WO2020202528A1 - Method for manufacturing carbon heat source for flavor inhalation tool, composite particles, carbon heat source for flavor inhalation tool, and flavor inhalation tool - Google Patents

Method for manufacturing carbon heat source for flavor inhalation tool, composite particles, carbon heat source for flavor inhalation tool, and flavor inhalation tool Download PDF

Info

Publication number
WO2020202528A1
WO2020202528A1 PCT/JP2019/014957 JP2019014957W WO2020202528A1 WO 2020202528 A1 WO2020202528 A1 WO 2020202528A1 JP 2019014957 W JP2019014957 W JP 2019014957W WO 2020202528 A1 WO2020202528 A1 WO 2020202528A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
particles
carbon heat
slurry
composite particles
Prior art date
Application number
PCT/JP2019/014957
Other languages
French (fr)
Japanese (ja)
Inventor
敦郎 山田
崇 小田
健太 光内
正基 渡部
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to CN201980093383.2A priority Critical patent/CN113543667A/en
Priority to JP2021511031A priority patent/JP7176101B2/en
Priority to PCT/JP2019/014957 priority patent/WO2020202528A1/en
Priority to EP19922582.2A priority patent/EP3949765A4/en
Publication of WO2020202528A1 publication Critical patent/WO2020202528A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D1/00Cigars; Cigarettes
    • A24D1/22Cigarettes with integrated combustible heat sources, e.g. with carbonaceous heat sources
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B13/00Tobacco for pipes, for cigars, e.g. cigar inserts, or for cigarettes; Chewing tobacco; Snuff
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/18Treatment of tobacco products or tobacco substitutes
    • A24B15/28Treatment of tobacco products or tobacco substitutes by chemical substances
    • A24B15/30Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances
    • A24B15/32Treatment of tobacco products or tobacco substitutes by chemical substances by organic substances by acyclic compounds

