WO2020200283A1 - 芴酮类α7烟碱型乙酰胆碱受体的配体化合物及其应用 - Google Patents

芴酮类α7烟碱型乙酰胆碱受体的配体化合物及其应用 Download PDF

Info

Publication number
WO2020200283A1
WO2020200283A1 PCT/CN2020/083003 CN2020083003W WO2020200283A1 WO 2020200283 A1 WO2020200283 A1 WO 2020200283A1 CN 2020083003 W CN2020083003 W CN 2020083003W WO 2020200283 A1 WO2020200283 A1 WO 2020200283A1
Authority
WO
WIPO (PCT)
Prior art keywords
nicotinic acetylcholine
acetylcholine receptor
fluorenone
ligand compound
compound
Prior art date
Application number
PCT/CN2020/083003
Other languages
English (en)
French (fr)
Inventor
张华北
高航
Original Assignee
北京师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京师范大学 filed Critical 北京师范大学
Publication of WO2020200283A1 publication Critical patent/WO2020200283A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/041Heterocyclic compounds
    • A61K51/044Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
    • A61K51/0446Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D243/00Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms
    • C07D243/06Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms having the nitrogen atoms in positions 1 and 4
    • C07D243/08Heterocyclic compounds containing seven-membered rings having two nitrogen atoms as the only ring hetero atoms having the nitrogen atoms in positions 1 and 4 not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/12Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms
    • C07D295/135Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly or doubly bound nitrogen atoms with the ring nitrogen atoms and the substituent nitrogen atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • the present invention relates to the technical field of medicine, in particular to a ligand compound of fluorenone ⁇ 7 nicotinic acetylcholine receptor and its application.
  • Nicotinic acetylcholine receptor is a type of gated-transmitter ion channel, which is ubiquitous in the central nervous system (CNS) and peripheral nervous system (PNS), and is related to a variety of physiological functions.
  • nAChR is generally composed of ⁇ subunits (such as ⁇ 2- ⁇ 10) and ⁇ subunits ( ⁇ 2- ⁇ 4).
  • ⁇ 7 nicotinic acetylcholine receptor ⁇ 7 nicotinic acetylcholine receptor
  • ⁇ 7 nAChR is a homopentamer composed of 5 identical ⁇ subunits. It mainly exists in the hippocampus, thalamus and cerebral cortex, which are important for memory, learning, etc. area.
  • ⁇ 7 nAChR protein density is found in the brains of patients with neurodegenerative diseases such as Alzheimer’s Disease (AD) and Parkinson’s disease.
  • AD Alzheimer’s Disease
  • sex ligands have shown that targeted ⁇ 7 nAChR ligands can improve cognitive ability and auditory gating defects, such as PNU-282987, PHA-543613 and A-582941 and other highly selective ⁇ 7 nAChR agonists.
  • the cognitive functions of sensory-gating defects, short-term working memory, and memory curing models are improved.
  • SPECT Single-Photon Emission Computed Tomography
  • autopsy studies of AD patients it has been shown that the density of ⁇ 7 nAChR in the brains of healthy people and patients with neurodegenerative diseases is different . Therefore, ⁇ 7 nAChR can be used as a potential drug target for the early diagnosis and treatment of AD, and the use of radioligands to conduct non-invasive quantitative research on human ⁇ 7 nAChR will promote a better understanding of its effects in various central nervous systems.
  • the role of system diseases which can simplify the development of drugs for the treatment of these diseases.
  • the purpose of the embodiments of the present invention is to provide fluorenone ⁇ 7 nicotinic acetylcholine receptor ligand compounds and applications thereof.
  • the specific technical solutions are as follows:
  • the present invention first provides a fluorenone ⁇ 7 nicotinic acetylcholine receptor ligand compound represented by the following formula (I),
  • X is a 6-10 membered nitrogen-containing heterocyclic group; the nitrogen-containing heterocyclic group is unsubstituted or substituted by a C 1-4 alkyl group;
  • R 1 is selected from amino, halogen or a radioisotope of halogen
  • R 2 is hydrogen
  • R 1 is hydrogen
  • R 2 is selected from amino, halogen or a radioactive isotope of halogen
  • R 1 and R 2 are not selected from amino, fluorine and fluorine radioisotopes.
  • halogen includes fluorine, chlorine, bromine or iodine.
  • C 1 - 4 alkyl refers to a hydrocarbon moiety containing from 1 to 4 carbon atoms, a straight-chain or branched alkyl group removing one hydrogen atom chain-derived, such as methyl, ethyl, n-propyl , Isopropyl, n-butyl, etc.
  • the 6-10 membered nitrogen-containing heterocyclic group is selected from
  • the heterocyclic group can be selected from the chiral structure of the above group, for example
  • R 1 is selected from fluorine, iodine or their radioactive isotopes
  • R 2 is hydrogen
  • R 1 is hydrogen
  • R 2 is selected from fluorine, iodine or their radioactive isotopes.
  • R 1 when X is When R 1 is only iodine or its radioactive isotope, R 2 is hydrogen; or R 1 is hydrogen, and R 2 is only iodine or its radioactive isotope.
  • the radioisotope is selected from 18 F, 123 I, 124 I, 125 I, or 131 I.
  • the aforementioned fluorenone ⁇ 7 nicotinic acetylcholine receptor ligand compound is selected from compounds of the following structures:
  • the present invention also provides a precursor compound of the fluorenone ⁇ 7 nicotinic acetylcholine receptor ligand compound represented by formula (I),
  • R 1 is 3,3-dibutyltriaz-1-en-1-yl
  • R 2 is hydrogen
  • X is R 1 is hydrogen and R 2 is tributylstannyl
  • the precursor compound is selected from
  • the ⁇ 7 nicotinic acetylcholine receptor ligand compound provided by the present invention can be used as an agonist of the ⁇ 7 nicotinic acetylcholine receptor.
  • the ⁇ 7 nicotinic acetylcholine receptor ligand compound provided by the present invention can be used as a partial agonist of the ⁇ 7 nicotinic acetylcholine receptor.
  • the “agonist” should be understood to be given its broadest meaning, that is, as any molecule that partially or fully activates the target (for example, ⁇ 7 nicotinic acetylcholine receptor) or at least one biological activity .
  • the ligand compound of the ⁇ 7 nicotinic acetylcholine receptor provided by the present invention can specifically bind to the extracellular domain of the ⁇ 7 nicotinic acetylcholine receptor to induce intracellular signal transmission, thereby proving that it is effective in preventing or treating cognition. Obstacles and efficacy in neurological rehabilitation.
  • ⁇ 7 nicotinic acetylcholine receptors play an important role in improving the cognitive function of learning, memory and attention.
  • ⁇ 7 nicotinic acetylcholine receptors are associated with the following diseases: mild cognitive impairment, Alzheimer’s disease, age-related and other cognitive impairments, schizophrenia, attention deficit disorder, attention deficit hyperactivity Disorders (ADHD), dementia caused by injections or metabolic disorders, dementia with Lewy bodies, convulsions such as epilepsy, multiple cerebral infarctions, mood disorders, compulsive and addictive behaviors, inflammatory diseases, and control pain caused by these disorders Related diseases and conditions.
  • the degree of activation of ⁇ 7 nicotinic acetylcholine receptors can be changed or adjusted by the administration of ⁇ 7 receptor ligands.
  • Non-limiting examples of the ⁇ 7 receptor ligands are: antagonists, agonists, partial agonists and inverse agonists Agent.
  • ⁇ 7 receptor ligands can be used to treat and prevent various types of cognitive impairment and other disorders or diseases, and its agonists and partial agonists can improve cognitive function and attention in rodents, non-human primates and humans force.
  • the present invention also provides the use of the aforementioned fluorenone ⁇ 7 nicotinic acetylcholine receptor ligand compound in the preparation of drugs for preventing or treating cognitive disorders.
  • the "cognitive impairment” refers to the large-scale degradation of animals in cognitive functions or cognitive domains, for example, in working memory, attention and alertness, language learning and memory, visual learning and memory, reasoning And problem solving, especially in terms of execution ability, task processing speed and/or social cognition.
  • the known manifestations of cognitive impairment are attention deficit, thinking disorder, slow thinking reaction, difficulty understanding, poor concentration, loss of problem-solving ability, inaccurate memory, expressing thoughts and/or comprehensive thinking, and difficulty in feeling and behavior. Difficulty in eliminating unreasonable thinking.
  • treatment has its general meaning, and specifically refers to the treatment of mammalian individuals (preferably humans) who have suffered from the cognitive impairment disease of the present invention with the medicament of the present invention in order to treat The disease has the effects of treatment, cure, alleviation, alleviation, etc.
  • prevention has its general meaning, and specifically refers to mammals who may suffer from the cognitive impairment disease of the present invention or are at risk for the cognitive impairment disease of the present invention.
  • the individual uses the medicine of the present invention for treatment in order to prevent, prevent, stop, block, and block the disease.
  • the cognitive impairment is selected from the group consisting of early-onset Alzheimer's disease, senile dementia, micro-infarct dementia, AIDS-related dementia, HIV dementia, Lewy body Related dementia, Down syndrome related dementia, mild cognitive impairment, age-related memory impairment, recent short-term memory impairment, age-related cognitive impairment, drug-related cognitive impairment, immunodeficiency syndrome-related Cognitive impairment, cognitive dysfunction associated with vascular disease, schizophrenia, attention deficit disorder, attention deficit hyperactivity disorder, and learning deficit disorder.
  • Alzheimer's disease can be Alzheimer's disease or Alzheimer's disease.
  • Lewy body-related dementia may be Lewy body dementia.
  • the present invention also provides the use of the fluorenone ⁇ 7 nicotinic acetylcholine receptor ligand compound represented by the following formula (I) in the preparation of a reagent for PET or SPECT imaging agent,
  • X is a 6-10 membered nitrogen-containing heterocyclic group; the nitrogen-containing heterocyclic group is unsubstituted or substituted by a C 1-4 alkyl group;
  • R 1 is single-photon radionuclide 123 I, 125 I, 131 I or positron radionuclide 124 I;
  • R 2 is hydrogen; or
  • R 1 is hydrogen,
  • R 2 is single-photon radionuclide 123 I, 125 I, 131 I or positron radionuclide 124 I.
  • the 6-10 membered nitrogen-containing heterocyclic group is selected from
  • the structure of the ligand compound of the fluorenone ⁇ 7 nicotinic acetylcholine receptor is shown in the following formula:
  • the present invention also provides the use of the ligand compound of the fluorenone ⁇ 7 nicotinic acetylcholine receptor shown in the following formula in the preparation of a PET imaging agent,
  • the ligand compounds provided by the present invention have high affinity with ⁇ 7 nicotinic acetylcholine receptors, and are excellent ligand compounds for ⁇ 7 nicotinic acetylcholine receptors. Further, the ⁇ 7 cigarettes provided by the present invention After the basic acetylcholine receptor ligand compound is radiochemically labeled, it can be used as a PET imaging agent or a SPECT imaging agent, and has good affinity, strong specificity, high selectivity, brain uptake and metabolic rate Moderate characteristics, with clinical application value.
  • Figure 1 is the HPLC spectrum of [ 125 I] TM-16 and TM-16 co-injection
  • Figure 2 shows the HPLC spectrum of [ 125 I] TM-6 and TM-6 co-injection
  • Figure 3 is the specific binding curve of [ 125 I] ⁇ -bgt and ⁇ 7 nAChRs membrane protein
