WO2020200083A1 - 一种选取信号通道的方法以及可穿戴智能设备 - Google Patents

一种选取信号通道的方法以及可穿戴智能设备 Download PDF

Info

Publication number
WO2020200083A1
WO2020200083A1 PCT/CN2020/081635 CN2020081635W WO2020200083A1 WO 2020200083 A1 WO2020200083 A1 WO 2020200083A1 CN 2020081635 W CN2020081635 W CN 2020081635W WO 2020200083 A1 WO2020200083 A1 WO 2020200083A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
channel
activity state
mcu
channels
Prior art date
Application number
PCT/CN2020/081635
Other languages
English (en)
French (fr)
Inventor
吴宙真
黄曦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020200083A1 publication Critical patent/WO2020200083A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/385Transceivers carried on the body, e.g. in helmets

Definitions

  • the embodiment of the present invention relates to the field of communication technology, and in particular to a method for selecting a signal channel and a wearable smart device.
  • Wearable smart devices refer to smart hardware products that can be worn directly on the body or integrated into the user’s clothes, hats and other accessories and have certain computing capabilities, such as wrist-supported terminals such as watches and bracelets, and head-supported Terminals such as glasses, helmets, headbands, etc.
  • the mainstream function of wearable smart devices is to collect physiological signals for analysis and identification to obtain the signal quality of the physiological signals, so as to determine the signal channels that meet the requirements, and then use the signal channels that meet the requirements for subsequent applications
  • the signal channels mentioned above are actually the paths from different transmitters to acquisition devices. If the paths are different, they can be regarded as different signal channels.
  • the embodiment of the present invention provides a method for selecting a signal channel and a wearable smart device, which avoids the problem that a signal channel that meets the requirements cannot be selected due to the inability to accurately evaluate the signal quality.
  • an embodiment of the present application provides a method for selecting a signal channel, which can be applied to a wearable smart device, and the wearable smart device may include a micro-control unit MCU, N signal channels, and an acceleration ACC sensor , Where N is an integer greater than 1.
  • the method for selecting a signal channel may include: MCU receiving acceleration information sent by the ACC sensor; the MCU determining the user activity state according to the acceleration information; when the user activity state is the first activity state, the MCU selects according to the first activity state Signal channel. It can be seen from this that the user activity state is a factor that affects the signal channel in the wearable smart device, so determining the user activity state is beneficial to improve the robustness of the selected signal channel.
  • each of the N signal channels is constituted by an acquisition device and a receiving device.
  • the MCU determines the user activity state according to the acceleration information, it may further include: the user activity state is the first In the second active state, the MCU selects a signal channel according to the second active state, and the second active state is different from the first active state. It can be seen from this that the user activity state is a factor that affects the signal channel in the wearable smart device, so determining the user activity state is beneficial to improve the robustness of the selected signal channel.
  • the method may further include: the MCU obtains User activity state of the previous cycle; the MCU determines that the second activity state is different from the user activity state of the previous cycle. Using the user activity status of the previous cycle, it can be accurately determined that the user activity status of the current cycle has changed, so as to implement the selection strategy that the user activity status has changed, and improve the accuracy of selection.
  • the method may further include: the MCU evaluation N signal qualities corresponding to the N signal channels. It can be seen from this that the evaluation of signal channels can reflect the pros and cons of each signal channel from the signal quality.
  • the MCU selects a signal channel according to the second activity state, which may include: when the N signal quality is low
  • the MCU determines that the N signal channels are unavailable. Since the signal fusion threshold indicates that the signal channel can be fused to achieve the critical value when the signal quality meets the requirements and can be used, comparing the signal quality with the signal fusion threshold can determine whether the signal channel is available and provide a channel selection The way.
  • the MCU selects a signal channel according to the second activity state, which may include: among the N signal qualities When any M signal qualities are higher than the signal fusion threshold and all smaller than the signal usable threshold, the MCU fuses the M signal channels corresponding to the M signal qualities to obtain the first fusion result, where the signal fusion threshold is less than the signal Available threshold, the M is an integer greater than 1 and less than N; the MCU selects the first fusion result as the signal channel. It can be seen from this that only the necessary signal channels are fused, which can not only reduce the average power consumption but also select the signal channels whose signal quality meets the requirements.
  • the MCU selecting a signal channel according to the second activity state may include: at least among the N signal qualities When one is higher than the signal available threshold, the MCU selects the first channel, and the signal quality of the first channel is better than the signal quality of other channels. It can be seen from this that directly selecting the signal channels that meet the requirements from the N signal channels provides a selection method that meets the requirements.
  • the method may further include: the MCU determines the The fusion of the M signal channels is the fusion weight corresponding to the first fusion result, and the fusion weight is used to fuse the M signal channels in the current period or the next period.
  • the MCU selecting a signal channel according to the second activity state may include: when the N signal quality is low At the signal dimming threshold, the MCU determines dimming parameters according to the second activity state and the N signal qualities, and the dimming parameters are used to instruct the acquisition device to collect signals from the N signal channels. It can be seen from this that the dimming parameter can be used to adjust the acquisition of the signal channel, so that the signal quality of the adjusted signal channel can reach a relatively good degree.
  • the method may further include: the MCU obtains User activity status of the previous cycle; the MCU determines that the first activity status is the same as the user activity status of the previous week. Using the user activity status of the previous cycle, it can be accurately determined that the user activity status of the current cycle has not changed, so as to implement the selection strategy with the user activity status unchanged, and improve the accuracy of selection.
  • the method may further include: the MCU Acquire a second channel, which is the signal channel used in the previous cycle; the MCU evaluates the signal quality of the second channel, and the signal quality of the second channel is used to indicate the selection of the signal channel. It can be seen from this that the evaluation of the signal channel can reflect the pros and cons of the signal channel from the signal quality.
  • the MCU selects a signal channel according to the first activity state, which may include: When the signal quality is higher than the signal usable threshold, the MCU selects the second channel as the signal channel. It can be seen from this that when the user activity status has not changed, only evaluating the signal channel used in the previous cycle can also select the signal channel that meets the quality requirements, reducing the time, calculation, and power consumption required for a comprehensive evaluation. .
  • the MCU selects a signal channel according to the first activity state, which may include: When the signal quality is lower than the signal usable threshold, the MCU determines the dimming parameter according to the first activity state and the signal quality of the second channel, and the dimming parameter is used to instruct the acquisition device to collect the signal of the second channel. It can be seen that the dimming parameters can enable the acquisition device to adjust the signal channels that need to be adjusted, avoiding the data discontinuity caused by frequent dimming of all signal channels, and making the signal of the adjusted signal channel The quality can reach a relatively good level.
  • the MCU selects a signal channel according to the first activity state, which may include: When the signal quality is lower than the signal usable threshold, the MCU evaluates the M signal qualities corresponding to any M signal channels in the N signal channels to select the signal channel, where the M is greater than 1 and less than the An integer of N. It can be seen from this that the evaluation of signal channels can reflect the pros and cons of each signal channel from the signal quality, and only the necessary signal channels are evaluated for signal quality, which can effectively reduce the overall evaluation. Average power consumption and reduce evaluation time and calculation amount.
  • the MCU evaluates M signals corresponding to any M signal channels among the N signal channels
  • the quality for selecting the signal channel may include: when at least one of the M signal qualities is higher than the signal usable threshold, the MCU selects the third channel, the signal quality of the third channel is better than the signals of other channels quality. It can be seen from this that directly selecting the signal channels that meet the requirements from the M signal channels provides a selection method that meets the requirements.
  • the MCU evaluates the M signals corresponding to any M signal channels among the N signal channels Quality, for selecting the signal channel may include: when the M signal qualities are all higher than the signal fusion threshold and all smaller than the signal usable threshold, the MCU fuse the M signal channels to obtain the second fusion result; The MCU selects the second fusion result as the signal channel. It can be seen from this that only the necessary signal channels are fused, which can not only reduce the average power consumption but also select the signal channels whose signal quality meets the requirements.
  • the MCU evaluates M signals corresponding to any M signal channels among the N signal channels
  • the quality for selecting the signal channel may include: when the M signal qualities are all lower than the signal dimming threshold, the MCU determines the dimming parameter according to the first activity state and the M signal qualities, and the dimming The parameter is used to instruct the acquisition device to acquire the signals of the M signal channels. It can be seen that the dimming parameters can enable the acquisition device to adjust the signal channels that need to be adjusted, avoiding the data discontinuity caused by frequent dimming of all signal channels, and making the signal of the adjusted signal channel The quality can reach a relatively good level.
  • the MCU selecting the signal channel according to the first activity state may include: the MCU obtaining the third fusion result ,
  • the third fusion result is a result of fusion of any M signal channels among the N signal channels in the previous cycle; the MCU selects the third fusion result as the signal channel.
  • the method may further include: the MCU evaluation
  • the N signal qualities corresponding to the N signal channels are used to select the signal channel and record the initial user activity state.
  • the initial user activity state is used to instruct the MCU to determine whether the user activity state in the next cycle changes. It can be seen that when the wearable device runs for the first time, it is possible to obtain the signal quality and other related parameters of all signal channels to the greatest extent by comprehensively evaluating all signal channels.
  • the MCU evaluates the N signal qualities corresponding to the N signal channels for selecting the signal
  • the channel may include: when at least one of the N signal qualities is higher than a signal usable threshold, the MCU selects the fourth channel, and the signal quality of the fourth channel is better than that of other channels.
  • the MCU evaluates the N signal qualities corresponding to the N signal channels for selecting the The signal channel may include: when the N signal qualities are all lower than the signal dimming threshold, the MCU determines dimming parameters for the N signal channels according to the initial user activity state and the N signal qualities, and the dimming parameter It is used to instruct the MCU to dim the N signal channels or any signal channel in the current cycle or the next cycle.
  • a wearable smart device which includes: a processor, a memory, N signal channels, an acceleration ACC sensor, and one or more programs, where N is an integer greater than 1, The one or more programs are stored in the memory, and when the one or more programs are executed by the processor, the wearable smart device is caused to perform the following steps: receiving the acceleration sent by the ACC sensor The acceleration information; the user activity state is determined according to the acceleration information; when the user activity state is the first activity state, the signal channel is selected according to the first activity state.
  • each of the N signal channels is composed of an acquisition device and a receiving device.
  • the wearable smart device when the one or more programs are executed by the processor, the wearable smart device is caused to execute The following steps: after the user activity state is determined according to the acceleration information, when the user activity state is the second activity state, a signal channel is selected according to the second activity state, and the second activity state is different from the first activity state.
  • the wearable smart device when the one or more programs are executed by the processor, the wearable smart device is caused to execute The following steps: before selecting a signal channel according to the second activity state, obtain the user activity state of the previous cycle; determine that the second activity state is different from the user activity state of the previous cycle.
  • the wearable smart device when the one or more programs are executed by the processor, the wearable smart device is caused to execute The following steps: before the MCU selects a signal channel according to the second activity state, evaluate the N signal qualities corresponding to the N signal channels.
  • the wearable smart device when the one or more programs are executed by the processor, the wearable smart device is caused to execute The following steps: when the quality of the N signals are all lower than the signal fusion threshold, it is determined that the N signal channels are not available.
  • the wearable smart device when the one or more programs are executed by the processor, the wearable smart device is caused to execute The following steps: when any M of the N signal qualities are higher than the signal fusion threshold and all smaller than the signal usable threshold, merge the M signal channels corresponding to the M signal qualities to obtain the first fusion result, wherein, the signal fusion threshold is less than the signal usable threshold, and the M is an integer greater than 1 and less than N; the first fusion result is selected as the signal channel.
  • the wearable smart device when the one or more programs are executed by the processor, the wearable smart device is caused to execute The following steps: when at least one of the N signal qualities is higher than the signal usable threshold, the first channel is selected, and the signal quality of the first channel is better than the signal quality of other channels.
  • the wearable smart device when the one or more programs are executed by the processor, the wearable smart device is caused to execute The following steps: After selecting the first fusion result as the signal channel, determine the fusion weight corresponding to the first fusion result when the M signal channels are fused, and the fusion weight is used for the current period or the next period for M Two signal channels are fused.
  • the wearable smart device when the one or more programs are executed by the processor, the wearable smart device is caused to execute The following steps: when the N signal qualities are all lower than the signal dimming threshold, the dimming parameter is determined according to the second activity state and the N signal qualities, and the dimming parameter is used to instruct the acquisition device to respond to the N signals Channel for signal acquisition.
  • the wearable smart device when the one or more programs are executed by the processor, the wearable smart device is caused to execute The following steps: before selecting the signal channel according to the first activity state, obtain the user activity state of the previous cycle; determine that the first activity state is the same as the user activity state of the previous week.
  • the wearable smart device when the one or more programs are executed by the processor, perform the following steps: before selecting a signal channel according to the first activity state, acquire a second channel, which is the signal channel used in the previous cycle; evaluate the signal quality of the second channel, and the signal of the second channel Quality is used to indicate that the signal channel is selected.
  • the wearable smart The device when the one or more programs are executed by the processor, performs the following steps: when the signal quality of the second channel is higher than the signal usable threshold, the second channel is selected as the signal channel.
  • the wearable smart The device when the one or more programs are executed by the processor, performs the following steps: when the signal quality of the second channel is lower than the signal usable threshold, the dimming parameter is determined according to the first activity state and the signal quality of the second channel, and the dimming parameter is used to instruct the acquisition device to This second channel collects signals.
  • the wearable smart The device when the one or more programs are executed by the processor, performs the following steps: when the signal quality of the second channel is lower than the signal usable threshold, evaluate the M signal qualities corresponding to any M signal channels among the N signal channels to select the signal channel, where , The M is an integer greater than 1 and less than the N.
  • the wearable smart The device when the one or more programs are executed by the processor, performs the following steps: when at least one of the M signal qualities is higher than the signal usable threshold, a third channel is selected, and the signal quality of the third channel is better than the signal quality of other channels.
  • the wearable smart The device when the one or more programs are executed by the processor, the wearable smart The device performs the following steps: when the M signal qualities are all higher than the signal fusion threshold and all smaller than the signal usable threshold, the MCU fuses the M signal channels to obtain a second fusion result; selects the second fusion result as the signal Signal channel.
  • the wearable smart The device when the one or more programs are executed by the processor, performs the following steps: when the M signal qualities are all lower than the signal dimming threshold, the dimming parameter is determined according to the first activity state and the M signal quality, and the dimming parameter is used to instruct the acquisition device to perform the Two signal channels for signal acquisition.
  • the wearable smart device when the one or more programs are executed by the processor, perform the following steps: obtain a third fusion result, which is a result of fusion of any M signal channels among the N signal channels in the previous cycle; and select the third fusion result as the signal channel.
  • the wearable smart device when the one or more programs are executed by the processor, the wearable smart device Perform the following steps: After determining the user activity state according to the acceleration information, evaluate the N signal qualities corresponding to the N signal channels to select the signal channel and record the initial user activity state. The initial user activity state is used for Indicate whether the user's activity status changes in the next cycle.
  • the wearable smart The device when the one or more programs are executed by the processor, performs the following steps: when at least one of the N signal qualities is higher than the signal usable threshold, the fourth channel is selected, and the signal quality of the fourth channel is better than the signal quality of other channels.
  • the wearable The smart device when the one or more programs are executed by the processor, performs the following steps: when the N signal qualities are all lower than the signal dimming threshold, determine dimming parameters for the N signal channels according to the initial user activity state and the N signal qualities, and the dimming parameters are used for Indicate the dimming of the N signal channels or any signal channel in the current period or the next period.
  • an embodiment of the present application provides a micro-control unit, the micro-control unit includes: a processor, a memory, and an input/output device; the input/output device is configured to receive acceleration information sent by an acceleration ACC sensor;
  • the memory stores program instructions; the processor is used to execute the program instructions stored in the memory, and specifically includes the following steps: determining the user activity state according to the acceleration information; when the user activity state is the first activity state, according to the first activity The state selects the signal channel.
  • each of the N signal channels is composed of an acquisition device and a receiving device.
  • the processor is further configured to perform the following step: after determining the user activity state according to the acceleration information, the user When the active state is the second active state, the signal channel is selected according to the second active state, and the second active state is different from the first active state.
  • the processor is further configured to perform the following step: before selecting a signal channel according to the second activity state, acquiring User activity status in the previous cycle; determining that the second activity status is different from the user activity status in the previous cycle.
  • the processor is further configured to perform the following steps: before the MCU selects a signal channel according to the second activity state , Evaluate the N signal quality corresponding to the N signal channels.
  • the processor is specifically configured to perform the following steps: when the N signal qualities are all lower than the signal fusion threshold , Determine that the N signal channels are unavailable.
  • the processor is specifically configured to execute the following steps: any M signal quality among the N signal qualities When both are higher than the signal fusion threshold and both are less than the signal usable threshold, fuse the M signal channels corresponding to the M signal qualities to obtain the first fusion result, where the signal fusion threshold is less than the signal usable threshold, and M is greater than An integer that is 1 and less than N; the first fusion result is selected as the signal channel.
  • the processor is specifically configured to perform the following steps: at least one of the N signal qualities is higher than the signal available When the threshold is selected, the first channel is selected, and the signal quality of the first channel is better than the signal quality of other channels.
  • the processor is further configured to perform the following step: after selecting the first fusion result as the signal channel, The fusion weight corresponding to the fusion of the M signal channels as the first fusion result is determined, and the fusion weight is used to fuse the M signal channels in the current period or the next period.
  • the processor is specifically configured to perform the following steps: when the N signal qualities are all lower than the signal dimming threshold At this time, the dimming parameter is determined according to the second activity state and the N signal qualities, and the dimming parameter is used to instruct the collecting device to collect the signals of the N signal channels.
  • the processor is further configured to perform the following step: before selecting a signal channel according to the first activity state, acquiring User activity status of the previous cycle; determining that the first activity status is the same as the user activity status of the previous week.
  • the processor is further configured to perform the following step: before selecting a signal channel according to the first activity state, Obtain a second channel, which is the signal channel used in the previous cycle; evaluate the signal quality of the second channel, and the signal quality of the second channel is used to indicate the selection of the signal channel.
  • the processor is specifically configured to perform the following step: the signal quality on the second channel is higher than the signal quality When the threshold is available, the second channel is selected as the signal channel.
  • the processor is specifically configured to perform the following steps: the signal quality on the second channel is lower than the signal quality When the threshold value is available, the dimming parameter is determined according to the first activity state and the signal quality of the second channel, and the dimming parameter is used to instruct the acquisition device to collect the signal of the second channel.
  • the N signal channels are evaluated
  • the M signal qualities corresponding to any M signal channels in are used to select the signal channel, where the M is an integer greater than 1 and less than the N.
  • the processor is specifically configured to perform the following steps: at least one of the M signal qualities is higher than When the signal is available with a threshold, the third channel is selected, and the signal quality of the third channel is better than the signal quality of other channels.
  • the processor is specifically configured to perform the following step: when the M signal quality is higher than the signal fusion When the threshold is less than the signal usable threshold, the MCU fuses the M signal channels to obtain a second fusion result; and selects the second fusion result as the signal channel.
  • the dimming parameter is determined with the M signal qualities, and the dimming parameter is used to instruct the collecting device to collect the signals of the M signal channels.
  • the processor is specifically configured to perform the following steps: obtain a third fusion result, where the third fusion result is The fusion result of any M signal channels among the N signal channels in the previous cycle; the third fusion result is selected as the signal channel.
  • the processor is further configured to perform the following step: after determining the user activity state according to the acceleration information, evaluate The N signal qualities corresponding to the N signal channels are used to select the signal channel and record the initial user activity state. The initial user activity state is used to indicate whether the user activity state changes in the next cycle.
  • the processor is specifically configured to perform the following steps: at least one of the N signal qualities is higher than When the signal availability threshold is selected, the fourth channel is selected, and the signal quality of the fourth channel is better than the signal quality of other channels.
  • the processor is specifically configured to perform the following steps: when the quality of the N signals is lower than the signal quality
  • the dimming parameters are determined for the N signal channels according to the initial user activity state and the N signal qualities.
  • the dimming parameters are used to indicate the N signal channels or any of the N signal channels in the current period or the next period One signal channel for dimming.
  • embodiments of the present application provide a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute a method as in the first aspect or any one of the possible implementation manners of the first aspect.
  • the embodiments of the present application provide a computer program product containing instructions that, when run on a computer, cause the computer to execute the method as the first aspect or any one of the possible implementation manners of the first aspect.
  • the present application provides a chip system that includes a processor for supporting a wearable smart device to implement the functions involved in the first aspect or any one of the possible implementation manners of the first aspect.
  • the chip system also includes a memory, and the memory is used to store the necessary program instructions and data of the wearable smart device.
  • the chip system can be composed of chips, or include chips and other discrete devices.
  • the user activity state is determined by the acceleration information, so that the user activity state is the first activity state.
  • the MCU can still select the signal channel whose signal quality meets the requirements according to the first activity state, avoiding the inability to accurately evaluate the signal quality. Unable to select the signal channel that meets the requirements.
  • Figure 1 is a schematic diagram of the system architecture of an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an embodiment of a method for selecting a signal channel provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of another embodiment of a method for selecting a signal channel provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another embodiment of a method for selecting a signal channel provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another embodiment of a method for selecting a signal channel provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another embodiment of a method for selecting a signal channel provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another embodiment of a method for selecting a signal channel provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another embodiment of a method for selecting a signal channel provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another embodiment of a method for selecting a signal channel provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another embodiment of a method for selecting a signal channel provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another embodiment of a method for selecting a signal channel provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another embodiment of a method for selecting a signal channel provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another embodiment of a method for selecting a signal channel provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of another embodiment of a method for selecting a signal channel provided by an embodiment of the present application.
  • 15 is a schematic diagram of another embodiment of a method for selecting a signal channel provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a wearable smart device provided by an embodiment of the present application.
  • the embodiment of the present application provides a method for selecting a signal channel and a wearable smart device, which avoids the problem that a signal channel that meets the requirements cannot be selected due to the inability to accurately evaluate the signal quality.
  • the technical solutions of the embodiments of this application can be applied to various wearable smart devices. It is a general term for the use of wearable technology to intelligently design daily wear and develop wearable devices, including: full-featured, not dependent on smart phones. Complete or partial functions, such as smart watches or smart glasses, etc., and only focus on a certain type of application function but need to be used in conjunction with other devices such as smart phones, such as various types of smart bracelets and smart jewelry for physical signs detection .
  • wearable smart devices people can better perceive external and own information, and can process information more efficiently with the assistance of computers and networks.
  • the most common wearable smart devices are used in sports, fitness, outdoor fields and medical care. , To achieve the monitoring and analysis of sports or outdoor data such as heart rate, cadence and other indicators, and the latter mainly provides the detection and processing of blood pressure, heart rate and other medical signs, including medical vests, belts, and implantable chips.