Definitions

  • the present invention relates to a method for producing a carbon heat source for a flavor aspirator, composite particles, a carbon heat source for a flavor aspirator, and a flavor aspirator.
  • a flavor aspirator that has a carbon heat source at the tip and heats the tobacco filler by the combustion heat of the carbon heat source is known.
  • the carbon heat source used in the flavor aspirator can be produced by extrusion-molding a raw material slurry containing carbon particles and an additive such as a binder and drying it.
  • Japanese Patent Application Laid-Open No. 62-224276 discloses an improved manufacturing method of a carbon heat source for the purpose of improving the flammability of the carbon heat source.
  • Japanese Patent Application Laid-Open No. 62-224276 describes a raw material slurry 1 containing carbon particles 1a and an aqueous solution (dispersion medium) 1b containing a binder in the form of a sheet, as shown in FIG. 1 of the present application. It is disclosed that a carbon heat source 5 is produced by stretching and drying, crushing the obtained sheet 2, adding water to the obtained pulverized product 3 for molding, and drying the obtained molded product 4. ..
  • WO2006 / 073065 discloses that a carbon heat source is produced from a composition containing carbon particles, calcium carbonate particles and a binder, and such carbon heat source can reduce the amount of carbon monoxide generated during combustion of the carbon heat source. Disclose what you can do.
  • the present inventors encountered a problem that it was difficult to mold when a carbon heat source was produced according to the method described in Japanese Patent Application Laid-Open No. 62-224276. Therefore, when an attempt was made to mold by increasing the amount of water added during molding (for example, in an amount of 34% by mass with respect to the pulverized product), the molding material adhered to the molding machine (Comparative Example 1 described later). See). When molding was performed by adding an amount of water generally used during molding (for example, 30% by weight with respect to the pulverized product), molding was difficult, and the obtained carbon heat source did not show any problem in ignitability, but was strong. Was not sufficient (see Comparative Example 2 below).
  • an object of the present invention is to provide a technique relating to a carbon heat source for a flavor aspirator, which is excellent in ease of manufacture and has high strength and excellent ignitability.
  • a method for producing a carbon heat source for a flavor aspirator comprises molding a mixture containing the composite particles and water to obtain a molded product, and drying the molded product.
  • a composite particle containing carbon particles, calcium carbonate particles, and a binder having an average particle size D50 of 10 to 150 ⁇ m and a half width of 10 to 150 ⁇ m is provided.
  • a carbon heat source for a flavor aspirator produced by the method according to the first aspect.
  • a flavor aspirator comprising the carbon heat source according to the third aspect is provided.
  • FIG. 1 is a diagram schematically showing a method described in the prior art document.
  • FIG. 2 is a diagram schematically showing an example of the method of the present invention.
  • FIG. 3 is a perspective view showing an example of a carbon heat source for a flavor aspirator.
  • FIG. 4 is a cross-sectional view showing an example of a flavor aspirator.
  • FIG. 5 is a graph showing the particle size distribution of the composite particle A1.
  • FIG. 6 is a graph showing the particle size distribution of the composite particle A2.
  • FIG. 7 is a graph showing the particle size distribution of the composite particle A3.
  • FIG. 8 is a graph showing the particle size distribution of the composite particle B.
  • FIG. 9 is a photomicrograph of the composite particle A2.
  • FIG. 10 is a photomicrograph of the composite particle B.
  • the method for producing a carbon heat source for a flavor aspirator is: Using a slurry containing carbon particles, calcium carbonate particles, a binder and water as a raw material to form composite particles having an average particle size D50 of 10 to 150 ⁇ m and a half width of 10 to 150 ⁇ m. This includes molding a mixture containing the composite particles and water to obtain a molded product, and drying the molded product.
  • the carbon heat source for the flavor aspirator is a heat source that heats the flavor source in the flavor aspirator by burning the carbon heat source.
  • the flavor source in the flavor aspirator is heated by the combustion heat of the carbon heat source, but is not burned.
  • the flavor source produces flavor by heating.
  • the carbon heat source for the flavor aspirator is also simply referred to as a "carbon heat source”.
  • FIG. Figure 2 shows (1) Prepare the raw material slurry 1 and prepare it. (2) Composite particles 6 are formed from the raw material slurry 1 and (3) The composite particle 6 is molded to obtain a molded body 7. (4) It is shown that the molded product 7 is dried to obtain a dried molded product 8.
  • the dried molded product 8 may be used as it is as a carbon heat source, or may be used as a carbon heat source after performing necessary processing.
  • the raw material slurry 1 is composed of carbon particles 1a, calcium carbonate particles 1c, and an aqueous solution (dispersion medium) 1b containing a binder.
  • the raw material slurry contains carbon particles, calcium carbonate particles, a binder and water.
  • carbon particles generally used as a raw material for a carbon heat source for a flavor aspirator can be used.
  • any carbon particles that can be burned by ignition can be used.
  • the carbon particles are preferably activated carbon particles, and more preferably activated carbon particles having a BET specific surface area of 1000 to 2500 m 2 / g.
  • the carbon particles preferably have an average particle size of 2 to 100 ⁇ m, more preferably 5 to 50 ⁇ m.
  • the "average particle size” refers to the average particle size D50 based on the volume-based particle size distribution measured by the laser diffraction / scattering type particle size distribution measurement method.
  • activated carbon particles can be used as the carbon particles.
  • Kuraraycol SA2300 average particle size: 6.6 ⁇ m, BET specific surface area: 2100 to 2400 m 2 / g, Kuraray Chemical Co., Ltd.
  • Kuraraycol PW- Y particle size: 45 ⁇ m or less, BET specific surface area: 1300 to 1500 m 2 / g, Kuraray Chemical Co., Ltd.
  • Kuraray Call SA1500 (average particle size: 6.19 ⁇ m, BET specific surface area: 1600 to 1800 m 2 / g) Be done.
  • One type of carbon particles may be used, or a plurality of types may be used in combination.
  • the carbon particles are contained in the slurry in an amount of preferably 20 to 90% by mass, more preferably 30 to 60% by mass, based on the mass of the solid content contained in the slurry.
  • solid content refers to a component (ie, non-volatile content) that remains after the liquid is evaporated from the slurry. That is, the "solid content” is a component that remains when the slurry is in the state of composite particles or a carbon heat source. Therefore, the "solid content” includes not only the components (carbon particles, calcium carbonate particles) that are present in the slurry in a solid state, but also the components that are dissolved in the slurry but remain after the slurry is dried (binder). ) Is also included.
  • calcium carbonate particles As the calcium carbonate particles, calcium carbonate particles generally used in combination with carbon particles can be used as a raw material for a carbon heat source for a flavor aspirator. Calcium carbonate particles can reduce the amount of combustion products, especially the amount of carbon monoxide generated.
  • the calcium carbonate particles for example, particles having a hardness density of 0.3 to 1.0 g / cm 3 can be used. Hardness density was measured after filling a 100 mL container with particles in a ground state (ie, loose bulk density), adding an equal amount of particles, and tapping (vibrating) 180 times. Refers to the density.
  • the calcium carbonate particles preferably have an average particle size of 100 ⁇ m or less, more preferably 10 ⁇ m or less. Since the smaller the average particle size of the calcium carbonate particles is, the more preferable it is, the lower limit thereof is not particularly limited, but is, for example, 0.2 ⁇ m.
  • the "average particle size” refers to the average particle size D50 based on the volume-based particle size distribution measured by the laser diffraction / scattering type particle size distribution measurement method.
  • calcium carbonate particles commercially available calcium carbonate particles can be used, and examples thereof include carpin F (average particle size: 3 ⁇ m, firmness density: 0.66 g / cm 3 , Yabashi Kogyo Co., Ltd.).
  • carpin F average particle size: 3 ⁇ m, firmness density: 0.66 g / cm 3 , Yabashi Kogyo Co., Ltd.
  • One type of calcium carbonate particles may be used, or a plurality of types may be used in combination.
  • the calcium carbonate particles are contained in the slurry in an amount of preferably 5 to 75% by mass, more preferably 40 to 70% by mass, based on the mass of the solid content contained in the slurry.
  • the particle size ratio of the carbon particles and the calcium carbonate particles can be, for example, 10: 1 to 1:10.
  • the mass ratio of the carbon particles to the calcium carbonate particles can be, for example, 5: 1 to 1: 5.
  • a binder generally used as a raw material for a carbon heat source for a flavor aspirator can be used.
  • the binder serves to bind the particles (carbon particles and calcium carbonate particles) in the slurry to each other and increase the strength of the carbon heat source.
  • the binder is dissolved in the slurry.
  • a cellulose derivative, alginate, or the like can be used as the binder.
  • the cellulose derivative include carboxymethyl cellulose, sodium carboxymethyl cellulose, methyl hydroxyethyl cellulose, methyl cellulose and hydroxypropyl cellulose.
  • the binder is contained in the slurry in an amount of preferably 3 to 15% by mass, more preferably 5 to 10% by mass, based on the mass of the solid content contained in the slurry.
  • the carbon heat source is produced using composite particles having a small average particle size and a sharp particle size distribution, it is sufficient to reduce the content of the binder.
  • a strong carbon heat source can be produced. Therefore, in the method of the present invention, the binder content can be reduced as described above. Since the reduction of the binder content increases the content ratio of the carbon particles and the calcium carbonate particles, the ignitability of the carbon heat source can be enhanced.
  • the ratio of the mass of the solid content contained in the slurry to the mass of the liquid contained in the slurry is preferably 1: 1 to 1: 9, more preferably 1: 2 to 1: 1. It is 4.
  • the liquid contained in the slurry is generally water.
  • the slurry When the raw material slurry is stretched into a sheet according to the method of the prior art document described in the background art column (see FIG. 1), the slurry is the mass of the liquid relative to the mass of the solid so that it can be stretched into a sheet. It is necessary to increase the ratio (solid-liquid ratio) of. On the other hand, when the slurry is not made into a sheet but directly atomized to form composite particles, the slurry can reduce the ratio of the mass of the liquid to the mass of the solid content (solid-liquid ratio). By reducing the solid-liquid ratio, the drying time for evaporating the water after that can be shortened, so that the manufacturing cost can be reduced.
  • composite particles having an average particle size D50 of 10 to 150 ⁇ m and a half width of 10 to 150 ⁇ m are formed.
  • the average particle size D50 is preferably 10 to 120 ⁇ m.
  • Average particle size D50 refers to an average particle size D50 based on a volume-based particle size distribution measured by a laser diffraction / scattering type particle size distribution measurement method.
  • Fral width at half maximum refers to a half width based on a volume-based particle size distribution measured by a laser diffraction / scattering particle size distribution measurement method.
  • Fral width at half maximum refers to the full width at half maximum.
  • the composite particles can be formed by any method capable of forming particles having the above particle size and the above half width.
  • the formation of the composite particles can be specifically carried out by using a technique for directly atomizing the slurry, and more specifically, spray drying.
  • the formation of the composite particles can be carried out by spray-drying the slurry.
  • Spray drying is a technique in which a liquid or slurry is sprayed into a gas in the form of mist and rapidly dried to produce particles.
  • the composite particles can be formed by spraying the slurry into a heated gas with an atomizer or a spray nozzle and instantaneously drying the slurry to form fine particles.
  • spray drying the expressions "rapidly dry” or “momentarily dry” mean that the drying is completed while the sprayed droplets are in the air (ie, before they fall to the ground). It means that it is.
  • the composite particles are formed by spray-drying the slurry with a rotary atomizer type spray dryer, that is, the droplets of the slurry are put into a heated gas by centrifugal force by the rotation of a disk-type atomizer (rotary atomizer). It can be done by spraying on the water and instantaneously drying to form fine particles.
  • the rotary atomizer type spray dryer is suitable for forming composite particles having a small particle size and a sharp particle size distribution.
  • composite particles having the above-mentioned average particle size D50 and the above-mentioned half width can be formed by setting the spraying conditions and the drying conditions as follows, for example.
  • Disc diameter 60-200 mm
  • Disk rotation speed 8000 to 30000 rpm
  • Slurry discharge rate 15-160 L / h
  • the composite particles have a small average particle size and a sharp particle size distribution.
  • the composite particles can be molded at a uniform density and a high density throughout the molded product, whereby the strength of the produced carbon heat source can be improved and excellent. It can provide ignitability.
  • the composite particles preferably have a spherical morphology.
  • the "spherical morphology” means that the average roundness obtained from the micrograph of the composite particle is 0 to 0.2 ⁇ D [ ⁇ m] (where D refers to the average particle size D50 of the composite particle). Refers to a certain form.
  • Average roundness refers to the average value of the roundness of 20 composite particles.
  • Roundness refers to the difference in radius between two concentric circles when the distance between the two concentric circles is minimized when the microscope image of the target particle is sandwiched between two concentric geometric circles (JIS B). 0621: 1984).
  • composite particles when the composite particles are produced by spray drying, all the composite particles can usually have a spherical shape. In this way, when composite particles having an all spherical morphology are formed, higher density can be formed.
  • composite particles are produced by spreading the raw material slurry into a sheet and pulverizing the obtained sheet (see FIG. 1). Therefore, in the prior art document, the composite particles do not have a spherical morphology.
  • the composite particles preferably have a smooth surface when observed under a microscope.
  • all the composite particles can usually have a smooth surface.
  • molding composite particles which all have a smooth surface, allows for higher density molding.
  • composite particles are produced by spreading the raw material slurry into a sheet and pulverizing the obtained sheet (see FIG. 1). For this reason, in the prior art literature, composite particles do not have a smooth surface.
  • the composite particles described above are mixed with water to form the resulting mixture.
  • the amount of water mixed with the composite particles is preferably a water content suitable for the subsequent molding operation.
  • the amount of water mixed with the composite particles is preferably 33 to 67% by mass, more preferably 38 to 57% by mass, based on the composite particles. That is, the mixture is preferably a mixture containing the composite particles and 33 to 67% by mass of water with respect to the composite particles, and the mixture is the composite particles and 38 to 57% by mass of water with respect to the composite particles. More preferably, it is a mixture containing and.
  • Water dissolves the binder existing on the surface of the composite particles, thereby playing a role of binding the composite particles to each other. Therefore, it is preferable that the water is uniformly present on the surface of the composite particles. It is preferable to prepare the mixture by spraying water on the surface of the composite particles while flowing the composite particles so that the water spreads over the entire surface of the composite particles. For example, the mixture can be prepared by spraying water onto the surface of the composite particles while stirring the composite particles.
  • Composite particles in the mixture tend to adhere to each other and may aggregate. Therefore, before forming the mixture, the agglomeration of the composite particles may be loosened, or the composite particles may be classified to select only the composite particles having a predetermined size or smaller.
  • Molding can be performed using a molding method commonly used in the manufacture of carbon heat sources for flavor aspirators. Molding can be performed, for example, by compression molding, extrusion molding, or punch molding. The molding can be carried out preferably by compression molding, more preferably by tableting molding. Molding can be carried out so as to obtain a molded product having a density of, for example, 0.6 to 1.0 g / cm 3 . The pressure at the time of molding can be, for example, 1 to 5 kN.
  • the molded body preferably has a cylindrical or polygonal prism shape, assuming that it is incorporated into a cylindrical flavor aspirator.
  • the molded product is dried to produce a dried molded product (dry molded product). Drying can be performed by heat drying. For example, the molded product can be dried at 100 to 200 ° C. for 20 to 60 minutes.
  • the heating temperature may be constant within the above heating temperature range over the drying period, or may be varied so that the temperature rises within the above heating temperature range.
  • the proportion of water in the dry molded product can be, for example, 10% by mass or less.
  • the dry molded product may be used as it is as a carbon heat source.
  • the dry molded product can be chamfered or processed to provide a groove (for example, a cross groove) on the ignition surface, if necessary.
  • the molded product after such processing may be used as a carbon heat source.
  • the chamfering process contributes to making it difficult for cracks and chips to occur at the corners of the carbon heat source. Grooving contributes to the improvement of ignitability.
  • the dry molded product has high strength because it is produced by molding the composite particles at a uniform density and a high density throughout the molded product. Therefore, the dry molded product is suitable for processing because it is less likely to crack or chip even if it is chamfered or grooved.
  • Example of carbon heat source An example of a carbon heat source is shown in FIG.
  • the carbon heat source 10 shown in FIG. 3 has a cylindrical shape.
  • the carbon heat source 10 is incorporated into the flavor aspirator so that the tip surface 11 is arranged at the tip of the flavor aspirator.
  • the carbon heat source 10 includes a tip surface 11, a base end surface 12 facing the tip surface 11, a ventilation path 13 for supplying air to the inside of the flavor aspirator body, and an outer peripheral surface 14.
  • a groove portion 15 provided on the tip surface 11, a first chamfered portion 16 formed between the tip surface 11 and the outer peripheral surface 14, and a second chamfered portion 16 formed between the base end surface 12 and the outer peripheral surface 14. It has a chamfered portion 17.
  • the ventilation path 13 is provided along the central axis C of the carbon heat source 10 and is provided so as to penetrate the carbon heat source 10.
  • the ventilation path 13 communicates the tip end surface 11 and the base end surface 12.
  • the portion of the air passage 13 on the tip surface 11 side is integrated with the groove portion 15.
  • the ventilation passage 13 may be provided by forming a molded body in a hollow columnar shape having a through hole, or may be provided by forming a through hole with a drill after forming the molded body into a solid columnar shape.
  • the groove portion 15 is formed in a "cross" shape as a whole when viewed from the tip surface 11 side.
  • the shape of the groove 15 is not limited to a "cross" shape.
  • the number of grooves 15 is arbitrary.
  • the shape formed by the entire groove portion 15 can be any shape.
  • a plurality of groove portions 15 may extend radially from the ventilation path 13 toward the outer peripheral surface 14.
  • the groove portion 15 is formed by being recessed from the tip surface 11 and the outer peripheral surface 14 so as to straddle the groove portion 15.
  • the groove portion 15 is provided so as to communicate with the ventilation passage 13.
  • the carbon heat source 10 can be formed with the following dimensions.
  • the total length of the carbon heat source 10 (the length of the carbon heat source 10 with respect to the central axis C direction) is appropriately set, for example, in the range of 5 to 30 mm, preferably in the range of 8 to 18 mm.
  • the diameter of the carbon heat source 10 (the length of the carbon heat source 10 in the direction intersecting the central axis C) is appropriately set, for example, in the range of 3 to 15 mm, preferably in the range of 5 to 10 mm.
  • the depth (length) of the groove portion 15 with respect to the central axis C direction of the carbon heat source 10 is appropriately set, for example, in the range of 1 to 5 mm, preferably in the range of 2 to 4 mm.
  • the width (inner diameter) of the groove portion 15 is appropriately set within the range of, for example, 0.5 to 2 mm.
  • the inner diameter of the ventilation passage 13 is appropriately set within the range of, for example, 0.5 to 4 mm.
  • the carbon heat source 10 does not have to have a ventilation path 13. In this case, it is preferable to form a plurality of small holes for ventilation in the flavor aspirator main body (that is, the holder). When the user sucks the flavor aspirator, air is supplied to the inside of the holder and the flavor source in the holder through the small holes.
  • the above-mentioned method does not have a problem that it is difficult to form a carbon heat source, and is excellent in ease of manufacture. Further, according to the above-mentioned method, a carbon heat source having high strength and excellent ignitability can be produced.
  • the composite particles used for producing a carbon heat source have an average particle size D50 of 10 to 150 ⁇ m, a half width of 10 to 150 ⁇ m, a small average particle size, and a sharp particle size distribution.
  • the composite particles could be molded at a uniform density and a high density throughout the molded product, whereby high strength and excellent ignitability could be achieved. Conceivable.
  • the strength of the carbon heat source is guaranteed by using the above-mentioned composite particles, it is possible to produce a carbon heat source having sufficient strength even if the content of the binder is reduced. Since the reduction of the binder content increases the content ratio of the carbon particles and the calcium carbonate particles, the ignitability of the carbon heat source can be enhanced.
  • Composite particles> According to another aspect, ⁇ 1.
  • the "composite particles" described in the column of method for producing a carbon heat source> are provided.
  • composite particles containing carbon particles, calcium carbonate particles, and a binder, having an average particle size D50 of 10 to 150 ⁇ m and a half width of 10 to 150 ⁇ m are provided.
  • a composite particle containing carbon particles, calcium carbonate particles and a binder, having an average particle size D50 of 10 to 120 ⁇ m and a half width of 10 to 150 ⁇ m is provided.
  • Carbon heat source> According to another aspect, ⁇ 1.
  • the carbon heat source has high strength and excellent ignitability.
  • a carbon heat source can have an intensity of 140-250 N and a density of 0.6-1.0 g / cm 3 .
  • the carbon heat source can have an intensity of 140-250 N and a density of 0.7-0.9 g / cm 3 .
  • the carbon heat source When the carbon heat source has a strength of 140 N or more, it has sufficient strength as a carbon heat source for the flavor aspirator.
  • the density of the carbon heat source is an index that correlates with the ignitability, and the lower the density, the better the ignitability.
  • the ignitability depends not only on the density of the carbon heat source but also on other factors such as the type of carbon particles, but the ignitability can be improved when the density of the carbon heat source is, for example, within the above range.
  • Flavor aspirator > According to another aspect, ⁇ 1.
  • a flavor aspirator containing a carbon heat source for a flavor aspirator produced by the method described in the column of> Method for producing carbon heat source> is provided.
  • FIG. 4 An example of a flavor aspirator incorporating the carbon heat source shown in FIG. 3 is shown in FIG.
  • the flavor aspirator 20 shown in FIG. 4 has a cylindrical holder 21 extending from the mouthpiece end 21A to the tip 21B, a carbon heat source 10 provided at the tip 21B of the holder 21, and a flavor source provided downstream of the carbon heat source 10. 22 is provided with an aluminum laminating paper 23 interposed between the holder 21 and the flavor source 22 inside the holder 21, and a filter portion 24 provided inside the holder 21 on the mouthpiece end 21A side.
  • the heat generated by the combustion of the carbon heat source 10 can heat the flavor source 22 located downstream of the carbon heat source 10 and release the flavor.
  • the holder 21 is a paper tube formed by winding paper into a cylindrical shape.
  • the aluminum-bonded paper 23 is formed by laminating aluminum on paper, and has improved heat resistance and thermal conductivity as compared with ordinary paper.
  • the aluminum laminated paper 23 prevents the paper tube of the holder 21 from burning even when the carbon heat source 10 is ignited.
  • the central axis C of the holder 21 coincides with the central axis C of the carbon heat source 10.
  • the flavor source 22 is provided at a position adjacent to the carbon heat source 10 and downstream of the carbon heat source 10.
  • any flavor source capable of releasing the flavor by heating can be used.
  • the flavor source 22 forms a tobacco material such as leaf tobacco into a sheet, and forms a corrugated tobacco sheet by forming a bellows-shaped fold on the tobacco sheet, and the corrugated tobacco sheet is used as a plurality of air channels in the longitudinal direction. It can be prepared by collecting to form a cylindrical body.
  • granules formed from a tobacco extract or leaf tobacco itself can be used.
  • any tobacco filler such as general tobacco chopped used for cigarettes, granular tobacco used for snuff, rolled tobacco, and molded tobacco can be adopted.
  • Rolled tobacco is obtained by molding sheet-shaped recycled tobacco into a roll shape and has a flow path inside.
  • molded tobacco is obtained by molding granular tobacco with a mold.
  • a carrier made of a porous material or a non-porous material on which a tobacco flavor or a flavor other than the tobacco flavor is supported may be adopted.
  • the flavor source 22 may be rolled into a cylindrical shape with paper and then incorporated into the flavor aspirator 20, or may be housed in a metal or paper cup and then incorporated into the flavor aspirator 20.
  • the filter unit 24 is composed of a filter generally used in cigarettes.
  • the filter portion 24 can be formed of various types of fillers.
  • the filter unit 24 is composed of, for example, a filler of cellulosic semi-synthetic fibers such as cellulose acetate, but the filler is not limited to this.
  • Fillers include, for example, plant fibers such as cotton, hemp, Manila hemp, palm and igusa, animal fibers such as wool and cashmere, cellulosic regenerated fibers such as rayon, synthetic fibers such as nylon, polyester, acrylic, polyethylene and polypropylene. A combination of them can be used.
  • the constituent elements of the filter unit 24 may be a charcoal filter containing charcoal or a filter containing granules other than charcoal, in addition to the above-mentioned filler made of cellulose acetate fiber. Further, the filter unit 24 may have a multi-segment structure in which two or more segments of different types are connected in the axial direction.
  • the method for producing a carbon heat source for a flavor aspirator is Forming composite particles by spray-drying a slurry containing carbon particles, calcium carbonate particles, a binder, and water. This includes molding a mixture containing the composite particles and water to obtain a molded product, and drying the molded product.
  • the above method is ⁇ 1. It can be carried out according to the same procedure as that described in the column of> Method for producing carbon heat source>.
  • composite particles having a small average particle size and a sharp particle size distribution can be formed.
  • composite particles having an average particle size D50 of 10 to 150 ⁇ m and a half width of 10 to 150 ⁇ m can be formed.
  • the composite particles can be molded at a uniform density and a high density throughout the molded product, whereby the strength of the produced carbon heat source can be improved and excellent. It can provide ignitability.
  • [A2] The method according to [A1], wherein the average particle size D50 is 10 to 120 ⁇ m, preferably 50 to 150 ⁇ m, and more preferably 70 to 120 ⁇ m.
  • [A3] The method according to [A1] or [A2], wherein the half width is 30 to 150 ⁇ m, preferably 50 to 150 ⁇ m, and more preferably 60 to 140 ⁇ m.
  • [A4] The method according to any one of [A1] to [A3], wherein the composite particles have a spherical shape.
  • [A5] The method according to any one of [A1] to [A4], wherein the formation of the composite particles is performed by spray-drying the slurry.
  • [A6] The method according to any one of [A1] to [A5], wherein the formation of the composite particles is performed by spray-drying the slurry with a rotary atomizer type spray dryer.
  • [A7] Any of [A1] to [A6] in which the binder is contained in the slurry in an amount of 3 to 15% by mass, preferably 5 to 10% by mass, based on the mass of the solid content contained in the slurry. The method according to 1.
  • the method according to 1. [A9] The ratio (A: B) of the mass (A) of the solid content contained in the slurry to the mass (B) of the liquid contained in the slurry is 1: 1 to 1: 9, preferably 1: 1.
  • [A11] The method according to any one of [A1] to [A10], wherein the carbon particles are activated carbon particles.
  • the carbon particles are contained in the slurry in an amount of 20 to 90% by mass, preferably 30 to 60% by mass, based on the mass of the solid content contained in the slurry.
  • [A13] Any of [A1] to [A12], wherein the calcium carbonate particles have an average particle size of 100 ⁇ m or less (for example, 0.2 to 100 ⁇ m), preferably 10 ⁇ m or less (for example, 0.2 to 10 ⁇ m). The method according to 1.
  • the calcium carbonate particles are contained in the slurry in an amount of 5 to 75% by mass, preferably 40 to 70% by mass, based on the mass of the solid content contained in the slurry [A1] to [A13].
  • the method according to any one of. [A15] The method according to any one of [A1] to [A14], wherein the particle size ratio of the carbon particles to the calcium carbonate particles is 10: 1 to 1:10.
  • [A16] The method according to any one of [A1] to [A15], wherein the mass ratio of the carbon particles to the calcium carbonate particles is 5: 1 to 1: 5.
  • [A17] The method according to any one of [A1] to [A16], wherein the binder is a cellulose derivative.
  • [A18] The method according to [A17], wherein the cellulose derivative is carboxymethyl cellulose, sodium carboxymethyl cellulose, methyl hydroxyethyl cellulose, methyl cellulose, or hydroxypropyl cellulose.
  • [A19] The method according to [A17] or [A18], wherein the cellulose derivative is carboxymethyl cellulose.
  • [A20] The method according to any one of [A1] to [A19], wherein the molding is performed by compression molding.
  • [A21] The method according to any one of [A1] to [A20], wherein the molding is performed by tablet molding.
  • the molding is carried out so as to obtain a molded product having a density of 0.6 to 1.0 g / cm 3 , preferably 0.7 to 0.9 g / cm 3 , [A1] to [A21].
  • the method according to any one of. [A23] The method according to any one of [A1] to [A22], wherein the molding is performed by applying a pressure of 1 to 5 kN.
  • [B1] Forming composite particles by spray-drying a slurry containing carbon particles, calcium carbonate particles, a binder, and water.
  • a method for producing a carbon heat source for a flavor aspirator which comprises molding a mixture containing the composite particles and water to obtain a molded product, and drying the molded product.
  • [B2] The method according to [B1], wherein the composite particles have an average particle size D50 of 10 to 150 ⁇ m and a half width of 10 to 150 ⁇ m.
  • [B3] The method according to [B2], wherein the average particle size D50 is 10 to 120 ⁇ m, preferably 50 to 150 ⁇ m, and more preferably 70 to 120 ⁇ m.
  • [B4] The method according to [B2] or [B3], wherein the half width is 30 to 150 ⁇ m, preferably 50 to 150 ⁇ m, and more preferably 60 to 140 ⁇ m.
  • [B5] The method according to any one of [B1] to [B4], wherein the composite particles have a spherical shape.
  • [B6] The method according to any one of [B1] to [B5], wherein the formation of the composite particles is performed by spray-drying the slurry with a rotary atomizer type spray dryer.
  • [B7] Any of [B1] to [B6] in which the binder is contained in the slurry in an amount of 3 to 15% by mass, preferably 5 to 10% by mass, based on the mass of the solid content contained in the slurry. The method according to 1.
  • the method according to 1. [B9] The ratio (A: B) of the mass (A) of the solid content contained in the slurry to the mass (B) of the liquid contained in the slurry is 1: 1 to 1: 9, preferably 1: 1.
  • [B11] The method according to any one of [B1] to [B10], wherein the carbon particles are activated carbon particles.
  • the carbon particles are contained in the slurry in an amount of 20 to 90% by mass, preferably 30 to 60% by mass, based on the mass of the solid content contained in the slurry.
  • [B13] Any of [B1] to [B12], wherein the calcium carbonate particles have an average particle size of 100 ⁇ m or less (for example, 0.2 to 100 ⁇ m), preferably 10 ⁇ m or less (for example, 0.2 to 10 ⁇ m). The method according to 1.
  • the calcium carbonate particles are contained in the slurry in an amount of 5 to 75% by mass, preferably 40 to 70% by mass, based on the mass of the solid content contained in the slurry [B1] to [B13].
  • the method according to any one of. [B15] The method according to any one of [B1] to [B14], wherein the particle size ratio of the carbon particles to the calcium carbonate particles is 10: 1 to 1:10.
  • [B16] The method according to any one of [B1] to [B15], wherein the mass ratio of the carbon particles to the calcium carbonate particles is 5: 1 to 1: 5.
  • [B17] The method according to any one of [B1] to [B16], wherein the binder is a cellulose derivative.
  • the binder is a cellulose derivative.
  • the cellulose derivative is carboxymethyl cellulose, sodium carboxymethyl cellulose, methyl hydroxyethyl cellulose, methyl cellulose, or hydroxypropyl cellulose.
  • the cellulose derivative is carboxymethyl cellulose.
  • [B20] The method according to any one of [B1] to [B19], wherein the molding is performed by compression molding.
  • [B21] The method according to any one of [B1] to [B20], wherein the molding is performed by tablet molding.
  • the molding is carried out so as to obtain a molded product having a density of 0.6 to 1.0 g / cm 3 , preferably 0.7 to 0.9 g / cm 3 , [B1] to [B21].
  • the method according to any one of. [B23] The method according to any one of [B1] to [B22], wherein the molding is performed by applying a pressure of 1 to 5 kN.
  • [C1] A composite particle containing carbon particles, calcium carbonate particles, and a binder, having an average particle size D50 of 10 to 150 ⁇ m and a half width of 10 to 150 ⁇ m.
  • [C2] The composite particle according to [C1], wherein the average particle size D50 is 10 to 120 ⁇ m, preferably 50 to 150 ⁇ m, and more preferably 70 to 120 ⁇ m.
  • [C3] The composite particle according to [C1] or [C2], wherein the half width is 30 to 150 ⁇ m, preferably 50 to 150 ⁇ m, and more preferably 60 to 140 ⁇ m.
  • [C4] The composite particle according to any one of [C1] to [C3], wherein the composite particle has a spherical shape.
  • [C5] The composite particle according to any one of [C1] to [C4], wherein the binder is contained in the composite particle in an amount of 3 to 15% by mass, preferably 5 to 10% by mass.
  • [C6] The composite particle according to any one of [C1] to [C5], wherein the carbon particles have an average particle size of 2 to 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • [C7] The composite particle according to any one of [C1] to [C6], wherein the carbon particles are activated carbon particles.
  • [C8] The composite particle according to any one of [C1] to [C7], wherein the carbon particle is contained in the composite particle in an amount of 20 to 90% by mass, preferably 30 to 60% by mass.
  • [C9] Any of [C1] to [C8] in which the calcium carbonate particles have an average particle size of 100 ⁇ m or less (for example, 0.2 to 100 ⁇ m), preferably 10 ⁇ m or less (for example, 0.2 to 10 ⁇ m).
  • [C10] The composite particle according to any one of [C1] to [C9], wherein the calcium carbonate particles are contained in the composite particles in an amount of 5 to 75% by mass, preferably 40 to 70% by mass.
  • [C11] The composite particle according to any one of [C1] to [C10], wherein the particle size ratio of the carbon particles to the calcium carbonate particles is 10: 1 to 1:10.
  • [C12] The composite particle according to any one of [C1] to [C11], wherein the mass ratio of the carbon particles to the calcium carbonate particles is 5: 1 to 1: 5.
  • [C13] The composite particle according to any one of [C1] to [C12], wherein the binder is a cellulose derivative.
  • [C14] The composite particle according to [C13], wherein the cellulose derivative is carboxymethyl cellulose, sodium carboxymethyl cellulose, methyl hydroxyethyl cellulose, methyl cellulose, or hydroxypropyl cellulose.
  • [C15] The composite particle according to [C13] or [C14], wherein the cellulose derivative is carboxymethyl cellulose.
  • [D1] A carbon heat source for a flavor aspirator produced by the method according to any one of [A1] to [A23].
  • [D2] A carbon heat source for a flavor aspirator produced by the method according to any one of [B1] to [B23].
  • [D3] The carbon heat source for a flavor aspirator according to [D1] or [D2], wherein the carbon heat source has an intensity of 140 to 250 N and a density of 0.6 to 1.0 g / cm 3 .
  • [D4] The carbon heat source for a flavor aspirator according to any one of [D1] to [D3], wherein the carbon heat source has an intensity of 140 to 250 N and a density of 0.7 to 0.9 g / cm 3 .
  • [E1] A flavor aspirator containing the carbon heat source according to any one of [D1] to [D4].
  • [E2] A tubular holder extending from the mouthpiece end to the tip, a carbon heat source according to any one of [D1] to [D4] provided at the tip, and inside the holder downstream of the carbon heat source.
  • the flavor aspirator according to [E2] further including a filter portion provided on the mouthpiece end side inside the holder.
  • Composite particles 1-1 Preparation of composite particles ⁇ Preparation of composite particles A1> (1) Preparation of slurry A1 As carbon particles, activated carbon particles, specifically, Clarecol SA2300 (average particle size: 6.6 ⁇ m, BET specific surface area: 2100 to 2400 m 2 / g, Clarecol PW) and Clarecol PW A mixture (2: 8 mass ratio) with ⁇ Y (particle size: 45 ⁇ m or less, BET specific surface area: 1300 to 1500 m 2 / g, Claret Chemical Co., Ltd.) was used.
  • Carpin F (average particle size: 3 ⁇ m, firmness density: 0.66 g / cm 3 , Yabashi Kogyo Co., Ltd.) was used as the calcium carbonate particles.
  • Preparation of composite particles A2 Preparation of Slurry A2 Preparation of Slurry A1 except that solid content consisting of carbon particles, calcium carbonate particles and a binder and water were mixed at a solid-liquid ratio (mass ratio) of 1: 3. Slurry A2 was prepared according to the same procedure.
  • Slurry A3 was spray-dried to prepare composite particles.
  • the spray drying was carried out using a rotary atomizer type spray drying device (SDR-27, IS Japan Co., Ltd.). Specifically, the raw material slurry was sent to a disk rotating at high speed, and droplets were scattered into the heated gas by centrifugal force to atomize the raw material slurry. As a result, composite particles A3 (average particle size (D50) 110 ⁇ m) were prepared.
  • the spray drying conditions were as follows. Disc diameter: 150 mm Disk rotation speed: 15,000 to 25,000 rpm Slurry discharge rate: 70-160 L / hour Outlet (where particles come out) Hot air temperature: 100-140 ° C
  • Preparation of composite particle B (1) Preparation of Slurry B Slurry A1 except that solid content composed of carbon particles, calcium carbonate particles and a binder and water were mixed at a solid-liquid ratio (mass ratio) of 1: 4.75. Slurry B was prepared according to the same procedure as the preparation.
  • Sheet formation Slurry B was sheetized. Sheet formation was performed using a CD (compact disc) dryer (manufactured by Nishimura Iron Works). Specifically, the following procedure was carried out.
  • CD compact disc
  • the gap between the scraper and the disc was adjusted to 0.2 mm.
  • the disc was heated to 140 ° C. and rotated at 0.8 rpm.
  • the slurry was fed to the circulation tank and the slurry in the circulation tank was sprayed onto the disc using a pump.
  • a dried product (sheet form) dried on a disk was collected with a scraper.
  • the dried product was sieved and classified into raw materials of 100 ⁇ m or more and 300 ⁇ m or less. A raw material exceeding 300 ⁇ m was supplied to a pulverizer and pulverized. The classification and pulverization operations were repeated to obtain a pulverized product having a target particle size of 100 to 300 ⁇ m.
  • the obtained pulverized product is called composite particle B.
  • Measurement method 1. Blank measurements were performed using only compressed air. 2. An appropriate amount of the sample was placed in the dry unit. Measurement conditions: Measurement range 0.20 to 20000.00 ⁇ m Compressed air pressure 0.1 MPa Measurement method Injection type dry measurement
  • the particle size distributions of the composite particles A1, the composite particles A2, and the composite particles A3 are shown in FIGS. 5 to 7, respectively, and the particle size distribution of the composite particles B is shown in FIG.
  • the composite particle A1 had an average particle size D50 of 76 ⁇ m and a half width of 62 ⁇ m (see FIG. 5).
  • the composite particle A2 had an average particle size D50 of 94 ⁇ m and a half width of 103 ⁇ m (see FIG. 6).
  • the composite particle A3 had an average particle size D50 of 110 ⁇ m and a half width of 137 ⁇ m (see FIG. 7).
  • the composite particle B had an average particle size D50 of 221 ⁇ m and a half width of 258 ⁇ m (see FIG. 8).
  • the composite particles A1, the composite particles A2, and the composite particles A3 had a spherical shape, and the particle surface had a smooth surface (see FIG. 9).
  • the average roundness of the composite particle A2 was 11.5 ⁇ m (0.12 ⁇ D50).
  • the composite particle B is a pulverized product, it does not have a spherical shape and does not have a smooth surface (see FIG. 10).
  • the average roundness of the composite particle B was 66.7 ⁇ m (0.30 ⁇ D50).
  • Carbon heat source A carbon heat source was produced using the composite particles prepared in Test Example 1.
  • a carbon heat source A1 was produced from the composite particles A1
  • a carbon heat source A2 was produced from the composite particles A2
  • a carbon heat source A3 was produced from the composite particles A3, and a carbon heat source B1 and a carbon heat source B2 were produced from the composite particles B.
  • Table 1 summarizes the production conditions of the carbon heat source A1, the carbon heat source A2, the carbon heat source A3, the carbon heat source B1, and the carbon heat source B2.
  • the base metal after classification was tablet-molded.
  • the tableting molding was performed using a tableting molding machine CREC (manufactured by Kikusui Seisakusho Co., Ltd.).
  • the base material was formed into a cylindrical shape. Specifically, the following procedure was carried out.
  • the base material after classification was supplied to the fixed quantity feeder.
  • the stirring feed shoe was rotated at 80 rpm, and the base material was supplied from the metering feed machine to the stirring feed shoe. While keeping the amount of the base material in the stirring feed shoe constant, the tableting machine rotating disk was rotated at 15 rpm to perform locking.
  • the pressure at the time of striking was 1.5 to 3.0 kN.
  • Cutting A through hole was drilled in the dried tableted product, and a ventilation path 13 was provided as shown in FIG. Further, the dried tableted product was chamfered and cross-processed using a cutting device MTC (device name: carbon molded product processing tester, company name: Yamamoto Kikai Seisakusho Co., Ltd.). As shown in FIG. 3, the chamfering process was performed on both the tip surface 11 and the base end surface 12, and the cross process was performed only on the tip surface 11. After the processing, the air passage 13 was air-blown and the groove portion 15 formed by the cross processing was air-blown. As a result, the carbon heat source A1 was manufactured.
  • a cutting device MTC device name: carbon molded product processing tester, company name: Yamamoto Kikai Seisakusho Co., Ltd.
  • the produced carbon heat source A1 had the shape shown in FIG. 3 and had the following dimensions. Overall length (length of carbon heat source with respect to central axis C direction): 13 mm Diameter (length of carbon heat source in the direction intersecting the central axis C): 6.49 mm Depth (length) of groove 15 in the central axis C direction: 3.0 mm Groove 15 width (inner diameter): 0.6 mm Inner diameter of ventilation passage 13: 1.0 mm
  • the carbon heat source A2 was produced according to the same procedure as the production of the carbon heat source A1 except that the composite particles A2 were used instead of the composite particles A1.
  • the carbon heat source A3 was produced according to the same procedure as the production of the carbon heat source A1 except that the composite particles A3 were used instead of the composite particles A1.
  • the carbon heat source B1 was produced according to the same procedure as that for the carbon heat source A1 except that the composite particles B were used instead of the composite particles A1 and water was added in an amount of 34% by mass with respect to the composite particles B. did.
  • the carbon heat source B2 was manufactured according to the same procedure as that for the carbon heat source A1 except that the composite particles B were used instead of the composite particles A1.
  • Breaking strength 140 [N] or more Breaking strength 80 [N] or more, less than 140 [N]
  • the filament of the lighter was directly attached to the carbon heat source.
  • the cross of the filament of the lighter and the cross of the groove of the carbon heat source were directly attached so as to overlap.
  • the output of the writer was set to "strong".
  • the time from when the lighter switch was turned on to the start of suction was changed for evaluation.
  • the suction capacity was 55 mL / 2 sec.
  • the lighter was separated from the carbon heat source. If the carbon heat source was reddish on the second puff (15 seconds later), it was judged to be ignited.
  • the surface (tip surface) of the carbon heat source arranged on the upper punch side of the tableting machine was evaluated.
  • the tip surface of the carbon heat source is divided into four regions (islands) by cross processing (see FIG. 3).
  • the ignitability was evaluated by the number of ignited islands. ⁇ : When four islands ignite ⁇ : When two or three islands are ignited ⁇ : When one island is ignited or not ignited
  • the volume of the carbon heat source having a cylindrical shape was calculated from the diameter of the cylinder and the height of the cylinder.
  • the mass of the carbon heat source was measured.
  • the density of the carbon heat source [g / cm 3 ] was calculated from the values of volume and mass.
  • the density of the carbon heat source is an index that correlates with the ignitability, and the lower the density, the better the ignitability.
  • the carbon heat source A1 Regarding the production of the carbon heat source A1, the carbon heat source A2, and the carbon heat source A3, there was no problem that it was difficult to mold the carbon heat source, and the production was excellent. Further, the carbon heat source A1, the carbon heat source A2 and the carbon heat source A3 had high strength and excellent ignitability.
  • the composite particles A1, the composite particles A2, and the composite particles A3 used for producing the carbon heat source A1, the carbon heat source A2, and the carbon heat source A3 all had a small average particle size and a sharp particle size distribution. Therefore, the composite particles can be molded at a uniform density and a high density throughout the molded body, whereby the strength of the produced carbon heat source can be improved and excellent ignitability is provided. It is probable that it was possible.
  • the carbon heat source B2 was produced by adding an amount of water generally used at the time of molding (that is, 30% by weight of water with respect to the composite particles B) using the composite particles B, it was difficult to mold and the obtained carbon was obtained.
  • the heat source B2 did not show any problem in ignitability, but its strength was not sufficient.
  • the composite particle B had a larger average particle size and a larger half-value width than the composite particle A1, the composite particle A2, and the composite particle A3. Therefore, the composite particles B cannot be molded at a uniform density and a high density throughout the molded body, which makes it difficult to mold and the strength of the produced carbon heat source is low. Is thought to have happened.
  • the composite particle B since the composite particle B is a pulverized product, it does not have a spherical shape, and the surface is uneven and not smooth. It is considered that such a shape of the composite particle B also affected the difficulty of molding and the decrease in the strength of the carbon heat source.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cigarettes, Filters, And Manufacturing Of Filters (AREA)