  • Figure 4 is the Hill straight line of [ 125 I] ⁇ -bgt binding to receptor membrane protein.
  • Figure 5 shows the Scatchard straight line
  • Figure 6 is an HPLC chart of the stability analysis of the radioligand [ 125 I]TM-16 after incubation in fetal calf serum for 2 hours;
  • Figure 7 is an HPLC chart of the stability analysis of the radioligand [ 125 I]TM-16 after incubating for 2 hours in saline;
  • Figure 8 is a SPECT image of the radioligand [ 125 I]TM-16 in mice.
  • Figure 9 is an autoradiographic image of the radioligands [ 125 I]TM-6 and [ 125 I]TM-16 in the brain of mice.
  • the synthetic route is as follows:
  • chromium trioxide 138.0g, 1.38mol
  • a mixed solution of 120mL water and 80mL acetic acid stir to dissolve all, and set aside; add 40.0g fluoranthene (3-5) (0.2mol) to the reaction flask And 500mL of acetic acid, and heated to 80-85 °C, then add the chromium trioxide solution dropwise to it, control the temperature of the reaction system in the reaction flask at 80-85 °C, after the addition is completed, the reaction system in the reaction flask is heated to After reacting at 110-120°C for 2 hours, cool to room temperature and pour into 3L water. A large amount of yellow solid precipitates out.
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • the intermediate compound 3-8 (9.0g), n-methyl homopiperazine (4.5g), Pd 2 (dba) 3 (1.0g), BINAP (1.3g), cesium carbonate (12.5g) were added to the reaction flask ), and toluene (270 mL), the reaction was replaced with nitrogen three times, and then heated to 80-85°C, and reacted for 16 hours.
  • the synthetic route is as follows:
  • step (1) in Example 1 the reaction substrate n-methylhomopiperazine was replaced with cis-2-methylhexahydropyrrolo[3,4-C]pyrrole for reaction to obtain the compound BocTM-2.
  • the synthetic route is as follows:
  • step (2) in Example 7 the intermediate compound 3-20 was reacted with the substrate cis-2-methylhexahydropyrrolo[3,4-C]pyrrole to obtain compound TM- 1.
  • MS (M+H + ): m/z 323.15.
  • step (2) in Example 7 the intermediate compound 3-20 and the substrate cis-3,7-diazabicyclo[3.3.0]octano[3,4-C]pyrrole The reaction is carried out to obtain compound TM-5.
  • MS (M+H + ): m/z 309.13.
  • step (2) in Example 7 the intermediate compound 3-20 was reacted with the substrate n-methylhomoperazine to obtain compound TM-8.
  • MS (M+H + ): m/z 311.15.
  • step (2) in Example 7 the intermediate compound 3-20 was reacted with the substrate homopiperazine to obtain compound TM-11.
  • MS (M+H + ): m/z 283.12.
  • step (2) in Example 7 the intermediate compound 3-20 was reacted with the substrate piperazine to obtain compound TM-18.
  • MS (M+H + ): m/z 297.13.
  • the synthetic route is as follows:
  • Compound 4-2 (100 mg) was added to 50 mL of anhydrous toluene. After dissolution, 30 mg of tetrakistriphenylphosphine palladium and 455.5 mg of n-hexabutyl tin were added and heated to 90° C. and refluxed for 18 hours. After the reaction was detected by TLC, the product 4-3 (35 mg, 41.5%) was purified by silica gel column.
  • the synthetic route is as follows:
  • the radiochemical purity of the radioligand is greater than 98%, and the radiolabeling rate is about 63.1% (without decay correction); the purified [ 125 I]TM-16 and the unlabeled stable Compound TM-16 was co-injected for HPLC analysis.
  • the retention times of [ 125 I]TM-16 and TM-16 are 7.257 min and 6.931 min, respectively. The retention times of the two match, confirming the accuracy of the radioligand .
  • the column was washed with purified water (10 mL), the product was eluted with methanol (10 mL), and then the solvent was removed under vacuum.
  • the final product was analyzed by high performance liquid chromatography using a 280nm ultraviolet detector and a radioactivity detector to determine the radiochemical purity of the synthesized compound (Figure 2).
  • the total synthesis time is about 100 minutes, the radiochemical yield is 84.5% (uncorrected for decay), and the radiochemical purity is greater than 98%.
  • the total volume of the reaction mixture in the total binding tube is 500 ⁇ L, including 100 ⁇ L of membrane protein solution (the final amount of protein in each tube is 1.5mg), 10 ⁇ L of different concentrations of radioligand [ 125 I] ⁇ -bgt and 390 ⁇ L of ice-cold 50mM Tris-HCl buffer solution, the order of sample addition is: membrane protein, Tris-HCl buffer solution and [ 125 I] ⁇ -bgt (Table 1).
  • Non-specific binding is determined by 2 ⁇ M non-labeled ⁇ -bgt
  • the reaction mixture in the test tube includes 100 ⁇ L membrane protein solution (the final amount of protein in each test tube is 1.5mg), 10 ⁇ L different concentrations of radioligand [ 125 I ] ⁇ -bgt, 100 ⁇ L 2 ⁇ M ⁇ -bgt and 290 ⁇ L ice-cold 50mM Tris-HCl buffer solution, the total volume is 500 ⁇ L
  • the order of sample addition is: membrane protein, Tris-HCl buffer solution, ⁇ -bgt and [ 125 I] ⁇ -bgt (Table 2).
  • MLA JMWard, VBCockcroft, GGLunt, FSSmillie, S. Wonnacott, Methyllycaconitine: a selective probe for neuronal alpha-bungarotoxin binding sites, FEBS LETT, 270 (1990) 45 -8.
  • ⁇ 7 nAChRs with high selectivity and high affinity ligands is used as a reference ligand to determine its affinity with ⁇ 7 nAChRs in mouse brain.
  • the preparation method and sample addition method of the ligand compound are shown in Table 3 and Table 4:
  • the order of sample addition is: protein, Tris-HCl buffer solution, drug (ligand compound or MLA), [ 125 I] ⁇ -bgt.
  • each ligand compound has an affinity for ⁇ 7 nAChR membrane protein, and the inhibition constant (K i ) is distributed in the range of 2.23-521.1 nM.
  • K i the inhibition constant
  • the compound TM-16 and TM-6 pair [ 125 I] ⁇ -bungaratoxin showed a strong inhibitory effect, with K i values of 2.23 ⁇ 0.56 nM and 9.26 ⁇ 0.37 nM, respectively.
  • the in vitro stability of the radioligand is of great significance to its further in vivo studies.
  • in vitro stability studies are carried out in physiological saline and animal serum.
  • the specific method is: take 10 ⁇ Ci of radioligand [ 125 I]TM-16 purified by HPLC and incubate 100 ⁇ L of fetal bovine serum at 37°C for 1h and 2h respectively, add 200 ⁇ L of acetonitrile to it to fully precipitate the protein after incubation.
  • the blood, brain, heart, lung, liver, spleen, lung, kidney, muscle, bone, intestine, stomach and tail were dissected. , Weigh the wet weight of each organ and use ⁇ -counter to measure its count.
  • the data in the table is the average ⁇ standard deviation of five measurements
  • the 125 I-labeled radioligand [ 125 I]TM-16 has a very high initial brain uptake in the mouse brain, and its uptake value reaches 6.47% ID/g for 15 minutes after 5 minutes of injection. It showed the highest brain uptake value of 9.49%ID/g; at the same time, the radioligand showed a suitable brain clearance rate. After 60min and 120min of administration, the brain uptake value dropped to 6.21%ID/g, respectively And 3.26% ID/g, which indicates that the compound has suitable brain dynamics; in addition, the uptake of [ 125 I]TM-16 in the blood is very low, showing a high brain/blood ratio. It was 8.11 and 8.87 at 15min and 60min, respectively.
  • the radioligand [ 125 I]TM-16 (0.2mL, 60 ⁇ Ci) was injected into female Kunming mice (18-22g) by tail vein injection, and then the mice were anesthetized with 3% isoflurane to a coma Later, the mouse was fixed on a small animal micro-SPECT/CT imaging device (TriFoil imaging Triumph SPECT/CT) in a prone position, and 1% isoflurane was used to maintain the mouse in anesthesia during the scanning and imaging process. Images were collected 1min-60min after the administration, divided into 12 frames, one frame every 5 minutes, to observe the distribution of [ 125 I]TM-16 in the brain of the mouse.
  • Figure 8 shows the coronal, sagittal, and cross-sectional micro-SPECT images of the brain of Kunming mice after 15min, 30min, 60min, and 90min injection of [ 125 I]TM-16. It can be seen from Figure 8 that [ 125 I]TM-16 has a higher uptake in the brain of mice, and its distribution in the brain is basically consistent with the results of the animal body distribution experiment of biological experiment example 3. The uptake is the highest at 30 minutes. With the extension of time, the concentration of radioligand gradually decreases, and at the same time, the retention in the brain is more suitable. A certain concentration of enrichment can still be observed after 60 minutes of administration. According to the above-mentioned good imaging results, [ 125 I]TM-16 can be used as a SPECT imaging agent for ⁇ 7 nAChR.
  • the blood, brain, heart, lung, liver, spleen, lung, kidney, muscle, bone, intestine, stomach and tail were dissected. , Weigh the wet weight of each organ and use ⁇ -counter to measure its count.
  • the data in the table is the average value of five measurements ⁇ standard deviation
  • the 125 I-labeled radioligand [ 125 I]TM-6 has a very high initial brain uptake in the mouse brain, and its uptake value reaches 4.20%ID/g for 15 minutes after 5 minutes of injection. It showed the highest brain uptake value of 7.46% ID/g; at the same time, the radioligand showed a suitable brain clearance rate. After 60 minutes and 120 minutes of administration, the brain uptake value was reduced to 4.56% ID/g. And 2.84%ID/g, which indicates that the compound has suitable brain dynamic properties. In addition, the uptake of [ 125 I]TM-6 in the blood is very low, showing a high brain/blood ratio, which is 6.27 and 5.30 at 15 min and 60 min, respectively.
  • the brain was quickly dissected and placed on ice, blood stains were removed with ice-cold normal saline, and the cortex was dissected in different regions.
  • Striatum, hippocampus, hypothalamus, thalamus, cerebellum and afterbrain weigh the wet weight of each brain area and use ⁇ -counter to determine its radioactive count.
  • the data in the table is the average ⁇ standard deviation of five measurements
  • the rate of uptake and clearance of radioactivity in the cerebellum is very fast compared to other brain regions. During the entire experiment, the tissue/cerebellum ratio gradually increased and reached a peak value 90 minutes after the administration.
  • the radioligand has good specific binding to ⁇ 7 nAChR.
  • the brain was quickly dissected and placed on ice, blood stains were removed with ice-cold normal saline, and the cortex was dissected in different regions.
  • Striatum, hippocampus, hypothalamus, thalamus, cerebellum and afterbrain weigh the wet weight of each brain area and use ⁇ -counter to determine its radioactive count.
  • the data in the table is the average ⁇ standard deviation of five measurements
  • the rate of uptake and clearance of radioactivity in the cerebellum is very fast compared to other brain regions. During the entire experiment, the tissue/cerebellum ratio gradually increased and reached a peak value 90 minutes after the administration.
  • the radioligand has good specific binding to ⁇ 7 nAChR.
  • [ 125 I]TM-6 or [ 125 I]TM-16 with an activity of 60 ⁇ Ci was injected into Kunming mice through the tail vein, and the mice were sacrificed 45 minutes later.
  • methyl tauphine 0.1 mL, 1 mg/kg, containing 15% ethanol
  • the mice were sacrificed 45 minutes after the tracer molecule injection, and the sections were embedded, and the operation was the same as above.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurosurgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Psychiatry (AREA)
  • Pain & Pain Management (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Epidemiology (AREA)
  • Addiction (AREA)
  • Hospice & Palliative Care (AREA)
  • Rheumatology (AREA)
  • Psychology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明实施例提供了下式(I)所示的芴酮类α7烟碱型乙酰胆碱受体的配体化合物,其中,X为6-10元含氮杂环基;所述含氮杂环基未被取代,或被C1-4烷基取代;R1选自氨基、卤素或卤素的放射性同位素,R2为氢;或者R1为氢,R2选自氨基、卤素或卤素的放射性同位素;且当X为(II)时,R1、R2均不选自氨基、氟及氟的放射性同位素。本发明所提供的各配体化合物,与α7烟碱型乙酰胆碱受体具有较高的亲和性,是α7烟碱型乙酰胆碱受体的优良配体化合物,进一步地,将本发明提供的α7烟碱型乙酰胆碱受体的配体化合物经过放射性化学标记后,其可以作为PET显像剂或SPECT显像剂的用途。