  • the use of a series of wearable smart devices such as smart bracelets, smart glasses, and smart jewelry are all worn with a certain part of the user’s body, so the signal channel of this series of wearable smart devices
  • the pros and cons of the signal quality will change as the user's activity status changes. For example, if the user is in a static state, the signal quality of the signal channel will be at a better level; if the user is in a jog state, that is, When there is slight movement, the signal quality of the signal channel will be at a general level relative to the static state; if the user is in motion, that is, when there is a large amount of movement, the signal quality of the signal channel will be at a disadvantage Degree.
  • the signal channel that meets the requirements is used to send and receive data with the subsequent applications.
  • the first solution for selecting a signal channel that meets the requirements is for the case of a single-dimensional acquisition device.
  • a single acquisition device is used to acquire a physiological signal from a single signal source, and the physiological signal is proposed
  • a variety of characteristic information such as: standard deviation, kurtosis coefficient, skewness coefficient, inflection point, zero point, information entropy, etc., by using the characteristic information to calculate and analyze the signal quality of the physiological signal, and then according to the signal quality Decide whether to use the signal channel corresponding to the physiological signal;
  • the second solution is for the case of a multi-dimensional acquisition device, usually through multiple acquisition devices to collect physiological signals from multiple signal sources, such as: acquisition device 1 acquires signal source The physiological signal in 1, the acquisition device 2 collects the physiological signal in the signal source 2, and so on, and then extracts and fuses the corresponding feature information of these physiological signals, and analyzes the signal quality of the obtained fusion signal, thereby The signal quality of the fusion signal determines whether to use the signal channel corresponding to the fusion signal.
  • FIG. 1 is a schematic diagram of the system architecture of an embodiment of the present application.
  • Figure 1 includes N signal channels, acceleration (ACC) sensors, and a microcontroller unit (MCU), where each of the N signal channels is controlled by the acquisition device It is composed of a receiving device, and N is an integer greater than 1.
  • ACC acceleration
  • MCU microcontroller unit
  • N collection devices are mainly used to collect signals of the same dimension of the wearable smart device; the ACC sensor is used to obtain the acceleration information of the user corresponding to the wearable smart device, Such as: real-time acceleration status or acceleration rate, that is to say if the wearable smart device is a smart bracelet, then the real-time acceleration status can correspond to the activity status of the hands, etc.
  • the user can be obtained through the MCU's analysis of the real-time acceleration status Activity status, such as: the user activity status described above can be static, micro-motion, motion, etc.; MCU is mainly used to evaluate the signal quality of the acquired signal channel or determine the user activity status, etc., to select the signal quality A signal channel that meets the requirements of transmitting data.
  • the acceleration sensor and the MCU can be set in a wearable smart device or other electronic devices. For example, the acceleration sensor and the MCU can be set in a mobile phone.
  • the signal collected by the above-mentioned collection device may be photoplethysmography or photoplethysmogram (photoplethysmogram, PPG), and the embodiment of this application can also be used for signal processing for the collection of other types of signals. The details are not limited here.
  • the embodiment of the application proposes a method for selecting a signal channel, which is suitable for the application of a wearable smart device.
  • a method for selecting signal channels provided by the embodiments of the present application will be introduced below. Please refer to FIG. 2.
  • FIG. 2 Schematic diagram of the embodiment.
  • an embodiment of a method for selecting a signal channel provided in an embodiment of the present application includes:
  • the MCU receives acceleration information sent by the ACC sensor.
  • each of the N signal channels is composed of an acquisition device and a receiving device. Since the signal quality of the N signal channels may change as the user's activity state changes, the acceleration information obtained by the ACC sensor can determine whether the user's activity state has changed, and further determine whether other signal channels need to be selected.
  • the acceleration information mentioned can be real-time acceleration status, acceleration rate, etc., and the acceleration information can be used to indicate the user's activity status. For example: assuming that the wearable smart device is smart glasses, the information obtained by the ACC sensor is the acceleration information of the head, which is not specifically limited here.
  • the ACC sensor has the function of acquiring acceleration information, such as: real-time acceleration status, acceleration rate and other information, and the judgment and determination of the user's activity status based on the acceleration information are all performed by the MCU, so the ACC sensor acquires After the acceleration information, the acquired acceleration information will be sent to the MCU so that the MCU can receive the acceleration information, so as to determine whether the user's activity state is stationary, micro-movement or motion based on the acceleration information.
  • acceleration information such as: real-time acceleration status, acceleration rate and other information, and the judgment and determination of the user's activity status based on the acceleration information are all performed by the MCU, so the ACC sensor acquires After the acceleration information, the acquired acceleration information will be sent to the MCU so that the MCU can receive the acceleration information, so as to determine whether the user's activity state is stationary, micro-movement or motion based on the acceleration information.
  • the above mentioned static can refer to the user’s limbs or brain and other body parts in a basically unchanged state during a certain period of time, such as sleep, etc.
  • the mentioned micromotion can refer to the user The movements of body parts such as the limbs or brain have weaker amplitude changes or smaller changes in frequency within a period of time, such as: nudge, slow walking, etc.
  • the mentioned movements can refer to the user’s limbs or The movements of the brain and other body parts have undergone large changes or changes in frequency over a period of time, such as: squats, pull-ups, rope skipping, etc.
  • the MCU receives the acceleration information sent by the ACC sensor, it can also receive the signals collected by the acquisition device on the N signal channels, so that the MCU can evaluate the corresponding N signal channels.
  • the MCU For the signal quality of N signal channels collected by the collecting device, that is, each collecting device collects signals of the same dimension corresponding to one signal channel, where N is an integer greater than 1.
  • the MCU determines the user activity state according to the acceleration information.
  • the MCU will be asked to evaluate the channel quality when the wearable smart device is not running for the first time, that is, when the user is not using the MCU in the wearable smart device to evaluate the channel quality for the first time.
  • the user's activity state is determined according to the received acceleration information, that is, according to the acceleration information, it can be determined that the activity state is one of static, micro-movement, and motion.
  • the MCU must first determine the initial user activity At this time, it is necessary to further evaluate and calculate the signal quality of all signal channels through a comprehensive evaluation, so as to select a signal channel that meets the requirements from all signal channels.
  • the initial user status at this time can be used to indicate the MCU Determine whether the user activity state in the next cycle changes, that is, determine whether the user activity state is the first activity state or the second activity state.
  • the evaluation of the signal channel mentioned above is the MCU's evaluation of the signal quality of the signal channel, including comprehensive evaluation and basic evaluation; among them, the comprehensive evaluation means that the MCU calculates various types of signals in each signal channel. Features, such as: standard deviation, kurtosis coefficient, skewness coefficient, inflection point, zero point, and information entropy, etc., and combine them to obtain the signal quality of all signal channels.
  • This comprehensive evaluation takes a long time and has high accuracy;
  • the basic evaluation is of low complexity, and only a small number of features are calculated for the signals in some signal channels that meet the conditions, so as to calculate the signal quality of some channels.
  • the basic evaluation takes a short time and has a low relative accuracy.
  • the MCU selects the signal channel according to the first activity state.
  • the first activity state may refer to the user activity state being the same as the user activity state of the previous cycle, that is, the state when the user activity state has not changed. Therefore, the MCU needs to obtain the user activity status of the previous cycle, and compare the user activity status of the current cycle with the user activity status of the previous cycle to obtain whether the user activity status of the current cycle has changed, and if there is no change , You can get the first activity state.
  • the signal channel selected according to the first activity state can be used to transmit corresponding data to the subsequent applications, such as: assuming that the transmission of information about the heart, sleep, etc. And so on, so that the latter application can obtain more information and analyze the user's health problems to the greatest extent.
  • the signal quality of the signal channel selected in the first activity state may be better than the signal quality of other signal channels, but it does not rule out that the user activity state in this cycle is compared with the user activity in the previous cycle.
  • the activity status is the same, that is, if the user activity status of the current cycle has not changed, it is possible that the signal channel used in the previous cycle can meet the requirements and the corresponding data transmission can be realized, but there is no need to switch to the signal quality that meets the requirements at this time
  • the signal channel effectively reduces the average power consumption.
  • the data transmitted by the above-mentioned backward application it can be the original data or the data obtained after processing and calculation.
  • the selected signal channel indicates that the signal quality of this signal channel is in this acquisition period. Relatively meet the requirements and the quality of the transmitted data is also the most in line with the requirements for the subsequent applications. To a large extent, in some cases, the transmission of data to the subsequent applications can also pass through this cycle.
  • the selected signal channel is taken out.
  • the signal channel with the signal quality that meets the requirements can still be selected according to the first activity state, which avoids the inaccuracy.
  • the signal quality is evaluated and the signal channel that meets the requirements cannot be selected.
  • the user activity state mentioned above is the first activity state, it is only one of the cases where there is no change.
  • the signal quality of the signal channel can also be evaluated. Therefore, the user activity is described below. A situation where the status has changed.
  • FIG. 3 is a schematic diagram of another embodiment of the method for selecting a signal channel provided in an embodiment of the present application.
  • the MCU receives acceleration information sent by the ACC sensor.
  • the MCU determines the user activity state according to the acceleration information.
  • steps 301-202 can be understood with reference to steps 201-202 in FIG. 2, and details are not repeated here.
  • the MCU selects the signal channel according to the second activity state, and the second activity state is different from the first activity state.
  • the second activity state may refer to the user activity state being different from the user activity state of the previous cycle, that is, the state when the user activity state has changed. Therefore, the MCU needs to obtain the user activity status of the previous cycle, and then compare the user activity status of the current cycle with the user activity status of the previous cycle to obtain whether the user activity status of the current cycle has changed. If it has changed, then The second activity state can be obtained, such as: the activity state of the previous cycle is the static state, and the user activity state of the current cycle is the motion state, indicating that the user activity state has changed, then the second activity state at this time can be obtained, and it can be learned This week's user activity status is sports status.
  • the first activity state may mean that the user activity state is the same as the user activity state of the previous cycle, that is, the user activity state has not changed; of course, in practical applications, the first activity state and the second activity state
  • the definition of can be determined according to the actual situation, such as: the first activity state can refer to the user activity state that is different from the user activity state of the previous cycle, that is, the user activity state has changed; the second activity state can refer to the user activity state It is the same as the user activity state of the previous cycle, that is, the user activity state has not changed; and the first activity state is opposite to the second activity state, that is, there will be no second activity state when the first activity state exists, or When the second activity state exists, the first activity state does not exist.
  • the purpose here is only to describe the solution of this embodiment in detail, and the specific description is not limited.
  • the quality of the signal channel selected according to the second activity state will be better than the quality of other channels, so this signal channel can be used to transmit corresponding data to subsequent applications, such as: Information about the heart, sleep, etc., enable the later application to obtain more information and fully analyze the user's health problems to the greatest extent.
  • the data transmitted to the downstream applications mentioned above can be the original data transmitted or the data obtained after processing and calculation, and the selected signal channel indicates that in this acquisition period, this
  • the signal quality of the signal channel is relatively in line with the requirements and the quality of the transmitted data is also the most in line with the requirements for the subsequent applications.
  • the corresponding signal channel with the signal quality that meets the requirements can still be selected according to the second activity state, which avoids Accurately determine the signal quality and lead to the problem of failing to select a signal channel that meets the requirements.
  • the user activity state mentioned above can be the first activity state in FIG. 2 or the second activity state mentioned in FIG. 3, and the signal channel can be selected from it. Therefore, the following will introduce the user activity state from the first activity state and the second activity state respectively.
  • User activity status is the second activity status
  • FIG. 4 is another embodiment of the method for selecting signal channels provided in the embodiment of the present application. Schematic.
  • the MCU receives acceleration information sent by the ACC sensor.
  • the MCU determines the user activity state according to the acceleration information.
  • steps 401-402 can be understood with reference to steps 301-302 in FIG. 3, and details are not repeated here.
  • the MCU obtains the user activity status of the previous cycle.
  • the MCU in order to determine whether the user activity state of the current cycle has changed, it is necessary to know what state the user activity state of the previous cycle is in. Therefore, the MCU is required to obtain the user activity state of the previous cycle.
  • the MCU determines that the second user activity state is different from the user activity state of the previous week.
  • the second activity status actually refers to a situation where the user activity status is different from the user activity status of the previous week.
  • the activity state of the previous cycle is static, and the user activity state of this cycle is motion state, indicating that the user activity state has changed, then the second activity state at this time can be obtained, and the user activity state of this cycle can be learned For the state of exercise.
  • the MCU evaluates the N signal qualities corresponding to the N signal channels.
  • the signal quality can be evaluated through N signal channels, and each signal channel corresponds to a signal quality after the evaluation.
  • the signal quality can be used to indicate the pros and cons of the corresponding signal channel, that is, it can be used to indicate the selection of the signal channel.
  • the MCU determines that the N signal channels are unavailable.
  • the signal fusion threshold indicates that the signal channel can be fused to achieve the critical value when the signal quality meets the requirements and can be used. However, if the signal quality is lower than the signal fusion threshold, the signal fusion threshold is lower than the signal fusion threshold. The corresponding signal channel can not be selected through the fusion of the signal channel that meets the requirements. Therefore, after evaluating the signal quality of these N signal channels, if the N signal quality is lower than the signal fusion threshold, then the MCU determines that none of the N signal channels can be used, and then it is necessary to re-enter the next Periodic collection and evaluation operations.
  • the method of selecting signal channels is given when the MCU determines that none of the N signal channels are available, which avoids The problem that the signal quality cannot be accurately determined after the user's activity status is changed, and the signal channel that meets the requirements cannot be selected.
  • FIG. 5 is a schematic diagram of another embodiment of a method for selecting a signal channel provided in an embodiment of the present application.
  • the MCU receives acceleration information sent by the ACC sensor.
  • the MCU determines the user activity state according to the acceleration information.
  • the MCU obtains the user activity status of the previous cycle.
  • the MCU determines that the second activity state is different from the user activity state of the previous week.
  • steps 501 to 504 can be understood with reference to steps 401 to 404 in FIG. 4, and details are not repeated here.
  • the MCU evaluates the N signal qualities corresponding to the N signal channels.
  • the signal quality can be evaluated through N signal channels, and each signal channel corresponds to a signal quality after the evaluation.
  • the signal quality can be used to indicate the pros and cons of the corresponding signal channel, that is, it can be used to indicate the selection of the signal channel.
  • the MCU merges M signal channels corresponding to the M signal qualities to obtain a first fusion result.
  • the signal usable threshold is greater than the signal fusion threshold.
  • the signal available threshold refers to the lowest critical value at which the signal channel corresponding to the signal quality can be directly used, that is, as long as the signal quality is greater than the signal available threshold, it means that the signal channel corresponding to the signal quality can be directly used or the signal quality The situation is better; and the signal fusion threshold means that if the signal quality is poor, that is, when the signal channel is below the signal fusion threshold, the signal channel can not be fused to select the signal channel that meets the requirements; between the signal fusion threshold and the signal availability When the threshold is used, it means that the signal channel can be obtained by fusing M signal channels among the N signal channels.
  • the MCU determines that the M signal qualities corresponding to the M signal channels are all less than the signal usable threshold, but are all higher than the signal fusion threshold, Then the MCU can fuse the signal channels that meet this condition to obtain the first fusion result.
  • the MCU selects the first fusion result as the signal channel.
  • the fused signal channel can be directly selected as the signal channel that meets the requirements. Therefore, it is possible to transmit data to the subsequent applications according to the signal channel, such as: assuming that the transmission of information about the heart, sleep information, etc., enables the subsequent applications to obtain more information and fully analyze the user’s Health issues.
  • the method of selecting the signal channel is given through the fusion of the signal channels, which avoids the inability to change the user activity state. Accurately determine the signal quality and lead to the problem of failing to select a signal channel that meets the requirements.
  • FIG. 6 is a schematic diagram of another embodiment of a method for selecting a signal channel provided in an embodiment of the application.
  • the MCU receives acceleration information sent by the ACC sensor.
  • the MCU determines the user activity state according to the acceleration information.
  • the MCU obtains the user activity state of the previous cycle.
  • the MCU determines that the second activity state is different from the user activity state of the previous week.
  • the MCU evaluates the N signal qualities corresponding to the N signal channels.
  • steps 601-605 can be understood with reference to steps 501-505 in FIG. 5, and details are not repeated here.
  • the MCU merges M signal channels corresponding to the M signal qualities to obtain the first fusion result.
  • the signal usable threshold is greater than the signal fusion threshold.
  • the signal available threshold refers to the lowest critical value at which the signal channel corresponding to the signal quality can be directly used, that is, as long as the signal quality is greater than the signal available threshold, it means that the signal channel corresponding to the signal quality can be directly used or the signal quality The situation is better; and the signal fusion threshold means that if the signal quality is poor, that is, when the signal channel is below the signal fusion threshold, the signal channel can not be fused to select the signal channel that meets the requirements; between the signal fusion threshold and the signal availability When the threshold is used, it means that the signal channel can be obtained by fusing M signal channels among the N signal channels.
  • the MCU determines that the M signal qualities corresponding to the M signal channels are all less than the signal usable threshold, but are all higher than the signal fusion threshold, Then the MCU can fuse the signal channels that meet this condition to obtain the first fusion result.
  • M is an integer greater than 1 and less than N.
  • the MCU selects the fusion channel corresponding to the first fusion result as the signal channel.
  • the fused signal channel can be directly selected as the signal channel that meets the requirements.
  • the MCU determines the fusion weight corresponding to when the M signal channels are fused into the first fusion result.
  • the fusion weight of the previous cycle will not be used for the current cycle.
  • the first fusion result obtained after fusion may not be able to select a signal channel that meets the requirements.
  • the MCU needs to further determine the fusion weight configured or calculated when the M signal channels are fused into the first fusion result, so that the In this selection process, the signal channels can be fused according to the updated fusion weight to select the signal channels that meet the requirements; and, if the user activity state is determined to be the first activity state in the next cycle, that is, user activity When the state has not changed, the updated fusion weight can be used directly to fuse the signal channel.
  • the first method can update the weights of the corresponding M signal channels when the M signal qualities are all less than the signal usable threshold and all higher than the signal fusion threshold by inversely proportional to the signal ratio and the signal-to-noise ratio; or,
  • the second method can update the weights of the M signal channels corresponding to the M signal quality when the signal ratio is inversely proportional to the signal quality of the M signals when the quality of the M signals is less than the signal available threshold and higher than the signal fusion threshold.
  • the signal ratio mentioned above is the ratio of the number of signal channels to all signal channels when the quality of these M signals is less than the signal usable threshold and higher than the signal fusion threshold.
  • the signal-to-noise ratio refers to the energy of the original signal and the noise signal. The ratio, if the original signal has a greater proportion in the overall signal, the greater the signal-to-noise ratio.
  • the signal ratio and the M signal quality update methods include, but are not limited to, inversely proportional to the two.
  • the signal channel fusion when the user activity state is the second activity state, that is, when the user activity state has changed, the signal channel fusion provides the way to select the signal channel and determines the fusion weight, which avoids the user activity state. After the change, the signal quality cannot be accurately determined, which leads to the problem that the signal channel that meets the requirements cannot be selected, and the determined fusion weight helps to evaluate the signal quality in the next cycle.
  • FIG. 7 is a schematic diagram of another embodiment of a method for selecting a signal channel provided in an embodiment of the present application.
  • the MCU receives acceleration information sent by the ACC sensor.
  • the MCU determines the user activity state according to the acceleration information.
  • the MCU obtains the user activity status of the previous cycle.
  • the MCU determines that the second activity state is different from the user activity state of the previous week.
  • steps 701 to 704 can be understood with reference to steps 401 to 404 in FIG. 4, and details are not repeated here.
  • the MCU evaluates the N signal qualities corresponding to the N signal channels.
  • the signal quality can be evaluated through N signal channels, and each signal channel corresponds to a signal quality after the evaluation.
  • the signal quality can be used to indicate the pros and cons of the corresponding signal channel, that is, it can be used to indicate the selection of the signal channel.
  • the MCU selects the first channel.
  • the signal available threshold refers to the lowest critical value at which the signal channel corresponding to the signal quality can be used directly, that is, as long as the signal quality is greater than the signal available threshold, it means that the signal channel corresponding to the signal quality can be directly used or The signal quality is better.
  • the MCU determines that the first of the N signal channels meets this condition.
  • Channel, and the first channel can be directly used as the signal channel to be selected, that is, the signal channel whose signal quality meets the requirements, so the data can be transmitted to the subsequent applications according to the signal channel, such as: assuming that the transmission of information about the heart , Sleep information, etc., so that the post-level application can obtain more information and fully analyze the user's health problems to the greatest extent.
  • the signal quality of the first channel meets the requirements compared to other signal quality that also meets the condition of being higher than the signal usable threshold.
  • the signal channel is selected by direct selection, which avoids the inaccuracy of the user activity state changes.
  • the signal quality is determined and the signal channel that meets the requirements cannot be selected.
  • FIG. 8 is a schematic diagram of another embodiment of a method for selecting a signal channel provided in an embodiment of the present application.
  • the MCU receives acceleration information sent by the ACC sensor.
  • the MCU determines the user activity state according to the acceleration information.
  • the MCU obtains the user activity state of the previous cycle.
  • the MCU determines that the second activity state is different from the user activity state of the previous week.
  • steps 801 to 804 can be understood with reference to steps 401 to 404 in FIG. 4, and details are not repeated here.
  • the MCU evaluates the N signal qualities corresponding to the N signal channels.
  • the signal quality can be evaluated through N signal channels, and each signal channel corresponds to a signal quality after the evaluation.
  • the signal quality can be used to indicate the pros and cons of the corresponding signal channel, that is, it can be used to indicate the selection of the signal channel.
  • the MCU determines the dimming parameter according to the second activity state and the N signal qualities.
  • the dimming parameter is only for the signal channels for which the evaluated N signal qualities are not greater than the signal dimming threshold. Therefore, the dimming parameters can also be fed back to the acquisition device, so that when the acquisition device array collects signal channels in the next cycle, the corresponding signal channels can be dimmed according to the dimming parameters first, so that the MCU can evaluate more accurate signals quality.
  • the signal dimming threshold means that as long as the signal quality corresponding to the signal channel is lower than the signal dimming threshold, it indicates that the signal channel corresponding to the signal quality is only possible after the corresponding dimming is performed through the acquisition device again. A signal channel with better signal quality is collected.
  • the acquisition device when the user activity state is the second activity state, that is, when the user activity state has changed, by determining the dimming parameter of the signal channel, it is beneficial for the acquisition device to dimming the signal channel according to the dimming parameter. And it improves the accuracy of MCU's evaluation of signal quality in the next cycle.
  • the above figures 4 to 8 mainly introduce the signal channel selection when the user activity state is the second activity state from the signal quality meets different conditions.
  • the following mainly introduces the signal channel selection when the user activity state is the first activity state .
  • the signal channel can also be selected from two aspects, which will be introduced separately below:
  • FIG. 9 is a schematic diagram of another embodiment of a method for selecting a signal channel provided in an embodiment of the present application.
  • the MCU receives acceleration information sent by the ACC sensor.
  • the MCU determines the user activity state according to the acceleration information.
  • steps 901-902 can be understood with reference to steps 201-202 in FIG. 2, and the details are not repeated here.
  • the MCU obtains the user activity status of the previous cycle.
  • the MCU in order to determine whether the user activity state of the current cycle has changed, it is necessary to know what state the user activity state of the previous cycle is in. Therefore, the MCU is required to obtain the user activity state of the previous cycle.
  • the MCU determines that the first activity state is the same as the user activity state of the previous week.
  • the first activity status actually refers to the situation where the user activity status is the same as the user activity status of the previous week.
  • the activity status of the previous cycle is static, and the user activity status of this cycle is static, indicating that the user activity status still has not changed, then the first activity status at this time is obtained, and the user activity status of this cycle can be obtained It is static.
  • the MCU obtains a second channel, which is the signal channel used in the previous cycle.
  • the first activity status refers to the situation where the user activity status is the same as the user activity status of the previous week, it shows that the signal channel used in the previous cycle can be used to a large extent in this cycle. , So the MCU needs to obtain the second channel, which is the signal channel used in the previous cycle.
  • the MCU evaluates the signal quality of the second channel.
  • the MCU selects the second channel as the signal channel.