Abstract

A method for manufacturing a carbon heat source for a flavor inhalation tool, said method comprising: forming composite particles, which have an average particle diameter D50 of 10-150 μm and a half-value width of 10-150 μm, with the use of, as a starting material, a slurry containing carbon particles, calcium carbonate particles, a binder and water; molding a mixture containing the composite particles and water to give a molded article; and drying the molded article.

Description

香味吸引器用炭素熱源の製造方法、複合粒子、香味吸引器用炭素熱源、および香味吸引器Manufacturing method of carbon heat source for flavor aspirator, composite particles, carbon heat source for flavor aspirator, and flavor aspirator
 本発明は、香味吸引器用炭素熱源の製造方法、複合粒子、香味吸引器用炭素熱源、および香味吸引器に関する。 The present invention relates to a method for producing a carbon heat source for a flavor aspirator, composite particles, a carbon heat source for a flavor aspirator, and a flavor aspirator.
 炭素熱源を先端に備え、炭素熱源の燃焼熱によりたばこ充填材を加熱する香味吸引器が知られている。香味吸引器に用いられる炭素熱源は、炭素粒子とバインダー等の添加剤とを含む原料スラリーを押出成形し、乾燥させることにより製造することができる。 A flavor aspirator that has a carbon heat source at the tip and heats the tobacco filler by the combustion heat of the carbon heat source is known. The carbon heat source used in the flavor aspirator can be produced by extrusion-molding a raw material slurry containing carbon particles and an additive such as a binder and drying it.
 日本国特開昭62-224276号公報は、炭素熱源の燃焼性を向上させることを目的として、炭素熱源の改良された製造方法を開示する。具体的には、日本国特開昭62-224276号公報は、本願の図1に示されるとおり、炭素粒子1aと、バインダーを含む水溶液(分散媒)1bとを含む原料スラリー1をシート状に延ばして乾燥させ、得られたシート2を粉砕し、得られた粉砕物3に水を加えて成形し、得られた成形体4を乾燥させることにより、炭素熱源5を製造することを開示する。 Japanese Patent Application Laid-Open No. 62-224276 discloses an improved manufacturing method of a carbon heat source for the purpose of improving the flammability of the carbon heat source. Specifically, Japanese Patent Application Laid-Open No. 62-224276 describes a raw material slurry 1 containing carbon particles 1a and an aqueous solution (dispersion medium) 1b containing a binder in the form of a sheet, as shown in FIG. 1 of the present application. It is disclosed that a carbon heat source 5 is produced by stretching and drying, crushing the obtained sheet 2, adding water to the obtained pulverized product 3 for molding, and drying the obtained molded product 4. ..
 WO2006/073065号公報は、炭素粒子と炭酸カルシウム粒子とバインダーとを含む組成物から炭素熱源を製造すること、かかる炭素熱源は、炭素熱源の燃焼時に発生する一酸化炭素の量を減少させることができることを開示する。 WO2006 / 073065 discloses that a carbon heat source is produced from a composition containing carbon particles, calcium carbonate particles and a binder, and such carbon heat source can reduce the amount of carbon monoxide generated during combustion of the carbon heat source. Disclose what you can do.
 本発明者らは、日本国特開昭62-224276号公報に記載される方法に従って、炭素熱源を製造したところ、成形し難いという問題に遭遇した。そこで、成形時に添加される水の量を増やして(例えば、粉砕物に対して34質量%の量で)成形を試みると、成形機に成形材料が付着してしまった(後述の比較例1を参照)。成形時に一般に使用される量(例えば、粉砕物に対して30重量%)の水を加えて成形すると、成形し難く、得られた炭素熱源は、着火性に問題は見られなかったが、強度が十分でなかった(後述の比較例2を参照)。 The present inventors encountered a problem that it was difficult to mold when a carbon heat source was produced according to the method described in Japanese Patent Application Laid-Open No. 62-224276. Therefore, when an attempt was made to mold by increasing the amount of water added during molding (for example, in an amount of 34% by mass with respect to the pulverized product), the molding material adhered to the molding machine (Comparative Example 1 described later). See). When molding was performed by adding an amount of water generally used during molding (for example, 30% by weight with respect to the pulverized product), molding was difficult, and the obtained carbon heat source did not show any problem in ignitability, but was strong. Was not sufficient (see Comparative Example 2 below).
 したがって、本発明は、製造容易性に優れ、且つ高い強度および優れた着火性を有する香味吸引器用炭素熱源に関する技術を提供することを目的とする。 Therefore, an object of the present invention is to provide a technique relating to a carbon heat source for a flavor aspirator, which is excellent in ease of manufacture and has high strength and excellent ignitability.
 第1の側面によれば、
 炭素粒子と炭酸カルシウム粒子とバインダーと水とを含むスラリーを原料として用いて、平均粒径D50が10~150μmであり、かつ半値幅が10~150μmである複合粒子を形成すること、
 前記複合粒子と水とを含む混合物を成形して、成形体を得ること、および
 前記成形体を乾燥させること
を含む、香味吸引器用炭素熱源の製造方法が提供される。
According to the first aspect
Using a slurry containing carbon particles, calcium carbonate particles, a binder and water as a raw material to form composite particles having an average particle size D50 of 10 to 150 μm and a half width of 10 to 150 μm.
A method for producing a carbon heat source for a flavor aspirator is provided, which comprises molding a mixture containing the composite particles and water to obtain a molded product, and drying the molded product.
 第2の側面によれば、炭素粒子と炭酸カルシウム粒子とバインダーとを含み、平均粒径D50が10~150μmであり、かつ半値幅が10~150μmである複合粒子が提供される。 According to the second aspect, a composite particle containing carbon particles, calcium carbonate particles, and a binder, having an average particle size D50 of 10 to 150 μm and a half width of 10 to 150 μm is provided.
 第3の側面によれば、第1の側面に記載の方法により製造される香味吸引器用炭素熱源が提供される。 
 第4の側面によれば、第3の側面に記載の炭素熱源を含む香味吸引器が提供される。
According to the third aspect, there is provided a carbon heat source for a flavor aspirator produced by the method according to the first aspect.
According to the fourth aspect, a flavor aspirator comprising the carbon heat source according to the third aspect is provided.
 本発明によれば、製造容易性に優れ、且つ高い強度および優れた着火性を有する香味吸引器用炭素熱源に関する技術を提供することができる。 According to the present invention, it is possible to provide a technique relating to a carbon heat source for a flavor aspirator, which is excellent in ease of manufacture and has high strength and excellent ignitability.
図1は、先行技術文献に記載の方法を模式的に示す図である。FIG. 1 is a diagram schematically showing a method described in the prior art document. 図2は、本発明の方法の一例を模式的に示す図である。FIG. 2 is a diagram schematically showing an example of the method of the present invention. 図3は、香味吸引器用炭素熱源の一例を示す斜視図である。FIG. 3 is a perspective view showing an example of a carbon heat source for a flavor aspirator. 図4は、香味吸引器の一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of a flavor aspirator. 図5は、複合粒子A1の粒度分布を示すグラフである。FIG. 5 is a graph showing the particle size distribution of the composite particle A1. 図6は、複合粒子A2の粒度分布を示すグラフである。FIG. 6 is a graph showing the particle size distribution of the composite particle A2. 図7は、複合粒子A3の粒度分布を示すグラフである。FIG. 7 is a graph showing the particle size distribution of the composite particle A3. 図8は、複合粒子Bの粒度分布を示すグラフである。FIG. 8 is a graph showing the particle size distribution of the composite particle B. 図9は、複合粒子A2の顕微鏡写真である。FIG. 9 is a photomicrograph of the composite particle A2. 図10は、複合粒子Bの顕微鏡写真である。FIG. 10 is a photomicrograph of the composite particle B.
 以下、本発明を詳細に説明するが、以下の説明は、本発明を説明することを目的とし、本発明を限定することを意図しない。 The present invention will be described in detail below, but the following description is for the purpose of explaining the present invention and is not intended to limit the present invention.
 <1.炭素熱源の製造方法>
 一つの側面において、香味吸引器用炭素熱源の製造方法は、
 炭素粒子と炭酸カルシウム粒子とバインダーと水とを含むスラリーを原料として用いて、平均粒径D50が10~150μmであり、かつ半値幅が10~150μmである複合粒子を形成すること、
 前記複合粒子と水とを含む混合物を成形して、成形体を得ること、および
 前記成形体を乾燥させること
を含む。
<1. Manufacturing method of carbon heat source >
In one aspect, the method for producing a carbon heat source for a flavor aspirator is:
Using a slurry containing carbon particles, calcium carbonate particles, a binder and water as a raw material to form composite particles having an average particle size D50 of 10 to 150 μm and a half width of 10 to 150 μm.
This includes molding a mixture containing the composite particles and water to obtain a molded product, and drying the molded product.
 香味吸引器用炭素熱源は、炭素熱源の燃焼により、香味吸引器内の香味源を加熱する熱源である。香味吸引器内の香味源は、炭素熱源の燃焼熱により加熱されるが燃焼されない。香味源は、加熱により香味を発生する。以下の説明において、香味吸引器用炭素熱源は、単に「炭素熱源」ともいう。 The carbon heat source for the flavor aspirator is a heat source that heats the flavor source in the flavor aspirator by burning the carbon heat source. The flavor source in the flavor aspirator is heated by the combustion heat of the carbon heat source, but is not burned. The flavor source produces flavor by heating. In the following description, the carbon heat source for the flavor aspirator is also simply referred to as a "carbon heat source".
 本発明の方法の一例を模式的に図2に示す。図2は、
(1)原料スラリー1を準備し、
(2)原料スラリー1から複合粒子6を形成し、
(3)複合粒子6を成形して、成形体7を得、
(4)成形体7を乾燥させて、乾燥された成形体8を得る
ことを示す。
An example of the method of the present invention is schematically shown in FIG. Figure 2 shows
(1) Prepare the raw material slurry 1 and prepare it.
(2) Composite particles 6 are formed from the raw material slurry 1 and
(3) The composite particle 6 is molded to obtain a molded body 7.
(4) It is shown that the molded product 7 is dried to obtain a dried molded product 8.
 乾燥された成形体8は、そのまま炭素熱源として使用してもよいし、必要な加工を施した後に炭素熱源として使用してもよい。図2において、原料スラリー1は、炭素粒子1aと、炭酸カルシウム粒子1cと、バインダーを含む水溶液(分散媒)1bとから構成される。 The dried molded product 8 may be used as it is as a carbon heat source, or may be used as a carbon heat source after performing necessary processing. In FIG. 2, the raw material slurry 1 is composed of carbon particles 1a, calcium carbonate particles 1c, and an aqueous solution (dispersion medium) 1b containing a binder.
 「原料スラリーの準備」、「複合粒子の形成」、「成形」、「乾燥」の工程を、以下で詳細に説明する。 The processes of "preparation of raw material slurry", "formation of composite particles", "molding", and "drying" will be described in detail below.
 (原料スラリーの準備)
 原料スラリーは、炭素粒子と炭酸カルシウム粒子とバインダーと水とを含む。
(Preparation of raw material slurry)
The raw material slurry contains carbon particles, calcium carbonate particles, a binder and water.
 炭素粒子は、香味吸引器用炭素熱源の原料として一般に使用される炭素粒子を使用することができる。具体的には、炭素粒子は、着火により燃焼することが可能な任意の炭素粒子を使用することができる。炭素粒子は、好ましくは活性炭粒子であり、より好ましくは、1000~2500m2/gのBET比表面積を有する活性炭粒子である。炭素粒子は、好ましくは2~100μm、より好ましくは5~50μmの平均粒径を有する。ここで「平均粒径」は、レーザー回折散乱式粒度分布測定法により測定される体積基準の粒度分布に基づく平均粒径D50を指す。 As the carbon particles, carbon particles generally used as a raw material for a carbon heat source for a flavor aspirator can be used. Specifically, as the carbon particles, any carbon particles that can be burned by ignition can be used. The carbon particles are preferably activated carbon particles, and more preferably activated carbon particles having a BET specific surface area of 1000 to 2500 m 2 / g. The carbon particles preferably have an average particle size of 2 to 100 μm, more preferably 5 to 50 μm. Here, the "average particle size" refers to the average particle size D50 based on the volume-based particle size distribution measured by the laser diffraction / scattering type particle size distribution measurement method.
 炭素粒子は、市販の活性炭粒子を使用することができ、例えば、クラレコールSA2300(平均粒径:6.6μm、BET比表面積:2100~2400m2/g、クラレケミカル株式会社)、クラレコールPW-Y(粒径:45μm以下、BET比表面積:1300~1500m2/g、クラレケミカル株式会社)、クラレコールSA1500(平均粒径:6.19μm、BET比表面積:1600~1800m/g)が挙げられる。炭素粒子は、1種類を使用してもよいし、複数種類を組み合わせて使用してもよい。 Commercially available activated carbon particles can be used as the carbon particles. For example, Kuraraycol SA2300 (average particle size: 6.6 μm, BET specific surface area: 2100 to 2400 m 2 / g, Kuraray Chemical Co., Ltd.), Kuraraycol PW- Y (particle size: 45 μm or less, BET specific surface area: 1300 to 1500 m 2 / g, Kuraray Chemical Co., Ltd.), Kuraray Call SA1500 (average particle size: 6.19 μm, BET specific surface area: 1600 to 1800 m 2 / g) Be done. One type of carbon particles may be used, or a plurality of types may be used in combination.
 炭素粒子は、スラリーに含まれる固形分の質量に対して、好ましくは20~90質量%、より好ましくは30~60質量%の量で、スラリーに含まれる。本明細書において「固形分」は、スラリーから液体を蒸発させた後に残留する成分(すなわち、不揮発分)を指す。すなわち、「固形分」は、スラリーが複合粒子または炭素熱源の状態になったときに残留する成分である。したがって、「固形分」には、スラリー中に固体の状態で存在する成分(炭素粒子、炭酸カルシウム粒子)だけでなく、スラリー中に溶解しているがスラリーを乾燥させた後に残留する成分(バインダー)も含まれる。 The carbon particles are contained in the slurry in an amount of preferably 20 to 90% by mass, more preferably 30 to 60% by mass, based on the mass of the solid content contained in the slurry. As used herein, the term "solid content" refers to a component (ie, non-volatile content) that remains after the liquid is evaporated from the slurry. That is, the "solid content" is a component that remains when the slurry is in the state of composite particles or a carbon heat source. Therefore, the "solid content" includes not only the components (carbon particles, calcium carbonate particles) that are present in the slurry in a solid state, but also the components that are dissolved in the slurry but remain after the slurry is dried (binder). ) Is also included.
 炭酸カルシウム粒子は、香味吸引器用炭素熱源の原料として、炭素粒子と組み合わせて一般に使用される炭酸カルシウム粒子を使用することができる。炭酸カルシウム粒子は、燃焼生成物の量、特に一酸化炭素の発生量を低減させることができる。 As the calcium carbonate particles, calcium carbonate particles generally used in combination with carbon particles can be used as a raw material for a carbon heat source for a flavor aspirator. Calcium carbonate particles can reduce the amount of combustion products, especially the amount of carbon monoxide generated.
 炭酸カルシウム粒子は、例えばかためかさ密度が0.3~1.0g/cmである粒子を使用することができる。かためかさ密度は、粒子を100mLの容器にすり切りの状態(即ち、ゆるみかさ密度の状態)で充填し、等量の粒子を追加し、180回タップした(振動を与えた)後に測定されたかさ密度を指す。炭酸カルシウム粒子は、好ましくは100μm以下、より好ましくは10μm以下の平均粒径を有する。炭酸カルシウム粒子の平均粒径は、小さいほど好ましいため、その下限値は特に限定されないが、例えば0.2μmである。ここで「平均粒径」は、レーザー回折散乱式粒度分布測定法により測定される体積基準の粒度分布に基づく平均粒径D50を指す。 As the calcium carbonate particles, for example, particles having a hardness density of 0.3 to 1.0 g / cm 3 can be used. Hardness density was measured after filling a 100 mL container with particles in a ground state (ie, loose bulk density), adding an equal amount of particles, and tapping (vibrating) 180 times. Refers to the density. The calcium carbonate particles preferably have an average particle size of 100 μm or less, more preferably 10 μm or less. Since the smaller the average particle size of the calcium carbonate particles is, the more preferable it is, the lower limit thereof is not particularly limited, but is, for example, 0.2 μm. Here, the "average particle size" refers to the average particle size D50 based on the volume-based particle size distribution measured by the laser diffraction / scattering type particle size distribution measurement method.
 炭酸カルシウム粒子は、市販の炭酸カルシウム粒子を使用することができ、例えば、カルピンF(平均粒径:3μm、かためかさ密度:0.66g/cm、矢橋工業株式会社)が挙げられる。炭酸カルシウム粒子は、1種類を使用してもよいし、複数種類を組み合わせて使用してもよい。 As the calcium carbonate particles, commercially available calcium carbonate particles can be used, and examples thereof include carpin F (average particle size: 3 μm, firmness density: 0.66 g / cm 3 , Yabashi Kogyo Co., Ltd.). One type of calcium carbonate particles may be used, or a plurality of types may be used in combination.
 炭酸カルシウム粒子は、スラリーに含まれる固形分の質量に対して、好ましくは5~75質量%、より好ましくは40~70質量%の量で、スラリーに含まれる。 The calcium carbonate particles are contained in the slurry in an amount of preferably 5 to 75% by mass, more preferably 40 to 70% by mass, based on the mass of the solid content contained in the slurry.
 炭素粒子と炭酸カルシウム粒子との粒径比は、例えば10:1~1:10とすることができる。炭素粒子と炭酸カルシウム粒子との質量比は、例えば5:1~1:5とすることができる。 The particle size ratio of the carbon particles and the calcium carbonate particles can be, for example, 10: 1 to 1:10. The mass ratio of the carbon particles to the calcium carbonate particles can be, for example, 5: 1 to 1: 5.
 バインダーは、香味吸引器用炭素熱源の原料として一般に使用されるバインダーを使用することができる。バインダーは、スラリー中の粒子(炭素粒子および炭酸カルシウム粒子)を互いに結着させて、炭素熱源の強度を高める役割を果たす。バインダーは、スラリー中で溶解している。 As the binder, a binder generally used as a raw material for a carbon heat source for a flavor aspirator can be used. The binder serves to bind the particles (carbon particles and calcium carbonate particles) in the slurry to each other and increase the strength of the carbon heat source. The binder is dissolved in the slurry.
 バインダーとして、セルロース誘導体またはアルギン酸塩などを使用することができる。セルロース誘導体としては、例えば、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、メチルヒドロキシエチルセルロース、メチルセルロースまたはヒドロキシプロピルセルロースが挙げられる。 As the binder, a cellulose derivative, alginate, or the like can be used. Examples of the cellulose derivative include carboxymethyl cellulose, sodium carboxymethyl cellulose, methyl hydroxyethyl cellulose, methyl cellulose and hydroxypropyl cellulose.
 バインダーは、スラリーに含まれる固形分の質量に対して、好ましくは3~15質量%、より好ましくは5~10質量%の量で、スラリーに含まれる。 The binder is contained in the slurry in an amount of preferably 3 to 15% by mass, more preferably 5 to 10% by mass, based on the mass of the solid content contained in the slurry.
 後述の「効果」の欄でも述べるが、本発明では、平均粒径が小さくかつ粒度分布がシャープな複合粒子を用いて炭素熱源を製造するため、バインダーの含有量を低減させても、十分な強度を有する炭素熱源を製造することができる。したがって、本発明の方法では、バインダー含有量を上述のとおり低減させることができる。バインダー含有量の低減は、炭素粒子および炭酸カルシウム粒子の含有割合を増加させるため、炭素熱源の着火性を高めることができる。 As described in the "Effect" column described later, in the present invention, since the carbon heat source is produced using composite particles having a small average particle size and a sharp particle size distribution, it is sufficient to reduce the content of the binder. A strong carbon heat source can be produced. Therefore, in the method of the present invention, the binder content can be reduced as described above. Since the reduction of the binder content increases the content ratio of the carbon particles and the calcium carbonate particles, the ignitability of the carbon heat source can be enhanced.
 スラリーに含まれる固形分の質量と、スラリーに含まれる液体の質量との比(以下、固液比ともいう)は、好ましくは1:1~1:9、より好ましくは1:2~1:4である。スラリーに含まれる液体は、一般的には水である。 The ratio of the mass of the solid content contained in the slurry to the mass of the liquid contained in the slurry (hereinafter, also referred to as a solid-liquid ratio) is preferably 1: 1 to 1: 9, more preferably 1: 2 to 1: 1. It is 4. The liquid contained in the slurry is generally water.
 背景技術の欄に記載の先行技術文献の方法(図1参照)に従って原料スラリーをシート状に伸展させる場合、スラリーは、シート状に伸展させることができように、固形分の質量に対する液体の質量の比(固液比)を大きくする必要がある。一方、スラリーをシート化しないで、直接微粒化して複合粒子を形成する場合、スラリーは、固形分の質量に対する液体の質量の比(固液比)を小さくすることができる。固液比を小さくすることにより、その後水分を蒸発させるための乾燥時間を短くすることができるため、製造コストの低減が可能となる。 When the raw material slurry is stretched into a sheet according to the method of the prior art document described in the background art column (see FIG. 1), the slurry is the mass of the liquid relative to the mass of the solid so that it can be stretched into a sheet. It is necessary to increase the ratio (solid-liquid ratio) of. On the other hand, when the slurry is not made into a sheet but directly atomized to form composite particles, the slurry can reduce the ratio of the mass of the liquid to the mass of the solid content (solid-liquid ratio). By reducing the solid-liquid ratio, the drying time for evaporating the water after that can be shortened, so that the manufacturing cost can be reduced.
 (複合粒子の形成)
 上述の原料スラリーを用いて、平均粒径D50が10~150μmであり、かつ半値幅が10~150μmである複合粒子を形成する。平均粒径D50は、好ましくは10~120μmである。
(Formation of composite particles)
Using the above-mentioned raw material slurry, composite particles having an average particle size D50 of 10 to 150 μm and a half width of 10 to 150 μm are formed. The average particle size D50 is preferably 10 to 120 μm.
 「平均粒径D50」は、レーザー回折散乱式粒度分布測定法により測定される体積基準の粒度分布に基づく平均粒径D50を指す。「半値幅」は、レーザー回折散乱式粒度分布測定法により測定される体積基準の粒度分布に基づく半値幅を指す。「半値幅」は、半値全幅を指す。 "Average particle size D50" refers to an average particle size D50 based on a volume-based particle size distribution measured by a laser diffraction / scattering type particle size distribution measurement method. "Full width at half maximum" refers to a half width based on a volume-based particle size distribution measured by a laser diffraction / scattering particle size distribution measurement method. "Full width at half maximum" refers to the full width at half maximum.
 複合粒子の形成は、上記粒径および上記半値幅を有する粒子を形成することが可能な任意の方法により行うことができる。複合粒子の形成は、具体的には、スラリーを直接微粒化する技術、より具体的には、噴霧乾燥を用いて行うことができる。好ましくは、複合粒子の形成は、スラリーを噴霧乾燥することにより行うことができる。噴霧乾燥は、液体またはスラリーを気体中に霧状に噴霧し、急速に乾燥させて粒子を製造する技術である。 The composite particles can be formed by any method capable of forming particles having the above particle size and the above half width. The formation of the composite particles can be specifically carried out by using a technique for directly atomizing the slurry, and more specifically, spray drying. Preferably, the formation of the composite particles can be carried out by spray-drying the slurry. Spray drying is a technique in which a liquid or slurry is sprayed into a gas in the form of mist and rapidly dried to produce particles.
 より好ましくは、複合粒子の形成は、スラリーをアトマイザーまたはスプレーノズルにより加熱気体中に噴霧し、瞬間的に乾燥させて微粒子を形成することにより行うことができる。噴霧乾燥の説明において「急速に乾燥させる」または「瞬間的に乾燥させる」という表現は、噴霧された液滴が空中に存在している間(すなわち、地面に落下する前)に乾燥が完了していることをいう。更に好ましくは、複合粒子の形成は、スラリーをロータリーアトマイザー方式のスプレードライヤーで噴霧乾燥することにより、すなわち、スラリーの液滴を、ディスク型のアトマイザー(ロータリーアトマイザー)の回転により遠心力で加熱気体中に噴霧し、瞬間的に乾燥させて微粒子を形成することにより、行うことができる。ロータリーアトマイザー方式のスプレードライヤーは、粒径が小さくかつ粒度分布がシャープな複合粒子の形成に適している。 More preferably, the composite particles can be formed by spraying the slurry into a heated gas with an atomizer or a spray nozzle and instantaneously drying the slurry to form fine particles. In the description of spray drying, the expressions "rapidly dry" or "momentarily dry" mean that the drying is completed while the sprayed droplets are in the air (ie, before they fall to the ground). It means that it is. More preferably, the composite particles are formed by spray-drying the slurry with a rotary atomizer type spray dryer, that is, the droplets of the slurry are put into a heated gas by centrifugal force by the rotation of a disk-type atomizer (rotary atomizer). It can be done by spraying on the water and instantaneously drying to form fine particles. The rotary atomizer type spray dryer is suitable for forming composite particles having a small particle size and a sharp particle size distribution.
 ロータリーアトマイザー方式のスプレードライヤーを使用する場合、噴霧条件および乾燥条件を、例えば以下のとおり設定することにより、上述の平均粒径D50および上述の半値幅を有する複合粒子を形成することができる。 
 ディスク径:60~200mm
 ディスク回転数:8000~30000rpm
 スラリーの吐出速度:15~160L/h
 出口(粒子が出てくるところ)の熱風温度:80~150℃
