜2.0質量%である。本実施形態では熱処理温度が低いため、れんが製造時に金属が化学変化することが少なく、その効果を十分に発揮することができる。他の添加物としては、例えば、カーボンブラックや炭化ほう素粉末等、一般的にマグネシアカーボンれんがに使用されるものが挙げられる。 The formulation may further contain additives as needed. Examples of the additive include a carbon antioxidant. The antioxidant may be any one generally used for magnesia carbon bricks, and examples thereof include Al, Si, and Al—Mg alloys. The content of the antioxidant is 0.5 to 3.0% by mass, preferably 1.0 to 2.0% by mass, based on the total content of the magnesia raw material and the graphite raw material of 100% by mass. In the present embodiment, since the heat treatment temperature is low, the metal is less likely to undergo a chemical change during the production of bricks, and the effect can be fully exhibited. Other additives include those commonly used for magnesia carbon bricks, such as carbon black and boron carbide powder.

[混練・成形]
混練・成形は一般的にマグネシアカーボンれんがの製造プロセスに使用されるものであればよい。混練には、例えば、コナーミキサーや、高速攪拌羽根が付いた加圧式のハイスピードミキサー、アイリッヒ(登録商標)ミキサー等を使用することができる。成形には、例えば、油圧式プレス、フリクションプレス等、一般的なれんが成形プレスを使用することができる。成形圧力は通常100〜250MPa程度であり、より好ましくは120〜220MPaの範囲であり、さらに好ましくは140〜210MPaの範囲であり、特に好ましくは150〜200MPaの範囲である。100MPaを下回ると成形不十分となり、250MPaを超えるとラミネーションが発生する等して好ましくない。
[Kneading / molding]
The kneading / molding may be generally used in the process for producing magnesia carbon bricks. For kneading, for example, a Connor mixer, a pressurized high-speed mixer equipped with a high-speed stirring blade, an Erich (registered trademark) mixer, or the like can be used. For molding, a general brick molding press such as a hydraulic press or a friction press can be used. The molding pressure is usually about 100 to 250 MPa, more preferably 120 to 220 MPa, still more preferably 140 to 210 MPa, and particularly preferably 150 to 200 MPa. If it is less than 100 MPa, molding becomes insufficient, and if it exceeds 250 MPa, lamination occurs, which is not preferable.

[熱処理(乾燥処理)]
れんが成形後の熱処理は乾燥処理ともいい、その目的はバインダーの硬化及び/又はバインダー中の揮発分の除去である。熱処理温度は200℃以上300℃未満であり、より好ましくは220℃から295℃の範囲であり、さらに好ましくは230℃から270℃の範囲である。200℃未満では乾燥(バインダーの揮発分の抜け)が不十分となり、れんが内部までタール及びピッチからなる群から選ばれる1種以上を十分に含浸できない。300℃以上では、バインダーの熱分解により、れんが内の気孔が増加するため、れんが自体の組織が緩み、強度低下が大きくなる。一方で、気孔率が増加した分、ピッチの含浸は容易になるため、含浸効果により一定の強度補完は可能である。しかし、れんが自体の強度にはバインダーの硬化が大きく寄与しているため、高温熱処理によるバインダーの熱分解は好ましくない。
[Heat treatment (drying treatment)]
The heat treatment after forming the brick is also called a drying treatment, and its purpose is to cure the binder and / or remove volatile substances in the binder. The heat treatment temperature is 200 ° C. or higher and lower than 300 ° C., more preferably 220 ° C. to 295 ° C., and further preferably 230 ° C. to 270 ° C. If the temperature is lower than 200 ° C., drying (removal of volatile components of the binder) becomes insufficient, and one or more kinds selected from the group consisting of tar and pitch cannot be sufficiently impregnated into the inside of the brick. At 300 ° C. or higher, the thermal decomposition of the binder increases the pores in the brick, so that the structure of the brick itself becomes loose and the strength decreases significantly. On the other hand, since the impregnation of the pitch becomes easier as the porosity increases, it is possible to supplement the strength to a certain extent by the impregnation effect. However, since the curing of the binder greatly contributes to the strength of the brick itself, thermal decomposition of the binder by high-temperature heat treatment is not preferable.