  • the signal available threshold refers to the lowest critical value at which the signal channel corresponding to the signal quality can be used directly, that is, as long as the signal quality is greater than the signal available threshold, it means that the signal channel corresponding to the signal quality can be directly used or The signal quality is better.
  • the MCU directly selects the second channel as the signal channel used in this cycle, and can transmit data to the subsequent applications according to the signal channel. For example, if the transmission is related to Heart information, sleep information, etc., enable the later application to obtain more information and analyze the user's health problems to the greatest extent.
  • the method of selecting the signal channel is given by combining the quality evaluation of the signal channel used in the previous cycle to avoid the user There is no change in the activity state, and the signal quality cannot be accurately determined, which leads to the problem that the signal channel that meets the requirements cannot be selected, and the signal channel used in the previous cycle is adopted to reduce the average calculation amount.
  • FIG. 10 is a schematic diagram of another embodiment of a method for selecting a signal channel provided in an embodiment of the present application.
  • the MCU receives acceleration information sent by the ACC sensor.
  • the MCU determines the user activity state according to the acceleration information.
  • the MCU obtains the user activity status of the previous cycle.
  • the MCU determines that the first activity state is the same as the user activity state of the previous week.
  • steps 1001-1004 can be understood with reference to steps 901-904 in FIG. 9, and details are not repeated here.
  • the MCU obtains the second channel, which is the signal channel used in the previous cycle.
  • the first activity status refers to the situation where the user activity status is the same as the user activity status of the previous week, it shows that the signal channel used in the previous cycle can be used to a large extent in this cycle. , So the MCU needs to obtain the second channel, which is the signal channel used in the previous cycle.
  • the MCU evaluates the signal quality of the second channel.
  • the MCU determines the dimming parameter according to the first activity state and the signal quality of the second channel.
  • the signal available threshold refers to the lowest critical value at which the signal channel corresponding to the signal quality can be used directly, that is, as long as the signal quality is greater than the signal available threshold, it means that the signal channel corresponding to the signal quality can be directly used or The signal quality is better.
  • the signal usable threshold can be directly used as the judgment condition. Therefore, when it is determined that the signal quality of the second channel is lower than the signal usable threshold, that is, the first signal is determined The second channel is no longer suitable for this cycle, so the MCU is required to determine the dimming parameters based on the signal quality of the first active state and the second channel. By feeding back the dimming parameters to the acquisition device, the acquisition device array will collect the signal channel in the next cycle. , You can prioritize the dimming of the corresponding signal channels according to the dimming parameters, so that the MCU can evaluate more accurate signal quality.
  • the acquisition device when the user activity state is the first activity state, that is, when the user activity state has not changed, by determining the dimming parameter of the signal channel in the previous period, it is beneficial for the acquisition device to adjust the signal channel according to the dimming parameter. Dimming is performed when necessary to reduce the impact of frequent dimming on data continuity and improve the accuracy of the MCU's evaluation of signal quality in the next cycle.
  • FIG. 11 is a schematic diagram of another embodiment of a method for selecting a signal channel provided in an embodiment of the present application.
  • the MCU receives acceleration information sent by the ACC sensor.
  • the MCU determines the user activity state according to the acceleration information.
  • the MCU obtains the user activity status of the previous cycle.
  • the MCU determines that the first activity state is the same as the user activity state of the previous week.
  • steps 1101-1104 can be understood with reference to steps 1001-1004 in FIG. 10, and details are not repeated here.
  • the MCU obtains the second channel, which is the signal channel used in the previous cycle.
  • the first activity status refers to the situation where the user activity status is the same as the user activity status of the previous week, it shows that the signal channel used in the previous cycle can be used to a large extent in this cycle. , So the MCU needs to obtain the second channel, which is the signal channel used in the previous cycle.
  • the MCU evaluates the signal quality of the second channel.
  • the MCU evaluates the M signal qualities corresponding to any M signal channels among the N signal channels.
  • the signal available threshold when evaluating only one signal channel, can be directly used as the judgment condition. If it is greater than the signal available threshold, the second channel can be used directly, and if it is less than the signal available threshold, the second channel cannot be used directly. Two channels.
  • the signal quality of the second channel is lower than the signal usable threshold, that is, it is determined that the second channel is no longer suitable for this cycle. Therefore, when it is determined in this embodiment that the signal quality of the second channel is lower than the signal usable threshold, that is, it is determined that the second channel is no longer suitable for this cycle, then if you want to use fusion to select the signal channel, you need MCU Evaluate the signal quality of any M signal channels among the N signal channels mentioned. Because the user activity status is unchanged at this time, the signal quality of many signal channels remains unchanged, so only part of it is needed. It is sufficient to evaluate the M signal qualities corresponding to any M signal channels among all the N signal channels, so as to select the required signal channels that meet the requirements according to the M signal qualities.
  • M is an integer greater than 1 and less than N.
  • the MCU selects the third channel.
  • the signal available threshold refers to the lowest critical value at which the signal channel corresponding to the signal quality can be used directly, that is, as long as the signal quality is greater than the signal available threshold, it means that the signal channel corresponding to the signal quality can be directly used or The signal quality is better.
  • the MCU determines that the third of the M signal channels meets this condition.
  • Channel, and the third channel can be directly used as the signal channel to be selected, that is, the signal channel whose signal quality meets the requirements, so data can be transmitted to the subsequent applications according to the signal channel, such as: assuming that the transmission of information about the heart , Sleep information, etc., so that the post-level application can obtain more information and fully analyze the user's health problems to the greatest extent.
  • the signal quality of the third channel meets the requirements compared to other signal quality that also meets the condition of being higher than the signal usable threshold.
  • the method of selecting the signal channel is given by the direct selection method, which avoids the fact that the user activity state has not changed. Accurately determine the signal quality and lead to the problem of not being able to select the signal channel that meets the requirements, and only need to evaluate and select some signal channels, reducing the necessary average calculation amount.
  • FIG. 12 is a schematic diagram of another embodiment of a method for selecting a signal channel provided in an embodiment of the present application.
  • the MCU receives acceleration information sent by an ACC sensor.
  • the MCU determines the user activity state according to the acceleration information.
  • the MCU obtains the user activity state of the previous cycle.
  • the MCU determines that the first activity state is the same as the user activity state of the previous week.
  • the MCU obtains the second channel, which is the signal channel used in the previous cycle.
  • steps 1201-1205 can be understood with reference to steps 1101-1105 in FIG. 11, and details are not repeated here.
  • the MCU evaluates the signal quality of the second channel.
  • the MCU evaluates the M signal qualities corresponding to any M signal channels among the N signal channels.
  • the signal available threshold when evaluating only one signal channel, can be directly used as the judgment condition. If it is greater than the signal available threshold, the second channel can be used directly, and if it is less than the signal available threshold, the second channel cannot be used directly. Two channels.
  • the signal quality of the second channel is lower than the signal usable threshold, that is, it is determined that the second channel is no longer suitable for this cycle. Therefore, when it is determined in this embodiment that the signal quality of the second channel is lower than the signal usable threshold, that is, it is determined that the second channel is no longer suitable for this cycle, then if you want to use fusion to select the signal channel, you need MCU Evaluate the signal quality of any M signal channels among the N signal channels mentioned. Because the user activity status is unchanged at this time, the signal quality of many signal channels remains unchanged, so only part of it is needed. It is sufficient to evaluate the M signal qualities corresponding to any M signal channels among all the N signal channels, so as to select the required signal channels that meet the requirements according to the M signal qualities.
  • M is an integer greater than 1 and less than N.
  • the MCU merges the M signal channels to obtain a second fusion channel.
  • the signal usable threshold is greater than the signal fusion threshold.
  • the signal available threshold refers to the lowest critical value at which the signal channel corresponding to the signal quality can be directly used, that is, as long as the signal quality is greater than the signal available threshold, it means that the signal channel corresponding to the signal quality can be directly used or the signal quality The situation is better; and the signal fusion threshold means that if the signal quality is poor, that is, when the signal channel is below the signal fusion threshold, the signal channel can not be fused to select the signal channel that meets the requirements; between the signal fusion threshold and the signal availability When the threshold is used, it means that the signal channel can be obtained by fusing M signal channels among the N signal channels.
  • the MCU determines that the quality of the M signals corresponding to any of the M signal channels are all less than the signal usable threshold, but are all higher than the signal fusion threshold, then the MCU can fuse the signal channels that meet this condition. Get the second fusion result.
  • M is an integer greater than 1 and less than N.
  • the MCU selects the fusion channel corresponding to the second fusion result as the signal channel.
  • the fused signal channel can be directly selected as the signal channel that meets the requirements. Therefore, it is possible to transmit data to the subsequent applications according to the signal channel, such as: assuming that the transmission of information about the heart, sleep information, etc., enables the subsequent applications to obtain more information and fully analyze the user’s Health issues.
  • the signal channel fusion when the user activity state is the first activity state, that is, when the user activity state has not changed, provides a way to select the signal channel, which avoids the fact that the user activity state has not changed. Accurately determine the signal quality and lead to the problem of not being able to select the signal channel that meets the requirements, and only need to perform signal channel fusion when necessary to ensure the reliability of the signal in this dimension.
  • FIG. 13 is a schematic diagram of another embodiment of a method for selecting a signal channel provided in an embodiment of the present application.
  • the MCU receives acceleration information sent by an ACC sensor.
  • the MCU determines the user activity state according to the acceleration information.
  • the MCU obtains the user activity status of the previous cycle.
  • the MCU determines that the first activity state is the same as the user activity state of the previous week.
  • the MCU obtains the second channel, which is the signal channel used in the previous cycle.
  • steps 1301-1305 can be understood with reference to steps 1101-1105 in FIG. 11, and details are not repeated here.
  • the MCU evaluates the signal quality of the second channel.
  • the MCU evaluates the M signal qualities corresponding to any M signal channels among the N signal channels.
  • the signal available threshold when evaluating only one signal channel, can be directly used as the judgment condition. If it is greater than the signal available threshold, the second channel can be used directly, and if it is less than the signal available threshold, the second channel cannot be used directly. Two channels.
  • the signal quality of the second channel is lower than the signal usable threshold, that is, it is determined that the second channel is no longer suitable for this cycle. Therefore, when it is determined in this embodiment that the signal quality of the second channel is lower than the signal usable threshold, that is, it is determined that the second channel is no longer suitable for this cycle, then if you want to use fusion to select the signal channel, you need MCU Evaluate the signal quality of any M signal channels among the N signal channels mentioned. Because the user activity status is unchanged at this time, the signal quality of many signal channels remains unchanged, so only part of it is needed. It is sufficient to evaluate the M signal qualities corresponding to any M signal channels among all the N signal channels, so as to select the required signal channels that meet the requirements according to the M signal qualities.
  • M is an integer greater than 1 and less than N.
  • the MCU determines the dimming parameter according to the first activity state and the M signal qualities.
  • the signal dimming threshold means that as long as the signal quality corresponding to the signal channel is lower than the signal dimming threshold, it indicates that the signal channel corresponding to the signal quality is only possible after the corresponding dimming is performed through the acquisition device again. A signal channel with better signal quality is collected.
  • the dimming parameter is only for the estimated M signal quality that is not greater than the signal channel corresponding to the signal dimming threshold. Therefore, it is also possible to feed back the dimming parameters to the collection device, so that when the collection device array collects signal channels in the next cycle, the M signal channels can be dimmed first according to the dimming parameters, so that the collection device can optimize the collection The mode of the signal channel to obtain a better quality signal.
  • the collecting device when the user activity state is the first activity state, that is, when the user activity state has not changed, by determining the dimming parameters of the M signal channels, it is beneficial for the collecting device to determine the dimming parameters of the M signals according to the dimming parameters.
  • the channel is dimmed when necessary, which reduces the impact of frequent dimming on data continuity and improves the accuracy of the MCU's evaluation of signal quality in the next cycle.
  • FIG. 14 is a schematic diagram of another embodiment of a method for selecting a signal channel provided in an embodiment of the present application.
  • the MCU receives acceleration information sent by an ACC sensor.
  • the MCU determines the user activity state according to the acceleration information.
  • the MCU obtains the user activity status of the previous cycle.
  • the MCU determines that the first activity state is the same as the user activity state of the previous week.
  • steps 1401-1404 can be understood with reference to steps 901-904 in FIG. 9, and details are not repeated here.
  • the MCU obtains a third fusion result, where the third fusion result is a result of fusion of any M signal channels among the N signal channels in the previous cycle.
  • the first activity state refers to the situation where the user activity state is the same as the user activity state of the previous week, which means that the parameters, characteristic information, etc., used to collect the signal channel in the previous cycle have basically not changed. Therefore, this cycle can continue to use the fusion result used in the previous cycle to a large extent, that is, the third fusion result.
  • the third fusion result is that the MCU's signal quality is higher than the signal fusion threshold in the previous cycle but all The result of fusion when it is below the signal fusion threshold.
  • the MCU selects the third fusion result as the signal channel.
  • the third fusion result can be used as the signal channel of the current cycle. Because the user activity state is the first activity state, that is, the user activity state is the same as the user activity state in the previous cycle. The activity status is the same, so there is no need to evaluate the signal quality of the signal channel corresponding to this result in this embodiment.
  • the method of selecting the signal channel is given by determining the fusion result of the previous cycle, which avoids the failure of the user activity state. If changes occur, the signal quality cannot be accurately determined, resulting in the inability to select a signal channel that meets the requirements, and it is helpful to reduce the average calculation amount and reduce the average power consumption.
  • FIG. 15 is a schematic diagram of another embodiment of a method for selecting a signal channel provided in an embodiment of this application.
  • the MCU receives acceleration information sent by an ACC sensor.
  • the acceleration information obtained by the ACC sensor can determine whether the user's activity state has changed, and further determine whether it is necessary to select other Signal channel.
  • the acceleration information mentioned can be real-time acceleration status, acceleration rate, etc., and the acceleration information can be used to indicate the user's activity status.
  • the information obtained by the ACC sensor is the acceleration information of the head, which is not specifically limited here.
  • the ACC sensor has the function of acquiring acceleration information, such as: real-time acceleration status, acceleration rate and other information, and the judgment and determination of the user's activity status based on the acceleration information are all performed by the MCU, so the ACC sensor acquires After the acceleration information, the acquired acceleration information will be sent to the MCU so that the MCU can receive the acceleration information, so as to determine whether the user's activity state is stationary, micro-movement or motion based on the acceleration information.
  • acceleration information such as: real-time acceleration status, acceleration rate and other information, and the judgment and determination of the user's activity status based on the acceleration information are all performed by the MCU, so the ACC sensor acquires After the acceleration information, the acquired acceleration information will be sent to the MCU so that the MCU can receive the acceleration information, so as to determine whether the user's activity state is stationary, micro-movement or motion based on the acceleration information.
  • the above mentioned static can refer to the user’s limbs or brain and other body parts in a basically unchanged state during a certain period of time, such as sleep, etc.
  • the mentioned micromotion can refer to the user The movements of body parts such as the limbs or brain have weaker amplitude changes or smaller changes in frequency within a period of time, such as: nudge, slow walking, etc.
  • the mentioned movements can refer to the user’s limbs or The movements of the brain and other body parts have undergone large changes or changes in frequency over a period of time, such as: squats, pull-ups, rope skipping, etc.
  • the MCU receives the acceleration information sent by the ACC sensor, it can also receive the signals collected by the N signal channels by the acquisition device, so that the MCU can evaluate the corresponding N signal channels.
  • Signal quality refers to the signals of N signal channels collected by the collecting device, that is, each collecting device collects signals of the same dimension corresponding to one signal channel, where N is an integer greater than 0.
  • the MCU determines the user activity state according to the acceleration information.
  • the MCU must first determine the initial user activity State, the initial user state at this time can be used to instruct the MCU to determine whether the user activity state in the next cycle changes, that is, to determine whether the user activity state is the first activity state or the second activity state.
  • the MCU evaluates the N signal qualities corresponding to the N signal channels for selecting signal channels, and records the initial user activity state.
  • the MCU After the MCU receives the acceleration information, it is necessary to further determine whether the user is using the wearable smart device to evaluate the signal quality for the first time. If it is determined to be the first use, then all signals need to be evaluated first. Channels, that is, N signal qualities corresponding to N signal channels are evaluated, one signal channel corresponds to one signal quality, and the signal channel is selected according to the N signal qualities.
  • the MCU is required to record the initial user activity state at the same time as the evaluation. The initial user activity state can be used as a basic judgment condition for the MCU to determine whether the user activity state in the next cycle has changed.
  • the MCU selects the fourth channel.
  • the signal available threshold refers to the lowest critical value at which the signal channel corresponding to the signal quality can be used directly, that is, as long as the signal quality is greater than the signal available threshold, it means that the signal channel corresponding to the signal quality can be directly used or The signal quality is better.
  • the MCU determines that the fourth of the N signal channels meets this condition. Channel, and can directly use the fourth channel as the signal channel to be selected, that is, the signal channel whose signal quality meets the requirements.
  • the signal quality of the fourth channel meets the requirements compared to other signal quality that also meets the condition of being higher than the signal usable threshold.
  • the MCU determines dimming parameters for the N signal channels according to the initial user activity state and the N signal qualities.
  • the dimming parameter is only for the signal channels for which the evaluated N signal qualities are not greater than the signal dimming threshold. Therefore, by feeding back the dimming parameters to the acquisition device, when the acquisition device acquires the signal channel in the next cycle or this cycle, it can prioritize the dimming of the corresponding signal channel according to the dimming parameter, so that the MCU can evaluate more accurately Signal quality.
  • the dimming parameter in this embodiment may be dimming on N signal channels or any one of the signal channels.
  • the signal dimming threshold means that as long as the signal quality corresponding to the signal channel is lower than the signal dimming threshold, it indicates that the signal channel corresponding to the signal quality will only be available after the acquisition device performs corresponding dimming again. It is possible to acquire a signal channel with better signal quality.
  • the method of selecting the signal channel when the wearable smart device is first run is given by evaluating all signal channels, which avoids the fact that the user's activity status has not changed and the signal quality cannot be accurately determined. Unable to select the signal channel that meets the requirements.
  • the wearable smart device 160 in this embodiment will be introduced below.
  • FIG. 16 it is a schematic structural diagram of a wearable smart device 160 provided by an embodiment of the present application.
  • the wearable smart device 160 may vary in configuration or performance.
  • a relatively large difference may include N signal channels 1604, one or more processors (central processing units, CPU) 1601 and memory 1602, and one or more storage media 1603 for storing application programs or data (such as one or A storage device with a large volume), and an acceleration ACC sensor 1605.
  • the memory 1602 and the storage medium 1603 may be short-term storage or permanent storage.
  • the wearable smart device 160 may be set to communicate with the storage medium 1603, and the wearable smart device 160 is used to execute the application program in the storage medium 1603. Specifically, when the one or more programs are used by the wearable When the smart device 160 executes, the wearable smart device 160 is caused to execute the following steps:
  • a signal channel is selected according to the first activity state.
  • each of the N signal channels described above is composed of an acquisition device and a receiving device.
  • the wearable smart device 160 is further configured to select a signal channel according to the second activity state when the user activity state is the second activity state after the user activity state is determined according to the acceleration information, The second activity state is different from the first activity state.
  • the wearable smart device 160 is further configured to obtain the user activity state of the previous cycle before selecting the signal channel according to the second activity state; determine the second activity state and the previous cycle The user activity status of is not the same.
  • the wearable smart device 160 is further configured to evaluate the N signal qualities corresponding to the N signal channels before the MCU selects the signal channel according to the second activity state.
  • the wearable smart device 160 is further configured to determine that the N signal channels are unavailable when the N signal qualities are all lower than the signal fusion threshold.
  • the wearable smart device 160 is also used to fuse the M signals when any M signal quality of the N signal qualities is higher than the signal fusion threshold and all smaller than the signal usable threshold M signal channels corresponding to the quality to obtain the first fusion result, wherein the signal fusion threshold is less than the signal usable threshold, and the M is an integer greater than 1 and less than N; the first fusion result is selected as the signal channel.
  • the wearable smart device 160 is also used to select the first channel when at least one of the N signal qualities is higher than the signal usable threshold, and the signal quality of the first channel is better than other channels Signal quality.
  • the wearable smart device 160 is further configured to, after selecting the first fusion result as the signal channel, determine the fusion weight corresponding to when the M signal channels are fused into the first fusion result , The fusion weight is used to fuse the M signal channels in this cycle or the next cycle.
  • the wearable smart device 160 is further configured to determine dimming parameters according to the second activity state and the N signal qualities when the N signal qualities are all lower than the signal dimming threshold, The dimming parameter is used to instruct the collecting device to collect the signals of the N signal channels.
  • the wearable smart device 160 is also used to obtain the user activity state of the previous cycle before selecting the signal channel according to the first activity state; determine the first activity state and the previous week’s activity state The user activity status is the same.
  • the wearable smart device 160 is further configured to obtain a second channel before selecting a signal channel according to the first activity state, the second channel being the signal channel used in the previous cycle; evaluation; The signal quality of the second channel and the signal quality of the second channel are used to indicate the selection of the signal channel.
  • the wearable smart device 160 is further configured to select the second channel as the signal channel when the signal quality of the second channel is higher than the signal usable threshold.
  • the wearable smart device 160 is also used to determine dimming according to the first activity state and the signal quality of the second channel when the signal quality of the second channel is lower than the signal usable threshold. Parameter, the dimming parameter is used to instruct the collection device to collect signals on the second channel.
  • the wearable smart device 160 is further configured to evaluate the M corresponding to any M signal channels among the N signal channels when the signal quality of the second channel is lower than the signal usable threshold.
  • the wearable smart device 160 is further configured to: the processor is specifically configured to perform the following steps: when at least one of the M signal qualities is higher than the signal usable threshold, select the third channel, The signal quality of the third channel is better than the signal quality of other channels.
  • the wearable smart device 160 is further configured to: the processor is specifically configured to perform the following steps: when the quality of the M signals are all higher than the signal fusion threshold and all smaller than the signal usable threshold, the The MCU fuses the M signal channels to obtain a second fusion result; and selects the second fusion result as the signal channel.
  • the wearable smart device 160 is further configured to determine dimming parameters according to the first activity state and the M signal qualities when the M signal qualities are all lower than the signal dimming threshold, The dimming parameter is used to instruct the collecting device to collect the signals of the M signal channels.
  • the wearable smart device 160 is further configured to: the processor is specifically configured to perform the following steps: obtain a third fusion result, where the third fusion result is the N signal channels in the previous cycle The result of fusion of any M signal channels of, and the third fusion result is selected as the signal channel.
  • the wearable smart device 160 is further configured to: the processor is further configured to perform the following steps: after determining the user activity state according to the acceleration information, evaluate the N signals corresponding to the N signal channels The quality is used to select the signal channel and record the initial user activity state, and the initial user activity state is used to indicate whether the user activity state changes in the next cycle.
  • the wearable smart device 160 is further configured to: the processor is specifically configured to perform the following steps: when at least one of the N signal qualities is higher than the signal usable threshold, select the fourth channel, The signal quality of the fourth channel is better than the signal quality of other channels.
  • the wearable smart device 160 is further configured to: the processor is specifically configured to perform the following steps: when the N signal qualities are all lower than the signal dimming threshold, according to the initial user activity state and The N signal qualities determine dimming parameters for the N signal channels, and the dimming parameters are used to indicate that the N signal channels or any one of the signal channels is dimmed in the current period or the next period.
  • the wearable smart device 160 receives acceleration information, so that the user activity state can be determined according to the acceleration information, so that when the user activity state is the first activity state, that is, when the user activity state has not changed, the wearable The smart device 160 can still select a signal channel whose signal quality meets the requirements according to the first activity state, avoiding the problem of failing to select a signal channel that meets the requirements due to the inability to accurately evaluate the signal quality.
  • the disclosed wearable smart device, device, and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the above-mentioned units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical or other forms.
  • the units described above as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the above integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the above methods of the various embodiments of the present invention.
  • the aforementioned storage media include: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Telephone Function (AREA)