When a rotary atomizer type spray dryer is used, composite particles having the above-mentioned average particle size D50 and the above-mentioned half width can be formed by setting the spraying conditions and the drying conditions as follows, for example.
Disc diameter: 60-200 mm
Disk rotation speed: 8000 to 30000 rpm
Slurry discharge rate: 15-160 L / h
Hot air temperature at the outlet (where the particles come out): 80-150 ° C
 上述のとおり、複合粒子は、平均粒径が小さく、粒度分布がシャープである。かかる複合粒子を成形すると、複合粒子を、成形体全体にわたって均一な密度で、かつ高密度に成形することができ、これにより、製造される炭素熱源の強度を向上させることができるとともに、優れた着火性を提供することができる。 As mentioned above, the composite particles have a small average particle size and a sharp particle size distribution. When such composite particles are molded, the composite particles can be molded at a uniform density and a high density throughout the molded product, whereby the strength of the produced carbon heat source can be improved and excellent. It can provide ignitability.
 複合粒子は、好ましくは、球状の形態を有する。ここで「球状の形態」とは、複合粒子の顕微鏡写真から求めた平均真円度が0~0.2×D[μm](ここで、Dは複合粒子の平均粒径D50を指す)である形態を指す。「平均真円度」は、20個の複合粒子の真円度の平均値を指す。「真円度」は、対象粒子の顕微鏡画像を、二つの同心の幾何学的円で挟んだとき、同心二円の間隔が最小となる場合の、二円の半径の差を指す(JIS B 0621:1984)。 The composite particles preferably have a spherical morphology. Here, the "spherical morphology" means that the average roundness obtained from the micrograph of the composite particle is 0 to 0.2 × D [μm] (where D refers to the average particle size D50 of the composite particle). Refers to a certain form. "Average roundness" refers to the average value of the roundness of 20 composite particles. "Roundness" refers to the difference in radius between two concentric circles when the distance between the two concentric circles is minimized when the microscope image of the target particle is sandwiched between two concentric geometric circles (JIS B). 0621: 1984).
 複合粒子は、上述のとおり、噴霧乾燥により製造すると、通常、すべての複合粒子が球状の形態を有することができる。このように、すべてが球状の形態を有する複合粒子を成形すると、より高密度に成形することができる。なお、背景技術の欄に記載の先行技術文献では、原料スラリーをシート状に延ばし、得られたシートを粉砕することにより、複合粒子を製造する(図1参照)。このため、先行技術文献では、複合粒子は、球状の形態を有していない。 As described above, when the composite particles are produced by spray drying, all the composite particles can usually have a spherical shape. In this way, when composite particles having an all spherical morphology are formed, higher density can be formed. In the prior art document described in the column of background art, composite particles are produced by spreading the raw material slurry into a sheet and pulverizing the obtained sheet (see FIG. 1). Therefore, in the prior art document, the composite particles do not have a spherical morphology.
 また、複合粒子は、顕微鏡で観察した際に、好ましくは、滑らかな表面を有する。複合粒子は、上述のとおり、噴霧乾燥により製造すると、通常、すべての複合粒子が滑らかな表面を有することができる。このように、すべてが滑らかな表面を有する複合粒子を成形すると、より高密度に成形することができる。なお、背景技術の欄に記載の先行技術文献では、原料スラリーをシート状に延ばし、得られたシートを粉砕することにより、複合粒子を製造する(図1参照)。このため、先行技術文献では、複合粒子は、滑らかな表面を有していない。 Also, the composite particles preferably have a smooth surface when observed under a microscope. As described above, when the composite particles are produced by spray drying, all the composite particles can usually have a smooth surface. In this way, molding composite particles, which all have a smooth surface, allows for higher density molding. In the prior art document described in the column of background art, composite particles are produced by spreading the raw material slurry into a sheet and pulverizing the obtained sheet (see FIG. 1). For this reason, in the prior art literature, composite particles do not have a smooth surface.
 (成形)
 上述の複合粒子を水と混合し、得られた混合物を成形する。 
 複合粒子と混合される水の量は、その後の成形操作に適した水分量とすることが好ましい。複合粒子と混合される水の量は、複合粒子に対して、好ましくは33~67質量%、より好ましくは38~57質量%である。すなわち、混合物は、複合粒子と、複合粒子に対して33~67質量%の水とを含む混合物であることが好ましく、混合物は、複合粒子と、複合粒子に対して38~57質量%の水とを含む混合物であることがより好ましい。
(Molding)
The composite particles described above are mixed with water to form the resulting mixture.
The amount of water mixed with the composite particles is preferably a water content suitable for the subsequent molding operation. The amount of water mixed with the composite particles is preferably 33 to 67% by mass, more preferably 38 to 57% by mass, based on the composite particles. That is, the mixture is preferably a mixture containing the composite particles and 33 to 67% by mass of water with respect to the composite particles, and the mixture is the composite particles and 38 to 57% by mass of water with respect to the composite particles. More preferably, it is a mixture containing and.
 水は、複合粒子の表面に存在するバインダーを溶解し、これにより複合粒子を互いに結着させる役割を果たす。したがって、水は、複合粒子の表面に均一に存在していることが好ましい。複合粒子の表面全体に水が行き渡るように、複合粒子を流動させながら水を複合粒子の表面に噴霧することにより混合物を準備することが好ましい。例えば、複合粒子を攪拌しながら水を複合粒子の表面に噴霧することにより混合物を準備することができる。 Water dissolves the binder existing on the surface of the composite particles, thereby playing a role of binding the composite particles to each other. Therefore, it is preferable that the water is uniformly present on the surface of the composite particles. It is preferable to prepare the mixture by spraying water on the surface of the composite particles while flowing the composite particles so that the water spreads over the entire surface of the composite particles. For example, the mixture can be prepared by spraying water onto the surface of the composite particles while stirring the composite particles.
 混合物に含まれる水の量が、上記範囲内であると、成形しやすいという利点と、製造される炭素熱源の強度を高めることができるという利点を有する。 When the amount of water contained in the mixture is within the above range, it has the advantage of being easy to mold and the advantage of being able to increase the strength of the produced carbon heat source.
 混合物中で複合粒子は互いに付着し易く凝集することがある。このため、混合物を成形する前に、複合粒子の凝集をほぐしたり、複合粒子を分級して、所定のサイズ以下の複合粒子をのみを選別したりしてもよい。 Composite particles in the mixture tend to adhere to each other and may aggregate. Therefore, before forming the mixture, the agglomeration of the composite particles may be loosened, or the composite particles may be classified to select only the composite particles having a predetermined size or smaller.
 成形は、香味吸引器用炭素熱源の製造で一般に使用される成形方法を使用して行うことができる。成形は、例えば、圧縮成形、押し出し成形、または打ち抜き成形により行うことができる。成形は、好ましくは圧縮成形により、より好ましくは打錠成形により行うことができる。成形は、例えば0.6~1.0g/cm3の密度を有する成形体が得られるように行うことができる。成形時の圧力は、例えば1~5kNとすることができる。 Molding can be performed using a molding method commonly used in the manufacture of carbon heat sources for flavor aspirators. Molding can be performed, for example, by compression molding, extrusion molding, or punch molding. The molding can be carried out preferably by compression molding, more preferably by tableting molding. Molding can be carried out so as to obtain a molded product having a density of, for example, 0.6 to 1.0 g / cm 3 . The pressure at the time of molding can be, for example, 1 to 5 kN.
 成形体は、円柱状の香味吸引器に組み込まれることを想定して、円柱または多角柱の形状を有することが好ましい。 The molded body preferably has a cylindrical or polygonal prism shape, assuming that it is incorporated into a cylindrical flavor aspirator.
 (乾燥)
 成形体を乾燥させて、乾燥された成形体(乾燥成形体)を製造する。乾燥は、加熱乾燥により行うことができる。例えば、100~200℃で20~60分間にわたって成形体を乾燥させることができる。加熱温度は、乾燥期間にわたって、上記加熱温度の範囲内で一定であってもよいし、上記加熱温度の範囲内で温度が上昇するように変動させてもよい。乾燥成形体の水の割合は、例えば10質量%以下とすることができる。
(Dry)
The molded product is dried to produce a dried molded product (dry molded product). Drying can be performed by heat drying. For example, the molded product can be dried at 100 to 200 ° C. for 20 to 60 minutes. The heating temperature may be constant within the above heating temperature range over the drying period, or may be varied so that the temperature rises within the above heating temperature range. The proportion of water in the dry molded product can be, for example, 10% by mass or less.
 乾燥成形体は、そのまま炭素熱源として用いてもよい。あるいは、乾燥成形体は、必要に応じて、面取り加工を施したり、着火面に溝(例えば十字溝)を設ける加工を施したりすることができる。かかる加工後の成形体を炭素熱源として用いてもよい。面取り加工は、炭素熱源の角部における割れや欠けを生じ難くすることに寄与する。溝加工は、着火性の向上に寄与する。 The dry molded product may be used as it is as a carbon heat source. Alternatively, the dry molded product can be chamfered or processed to provide a groove (for example, a cross groove) on the ignition surface, if necessary. The molded product after such processing may be used as a carbon heat source. The chamfering process contributes to making it difficult for cracks and chips to occur at the corners of the carbon heat source. Grooving contributes to the improvement of ignitability.
 上述のとおり、乾燥成形体は、複合粒子を、成形体全体にわたって均一な密度で、かつ高密度に成形することにより製造されるため、高い強度を有する。このため、乾燥成形体は、面取り加工や溝加工などの加工を施しても割れや欠けを生じ難く、加工に適している。 As described above, the dry molded product has high strength because it is produced by molding the composite particles at a uniform density and a high density throughout the molded product. Therefore, the dry molded product is suitable for processing because it is less likely to crack or chip even if it is chamfered or grooved.
 (炭素熱源の一例)
 炭素熱源の一例を図3に示す。図3に示す炭素熱源10は、円柱形状を有する。炭素熱源10は、先端面11が香味吸引器の先端に配置されるように香味吸引器に組み込まれる。
(Example of carbon heat source)
An example of a carbon heat source is shown in FIG. The carbon heat source 10 shown in FIG. 3 has a cylindrical shape. The carbon heat source 10 is incorporated into the flavor aspirator so that the tip surface 11 is arranged at the tip of the flavor aspirator.
 図3に示されるとおり、炭素熱源10は、先端面11と、先端面11と対向した基端面12と、香味吸引器本体の内部に空気を供給するための通気路13と、外周面14と、先端面11に設けられた溝部15と、先端面11と外周面14との間に形成された第1面取部16と、基端面12と外周面14との間に形成された第2面取部17とを有する。 As shown in FIG. 3, the carbon heat source 10 includes a tip surface 11, a base end surface 12 facing the tip surface 11, a ventilation path 13 for supplying air to the inside of the flavor aspirator body, and an outer peripheral surface 14. , A groove portion 15 provided on the tip surface 11, a first chamfered portion 16 formed between the tip surface 11 and the outer peripheral surface 14, and a second chamfered portion 16 formed between the base end surface 12 and the outer peripheral surface 14. It has a chamfered portion 17.
 通気路13は、炭素熱源10の中心軸Cに沿って設けられており、炭素熱源10を貫通するように設けられている。通気路13は、先端面11と基端面12とを連通させている。通気路13の先端面11側の部分は、溝部15と一体になっている。通気路13は、貫通孔を有する中空円柱状に成形体を作製することにより設けてもよいし、成形体を中実円柱状に作製した後にドリルで貫通孔を開けることにより設けてもよい。 The ventilation path 13 is provided along the central axis C of the carbon heat source 10 and is provided so as to penetrate the carbon heat source 10. The ventilation path 13 communicates the tip end surface 11 and the base end surface 12. The portion of the air passage 13 on the tip surface 11 side is integrated with the groove portion 15. The ventilation passage 13 may be provided by forming a molded body in a hollow columnar shape having a through hole, or may be provided by forming a through hole with a drill after forming the molded body into a solid columnar shape.
 溝部15は、先端面11側から見て、全体として「十」字状に形成されている。溝部15の形状は、「十」字状に限定されるものではない。溝部15の本数は任意である。また、溝部15全体がなす形状は、任意の形状とすることができる。例えば、通気路13を中心に外周面14に向けて複数の溝部15が放射状に延びていてもよい。また、溝部15は、先端面11と外周面14とに跨るようにこれらから窪んで形成されている。溝部15は、通気路13と連通するように設けられる。 The groove portion 15 is formed in a "cross" shape as a whole when viewed from the tip surface 11 side. The shape of the groove 15 is not limited to a "cross" shape. The number of grooves 15 is arbitrary. Further, the shape formed by the entire groove portion 15 can be any shape. For example, a plurality of groove portions 15 may extend radially from the ventilation path 13 toward the outer peripheral surface 14. Further, the groove portion 15 is formed by being recessed from the tip surface 11 and the outer peripheral surface 14 so as to straddle the groove portion 15. The groove portion 15 is provided so as to communicate with the ventilation passage 13.
 炭素熱源10は、以下のような寸法で形成することができる。炭素熱源10の全長(中心軸C方向に関する炭素熱源10の長さ)は、例えば5~30mmの範囲内、好ましくは8~18mmの範囲内で適宜設定される。炭素熱源10の直径(中心軸Cと交差する方向に関する炭素熱源10の長さ)は、例えば3~15mmの範囲内、好ましくは5~10mmの範囲内で適宜設定される。炭素熱源10の中心軸C方向に関する溝部15の深さ(長さ)は、例えば1~5mmの範囲内、好ましくは2~4mmの範囲内で適宜設定される。溝部15の幅(内径)は、例えば0.5~2mmの範囲内で適宜設定される。通気路13の内径は、例えば0.5~4mmの範囲内で適宜設定される。 The carbon heat source 10 can be formed with the following dimensions. The total length of the carbon heat source 10 (the length of the carbon heat source 10 with respect to the central axis C direction) is appropriately set, for example, in the range of 5 to 30 mm, preferably in the range of 8 to 18 mm. The diameter of the carbon heat source 10 (the length of the carbon heat source 10 in the direction intersecting the central axis C) is appropriately set, for example, in the range of 3 to 15 mm, preferably in the range of 5 to 10 mm. The depth (length) of the groove portion 15 with respect to the central axis C direction of the carbon heat source 10 is appropriately set, for example, in the range of 1 to 5 mm, preferably in the range of 2 to 4 mm. The width (inner diameter) of the groove portion 15 is appropriately set within the range of, for example, 0.5 to 2 mm. The inner diameter of the ventilation passage 13 is appropriately set within the range of, for example, 0.5 to 4 mm.
 炭素熱源10は、通気路13を有していなくてもよい。この場合には、香味吸引器本体(すなわちホルダ)に通気用の小孔を複数形成することが好ましい。ユーザが香味吸引器の吸引を行う場合には、当該小孔を介してホルダ内およびホルダ内にある香味源に空気が供給される。 The carbon heat source 10 does not have to have a ventilation path 13. In this case, it is preferable to form a plurality of small holes for ventilation in the flavor aspirator main body (that is, the holder). When the user sucks the flavor aspirator, air is supplied to the inside of the holder and the flavor source in the holder through the small holes.
 (効果)
 上述の方法は、炭素熱源を成形し難いという問題を有しておらず、製造容易性に優れていた。また、上述の方法によれば、高い強度および優れた着火性を有する炭素熱源を製造することができる。
(effect)
The above-mentioned method does not have a problem that it is difficult to form a carbon heat source, and is excellent in ease of manufacture. Further, according to the above-mentioned method, a carbon heat source having high strength and excellent ignitability can be produced.
 上述の方法において、炭素熱源の製造のために使用される複合粒子は、平均粒径D50が10~150μmであり、かつ半値幅が10~150μmであり、平均粒径が小さく、粒度分布がシャープである。かかる複合粒子を使用して炭素熱源を製造すると、複合粒子を、成形体全体にわたって均一な密度で、かつ高密度に成形することができ、これにより、高い強度および優れた着火性を達成できたと考えられる。 In the above method, the composite particles used for producing a carbon heat source have an average particle size D50 of 10 to 150 μm, a half width of 10 to 150 μm, a small average particle size, and a sharp particle size distribution. Is. When a carbon heat source was produced using such composite particles, the composite particles could be molded at a uniform density and a high density throughout the molded product, whereby high strength and excellent ignitability could be achieved. Conceivable.
 加えて、上述の方法では、上述の複合粒子の使用により炭素熱源の強度が担保されるため、バインダーの含有量を低減させても、十分な強度を有する炭素熱源を製造することができる。バインダー含有量の低減は、炭素粒子および炭酸カルシウム粒子の含有割合を増加させるため、炭素熱源の着火性を高めることができる。 In addition, in the above method, since the strength of the carbon heat source is guaranteed by using the above-mentioned composite particles, it is possible to produce a carbon heat source having sufficient strength even if the content of the binder is reduced. Since the reduction of the binder content increases the content ratio of the carbon particles and the calcium carbonate particles, the ignitability of the carbon heat source can be enhanced.
 <2.複合粒子>
 別の側面によれば、<1.炭素熱源の製造方法>の欄に記載される「複合粒子」が提供される。具体的には、炭素粒子と炭酸カルシウム粒子とバインダーとを含み、平均粒径D50が10~150μmであり、かつ半値幅が10~150μmである複合粒子が提供される。好ましくは、炭素粒子と炭酸カルシウム粒子とバインダーとを含み、平均粒径D50が10~120μmであり、かつ半値幅が10~150μmである複合粒子が提供される。
<2. Composite particles>
According to another aspect, <1. The "composite particles" described in the column of method for producing a carbon heat source> are provided. Specifically, composite particles containing carbon particles, calcium carbonate particles, and a binder, having an average particle size D50 of 10 to 150 μm and a half width of 10 to 150 μm are provided. Preferably, a composite particle containing carbon particles, calcium carbonate particles and a binder, having an average particle size D50 of 10 to 120 μm and a half width of 10 to 150 μm is provided.
 <3.炭素熱源>
 別の側面によれば、<1.炭素熱源の製造方法>の欄に記載の方法により製造される香味吸引器用炭素熱源が提供される。上述のとおり、炭素熱源は、高い強度および優れた着火性を有する。例えば、炭素熱源は、140~250Nの強度および0.6~1.0g/cm3の密度を有することができる。好ましくは、炭素熱源は、140~250Nの強度および0.7~0.9g/cm3の密度を有することができる。
<3. Carbon heat source>
According to another aspect, <1. A carbon heat source for a flavor aspirator produced by the method described in the column of> Method for producing carbon heat source> is provided. As mentioned above, the carbon heat source has high strength and excellent ignitability. For example, a carbon heat source can have an intensity of 140-250 N and a density of 0.6-1.0 g / cm 3 . Preferably, the carbon heat source can have an intensity of 140-250 N and a density of 0.7-0.9 g / cm 3 .
 炭素熱源は、140N以上の強度を有すると、香味吸引器の炭素熱源として十分な強度を備えている。炭素熱源の密度は、着火性と相関する指標であり、低密度なほど着火性がよい。着火性は、炭素熱源の密度だけでなく炭素粒子の種類など他のファクターにも依存するが、炭素熱源の密度が、例えば上記範囲内である場合に着火性を良くすることができる。 When the carbon heat source has a strength of 140 N or more, it has sufficient strength as a carbon heat source for the flavor aspirator. The density of the carbon heat source is an index that correlates with the ignitability, and the lower the density, the better the ignitability. The ignitability depends not only on the density of the carbon heat source but also on other factors such as the type of carbon particles, but the ignitability can be improved when the density of the carbon heat source is, for example, within the above range.
 <4.香味吸引器>
 別の側面によれば、<1.炭素熱源の製造方法>の欄に記載の方法により製造される香味吸引器用炭素熱源を含む香味吸引器が提供される。
<4. Flavor aspirator >
According to another aspect, <1. A flavor aspirator containing a carbon heat source for a flavor aspirator produced by the method described in the column of> Method for producing carbon heat source> is provided.
 図3に示す炭素熱源が組み込まれた香味吸引器の一例を図4に示す。 
 図4に示す香味吸引器20は、吸口端21Aから先端21Bまで延びる円筒状のホルダ21と、ホルダ21の先端21Bに設けられた炭素熱源10と、炭素熱源10の下流に設けられた香味源22と、ホルダ21の内側で香味源22との間に介在されるアルミニウム貼合紙23と、ホルダ21の内側で吸口端21A側に設けられたフィルター部24とを備える。なお、図4に示す香味吸引器20において、香味源22とフィルター部24との間は空洞である。
An example of a flavor aspirator incorporating the carbon heat source shown in FIG. 3 is shown in FIG.
The flavor aspirator 20 shown in FIG. 4 has a cylindrical holder 21 extending from the mouthpiece end 21A to the tip 21B, a carbon heat source 10 provided at the tip 21B of the holder 21, and a flavor source provided downstream of the carbon heat source 10. 22 is provided with an aluminum laminating paper 23 interposed between the holder 21 and the flavor source 22 inside the holder 21, and a filter portion 24 provided inside the holder 21 on the mouthpiece end 21A side. In the flavor aspirator 20 shown in FIG. 4, there is a cavity between the flavor source 22 and the filter portion 24.
 炭素熱源10の燃焼によって発生した熱が、炭素熱源10の下流に配置されている香味源22を加熱し、香味を放出させることができる。 The heat generated by the combustion of the carbon heat source 10 can heat the flavor source 22 located downstream of the carbon heat source 10 and release the flavor.
 ホルダ21は、紙を円筒形に巻いて形成された紙管である。アルミニウム貼合紙23は、紙にアルミニウムを張りあわせて形成され、通常の紙に比して耐熱性および熱伝導性が向上している。このアルミニウム貼合紙23によって、炭素熱源10に火をつけた際でもホルダ21の紙管が燃えないようにしている。ホルダ21の中心軸Cは、炭素熱源10の中心軸Cと合致する。 The holder 21 is a paper tube formed by winding paper into a cylindrical shape. The aluminum-bonded paper 23 is formed by laminating aluminum on paper, and has improved heat resistance and thermal conductivity as compared with ordinary paper. The aluminum laminated paper 23 prevents the paper tube of the holder 21 from burning even when the carbon heat source 10 is ignited. The central axis C of the holder 21 coincides with the central axis C of the carbon heat source 10.
 香味源22は、炭素熱源10に隣接した位置で、炭素熱源10の下流に設けられる。香味源22は、加熱により香味を放出させることができる任意の香味源を用いることができる。例えば、香味源22は、葉たばこなどのたばこ材料をシート状に成形し、このたばこシートに蛇腹状のヒダを付けて波形のたばこシートとし、この波形のたばこシートを長手方向に複数の空気流路を形成するように集めて円筒体に形成することにより調製することができる。また、香味源22は、たばこ抽出物から形成された顆粒や、葉たばこ自体を用いることができる。すなわち、香味源22としては、シガレットに使用される一般的なたばこ刻や、嗅ぎたばこに使用される粒状たばこや、ロールたばこや、成形たばこ等の任意のたばこ充填材を採用することができる。ロールたばこは、シート状の再生たばこをロール状に成形して得られ、内部に流路を有する。また、成形たばこは、粒状たばこを金型で成形することによって得られる。あるいは、香味源22として、多孔質素材や非多孔質素材の担持体に、たばこ香味またはたばこ香味以外の香味を担持させたものを採用してもよい。香味源22は、紙により円筒状に巻いた後に香味吸引器20に組み込まれてもよいし、金属製または紙製のカップに収容した後に香味吸引器20に組み込まれてもよい。 The flavor source 22 is provided at a position adjacent to the carbon heat source 10 and downstream of the carbon heat source 10. As the flavor source 22, any flavor source capable of releasing the flavor by heating can be used. For example, the flavor source 22 forms a tobacco material such as leaf tobacco into a sheet, and forms a corrugated tobacco sheet by forming a bellows-shaped fold on the tobacco sheet, and the corrugated tobacco sheet is used as a plurality of air channels in the longitudinal direction. It can be prepared by collecting to form a cylindrical body. Further, as the flavor source 22, granules formed from a tobacco extract or leaf tobacco itself can be used. That is, as the flavor source 22, any tobacco filler such as general tobacco chopped used for cigarettes, granular tobacco used for snuff, rolled tobacco, and molded tobacco can be adopted. Rolled tobacco is obtained by molding sheet-shaped recycled tobacco into a roll shape and has a flow path inside. In addition, molded tobacco is obtained by molding granular tobacco with a mold. Alternatively, as the flavor source 22, a carrier made of a porous material or a non-porous material on which a tobacco flavor or a flavor other than the tobacco flavor is supported may be adopted. The flavor source 22 may be rolled into a cylindrical shape with paper and then incorporated into the flavor aspirator 20, or may be housed in a metal or paper cup and then incorporated into the flavor aspirator 20.