[含浸]
熱処理後にタール及びピッチからなる群から選ばれる1種以上の含浸処理を行う。含浸処理には、例えば、スライディングノズルプレートにピッチを含浸する装置等を使用することができる。れんがを含浸槽に装填し、含浸槽内を減圧し、加熱したタール及びピッチからなる群から選ばれる1種以上を含浸槽に注入して浸漬し、れんがに含浸する。ピッチは石油系ピッチ、石炭系ピッチのいずれも使用することができる。含浸処理の後に熱処理(乾燥処理)を再度行ってもよい。以上の製造プロセスによって緻密化と損傷低減が達成され、鉄鋼精錬炉内張りに適するマグネシアカーボンれんがを製造することができる。
[Immersion]
After the heat treatment, one or more impregnation treatments selected from the group consisting of tar and pitch are performed. For the impregnation treatment, for example, an apparatus for impregnating the sliding nozzle plate with pitch can be used. Brick is loaded into an impregnation tank, the inside of the impregnation tank is depressurized, and at least one selected from the group consisting of heated tar and pitch is injected into the impregnation tank and immersed to impregnate the brick. As the pitch, either petroleum-based pitch or coal-based pitch can be used. The heat treatment (drying treatment) may be performed again after the impregnation treatment. By the above manufacturing process, densification and damage reduction are achieved, and magnesia carbon brick suitable for steel smelting furnace lining can be manufactured.

以下、本発明の実施例について詳細に説明する。 Hereinafter, examples of the present invention will be described in detail.

[マグネシアカーボンれんがの製造]
マグネシア原料と、黒鉛原料と、バインダーと、を含む配合物を混練、成形して成形体を得、成形体を24時間熱処理し、成形体にピッチを含浸し、マグネシアカーボンれんがのサンプルを得た。実施例及び比較例に用いたマグネシア原料、黒鉛原料、バインダー及び添加物とそれらの含有量、成形圧力並びに熱処理温度を表1〜2に示す。

Figure 2020132487
Figure 2020132487
[Manufacturing of magnesia carbon brick]
A compound containing a magnesia raw material, a graphite raw material, and a binder was kneaded and molded to obtain a molded product, and the molded product was heat-treated for 24 hours to impregnate the molded product with a pitch to obtain a sample of magnesia carbon brick. .. Tables 1 and 2 show the magnesia raw materials, graphite raw materials, binders and additives used in Examples and Comparative Examples, their contents, molding pressure and heat treatment temperature.
Figure 2020132487
Figure 2020132487

表1〜2において、「%級」、「粗粒」、「中粒」、「微粒」及び「100M以下」はそれぞれ原料の純度、粒径5〜1mm、粒径1mm以下、粒径0.15mm以下及び粒径100Mesh(0.15mm)以下を意味する。 In Tables 1 and 2, "% grade", "coarse grain", "medium grain", "fine grain" and "100M or less" are raw material purity, particle size 5 to 1 mm, particle size 1 mm or less, particle size 0. It means 15 mm or less and a particle size of 100 Mesh (0.15 mm) or less.

実施例1〜4、実施例5、実施例6、実施例7及び実施例8は、バインダーとして、それぞれフェノール樹脂(液体)、フェノール樹脂(液体)とフェノール樹脂(粉体)の併用、フェノール樹脂(液体)とエチレングリコールの併用、糖蜜(液体)及びけい酸ソーダ水溶液を使用した。 In Examples 1 to 4, Example 5, Example 6, Example 7 and Example 8, as binders, phenol resin (liquid), phenol resin (liquid) and phenol resin (powder) are used in combination, and phenol resin. A combination of (liquid) and ethylene glycol, sugar honey (liquid) and an aqueous solution of sodium silicate were used.

実施例1〜8、比較例2及び比較例3はバインダーの含有量を、マグネシア原料及び黒鉛原料の合計含有量100質量%に対して外掛で0.3〜3質量%の範囲で変化させた。 In Examples 1 to 8, Comparative Example 2 and Comparative Example 3, the content of the binder was changed in the range of 0.3 to 3% by mass with respect to the total content of 100% by mass of the magnesia raw material and the graphite raw material. ..

実施例9〜11は実施例3をベースとして、成形圧力を122〜203MPaの範囲で変化させた。 In Examples 9 to 11, the molding pressure was changed in the range of 122 to 203 MPa based on Example 3.

実施例12〜15、比較例4及び比較例5は実施例3をベースとして、熱処理温度を180〜350℃の範囲で変化させた。 In Examples 12 to 15, Comparative Example 4 and Comparative Example 5, the heat treatment temperature was changed in the range of 180 to 350 ° C. based on Example 3.