Abstract

本申请公开了一种选取信号通道的方法,该方法应用于可穿戴智能设备,该可穿戴智能设备包括微控制单元MCU、N个信号通道和加速度ACC传感器,N为大于1的整数,该方法包括:该MCU接收该ACC传感器发送的加速度信息;该MCU根据该加速度信息确定用户活动状态;该用户活动状态为第一活动状态时,该MCU根据该第一活动状态选取信号通道。本申请实施例还提供相应的微控制单元。本申请技术方案通过加速度信息确定出用户活动状态,进而根据用户活动状态选取出信号质量符合要求的信号通道,因此能够更加准确高效的选取信号通道。

Description

一种选取信号通道的方法以及可穿戴智能设备
本申请要求在2019年3月29日提交中国国家知识产权局、申请号为201910253208.7、发明名称为“一种选取信号通道的方法以及可穿戴智能设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术领域,具体涉及一种选取信号通道的方法以及可穿戴智能设备。
背景技术
近年来,第五代移动通信技术(fifth-generation of wireless mobile telecommunications technology,5G)开始逐步地进入人们的视野,以及可穿戴智能设备的全球出货量、市场需要也在不断增长与扩大,通过5G网络实现及时互联能够为智能可穿戴设备带来更多富有想象力的新场景。可穿戴智能设备是指直接能穿在身上或者整合在用户衣帽及其他配件上且具备一定计算能力的智能硬件产品,如:以手腕为支撑的终端如手表、手环,以头部为支撑的终端如眼镜、头盔、头带等。
目前针对可穿戴智能设备的主流功能是通过采集生理信号进行分析和识别,以得到生理信号的信号质量情况,以此来确定出符合要求的信号通道,从而使用符合要求的信号通道向后级应用设备传输数据,上述所提及的信号通道,其实就是针对不同的发射装置到采集装置的路径,若路径不同,就可以视作不同的信号通道。然而,按照现有的技术所得到的信号质量情况很难确定出符合要求的信号通道。
因此,在可穿戴设备的空间资源,运算资源和能量资源有限的情况下如何确定出符合要求的信号通道,是现阶段以及未来亟需解决的问题。
发明内容
本发明实施例提供一种选取信号通道的方法以及可穿戴智能设备,避免了因无法准确地评估出信号质量而导致无法选取出符合要求的信号通道的问题。
有鉴于此,本申请实施例提供如下方案:
第一方面,本申请实施例提供一种选取信号通道的方法,该方法可以应用于可穿戴智能设备中,并且该可穿戴智能设备可以包括有微控制单元MCU、N个信号通道以及加速度ACC传感器,其中N为大于1的整数。该选取信号通道的方法可以包括:MCU接收该ACC传感器发送的加速度信息;该MCU根据该加速度信息确定用户活动状态;该用户活动状态为第一活动状态时,该MCU根据该第一活动状态选取信号通道。由此看出,用户活动状态是影响可穿戴智能设备中信号通道的因素,因此确定出用户活动状态有利于提高选取信号通道的鲁棒性。
可选地,结合上述第一方面,在第一种可能的实现方式中,该N个信号通道中的每一个由采集装置和接收装置构成。
可选地,结合上述第一方面第一种可能的实现方式,在第二种可能的实现方式中,在该MCU根据该加速度信息确定用户活动状态之后,还可以包括:该用户活动状态为第二活动 状态时,该MCU根据该第二活动状态选取信号通道,该第二活动状态与该第一活动状态不相同。由此看出,用户活动状态是影响可穿戴智能设备中信号通道的因素,因此确定出用户活动状态有利于提高选取信号通道的鲁棒性。
可选地,结合上述第一方面第二种可能的实现方式,在第三种可能的实现方式中,在该MCU根据该第二活动状态选取信号通道之前,该方法还可以包括:该MCU获取上一周期的用户活动状态;该MCU确定该第二活动状态与该上一周期的用户活动状态不相同。利用上一周期的用户活动状态,能够准确地判断出本周期的用户活动状态已经改变,从而执行用户活动状态已经改变了的选取策略,提高选取的精确性。
可选地,结合上述第一方面第三种可能的实现方式,在第四种可能的实现方式中,在该MCU根据该第二活动状态选取信号通道之前,该方法还可以包括:该MCU评估该N个信号通道对应的N个信号质量。由此看出,对信号通道进行评估,从信号质量可以反映出每个信号通道的优劣程度。
可选地,结合上述第一方面第四种可能的实现方式,在第五种可能的实现方式中,该MCU根据该第二活动状态选取信号通道,可以包括:在该N个信号质量均低于信号融合阈值时,该MCU确定该N个信号通道不可用。由于信号融合阈值表示信号通道可以通过融合的方式来达到信号质量满足要求时且可以使用的临界值,因此将信号质量与信号融合阈值比较,能够确定出信号通道是否可用,提供了一种选取信道的方式。
可选地,结合上述第一方面第四种可能的实现方式,在第六种可能的实现方式中,该MCU根据该第二活动状态选取信号通道,可以包括:在该N个信号质量中的任意M个信号质量均高于信号融合阈值且均小于信号可用阈值时,该MCU融合该M个信号质量对应的M个信号通道,以得到第一融合结果,其中,该信号融合阈值小于该信号可用阈值,该M为大于1且小于N的整数;该MCU选取该第一融合结果作为该信号通道。由此看出,只针对有必要的信号通道进行融合,不仅能够降低平均功耗而且还能选取出信号质量满足要求的信号通道。
可选地,结合上述第一方面第四种可能的实现方式,在第七种可能的实现方式中,该MCU根据该第二活动状态选取信号通道,可以包括:在该N个信号质量中至少一个高于信号可用阈值时,该MCU选取第一通道,该第一通道的信号质量优于其他通道的信号质量。由此看出,直接从N个信号通道中选取符合要求的信号通道,提供了一种符合要求选的选取方式。
可选地,结合上述第一方面第六种可能的实现方式,在第八种可能的实现方式中,在选取该第一融合结果作为该信号通道之后,该方法还可以包括:该MCU确定该M个信号通道融合为该第一融合结果时所对应的融合权重,该融合权重用于本周期或下一周期对该M个信号通道进行融合。
可选地,结合上述第一方面第四种可能的实现方式,在第九种可能的实现方式中,该MCU根据该第二活动状态选取信号通道,可以包括:在该N个信号质量均低于信号调光阈值时,该MCU根据该第二活动状态与该N个信号质量确定调光参数,该调光参数用于指示该采集装置对该N个信号通道进行信号的采集。由此看出,调光参数可以用来调整对信号通道的采集,使得调整后的信号通道的信号质量可以达到比较好的程度。
可选地,结合上述第一方面第一种可能的实现方式,在第十种可能的实现方式中,在该MCU根据该第一活动状态选取信号通道之前,该方法还可以包括:该MCU获取上一周期的 用户活动状态;该MCU确定该第一活动状态与该上一周的用户活动状态相同。利用上一周期的用户活动状态,能够准确地判断出本周期的用户活动状态未发生改变,从而执行用户活动状态未发生改变了的选取策略,提高选取的精确性。
可选地,结合上述第一方面第十种可能的实现方式,在第十一种可能的实现方式中,在该MCU根据该第一活动状态选取信号通道之前,该方法还可以包括:该MCU获取第二通道,该第二通道为上一周期所使用的信号通道;该MCU评估该第二通道的信号质量,该第二通道的信号质量用于指示选取该信号通道。由此看出,对信号通道进行评估,从信号质量可以反映出信号通道的优劣程度。
可选地,结合上述第一方面第十一种可能的实现方式,在第十二种可能的实现方式中,该MCU根据该第一活动状态选取信号通道,可以包括:在该第二通道的信号质量高于信号可用阈值时,该MCU选取该第二通道作为该信号通道。由此看出,在用户活动状态未发生变化时,仅评估上一周期所使用的信号通道也是能够选取出符合质量要求的信号通道,减少了全面评估所需要的时间、计算量以及功耗等。
可选地,结合上述第一方面第十一种可能的实现方式,在第十三种可能的实现方式中,该MCU根据该第一活动状态选取信号通道,可以包括:在该第二通道的信号质量低于信号可用阈值时,该MCU根据该第一活动状态与该第二通道的信号质量确定调光参数,该调光参数用于指示该采集装置对该第二通道进行信号的采集。由此看出,调光参数可以使采集装置对有必要进行调整的信号通道进行调整,避免了频繁地对所有信号通道调光而导致的数据不连续性,并且使得调整后的信号通道的信号质量可以达到比较好的程度。
可选地,结合上述第一方面第十一种可能的实现方式,在第十四种可能的实现方式中,该MCU根据该第一活动状态选取信号通道,可以包括:在该第二通道的信号质量低于信号可用阈值时,该MCU评估该N个信号通道中的任意M个信号通道所对应的M个信号质量,以用于选取该信号通道,其中,该M为大于1且小于该N的整数。由此看出,对信号通道进行评估,从信号质量可以反映出每个信号通道的优劣程度,并且仅针对有必要的信号通道进行信号质量的评估,相对于全面评估而言能够有效地降低平均功耗以及减少评估的时间、计算量等。
可选地,结合上述第一方面第十四种可能的实现方式,在第十五种可能的实现方式中,该MCU评估该N个信号通道中的任意M个信号通道所对应的M个信号质量,以用于选取该信号通道,可以包括:在该M个信号质量中至少一个高于该信号可用阈值时,该MCU选取第三通道,该第三通道的信号质量优于其他信道的信号质量。由此看出,直接从M个信号通道中选取符合要求的信号通道,提供了一种符合要求选的选取方式。
可选地,结合上述第一方面第十四种可能的实现方式,在第十六种可能的实现方式中,该MCU评估该N个信号通道中的任意M个信号通道所对应的M个信号质量,以用于选取该信号通道,可以包括:在该M个信号质量均高于信号融合阈值且均小于该信号可用阈值时,该MCU融合该M个信号通道,以得到第二融合结果;该MCU选取该第二融合结果作为该信号通道。由此看出,只针对有必要的信号通道进行融合,不仅能够降低平均功耗而且还能选取出信号质量满足要求的信号通道。
可选地,结合上述第一方面第十四种可能的实现方式,在第十七种可能的实现方式中, 该MCU评估该N个信号通道中的任意M个信号通道所对应的M个信号质量,以用于选取该信号通道,可以包括:在该M个信号质量均低于信号调光阈值时,该MCU根据该第一活动状态与该M个信号质量确定调光参数,该调光参数用于指示该采集装置对该M个信号通道进行信号的采集。由此看出,调光参数可以使采集装置对有必要进行调整的信号通道进行调整,避免了频繁地对所有信号通道调光而导致的数据不连续性,并且使得调整后的信号通道的信号质量可以达到比较好的程度。
可选地,结合上述第一方面第十种可能的实现方式,在第十八种可能的实现方式中,该MCU根据该第一活动状态选取信号通道,可以包括:该MCU获取第三融合结果,该第三融合结果是上一周期对该N个信号通道中的任意M个信号通道进行融合的结果;该MCU选取该第三融合结果作为该信号通道。
可选地,结合上述第一方面第一种可能的实现方式,在第十九种可能的实现方式中,在该MCU根据该加速度信息确定用户活动状态之后,该方法还可以包括:该MCU评估该N个信号通道对应的N个信号质量,以用于选取该信号通道,并记录初始用户活动状态,该初始用户活动状态用于指示该MCU确定下一周期的该用户活动状态是否变化。由此可见,在可穿戴设备首次运行时,先通过全面评估所有的信号通道,能够最大程度地获知所有信号通道的信号质量以及其他相关参数等。
可选地,结合上述第一方面第十九种可能的实现方式,在第二十种可能的实现方式中,该MCU评估该N个信号通道对应的N个信号质量,以用于选取该信号通道,可以包括:在该N个信号质量中至少一个高于信号可用阈值时,该MCU选取该第四通道,该第四通道的信号质量优于其他信道的信号质量。
可选地,结合上述第一方面第十九种可能的实现方式,在第二十一种可能的实现方式中,该MCU评估该N个信号通道对应的N个信号质量,以用于选取该信号通道,可以包括:在该N个信号质量均低于信号调光阈值时,该MCU根据该初始用户活动状态与该N个信号质量对该N个信号通道确定调光参数,该调光参数用于指示该MCU在本周期或下一周期对该N个信号通道或任意一个信号通道进行调光。
第二方面,本申请实施例提供一种可穿戴智能设备,该可穿戴智能设备包括:处理器、存储器、N个信号通道、加速度ACC传感器和一个或多个程序,N为大于1的整数,其中所述一个或多个程序被存储在所述存储器中,当所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:接收所述加速度ACC传感器发送的加速度信息;根据所述加速度信息确定用户活动状态;所述用户活动状态为第一活动状态时,根据所述第一活动状态选取信号通道。
可选地,结合上述第二方面,在第一种可能的实现方式中,该N个信号通道中的每一个由采集装置和接收装置构成。
可选地,结合上述第二方面第一种可能的实现方式,在第二种可能的实现方式中,所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:在根据该加速度信息确定用户活动状态之后,该用户活动状态为第二活动状态时,根据该第二活动状态选取信号通道,该第二活动状态与该第一活动状态不相同。
可选地,结合上述第二方面第二种可能的实现方式,在第三种可能的实现方式中,所 述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:在根据该第二活动状态选取信号通道之前,获取上一周期的用户活动状态;确定该第二活动状态与该上一周期的用户活动状态不相同。
可选地,结合上述第二方面第三种可能的实现方式,在第四种可能的实现方式中,所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:在该MCU根据该第二活动状态选取信号通道之前,评估该N个信号通道对应的N个信号质量。
可选地,结合上述第二方面第四种可能的实现方式,在第五种可能的实现方式中,所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:在该N个信号质量均低于信号融合阈值时,确定该N个信号通道不可用。
可选地,结合上述第二方面第四种可能的实现方式,在第六种可能的实现方式中,所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:在该N个信号质量中的任意M个信号质量均高于信号融合阈值且均小于信号可用阈值时,融合该M个信号质量对应的M个信号通道,以得到第一融合结果,其中,该信号融合阈值小于该信号可用阈值,该M为大于1且小于N的整数;选取该第一融合结果作为该信号通道。
可选地,结合上述第二方面第四种可能的实现方式,在第七种可能的实现方式中,所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:在该N个信号质量中至少一个高于信号可用阈值时,选取第一通道,该第一通道的信号质量优于其他通道的信号质量。
可选地,结合上述第二方面第六种可能的实现方式,在第八种可能的实现方式中,所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:在选取该第一融合结果作为该信号通道之后,确定该M个信号通道融合为该第一融合结果时所对应的融合权重,该融合权重用于本周期或下一周期对该M个信号通道进行融合。
可选地,结合上述第二方面第四种可能的实现方式,在第九种可能的实现方式中,所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:在该N个信号质量均低于信号调光阈值时,根据该第二活动状态与该N个信号质量确定调光参数,该调光参数用于指示该采集装置对该N个信号通道进行信号的采集。
可选地,结合上述第二方面第一种可能的实现方式,在第十种可能的实现方式中,所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:在根据该第一活动状态选取信号通道之前,获取上一周期的用户活动状态;确定该第一活动状态与该上一周的用户活动状态相同。
可选地,结合上述第二方面第十种可能的实现方式,在第十一种可能的实现方式中,所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:在根据该第一活动状态选取信号通道之前,获取第二通道,该第二通道为上一周期所使用的信号通道;评估该第二通道的信号质量,该第二通道的信号质量用于指示选取该信号通道。
可选地,结合上述第二方面第十一种可能的实现方式,在第十二种可能的实现方式中,所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:在该第二通道的信号质量高于信号可用阈值时,选取该第二通道作为该信号通道。
可选地,结合上述第二方面第十一种可能的实现方式,在第十三种可能的实现方式中, 所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:在该第二通道的信号质量低于信号可用阈值时,根据该第一活动状态与该第二通道的信号质量确定调光参数,该调光参数用于指示该采集装置对该第二通道进行信号的采集。
可选地,结合上述第二方面第十一种可能的实现方式,在第十四种可能的实现方式中,所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:在该第二通道的信号质量低于信号可用阈值时,评估该N个信号通道中的任意M个信号通道所对应的M个信号质量,以用于选取该信号通道,其中,该M为大于1且小于该N的整数。
可选地,结合上述第二方面第十四种可能的实现方式,在第十五种可能的实现方式中,所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:在该M个信号质量中至少一个高于该信号可用阈值时,选取第三通道,该第三通道的信号质量优于其他信道的信号质量。
可选地,结合上述第二方面第十四种可能的实现方式,在第十六种可能的实现方式中,所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:在该M个信号质量均高于信号融合阈值且均小于该信号可用阈值时,该MCU融合该M个信号通道,以得到第二融合结果;选取该第二融合结果作为该信号通道。
可选地,结合上述第二方面第十四种可能的实现方式,在第十七种可能的实现方式中,所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:在该M个信号质量均低于信号调光阈值时,根据该第一活动状态与该M个信号质量确定调光参数,该调光参数用于指示该采集装置对该M个信号通道进行信号的采集。
可选地,结合上述第二方面第十种可能的实现方式,在第十八种可能的实现方式中,所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:获取第三融合结果,该第三融合结果是上一周期对该N个信号通道中的任意M个信号通道进行融合的结果;选取该第三融合结果作为该信号通道。
可选地,结合上述第二方面第一种可能的实现方式,在第十九种可能的实现方式中,所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:在根据该加速度信息确定用户活动状态之后,评估该N个信号通道对应的N个信号质量,以用于选取该信号通道,并记录初始用户活动状态,该初始用户活动状态用于指示确定下一周期的该用户活动状态是否变化。
可选地,结合上述第二方面第十九种可能的实现方式,在第二十种可能的实现方式中,所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:在该N个信号质量中至少一个高于信号可用阈值时,选取该第四通道,该第四通道的信号质量优于其他信道的信号质量。
可选地,结合上述第二方面第十九种可能的实现方式,在第二十一种可能的实现方式中,所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:在该N个信号质量均低于信号调光阈值时,根据该初始用户活动状态与该N个信号质量对该N个信号通道确定调光参数,该调光参数用于指示在本周期或下一周期对该N个信号通道或任意一个信号通道进行调光。
第三方面,本申请实施例提供一种微控制单元,该微控制单元包括:处理器、存储器、 以及输入/输出设备;该输入/输出设备,用于接收加速度ACC传感器发送的加速度信息;该存储器中存储有程序指令;该处理器用于执行该存储器中存储的程序指令,具体包括如下步骤:根据该加速度信息确定用户活动状态;该用户活动状态为第一活动状态时,根据该第一活动状态选取信号通道。
可选地,结合上述第三方面,在第一种可能的实现方式中,该N个信号通道中的每一个由采集装置和接收装置构成。
可选地,结合上述第三方面第一种可能的实现方式,在第二种可能的实现方式中,该处理器还用于执行如下步骤:在根据该加速度信息确定用户活动状态之后,该用户活动状态为第二活动状态时,根据该第二活动状态选取信号通道,该第二活动状态与该第一活动状态不相同。
可选地,结合上述第三方面第二种可能的实现方式,在第三种可能的实现方式中,该处理器还用于执行如下步骤:在根据该第二活动状态选取信号通道之前,获取上一周期的用户活动状态;确定该第二活动状态与该上一周期的用户活动状态不相同。
可选地,结合上述第三方面第三种可能的实现方式,在第四种可能的实现方式中,该处理器还用于执行如下步骤:在该MCU根据该第二活动状态选取信号通道之前,评估该N个信号通道对应的N个信号质量。
可选地,结合上述第三方面第四种可能的实现方式,在第五种可能的实现方式中,该处理器具体用于执行如下步骤:在该N个信号质量均低于信号融合阈值时,确定该N个信号通道不可用。
可选地,结合上述第三方面第四种可能的实现方式,在第六种可能的实现方式中,该处理器具体用于执行如下步骤:在该N个信号质量中的任意M个信号质量均高于信号融合阈值且均小于信号可用阈值时,融合该M个信号质量对应的M个信号通道,以得到第一融合结果,其中,该信号融合阈值小于该信号可用阈值,该M为大于1且小于N的整数;选取该第一融合结果作为该信号通道。
可选地,结合上述第三方面第四种可能的实现方式,在第七种可能的实现方式中,该处理器具体用于执行如下步骤:在该N个信号质量中至少一个高于信号可用阈值时,选取第一通道,该第一通道的信号质量优于其他通道的信号质量。
可选地,结合上述第三方面第六种可能的实现方式,在第八种可能的实现方式中,该处理器还用于执行如下步骤:在选取该第一融合结果作为该信号通道之后,确定该M个信号通道融合为该第一融合结果时所对应的融合权重,该融合权重用于本周期或下一周期对该M个信号通道进行融合。
可选地,结合上述第三方面第四种可能的实现方式,在第九种可能的实现方式中,该处理器具体用于执行如下步骤:在该N个信号质量均低于信号调光阈值时,根据该第二活动状态与该N个信号质量确定调光参数,该调光参数用于指示该采集装置对该N个信号通道进行信号的采集。
可选地,结合上述第三方面第一种可能的实现方式,在第十种可能的实现方式中,该处理器还用于执行如下步骤:在根据该第一活动状态选取信号通道之前,获取上一周期的用户活动状态;确定该第一活动状态与该上一周的用户活动状态相同。
可选地,结合上述第三方面第十种可能的实现方式,在第十一种可能的实现方式中,该处理器还用于执行如下步骤:在根据该第一活动状态选取信号通道之前,获取第二通道,该第二通道为上一周期所使用的信号通道;评估该第二通道的信号质量,该第二通道的信号质量用于指示选取该信号通道。
可选地,结合上述第三方面第十一种可能的实现方式,在第十二种可能的实现方式中,该处理器具体用于执行如下步骤:在该第二通道的信号质量高于信号可用阈值时,选取该第二通道作为该信号通道。
可选地,结合上述第三方面第十一种可能的实现方式,在第十三种可能的实现方式中,该处理器具体用于执行如下步骤:在该第二通道的信号质量低于信号可用阈值时,根据该第一活动状态与该第二通道的信号质量确定调光参数,该调光参数用于指示该采集装置对该第二通道进行信号的采集。
可选地,结合上述第三方面第十一种可能的实现方式,在第十四种可能的实现方式中,在该第二通道的信号质量低于信号可用阈值时,评估该N个信号通道中的任意M个信号通道所对应的M个信号质量,以用于选取该信号通道,其中,该M为大于1且小于该N的整数。
可选地,结合上述第三方面第十四种可能的实现方式,在第十五种可能的实现方式中,该处理器具体用于执行如下步骤:在该M个信号质量中至少一个高于该信号可用阈值时,选取第三通道,该第三通道的信号质量优于其他信道的信号质量。
可选地,结合上述第三方面第十四种可能的实现方式,在第十六种可能的实现方式中,该处理器具体用于执行如下步骤:在该M个信号质量均高于信号融合阈值且均小于该信号可用阈值时,该MCU融合该M个信号通道,以得到第二融合结果;选取该第二融合结果作为该信号通道。
可选地,结合上述第三方面第十四种可能的实现方式,在第十七种可能的实现方式中,在该M个信号质量均低于信号调光阈值时,根据该第一活动状态与该M个信号质量确定调光参数,该调光参数用于指示该采集装置对该M个信号通道进行信号的采集。
可选地,结合上述第三方面第十种可能的实现方式,在第十八种可能的实现方式中,该处理器具体用于执行如下步骤:获取第三融合结果,该第三融合结果是上一周期对该N个信号通道中的任意M个信号通道进行融合的结果;选取该第三融合结果作为该信号通道。
可选地,结合上述第三方面第一种可能的实现方式,在第十九种可能的实现方式中,该处理器还用于执行如下步骤:在根据该加速度信息确定用户活动状态之后,评估该N个信号通道对应的N个信号质量,以用于选取该信号通道,并记录初始用户活动状态,该初始用户活动状态用于指示确定下一周期的该用户活动状态是否变化。
可选地,结合上述第三方面第十九种可能的实现方式,在第二十种可能的实现方式中,该处理器具体用于执行如下步骤:在该N个信号质量中至少一个高于信号可用阈值时,选取该第四通道,该第四通道的信号质量优于其他信道的信号质量。
可选地,结合上述第三方面第十九种可能的实现方式,在第二十一种可能的实现方式中,该处理器具体用于执行如下步骤:在该N个信号质量均低于信号调光阈值时,根据该初始用户活动状态与该N个信号质量对该N个信号通道确定调光参数,该调光参数用于指示在本周期或下一周期对该N个信号通道或任意一个信号通道进行调光。
第四方面,本申请实施例提供了一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如第一方面或第一方面任意一种可能的实现方式的方法。
第五方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如第一方面或第一方面任意一种可能的实现方式的方法。
第六方面,本申请提供一种芯片系统,该芯片系统包括处理器,用于支持可穿戴智能设备实现上述第一方面或第一方面任意一种可能的实现方式中所涉及的功能。在一种可能的设计中,芯片系统还包括存储器,存储器,用于保存可穿戴智能设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第二方面、第三方面中任一种实现方式所带来的技术效果可参见第一方面中不同实现方式所带来的技术效果,此处不再赘述。
从以上技术方案可以看出,本申请实施例具有以下优点:
通过加速度信息确定出用户活动状态,从而使得用户活动状态为第一活动状态,MCU依旧可以根据第一活动状态选取出信号质量符合要求的信号通道,避免了因无法准确地评估出信号质量而导致无法选取出符合要求的信号通道的问题。