 フィルター部24は、シガレットで一般的に用いられるフィルターで構成される。フィルター部24は、様々な種類の充填材によって形成できる。フィルター部24は、例えば、セルロースアセテートなどのセルロース系半合成繊維の充填材で構成されるが、充填材としてはこれに限定されない。充填材は、例えば、綿、麻、マニラ麻、ヤシ、イグサなどの植物繊維、羊毛、カシミヤなどの動物繊維、レーヨンなどのセルロース系再生繊維、ナイロン、ポリエステル、アクリル、ポリエチレン、ポリプロピレンなどの合成繊維あるいはそれらを組合せたものを使用することができる。フィルター部24の構成要素は、上記のセルロースアセテート繊維からなる充填物の他、チャコールを含んだチャコールフィルターやチャコール以外の粒状物が入ったフィルターでもよい。また、フィルター部24は、異なる種類のセグメントを軸方向に2つ以上連接したマルチセグメント構造としてもよい。 The filter unit 24 is composed of a filter generally used in cigarettes. The filter portion 24 can be formed of various types of fillers. The filter unit 24 is composed of, for example, a filler of cellulosic semi-synthetic fibers such as cellulose acetate, but the filler is not limited to this. Fillers include, for example, plant fibers such as cotton, hemp, Manila hemp, palm and igusa, animal fibers such as wool and cashmere, cellulosic regenerated fibers such as rayon, synthetic fibers such as nylon, polyester, acrylic, polyethylene and polypropylene. A combination of them can be used. The constituent elements of the filter unit 24 may be a charcoal filter containing charcoal or a filter containing granules other than charcoal, in addition to the above-mentioned filler made of cellulose acetate fiber. Further, the filter unit 24 may have a multi-segment structure in which two or more segments of different types are connected in the axial direction.
 <5.別の側面に係る方法>
 別の側面において、香味吸引器用炭素熱源の製造方法は、
 炭素粒子と炭酸カルシウム粒子とバインダーと水とを含むスラリーを噴霧乾燥することにより複合粒子を形成すること、
 前記複合粒子と水とを含む混合物を成形して、成形体を得ること、および
 前記成形体を乾燥させること
を含む。
<5. Method for another aspect>
In another aspect, the method for producing a carbon heat source for a flavor aspirator is
Forming composite particles by spray-drying a slurry containing carbon particles, calcium carbonate particles, a binder, and water.
This includes molding a mixture containing the composite particles and water to obtain a molded product, and drying the molded product.
 上記方法は、<1.炭素熱源の製造方法>の欄に記載の手順と同様の手順に従って実施することができる。 The above method is <1. It can be carried out according to the same procedure as that described in the column of> Method for producing carbon heat source>.
 上記方法に従って噴霧乾燥により複合粒子を形成すると、平均粒径が小さく、且つ粒度分布がシャープである複合粒子を形成することができる。好ましくは、平均粒径D50が10~150μmであり、且つ半値幅が10~150μmである複合粒子を形成することができる。かかる複合粒子を成形すると、複合粒子を、成形体全体にわたって均一な密度で、かつ高密度に成形することができ、これにより、製造される炭素熱源の強度を向上させることができるとともに、優れた着火性を提供することができる。 When composite particles are formed by spray drying according to the above method, composite particles having a small average particle size and a sharp particle size distribution can be formed. Preferably, composite particles having an average particle size D50 of 10 to 150 μm and a half width of 10 to 150 μm can be formed. When such composite particles are molded, the composite particles can be molded at a uniform density and a high density throughout the molded product, whereby the strength of the produced carbon heat source can be improved and excellent. It can provide ignitability.
 <6.好ましい実施形態>
 以下に、好ましい実施形態をまとめて示す。 
 [A1] 炭素粒子と炭酸カルシウム粒子とバインダーと水とを含むスラリーを原料として用いて、平均粒径D50が10~150μmであり、かつ半値幅が10~150μmである複合粒子を形成すること、
 前記複合粒子と水とを含む混合物を成形して、成形体を得ること、および
 前記成形体を乾燥させること
を含む、香味吸引器用炭素熱源の製造方法。
<6. Preferred Embodiment>
The preferred embodiments are summarized below.
[A1] Using a slurry containing carbon particles, calcium carbonate particles, a binder, and water as a raw material, forming composite particles having an average particle size D50 of 10 to 150 μm and a half width of 10 to 150 μm.
A method for producing a carbon heat source for a flavor aspirator, which comprises molding a mixture containing the composite particles and water to obtain a molded product, and drying the molded product.
 [A2] 前記平均粒径D50が、10~120μm、好ましくは50~150μm、より好ましくは70~120μmである[A1]に記載の方法。
 [A3] 前記半値幅が、30~150μm、好ましくは50~150μm、より好ましくは60~140μmである[A1]または[A2]に記載の方法。
 [A4] 前記複合粒子が、球状の形態を有する[A1]~[A3]の何れか1に記載の方法。
[A2] The method according to [A1], wherein the average particle size D50 is 10 to 120 μm, preferably 50 to 150 μm, and more preferably 70 to 120 μm.
[A3] The method according to [A1] or [A2], wherein the half width is 30 to 150 μm, preferably 50 to 150 μm, and more preferably 60 to 140 μm.
[A4] The method according to any one of [A1] to [A3], wherein the composite particles have a spherical shape.
 [A5] 前記複合粒子の形成が、前記スラリーを噴霧乾燥することにより行われる[A1]~[A4]の何れか1に記載の方法。
 [A6] 前記複合粒子の形成が、前記スラリーをロータリーアトマイザー方式のスプレードライヤーを用いて噴霧乾燥することにより行われる[A1]~[A5]の何れか1に記載の方法。
 [A7] 前記バインダーが、前記スラリーに含まれる固形分の質量に対して、3~15質量%、好ましくは5~10質量%の量で前記スラリーに含まれる[A1]~[A6]の何れか1に記載の方法。
[A5] The method according to any one of [A1] to [A4], wherein the formation of the composite particles is performed by spray-drying the slurry.
[A6] The method according to any one of [A1] to [A5], wherein the formation of the composite particles is performed by spray-drying the slurry with a rotary atomizer type spray dryer.
[A7] Any of [A1] to [A6] in which the binder is contained in the slurry in an amount of 3 to 15% by mass, preferably 5 to 10% by mass, based on the mass of the solid content contained in the slurry. The method according to 1.
 [A8] 前記混合物が、前記複合粒子と、前記複合粒子に対して、33~67質量%、好ましくは38~57質量%の水とを含む混合物である[A1]~[A7]の何れか1に記載の方法。
 [A9] 前記スラリーに含まれる固形分の質量(A)と、前記スラリーに含まれる液体の質量(B)との比率(A:B)が、1:1~1:9、好ましくは1:2~1:4である[A1]~[A8]の何れか1に記載の方法。
 [A10] 前記炭素粒子が、2~100μm、好ましくは5~50μmの平均粒径を有する[A1]~[A9]の何れか1に記載の方法。
[A8] Any of [A1] to [A7], wherein the mixture is a mixture containing the composite particles and 33 to 67% by mass, preferably 38 to 57% by mass of water with respect to the composite particles. The method according to 1.
[A9] The ratio (A: B) of the mass (A) of the solid content contained in the slurry to the mass (B) of the liquid contained in the slurry is 1: 1 to 1: 9, preferably 1: 1. The method according to any one of [A1] to [A8], which is 2 to 1: 4.
[A10] The method according to any one of [A1] to [A9], wherein the carbon particles have an average particle size of 2 to 100 μm, preferably 5 to 50 μm.
 [A11] 前記炭素粒子が、活性炭粒子である[A1]~[A10]の何れか1に記載の方法。
 [A12] 前記炭素粒子が、前記スラリーに含まれる固形分の質量に対して、20~90質量%、好ましくは30~60質量%の量で前記スラリーに含まれる[A1]~[A11]の何れか1に記載の方法。
 [A13] 前記炭酸カルシウム粒子が、100μm以下(例えば、0.2~100μm)、好ましくは10μm以下(例えば、0.2~10μm)の平均粒径を有する[A1]~[A12]の何れか1に記載の方法。
[A11] The method according to any one of [A1] to [A10], wherein the carbon particles are activated carbon particles.
[A12] Of [A1] to [A11], the carbon particles are contained in the slurry in an amount of 20 to 90% by mass, preferably 30 to 60% by mass, based on the mass of the solid content contained in the slurry. The method according to any one.
[A13] Any of [A1] to [A12], wherein the calcium carbonate particles have an average particle size of 100 μm or less (for example, 0.2 to 100 μm), preferably 10 μm or less (for example, 0.2 to 10 μm). The method according to 1.
 [A14] 前記炭酸カルシウム粒子が、前記スラリーに含まれる固形分の質量に対して、5~75質量%、好ましくは40~70質量%の量で前記スラリーに含まれる[A1]~[A13]の何れか1に記載の方法。
 [A15] 前記炭素粒子と前記炭酸カルシウム粒子との粒径比が、10:1~1:10である[A1]~[A14]の何れか1に記載の方法。
 [A16] 前記炭素粒子と前記炭酸カルシウム粒子との質量比が、5:1~1:5である[A1]~[A15]の何れか1に記載の方法。
[A14] The calcium carbonate particles are contained in the slurry in an amount of 5 to 75% by mass, preferably 40 to 70% by mass, based on the mass of the solid content contained in the slurry [A1] to [A13]. The method according to any one of.
[A15] The method according to any one of [A1] to [A14], wherein the particle size ratio of the carbon particles to the calcium carbonate particles is 10: 1 to 1:10.
[A16] The method according to any one of [A1] to [A15], wherein the mass ratio of the carbon particles to the calcium carbonate particles is 5: 1 to 1: 5.
 [A17] 前記バインダーが、セルロース誘導体である[A1]~[A16]の何れか1に記載の方法。
 [A18] 前記セルロース誘導体が、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、メチルヒドロキシエチルセルロース、メチルセルロース、またはヒドロキシプロピルセルロースである[A17]に記載の方法。
 [A19] 前記セルロース誘導体が、カルボキシメチルセルロースである[A17]または[A18]に記載の方法。
[A17] The method according to any one of [A1] to [A16], wherein the binder is a cellulose derivative.
[A18] The method according to [A17], wherein the cellulose derivative is carboxymethyl cellulose, sodium carboxymethyl cellulose, methyl hydroxyethyl cellulose, methyl cellulose, or hydroxypropyl cellulose.
[A19] The method according to [A17] or [A18], wherein the cellulose derivative is carboxymethyl cellulose.
 [A20] 前記成形が、圧縮成形により行われる[A1]~[A19]の何れか1に記載の方法。
 [A21] 前記成形が、打錠成形により行われる[A1]~[A20]の何れか1に記載の方法。
 [A22] 前記成形が、0.6~1.0g/cm3、好ましくは0.7~0.9g/cm3の密度を有する成形体が得られるように行われる[A1]~[A21]の何れか1に記載の方法。
 [A23] 前記成形が、1~5kNの圧力をかけることにより行われる[A1]~[A22]の何れか1に記載の方法。
[A20] The method according to any one of [A1] to [A19], wherein the molding is performed by compression molding.
[A21] The method according to any one of [A1] to [A20], wherein the molding is performed by tablet molding.
[A22] The molding is carried out so as to obtain a molded product having a density of 0.6 to 1.0 g / cm 3 , preferably 0.7 to 0.9 g / cm 3 , [A1] to [A21]. The method according to any one of.
[A23] The method according to any one of [A1] to [A22], wherein the molding is performed by applying a pressure of 1 to 5 kN.
 [B1] 炭素粒子と炭酸カルシウム粒子とバインダーと水とを含むスラリーを噴霧乾燥することにより複合粒子を形成すること、
 前記複合粒子と水とを含む混合物を成形して、成形体を得ること、および
 前記成形体を乾燥させること
を含む、香味吸引器用炭素熱源の製造方法。
[B1] Forming composite particles by spray-drying a slurry containing carbon particles, calcium carbonate particles, a binder, and water.
A method for producing a carbon heat source for a flavor aspirator, which comprises molding a mixture containing the composite particles and water to obtain a molded product, and drying the molded product.
 [B2] 前記複合粒子は、平均粒径D50が10~150μmであり、且つ半値幅が10~150μmである[B1]に記載の方法。
 [B3] 前記平均粒径D50が、10~120μm、好ましくは50~150μm、より好ましくは70~120μmである[B2]に記載の方法。
 [B4] 前記半値幅が、30~150μm、好ましくは50~150μm、より好ましくは60~140μmである[B2]または[B3]に記載の方法。
[B2] The method according to [B1], wherein the composite particles have an average particle size D50 of 10 to 150 μm and a half width of 10 to 150 μm.
[B3] The method according to [B2], wherein the average particle size D50 is 10 to 120 μm, preferably 50 to 150 μm, and more preferably 70 to 120 μm.
[B4] The method according to [B2] or [B3], wherein the half width is 30 to 150 μm, preferably 50 to 150 μm, and more preferably 60 to 140 μm.
 [B5] 前記複合粒子が、球状の形態を有する[B1]~[B4]の何れか1に記載の方法。
 [B6] 前記複合粒子の形成が、前記スラリーをロータリーアトマイザー方式のスプレードライヤーを用いて噴霧乾燥することにより行われる[B1]~[B5]の何れか1に記載の方法。
 [B7] 前記バインダーが、前記スラリーに含まれる固形分の質量に対して、3~15質量%、好ましくは5~10質量%の量で前記スラリーに含まれる[B1]~[B6]の何れか1に記載の方法。
[B5] The method according to any one of [B1] to [B4], wherein the composite particles have a spherical shape.
[B6] The method according to any one of [B1] to [B5], wherein the formation of the composite particles is performed by spray-drying the slurry with a rotary atomizer type spray dryer.
[B7] Any of [B1] to [B6] in which the binder is contained in the slurry in an amount of 3 to 15% by mass, preferably 5 to 10% by mass, based on the mass of the solid content contained in the slurry. The method according to 1.
 [B8] 前記混合物が、前記複合粒子と、前記複合粒子に対して、33~67質量%、好ましくは38~57質量%の水とを含む混合物である[B1]~[B7]の何れか1に記載の方法。
 [B9] 前記スラリーに含まれる固形分の質量(A)と、前記スラリーに含まれる液体の質量(B)との比率(A:B)が、1:1~1:9、好ましくは1:2~1:4である[B1]~[B8]の何れか1に記載の方法。
 [B10] 前記炭素粒子が、2~100μm、好ましくは5~50μmの平均粒径を有する[B1]~[B9]の何れか1に記載の方法。
[B8] Any of [B1] to [B7], wherein the mixture is a mixture containing the composite particles and 33 to 67% by mass, preferably 38 to 57% by mass of water with respect to the composite particles. The method according to 1.
[B9] The ratio (A: B) of the mass (A) of the solid content contained in the slurry to the mass (B) of the liquid contained in the slurry is 1: 1 to 1: 9, preferably 1: 1. The method according to any one of [B1] to [B8], which is 2 to 1: 4.
[B10] The method according to any one of [B1] to [B9], wherein the carbon particles have an average particle size of 2 to 100 μm, preferably 5 to 50 μm.
 [B11] 前記炭素粒子が、活性炭粒子である[B1]~[B10]の何れか1に記載の方法。
 [B12] 前記炭素粒子が、前記スラリーに含まれる固形分の質量に対して、20~90質量%、好ましくは30~60質量%の量で前記スラリーに含まれる[B1]~[B11]の何れか1に記載の方法。
 [B13] 前記炭酸カルシウム粒子が、100μm以下(例えば、0.2~100μm)、好ましくは10μm以下(例えば、0.2~10μm)の平均粒径を有する[B1]~[B12]の何れか1に記載の方法。
[B11] The method according to any one of [B1] to [B10], wherein the carbon particles are activated carbon particles.
[B12] Of [B1] to [B11], the carbon particles are contained in the slurry in an amount of 20 to 90% by mass, preferably 30 to 60% by mass, based on the mass of the solid content contained in the slurry. The method according to any one.
[B13] Any of [B1] to [B12], wherein the calcium carbonate particles have an average particle size of 100 μm or less (for example, 0.2 to 100 μm), preferably 10 μm or less (for example, 0.2 to 10 μm). The method according to 1.
 [B14] 前記炭酸カルシウム粒子が、前記スラリーに含まれる固形分の質量に対して、5~75質量%、好ましくは40~70質量%の量で前記スラリーに含まれる[B1]~[B13]の何れか1に記載の方法。
 [B15] 前記炭素粒子と前記炭酸カルシウム粒子との粒径比が、10:1~1:10である[B1]~[B14]の何れか1に記載の方法。
 [B16] 前記炭素粒子と前記炭酸カルシウム粒子との質量比が、5:1~1:5である[B1]~[B15]の何れか1に記載の方法。
[B14] The calcium carbonate particles are contained in the slurry in an amount of 5 to 75% by mass, preferably 40 to 70% by mass, based on the mass of the solid content contained in the slurry [B1] to [B13]. The method according to any one of.
[B15] The method according to any one of [B1] to [B14], wherein the particle size ratio of the carbon particles to the calcium carbonate particles is 10: 1 to 1:10.
[B16] The method according to any one of [B1] to [B15], wherein the mass ratio of the carbon particles to the calcium carbonate particles is 5: 1 to 1: 5.
 [B17] 前記バインダーが、セルロース誘導体である[B1]~[B16]の何れか1に記載の方法。
 [B18] 前記セルロース誘導体が、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、メチルヒドロキシエチルセルロース、メチルセルロース、またはヒドロキシプロピルセルロースである[B17]に記載の方法。
 [B19] 前記セルロース誘導体が、カルボキシメチルセルロースである[B17]または[B18]に記載の方法。
[B17] The method according to any one of [B1] to [B16], wherein the binder is a cellulose derivative.
[B18] The method according to [B17], wherein the cellulose derivative is carboxymethyl cellulose, sodium carboxymethyl cellulose, methyl hydroxyethyl cellulose, methyl cellulose, or hydroxypropyl cellulose.
[B19] The method according to [B17] or [B18], wherein the cellulose derivative is carboxymethyl cellulose.
 [B20] 前記成形が、圧縮成形により行われる[B1]~[B19]の何れか1に記載の方法。
 [B21] 前記成形が、打錠成形により行われる[B1]~[B20]の何れか1に記載の方法。
 [B22] 前記成形が、0.6~1.0g/cm3、好ましくは0.7~0.9g/cm3の密度を有する成形体が得られるように行われる[B1]~[B21]の何れか1に記載の方法。
 [B23] 前記成形が、1~5kNの圧力をかけることにより行われる[B1]~[B22]の何れか1に記載の方法。
[B20] The method according to any one of [B1] to [B19], wherein the molding is performed by compression molding.
[B21] The method according to any one of [B1] to [B20], wherein the molding is performed by tablet molding.
[B22] The molding is carried out so as to obtain a molded product having a density of 0.6 to 1.0 g / cm 3 , preferably 0.7 to 0.9 g / cm 3 , [B1] to [B21]. The method according to any one of.
[B23] The method according to any one of [B1] to [B22], wherein the molding is performed by applying a pressure of 1 to 5 kN.
 [C1] 炭素粒子と炭酸カルシウム粒子とバインダーとを含み、平均粒径D50が10~150μmであり、かつ半値幅が10~150μmである複合粒子。
 [C2] 前記平均粒径D50が、10~120μm、好ましくは50~150μm、より好ましくは70~120μmである[C1]に記載の複合粒子。
 [C3] 前記半値幅が、30~150μm、好ましくは50~150μm、より好ましくは60~140μmである[C1]または[C2]に記載の複合粒子。
[C1] A composite particle containing carbon particles, calcium carbonate particles, and a binder, having an average particle size D50 of 10 to 150 μm and a half width of 10 to 150 μm.
[C2] The composite particle according to [C1], wherein the average particle size D50 is 10 to 120 μm, preferably 50 to 150 μm, and more preferably 70 to 120 μm.
[C3] The composite particle according to [C1] or [C2], wherein the half width is 30 to 150 μm, preferably 50 to 150 μm, and more preferably 60 to 140 μm.
 [C4] 前記複合粒子が、球状の形態を有する[C1]~[C3]の何れか1に記載の複合粒子。
 [C5] 前記バインダーが、3~15質量%、好ましくは5~10質量%の量で前記複合粒子に含まれる[C1]~[C4]の何れか1に記載の複合粒子。
 [C6] 前記炭素粒子が、2~100μm、好ましくは5~50μmの平均粒径を有する[C1]~[C5]の何れか1に記載の複合粒子。
[C4] The composite particle according to any one of [C1] to [C3], wherein the composite particle has a spherical shape.
[C5] The composite particle according to any one of [C1] to [C4], wherein the binder is contained in the composite particle in an amount of 3 to 15% by mass, preferably 5 to 10% by mass.
[C6] The composite particle according to any one of [C1] to [C5], wherein the carbon particles have an average particle size of 2 to 100 μm, preferably 5 to 50 μm.
 [C7] 前記炭素粒子が、活性炭粒子である[C1]~[C6]の何れか1に記載の複合粒子。
 [C8] 前記炭素粒子が、20~90質量%、好ましくは30~60質量%の量で前記複合粒子に含まれる[C1]~[C7]の何れか1に記載の複合粒子。
 [C9] 前記炭酸カルシウム粒子が、100μm以下(例えば、0.2~100μm)、好ましくは10μm以下(例えば、0.2~10μm)の平均粒径を有する[C1]~[C8]の何れか1に記載の複合粒子。
[C7] The composite particle according to any one of [C1] to [C6], wherein the carbon particles are activated carbon particles.
[C8] The composite particle according to any one of [C1] to [C7], wherein the carbon particle is contained in the composite particle in an amount of 20 to 90% by mass, preferably 30 to 60% by mass.
[C9] Any of [C1] to [C8] in which the calcium carbonate particles have an average particle size of 100 μm or less (for example, 0.2 to 100 μm), preferably 10 μm or less (for example, 0.2 to 10 μm). The composite particle according to 1.
 [C10] 前記炭酸カルシウム粒子が、5~75質量%、好ましくは40~70質量%の量で前記複合粒子に含まれる[C1]~[C9]の何れか1に記載の複合粒子。
 [C11] 前記炭素粒子と前記炭酸カルシウム粒子との粒径比が、10:1~1:10である[C1]~[C10]の何れか1に記載の複合粒子。
 [C12] 前記炭素粒子と前記炭酸カルシウム粒子との質量比が、5:1~1:5である[C1]~[C11]の何れか1に記載の複合粒子。
[C10] The composite particle according to any one of [C1] to [C9], wherein the calcium carbonate particles are contained in the composite particles in an amount of 5 to 75% by mass, preferably 40 to 70% by mass.
[C11] The composite particle according to any one of [C1] to [C10], wherein the particle size ratio of the carbon particles to the calcium carbonate particles is 10: 1 to 1:10.
[C12] The composite particle according to any one of [C1] to [C11], wherein the mass ratio of the carbon particles to the calcium carbonate particles is 5: 1 to 1: 5.
 [C13] 前記バインダーが、セルロース誘導体である[C1]~[C12]の何れか1に記載の複合粒子。
 [C14] 前記セルロース誘導体が、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、メチルヒドロキシエチルセルロース、メチルセルロース、またはヒドロキシプロピルセルロースである[C13]に記載の複合粒子。
 [C15] 前記セルロース誘導体が、カルボキシメチルセルロースである[C13]または[C14]に記載の複合粒子。
[C13] The composite particle according to any one of [C1] to [C12], wherein the binder is a cellulose derivative.
[C14] The composite particle according to [C13], wherein the cellulose derivative is carboxymethyl cellulose, sodium carboxymethyl cellulose, methyl hydroxyethyl cellulose, methyl cellulose, or hydroxypropyl cellulose.
[C15] The composite particle according to [C13] or [C14], wherein the cellulose derivative is carboxymethyl cellulose.
 [D1] [A1]~[A23]の何れか1に記載の方法により製造される香味吸引器用炭素熱源。
 [D2] [B1]~[B23]の何れか1に記載の方法により製造される香味吸引器用炭素熱源。
 [D3] 前記炭素熱源が、140~250Nの強度および0.6~1.0g/cm3の密度を有する[D1]または[D2]に記載の香味吸引器用炭素熱源。
 [D4] 前記炭素熱源が、140~250Nの強度および0.7~0.9g/cm3の密度を有する[D1]~[D3]の何れか1に記載の香味吸引器用炭素熱源。
[D1] A carbon heat source for a flavor aspirator produced by the method according to any one of [A1] to [A23].
[D2] A carbon heat source for a flavor aspirator produced by the method according to any one of [B1] to [B23].
[D3] The carbon heat source for a flavor aspirator according to [D1] or [D2], wherein the carbon heat source has an intensity of 140 to 250 N and a density of 0.6 to 1.0 g / cm 3 .
[D4] The carbon heat source for a flavor aspirator according to any one of [D1] to [D3], wherein the carbon heat source has an intensity of 140 to 250 N and a density of 0.7 to 0.9 g / cm 3 .
 [E1] [D1]~[D4]の何れか1に記載の炭素熱源を含む香味吸引器。
 [E2] 吸口端から先端まで延びる筒状のホルダと、前記先端に設けられた[D1]~[D4]の何れか1に記載の炭素熱源と、前記ホルダの内側で前記炭素熱源の下流に設けられた香味源とを備える香味吸引器。
 [E3] 前記ホルダの内側で前記吸口端側に設けられたフィルター部を更に備える[E2]に記載の香味吸引器。
 [E4] 前記ホルダと前記香味源との間に介在されるアルミニウム貼合紙を更に備える[E2]または[E3]に記載の香味吸引器。
[E1] A flavor aspirator containing the carbon heat source according to any one of [D1] to [D4].
[E2] A tubular holder extending from the mouthpiece end to the tip, a carbon heat source according to any one of [D1] to [D4] provided at the tip, and inside the holder downstream of the carbon heat source. A flavor aspirator with a provided flavor source.
[E3] The flavor aspirator according to [E2], further including a filter portion provided on the mouthpiece end side inside the holder.
[E4] The flavor aspirator according to [E2] or [E3], further comprising an aluminum laminated paper interposed between the holder and the flavor source.
 [試験例1]複合粒子
 1-1.複合粒子の調製
 <複合粒子A1の調製>
 (1)スラリーA1の調製
 炭素粒子として、活性炭粒子、具体的にはクラレコールSA2300(平均粒径:6.6μm、BET比表面積:2100~2400m2/g、クラレケミカル株式会社)とクラレコールPW-Y(粒径:45μm以下、BET比表面積:1300~1500m2/g、クラレケミカル株式会社)との混合物(2:8の質量比)を使用した。炭酸カルシウム粒子として、カルピンF(平均粒径:3μm、かためかさ密度:0.66g/cm、矢橋工業株式会社)を使用した。バインダーとして、カルボキシメチルセルロース、具体的にはサンローズF10LC(日本製紙株式会社)を使用した。
[Test Example 1] Composite particles 1-1. Preparation of composite particles <Preparation of composite particles A1>
(1) Preparation of slurry A1 As carbon particles, activated carbon particles, specifically, Clarecol SA2300 (average particle size: 6.6 μm, BET specific surface area: 2100 to 2400 m 2 / g, Clarecol PW) and Clarecol PW A mixture (2: 8 mass ratio) with −Y (particle size: 45 μm or less, BET specific surface area: 1300 to 1500 m 2 / g, Claret Chemical Co., Ltd.) was used. Carpin F (average particle size: 3 μm, firmness density: 0.66 g / cm 3 , Yabashi Kogyo Co., Ltd.) was used as the calcium carbonate particles. Carboxymethyl cellulose, specifically Sunrose F10LC (Nippon Paper Industries, Ltd.), was used as the binder.
 43質量%の炭素粒子と、49.5質量%の炭酸カルシウム粒子と、7.5質量%のバインダーとからなる固形分と、水とを、1:3.5の固液比(質量比)で、ラボミキサーを用いて混合して、スラリーA1を調製した。 A solid-liquid ratio (mass ratio) of 1: 3.5 of solid content consisting of 43% by mass carbon particles, 49.5% by mass calcium carbonate particles, and 7.5% by mass binder, and water. Then, the slurry A1 was prepared by mixing using a laboratory mixer.
 (2)噴霧乾燥
 スラリーA1を噴霧乾燥して複合粒子を調製した。噴霧乾燥は、ロータリーアトマイザー方式の噴霧乾燥装置(RDL-050CM)を用いて行った。具体的には、原料スラリーを、高速回転するディスクに送り、遠心力で加熱気体中に液滴を飛び散らせて微粒化した。これにより、複合粒子A1(平均粒径(D50)76μm)を調製した。噴霧乾燥条件は、以下のとおりとした。
 ディスク径:60mm
 ディスク回転数:8000~13000rpm
 スラリーの吐出速度:15~30L/hour
 出口(粒子が出てくるところ)熱風温度:80~120℃