比較例1は実施例3をベースとして、含浸処理を行わなかった。 Comparative Example 1 was based on Example 3 and was not impregnated.

熱処理後、サンプルを含浸槽に装填し、含浸槽内を13.3kPa以下に減圧し、加熱したピッチを含浸槽内に注入してサンプルをピッチに浸漬し、含浸圧力0.5MPaで2時間保持して含浸処理を行った。サンプルの形状は、転炉用れんがと同じ、長さ900mm、幅180mm、高さ150mmの直方体とした。 After the heat treatment, the sample is loaded into the impregnation tank, the pressure inside the impregnation tank is reduced to 13.3 kPa or less, the heated pitch is injected into the impregnation tank, the sample is immersed in the pitch, and the impregnation pressure is maintained at 0.5 MPa for 2 hours. The impregnation treatment was performed. The shape of the sample was a rectangular parallelepiped having a length of 900 mm, a width of 180 mm, and a height of 150 mm, which was the same as that of a converter brick.

[評価方法]
得られたサンプルについて以下の項目の評価を行った。
[Evaluation method]
The following items were evaluated for the obtained sample.

<気孔率・曲げ強さ>
気孔率はJIS R2205(耐火れんがの見掛気孔率・吸水率・比重の測定方法)に従って測定した。気孔率は小さい程良好であり、2.0%未満が好ましいと評価した。曲げ強さはJIS R2213(耐火れんがの曲げ強さの試験方法)に従って測定した。曲げ強さは大きい程良好であり、11MPa以上が好ましく、16MPa以上が特に好ましいと評価した。
<Porosity / flexural strength>
The porosity was measured according to JIS R2205 (measurement method of apparent porosity, water absorption rate, and specific gravity of refractory bricks). The smaller the porosity, the better, and it was evaluated that less than 2.0% was preferable. The flexural strength was measured according to JIS R2213 (test method for flexural strength of refractory bricks). The greater the bending strength, the better, and it was evaluated that 11 MPa or more was preferable, and 16 MPa or more was particularly preferable.

<耐食性>
耐食性は、高周波誘導炉内張り法で測定した。試験温度は1700℃とし、侵食剤には質量比(CaO/SiO2)が2.8の合成スラグを使用した。侵食剤は1回に400g投入し、1時間毎に入れ替え、計6時間試験を行った。試験後の試料を稼働面に垂直な方向に切断して溶損面積を測定した。耐食性は、比較例1の溶損面積を100としたときの溶損指数で評価した。耐食性は溶損指数が小さい程良好であり、79以下が好ましく、68以下が特に好ましいと評価した。
<Corrosion resistance>
Corrosion resistance was measured by the high frequency induction furnace lining method. The test temperature was 1700 ° C., and synthetic slag having a mass ratio (CaO / SiO2) of 2.8 was used as the erosion agent. 400 g of the erosive agent was added at one time and replaced every hour, and the test was conducted for a total of 6 hours. The sample after the test was cut in the direction perpendicular to the working surface to measure the erosion area. Corrosion resistance was evaluated by the erosion index when the erosion area of Comparative Example 1 was 100. The smaller the erosion index, the better the corrosion resistance, and it was evaluated that 79 or less is preferable, and 68 or less is particularly preferable.

<耐摩耗性>
耐摩耗性は、ASTM C704(Abrasion Resistance of Refractory Materials at Room Temperature)に従って評価した。サンプルから115×115×30mm形状の試験片を切り出し、1000℃の還元雰囲気中で焼成し、115×115mmの面を摩耗材の吐出方向に対して45°傾斜させてセットした。115×115mmの面の垂直中心線を軸として試験片を15回転/分で回転させながら、115×115mmの面に摩耗材1kgを連続的に吹き付けた。摩耗材は、粒径を1〜0.3mmに調整したSiC粒子を使用した。吹付エアー圧は0.4MPaとした。試験前後の試験片質量を測定し、質量変化と試験片のかさ比重から摩耗体積を算出した。耐摩耗性は、比較例1の摩耗体積を100としたときの摩耗指数で評価した。耐摩耗性は摩耗指数が小さい程良好であり、84以下が好ましく、69以下が特に好ましいと評価した。
<Abrasion resistance>
Abrasion resistance was evaluated according to ASTM C704 (Abrasion Resistance of Refractory Materials at Room Temperature). A test piece having a shape of 115 × 115 × 30 mm was cut out from the sample and fired in a reducing atmosphere at 1000 ° C., and a surface of 115 × 115 mm was set at an angle of 45 ° with respect to the discharge direction of the wear material. While rotating the test piece at 15 rotations / minute around the vertical center line of the 115 × 115 mm surface, 1 kg of the abrasive was continuously sprayed on the 115 × 115 mm surface. As the wear material, SiC particles having a particle size adjusted to 1 to 0.3 mm were used. The sprayed air pressure was 0.4 MPa. The mass of the test piece before and after the test was measured, and the wear volume was calculated from the mass change and the bulk specific density of the test piece. The wear resistance was evaluated by the wear index when the wear volume of Comparative Example 1 was set to 100. The smaller the wear index, the better the wear resistance, and it was evaluated that 84 or less is preferable, and 69 or less is particularly preferable.