附图说明
图1是是本申请实施例的系统架构示意图;
图2是本申请实施例提供的选取信号通道的方法的一个实施例示意图;
图3是本申请实施例提供的选取信号通道的方法的另一个实施例示意图;
图4是本申请实施例提供的选取信号通道的方法的另一个实施例示意图;
图5是本申请实施例提供的选取信号通道的方法的另一个实施例示意图;
图6是本申请实施例提供的选取信号通道的方法的另一个实施例示意图;
图7是本申请实施例提供的选取信号通道的方法的另一个实施例示意图;
图8是本申请实施例提供的选取信号通道的方法的另一个实施例示意图;
图9是本申请实施例提供的选取信号通道的方法的另一个实施例示意图;
图10是本申请实施例提供的选取信号通道的方法的另一个实施例示意图;
图11是本申请实施例提供的选取信号通道的方法的另一个实施例示意图;
图12是本申请实施例提供的选取信号通道的方法的另一个实施例示意图;
图13是本申请实施例提供的选取信号通道的方法的另一个实施例示意图;
图14是本申请实施例提供的选取信号通道的方法的另一个实施例示意图;
图15是本申请实施例提供的选取信号通道的方法的另一个实施例示意图;
图16是本申请实施例提供的一种可穿戴智能设备的结构示意图。
具体实施方式
本申请实施例提供一种选取信号通道的方法以及可穿戴智能设备,避免了因无法准确地评估出信号质量而导致无法选取出符合要求的信号通道的问题。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
本申请实施例的技术方案可以应用于各种可穿戴智能设备,它是应用穿戴式技术对日常穿戴进行智能化设计、开发出可穿戴的设备的总称,包括:功能全、可不依赖智能手机实现完整或部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能但需要和其他设备如智能手机配合使用,例如:各类进行体征检测的智能手环、智能首饰等。通过可穿戴智能设备人们能够更好的感知外部与自身的信息,能够在计算机、网络等辅助下更为高效率的处理信息,最常见的可穿戴智能设备应用在运动健身户外领域和医疗保健领域,实现运动或户外数据如心率、步频等指标的监测、分析,而后者主要提供血压、心率等医疗体征的检测与处理,包括医疗背心、腰带、植入式芯片等。
而智能手环、智能眼镜、智能首饰等一系列的可穿戴智能设备的使用,都是伴随用户的身体上的某个部位进行穿戴的,所以对于这一系列的可穿戴智能设备的信号通道的信号质量的优劣程度都会随着用户活动状态的改变而发生一定的变化,例如:若是用户处于静止状态,那么信号通道的信号质量会处于较优的程度;若是用户处于微动的状态,即出现轻微运动时,那么信号通道的信号质量会相对于静止状态而言则处于一般的程度;若是用户处于运动状态,即出现较大幅度的运动时,那么信号通道的信号质量则会处于较劣势的程度。
为判断并确定出可穿戴智能设备的信号通道的信号质量是否符合要求,从而使用符合要求的信号通道与后级应用进行数据的收发。在现有技术中,对于选取符合要求信号通道的第一种方案是针对单维采集装置的情况,通常是通过单个采集装置采集单个信号源中的一种生理信号,从而在该生理信号中提出多种特征信息,如:标准差,峰态系数,偏态系数,拐点,零点,信息熵等,以此特征信息来计算出该生理信号的信号质量情况并进行分析,从而根据该信号质量情况决定是否使用该生理信号对应的信号通道;第二种方案是针对多维采集装置的情况,通常是通过多个采集装置分别采集多个信号源中的的生理信号,如:采集装置1采集信号源1中的生理信号,采集装置2采集信号源2中的生理信号等等,然后对这些生理信号分别进行对应的特征信息的提取并融合,并分析所得到的融合信号的信号质量情况,从而根据该融合信号的信号质量情况决定是否使用该融合信号对应的信号通道。然而这两种方式在选取符合要求的信号通道时都没有从用户活动状态是否发生改变的角度来提出解决信号质量问题的措施,因此无论是对信号进行融合还是通过估计信号通道的信号质量情况等举措弥补信号质量的问题,都很难奏效。
因此,为了解决现有技术中存在的上述问题,本申请实施例中对可穿戴智能设备的信号通道的选取给出了新的方案,从而避免了现有技术中因信号质量问题无法选取出符合要求信号通道时导致的数据传输的失败。图1是本申请实施例的系统架构示意图。如图1所示,图1包括有N个信号通道、加速度(acceleration,ACC)传感器以及微控制单元(microcontroller unit,MCU),其中,该N个信号通道中的每个信号通道都由采集装置 和接收装置构成,N为大于1的整数,这N个采集装置主要用来对可穿戴智能设备的同一个维度的信号进行采集;ACC传感器用来获取可穿戴智能设备对应的用户的加速度信息,如:加速度实时状态或者加速度速率等,也就是说若可穿戴智能设备为智能手环,那么加速度实时状态可以对应于手部的活动状态等等,通过MCU对加速度实时状态的分析可以获取到用户活动状态,如:上述所描述的用户活动状态可以是静止、微动、运动等;MCU主要是用于对获取的信号通道进行信号质量的评估或确定出用户活动状态等,从而选取出信号质量符合传输数据的要求的信号通道。加速度传感器和MCU可以设置在可穿戴智能设备中,也可以设置在其他电子设备中,例如加速度传感器和MCU可以设置在手机中。
需要说明的一点是,针对上述的采集装置采集的信号可以是光电容积脉搏波描记或光体积描记信号(photoplethysmogram,PPG),对于其他类型的信号的采集也可以采用本申请实施例进行信号处理,具体此处不限定。
本申请实施例提出选取信号通道的方法,适用于可穿戴智能设备的应用中。结合上述图1对本申请的架构示意图的介绍,下面将对本申请实施例所提供的选取信号通道的方法进行介绍,请参阅图2,图2是本申请实施例提供的选取信号通道的方法的一个实施例示意图。
如图2所示,本申请实施例提供的选取信号通道的方法的一个实施例包括:
201、MCU接收ACC传感器发送的加速度信息。
本实施例中,N个信号通道中的每一个信号通道由采集装置和接收装置构成。由于N个信号通道的信号质量可能会随着用户活动状态的改变而发生变化,因此通过ACC传感器获取加速度信息,可以确定用户的活动状态是否发生变化,进一步确定是否需要选取其他信号通道。所提及的加速度信息可以是加速度实时状态、加速度速率等,该加速度信息可以用来指示用户活动状态。例如:假设可穿戴智能设备为智能眼镜,则通过ACC传感器获取的信息则为头部的加速度信息,具体此处不做限定。由于ACC传感器具备获取加速度信息的功能,如:加速度实时状态、加速度速率等信息,而对于根据该加速度信息对用户活动状态进行判断与确定等操作均是由MCU来进行的,因此在ACC传感器获取加速度信息后会向MCU发送所获取的加速度信息,使其MCU能够接收到该加速度信息,从而根据加速度信息确定出用户活动状态是处于静止、微动还是运动中的哪一种状态。
需要说明的一点,上述提及的静止可以是指用户的肢体或脑部等身体部位的动作在某一段时期内处于基本不变状态,如:睡眠等;所提及的微动可以是指用户的肢体或脑部等身体部位的动作在一段时期内发生了幅度较弱的变化或者是频率的变化较小,如:轻推、慢走等;所提及的运动可以是指用户的肢体或脑部等身体部位的动作在一段时期内发生了幅度较大的变化或者是频率的变化较大,如:深蹲、引体向上、跳绳等。
进一步需要说明的是,在该MCU接收ACC传感器发送的加速度信息的同时,还可以接收采集装置对这N个信号通道进行采集的信号,目的是为了让MCU能够对这些N个信号通道评估出相应的信号质量,对于采集装置所采集的N个信号通道的信号,即每个采集装置采集一个信号通道对应的同一维度的信号,其中,N为大于1的整数。
202、MCU根据加速度信息确定用户活动状态。
本实施例中,由于加速度信息可以指示用户活动状态,因此在可穿戴智能设备并非首次运行时,也就是用户并不是第一次使用可穿戴智能设备中的MCU评估信道质量时,才会 让MCU根据接收到的加速度信息确定出用户活动状态,即根据加速度信息可以确定活动状态是静止、微动以及运动中的其中一种。
需要说明的是,若是可穿戴智能设备是首次运行,也就是用户第一次使用可穿戴智能设备评估信道质量时,则不管用户活动状态处于哪种状态下,也都需要MCU先确定初始用户活动状态,并且此时还需要进一步地通过全面评估对所有信号通道的信号质量进行评估计算,从而在所有信号通道中选取出符合要求的信号通道即可,此时的初始用户状态可以用来指示MCU确定下一周期的用户活动状态是否变化,即确定用户活动状态为第一活动状态还是第二活动状态。但在这种情况下,并不排除一种可能性,即如果用户活动状态过于剧烈,如:冲刺跑步等,此时无论如何都不太可能获取满足条件的信号,那么则可以停止对本周期的信号质量的评估。
进一步说明的是,上述所提及的对信号通道的评估是MCU对信号通道的信号质量进行评估,包括全面评估和基础评估;其中,全面评估是MCU对每个信号通道中的信号计算多种特征,如:标准差、峰态系数、偏态系数、拐点、零点以及信息熵等,并将其进行组合从而获得所有信号通道的信号质量的相关情况,该全面评估耗时长,精度高;而基础评估复杂程度较低,只会对部分满足条件的信号通道中的信号计算少量特征,从而计算出部分通道的信号质量的相关情况,该基础评估耗时短,相对精度低。
203、用户活动状态为第一活动状态时,MCU根据该第一活动状态选取信号通道。
本实施例中,第一活动状态可以是指用户活动状态与上一周期的用户活动状态相同,即用户活动状态并未发生改变时的状态。因此,MCU需要获取到上一周期的用户活动状态,从而将本周期的用户活动状态与上一周期的用户活动状态进行比较,以得到本周期的用户活动状态是否发生改变了,若未发生改变,则可以得到第一活动状态。
需要说明的是,在根据第一活动状态所选取出的信号通道后,则可以使用该信号通道向后级应用传输相应的数据,如:假设传输有关于心脏方面的信息、睡眠方面的信息等等,使得后级应用获取到更多的信息并最大程度的全面分析出用户的健康问题。
需要说明的一点是,上述第一活动状态所选取出的信号通道的信号质量情况可以是优于其他信号通道的信号质量的,但也不排除在本周期的用户活动状态与上一周期的用户活动状态相同,即本周期的用户活动状态没有改变的情况下,有可能上一周期所使用的信号通道满足要求时也能够实现相应的数据传输,但此时没有必要切换为信号质量符合要求的信号通道,有效地降低了平均功耗。对于上述向后级应用传输的数据,可以是传输原始数据或者是经过处理和计算后得到的数据,而所选取出的信号通道则表示的是在这个采集周期内,这个信号通道的信号质量是相对符合要求的并且所传输的数据的质量对后级应用而言也是最符合要求的,很大程度上在某种情况下对于下一周期向后级应用传输数据也可以是通过这个周期内的所选取出的信号通道进行的。
本申请实施例中,通过MCU在用户活动状态为第一活动状态,即用户活动状态未发生改变时,依旧可以根据第一活动状态选取出信号质量符合要求的信号通道,避免了因无法准确地评估出信号质量而导致无法选取出符合要求的信号通道的问题。
由于上述提及的用户活动状态为第一活动状态仅是其中的一种没有发生变化的情况,当用户活动状态发生改变后同样也可以对信号通道进行信号质量的评估,因此,下面介绍 用户活动状态已发生改变的情况。
为了便于理解,下面对本申请实施例中的具体流程进行具体介绍,请参阅图3,图3为本申请实施例中提供的选取信号通道的方法的另一个实施例示意图。
301、MCU接收ACC传感器发送的加速度信息。
302、MCU根据加速度信息确定用户活动状态。
本实施例中,步骤301-302可以参照图2中的步骤201-202进行理解,具体此处不再赘述。
303、用户活动状态为第二活动状态时,MCU根据第二活动状态选取信号通道,第二活动状态与第一活动状态不相同。
本实施例中,第二活动状态可以是指用户活动状态与上一周期的用户活动状态不相同,即用户活动状态已经发生改变时的状态。因此,MCU需要获取到上一周期的用户活动状态,从而将本周期的用户活动状态与上一周期的用户活动状态,以得到本周期的用户活动状态是否发生改变了,若已经发生改变,则可以得到第二活动状态,如:上一周期的活动状态为静止状态,本周期的用户活动状态为运动状态,说明用户活动状态已经发生改变,那么得到此时的第二活动状态,并且可以获知本周期的用户活动状态则为运动状态。
需要说明的是,第一活动状态可以是指用户活动状态与上一周期的用户活动状态相同,即用户活动状态未发生改变;当然,在实际应用中,对于第一活动状态与第二活动状态的定义可以根据实际情况而决定,如:第一活动状态可以是指用户活动状态与上一周期的用户活动状态不相同,即用户活动状态已发生改变;第二活动状态可以是指用户活动状态与上一周期的用户活动状态相同,即用户活动状态并未发生改变;并且第一活动状态与第二活动状态是处于对立的,即存在第一活动状态时不会存在第二活动状态,或者是存在第二活动状态时不会存在第一活动状态。此处仅仅是为了详细说明本实施例的方案,具体不做限定说明。
近一步需要说明的是,根据第二活动状态所选取出的信号通道的质量情况会优于其他通道的质量情况,因此可以使用该信号通道向后级应用传输相应的数据,如:假设传输有关于心脏方面的信息、睡眠方面的信息等等,使得后级应用获取到更多的信息并最大程度的全面分析出用户的健康问题。
需要说明的一点是,对于上述向后级应用传输的数据,可以是传输原始数据或者是经过处理和计算后得到的数据,而所选取出的信号通道则表示的是在这个采集周期内,这个信号通道的信号质量是相对符合要求的并且所传输的数据的质量对后级应用而言也是最符合要求的,很大程度上在某种情况下对于下一周期向后级应用传输数据也可以是通过这个周期内的所选取出的信号通道进行的。
本申请实施例中,通过MCU在用户活动状态为第二活动状态,即用户活动状态已经发生改变时,依旧可以根据第二活动状态选取出对应的信号质量符合要求的信号通道,避免了因无法准确地确定出信号质量而导致无法选取出符合要求的信号通道的问题。
由于上述提及的用户活动状态可以为图2中的第一活动状态、或者是图3所提及的第二活动状态,并且从中可以选取出信号通道。因此,下面将分别从用户活动状态为第一活动状态、为第二活动状态这两大方面进行介绍。
一、用户活动状态为第二活动状态
为了便于理解,在上述图3的基础上,下面对本申请实施例中的具体流程进行具体介绍,请参阅图4,图4为本申请实施例中提供的选取信号通道的方法的另一个实施例示意图。
401、MCU接收ACC传感器发送的加速度信息。
402、MCU根据加速度信息确定用户活动状态。
本实施例中,步骤401-402可以参照图3中的步骤301-302进行理解,具体此处不再赘述。
403、MCU获取上一周期的用户活动状态。
本实施例中,要想判断出本周期的用户活动状态是否发生了改变,必须要知道上一周期的用户活动状态是处于什么状态下,因此需要MCU获取上一周期的用户活动状态。
404、用户活动状态为第二活动状态时,MCU确定第二用户活动状态与上一周的用户活动状态不相同。
本实施例中,第二活动状态实际上指代的是用户活动状态与上一周的用户活动状态不相同的情况。如:上一周期的活动状态为静止状态,本周期的用户活动状态为运动状态,说明用户活动状态已经发生改变,那么得到此时的第二活动状态,并且可以获知本周期的用户活动状态则为运动状态。
405、MCU评估N个信号通道对应的N个信号质量。
本实施例中,由于用户活动状态已经发生了改变,那么可以通过对N个信号通道进行信号质量的评估,每个信号通道在评估之后对应着一个信号质量。
需要说明的一点是,信号质量可以用来表示对应的信号通道的优劣程度,即可以用于指示选取信号通道。
406、在N个信号质量均低于信号融合阈值时,MCU确定N个信号通道不可用。
本实施例中,信号融合阈值表示信号通道可以通过融合的方式来达到信号质量满足要求时且可以使用的临界值,但是如果信号质量低于该信号融合阈值时,对这些低于该信号融合阈值所对应的信号通道进行融合也无法选取出符合要求的信号通道。因此,在评估出这N个信号通道的信号质量后,若是这N个信号质量均低于信号融合阈值时,那么MCU则确定出这N个信号通道均无法使用,那么就要重新进入下一周期的采集、评估等操作。
本申请实施例中,在用户活动状态为第二活动状态,即用户活动状态已经发生改变时,在MCU确定出N个信号通道均不可用的情况下给出的选取信号通道的方式,避免了因用户活动状态发生了改变后无法准确地确定出信号质量而导致无法选取出符合要求的信号通道的问题。
为了便于理解,下面对本申请实施例中的具体流程进行具体介绍,请参阅图5,图5为本申请实施例中提供的选取信号通道的方法的另一个实施例示意图。
501、MCU接收ACC传感器发送的加速度信息。
502、MCU根据加速度信息确定用户活动状态。
503、MCU获取上一周期的用户活动状态。
504、用户活动状态为第二活动状态时,MCU确定第二活动状态与上一周的用户活动状态不相同。
本实施例中,步骤501-504可以参照图4中的步骤401-404进行理解,具体此处不再赘述。
505、MCU评估N个信号通道对应的N个信号质量。
本实施例中,由于用户活动状态已经发生了改变,那么可以通过对N个信号通道进行信号质量的评估,每个信号通道在评估之后对应着一个信号质量。
需要说明的一点是,信号质量可以用来表示对应的信号通道的优劣程度,即可以用于指示选取信号通道。
506、在N个信号质量中的任意M个信号质量均高于信号融合阈值且均小于信号可用阈值时,MCU融合M个信号质量对应的M个信号通道,以得到第一融合结果。
本实施例中,信号可用阈值大于信号融合阈值。其中,信号可用阈值指的是信号质量对应的信号通道能够被直接使用的最低临界值,即只要信号质量大于信号可用阈值,就说明该信号质量对应的信号通道是可以直接使用的或是信号质量情况较优的;而信号融合阈值则表示如果信号质量情况较差时,也就是低于该信号融合阈值时信号通道进行融合也无法选取出符合要求的信号通道;介于信号融合阈值与信号可用阈值时,则表示可以通过对N个信号通道中的其中M个信号通道进行融合来获取到信号通道。
因此,在得到这N个信号通道的N个信号质量后,如果MCU判断出其中有M个信号通道所分别对应的M个信号质量全都小于信号可用阈值,但又都高于信号融合阈值时,那么MCU可以对满足该条件的信号通道进行融合,得到第一融合结果。
507、MCU选取第一融合结果作为信号通道。
本实施例中,由于对信号质量满足均高于信号融合阈值且均小于信号可用阈值这个条件下的信号通道进行融合后,就可以直接将融合后的信号通道选取作为符合要求的信号通道了,因此可以根据该信号通道向后级应用传输数据,如:假设传输有关于心脏方面的信息、睡眠方面的信息等等,使得后级应用获取到更多的信息并最大程度的全面分析出用户的健康问题。
本申请实施例中,在用户活动状态为第二活动状态,即用户活动状态已经发生改变时,通过信号通道的融合给出了选取信号通道的方式,避免了因用户活动状态发生了改变后无法准确地确定出信号质量而导致无法选取出符合要求的信号通道的问题。
为了便于理解,在图5的基础上,请参阅图6,图6为本申请实施例中提供的选取信号通道的方法的另一个实施例示意图。
601、MCU接收ACC传感器发送的加速度信息。
602、MCU根据加速度信息确定用户活动状态。
603、MCU获取上一周期的用户活动状态。
604、用户活动状态为第二活动状态时,MCU确定第二活动状态与上一周的用户活动状态不相同。
605、MCU评估N个信号通道对应的N个信号质量。
本实施例中,步骤601-605可以参照图5中的步骤501-505进行理解,具体此处不再赘述。
606、在N个信号质量中的任意M个信号质量均高于信号融合阈值且均小于信号可用阈 值时,MCU融合M个信号质量对应的M个信号通道,以得到第一融合结果。
本实施例中,信号可用阈值大于信号融合阈值。其中,信号可用阈值指的是信号质量对应的信号通道能够被直接使用的最低临界值,即只要信号质量大于信号可用阈值,就说明该信号质量对应的信号通道是可以直接使用的或是信号质量情况较优的;而信号融合阈值则表示如果信号质量情况较差时,也就是低于该信号融合阈值时信号通道进行融合也无法选取出符合要求的信号通道;介于信号融合阈值与信号可用阈值时,则表示可以通过对N个信号通道中的其中M个信号通道进行融合来获取到信号通道。
因此,在得到这N个信号通道的N个信号质量后,如果MCU判断出其中有M个信号通道所分别对应的M个信号质量全都小于信号可用阈值,但又都高于信号融合阈值时,那么MCU可以对满足该条件的信号通道进行融合,得到第一融合结果。
需要说明的一点是,上述提及的M为大于1且小于N的整数。
607、MCU选取第一融合结果对应的融合通道作为信号通道。
本实施例中,由于对信号质量满足均高于信号融合阈值且均小于信号可用阈值这个条件下的信号通道进行融合后,就可以直接将融合后的信号通道选取作为符合要求的信号通道了。
608、MCU确定M个信号通道融合为第一融合结果时所对应的融合权重。
本实施例中,在用户活动状态为第二活动状态时,即本周期的用户活动状态与上一周期的用户活动状态已经不相同的情况下,是不会再使用上一周期的融合权重对本周期的信号通道进行融合,若是使用了上一周期的融合权重,对于融合后得到的第一融合结果也有可能无法选取出符合要求的信号通道。
因此,在选取出第一融合结果对应的融合通道作为信号通道之后,MCU还需要进一步地确定出这M个信号通道融合为该第一融合结果时所配置或计算出的融合权重,以便于在此次选取过程中可以根据更新后的融合权重对信号通道进行融合,从而选取出符合要求的信号通道;并且,还可以在下一周期中若是确定出用户活动状态为第一活动状态,即用户活动状态未发生改变时,就可以直接使用该更新后的融合权重对信号通道进行融合了。
需要说明的一点是,对于上述的融合权重的确定可以通过更新信号通道的权重的方式进行,分别说明如下:
第一种可以通过将信号比例与信噪比成反比的方式对这M个信号质量均小于信号可用阈值且均高于信号融合阈值时所分别对应的M个信号通道的权重进行更新;或,
第二种可以通过信号比例与该M个信号质量成反比的方式对该M个信号质量均小于信号可用阈值且均高于信号融合阈值时所分别对应的M个信号通道的权重进行更新。
上述提及的信号比例是这M个信号质量满足均小于信号可用阈值且均高于信号融合阈值时的信号通道数占所有信号通道的比例,信噪比指的是原始信号与噪声信号的能量比值,若原始信号在整体信号中所占的比重越大,则信噪比越大。
需要说明的是,在上述第二种更新方式中,该信号比例与该M个信号质量的更新方式包括但不限于两者成反比,在实际应用中,还存在更多更新信号通道的权重的方法,具体此处不做限定说明。
本申请实施例中,在用户活动状态为第二活动状态,即用户活动状态已经发生改变时, 通过信号通道的融合给出了选取信号通道的方式并且确定出融合权重,避免了因用户活动状态发生了改变后无法准确地确定出信号质量而导致无法选取出符合要求的信号通道的问题,并且所确定的融合权重有助于对下一周期对信号质量的评估。
为了便于理解,下面对本申请实施例中的具体流程进行具体介绍,请参阅图7,图7为本申请实施例中提供的选取信号通道的方法的另一个实施例示意图。
701、MCU接收ACC传感器发送的加速度信息。
702、MCU根据加速度信息确定用户活动状态。
703、MCU获取上一周期的用户活动状态。
704、用户活动状态为第二活动状态时,MCU确定第二活动状态与上一周的用户活动状态不相同。
本实施例中,步骤701-704可以参照图4中的步骤401-404进行理解,具体此处不再赘述。
705、MCU评估N个信号通道对应的N个信号质量。
本实施例中,由于用户活动状态已经发生了改变,那么可以通过对N个信号通道进行信号质量的评估,每个信号通道在评估之后对应着一个信号质量。
需要说明的一点是,信号质量可以用来表示对应的信号通道的优劣程度,即可以用于指示选取信号通道。
706、在N个信号质量中至少一个高于信号可用阈值时,MCU选取第一通道。
本实施例中,信号可用阈值指的是信号质量对应的信号通道能够被直接使用的最低临界值,即只要信号质量大于信号可用阈值,就说明该信号质量对应的信号通道是可以直接使用的或是信号质量情况较优的。
因此,在评估出这N个信号通道的信号质量后,若是这N个信号质量中至少有一个高于信号可用阈值时,那么MCU则确定出这N个信号通道中满足该条件下的第一通道,并且可以直接将该第一通道作为所要选取的信号通道,也就是信号质量符合要求的信号通道,因此可以根据该信号通道向后级应用传输数据,如:假设传输有关于心脏方面的信息、睡眠方面的信息等等,使得后级应用获取到更多的信息并最大程度的全面分析出用户的健康问题。
需要说明的是,相对于其他同样满足该高于信号可用阈值这个条件下的信号质量,该第一通道的信号质量是符合要求的。
本申请实施例中,在用户活动状态为第二活动状态,即用户活动状态已经发生改变时,通过直接选取的方式来选取信号通道的方式,避免了因用户活动状态发生了改变后无法准确地确定出信号质量而导致无法选取出符合要求的信号通道的问题。
为了便于理解,下面对本申请实施例中的具体流程进行具体介绍,请参阅图8,图8为本申请实施例中提供的选取信号通道的方法的另一个实施例示意图。
801、MCU接收ACC传感器发送的加速度信息。
802、MCU根据加速度信息确定用户活动状态。
803、MCU获取上一周期的用户活动状态。
804、用户活动状态为第二活动状态时,MCU确定第二活动状态与上一周的用户活动状 态不相同。
本实施例中,步骤801-804可以参照图4中的步骤401-404进行理解,具体此处不再赘述。
805、MCU评估N个信号通道对应的N个信号质量。
本实施例中,由于用户活动状态已经发生了改变,那么可以通过对N个信号通道进行信号质量的评估,每个信号通道在评估之后对应着一个信号质量。
需要说明的一点是,信号质量可以用来表示对应的信号通道的优劣程度,即可以用于指示选取信号通道。
806、在N个信号质量均低于信号调光阈值时,MCU根据第二活动状态与N个信号质量确定调光参数。
本实施例中,该调光参数只是针对所评估出的N个信号质量均未大于信号调光阈值所对应的信号通道。因此还可以通过将调光参数反馈至采集装置,使得采集装置阵列在下一周期采集信号通道时,可以优先根据调光参数进行相应的信号通道的调光,以便于MCU可以评估出更加准确的信号质量。
需要说明的是,信号调光阈值表示的是只要信号通道对应的信号质量低于该信号调光阈值,则表明该信号质量对应的信号通道只有重新通过采集装置进行相应的调光之后才有可能采集到信号质量较优的信号通道。
本申请实施例中,在用户活动状态为第二活动状态,即用户活动状态已经发生改变时,通过确定出信号通道的调光参数,有利于采集装置根据调光参数对信号通道进行调光,并且提高了MCU在下一周期对信号质量的评估精确度。
上述图4-图8分别主要从信号质量满足不同的条件来介绍了用户活动状态为第二活动状态时选取信号通道的情况,下面主要介绍用户活动状态为第一活动状态时选取信号通道的情况。
在用户活动状态为第一活动状态时,还可以从两个方面来选取信号通道,下面分别进行介绍:
1、针对上一周期所使用的信号通道
为了便于理解,下面对本申请实施例中的具体流程进行具体介绍,请参阅图9,图9为本申请实施例中提供的选取信号通道的方法的另一个实施例示意图。
901、MCU接收ACC传感器发送的加速度信息。
902、MCU根据加速度信息确定用户活动状态。
本实施例中,步骤901-902可以参照图2中的步骤201-202进行理解,具体此处不再赘述。
903、MCU获取上一周期的用户活动状态。