(2) Spray drying The slurry A1 was spray-dried to prepare composite particles. The spray drying was performed using a rotary atomizer type spray drying device (RDL-050CM). Specifically, the raw material slurry was sent to a disk rotating at high speed, and droplets were scattered into the heated gas by centrifugal force to atomize the raw material slurry. As a result, composite particles A1 (average particle size (D50) 76 μm) were prepared. The spray drying conditions were as follows.
Disc diameter: 60 mm
Disk rotation speed: 8000 to 13000 rpm
Slurry discharge rate: 15 to 30 L / hour
Outlet (where particles come out) Hot air temperature: 80-120 ° C
 <複合粒子A2の調製>
 (1)スラリーA2の調製
 炭素粒子と炭酸カルシウム粒子とバインダーとからなる固形分と、水とを、1:3の固液比(質量比)で混合したことを除いて、スラリーA1の調製と同様の手順に従ってスラリーA2を調製した。
<Preparation of composite particles A2>
(1) Preparation of Slurry A2 Preparation of Slurry A1 except that solid content consisting of carbon particles, calcium carbonate particles and a binder and water were mixed at a solid-liquid ratio (mass ratio) of 1: 3. Slurry A2 was prepared according to the same procedure.
 (2)噴霧乾燥
 スラリーA2を噴霧乾燥して複合粒子を調製した。噴霧乾燥は、ロータリーアトマイザー方式の噴霧乾燥装置(SD-6.3R型、GEAプロセスエンジニアリング株式会社(旧社名ニロジャパン))を用いて行った。具体的には、原料スラリーを、高速回転するディスクに送り、遠心力で加熱気体中に液滴を飛び散らせて微粒化した。これにより、複合粒子A2(平均粒径(D50)94μm)を調製した。噴霧乾燥条件は、以下のとおりとした。
 ディスク径:100mm
 ディスク回転数:10000~30000rpm
 スラリーの吐出速度:20~40L/hour
 出口(粒子が出てくるところ)熱風温度:100~150℃
(2) Spray drying The slurry A2 was spray dried to prepare composite particles. The spray drying was performed using a rotary atomizer type spray drying device (SD-6.3R type, GEA Process Engineering Co., Ltd. (former company name: Niro Japan)). Specifically, the raw material slurry was sent to a disk rotating at high speed, and droplets were scattered into the heated gas by centrifugal force to atomize the raw material slurry. As a result, composite particles A2 (average particle size (D50) 94 μm) were prepared. The spray drying conditions were as follows.
Disc diameter: 100 mm
Disk rotation speed: 10,000 to 30,000 rpm
Slurry discharge rate: 20-40 L / hour
Outlet (where particles come out) Hot air temperature: 100-150 ° C
 <複合粒子A3の調製>
 スラリーA3を噴霧乾燥して複合粒子を調製した。噴霧乾燥は、ロータリーアトマイザー方式の噴霧乾燥装置(SDR-27、アイエス ジャパン株式会社)を用いて行った。具体的には、原料スラリーを、高速回転するディスクに送り、遠心力で加熱気体中に液滴を飛び散らせて微粒化した。これにより、複合粒子A3(平均粒径(D50)110μm)を調製した。噴霧乾燥条件は、以下のとおりとした。
 ディスク径:150mm
 ディスク回転数:15000~25000rpm
 スラリーの吐出速度:70~160L/hour
 出口(粒子が出てくるところ)熱風温度:100~140℃
<Preparation of composite particles A3>
Slurry A3 was spray-dried to prepare composite particles. The spray drying was carried out using a rotary atomizer type spray drying device (SDR-27, IS Japan Co., Ltd.). Specifically, the raw material slurry was sent to a disk rotating at high speed, and droplets were scattered into the heated gas by centrifugal force to atomize the raw material slurry. As a result, composite particles A3 (average particle size (D50) 110 μm) were prepared. The spray drying conditions were as follows.
Disc diameter: 150 mm
Disk rotation speed: 15,000 to 25,000 rpm
Slurry discharge rate: 70-160 L / hour
Outlet (where particles come out) Hot air temperature: 100-140 ° C
 <複合粒子Bの調製>
 (1)スラリーBの準備
 炭素粒子と炭酸カルシウム粒子とバインダーとからなる固形分と、水とを、1:4.75の固液比(質量比)で混合したことを除いて、スラリーA1の調製と同様の手順に従ってスラリーBを調製した。
<Preparation of composite particle B>
(1) Preparation of Slurry B Slurry A1 except that solid content composed of carbon particles, calcium carbonate particles and a binder and water were mixed at a solid-liquid ratio (mass ratio) of 1: 4.75. Slurry B was prepared according to the same procedure as the preparation.
 (2)シート化
 スラリーBをシート化した。シート化は、CD(コンパクトディスク)ドライヤー(西村鐵工製)を用いて行った。具体的には、以下の手順を実施した。
(2) Sheet formation Slurry B was sheetized. Sheet formation was performed using a CD (compact disc) dryer (manufactured by Nishimura Iron Works). Specifically, the following procedure was carried out.
 CDドライヤーにおいて、スクレーパーとディスクの間隙を0.2mmに調整した。ディスクを140℃に加熱し、0.8rpmで回転させた。スラリーを循環タンクに供給し、循環タンク内のスラリーを、ポンプを使用してディスクに噴霧した。ディスク上で乾燥した乾燥品(シート状)をスクレーパーで採取した。 In the CD dryer, the gap between the scraper and the disc was adjusted to 0.2 mm. The disc was heated to 140 ° C. and rotated at 0.8 rpm. The slurry was fed to the circulation tank and the slurry in the circulation tank was sprayed onto the disc using a pump. A dried product (sheet form) dried on a disk was collected with a scraper.
 (3)粉砕分級
 得られた乾燥品(シート状)を粉砕分級した。粉砕は、卓上ミル(Wonder Blender)を用いて行い、分級は、篩を用いて行った。具体的には、以下の手順を実施した。
(3) Crush classification The obtained dried product (sheet form) was crushed and classified. The pulverization was performed using a tabletop mill (Wonder Blender), and the classification was performed using a sieve. Specifically, the following procedure was carried out.
 乾燥品を篩い、100μm以上300μm以下の原料に分級した。300μmを超える原料を粉砕装置に供給して粉砕した。分級と粉砕の操作を繰り返し、100~300μmの目標粒径を有する粉砕物を得た。得られた粉砕物を複合粒子Bと呼ぶ。 The dried product was sieved and classified into raw materials of 100 μm or more and 300 μm or less. A raw material exceeding 300 μm was supplied to a pulverizer and pulverized. The classification and pulverization operations were repeated to obtain a pulverized product having a target particle size of 100 to 300 μm. The obtained pulverized product is called composite particle B.
 1-2.評価方法
 (1)粒度分布の測定
 複合粒子A1、複合粒子A2、複合粒子A3および複合粒子Bの粒度分布を測定した。粒度分布は、レーザー回折散乱式粒度分布測定装置LMS-2000e(株式会社セイシン企業)を用いて測定した。
1-2. Evaluation Method (1) Measurement of Particle Size Distribution The particle size distribution of composite particle A1, composite particle A2, composite particle A3 and composite particle B was measured. The particle size distribution was measured using a laser diffraction / scattering type particle size distribution measuring device LMS-2000e (Seishin Enterprise Co., Ltd.).
 測定方法および測定条件は、以下のとおりとした。 
 測定方法: 1.圧縮空気のみでブランク測定を行った。 
       2.乾式ユニットに試料を適量入れた。 
 測定条件: 測定範囲   0.20~20000.00μm
       圧縮空気圧力 0.1 MPa
       計測方法   噴射型乾式測定
The measurement method and measurement conditions were as follows.
Measurement method: 1. Blank measurements were performed using only compressed air.
2. An appropriate amount of the sample was placed in the dry unit.
Measurement conditions: Measurement range 0.20 to 20000.00 μm
Compressed air pressure 0.1 MPa
Measurement method Injection type dry measurement
 複合粒子A1、複合粒子A2および複合粒子A3の粒度分布を、それぞれ図5~7に示し、複合粒子Bの粒度分布を図8に示す。 The particle size distributions of the composite particles A1, the composite particles A2, and the composite particles A3 are shown in FIGS. 5 to 7, respectively, and the particle size distribution of the composite particles B is shown in FIG.
 (2)顕微鏡観察
 複合粒子A1、複合粒子A2、複合粒子A3および複合粒子Bを光学顕微鏡で観察した。複合粒子A2の顕微鏡写真を図9に示し、複合粒子Bの顕微鏡写真を図10に示す。
(2) Microscopic observation The composite particles A1, the composite particles A2, the composite particles A3, and the composite particles B were observed with an optical microscope. A micrograph of the composite particle A2 is shown in FIG. 9, and a micrograph of the composite particle B is shown in FIG.
 1-3.評価結果
 粒度分布の測定結果から以下のことが分かった。複合粒子A1は、平均粒径D50が76μmで、半値幅が62μmであった(図5参照)。複合粒子A2は、平均粒径D50が94μmで、半値幅が103μmであった(図6参照)。複合粒子A3は、平均粒径D50が110μmで、半値幅が137μmであった(図7参照)。複合粒子Bは、平均粒径D50が221μmで、半値幅が258μmであった(図8参照)。
1-3. Evaluation results The following was found from the measurement results of the particle size distribution. The composite particle A1 had an average particle size D50 of 76 μm and a half width of 62 μm (see FIG. 5). The composite particle A2 had an average particle size D50 of 94 μm and a half width of 103 μm (see FIG. 6). The composite particle A3 had an average particle size D50 of 110 μm and a half width of 137 μm (see FIG. 7). The composite particle B had an average particle size D50 of 221 μm and a half width of 258 μm (see FIG. 8).
 顕微鏡観察から、以下のことが分かった。複合粒子A1、複合粒子A2および複合粒子A3は、球状の形態を有し、粒子表面が滑らかな表面を有していた(図9参照)。複合粒子A2の平均真円度は11.5μmであった(0.12×D50)。一方、複合粒子Bは、粉砕物であるため、球状の形態を有しておらず、滑らかな表面を有していなかった(図10参照)。複合粒子Bの平均真円度は66.7μmであった(0.30×D50)。 From microscopic observation, the following was found. The composite particles A1, the composite particles A2, and the composite particles A3 had a spherical shape, and the particle surface had a smooth surface (see FIG. 9). The average roundness of the composite particle A2 was 11.5 μm (0.12 × D50). On the other hand, since the composite particle B is a pulverized product, it does not have a spherical shape and does not have a smooth surface (see FIG. 10). The average roundness of the composite particle B was 66.7 μm (0.30 × D50).
 [試験例2]炭素熱源
 試験例1で調製された複合粒子を用いて炭素熱源を製造した。複合粒子A1から炭素熱源A1を製造し、複合粒子A2から炭素熱源A2を製造し、複合粒子A3から炭素熱源A3を製造し、複合粒子Bから炭素熱源B1および炭素熱源B2を製造した。
[Test Example 2] Carbon heat source A carbon heat source was produced using the composite particles prepared in Test Example 1. A carbon heat source A1 was produced from the composite particles A1, a carbon heat source A2 was produced from the composite particles A2, a carbon heat source A3 was produced from the composite particles A3, and a carbon heat source B1 and a carbon heat source B2 were produced from the composite particles B.
 炭素熱源A1、炭素熱源A2、炭素熱源A3、炭素熱源B1、および炭素熱源B2の製造条件を表1にまとめて示す。 Table 1 summarizes the production conditions of the carbon heat source A1, the carbon heat source A2, the carbon heat source A3, the carbon heat source B1, and the carbon heat source B2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 2-1.炭素熱源の製造
 <炭素熱源A1の製造>
 (1)加水
 試験例1で調製された複合粒子A1に水を添加した。70質量部の複合粒子A1に30質量部の水を添加した。すなわち、水は、複合粒子A1に対して43質量%の量で添加した。複合粒子A1に洗瓶で水を添加し、得られた混合物を、ケンミックスミキサーを用いて混合した。複合粒子が凝集したため、凝集物を解砕した。解砕は、卓上ミル(Wonder Blender)を用いて行った。これにより、混合物A1と水との混合物(母材)を調製した。表1において「水分量」は、混合物中の水の割合(質量%)を表す。
2-1. Manufacture of carbon heat source <Manufacture of carbon heat source A1>
(1) Water addition Water was added to the composite particles A1 prepared in Test Example 1. 30 parts by mass of water was added to 70 parts by mass of the composite particle A1. That is, water was added in an amount of 43% by mass with respect to the composite particles A1. Water was added to the composite particles A1 in a washing bottle, and the obtained mixture was mixed using a Kenmix mixer. Since the composite particles were agglomerated, the agglomerates were crushed. Crushing was performed using a tabletop mill (Wonder Blender). As a result, a mixture (base material) of the mixture A1 and water was prepared. In Table 1, "water content" represents the proportion (mass%) of water in the mixture.
 (2)分級
 複合粒子A1と水との混合物(母材)を、篩を用いて、500μm以下に分級した。
(2) Classification The mixture (base material) of the composite particles A1 and water was classified to 500 μm or less using a sieve.
 (3)成形
 分級後の母材を打錠成形した。打錠成形は、打錠成型機CREC(菊水製作所社製)を用いて行った。母材は、円柱形状に成形した。具体的には、以下の手順を実施した。分級後の母材を定量供給機に供給した。撹拌フィードシューを80rpmで回転させ、母材を定量供給機から撹拌フィードシューに供給した。撹拌フィードシュー内の母材の量を一定に保ちつつ、打錠機回転盤を15rpmで回転し、打錠を実施した。打圧時の圧力は、1.5~3.0kNであった。
(3) Molding The base metal after classification was tablet-molded. The tableting molding was performed using a tableting molding machine CREC (manufactured by Kikusui Seisakusho Co., Ltd.). The base material was formed into a cylindrical shape. Specifically, the following procedure was carried out. The base material after classification was supplied to the fixed quantity feeder. The stirring feed shoe was rotated at 80 rpm, and the base material was supplied from the metering feed machine to the stirring feed shoe. While keeping the amount of the base material in the stirring feed shoe constant, the tableting machine rotating disk was rotated at 15 rpm to perform locking. The pressure at the time of striking was 1.5 to 3.0 kN.
 (4)乾燥
 得られた打錠品を乾燥させた。乾燥は、定温乾燥器OF-300S(ASONE製)を用いて行った。具体的には、打錠品を100℃で8.6分間乾燥させた後、200℃で17.3分間乾燥させた。
(4) Drying The obtained tableted product was dried. Drying was carried out using a constant temperature dryer OF-300S (manufactured by AS ONE). Specifically, the tableted product was dried at 100 ° C. for 8.6 minutes and then at 200 ° C. for 17.3 minutes.
 (5)切削
 乾燥後の打錠品に、ドリルで貫通孔を開けて、図3に示されるとおり通気路13を設けた。また、乾燥後の打錠品に、切削装置MTC(装置名:カーボン成形品加工試験機、会社名:株式会社山本機械製作所)を用いて面取り加工および十字加工を施した。図3に示されるとおり、面取り加工は、先端面11および基端面12の両方に行い、十字加工は、先端面11のみに行った。加工後、通気路13をエアブローするとともに、十字加工により形成された溝部15をエアブローした。これにより、炭素熱源A1を製造した。
(5) Cutting A through hole was drilled in the dried tableted product, and a ventilation path 13 was provided as shown in FIG. Further, the dried tableted product was chamfered and cross-processed using a cutting device MTC (device name: carbon molded product processing tester, company name: Yamamoto Kikai Seisakusho Co., Ltd.). As shown in FIG. 3, the chamfering process was performed on both the tip surface 11 and the base end surface 12, and the cross process was performed only on the tip surface 11. After the processing, the air passage 13 was air-blown and the groove portion 15 formed by the cross processing was air-blown. As a result, the carbon heat source A1 was manufactured.
 製造された炭素熱源A1は、図3に示される形状を有し、以下の寸法を有していた。
 全長(中心軸C方向に関する炭素熱源の長さ):13mm
 直径(中心軸Cと交差する方向に関する炭素熱源の長さ):6.49mm
 中心軸C方向に関する溝部15の深さ(長さ):3.0mm
 溝部15の幅(内径):0.6mm
 通気路13の内径:1.0mm
The produced carbon heat source A1 had the shape shown in FIG. 3 and had the following dimensions.
Overall length (length of carbon heat source with respect to central axis C direction): 13 mm
Diameter (length of carbon heat source in the direction intersecting the central axis C): 6.49 mm
Depth (length) of groove 15 in the central axis C direction: 3.0 mm
Groove 15 width (inner diameter): 0.6 mm
Inner diameter of ventilation passage 13: 1.0 mm
 <炭素熱源A2の製造>
 複合粒子A1の代わりに複合粒子A2を使用したこと以外は、炭素熱源A1の製造と同様の手順に従って炭素熱源A2を製造した。
<Manufacturing of carbon heat source A2>
The carbon heat source A2 was produced according to the same procedure as the production of the carbon heat source A1 except that the composite particles A2 were used instead of the composite particles A1.
 <炭素熱源A3の製造>
 複合粒子A1の代わりに複合粒子A3を使用したこと以外は、炭素熱源A1の製造と同様の手順に従って炭素熱源A3を製造した。
<Manufacturing of carbon heat source A3>
The carbon heat source A3 was produced according to the same procedure as the production of the carbon heat source A1 except that the composite particles A3 were used instead of the composite particles A1.
 <炭素熱源B1の製造(比較例1)>
 複合粒子A1の代わりに複合粒子Bを使用したことと、水を複合粒子Bに対して34質量%の量で添加したこと以外は、炭素熱源A1の製造と同様の手順に従って炭素熱源B1を製造した。
<Manufacturing of carbon heat source B1 (Comparative Example 1)>
The carbon heat source B1 was produced according to the same procedure as that for the carbon heat source A1 except that the composite particles B were used instead of the composite particles A1 and water was added in an amount of 34% by mass with respect to the composite particles B. did.
 <炭素熱源B2の製造(比較例2)>
 複合粒子A1の代わりに複合粒子Bを使用したこと以外は、炭素熱源A1の製造と同様の手順に従って炭素熱源B2を製造した。
<Manufacturing of carbon heat source B2 (Comparative Example 2)>
The carbon heat source B2 was manufactured according to the same procedure as that for the carbon heat source A1 except that the composite particles B were used instead of the composite particles A1.
 2-2.評価方法
 (1)強度
 炭素熱源の強度は、以下の通り破壊強度を測定することにより求めた。 
 測定装置:SHIMAZU EZ-S 500N
 ロードセル最大加圧量:500 N
 圧縮速度:10 mm/min
 圧縮子:先端部がV字のアタッチメント
2-2. Evaluation method (1) Strength The strength of the carbon heat source was determined by measuring the fracture strength as follows.
Measuring device: SHIMAZU EZ-S 500N
Maximum load cell pressurization: 500 N
Compression rate: 10 mm / min
Compressor: V-shaped attachment at the tip
 炭素熱源の側部中心をアタッチメントが炭素熱源に垂直に位置するような向きで破断するまで加圧し、破断時の圧力(破壊強度)を測定した。破壊強度の値により強度を以下のとおり評価した。 
 〇:破壊強度 140[N]以上
 △:破壊強度 80[N]以上、140[N]未満
 ×:破壊強度 80[N]未満
The center of the side of the carbon heat source was pressurized until the attachment broke in a direction perpendicular to the carbon heat source, and the pressure at the time of rupture (break strength) was measured. The strength was evaluated as follows based on the value of fracture strength.
〇: Breaking strength 140 [N] or more Δ: Breaking strength 80 [N] or more, less than 140 [N] ×: Breaking strength less than 80 [N]
 (2)着火性
 新品フィラメントにしたborgwalgt電熱ライターを使用して、炭素熱源の着火性を評価した。
(2) Ignition property The ignitability of the carbon heat source was evaluated using a new filament borgwalgt electric heating lighter.
 ライターのフィラメントを、炭素熱源に直付けした。ライターのフィラメントの十字と、炭素熱源の溝の十字とが重なるよう直付けした。ライターの出力は、「強」に設定した。ライターのスイッチをONにした時点から吸引開始までの時間を変更して評価した。吸引容量は、55 mL/2secであった。吸引終了時に、ライターを炭素熱源から離した。2パフ目(15秒後)に炭素熱源が赤熱していれば着火と判断した。 The filament of the lighter was directly attached to the carbon heat source. The cross of the filament of the lighter and the cross of the groove of the carbon heat source were directly attached so as to overlap. The output of the writer was set to "strong". The time from when the lighter switch was turned on to the start of suction was changed for evaluation. The suction capacity was 55 mL / 2 sec. At the end of suction, the lighter was separated from the carbon heat source. If the carbon heat source was reddish on the second puff (15 seconds later), it was judged to be ignited.
 打錠成型機の上杵側に配置された炭素熱源の面(先端面)を評価した。炭素熱源の先端面は、十字加工により4つの領域(島)に分断されている(図3を参照)。着火した島の数により着火性を評価した。
 〇:4つの島が着火した場合 
 △:2つまたは3つの島が着火した場合
 ×:1つの島が着火した場合または未着火の場合
The surface (tip surface) of the carbon heat source arranged on the upper punch side of the tableting machine was evaluated. The tip surface of the carbon heat source is divided into four regions (islands) by cross processing (see FIG. 3). The ignitability was evaluated by the number of ignited islands.
〇: When four islands ignite
Δ: When two or three islands are ignited ×: When one island is ignited or not ignited
 (3)密度
 円柱形状を有する炭素熱源の体積を、円柱の直径および円柱の高さから算出した。また、炭素熱源の質量を測定した。体積および質量の値から炭素熱源の密度[g/cm3]を算出した。炭素熱源の密度は、着火性と相関する指標であり、低密度なほど着火性がよい。
(3) Density The volume of the carbon heat source having a cylindrical shape was calculated from the diameter of the cylinder and the height of the cylinder. In addition, the mass of the carbon heat source was measured. The density of the carbon heat source [g / cm 3 ] was calculated from the values of volume and mass. The density of the carbon heat source is an index that correlates with the ignitability, and the lower the density, the better the ignitability.
 2-3.評価結果
 評価結果を表2に示す。
2-3. Evaluation Results The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 炭素熱源A1、炭素熱源A2および炭素熱源A3の製造については、炭素熱源を成形し難いという問題を有しておらず、製造容易性に優れていた。また、炭素熱源A1、炭素熱源A2および炭素熱源A3は、高い強度と優れた着火性とを有していた。炭素熱源A1、炭素熱源A2および炭素熱源A3を製造するために使用した複合粒子A1、複合粒子A2および複合粒子A3は、いずれも、平均粒径が小さく、粒度分布がシャープであった。このため、複合粒子を、成形体全体にわたって均一な密度で、かつ高密度に成形することができ、これにより、製造される炭素熱源の強度を向上させることができるとともに、優れた着火性を提供することができたと考えられる。 Regarding the production of the carbon heat source A1, the carbon heat source A2, and the carbon heat source A3, there was no problem that it was difficult to mold the carbon heat source, and the production was excellent. Further, the carbon heat source A1, the carbon heat source A2 and the carbon heat source A3 had high strength and excellent ignitability. The composite particles A1, the composite particles A2, and the composite particles A3 used for producing the carbon heat source A1, the carbon heat source A2, and the carbon heat source A3 all had a small average particle size and a sharp particle size distribution. Therefore, the composite particles can be molded at a uniform density and a high density throughout the molded body, whereby the strength of the produced carbon heat source can be improved and excellent ignitability is provided. It is probable that it was possible.
 一方、複合粒子Bを用いて炭素熱源を製造すると、成形し難かった。そこで、成形時に添加される水の量を増やして炭素熱源B1を製造したところ、打錠成型機に成形材料(母材)が付着し易く、とりわけ、打錠成型機で連続生産を行うと、初期は炭素熱源を製造することができたが、徐々に打錠成型機のチャンバ内や圧縮部に母材が付着し、連続生産することができなくなった。製造された炭素熱源B1は、高い強度と優れた着火性とを有していたが、連続生産できないという問題があった。 On the other hand, when a carbon heat source was produced using composite particles B, it was difficult to mold. Therefore, when the carbon heat source B1 was manufactured by increasing the amount of water added during molding, the molding material (base material) easily adhered to the tableting molding machine, and in particular, when continuous production was performed with the tableting molding machine, Initially, it was possible to produce a carbon heat source, but gradually the base metal adhered to the inside of the chamber and compression part of the shaper, making continuous production impossible. The produced carbon heat source B1 had high strength and excellent ignitability, but had a problem that it could not be continuously produced.
 複合粒子Bを用いて、成形時に一般に使用される量の水(すなわち、複合粒子Bに対して30重量%の水)を加えて炭素熱源B2を製造したところ、成形し難く、得られた炭素熱源B2は、着火性に問題は見られなかったが、強度が十分でなかった。 When the carbon heat source B2 was produced by adding an amount of water generally used at the time of molding (that is, 30% by weight of water with respect to the composite particles B) using the composite particles B, it was difficult to mold and the obtained carbon was obtained. The heat source B2 did not show any problem in ignitability, but its strength was not sufficient.
 複合粒子Bは、複合粒子A1、複合粒子A2および複合粒子A3と比べると、平均粒径が大きく、半値幅も大きかった。このため、複合粒子Bを、成形体全体にわたって均一な密度で、かつ高密度に成形することができず、これにより、成形し難くいという不具合や、製造された炭素熱源の強度が低いという不具合が起こったと考えられる。加えて、複合粒子Bは粉砕物であるため、球状の形態を有しておらず、また、表面に凹凸があり滑らかでなかった。このような複合粒子Bの形状も、成形し難さや炭素熱源の強度の低下に影響したと考えられる。 The composite particle B had a larger average particle size and a larger half-value width than the composite particle A1, the composite particle A2, and the composite particle A3. Therefore, the composite particles B cannot be molded at a uniform density and a high density throughout the molded body, which makes it difficult to mold and the strength of the produced carbon heat source is low. Is thought to have happened. In addition, since the composite particle B is a pulverized product, it does not have a spherical shape, and the surface is uneven and not smooth. It is considered that such a shape of the composite particle B also affected the difficulty of molding and the decrease in the strength of the carbon heat source.