<耐熱スポール性>
耐熱スポール性は、急熱急冷試験で評価した。サンプルから40×40×160mm形状の試験片を切り出し、1000℃の還元雰囲気中で焼成した。試験片を1680℃に加熱した溶銑に60秒浸漬した後15秒冷水に浸漬し、これを2回繰り返した。急熱急冷試験前後の弾性率を測定し、弾性率低下率を以下の式により算出した。
弾性率低下率(%)=(試験前の弾性率−試験後の弾性率)÷試験前の弾性率×100
弾性率は試験片長手方向(160mm長さ方向)の超音波伝播速度より求めた。耐熱スポール性は弾性率低下率で評価した。耐熱スポール性は弾性率低下率が小さい程良好であり、39%以下が好ましく、34%以下が特に好ましいと評価した。
<Heat-resistant spall property>
The heat-resistant spall property was evaluated by a rapid heating and quenching test. A test piece having a shape of 40 × 40 × 160 mm was cut out from the sample and fired in a reducing atmosphere at 1000 ° C. The test piece was immersed in hot metal heated to 1680 ° C. for 60 seconds and then in cold water for 15 seconds, and this was repeated twice. The elastic modulus before and after the rapid heating and quenching test was measured, and the elastic modulus reduction rate was calculated by the following formula.
Elastic modulus reduction rate (%) = (elastic modulus before test-elastic modulus after test) ÷ elastic modulus before test × 100
The elastic modulus was determined from the ultrasonic wave velocity in the longitudinal direction of the test piece (160 mm length direction). The heat-resistant spall property was evaluated by the rate of decrease in elastic modulus. The smaller the elastic modulus reduction rate, the better the heat-resistant spall property, and it was evaluated that 39% or less is preferable, and 34% or less is particularly preferable.

<ピッチ含浸の良否>
サンプルの断面に有機溶剤を吹付け、有機溶剤とピッチとの反応状態を確認した。ピッチ含浸の良否は、断面の反応状態がサンプル中心部まで均一か否かで評価した。反応状態が中心部まで均一なサンプルは中心部へのピッチ含浸が特に好ましい(○)と評価し、反応状態が不均一なサンプルは中心部へのピッチ含浸が不十分(×)と評価した。
<Good or bad pitch impregnation>
An organic solvent was sprayed on the cross section of the sample, and the reaction state between the organic solvent and the pitch was confirmed. The quality of pitch impregnation was evaluated by whether the reaction state of the cross section was uniform up to the center of the sample. A sample having a uniform reaction state up to the center was evaluated as having a particularly preferable pitch impregnation into the center (◯), and a sample having a non-uniform reaction state was evaluated as having an insufficient pitch impregnation into the center (×).

<総合判定>
全ての項目が好ましい又は特に好ましいサンプルは緻密化と損傷低減が達成され、総合的に好ましい(○)と評価した。その中でも3つ以上の項目が特に好ましいサンプルは鉄鋼精錬炉内張りに非常に適し、総合的に特に好ましい(◎)と評価した。1つ以上の項目が好ましくないサンプルは総合的に好ましくない(×)と評価した。
<Comprehensive judgment>
Samples in which all items were preferable or particularly preferable were evaluated as overall preferable (◯) because densification and damage reduction were achieved. Among them, the sample in which three or more items are particularly preferable is very suitable for the steel smelting furnace lining, and was evaluated as being particularly preferable overall (⊚). Samples in which one or more items were unfavorable were evaluated as totally unfavorable (x).