本实施例中,要想判断出本周期的用户活动状态是否发生了改变,必须要知道上一周期的用户活动状态是处于什么状态下,因此需要MCU获取上一周期的用户活动状态。
904、用户活动状态为第一活动状态时,MCU确定第一活动状态与上一周的用户活动状态相同。
本实施例中,第一活动状态实际上指代的是用户活动状态与上一周的用户活动状态相 同的情况。如:上一周期的活动状态为静止状态,本周期的用户活动状态为静止状态,说明用户活动状态仍然没有发生改变,那么得到此时的第一活动状态,并且可以获知本周期的用户活动状态则为静止状态。
905、MCU获取第二通道,第二通道为上一周期所使用的信号通道。
本实施例中,由于第一活动状态指代的是用户活动状态与上一周的用户活动状态相同的情况,那么就说明了本周期在很大程度上可以继续使用上一周期所使用的信号通道,所以MCU需要获取出第二通道,即上一周期所使用的信号通道。
906、MCU评估第二通道的信号质量。
本实施例中,为了保证本周期所选取的信号通道的信号质量是符合要求的,所以在考虑了延用第二通道后,仍然需要对该第二通道进行相应的信号质量的评估,从最终评估出的信号质量来判断是否可以继续使用该第二通道。
907、在第二通道的信号质量高于信号可用阈值时,MCU选取第二通道作为信号通道。
本实施例中,信号可用阈值指的是信号质量对应的信号通道能够被直接使用的最低临界值,即只要信号质量大于信号可用阈值,就说明该信号质量对应的信号通道是可以直接使用的或是信号质量情况较优的。
因此,在第二通道的信号质量高于信号可用阈值时,MCU直接选取第二通道作为本周期所使用的信号通道,则可以根据该信号通道向后级应用传输数据,如:假设传输有关于心脏方面的信息、睡眠方面的信息等等,使得后级应用获取到更多的信息并最大程度的全面分析出用户的健康问题。
本申请实施例中,在用户活动状态为第一活动状态,即用户活动状态未发生改变时,结合对上一周期所使用的信号通道进行质量评估给出了选取信号通道的方式避免了因用户活动状态未发生改变无法准确地确定出信号质量而导致无法选取出符合要求的信号通道的问题,并且采用上一周期所使用的信号通道这种方式,减少了平均计算量。
为了便于理解,下面对本申请实施例中的具体流程进行具体介绍,请参阅图10,图10为本申请实施例中提供的选取信号通道的方法的另一个实施例示意图。
1001、MCU接收ACC传感器发送的加速度信息。
1002、MCU根据加速度信息确定用户活动状态。
1003、MCU获取上一周期的用户活动状态。
1004、用户活动状态为第一活动状态时,MCU确定第一活动状态与上一周的用户活动状态相同。
本实施例中,步骤1001-1004可以参照图9中的步骤901-904进行理解,具体此处不再赘述。
1005、MCU获取第二通道,第二通道为上一周期所使用的信号通道。
本实施例中,由于第一活动状态指代的是用户活动状态与上一周的用户活动状态相同的情况,那么就说明了本周期在很大程度上可以继续使用上一周期所使用的信号通道,所以MCU需要获取出第二通道,即上一周期所使用的信号通道。
1006、MCU评估第二通道的信号质量。
本实施例中,为了保证本周期所选取的信号通道的信号质量是符合要求的,所以在考 虑了延用第二通道后,仍然需要对该第二通道进行相应的信号质量的评估,从最终评估出的信号质量来判断是否可以继续使用该第二通道。
1007、在第二通道的信号质量低于信号可用阈值时,MCU根据第一活动状态与第二通道的信号质量确定调光参数。
本实施例中,信号可用阈值指的是信号质量对应的信号通道能够被直接使用的最低临界值,即只要信号质量大于信号可用阈值,就说明该信号质量对应的信号通道是可以直接使用的或是信号质量情况较优的。在本实施例中对于只需要对一个信号通道的进行评估时,可以直接使用信号可用阈值作为判断条件,因此,在确定出第二通道的信号质量低于信号可用阈值时,也就是确定出第二通道已经无法适用于本周期,所以需要MCU根据第一活动状态与第二通道的信号质量确定调光参数,通过将调光参数反馈至采集装置,使得采集装置阵列在下一周期采集信号通道时,可以优先根据调光参数进行相应的信号通道的调光,以便于MCU可以评估出更加准确的信号质量。
本申请实施例中,在用户活动状态为第一活动状态,即用户活动状态未发生改变时,通过确定出上一周期的信号通道的调光参数,有利于采集装置根据调光参数对信号通道在有必要时进行调光,减少了频繁调光对于数据连续性的影响,并且提高了MCU在下一周期对信号质量的评估精确度。
为了便于理解,下面对本申请实施例中的具体流程进行具体介绍,请参阅图11,图11为本申请实施例中提供的选取信号通道的方法的另一个实施例示意图。
1101、MCU接收ACC传感器发送的加速度信息。
1102、MCU根据加速度信息确定用户活动状态。
1103、MCU获取上一周期的用户活动状态。
1104、用户活动状态为第一活动状态时,MCU确定第一活动状态与上一周的用户活动状态相同。
本实施例中,步骤1101-1104可以参照图10中的步骤1001-1004进行理解,具体此处不再赘述。
1105、MCU获取第二通道,第二通道为上一周期所使用的信号通道。
本实施例中,由于第一活动状态指代的是用户活动状态与上一周的用户活动状态相同的情况,那么就说明了本周期在很大程度上可以继续使用上一周期所使用的信号通道,所以MCU需要获取出第二通道,即上一周期所使用的信号通道。
1106、MCU评估第二通道的信号质量。
本实施例中,为了保证本周期所选取的信号通道的信号质量是符合要求的,所以在考虑了延用第二通道后,仍然需要对该第二通道进行相应的信号质量的评估,从最终评估出的信号质量来判断是否可以继续使用该第二通道。
1107、在第二通道的信号质量低于信号可用阈值时,MCU评估N个信号通道中任意M个信号通道所对应的M个信号质量。
本实施例中,对于只需要对一个信号通道的进行评估时,可以直接使用信号可用阈值作为判断条件,若是大于信号可用阈值则可以直接使用第二通道,若是小于信号可用阈值则不能直接使用第二通道。
因此,在本实施例中确定出第二通道的信号质量低于信号可用阈值时,也就是确定出第二通道已经无法适用于本周期,那么想要使用融合等方式选取信号通道,就需要MCU对所提及的N个信号通道中的任意M个信号通道进行信号质量的评估,因为此时用户活动状态处于未改变时,所以有很多信号通道的信号质量仍然也没有改变,因此只需要部分地评估出所有的N个信号通道中的任意M个信号通道所对应的M个信号质量即可,从而根据这M个信号质量来选取所需要的符合要求的信号通道。
需要说明的是,所提及的M为大于1且小于N的整数。
1108、在M个信号质量中至少一个高于信号可用阈值时,MCU选取第三通道。
本实施例中,信号可用阈值指的是信号质量对应的信号通道能够被直接使用的最低临界值,即只要信号质量大于信号可用阈值,就说明该信号质量对应的信号通道是可以直接使用的或是信号质量情况较优的。
因此,在评估出这M个信号通道的信号质量后,若是这M个信号质量中至少有一个高于信号可用阈值时,那么MCU则确定出这M个信号通道中满足该条件下的第三通道,并且可以直接将该第三通道作为所要选取的信号通道,也就是信号质量符合要求的信号通道,因此可以根据该信号通道向后级应用传输数据,如:假设传输有关于心脏方面的信息、睡眠方面的信息等等,使得后级应用获取到更多的信息并最大程度的全面分析出用户的健康问题。
需要说明的是,相对于其他同样满足该高于信号可用阈值这个条件下的信号质量,该第三通道的信号质量是符合要求的。
本申请实施例中,在用户活动状态为第一活动状态,即用户活动状态未发生改变时,通过直接选取的方式给出了选取信号通道的方式,避免了因用户活动状态未发生改变也无法准确地确定出信号质量而导致无法选取出符合要求的信号通道的问题,并且只需要在部分信号通道中评估并选取,降低必要的平均计算量。
为了便于理解,下面对本申请实施例中的具体流程进行具体介绍,请参阅图12,图12为本申请实施例中提供的选取信号通道的方法的另一个实施例示意图。
1201、MCU接收ACC传感器发送的加速度信息。
1202、MCU根据加速度信息确定用户活动状态。
1203、MCU获取上一周期的用户活动状态。
1204、用户活动状态为第一活动状态时,MCU确定第一活动状态与上一周的用户活动状态相同。
1205、MCU获取第二通道,第二通道为上一周期所使用的信号通道。
本实施例中,步骤1201-1205可以参照图11中的步骤1101-1105进行理解,具体此处不再赘述。
1206、MCU评估第二通道的信号质量。
本实施例中,为了保证本周期所选取的信号通道的信号质量是符合要求的,所以在考虑了延用第二通道后,仍然需要对该第二通道进行相应的信号质量的评估,从最终评估出的信号质量来判断是否可以继续使用该第二通道。
1207、在第二通道的信号质量低于信号可用阈值时,MCU评估N个信号通道中任意M个信 号通道所对应的M个信号质量。
本实施例中,对于只需要对一个信号通道的进行评估时,可以直接使用信号可用阈值作为判断条件,若是大于信号可用阈值则可以直接使用第二通道,若是小于信号可用阈值则不能直接使用第二通道。
因此,在本实施例中确定出第二通道的信号质量低于信号可用阈值时,也就是确定出第二通道已经无法适用于本周期,那么想要使用融合等方式选取信号通道,就需要MCU对所提及的N个信号通道中的任意M个信号通道进行信号质量的评估,因为此时用户活动状态处于未改变时,所以有很多信号通道的信号质量仍然也没有改变,因此只需要部分地评估出所有的N个信号通道中的任意M个信号通道所对应的M个信号质量即可,从而根据这M个信号质量来选取所需要的符合要求的信号通道。
需要说明的是,所提及的M为大于1且小于N的整数。
1208、在M个信号质量均高于信号融合阈值且均小于信号可用阈值时,MCU融合M个信号通道,以得到第二融合通道。
本实施例中,信号可用阈值大于信号融合阈值。其中,信号可用阈值指的是信号质量对应的信号通道能够被直接使用的最低临界值,即只要信号质量大于信号可用阈值,就说明该信号质量对应的信号通道是可以直接使用的或是信号质量情况较优的;而信号融合阈值则表示如果信号质量情况较差时,也就是低于该信号融合阈值时信号通道进行融合也无法选取出符合要求的信号通道;介于信号融合阈值与信号可用阈值时,则表示可以通过对N个信号通道中的其中M个信号通道进行融合来获取到信号通道。
因此,在MCU判断出其中任意有M个信号通道所分别对应的M个信号质量全都小于信号可用阈值,但又都高于信号融合阈值时,那么MCU可以对满足该条件的信号通道进行融合,得到第二融合结果。
需要说明的是,所提及的M为大于1且小于N的整数。
1209、MCU选取第二融合结果对应的融合通道作为信号通道。
本实施例中,由于对信号质量满足均高于信号融合阈值且均小于信号可用阈值这个条件下的信号通道进行融合后,就可以直接将融合后的信号通道选取作为符合要求的信号通道了,因此可以根据该信号通道向后级应用传输数据,如:假设传输有关于心脏方面的信息、睡眠方面的信息等等,使得后级应用获取到更多的信息并最大程度的全面分析出用户的健康问题。
本申请实施例中,在用户活动状态为第一活动状态,即用户活动状态未发生改变时,通过信号通道的融合给出了选取信号通道的方式,避免了因用户活动状态未发生改变也无法准确地确定出信号质量而导致无法选取出符合要求的信号通道的问题,并且只需要在必要的时候进行信号通道的融合,保证了该维信号的可靠性。
为了便于理解,下面对本申请实施例中的具体流程进行具体介绍,请参阅图13,图13为本申请实施例中提供的选取信号通道的方法的另一个实施例示意图。
1301、MCU接收ACC传感器发送的加速度信息。
1302、MCU根据加速度信息确定用户活动状态。
1303、MCU获取上一周期的用户活动状态。
1304、用户活动状态为第一活动状态时,MCU确定第一活动状态与上一周的用户活动状态相同。
1305、MCU获取第二通道,第二通道为上一周期所使用的信号通道。
本实施例中,步骤1301-1305可以参照图11中的步骤1101-1105进行理解,具体此处不再赘述。
1306、MCU评估第二通道的信号质量。
本实施例中,为了保证本周期所选取的信号通道的信号质量是符合要求的,所以在考虑了延用第二通道后,仍然需要对该第二通道进行相应的信号质量的评估,从最终评估出的信号质量来判断是否可以继续使用该第二通道。
1307、在第二通道的信号质量低于信号可用阈值时,MCU评估N个信号通道中任意M个信号通道所对应的M个信号质量。
本实施例中,对于只需要对一个信号通道的进行评估时,可以直接使用信号可用阈值作为判断条件,若是大于信号可用阈值则可以直接使用第二通道,若是小于信号可用阈值则不能直接使用第二通道。
因此,在本实施例中确定出第二通道的信号质量低于信号可用阈值时,也就是确定出第二通道已经无法适用于本周期,那么想要使用融合等方式选取信号通道,就需要MCU对所提及的N个信号通道中的任意M个信号通道进行信号质量的评估,因为此时用户活动状态处于未改变时,所以有很多信号通道的信号质量仍然也没有改变,因此只需要部分地评估出所有的N个信号通道中的任意M个信号通道所对应的M个信号质量即可,从而根据这M个信号质量来选取所需要的符合要求的信号通道。
需要说明的是,所提及的M为大于1且小于N的整数。
1308、在M个信号质量均低于信号调光阈值时,MCU根据第一活动状态与M个信号质量确定调光参数。
本实施例中,信号调光阈值表示的是只要信号通道对应的信号质量低于该信号调光阈值,则表明该信号质量对应的信号通道只有重新通过采集装置进行相应的调光之后才有可能采集到信号质量较优的信号通道。
因此,在该调光参数只是针对所评估出的M个信号质量均未大于信号调光阈值所对应的信号通道。因此还可以通过将调光参数反馈至采集装置,使得采集装置阵列在下一周期采集信号通道时,可以优先根据调光参数对这M个信号通道进行相应的调光,以便于采集装置能够优化采集信号通道的模式,从而获取到质量更理想的信号。
本申请实施例中,在用户活动状态为第一活动状态,即用户活动状态未发生改变时,通过确定出M个信号通道的调光参数,有利于采集装置根据调光参数对该M个信号通道在有必要时进行调光,减少了频繁调光对于数据连续性的影响,并且提高了MCU在下一周期对信号质量的评估精确度。
2、针对上一周期所使用的融合结果
为了便于理解,下面对本申请实施例中的具体流程进行具体介绍,请参阅图14,图14为本申请实施例中提供的选取信号通道的方法的另一个实施例示意图。
1401、MCU接收ACC传感器发送的加速度信息。
1402、MCU根据加速度信息确定用户活动状态。
1403、MCU获取上一周期的用户活动状态。
1404、用户活动状态为第一活动状态时,MCU确定第一活动状态与上一周的用户活动状态相同。
本实施例中,步骤1401-1404可以参照图9中的步骤901-904进行理解,具体此处不再赘述。
1405、MCU获取第三融合结果,第三融合结果是上一周期对N个信号通道中的任意M个信号通道进行融合的结果。
本实施例中,第一活动状态指代的是用户活动状态与上一周的用户活动状态相同的情况,那么就说明了上一周期用于采集信号通道的参数、特征信息等基本没有发生变化,因此本周期在很大程度上可以继续使用上一周期所使用的融合结果,即第三融合结果,当然,第三融合结果是在上一周期中MCU对那些信号质量高于信号融合阈值但都低于信号融合阈值时进行融合得到的结果。
1406、MCU选取第三融合结果作为信号通道。
本实施例中,在获取了第三融合结果后,可以将该第三融合结果作为本周期的信号通道即可,由于用户活动状态为第一活动状态,即用户活动状态与上一周期的用户活动状态相同,因此在本实施例中不需要再进行一次对这个结果所对应的信号通道进行信号质量的评估。
本申请实施例中,在用户活动状态为第一活动状态,即用户活动状态未发生改变时,通过确定出上一周期的融合结果给出了选取信号通道的方式,避免了因用户活动状态未发生改变也无法准确地确定出信号质量而导致无法选取出符合要求的信号通道的问题,并且有利于减少平均计算量,降低平均功耗等。
上述实施例主要从可穿戴智能设备并非首次运行时进行了介绍,下面对可穿戴智能设备在首次运行时做介绍。为了便于理解,下面对本申请实施例中的具体流程进行具体介绍,请参阅图15,图15为本申请实施例中提供的选取信号通道的方法的另一个实施例示意图。
1501、MCU接收ACC传感器发送的加速度信息。
本实施例中,由于N个信号通道的信号质量可能会随着用户活动状态的改变而发生变化,因此通过ACC传感器获取加速度信息,可以确定用户的活动状态是否发生变化,进一步确定是否需要选取其他信号通道。所提及的加速度信息可以是加速度实时状态、加速度速率等,该加速度信息可以用来指示用户活动状态。例如:假设可穿戴智能设备为智能眼镜,则通过ACC传感器获取的信息则为头部的加速度信息,具体此处不做限定。由于ACC传感器具备获取加速度信息的功能,如:加速度实时状态、加速度速率等信息,而对于根据该加速度信息对用户活动状态进行判断与确定等操作均是由MCU来进行的,因此在ACC传感器获取加速度信息后会向MCU发送所获取的加速度信息,使其MCU能够接收到该加速度信息,从而根据加速度信息确定出用户活动状态是处于静止、微动还是运动中的哪一种状态。
需要说明的一点,上述提及的静止可以是指用户的肢体或脑部等身体部位的动作在某 一段时期内处于基本不变状态,如:睡眠等;所提及的微动可以是指用户的肢体或脑部等身体部位的动作在一段时期内发生了幅度较弱的变化或者是频率的变化较小,如:轻推、慢走等;所提及的运动可以是指用户的肢体或脑部等身体部位的动作在一段时期内发生了幅度较大的变化或者是频率的变化较大,如:深蹲、引体向上、跳绳等。
进一步需要说明的是,在该MCU接收ACC传感器发送的加速度信息的同时,还可以接收采集装置对N个信号通道进行采集的信号,目的是为了让MCU能够对这些N个信号通道评估出相应的信号质量,对于采集装置所采集的N个信号通道的信号,即每个采集装置采集一个信号通道对应的同一维度的信号,其中,N为大于0的整数。
1502、MCU根据加速度信息确定用户活动状态。
本实施例中,若是可穿戴智能设备是首次运行,也就是用户第一次使用可穿戴智能设备评估信道质量时,则不管用户活动状态处于哪种状态下,也都需要MCU先确定初始用户活动状态,此时的初始用户状态可以用来指示MCU确定下一周期的用户活动状态是否变化,即确定用户活动状态为第一活动状态还是第二活动状态。
1503、MCU评估N个信号通道对应的N个信号质量,以用于选取信号通道,并记录初始用户活动状态。
本实施例中,在MCU接收了加速度信息后,需要进一步地确定出该用户是否是第一次使用可穿戴智能设备进行信号质量的评估,如果确定是首次使用,那么就需要先评估所有的信号通道,即评估N个信号通道对应的N个信号质量,一个信号通道对应一个信号质量,从而根据这N个信号质量来选取信号通道。并且在评估的同时还需要MCU记录下初始用户活动状态,该初始用户活动状态可以用来作为MCU确定下一周期的用户活动状态是否发生变化的一个基本判断条件。
1504、在N个信号质量中至少一个高于信号可用阈值时,MCU选取第四通道。
本实施例中,信号可用阈值指的是信号质量对应的信号通道能够被直接使用的最低临界值,即只要信号质量大于信号可用阈值,就说明该信号质量对应的信号通道是可以直接使用的或是信号质量情况较优的。
因此,在评估出这N个信号通道的信号质量后,若是这N个信号质量中至少有一个高于信号可用阈值时,那么MCU则确定出这N个信号通道中满足该条件下的第四通道,并且可以直接将该第四通道作为所要选取的信号通道,也就是信号质量符合要求的信号通道。
需要说明的是,相对于其他同样满足该高于信号可用阈值这个条件下的信号质量,该第四通道的信号质量是符合要求的。
可选地,1505、在N个信号质量均低于信号调光阈值时,MCU根据初始用户活动状态与N个信号质量对N个信号通道确定调光参数。
本实施例中,该调光参数只是针对所评估出的N个信号质量均未大于信号调光阈值所对应的信号通道。因此通过将调光参数反馈至采集装置,使得采集装置在下一周期或者是本周期中采集信号通道时,可以优先根据调光参数进行相应的信号通道的调光,以便于MCU可以评估出更加准确的信号质量。
需要说明的是,本实施例中的调光参数可以是对N个信号通道或者是任意其中一个信号通道进行调光。
进一步需要说明的是,信号调光阈值表示的是只要信号通道对应的信号质量低于该信号调光阈值,则表明该信号质量对应的信号通道只有重新通过采集装置进行相应的调光之后才有可能采集到信号质量较优的信号通道。
本申请实施例中,通过对所有的信号通道进行评估给出了在可穿戴智能设备首次运行时选取信号通道的方式,避免了因用户活动状态未发生改变也无法准确地确定出信号质量而导致无法选取出符合要求的信号通道的问题。
下面对本实施例中的可穿戴智能设备160进行介绍,如图16所示,是本申请实施例提供的一种可穿戴智能设备160的结构示意图,该可穿戴智能设备160可因配置或性能不同而产生比较大的差异,可以包括N个信号通道1604、一个或一个以上处理器(central processing units,CPU)1601和存储器1602,一个或一个以上存储应用程序或数据的存储介质1603(例如一个或一个以上海量存储设备)、和加速度ACC传感器1605。其中,存储器1602和存储介质1603可以是短暂存储或持久存储。更进一步地,可穿戴智能设备160可以设置为与存储介质1603通信,可穿戴智能设备160用于执行存储介质1603中的应用程序,具体地,当所述一个或者多个程序被所述可穿戴智能设备160执行时,使得所述可穿戴智能设备160执行以下步骤:
接收所述加速度ACC传感器发送的加速度信息;
根据所述加速度信息确定用户活动状态;
所述用户活动状态为第一活动状态时,根据所述第一活动状态选取信号通道。
在本发明的一些实施例中,上述所描述的N个信号通道中的每一个由采集装置和接收装置构成。
在本申请的一些实施例中,可穿戴智能设备160还用于,在根据该加速度信息确定用户活动状态之后,该用户活动状态为第二活动状态时,根据该第二活动状态选取信号通道,该第二活动状态与该第一活动状态不相同。
在本申请的一些实施例中,可穿戴智能设备160还用于,在根据该第二活动状态选取信号通道之前,获取上一周期的用户活动状态;确定该第二活动状态与该上一周期的用户活动状态不相同。
在本申请的一些实施例中,可穿戴智能设备160还用于,在该MCU根据该第二活动状态选取信号通道之前,评估该N个信号通道对应的N个信号质量。
在本申请的一些实施例中,可穿戴智能设备160还用于,在该N个信号质量均低于信号融合阈值时,确定该N个信号通道不可用。
在本申请的一些实施例中,可穿戴智能设备160还用于,在该N个信号质量中的任意M个信号质量均高于信号融合阈值且均小于信号可用阈值时,融合该M个信号质量对应的M个信号通道,以得到第一融合结果,其中,该信号融合阈值小于该信号可用阈值,该M为大于1且小于N的整数;选取该第一融合结果作为该信号通道。
在本申请的一些实施例中,可穿戴智能设备160还用于,在该N个信号质量中至少一个高于信号可用阈值时,选取第一通道,该第一通道的信号质量优于其他通道的信号质量。
在本申请的一些实施例中,可穿戴智能设备160还用于,在选取该第一融合结果作为该信号通道之后,确定该M个信号通道融合为该第一融合结果时所对应的融合权重,该融合权 重用于本周期或下一周期对该M个信号通道进行融合。
在本申请的一些实施例中,可穿戴智能设备160还用于,在该N个信号质量均低于信号调光阈值时,根据该第二活动状态与该N个信号质量确定调光参数,该调光参数用于指示该采集装置对该N个信号通道进行信号的采集。
在本申请的一些实施例中,可穿戴智能设备160还用于,在根据该第一活动状态选取信号通道之前,获取上一周期的用户活动状态;确定该第一活动状态与该上一周的用户活动状态相同。
在本申请的一些实施例中,可穿戴智能设备160还用于,在根据该第一活动状态选取信号通道之前,获取第二通道,该第二通道为上一周期所使用的信号通道;评估该第二通道的信号质量,该第二通道的信号质量用于指示选取该信号通道。
在本申请的一些实施例中,可穿戴智能设备160还用于,在该第二通道的信号质量高于信号可用阈值时,选取该第二通道作为该信号通道。
在本申请的一些实施例中,可穿戴智能设备160还用于,在该第二通道的信号质量低于信号可用阈值时,根据该第一活动状态与该第二通道的信号质量确定调光参数,该调光参数用于指示该采集装置对该第二通道进行信号的采集。
在本申请的一些实施例中,可穿戴智能设备160还用于,在该第二通道的信号质量低于信号可用阈值时,评估该N个信号通道中的任意M个信号通道所对应的M个信号质量,以用于选取该信号通道,其中,该M为大于1且小于该N的整数。
在本申请的一些实施例中,可穿戴智能设备160还用于,该处理器具体用于执行如下步骤:在该M个信号质量中至少一个高于该信号可用阈值时,选取第三通道,该第三通道的信号质量优于其他信道的信号质量。
在本申请的一些实施例中,可穿戴智能设备160还用于,该处理器具体用于执行如下步骤:在该M个信号质量均高于信号融合阈值且均小于该信号可用阈值时,该MCU融合该M个信号通道,以得到第二融合结果;选取该第二融合结果作为该信号通道。
在本申请的一些实施例中,可穿戴智能设备160还用于,在该M个信号质量均低于信号调光阈值时,根据该第一活动状态与该M个信号质量确定调光参数,该调光参数用于指示该采集装置对该M个信号通道进行信号的采集。
在本申请的一些实施例中,可穿戴智能设备160还用于,该处理器具体用于执行如下步骤:获取第三融合结果,该第三融合结果是上一周期对该N个信号通道中的任意M个信号通道进行融合的结果;选取该第三融合结果作为该信号通道。
在本申请的一些实施例中,可穿戴智能设备160还用于,该处理器还用于执行如下步骤:在根据该加速度信息确定用户活动状态之后,评估该N个信号通道对应的N个信号质量,以用于选取该信号通道,并记录初始用户活动状态,该初始用户活动状态用于指示确定下一周期的该用户活动状态是否变化。
在本申请的一些实施例中,可穿戴智能设备160还用于,该处理器具体用于执行如下步骤:在该N个信号质量中至少一个高于信号可用阈值时,选取该第四通道,该第四通道的信号质量优于其他信道的信号质量。
在本申请的一些实施例中,可穿戴智能设备160还用于,该处理器具体用于执行如下步 骤:在该N个信号质量均低于信号调光阈值时,根据该初始用户活动状态与该N个信号质量对该N个信号通道确定调光参数,该调光参数用于指示在本周期或下一周期对该N个信号通道或任意一个信号通道进行调光。
本实施例中,通过可穿戴智能设备160接收加速度信息,使得能够根据该加速度信息确定出用户活动状态,从而使得在用户活动状态为第一活动状态,即用户活动状态未发生改变时,可穿戴智能设备160依旧可以根据第一活动状态选取出信号质量符合要求的信号通道,避免了因无法准确地评估出信号质量而导致无法选取出符合要求的信号通道的问题。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的可穿戴智能设备,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例上述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上上述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (46)