Description

芴酮类α7烟碱型乙酰胆碱受体的配体化合物及其应用
本申请要求于2019年4月3日提交中国专利局、申请号为201910266261.0发明名称为“芴酮类α7烟碱型乙酰胆碱受体的配体化合物及其应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及医药技术领域,特别是涉及芴酮类α7烟碱型乙酰胆碱受体的配体化合物及其应用。
背景技术
烟碱型乙酰胆碱受体(nAChR)是一类门控-递质离子通道,普遍存在于中枢神经系统(CNS)和周围神经系统(PNS)中,与多种生理功能相关。nAChR存在不同的亚型,其一般是由α亚基(如α2-α10)和β亚基(β2-β4)构成。其中,α7烟碱型乙酰胆碱受体(α7 nAChR)是由5个完全相同的α亚基构成的同源五聚体,它主要存在于海马,丘脑以及大脑皮质等有关于记忆、学习等的重要区域。近期的临床研究发现,在阿尔茨海默病(Alzheimer’s Disease,简写为AD)和帕金森病等神经退行性疾病的病人脑中均发现了α7 nAChR蛋白质密度的减少,在基因剔除、亚型选择性配体等方面的研究表明:靶向性的α7 nAChR配体能够提高认知能力以及听觉门控缺陷,例如PNU-282987、PHA-543613以及A-582941等高选择性的α7 nAChR激动剂提高了感觉-门控缺陷、短期工作记忆、以及记忆固化等模型的认知功能。
随着SPECT(Single-Photon Emission Computed Tomography,单光子发射计算机断层成像术)技术的应用以及对AD病人的尸检研究均表明,健康人和神经退行性疾病患者脑中α7 nAChR的密度是有差别的。因此,α7 nAChR可以作为潜在的药物靶标用于AD的早期诊断和治疗,而且,利用放射性配体对人体进行非侵入性的α7 nAChR定量研究将会促进人们更好地理解它在各种中枢神经系统疾病中的作用,从而可以简化用于治疗这些疾病的药物的开发。
有鉴于此,针对α7烟碱型乙酰胆碱受体激动剂及放射性配体的合成也越来越受到广泛的关注。
发明内容
本发明实施例的目的在于提供芴酮类α7烟碱型乙酰胆碱受体的配体化合物及其应用。具体技术方案如下:
本发明首先提供了下式(Ⅰ)所示的芴酮类α7烟碱型乙酰胆碱受体的配体化合物,
Figure PCTCN2020083003-appb-000001
其中,X为6-10元含氮杂环基;所述含氮杂环基未被取代,或被C 1-4烷基取代;
R 1选自氨基、卤素或卤素的放射性同位素,R 2为氢;或者R 1为氢,R 2选自氨基、卤素或卤素的放射性同位素;
且当X为
Figure PCTCN2020083003-appb-000002
时,R 1、R 2均不选自氨基、氟及氟的放射性同位素。
本文中,所说的“卤素”包括氟、氯、溴或碘。
本文中,所说的“C 1- 4烷基”指含有1-4个碳原子的烃部分去除一个氢原子衍生的直链或支链的烷基,如甲基、乙基、正丙基、异丙基、正丁基等。
在本发明的一些实施方式中,所述6-10元含氮杂环基选自
Figure PCTCN2020083003-appb-000003
Figure PCTCN2020083003-appb-000004
具体实 施过程中,所述杂环基可以选择上述基团的手性结构,例如
Figure PCTCN2020083003-appb-000005
Figure PCTCN2020083003-appb-000006
在本发明的一些实施方式中,R 1选自氟、碘或它们的放射性同位素,R 2为氢;或者R 1为氢,R 2选自氟、碘或它们的放射性同位素。
在本发明的一些实施方式中,当X为
Figure PCTCN2020083003-appb-000007
时,R 1仅为碘或其放射性同位素,R 2为氢;或者R 1为氢,R 2仅为碘或其放射性同位素。
在本发明的一些实施方式中,放射性同位素选自 18F、 123I、 124I、 125I或 131I。
在本发明的一些实施方式中,前述的芴酮类α7烟碱型乙酰胆碱受体的配体化合物,其选自以下结构的化合物:
Figure PCTCN2020083003-appb-000008
Figure PCTCN2020083003-appb-000009
本发明还提供了式(Ⅰ)所示的芴酮类α7烟碱型乙酰胆碱受体的配体化合物的前体化合物,
Figure PCTCN2020083003-appb-000010
其中,X为
Figure PCTCN2020083003-appb-000011
R 1为3,3-二丁基三氮-1-烯-1-基,R 2为氢;或者X为
Figure PCTCN2020083003-appb-000012
R 1为氢,R 2为三丁基锡烷基。
即,所述前体化合物选自
Figure PCTCN2020083003-appb-000013
在一些具体实施方案中,本发明所提供的α7烟碱型乙酰胆碱受体的配体化合物可以作为α7烟碱型乙酰胆碱受体的激动剂。
在一些具体实施方案中,本发明所提供的α7烟碱型乙酰胆碱受体的配体化合物可以作为α7烟碱型乙酰胆碱受体的部分激动剂。
本文中,所说的“激动剂”应理解为赋予了其最宽泛的含义,即,作为部分或全部地激活目标(例如,α7烟碱型乙酰胆碱受体)或至少一种生物活性的任何分子。例如,本发明提供的α7烟碱型乙酰胆碱受体的配体化合物可特异性结合至α7烟碱型乙酰胆碱受体的胞外结构域以诱导胞内信号传递,从而证明其在预防或治疗认知障碍和在神经性康复中的功效。
已有研究结果表明,α7烟碱型乙酰胆碱受体在提高学习、记忆和注意力方面的认知功能起重要作用。例如,α7烟碱型乙酰胆碱受体与下述疾病有关:轻度认知障碍、阿尔兹海默症、与年龄相关的和其他认知障碍、精神分裂症、注意力缺陷障碍、注意缺陷多动障碍(ADHD)、注射或代谢失调引起的痴呆症、路易体痴呆症、抽搐如癫痫、多发性脑梗塞、情绪失调、强迫性和上瘾行为、炎性疾病,以及与控制由这些失调导致的疼痛有关的疾病和病症。α7烟碱型乙酰胆碱受体的激活程度可通过施用α7受体配体来改变或调节,所述α7受体配体的非限制性实例有:拮抗剂、激动剂、部分激动剂和反向激动剂。α7受体配体可用于治疗和预防各种类型的认知障碍和其他病症或疾病,而其激动剂和部分激动剂能在啮齿动物、非人类灵长类和人类中改善认知功能和注意力。
基于此,本发明还提供了前述的芴酮类α7烟碱型乙酰胆碱受体的配体化合物在制备预防或治疗认知障碍的药物中的用途。
本文中,所说的“认知障碍”是指动物在认知功能或认知领域方面大范围的退化,例如,在工作记忆、注意力和警觉、语言学习和记忆、视觉学习和记忆、推理和解决问题方面,尤其是在执行能力、任务处理速度和/或社会认知方面。认知障碍的已知表现为注意力缺陷、思维紊乱、思维反应迟钝、 理解困难、注意力差、失去解决问题能力、记忆不准确、表达思想和/或综合思维以及感觉和行为上有困难或在消除不合理思维上有困难。
如本文使用的,术语“治疗”具有其一般含义,并且在本文特别地是指对已经罹患本发明所述认知障碍疾病的哺乳动物个体(优选为人)采用本发明的药物进行处理,以期对所述疾病产生治疗、治愈、缓解、减轻等作用。类似地,如本文使用的,术语“预防”具有其一般含义,并且在本文特别地是指对可能罹患本发明所述认知障碍疾病或者对本发明所述认知障碍疾病具有罹患风险的哺乳动物个体采用本发明的药物进行处理,以期对所述疾病产生防止、预防、阻止、隔断等作用。
在本发明的一些实施方式中,所述认知障碍选自下组:早发性阿尔茨海默病、老年性痴呆症、微小梗塞性痴呆症、AIDS相关痴呆症、HIV痴呆症、路易体相关痴呆症、唐氏综合征相关痴呆症、轻度认知功能障碍、与年龄相关的记忆障碍、最近短期记忆障碍、年龄相关认知障碍、药物相关的认知障碍、免疫缺陷综合征相关的认知障碍、血管疾病相关的认知功能障碍、精神分裂症、注意力缺陷障碍、注意缺陷多动障碍以及学习缺陷障碍。其中老年性痴呆症可以是早老年性痴呆症或阿尔茨海默型痴呆症。路易体相关痴呆症可以是路易体小体性痴呆症。
本发明还提供了下式(Ⅰ)所示的芴酮类α7烟碱型乙酰胆碱受体的配体化合物在制备PET或SPECT显像剂的试剂中的用途,
Figure PCTCN2020083003-appb-000014
其中,X为6-10元含氮杂环基;所述含氮杂环基未被取代,或被C 1-4烷基取代;
R 1为单光子放射性核素 123I、 125I、 131I或正电子放射性核素 124I;R 2为氢;或者R 1为氢,R 2为单光子放射性核素 123I、 125I、 131I或正电子放射性核素 124I。
在本发明的一些实施方式中,所述6-10元含氮杂环基选自
Figure PCTCN2020083003-appb-000015
Figure PCTCN2020083003-appb-000016
在本发明的一些实施方式中,芴酮类α7烟碱型乙酰胆碱受体的配体化合物的结构如下式所示:
Figure PCTCN2020083003-appb-000017
本发明还提供了下式所示的芴酮类α7烟碱型乙酰胆碱受体的配体化合物在制备PET显像剂的试剂中用途,
Figure PCTCN2020083003-appb-000018
缩写
本文中所涉及的缩写如下所示,对于文中涉及但未列出的缩写,其具有本领域的通常含义。
DMSO        二甲基亚砜
DPPA        叠氮磷酸二苯酯
Pd 2(dba) 3   三(二亚苄基丙酮)二钯
BINAP       (±)-2,2'-双-(二苯膦基)-1,1'-联萘
DCM         二甲基甲酰胺
MeOH   甲醇
本发明所提供的各配体化合物,与α7烟碱型乙酰胆碱受体具有较高的亲和性,是α7烟碱型乙酰胆碱受体的优良配体化合物,进一步地,将本发明提供的α7烟碱型乙酰胆碱受体的配体化合物经过放射性化学标记后,其可以作为PET显像剂或SPECT显像剂的用途,并具有亲和性好、特异性强、选择性高、脑摄取和代谢速率适中的特点,具有临床应用价值。
附图说明
为了更清楚地说明本申请实施例和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为[ 125I]TM-16和TM-16共进样HPLC谱图;
图2为[ 125I]TM-6和TM-6共进样HPLC谱图;
图3为[ 125I]α-bgt与α7 nAChRs膜蛋白结合的特异性结合曲线;
图4为[ 125I]α-bgt与受体膜蛋白结合的Hill直线。
图5为Scatchard直线;
图6为放射性配体[ 125I]TM-16在胎牛血清中孵育2小时后的稳定性分析的HPLC图;
图7为放射性配体[ 125I]TM-16在生理盐水中孵育2小时后的稳定性分析的HPLC图;
图8为放射性配体[ 125I]TM-16在小鼠体内的SPECT显像图。
图9为放射性配体[ 125I]TM-6、[ 125I]TM-16在小鼠大脑的放射自显影显像图。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图和实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一 部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
制备例1中间体化合物3-8的合成
合成路线如下:
Figure PCTCN2020083003-appb-000019
步骤a合成化合物3-6:
将三氧化铬(138.0g,1.38mol)溶于120mL水和80mL乙酸的混合溶液中,搅拌使其全部溶解,待用;向反应瓶中加入40.0g荧蒽(3-5)(0.2mol)和500mL乙酸,并加热至80-85℃,然后将三氧化铬溶液逐滴加入其中,控制反应瓶中反应体系的温度在80-85℃,滴加完毕后将反应瓶中的反应体系升温至110-120℃,反应2小时后,冷却至室温,并倾倒入3L水中,有大量黄色固体析出,抽滤后将所得固体溶解在600mL 2M的NaOH溶液中,抽滤除去不溶性杂质,用500mL水洗涤滤饼;取滤液,用浓盐酸调节其pH至1.0左右,黄色固体再次析出,抽滤后将其在60℃条件下真空干燥即得目标产物3-6(9-芴酮-1-羧酸)(29.5g,66.0%)。 1H NMR(400MHz,CDCl 3)δ8.18(d,J=7.52Hz,1H),7.74-7.53(m,5H),7.36(t,J=7.16Hz,1H);MS(M+H +):m/z=225.10.
步骤b合成化合物3-7:
向反应瓶中加入9-芴酮-1-羧酸(3-6)(15.0g,0.067mol)和300mL水,加热至80-85℃,然后将10mL Br 2(0.23mol)逐滴加入其中,滴加完毕后,继续反应16小时,TLC检测(CH 2Cl 2:CH 3OH=10:1)反应完全后,向其中加入10%的亚硫酸氢钠水溶液300mL,搅拌30分钟,过滤得黄色固体,50℃ 条件下真空干燥得终产物3-7(19.5g,96.5%)。 1H NMR(400MHz,CDCl 3)δ8.22(d,J=7.04Hz,1H),7.85(s,1H),7.73-7.66(m,3H),7.43(d,J=7.84Hz,1H).
步骤c:合成化合物3-8:
在搅拌的条件下,向反应瓶中依次加入化合物3-7(6g,19.87mmol),甲苯(60mL),三乙胺(4.1mL,29.8mmol),DPPA(6.4mL,29.8mmol)和叔丁醇(10mL),然后升温至110℃回流反应,TLC检测反应结束后(展开剂,石油醚:乙酸乙酯=5:1),除去溶剂,用硅胶柱纯化(石油醚:乙酸乙酯=30:1)得黄色固体即为产物3-8(5.5g,74%)。 1H NMR(400MHz,CDCl 3)δ8.15(d,J=8.56Hz,1H),7.71(d,J=1.72Hz,1H),7.59(dd,J=7.88Hz,1.8Hz,1H),7.42(dd,J=7.44Hz,8.36Hz,1H),7.37(d,J=7.92Hz,1H),7.09(d,J=7.16Hz,1H),1.55(s,9H).
制备例2中间体化合物3-9的合成
合成路线如下:
Figure PCTCN2020083003-appb-000020