[評価結果]
評価結果を表3に示す。

Figure 2020132487
[Evaluation results]
The evaluation results are shown in Table 3.
Figure 2020132487

いずれの実施例も、比較例に比べ、気孔率の低減と均一なピッチ含浸が両立され、緻密化が達成された。その結果、耐食性(溶損指数)、耐摩耗性(摩耗指数)、耐熱スポール性(弾性率低下率)も向上した。 In each of the examples, as compared with the comparative example, both reduction of porosity and uniform pitch impregnation were achieved, and densification was achieved. As a result, corrosion resistance (erosion index), wear resistance (wear index), and heat resistance spall property (elastic modulus reduction rate) were also improved.

実施例1〜15は総合判定が○か◎であるのに対し、比較例2〜3は総合判定が×であることから、バインダーの含有量はマグネシア原料と黒鉛原料の合計含有量100質量%に対して外掛で0.5〜2.8質量%の範囲である。さらに、実施例2〜5、実施例10〜11、実施例13〜15の総合判定が◎であることから、バインダーの含有量はマグネシア原料と黒鉛原料の合計含有量100質量%に対して外掛で1.5〜2.5質量%の範囲がより好ましい。比較例2は気孔率がやや大きいことから、バインダーが不足すると、緻密な成形体が得られないと考えられる。一方、比較例3は気孔率が小さく、曲げ強さが十分であるにもかかわらず、溶損指数、摩耗指数、弾性率低下率は大きい。これは、バインダーが多いと、余剰のバインダーが成形体の周囲に塗膜を形成し、ピッチのれんがへの均一な含浸が妨げられたためと考えられる。さらに、300℃以上に昇温した際、バインダーの熱分解によるサンプル内の気孔が増加し、れんが自体の強度低下が大きくなったためと考えられる。 Since the overall judgment of Examples 1 to 15 is ○ or ◎, while the overall judgment of Comparative Examples 2 to 3 is ×, the binder content is 100% by mass of the total content of the magnesia raw material and the graphite raw material. It is in the range of 0.5 to 2.8 mass% with respect to the outer hook. Further, since the comprehensive judgments of Examples 2 to 5, Examples 10 to 11 and Examples 13 to 15 are ⊚, the content of the binder is external to the total content of 100% by mass of the magnesia raw material and the graphite raw material. More preferably in the range of 1.5 to 2.5% by mass. Since Comparative Example 2 has a slightly large porosity, it is considered that a dense molded product cannot be obtained if the binder is insufficient. On the other hand, in Comparative Example 3, although the porosity is small and the bending strength is sufficient, the melt loss index, the wear index, and the elastic modulus decrease rate are large. It is considered that this is because when the amount of the binder is large, the excess binder forms a coating film around the molded product, which hinders the uniform impregnation of the pitch bricks. Further, it is considered that when the temperature was raised to 300 ° C. or higher, the pores in the sample increased due to the thermal decomposition of the binder, and the strength of the brick itself decreased significantly.

実施例3〜5の総合判定が◎であるのに対し、実施例6〜8の総合判定が○であることから、バインダーはノボラック型フェノール樹脂が好ましい。 Since the comprehensive judgment of Examples 3 to 5 is ⊚ and the comprehensive judgment of Examples 6 to 8 is ◯, the binder is preferably a novolak type phenol resin.

実施例3、実施例10〜11の総合判定が◎であるのに対し、実施例9の総合判定が○であることから、成形圧力は100〜250MPaの範囲であり、120〜220MPaの範囲がより好ましい。 Since the comprehensive judgment of Examples 3 and 10 to 11 is ⊚, while the comprehensive judgment of Example 9 is ◯, the molding pressure is in the range of 100 to 250 MPa and the range of 120 to 220 MPa. More preferred.

実施例3、実施例12〜15の総合判定が○か◎であるのに対し、比較例4〜5の総合判定が×であることから、熱処理温度は200℃以上300℃未満である。さらに、実施例3、実施例13〜15の総合判定が◎であることから、熱処理温度は220℃から295℃の範囲がより好ましい。 The heat treatment temperature is 200 ° C. or higher and lower than 300 ° C. because the comprehensive judgment of Examples 3 and 12 to 15 is ◯ or ⊚, while the comprehensive judgment of Comparative Examples 4 to 5 is ×. Further, since the comprehensive judgment of Examples 3 and 13 to 15 is ⊚, the heat treatment temperature is more preferably in the range of 220 ° C. to 295 ° C.