  1. 一种选取信号通道的方法,其特征在于,所述方法应用于可穿戴智能设备,所述可穿戴智能设备包括微控制单元MCU、N个信号通道和加速度ACC传感器,N为大于1的整数,所述方法包括:
    所述MCU接收所述ACC传感器发送的加速度信息;
    所述MCU根据所述加速度信息确定用户活动状态;
    所述用户活动状态为第一活动状态时,所述MCU根据所述第一活动状态选取信号通道。
  2. 根据权利要求1所述的方法,其特征在于,所述N个信号通道中的每一个由采集装置和接收装置构成。
  3. 根据权利要求2所述的方法,其特征在于,在所述MCU根据所述加速度信息确定用户活动状态之后,所述方法还包括:
    所述用户活动状态为第二活动状态时,所述MCU根据所述第二活动状态选取信号通道,所述第二活动状态与所述第一活动状态不相同。
  4. 根据权利要求3所述的方法,其特征在于,在所述MCU根据所述第二活动状态选取信号通道之前,所述方法还包括:
    所述MCU获取上一周期的用户活动状态;
    所述MCU确定所述第二活动状态与所述上一周期的用户活动状态不相同。
  5. 根据权利要求4所述的方法,其特征在于,在所述MCU根据所述第二活动状态选取信号通道之前,所述方法还包括:
    所述MCU评估所述N个信号通道对应的N个信号质量。
  6. 根据权利要求5所述的方法,其特征在于,所述MCU根据所述第二活动状态选取信号通道,包括:
    在所述N个信号质量均低于信号融合阈值时,所述MCU确定所述N个信号通道不可用。
  7. 根据权利要求5所述的方法,其特征在于,所述MCU根据所述第二活动状态选取信号通道,包括:
    在所述N个信号质量中的任意M个信号质量均高于信号融合阈值且均小于信号可用阈值时,所述MCU融合所述M个信号质量对应的M个信号通道,以得到第一融合结果,其中,所述信号融合阈值小于所述信号可用阈值,所述M为大于1且小于N的整数;
    所述MCU选取所述第一融合结果作为所述信号通道。
  8. 根据权利要求5所述的方法,其特征在于,所述MCU根据所述第二活动状态选取信号通道,包括:
    在所述N个信号质量中至少一个高于信号可用阈值时,所述MCU选取第一通道,所述第一通道的信号质量优于其他通道的信号质量。
  9. 根据权利要求7所述的方法,其特征在于,在选取所述第一融合结果作为所述信号通道之后,所述方法还包括:
    所述MCU确定所述M个信号通道融合为所述第一融合结果时所对应的融合权重,所述融合权重用于本周期或下一周期对所述M个信号通道进行融合。
  10. 根据权利要求5所述的方法,其特征在于,所述MCU根据所述第二活动状态选取信号通道,包括:
    在所述N个信号质量均低于信号调光阈值时,所述MCU根据所述第二活动状态与所述N个信号质量确定调光参数,所述调光参数用于指示所述采集装置对所述N个信号通道进行信号的采集。
  11. 根据权利要求2所述的方法,其特征在于,在所述MCU根据所述第一活动状态选取信号通道之前,所述方法还包括:
    所述MCU获取上一周期的用户活动状态;
    所述MCU确定所述第一活动状态与所述上一周的用户活动状态相同。
  12. 根据权利要求11所述的方法,其特征在于,在所述MCU根据所述第一活动状态选取信号通道之前,所述方法还包括:
    所述MCU获取第二通道,所述第二通道为上一周期所使用的信号通道;
    所述MCU评估所述第二通道的信号质量,所述第二通道的信号质量用于指示选取所述信号通道。
  13. 根据权利要求12所述的方法,其特征在于,所述MCU根据所述第一活动状态选取信号通道,包括:
    在所述第二通道的信号质量高于信号可用阈值时,所述MCU选取所述第二通道作为所述信号通道。
  14. 根据权利要求12所述的方法,其特征在于,所述MCU根据所述第一活动状态选取信号通道,包括:
    在所述第二通道的信号质量低于信号可用阈值时,所述MCU根据所述第一活动状态与所述第二通道的信号质量确定调光参数,所述调光参数用于指示所述采集装置对所述第二通道进行信号的采集。
  15. 根据权利要求12所述的方法,其特征在于,所述MCU根据所述第一活动状态选取信号通道,包括:
    在所述第二通道的信号质量低于信号可用阈值时,所述MCU评估所述N个信号通道中的任意M个信号通道所对应的M个信号质量,以用于选取所述信号通道,其中,所述M为大于1且小于所述N的整数。
  16. 根据权利要求15所述的方法,其特征在于,所述MCU评估所述N个信号通道中的任意M个信号通道所对应的M个信号质量,以用于选取所述信号通道,包括:
    在所述M个信号质量中至少一个高于所述信号可用阈值时,所述MCU选取第三通道,所述第三通道的信号质量优于其他信道的信号质量。
  17. 根据权利要求15所述的方法,其特征在于,所述MCU评估所述N个信号通道中的任意M个信号通道所对应的M个信号质量,以用于选取所述信号通道,包括:
    在所述M个信号质量均高于信号融合阈值且均小于所述信号可用阈值时,所述MCU融合所述M个信号通道,以得到第二融合结果;
    所述MCU选取所述第二融合结果作为所述信号通道。
  18. 根据权利要求15所述的方法,其特征在于,所述MCU评估所述N个信号通道中的任意M个信号通道所对应的M个信号质量,以用于选取所述信号通道,包括:
    在所述M个信号质量均低于信号调光阈值时,所述MCU根据所述第一活动状态与所述M 个信号质量确定调光参数,所述调光参数用于指示所述采集装置对所述M个信号通道进行信号的采集。
  19. 根据权利要求11所述的方法,其特征在于,所述MCU根据所述第一活动状态选取信号通道,包括:
    所述MCU获取第三融合结果,所述第三融合结果是上一周期对所述N个信号通道中的任意M个信号通道进行融合的结果;
    所述MCU选取所述第三融合结果作为所述信号通道。
  20. 根据权利要求2所述的方法,其特征在于,在所述MCU根据所述加速度信息确定用户活动状态之后,所述方法还包括:
    所述MCU评估所述N个信号通道对应的N个信号质量,以用于选取所述信号通道,并记录初始用户活动状态,所述初始用户活动状态用于指示所述MCU确定下一周期的所述用户活动状态是否变化。
  21. 根据权利要求20所述的方法,其特征在于,所述MCU评估所述N个信号通道对应的N个信号质量,以用于选取所述信号通道,包括:
    在所述N个信号质量中至少一个高于信号可用阈值时,所述MCU选取所述第四通道,所述第四通道的信号质量优于其他信道的信号质量。
  22. 根据权利要求20所述的方法,其特征在于,所述MCU评估所述N个信号通道对应的N个信号质量,以用于选取所述信号通道,包括:
    在所述N个信号质量均低于信号调光阈值时,所述MCU根据所述初始用户活动状态与所述N个信号质量对所述N个信号通道确定调光参数,所述调光参数用于指示所述MCU在本周期或下一周期对所述N个信号通道或任意一个信号通道进行调光。
  23. 一种可穿戴智能设备,其特征在于,包括:处理器、存储器、N个信号通道、加速度ACC传感器和一个或多个程序,N为大于1的整数,其中所述一个或多个程序被存储在所述存储器中,当所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:
    接收所述加速度ACC传感器发送的加速度信息;
    根据所述加速度信息确定用户活动状态;
    所述用户活动状态为第一活动状态时,根据所述第一活动状态选取信号通道。
  24. 根据权利要求23所述的可穿戴智能设备,其特征在于,所述N个信号通道中的每一个由采集装置和接收装置构成。
  25. 根据权利要求24所述的可穿戴智能设备,其特征在于,当所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:
    在根据所述加速度信息确定用户活动状态之后,所述用户活动状态为第二活动状态时,根据所述第二活动状态选取信号通道,所述第二活动状态与所述第一活动状态不相同。
  26. 根据权利要求25所述的可穿戴智能设备,其特征在于,当所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:
    在根据所述第二活动状态选取信号通道之前,获取上一周期的用户活动状态;
    确定所述第二活动状态与所述上一周期的用户活动状态不相同。
  27. 根据权利要求26所述的可穿戴智能设备,其特征在于,当所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:
    在所述MCU根据所述第二活动状态选取信号通道之前,评估所述N个信号通道对应的N个信号质量。
  28. 根据权利要求27所述的可穿戴智能设备,其特征在于,当所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:
    在所述N个信号质量均低于信号融合阈值时,确定所述N个信号通道不可用。
  29. 根据权利要求27所述的可穿戴智能设备,其特征在于,当所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:
    在所述N个信号质量中的任意M个信号质量均高于信号融合阈值且均小于信号可用阈值时,融合所述M个信号质量对应的M个信号通道,以得到第一融合结果,其中,所述信号融合阈值小于所述信号可用阈值,所述M为大于1且小于N的整数;
    选取所述第一融合结果作为所述信号通道。
  30. 根据权利要求27所述的可穿戴智能设备,其特征在于,当所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:
    在所述N个信号质量中至少一个高于信号可用阈值时,选取第一通道,所述第一通道的信号质量优于其他通道的信号质量。
  31. 根据权利要求29所述的可穿戴智能设备,其特征在于,当所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:
    在选取所述第一融合结果作为所述信号通道之后,确定所述M个信号通道融合为所述第一融合结果时所对应的融合权重,所述融合权重用于本周期或下一周期对所述M个信号通道进行融合。
  32. 根据权利要求27所述的可穿戴智能设备,其特征在于,当所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:
    在所述N个信号质量均低于信号调光阈值时,根据所述第二活动状态与所述N个信号质量确定调光参数,所述调光参数用于指示所述采集装置对所述N个信号通道进行信号的采集。
  33. 根据权利要求24所述的可穿戴智能设备,其特征在于,当所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:
    在根据所述第一活动状态选取信号通道之前,获取上一周期的用户活动状态;
    确定所述第一活动状态与所述上一周的用户活动状态相同。
  34. 根据权利要求33所述的可穿戴智能设备,其特征在于,当所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:
    在根据所述第一活动状态选取信号通道之前,获取第二通道,所述第二通道为上一周期所使用的信号通道;
    评估所述第二通道的信号质量,所述第二通道的信号质量用于指示选取所述信号通道。
  35. 根据权利要求34所述的可穿戴智能设备,其特征在于,当所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:
    在所述第二通道的信号质量高于信号可用阈值时,选取所述第二通道作为所述信号通道。
  36. 根据权利要求34所述的可穿戴智能设备,其特征在于,当所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:
    在所述第二通道的信号质量低于信号可用阈值时,根据所述第一活动状态与所述第二通道的信号质量确定调光参数,所述调光参数用于指示所述采集装置对所述第二通道进行信号的采集。
  37. 根据权利要求34所述的可穿戴智能设备,其特征在于,当所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:
    在所述第二通道的信号质量低于信号可用阈值时,评估所述N个信号通道中的任意M个信号通道所对应的M个信号质量,以用于选取所述信号通道,其中,所述M为大于1且小于所述N的整数。
  38. 根据权利要求37所述的可穿戴智能设备,其特征在于,当所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:
    在所述M个信号质量中至少一个高于所述信号可用阈值时,选取第三通道,所述第三通道的信号质量优于其他信道的信号质量。
  39. 根据权利要求37所述的可穿戴智能设备,其特征在于,当所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:
    在所述M个信号质量均高于信号融合阈值且均小于所述信号可用阈值时,所述MCU融合所述M个信号通道,以得到第二融合结果;
    选取所述第二融合结果作为所述信号通道。
  40. 根据权利要求37所述的可穿戴智能设备,其特征在于,当所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:
    在所述M个信号质量均低于信号调光阈值时,根据所述第一活动状态与所述M个信号质量确定调光参数,所述调光参数用于指示所述采集装置对所述M个信号通道进行信号的采集。
  41. 根据权利要求33所述的可穿戴智能设备,其特征在于,当所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:
    获取第三融合结果,所述第三融合结果是上一周期对所述N个信号通道中的任意M个信号通道进行融合的结果;
    选取所述第三融合结果作为所述信号通道。
  42. 根据权利要求24所述的可穿戴智能设备,其特征在于,当所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:
    在根据所述加速度信息确定用户活动状态之后,评估所述N个信号通道对应的N个信号质量,以用于选取所述信号通道,并记录初始用户活动状态,所述初始用户活动状态用于指示确定下一周期的所述用户活动状态是否变化。
  43. 根据权利要求42所述的可穿戴智能设备,其特征在于,当所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:
    在所述N个信号质量中至少一个高于信号可用阈值时,选取所述第四通道,所述第四通道的信号质量优于其他信道的信号质量。
  44. 根据权利要求42所述的可穿戴智能设备,其特征在于,当所述一个或者多个程序被所述处理器执行时,使得所述可穿戴智能设备执行以下步骤:
    在所述N个信号质量均低于信号调光阈值时,根据所述初始用户活动状态与所述N个信号质量对所述N个信号通道确定调光参数,所述调光参数用于指示在本周期或下一周期对所述N个信号通道或任意一个信号通道进行调光。
  45. 一种计算机可读存储介质,包括指令,其特征在于,当所述指令在电子设备上运行时,使得所述电子设备执行如权利要求1-22中任一项所述的方法。
  46. 一种计算机程序产品,包括指令,其特征在于,当所述指令在计算机上运行时,使得计算机执行如权利要求1-22中任一项所述的方法。
PCT/CN2020/081635 2019-03-29 2020-03-27 一种选取信号通道的方法以及可穿戴智能设备 WO2020200083A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910253208.7 2019-03-29
CN201910253208.7A CN110071734B (zh) 2019-03-29 2019-03-29 一种选取信号通道的方法以及可穿戴智能设备