将化合物3-8(808mg,2.16mmol)溶于40mL乙腈中,向其中再加入22mL1M的盐酸(21.6mmol),82℃条件下加热反应4小时,TLC检测反应结束后,冷却至室温,向其中加入适量的1M NaOH溶液调节pH至强碱性,然后用乙酸乙酯萃取,收集有机相用无水硫酸钠干燥,过滤,减压浓缩除去溶剂,得到黄色固体即为产物3-9(500mg,84.5%)。 1H NMR(400MHz,CDCl 3)δ7.71(d,J=1.4Hz,1H),7.55(dd,J=7.8Hz,1H),7.35(d,J=7.9Hz,1H),7.22(t,J=7.6Hz,1H),6.81(d,J=7.1Hz,1H),6.52(d,J=8.4Hz,1H),5.54(s,2H);MS(M+H +):m/z=273.99。
制备例3中间体化合物3-26的合成
合成路线如下:
Figure PCTCN2020083003-appb-000021
将化合物3-9(568.2mg,2.4mmol)中加入10mL乙腈以及1mL浓盐酸,降温至-5℃。在搅拌下将5mL的NaNO 2(248.4mg)的水溶液逐滴加入,反应30min,将提前冷却的正二丁胺(619.2mg,4.8mmol)及碳酸钾(1.66g,12mmol)的乙腈/水(6mL,1:1)滴入混合物中。体系升温至室温,并继续反应60分钟,减压浓缩溶剂,经硅胶层析柱纯化得产品3-26(615.5mg,62.1%). 1H NMR(600MHz,CDCl 3,)δ7.73(d,J=1.8Hz,1H),7.55(dd,J=1.8,7.9Hz,2H),7.38(d,J=2.1Hz,1H),7.36(d,J=1.8Hz,1H),7.34(d,J=1.3Hz,1H),3.83(t,J=7.6Hz,2H),3.76(t,J=7.3Hz,2H),1.75(dp,J=7.5,37.8Hz,4H),1.41(dq,J=7.5,30.7Hz,4H),0.98(dt,J=7.4,19.0Hz,6H);MS(ESI):m/z calcd for C 13H 8BrNO,272.98;found,273.99,275.98(M+H +).
实施例1化合物TM-9的合成
合成路线如下:
Figure PCTCN2020083003-appb-000022
步骤(1)化合物BocTM-9的合成
向反应瓶中加入中间体化合物3-8(9.0g),n-甲基高哌嗪(4.5g),Pd 2(dba) 3(1.0g),BINAP(1.3g),碳酸铯(12.5g),以及甲苯(270mL),反应用氮气置换三次后加热至80~85℃,反应16小时。TLC跟踪反应进程(二氯甲烷:甲醇=10:1)至原料不再转化为止,加入二氯甲烷135mL稀释反应体系,过滤除去不溶物,减压浓缩溶剂,经硅胶层析柱纯化(DCM/MeOH=50/1-10/1),减压浓缩得红色产品BocTM-9(5.5g),收率52.1%。 1H NMR(400MHz,CDCl 3)δ9.26(s,1H),7.95(d,J=7.4Hz,1H),7.30(d,J=7.1Hz,1H),7.28(d,J=7.6Hz,1H),7.12(s,1H),6.90(m,J=8.4Hz,1H),6.85(m,J=7.1Hz,1H),3.23(s,4H),2.54(d,J=7.4,4H),2.32(s,3H),1.53(s,9H);MS(M+H +):m/z=408.33.
步骤(2)化合物TM-9的合成
将化合物BocTM-9(808mg)溶于40mL乙腈中,向其中再加入22mL 1M的盐酸,82℃条件下加热反应4h,TLC检测反应结束后,冷却至室温,向其中加入适量的1M NaOH溶液调节pH至强碱性,然后用乙酸乙酯萃取,收集有机相用无水硫酸钠干燥,过滤,减压浓缩除去溶剂,得到黄色固体即为产物TM-9(500mg,84.5%)。 1H NMR(400MHz,CDCl 3)δ7.29(s,1H),7.27(s,1H),7.12(t,J=7.6Hz,1H),6.99(d,J=7.1Hz,1H),6.65(d,J=8.4Hz,1H),6.33(d,J=7.2Hz 1H),5.42(s,2H),3.61(m,J=7.44Hz,2H),3.54(t,J=7.1Hz,2H),2.72(m,J=7.4Hz,2H),2.57(m,J=7.6Hz,2H),2.38(s,3H),2.02(m,J=8.4Hz,2H);MS(M+H +):m/z=308.33。
实施例2化合物TM-2的合成
合成路线如下:
Figure PCTCN2020083003-appb-000023
步骤(1)化合物BocTM-2的合成:
按照实施例1中步骤(1)的合成方法,将反应底物n-甲基高哌嗪替换为顺式-2-甲基六氢吡咯并[3,4-C]吡咯进行反应,得到化合物BocTM-2。
步骤(2)化合物TM-2的合成:
将化合物BocTM-2按照实施例1中的步骤(2)进行反应,得到化合物TM-2。MS(M+H +):m/z=320.17。
实施例3化合物TM-7的合成
Figure PCTCN2020083003-appb-000024
按照实施2的合成方法,将底物顺式-2-甲基六氢吡咯并[3,4-C]吡咯替换为顺式-3,7-二氮杂双环[3.3.0]辛烷进行反应,得到得到化合物TM-7。MS(M+H +):m/z=306.15
实施例4化合物TM-13的合成
Figure PCTCN2020083003-appb-000025
按照实施1的合成方法,将底物n-甲基高哌嗪替换为高哌嗪进行反应,得到得到化合物TM-13。MS(M+H +):m/z=294.15。
实施例5化合物TM-17的合成
Figure PCTCN2020083003-appb-000026
按照实施1的合成方法,将底物n-甲基高哌嗪替换为n-甲基哌嗪进行反应,得到得到化合物TM-17。MS(M+H +):m/z=294.15。
实施例6化合物TM-19的合成
Figure PCTCN2020083003-appb-000027
按照实施5的合成方法,将底物n-甲基哌嗪替换为哌嗪进行反应,得到化合物TM-17。MS(M+H +):m/z=280.14。
实施例7化合物TM-14的合成
合成路线如下:
Figure PCTCN2020083003-appb-000028
步骤(1)中间体化合物3-20的合成
向中间体化合物3-9(100mg,0.36mmol)中加入10mL四氟硼酸,降温至0℃。在搅拌下将5mL的NaNO 2(0.1g)的水溶液逐滴加入,反应30min。反应结束后抽滤,将滤饼依次用20mL乙醇,20mL甲基叔丁基醚洗涤后,将滤饼直接加热至120℃,持续30min。用20mL乙酸乙酯溶解剩余固体后经硅胶柱纯化,得到淡黄色固体3-20。(35mg,36.5%)。 1H NMR(400MHz,CDCl 3)δ7.72(m,J=8.4Hz,1H),7.46(s,1H),7.20(d,J=7.6Hz,1H),7.09(s,1H),6.91(d,J=7.4Hz),6.66(d,J=7.3Hz,1H); 19F NMR(400MHz,CDCl 3)δ-112.40(s);MS(M+K +):m/z=318.50.
步骤(2)化合物TM-14的合成
将化合物3-10(100mg,0.358mmol),n-甲基哌嗪(98mg,0.989mmol)和碳酸铯(426mg,1.31mmol)溶于2mL重蒸的无水甲苯中,待用;在氩气保护下,将Pd 2(dba) 3(30mg,0.033mmol)和(±)-BINAP(61mg,0.099mmol)溶于2mL重蒸的无水甲苯中,90℃条件下搅拌15min后(反应混合物由深紫色浑浊液变为橙黄色澄清液),冷却至室温;然后将前述溶液加入到该反应体系中,氩气保护,60℃条件下搅拌14h后(反应混合物由橙黄色澄清液体变为棕红色液体),冷却至室温,加入10mL水猝灭反应,用二氯甲烷萃取,收集有机相,用无水硫酸钠干燥,过滤,减压旋蒸除去溶剂,经硅胶柱层析纯化(DCM:MeOH=20:1)后,得紫黑色固体TM-14(36mg,36.8%)。 1H NMR(400MHz,CDCl 3)δ7.40(s,1H),7.37(s,1H),7.24(s,1H),7.17(d,J=7.6Hz,1H),6.95(d,J=7.4Hz,1H),6.81(s,J=7.3Hz,1H),3.34(s,4H),2.65(s,4H),2.41(s,3H);MS(M+H +):m/z=297.33.
实施例8化合物TM-1的合成
Figure PCTCN2020083003-appb-000029
按照实施例7中步骤(2)的合成方法,将中间体化合物3-20与底物顺式-2-甲基六氢吡咯并[3,4-C]吡咯进行反应,得到得到化合物TM-1。MS(M+H +): m/z=323.15。
实施例9化合物TM-5的合成
Figure PCTCN2020083003-appb-000030
按照实施例7中步骤(2)的合成方法,将中间体化合物3-20与底物顺式-3,7-二氮杂双环[3.3.0]辛烷并[3,4-C]吡咯进行反应,得到得到化合物TM-5。MS(M+H +):m/z=309.13。
实施例10化合物TM-8的合成
Figure PCTCN2020083003-appb-000031
按照实施例7中步骤(2)的合成方法,将中间体化合物3-20与底物n-甲基高哌嗪进行反应,得到化合物TM-8。MS(M+H +):m/z=311.15。
实施例11化合物TM-11的合成
Figure PCTCN2020083003-appb-000032
按照实施例7中步骤(2)的合成方法,将中间体化合物3-20与底物高哌嗪进行反应,得到得到化合物TM-11。MS(M+H +):m/z=283.12。
实施例12化合物TM-18的合成
Figure PCTCN2020083003-appb-000033
按照实施例7中步骤(2)的合成方法,将中间体化合物3-20与底物哌嗪进行反应,得到化合物TM-18。MS(M+H +):m/z=297.13。
实施例13化合物TM-6的合成
合成路线如下:
Figure PCTCN2020083003-appb-000034
步骤(1)中间体化合物4-2的合成
将化合物4-1(100mg,0.296mmol),1,4-二氮杂双环[3.2.2]壬烷(46.9mg,0.384mmol)和碳酸铯(426mg,1.31mmol)溶于2mL重蒸的无水甲苯中,待用;在氩气保护下,将Pd 2(dba) 3(30mg,0.033mmol)和(±)-BINAP(61mg,0.099mmol)溶于2mL重蒸的无水甲苯中,90℃条件下搅拌15min后(反应混合物由深紫色浑浊液变为橙黄色澄清液),冷却至室温;然后将前述溶液加入到该反应体系中,氩气保护,60℃条件下搅拌14h后(反应混合物由橙黄色澄清液体变为棕红色液体),冷却至室温,加入10mL水猝灭反应,用 二氯甲烷萃取,收集有机相,用无水硫酸钠干燥,过滤,减压旋蒸除去溶剂,经硅胶柱层析纯化(DCM:MeOH=20:1)后,得紫黑色固体4-2(37mg,36.8%)。 1H NMR(400MHz,CDCl 3)δ7.62(d,J=2.0Hz,1H),7.47(dd,J=7.9,1.9Hz,1H),7.27(d,J=8.3Hz,1H),7.17(d,J=7.8Hz,1H),7.05(d,J=2.6Hz,1H),6.75(dd,J=8.4,2.6Hz,1H),4.07(dt,J=4.6,2.3Hz,1H),3.56(t,J=5.7Hz,2H),3.31-3.05(m,4H),2.99(tdd,J=12.8,6.4,3.6Hz,2H),2.43-2.03(m,2H),1.75(ddt,J=14.7,9.7,4.7Hz,2H).MS(M+H +):m/z=383.07.
步骤(1)中间体化合物4-3的合成
将化合物4-2(100mg),加入50mL无水甲苯中,溶解后加入30mg四三苯基膦钯,455.5mg正六丁基二锡,加热至90℃回流18h。TLC检测反应结束后经硅胶柱纯化得产品4-3(35mg,41.5%)。 1H NMR(600MHz,CDCl 3)δ7.64,7.46(dd,J=7.2,0.8Hz,1H),7.28(d,J=5.5Hz,1H),7.27(d,J=4.2Hz,1H),7.07(d,J=2.7Hz,1H),6.75(dd,J=8.3,2.7Hz,1H),4.06(dt,J=4.5,2.3Hz,1H),3.58-3.51(m,2H),3.20-3.06(m,4H),2.98(dddd,J=15.1,10.0,5.2,2.4Hz,2H),2.10(tdd,J=12.3,5.1,2.5Hz,2H),1.72(ddt,J=14.7,9.9,4.7Hz,2H),1.59-1.48(m,6H),1.32(h,J=7.3Hz,6H),1.07-1.03(m,6H),0.88(t,J=7.4Hz,9H). 13C NMR(151MHz,CDCl3)δ195.88,150.42,143.10,141.08,133.47,132.47,121.33,118.64,117.50,109.44,77.29,77.08,76.87,57.16,51.92,46.64,44.75,29.77,27.41,27.02,13.73.MS(ESI):m/z calcd for C 32H 46N 2OSn,594.26;found,595.2713(M+H +).
步骤(3)化合物TM-6的合成
将4-3(100mg),溶于10mL二氯甲烷中,在室温搅拌下滴加I 2的饱和二氯甲烷溶液10mL,反应30min后加入适量饱和NaHSO 3溶液淬灭,分离有机相,经硅胶层析柱纯化后得TM-6(10mg,54.2%)。 1H NMR(600MHz,CDCl 3)δ7.83(d,J=1.7Hz,1H),7.68(dd,J=7.9,1.7Hz,1H),7.28(d,J=8.4Hz,1H),7.07(d,J=7.9Hz,1H),7.06(d,J=2.9Hz,1H),6.76(dd,J=8.4,2.6Hz,1H),4.06(q,J=2.2Hz,1H),3.59-3.52(m,2H),3.15-3.04(m,4H),2.98(dddd,J=17.3,7.2,5.2,2.4Hz,2H),2.13-2.05(m,2H),1.73(ddt,J=14.6,9.6,4.6Hz,2H). 13C NMR(151MHz,CDCl3)δ193.54,150.61,145.21,143.19,136.04, 135.30,131.20,120.77,117.63,109.40,77.29,77.08,76.87,51.79,46.60,44.71,26.95,0.06.MS(ESI):m/z calcd for C 20H 19IN 2O,430.05;found,431.0620(M+H +).