Claims (16)

  1.  炭素粒子と炭酸カルシウム粒子とバインダーと水とを含むスラリーを原料として用いて、平均粒径D50が10~150μmであり、かつ半値幅が10~150μmである複合粒子を形成すること、
     前記複合粒子と水とを含む混合物を成形して、成形体を得ること、および
     前記成形体を乾燥させること
    を含む、香味吸引器用炭素熱源の製造方法。
    Using a slurry containing carbon particles, calcium carbonate particles, a binder and water as a raw material to form composite particles having an average particle size D50 of 10 to 150 μm and a half width of 10 to 150 μm.
    A method for producing a carbon heat source for a flavor aspirator, which comprises molding a mixture containing the composite particles and water to obtain a molded product, and drying the molded product.
  2.  前記複合粒子が、球状の形態を有する請求項1に記載の方法。 The method according to claim 1, wherein the composite particles have a spherical shape.
  3.  前記複合粒子の形成が、前記スラリーを噴霧乾燥することにより行われる請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the formation of the composite particles is performed by spray-drying the slurry.
  4.  前記バインダーが、前記スラリーに含まれる固形分の質量に対して3~15質量%の量で前記スラリーに含まれる請求項1~3の何れか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the binder is contained in the slurry in an amount of 3 to 15% by mass with respect to the mass of the solid content contained in the slurry.
  5.  前記混合物が、前記複合粒子と、前記複合粒子に対して33~67質量%の水とを含む混合物である請求項1~4の何れか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the mixture is a mixture containing the composite particles and 33 to 67% by mass of water with respect to the composite particles.
  6.  前記スラリーに含まれる固形分の質量(A)と、前記スラリーに含まれる液体の質量(B)との比率(A:B)が、1:1~1:9である請求項1~5の何れか1項に記載の方法。 Claims 1 to 5, wherein the ratio (A: B) of the mass (A) of the solid content contained in the slurry to the mass (B) of the liquid contained in the slurry is 1: 1 to 1: 9. The method according to any one item.
  7.  前記炭素粒子が、2~100μmの平均粒径を有する請求項1~6の何れか1項に記載の方法。 The method according to any one of claims 1 to 6, wherein the carbon particles have an average particle size of 2 to 100 μm.
  8.  前記炭素粒子が、前記スラリーに含まれる固形分の質量に対して20~90質量%の量で前記スラリーに含まれる請求項1~7の何れか1項に記載の方法。 The method according to any one of claims 1 to 7, wherein the carbon particles are contained in the slurry in an amount of 20 to 90% by mass with respect to the mass of the solid content contained in the slurry.
  9.  前記炭酸カルシウム粒子が、100μm以下の平均粒径を有する請求項1~8の何れか1項に記載の方法。 The method according to any one of claims 1 to 8, wherein the calcium carbonate particles have an average particle size of 100 μm or less.
  10.  前記炭酸カルシウム粒子が、前記スラリーに含まれる固形分の質量に対して5~75質量%の量で前記スラリーに含まれる請求項1~9の何れか1項に記載の方法。 The method according to any one of claims 1 to 9, wherein the calcium carbonate particles are contained in the slurry in an amount of 5 to 75% by mass with respect to the mass of the solid content contained in the slurry.
  11.  前記バインダーが、セルロース誘導体である請求項1~10の何れか1項に記載の方法。 The method according to any one of claims 1 to 10, wherein the binder is a cellulose derivative.
  12.  前記成形が、圧縮成形により行われる請求項1~11の何れか1項に記載の方法。 The method according to any one of claims 1 to 11, wherein the molding is performed by compression molding.
  13.  炭素粒子と炭酸カルシウム粒子とバインダーとを含み、平均粒径D50が10~150μmであり、かつ半値幅が10~150μmである複合粒子。 A composite particle containing carbon particles, calcium carbonate particles, and a binder, having an average particle size D50 of 10 to 150 μm and a half width of 10 to 150 μm.
  14.  請求項1~12の何れか1項に記載の方法により製造される香味吸引器用炭素熱源。 A carbon heat source for a flavor aspirator produced by the method according to any one of claims 1 to 12.
  15.  前記炭素熱源が、140~250Nの強度および0.6~1.0g/cm3の密度を有する請求項14に記載の香味吸引器用炭素熱源。 The carbon heat source for a flavor aspirator according to claim 14, wherein the carbon heat source has an intensity of 140 to 250 N and a density of 0.6 to 1.0 g / cm 3 .
  16.  請求項14または15に記載の炭素熱源を含む香味吸引器。 A flavor aspirator comprising the carbon heat source according to claim 14 or 15.
PCT/JP2019/014957 2019-04-04 2019-04-04 Method for manufacturing carbon heat source for flavor inhalation tool, composite particles, carbon heat source for flavor inhalation tool, and flavor inhalation tool WO2020202528A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980093383.2A CN113543667A (en) 2019-04-04 2019-04-04 Method for producing carbon heat source for flavor absorber, composite particle, carbon heat source for flavor absorber, and flavor absorber
JP2021511031A JP7176101B2 (en) 2019-04-04 2019-04-04 Method for producing carbon heat source for flavor inhaler, composite particles, carbon heat source for flavor inhaler, and flavor inhaler
PCT/JP2019/014957 WO2020202528A1 (en) 2019-04-04 2019-04-04 Method for manufacturing carbon heat source for flavor inhalation tool, composite particles, carbon heat source for flavor inhalation tool, and flavor inhalation tool
EP19922582.2A EP3949765A4 (en) 2019-04-04 2019-04-04 Method for manufacturing carbon heat source for flavor inhalation tool, composite particles, carbon heat source for flavor inhalation tool, and flavor inhalation tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/014957 WO2020202528A1 (en) 2019-04-04 2019-04-04 Method for manufacturing carbon heat source for flavor inhalation tool, composite particles, carbon heat source for flavor inhalation tool, and flavor inhalation tool