Publications (1)

Publication Number Publication Date
WO2020200083A1 true WO2020200083A1 (zh) 2020-10-08

Family

ID=67366902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081635 WO2020200083A1 (zh) 2019-03-29 2020-03-27 一种选取信号通道的方法以及可穿戴智能设备

Country Status (2)

Country Link
CN (1) CN110071734B (zh)
WO (1) WO2020200083A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110071734B (zh) * 2019-03-29 2022-02-18 华为技术有限公司 一种选取信号通道的方法以及可穿戴智能设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104586391A (zh) * 2015-01-20 2015-05-06 西安电子科技大学 一种可穿戴肌电臂环
US20170245767A1 (en) * 2016-02-25 2017-08-31 Echo Labs, Inc. Systems and methods for modified pulse transit time measurement
CN109381174A (zh) * 2017-08-09 2019-02-26 三星电子株式会社 用于电子装置的方法以及电子装置
CN110071734A (zh) * 2019-03-29 2019-07-30 华为技术有限公司 一种选取信号通道的方法以及可穿戴智能设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102622085A (zh) * 2012-04-11 2012-08-01 北京航空航天大学 多维感官人机交互系统及交互方法
CN104026768A (zh) * 2014-04-28 2014-09-10 金进精密泵业制品(深圳)有限公司 一种智能衣及其充电衣架
CN104036147B (zh) * 2014-06-26 2017-07-07 杜波 居家养老服务信息上报、处理方法及客户端、处理系统
CN107705009B (zh) * 2017-09-28 2021-02-09 京东方科技集团股份有限公司 运动场地管理系统和运动场地管理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104586391A (zh) * 2015-01-20 2015-05-06 西安电子科技大学 一种可穿戴肌电臂环
US20170245767A1 (en) * 2016-02-25 2017-08-31 Echo Labs, Inc. Systems and methods for modified pulse transit time measurement
CN109381174A (zh) * 2017-08-09 2019-02-26 三星电子株式会社 用于电子装置的方法以及电子装置
CN110071734A (zh) * 2019-03-29 2019-07-30 华为技术有限公司 一种选取信号通道的方法以及可穿戴智能设备

Also Published As

Publication number Publication date
CN110071734A (zh) 2019-07-30
CN110071734B (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
US10729964B2 (en) Action detection and activity classification
US20170270820A1 (en) Eating Feedback System
CN205665699U (zh) 基于可穿戴设备的数据采集系统
EP3079568B1 (en) Device, method and system for counting the number of cycles of a periodic movement of a subject
US20150342494A1 (en) Sports device and system
CN103929697B (zh) 声道配置方法、装置及耳机设备
US20160314257A1 (en) Scheduling device for scheduling patient monitoring by patient-accessible devices
WO2021218940A1 (zh) 健身课程推送方法和装置
CN110025321B (zh) 一种心理压力评估方法及相关设备
US10441224B2 (en) Systems and methods for adaptable presentation of sensor data
WO2020200083A1 (zh) 一种选取信号通道的方法以及可穿戴智能设备
US20140371886A1 (en) Method and system for managing performance of an athlete
CN117320638A (zh) 月经周期跟踪
CN104188645B (zh) 穿戴设备以及基于该穿戴设备的基础心率的测量方法
CN110099371A (zh) 一种用眼数据监测方法及眼部护理系统
CN106911346A (zh) 穿戴式装置、生理信息监控系统及生理信息监控方法
CN106691426A (zh) 一种用于人体健康监测的腕式装置
CN112826514A (zh) 一种房颤信号的分类方法、装置、终端以及存储介质
CN113884101B (zh) 一种可穿戴设备的计步方法、可穿戴设备及介质
CN103654744A (zh) 一种睡眠质量监测方法及系统
De Pessemier et al. Heart rate monitoring and activity recognition using wearables
CN110917608A (zh) 一种智能健身器材及其数据传输方法
CN219676397U (zh) 一种具有健康检测功能的智能眼镜
WO2023005874A1 (zh) 生理参数检测方法及装置
CN115998263A (zh) 运动监测方法、终端设备、运动监测系统及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20783759

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20783759

Country of ref document: EP

Kind code of ref document: A1