实施例14化合物TM-15的合成
Figure PCTCN2020083003-appb-000035
按实施例13的合成方法,将底物1,4-二氮杂双环[3.2.2]壬烷替换为顺式-2-甲基六氢吡咯并[3,4-C]吡咯后进行反应,得到化合物TM-15。MS(M+H +):m/z=431.05。
实施例15化合物TM-16的合成
合成路线如下:
Figure PCTCN2020083003-appb-000036
步骤
(1)化合物3-27的合成
将中间体化合物3-26(413.3mg,1.0mmol),1,4-二氮杂双环[3.2.2]壬烷(146.4mg,1.2mmol)和碳酸铯(651.6mg,2.0mmol)溶于30mL重蒸的无水甲苯中,待用;在氩气保护下,将Pd 2(dba) 3(45.8mg,0.05mmol)和 (±)-BINAP(61mg,0.099mmol)溶于10mL重蒸的无水甲苯中,90℃条件下搅拌15min后(反应混合物由深紫色浑浊液变为橙黄色澄清液),冷却至室温;然后将前述溶液加入到该反应体系中,氩气保护,80℃条件下搅拌14h后(反应混合物由橙黄色澄清液体变为棕红色液体),冷却至室温,加入10mL水猝灭反应,用二氯甲烷萃取,收集有机相,用无水硫酸钠干燥,过滤,减压旋蒸除去溶剂,经硅胶柱层析纯化(DCM:MeOH=20:1)后,得红色固体3-27(300.1mg,65.3%)。 1H NMR(600MHz,CDCl 3)δ7.34-7.26(m,1H),7.27(dd,J=8.3,7.2Hz,1H),7.13(dd,J=8.3,1.0Hz,1H),7.11-7.02(m,1H),6.75(dd,J=8.3,2.7Hz,1H),4.11-4.01(m,1H),3.78(d,J=38.6Hz,4H),3.60-3.50(m,2H),3.16-3.02(m,4H),2.98(dddd,J=15.1,10.0,5.2,2.3Hz,2H),2.10(dddd,J=12.5,10.2,5.0,2.5Hz,2H),1.71(td,J=10.1,5.1Hz,4H),1.61(t,J=7.6Hz,3H),1.50-1.33(m,3H),0.97(t,J=8.2Hz,6H). 13C NMR(151MHz,CDCl 3)δ150.36,150.09,136.75,134.97,131.82,125.11,120.99,117.02,116.98,116.98,115.06,108.90,77.30,77.08,76.87,51.94,46.65,44.71,27.00.MS(ESI):m/z calcd for C 28H 37N 5O,459.30;found,460.2950(M+H+).
步骤(2)化合物TM-16的合成
将3-27(459.3mg,1.0mmol),溶于30mL乙腈中,将体系加入碘化钠饱和水溶液10mL及三氟乙酸(0.5mL,6.7mmol),将反映体系加热至80℃,并保持30分钟。加入氢氧化钠溶液猝灭反应,减压浓缩溶剂,用二氯甲烷萃取后经硅胶层析柱纯化,收集产品浓缩溶剂得紫色固体即为TM-16(191.9mg,44.6%)。 1H NMR(600MHz,CDCl 3)δ7.51(d,J=7.9Hz,1H),7.30(d,J=2.7Hz,1H),7.29(d,J=2.0Hz,1H),7.07(d,J=2.7Hz,1H),7.06-6.97(m,1H),6.79(dd,J=8.4,2.6Hz,1H),4.07(p,J=2.2Hz,1H),3.57(t,J=5.7Hz,2H),3.10(dt,J=11.1,5.0Hz,4H),2.98(dddd,J=15.1,10.0,5.2,2.4Hz,2H),2.09(dtd,J=10.5,5.2,2.8Hz,2H),1.74(tt,J=9.7,4.9Hz,2H). 13C NMR(151MHz,CDCl 3)δ192.68,150.61,148.72,138.28,135.86,135.23,133.95,129.49,121.19,118.62,117.76,109.35,91.47,77.30,77.09,76.88,57.09,51.77,46.57,46.55,44.62,26.86.MS(ESI):m/z calcd for C 20H 19IN 2O,430.05;found,431.0611(M+H +).
实施例16化合物TM-3的合成
Figure PCTCN2020083003-appb-000037
按照实施例15的合成方法,将底物1,4-二氮杂双环[3.2.2]壬烷替换为顺式-2-甲基六氢吡咯并[3,4-C]吡咯后,与中间体化合物3-26反应,最终得到化合物TM-3。MS(M+H +):m/z=431.05。
实施例17化合物TM-4的合成
Figure PCTCN2020083003-appb-000038
按照实施例15的合成方法,将底物1,4-二氮杂双环[3.2.2]壬烷替换为顺式-3,7-二氮杂双环[3.3.0]辛烷并[3,4-C]吡咯后,与中间体化合物3-26反应,最终得到得到化合物TM-4。MS(M+H +):m/z=417.04。
实施例18化合物TM-10的合成
Figure PCTCN2020083003-appb-000039
按照实施例15的合成方法,将底物1,4-二氮杂双环[3.2.2]壬烷替换为n-甲基高哌嗪后,与中间体化合物3-26反应,最终得到化合物TM-10。MS(M+H +):m/z=419.05。
实施例19化合物TM-12的合成
Figure PCTCN2020083003-appb-000040
按照实施例15的合成方法,将底物1,4-二氮杂双环[3.2.2]壬烷替换为高哌嗪后,与中间体化合物3-26反应,最终得到化合物TM-12。MS(M+H +):m/z=405.04。
实施例20化合物[ 125I]TM-16的合成
Figure PCTCN2020083003-appb-000041
将化合物3-27(0.1mg),溶于100μL乙腈中,分别加入1mCi Na 125I以及50μL TFA(三氟乙酸),加入10μL H 2O,升温至80℃反应30分钟后,用适量亚硫酸氢钠饱和溶液猝灭,碳酸氢钠饱和溶液调pH至中性后反应液进入radio-HPLC分离(乙腈:水=28:72,流速4mL/min,检测波长280nm,inertsil ODS-3型半制备色谱柱,5μm,10mm*250mm)。经过radio-HPLC分离纯化之后,该放射性配体的放射化学纯度大于98%,放射性标记率约为63.1%(未经衰变校正);将经过纯化的[ 125I]TM-16和未标记的稳定化合物TM-16共注射进行HPLC分析,流动相组成为乙腈:水(含0.2%三氟乙酸)=70:30,流速为2mL/min,波长为280nm,分析柱为Agela Technologies,Venusil XBP C18(L),5μm,
Figure PCTCN2020083003-appb-000042
4.6×250mm;分析结果如图1所示,[ 125I]TM-16和TM-16的保留时间分别为7.257min和6.931min,两者的保留时间相匹配,确认了放射性配体的准确性。
实施例21化合物[ 125I]TM-6的合成
Figure PCTCN2020083003-appb-000043
在室温下向三丁基锡前体(4-3)(0.2mg,0.00034mmol)在乙醇(200μl)中的溶液中添加1mCi Na 125I的0.1N NaOH溶液,随后在室温下添加1N HCl(50μl)和过氧化氢溶液(50μl)。在间歇振荡下将反应混合物保持在室温下30分钟,并用饱和亚硫酸氢钠溶液淬火。然后用CH 3CN/H 2O混合物(7:3,200μl)稀释,并用高效液相色谱分离(Agela Technologies,5mm,
Figure PCTCN2020083003-appb-000044
4.6×250mm)。[ 125I]TM-6在50.8分钟出峰,收集并装载在Waters Sep-Pak C18固相萃取柱上。用纯净水(10mL)洗涤柱,用甲醇(10mL)洗脱产物,然后在真空下去除溶剂。使用280nm的紫外检测器和放射性检测器通过高效液相色谱分析最终产物,以确定合成化合物的放射化学纯度(图2)。总合成时间约为100分钟,放射化学产率为84.5%(衰变未校正),放射化学纯度大于98%。
根据下述生物实验例,可以更好地理解本发明。然而,本领域的技术人员容易理解,实验例所描述的内容仅用于说明本发明,而不应当也不会限制本发明。
生物实验例1配体化合物受体亲和试验
1.受体蛋白的制备及其浓度的测定
实验过程中用到的受体蛋白均是从雌性SD大鼠(180-200g)的大脑中分离提取而得的。将雌性SD大鼠(180-200g)断颈处死后,迅速取出其大脑置于冰块上,用冰冷的生理盐水冲洗血丝后,解剖出大脑皮层(该区域富集α7nAChRs受体蛋白),置于10倍体积冰冷的50mM Tris-HCl缓冲溶液(50mM Tris,120mM NaCl,5mM KCl,2mM CaCl 2,1mM MgCl 2,pH=7.4,4℃)中,然后将烧杯放在冰水浴中用手持式组织匀浆机对该混合物进行匀浆30s(设置为No.6)。将匀浆后的膜溶液分成三等份于50mL离心管中,用低温高速离 心机离心20min(4℃,48000g),离心完成后弃去上清液,将下层沉淀物溶于10倍体积冰冷的50mM Tris-HCl缓冲溶液中,按照同样的方法对混合物进行匀浆,离心和洗涤。该步骤重复3次之后得到的下层沉淀物即为受体膜蛋白,将其溶于10倍体积冰冷的50mM Tris-HCl缓冲溶液中,匀浆使其充分混合均匀。取出10μL混合均匀后的受体膜蛋白溶液,用Lowry法测定蛋白的浓度,将剩余的膜溶液分装于2mL离心管中,放在-80℃的冰箱中保存待用。
2.受体膜蛋白的饱和结合实验
饱和结合实验是通过测定放射性配体[ 125I]α-bungaratoxin([ 125I]α-银环蛇毒素,简称:[ 125I]α-bgt)与老鼠大脑膜蛋白的结合来进行的。实验中,[ 125I]α-bgt设置了8个不同的浓度点(0.005-5nM),每个浓度点平行3组。取出保存于-80℃冰箱中的受体膜蛋白,置于4℃条件下冻融,冻融之后根据测定的蛋白浓度加入适当体积冰冷的50mM Tris-HCl缓冲溶液(50mM Tris,120mM NaCl,5mM KCl,2mM CaCl 2,1mM MgCl 2,pH=7.4,4℃)进行稀释。总结合管中反应混合物的总体积为500μL,包括100μL膜蛋白溶液(最终每个试管中蛋白的量为1.5mg),10μL不同浓度的放射性配体[ 125I]α-bgt和390μL冰冷的50mM Tris-HCl缓冲溶液,加样顺序为:膜蛋白,Tris-HCl缓冲溶液和[ 125I]α-bgt(表1)。非特异性结合是通过2μM非标记的α-bgt来确定的,试管中的反应混合物包括100μL膜蛋白溶液(最终每个试管中蛋白的量为1.5mg),10μL不同浓度的放射性配体[ 125I]α-bgt,100μL 2μM的α-bgt和290μL冰冷的50mM Tris-HCl缓冲溶液,总体积为500μL,加样顺序为:膜蛋白,Tris-HCl缓冲溶液,α-bgt和[ 125I]α-bgt(表2)。加样结束后,将试管用封口膜封好,涡旋几秒使其充分混匀,然后放在37℃的恒温培养箱中孵育2.5h,孵育完成后,取出试管将其置于冰水浴中以终止受体蛋白与配体的结合,然后用48孔细胞收集器将混合液过滤至Whatman GF/B滤纸(提前用0.5%的聚乙酰亚胺溶液浸泡2.5h)上,滤纸用5mL冰冷的50mM Tris-HCl缓冲溶液冲洗3次,取下滤纸,剪下滤纸片置于测量的PE管中,用γ-counter测定计数。总结合(TB)与非特异性结合(NSB)之间的差值即为特异性结合(SB),即SB(cpm)=TB(cpm)-NSB(cpm)。
表1饱和结合实验总结合管加样表
Figure PCTCN2020083003-appb-000045
表2饱和结合实验非特异性结合管加样表
Figure PCTCN2020083003-appb-000046
3.竞争结合实验
本文进行了以[ 125I]α-bgt为放射性标准品的体外竞争结合实验。实验中,膜蛋白溶液(每个反应管中蛋白的量为1.5mg)与0.4nM的[ 125I]α-bgt溶液及一系列不同浓度(每个浓度平行测定3组)的非标记配体溶液在37℃的恒温培养箱中共同孵育2.5h,孵育完成后,按照与前述饱和结合实验同样的方法处理并用γ-counter测定计数。同时,为了确保该实验体系的准确性和可靠性, 以MLA(J.M.Ward,V.B.Cockcroft,G.G.Lunt,F.S.Smillie,S.Wonnacott,Methyllycaconitine:a selective probe for neuronal alpha-bungarotoxin binding sites,FEBS LETT,270(1990)45-8.)(已知的α7 nAChRs的高选择性,高亲和性配体)为参考配体,测定其与老鼠脑中α7 nAChRs的亲和性。配体化合物的配制方法和加样方法如下表3和表4所示:
表3配体化合物的配制方法
Figure PCTCN2020083003-appb-000047
表4竞争结合实验加样表
Figure PCTCN2020083003-appb-000048
注:加样顺序为:蛋白,Tris-HCl缓冲溶液,药物(配体化合物或MLA),[ 125I]α-bgt。
4.实验结果:
饱和结合实验中,放射性配体[ 125I]α-bgt设立8个不同的浓度(0.005-5nM),每个浓度平行测定3组。实验结果显示,在所测定的浓度范围内,[ 125I]α-bgt与受体膜蛋白的特异性结合快速达到了饱和,其特异性结合曲线如图3所示;根据特异性结合曲线及公式log[B/(B max-B)]=n Hlog[L]-logK d以log[B/(B max-B)]对log[L]作图,得到Hill直线(如图4):y=1.05828x+0.08731(R=0.99031),其斜率即为Hill系数n H=1.058,说明[ 125I]α-bgt与受体膜蛋白的结合为简单的单位点作用系统。
根据单位点作用系统的Scatchard方程:B/F=-B/K d+B max/K d,以特异性结合量B对相应的B/F作图(如图5),得到线性回归方程y=46.42857-1.2987x(R=1),根据该方程得到在本实验条件下[ 125I]α-bgt的平衡解离常数为K d=0.77±0.088nM(95%可信区间为0.36-1.172nM),最大结合量为B max=35.75±4.64fmol/mg protein(95%可信区间为29.88-41.62fmol/mg protein)。该实验结果与文献中报道的数据相吻合(K d=1.5±0.7 nM,B max=63±17pmol/mg protein),说明的本文中所采用的的测定方法是可信的,可以用于待测化合物生物活性的测定。
竞争结合实验中,选取MLA作为参考配体,在相同的实验条件下同时测定MLA和所设计的待测化合物对α7 nAChRs的亲和性。参考配体MLA和一系列待测化合物设立9个不同的浓度(10 -3-10 -10mol/L),通过抑制0.4nM[ 125I]α-bgt(K d=0.77±0.088nM)对α7 nAChRs的结合测定其IC 50值,并通过Cheng-Prusoff公式(K i=IC 50/(1+[L]/K d))计算得到各自的K i值。测定结果如表5所示。在该实验条件下,MLA的抑制常数K i=2.88±0.78nM,与文献中(J.M.Ward,V.B.Cockcroft,G.G.Lunt,F.S.Smillie,S.Wonnacott,Methyllycaconitine:a selective probe for neuronal alpha-bungarotoxin binding sites,FEBS LETT,270(1990)45-8.)报道的K i值(1.09±0.09nM)基本相似,表明了本文中所采用的实验方法的可行性。
表5 MLA和各待测配体化合物对α7 nAChRs的体外结合亲和性(K i,nM)
Figure PCTCN2020083003-appb-000049
[a]三次测量平均值±标准偏差
从表5中可以看出,各配体化合物对α7 nAChR膜蛋白均显示出亲和性,抑制常数(K i)分布在2.23-521.1nM范围内,其中化合物TM-16、TM-6对[ 125I]α-bungaratoxin表现出很强的抑制作用,其K i值分别为2.23±0.56nM和9.26±0.37 nM。
生物实验例2 [ 125I]TM-16的体外稳定性实验
放射性配体的体外稳定性对其进一步的体内研究具有重要意义,通常情况下,体外稳定性研究是在生理盐水和动物血清中进行的。具体方法是:取10μCi经过HPLC纯化的放射性配体[ 125I]TM-16与100μL胎牛血清在37℃条件下分别孵育1h和2h,孵育结束后向其中加入200μL的乙腈使蛋白充分沉淀,然后在4℃条件下离心5min(7000rpm),收集上清液,经滤膜过滤后取100μL进行HPLC分析;再取10μCi经过HPLC纯化的放射性配体[ 125I]TM-16与100μL生理盐水在室温下分别培养1h和2h,然后直接通过HPLC进行分析。
放射性配体[ 125I]TM-16的体外稳定性实验结果如图6,7所示,由图可以看出,[ 125I]TM-16在生理盐水和胎牛血清中都表现出很好的稳定性。37℃条 件下,在胎牛血清中孵育2h(如图6)后,其放化纯均大于98%;室温下,在生理盐水中培养2h(如图7)后,其放化纯仍大于98%。
生物实验例3 [ 125I]TM-16体内分布实验
3.1生物分布实验
将经过HPLC纯化的[ 125I]TM-16(1μCi,溶于0.1mL生理盐水,含5%DMSO)通过尾静脉注射的方式注入正常昆明种小鼠体内(18-22g,雌性,n=5),分别在5min,15min,30min,60min,90min,120min时将小鼠断头处死,解剖取出血、脑、心、肺、肝、脾、肺、肾、肌肉、骨、肠、胃和尾,称量各个器官的湿重并用γ-counter测定其计数,每个组织的摄取情况最终以%ID/g表示,%ID/g=ID/g÷1%,其中ID/g=组织的放射性计数(counts)÷组织质量(mg),1%=每个时相1%ID的平均值-尾部放射性计数/100,该放射性配体的体内分布结果见表6。
表6 [ 125I]TM-16生物分布结果
Figure PCTCN2020083003-appb-000050
表中数据为五次测量的平均值±标准偏差;
由表6可以看出, 125I标记的放射性配体[ 125I]TM-16在小鼠脑内具有非常高的初始脑摄取,在注射5min后其摄取值即达到6.47%ID/g,15min后显示出最高的脑摄取值9.49%ID/g;同时,该放射性配体表现出适宜的脑清除速 率,在给药60min、120min后,其脑内的摄取值分别降为6.21%ID/g和3.26%ID/g,这表明了该化合物具有适宜的脑内动力学性质;另外,[ 125I]TM-16在血液中的摄取值很低,表现出很高的脑/血比值,在15min和60min时分别为8.11和8.87。
生物实验例4 [ 125I]TM-16在小鼠体内SPECT动态显像实验
通过尾静脉注射的方式将放射性配体[ 125I]TM-16(0.2mL,60μCi)注射入雌性昆明种小鼠(18-22g)体内,然后用3%的异氟烷将老鼠麻醉至昏迷后,以俯卧的姿势将老鼠固定于小动物micro-SPECT/CT显像仪上(TriFoil imaging Triumph SPECT/CT),扫描显像过程中采用1%的异氟烷维持老鼠处于麻醉状态。分别在给药1min-60min后进行图像采集,分为12帧,每5分钟一帧,观察[ 125I]TM-16在老鼠脑内的分布情况。
图8分别为昆明小鼠在注射[ 125I]TM-16 15min,30min,60min,90min后脑部的冠状面、矢状面、横断面micro-SPECT显像图。由图8可以看出,[ 125I]TM-16在老鼠脑内有较高的摄取,其在脑内的分布情况基本与生物实验例3动物体内分布实验结果保持一致,30min时摄取最高,随着时间的延长,放射性配体的浓度逐渐降低,同时,在脑内的滞留较为适宜,在给药60min后依然可以观察到一定浓度的富集。根据上述良好的显像结果,[ 125I]TM-16可以作为α7 nAChR的SPECT显像剂。
生物实验例5 [ 125I]TM-6体内分布实验
3.1生物分布实验
将经过HPLC纯化的[ 125I]TM-6(1μCi,溶于0.1mL生理盐水,含5%DMSO)通过尾静脉注射的方式注入正常昆明种小鼠体内(18-22g,雌性,n=5),分别在5min,15min,30min,60min,90min,120min时将小鼠断头处死,解剖取出血、脑、心、肺、肝、脾、肺、肾、肌肉、骨、肠、胃和尾,称量各个器官的湿重并用γ-counter测定其计数,每个组织的摄取情况最终以%ID/g表示,%ID/g=ID/g÷1%,其中ID/g=组织的放射性计数(counts)÷组织质量(mg),1%=每个时相1%ID的平均值-尾部放射性计数/100,该放射性配体的体内分布结果见表7。
表7 [ 125I]TM-6生物分布结果
Figure PCTCN2020083003-appb-000051
表中数据为五次测量的平均值±标准偏差
由表7可以看出, 125I标记的放射性配体[ 125I]TM-6在小鼠脑内具有非常高的初始脑摄取,在注射5min后其摄取值即达到4.20%ID/g,15min后显示出最高的脑摄取值7.46%ID/g;同时,该放射性配体表现出适宜的脑清除速率,在给药60min、120min后,其脑内的摄取值分别降为4.56%ID/g和2.84%ID/g,这表明了该化合物具有适宜的脑内动力学性质。另外,[ 125I]TM-6在血液中的摄取值很低,表现出很高的脑/血比值,在15min和60min时分别为6.27和5.30。
生物实验例6 [ 125I]TM-16小鼠颅内分布实验
将经过HPLC纯化的[ 125I]TM-16(1μCi,溶于0.1mL生理盐水,含5%DMSO)通过尾静脉注射的方式注入正常昆明种小鼠体内(28-32g,雌性,n=5),分别在给药5min,15min,30min,60min,90min时通过颈椎脱臼的方式将小鼠处死,迅速解剖出脑部置于冰上,用冰冷的生理盐水除去血迹,然后分区域解剖出皮层、纹状体、海马、上下丘、丘脑、小脑和余脑,称量各个脑区域的湿重并用γ-counter测定其放射性计数,每个区域的放射性配体摄取情况最终以%ID/g表示,%ID/g=ID/g÷1%,其中ID/g=组织的放射性计 数(counts)÷组织质量(mg),1%=每个时相1%ID的平均值,该放射性配体的脑区域分布情况见表8。
表8 [ 125I]TM-16颅内分布结果
Figure PCTCN2020083003-appb-000052
表中数据为五次测量的平均值±标准偏差;
由表8可以看出,将1μCi[ 125I]TM-16注入小鼠体内后,该放射性配体在α7 nAChR最为富集的皮层和海马区有较高的摄取,并在给药30min后达到峰值,分别为7.22±0.62%ID/g和6.02±0.35%ID/g,在随后的观察期内,这些区域的摄取值逐渐下降;中度摄取区域为上下丘和丘脑,摄取最低的区域为小脑(小鼠脑内α7 nAChR分布最少的区域)。该区域分布特点与α7 nAChR在体内外的分布情况一致。放射性活度在小脑内的摄取及清除速率相比较于其他脑区域而言都是很快的,在整个实验过程中,组织/小脑比值逐渐增加,并在给药90min后达到了峰值,表明了该放射性配体与α7 nAChR具有较好的特异性结合。
该放射性配体的脑区域分布特点与[ 125I]ASEM相似,而且其在α7 nAChR密集区域的摄取值与[ 125I]ASEM相比具有一定的优势:[ 125I]ASEM在给药后20min时达到吸收的最高值,皮层和海马区的摄取值分别为6.3%ID/g和5.1%ID/g。
Figure PCTCN2020083003-appb-000053
生物实验例7 [ 125I]TM-6小鼠颅内分布实验
将经过HPLC纯化的[ 125I]TM-6(1μCi,溶于0.1mL生理盐水,含5%DMSO)通过尾静脉注射的方式注入正常昆明种小鼠体内(28-32g,雌性,n=5),分别在给药5min,15min,30min,60min,90min时通过颈椎脱臼的方式将小鼠处死,迅速解剖出脑部置于冰上,用冰冷的生理盐水除去血迹,然后分区域解剖出皮层、纹状体、海马、上下丘、丘脑、小脑和余脑,称量各个脑区域的湿重并用γ-counter测定其放射性计数,每个区域的放射性配体摄取情况最终以%ID/g表示,%ID/g=ID/g÷1%,其中ID/g=组织的放射性计数(counts)÷组织质量(mg),1%=每个时相1%ID的平均值,该放射性配体的脑区域分布情况见表9。
表9 [ 125I]TM-6脑内分布结果
Figure PCTCN2020083003-appb-000054
表中数据为五次测量的平均值±标准偏差;
由表9可以看出,将1μCi[ 125I]TM-6注入小鼠体内后,该放射性配体在α7 nAChR最为富集的皮层和海马区有较高的吸收,并在给药30min后达到峰值,分别为6.55±0.53%ID/g和5.98±0.35%ID/g,在随后的观察期内,这些区 域的摄取值逐渐下降;中度摄取区域为上下丘和丘脑,摄取最低的区域为小脑(小鼠脑内α7 nAChR分布最少的区域)。该区域分布特点与α7 nAChR在体内外的分布情况一致。放射性活度在小脑内的摄取及清除速率相比较于其他脑区域而言都是很快的,在整个实验过程中,组织/小脑比值逐渐增加,并在给药90min后达到了峰值,表明了该放射性配体与α7 nAChR具有较好的特异性结合。
该放射性配体的脑区域分布特点与[ 125I]ASEM相似,而且其在α7 nAChR密集区域的摄取值与[ 125I]ASEM相比具有一定的优势:[ 125I]ASEM在给药后20min时达到吸收的最高值,皮层和海马区的摄取值分别为6.3%ID/g和5.1%ID/g,此后逐渐清除,[ 125I]TM-6表现出了比[ 125I]ASEM更为良好的滞留及脑动力学性质。
生物实验例8 [ 125I]TM-6和[ 125I]TM-16的小鼠离体放射自显影实验
将活度为60μCi[ 125I]TM-6或[ 125I]TM-16通过尾静脉注射入昆明小鼠中,45min后处死小鼠。分离全脑组织,用冰冷生理盐水冲洗余血后迅速埋入O.C.T冰冻切片包埋剂中,冷冻至-18℃进行切片(横断面),切片厚度为15μm。将切片贴于载玻片上,包裹保鲜膜,在暗室储磷屏上曝光14h。将曝光好的储磷屏在磷屏成像系统中扫描,选取区域合适的切片,与脑图谱进行比对。抑制组实验通过15min预先注射甲基牛扁碱(0.1mL,1mg/kg,含15%乙醇)作为抑制剂。于示踪剂分子注射45min后处死小鼠,包埋切片,操作同上。
由图9可以看出,[ 125I]TM-6或[ 125I]TM-16在实验组中昆明小鼠的前额叶皮质区、海马区以及丘脑区有较高放射性摄取。而在抑制组中,所有区域摄取均有所降低。离体放射自显影实验结果与脑区域分布实验结果一致,且与啮齿类动物脑中α7受体分布一致,说明[ 125I]TM-6或[ 125I]TM-16有优秀的体内示踪性质。
以上对本发明所提供的芴酮类α7烟碱型乙酰胆碱受体的配体化合物及其应用进行了详细介绍。本文中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其中心思想。应当指出,对于本领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明 权利要求的保护。