なお、上記のように本実施形態について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。したがって、このような変形例はすべて本発明の範囲に含まれる。例えば、明細書において、少なくとも一度、より広義又は同義な異なる用語とともに記載された用語は、明細書のいかなる箇所においても、その異なる用語に置き換えられることができる。また、本実施形態の製造装置等の構成及び動作も本実施形態で説明したものに限定されず、種々の変形が可能である。 Although the present embodiment has been described in detail as described above, those skilled in the art will easily understand that many modifications that do not substantially deviate from the novel matters and effects of the present invention are possible. Therefore, all such modifications are within the scope of the present invention. For example, in the specification, a term described at least once with a different term having a broader meaning or a synonym may be replaced with the different term at any part of the specification. Further, the configuration and operation of the manufacturing apparatus and the like of the present embodiment are not limited to those described in the present embodiment, and various modifications are possible.

Claims (1)

マグネシア原料と、黒鉛原料と、バインダーと、を含む配合物を混練、成形して成形体を得るステップと、
前記成形体を200℃以上300℃未満の温度で熱処理するステップと、
前記成形体に、タール及びピッチからなる群から選ばれる1種以上を含浸するステップと、
を有し、
前記マグネシア原料と前記黒鉛原料が前記配合物の主成分であり、
前記バインダーの含有量は、前記マグネシア原料及び前記黒鉛原料の合計含有量100質量%に対して外掛で0.5〜2.8質量%であることを特徴とする鉄鋼精錬炉内張り用マグネシアカーボンれんがの製造方法。
A step of kneading and molding a compound containing a magnesia raw material, a graphite raw material, and a binder to obtain a molded product.
A step of heat-treating the molded product at a temperature of 200 ° C. or higher and lower than 300 ° C.
A step of impregnating the molded product with one or more selected from the group consisting of tar and pitch.
Have,
The magnesia raw material and the graphite raw material are the main components of the compound.
The content of the binder is 0.5 to 2.8% by mass with respect to the total content of the magnesia raw material and the graphite raw material of 100% by mass, which is a magnesia carbon brick for lining a steel smelting furnace. Manufacturing method.
JP2019029580A 2019-02-21 2019-02-21 Production method of magnesia carbon brick for lining of steel refining furnace Pending JP2020132487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019029580A JP2020132487A (en) 2019-02-21 2019-02-21 Production method of magnesia carbon brick for lining of steel refining furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019029580A JP2020132487A (en) 2019-02-21 2019-02-21 Production method of magnesia carbon brick for lining of steel refining furnace

Publications (1)

Publication Number Publication Date
JP2020132487A true JP2020132487A (en) 2020-08-31

Family

ID=72262188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019029580A Pending JP2020132487A (en) 2019-02-21 2019-02-21 Production method of magnesia carbon brick for lining of steel refining furnace

Country Status (1)

Country Link
JP (1) JP2020132487A (en)

Similar Documents

Publication Publication Date Title
JP4634263B2 (en) Magnesia carbon brick
JP5565907B2 (en) Plate brick and manufacturing method thereof
TWI606993B (en) Magnesia carbon brick
WO2018079324A1 (en) Magnesia carbon brick and production method therefor
WO2008056655A1 (en) Durable sleeve bricks
JP2020100511A (en) Method of producing magnesia-carbon brick
CN110256057A (en) Exempt to impregnate sliding plate brick and preparation method thereof
JP6193793B2 (en) Cast refractories, and casting nozzle and sliding nozzle plate using the same
JP6662346B2 (en) Refractory and manufacturing method thereof
JP2012031026A (en) Alumina-magnesia-based refractory brick and method for producing the same
WO2020202646A1 (en) Sliding nozzle plate production method
JP2020132487A (en) Production method of magnesia carbon brick for lining of steel refining furnace
JP2012192430A (en) Alumina carbon-based slide gate plate
JP2010235405A (en) Production method of low-odor unburned brick
JP6036796B2 (en) Slide plate and manufacturing method thereof
JP6826282B2 (en) Magnesia-Chromium converter How to manufacture steel outlet sleeve bricks
JP6361705B2 (en) Lining method of converter charging wall
JP6315037B2 (en) Lined refractories for continuous casting tundish
JP2017042794A (en) Tundish for continuous casting
JP2006021972A (en) Magnesia-carbon brick
JP7100278B2 (en) Stainless Steel Ladle Magnesia-Spinel-Carbon Brick for Slag Line
JP5578680B2 (en) Carbon-containing refractories
JP4856513B2 (en) Carbon-containing refractories
JPH03109253A (en) Production of carbon-containing unburned brick
JP2004155611A (en) Recycled refractory and its manufacturing process