Publications (1)

Publication Number Publication Date
WO2020202528A1 true WO2020202528A1 (en) 2020-10-08

Family

ID=72666367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014957 WO2020202528A1 (en) 2019-04-04 2019-04-04 Method for manufacturing carbon heat source for flavor inhalation tool, composite particles, carbon heat source for flavor inhalation tool, and flavor inhalation tool

Country Status (4)

Country Link
EP (1) EP3949765A4 (en)
JP (1) JP7176101B2 (en)
CN (1) CN113543667A (en)
WO (1) WO2020202528A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023121024A1 (en) * 2021-12-23 2023-06-29 주식회사 케이티앤지 Method for molding combustible heat source for smoking article, combustible heat source manufactured thereby, and smoking article comprising same
WO2023121025A1 (en) * 2021-12-23 2023-06-29 주식회사 케이티앤지 Combustible heat source for smoking product, and smoking product comprising same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224276A (en) 1986-03-14 1987-10-02 ア−ル・ジエイ・レノルズ・タバコ・カンパニ− Carbon fuel element for smoking goods and production thereof
JPS63164875A (en) * 1986-12-09 1988-07-08 アール・ジエイ・レノルズ・タバコ・カンパニー Smoking product having improved fuel element
JPH101374A (en) * 1996-03-07 1998-01-06 Rengo Co Ltd Porous composite molded body consisting of amorphous carbon and calcium silicate hydrate and its production
JP2002011346A (en) * 2000-06-30 2002-01-15 Taiheiyo Cement Corp Exhaust gas treatment agent
WO2006073065A1 (en) 2005-01-06 2006-07-13 Japan Tobacco Inc. Carbonaceous heat source composition for non-combustion smoking article
WO2016042307A1 (en) * 2014-09-18 2016-03-24 British American Tobacco (Investments) Limited Composite

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046384A1 (en) * 2013-09-30 2015-04-02 日本たばこ産業株式会社 Flavor inhalator
PH12014000291B1 (en) 2013-10-31 2016-05-02 Glatz Julius Gmbh Tobacco product wrapping material with controlled burning properties

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224276A (en) 1986-03-14 1987-10-02 ア−ル・ジエイ・レノルズ・タバコ・カンパニ− Carbon fuel element for smoking goods and production thereof
JPS63164875A (en) * 1986-12-09 1988-07-08 アール・ジエイ・レノルズ・タバコ・カンパニー Smoking product having improved fuel element
JPH101374A (en) * 1996-03-07 1998-01-06 Rengo Co Ltd Porous composite molded body consisting of amorphous carbon and calcium silicate hydrate and its production
JP2002011346A (en) * 2000-06-30 2002-01-15 Taiheiyo Cement Corp Exhaust gas treatment agent
WO2006073065A1 (en) 2005-01-06 2006-07-13 Japan Tobacco Inc. Carbonaceous heat source composition for non-combustion smoking article
WO2016042307A1 (en) * 2014-09-18 2016-03-24 British American Tobacco (Investments) Limited Composite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023121024A1 (en) * 2021-12-23 2023-06-29 주식회사 케이티앤지 Method for molding combustible heat source for smoking article, combustible heat source manufactured thereby, and smoking article comprising same
WO2023121025A1 (en) * 2021-12-23 2023-06-29 주식회사 케이티앤지 Combustible heat source for smoking product, and smoking product comprising same

Also Published As

Publication number Publication date
EP3949765A1 (en) 2022-02-09
CN113543667A (en) 2021-10-22
JPWO2020202528A1 (en) 2021-11-25
JP7176101B2 (en) 2022-11-21
EP3949765A4 (en) 2022-12-07

Similar Documents

Publication Publication Date Title
RU2730722C1 (en) Components releasing tobacco components
CN1026751C (en) Cigarette and smokable filler material therefor
CN1028347C (en) Cigarette and smokable filler material therefor
JP4871116B2 (en) Cellulose particles for drug support
WO2020202528A1 (en) Method for manufacturing carbon heat source for flavor inhalation tool, composite particles, carbon heat source for flavor inhalation tool, and flavor inhalation tool
CN110051030A (en) Tobacco-containing material comprising nonequiaxial calcium carbonate microparticle
US12022860B2 (en) Cellulose acetate particle aggregate, preparation method therefor and application thereof
TW200301682A (en) Cigarette filter with beaded carbon
US20140137881A1 (en) Filter for a smoking article
JP6767146B2 (en) Granulated activated carbon
JP2013502214A (en) Smoke filtration
CA3173503A1 (en) Aerosol generating material comprising an active substance and a volatile component and methods and systems thereof
CA3173501A1 (en) Aerosol generating material comprising an active substance and solid particulate volatile component and methods and systems thefeof
WO2021124494A1 (en) Heatable aroma-generating substrate, heatable aroma generation source incorporating said substrate, heatable aroma cartridge provided with said generation source, and method for manufacturing said substrate
RU2783207C1 (en) Method for manufacturing a coal-based heat source for a flavouring agent inhalation apparatus, composite particles, coal-based heat source for a flavouring agent inhalation apparatus, and flavouring agent inhalation apparatus
TW202037561A (en) Method for producing carbon heat source for flavor inhaler, composite particles, carbon heat source for flavor inhaler, and flavor inhaler
CN106418683B (en) A kind of solid tobacco aromaticss piece and preparation method thereof
CN111194941A (en) Application of heating aid in heating non-combustion smoking material and product
RU2774837C1 (en) Filter for smoking products
CA3241339A1 (en) Article for use with an apparatus for heating aerosolisable material
CA3241442A1 (en) An article for use in an aerosol provision system and a method of manufacturing an article for use in an aerosol provision system
WO2023118848A1 (en) An article for use in an aerosol provision system and a method of manufacturing an article for use in an aerosol provision system
JP2023547347A (en) Aerosol generating materials
CA3241444A1 (en) A method of manufacturing an article for use in an aerosol provision system and an article for use in an aerosol provision system
KR20240100465A (en) Articles for use in aerosol delivery systems and methods of making articles for use in aerosol delivery systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511031

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019922582

Country of ref document: EP

Effective date: 20211104