Claims (12)

  1. 下式(Ⅰ)所示的芴酮类α7烟碱型乙酰胆碱受体的配体化合物,
    Figure PCTCN2020083003-appb-100001
    其中,X为6-10元含氮杂环基;所述含氮杂环基未被取代,或被C 1-4烷基取代;
    R 1选自氨基、卤素或卤素的放射性同位素,R 2为氢;或者R 1为氢,R 2选自氨基、卤素或卤素的放射性同位素;
    且当X为
    Figure PCTCN2020083003-appb-100002
    时,R 1、R 2均不选自氨基、氟及氟的放射性同位素。
  2. 如权利要求1所述的芴酮类α7烟碱型乙酰胆碱受体的配体化合物,其中,所述6-10元含氮杂环基选自
    Figure PCTCN2020083003-appb-100003
    Figure PCTCN2020083003-appb-100004
  3. 如权利要求1所述的芴酮类α7烟碱型乙酰胆碱受体的配体化合物,其中,R 1选自氟、碘或它们的放射性同位素,R 2为氢;或者R 1为氢,R 2选自氟、碘或它们的放射性同位素。
  4. 如权利要求1所述的芴酮类α7烟碱型乙酰胆碱受体的配体化合物,其中,所述放射性同位素选自 18F、 123I、 124I、 125I或 131I。
  5. 如权利要求1所述的芴酮类α7烟碱型乙酰胆碱受体的配体化合物,其选自以下结构的化合物:
    Figure PCTCN2020083003-appb-100005
  6. 式(Ⅰ)所示的芴酮类α7烟碱型乙酰胆碱受体的配体化合物的前体化合物,
    Figure PCTCN2020083003-appb-100006
    其中,X为
    Figure PCTCN2020083003-appb-100007
    R 1为3,3-二丁基三氮-1-烯-1-基,R 2为氢;或者X为
    Figure PCTCN2020083003-appb-100008
    R 1为氢,R 2为三丁基锡烷基。
  7. 如权利要求1-5中任一项所述的芴酮类α7烟碱型乙酰胆碱受体的配体化合物在制备预防或治疗认知障碍的药物中的用途。
  8. 如权利要求7所述的用途,其中所述认知障碍选自下组:早发性阿尔茨海默病、老年性痴呆症、微小梗塞性痴呆症、AIDS相关痴呆症、HIV痴呆症、路易体相关痴呆症、唐氏综合征相关痴呆症、轻度认知功能障碍、与年龄相关的记忆障碍、最近短期记忆障碍、年龄相关认知障碍、药物相关的认知障碍、免疫缺陷综合征相关的认知障碍、血管疾病相关的认知功能障碍、精神分裂症、注意力缺陷障碍、注意缺陷多动障碍以及学习缺陷障碍。
  9. 下式(Ⅰ)所示的芴酮类α7烟碱型乙酰胆碱受体的配体化合物在制备PET或SPECT显像剂的试剂中的用途,
    Figure PCTCN2020083003-appb-100009
    其中,X为6-10元含氮杂环基;所述含氮杂环基未被取代,或被C 1-4烷基取代;
    R 1为单光子放射性核素 123I、 125I、 131I或正电子放射性核素 124I;R 2为氢;或者R 1为氢,R 2为单光子放射性核素 123I、 125I、 131I或正电子放射性核素 124I。
  10. 如权利要求9所述的用途,其中所述6-10元含氮杂环基选自
    Figure PCTCN2020083003-appb-100010
  11. 如权利要求9或10所述的用途,其中所述芴酮类α7烟碱型乙酰胆碱受体的配体化合物的结构如下式所示:
    Figure PCTCN2020083003-appb-100011
  12. 下式所示的芴酮类α7烟碱型乙酰胆碱受体的配体化合物在制备PET显像剂的试剂中用途,
    Figure PCTCN2020083003-appb-100012
PCT/CN2020/083003 2019-04-03 2020-04-02 芴酮类α7烟碱型乙酰胆碱受体的配体化合物及其应用 WO2020200283A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910266261.0 2019-04-03
CN201910266261.0A CN109988173A (zh) 2019-04-03 2019-04-03 芴酮类α7烟碱型乙酰胆碱受体的配体化合物及其应用

Publications (1)

Publication Number Publication Date
WO2020200283A1 true WO2020200283A1 (zh) 2020-10-08

Family

ID=67131321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083003 WO2020200283A1 (zh) 2019-04-03 2020-04-02 芴酮类α7烟碱型乙酰胆碱受体的配体化合物及其应用

Country Status (2)

Country Link
CN (1) CN109988173A (zh)
WO (1) WO2020200283A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255915A1 (en) * 2021-06-01 2022-12-08 Agneta Nordberg Pet radiotracers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109988173A (zh) * 2019-04-03 2019-07-09 北京师范大学 芴酮类α7烟碱型乙酰胆碱受体的配体化合物及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4094968A (en) * 1972-09-06 1978-06-13 Burroughs Wellcome Co. Treatment for allergy and method of composition thereof
US20050234031A1 (en) * 2004-02-04 2005-10-20 Schrimpf Michael R Amino-substituted tricyclic derivatives and methods of use
CN105777613A (zh) * 2016-04-08 2016-07-20 浙江工业大学 一种含芴酮的n-丁基咔唑类化合物及其制备方法和应用
CN107188900A (zh) * 2017-05-27 2017-09-22 北京师范大学 α7烟碱型乙酰胆碱受体的配体化合物及其应用
CN109988173A (zh) * 2019-04-03 2019-07-09 北京师范大学 芴酮类α7烟碱型乙酰胆碱受体的配体化合物及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2696680A1 (en) * 2007-08-17 2009-02-26 Neurosearch A/S 1,4-diaza-bicycl0(3.2.2)n0nyl pyrimidinyl derivatives useful as nicotinic acetylcholine- receptor ligands

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4094968A (en) * 1972-09-06 1978-06-13 Burroughs Wellcome Co. Treatment for allergy and method of composition thereof
US20050234031A1 (en) * 2004-02-04 2005-10-20 Schrimpf Michael R Amino-substituted tricyclic derivatives and methods of use
CN105777613A (zh) * 2016-04-08 2016-07-20 浙江工业大学 一种含芴酮的n-丁基咔唑类化合物及其制备方法和应用
CN107188900A (zh) * 2017-05-27 2017-09-22 北京师范大学 α7烟碱型乙酰胆碱受体的配体化合物及其应用
CN109988173A (zh) * 2019-04-03 2019-07-09 北京师范大学 芴酮类α7烟碱型乙酰胆碱受体的配体化合物及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANDREW G. HORTI ET AL.: "Synthesis and evaluation of new radioligands [11C] A-833834 and [11C] A-752274 for positron-emission tomography of α7-nicotinic acetylcholine receptors", NUCLEAR MEDICINE AND BIOLOGY, no. 40, 31 December 2013 (2013-12-31), XP55740971, DOI: 20200519105800A *
MICHAEL R. SCHRIMPF ET AL.: "SAR of a7 nicotinic receptor agonists derived from tilorone: Exploration of a novel nicotinic pharmacophore", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, no. 22, 8 January 2012 (2012-01-08), XP028398230, DOI: 20200512095450Y *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022255915A1 (en) * 2021-06-01 2022-12-08 Agneta Nordberg Pet radiotracers

Also Published As

Publication number Publication date
CN109988173A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
KR101429302B1 (ko) 방사성 표지된 디히드로테트라베나진 유도체 및 조영제로서의 이의 용도
JP6912602B2 (ja) α7ニコチン性アセチルコリン受容体のリガンド化合物及びその応用
Fujinaga et al. Synthesis and evaluation of 6-[1-(2-[18F] fluoro-3-pyridyl)-5-methyl-1H-1, 2, 3-triazol-4-yl] quinoline for positron emission tomography imaging of the metabotropic glutamate receptor type 1 in brain
WO2020200283A1 (zh) 芴酮类α7烟碱型乙酰胆碱受体的配体化合物及其应用
US11033641B2 (en) Radiolabelled mGluR2/3 pet ligands
Smith et al. Investigation of an F-18 oxytocin receptor selective ligand via PET imaging
Lee et al. Radiosynthesis and characterization of [18F] BS224: a next-generation TSPO PET ligand insensitive to the rs6971 polymorphism
US20160263258A1 (en) Radiotracer introduced [18F]fluoromethyl group targeting neuroinflammation for PET imaging and Synthesis of Radiotracer and its biological evaluation Method for Radiotracer
Yu et al. Methoxyphenylethynyl, methoxypyridylethynyl and phenylethynyl derivatives of pyridine: synthesis, radiolabeling and evaluation of new PET ligands for metabotropic glutamate subtype 5 receptors
WO2001034209A1 (en) LIGANDS FOR α7 NICOTINIC ACETYLCHOLINE RECEPTORS BASED ON METHYLLYCACONITINE
Salabert et al. Radiolabeling of [18F]-fluoroethylnormemantine and initial in vivo evaluation of this innovative PET tracer for imaging the PCP sites of NMDA receptors
Kwon et al. Novel potential pyrazolopyrimidine based translocator protein ligands for the evaluation of neuroinflammation with PET
Wang et al. Design, synthesis and biological evaluation of 1, 4-Diazobicylco [3.2. 2] nonane derivatives as α7-Nicotinic acetylcholine receptor PET/CT imaging agents and agonists for Alzheimer's disease
JP5954737B2 (ja) 放射性フッ素標識キノキサリン化合物
Fresneau et al. Design of a serotonin 4 receptor radiotracer with decreased lipophilicity for single photon emission computed tomography
ES2864825T3 (es) Derivados de azetidina para la obtención de imágenes Tau
Yin et al. An Experimental Study on 131I-CHIBA-1001: A Radioligand for α7 Nicotinic Acetylcholine Receptors
Pérez-Medina et al. Evaluation of a 125 I-labelled benzazepinone derived voltage-gated sodium channel blocker for imaging with SPECT
EP2850044A2 (en) Use of fluorinated derivatives of 4-aminopyridine in therapeutics and medical imaging
Huan et al. Radiosynthesis and in-vivo evaluation of [125I] IBT: a single-photon emission computed tomography radiotracer for α7-nicotinic acetylcholine receptor imaging
Hoepping et al. Radiosynthesis and biological evaluation of an 18F-labeled derivative of the novel pyrazolopyrimidine sedative–hypnotic agent indiplon
JP2024513913A (ja) ハンチンチンタンパク質をイメージングするためのイソインドリノン化合物及びイメージング剤
Kumar et al. Synthesis and in vivo evaluation of [O-methyl-11C](2R, 4R)-4-hydroxy-2-[2-[2-[2-(3-methoxy) phenyl] ethyl] phenoxy] ethyl-1-methylpyrrolidine as a 5-HT2A receptor PET ligand
CN102659796A (zh) 氟-18标记的螺环哌啶类sigma-1受体化合物及制备方法和应用
Sobrio et al. Evaluation in rats and primates of [11C]-mecamylamine, a potential nicotinic acetylcholine receptor radioligand for positron emission tomography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20784243

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20784243

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20784243

Country of ref document: EP

Kind code of ref document: A1