WO2020199960A1 - 时延获取方法及装置、优化方法及装置 - Google Patents

时延获取方法及装置、优化方法及装置 Download PDF

Info

Publication number
WO2020199960A1
WO2020199960A1 PCT/CN2020/080710 CN2020080710W WO2020199960A1 WO 2020199960 A1 WO2020199960 A1 WO 2020199960A1 CN 2020080710 W CN2020080710 W CN 2020080710W WO 2020199960 A1 WO2020199960 A1 WO 2020199960A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission path
delay
upf
sub
request message
Prior art date
Application number
PCT/CN2020/080710
Other languages
English (en)
French (fr)
Inventor
李贤明
曹龙雨
王耀光
于益俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20782927.6A priority Critical patent/EP3930357A4/en
Publication of WO2020199960A1 publication Critical patent/WO2020199960A1/zh
Priority to US17/490,756 priority patent/US20220021596A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/06Generation of reports
    • H04L43/067Generation of reports using time frame reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • H04L43/0888Throughput
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • H04L47/283Flow control; Congestion control in relation to timing considerations in response to processing delays, e.g. caused by jitter or round trip time [RTT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/50Service provisioning or reconfiguring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method and device for obtaining time delay, and an optimization method and device.
  • FIG 1A shows the composition of the total terminal-to-application (APP) delay under a typical 5G architecture, where APP can be understood as a service accessed by the terminal, such as accessing a certain service on WeChat.
  • APP can be understood as a service accessed by the terminal, such as accessing a certain service on WeChat.
  • the multi-access edge computing (MEC) service is taken as an example.
  • the MEC service APP is deployed on the MEC host Host.
  • the MEC Host can be understood as the service node, and the data transmission delay from the terminal to the APP It can be decomposed into 4 parts, namely (1) terminal to radio access network (radio access network, RAN), namely the access network delay of the base station; (2) user plane function network element from the base station to the core network, UPF) transmission network delay; (3) Data processing delay within the core network; (4) Internet delay from the core network UPF to MEC Host. Since the location of the service node is usually independent of the mobile network deployment, the E2E delay discussed in standards and the industry generally does not include the Internet delay (4) in Figure 1A.
  • radio access network radio access network
  • UPF user plane function network element from the base station to the core network
  • the embodiments of the present application provide a delay acquisition method and device, and an optimization method and device to solve the problem that the test cannot be performed in segments in the prior art, which results in the inability to optimize the delay in the data transmission process.
  • a method for obtaining a delay is provided.
  • a first device can send a request message to a second device.
  • the request message is used to obtain the delay data of the sub-transmission path between the second device and the third device.
  • a transmission path can be directly established between the second device and the third device, where the transmission path is a path for transmitting user data, and the second device and the third device are both user plane devices.
  • the second device After the second device receives the request message sent by the first device, the second device can test the delay data of the sub-transmission path between the second device and each third device.
  • the delay data can be, for example, from one device to another.
  • the duration value of a device sending a data packet to receiving a confirmation data packet reply from another device can also be the average value of the duration value from sending a data packet to receiving a data packet.
  • the second device may also test the delay data of the sub-transmission path with each third device in advance.
  • the second device sends a response message to the first device.
  • the response message includes the delay data of the sub-transmission path between the second device and each third device.
  • the response message may be based on the identification of the second device and the third device.
  • the device identifier group formed by the identifiers indicates the transmission path between the second device and the third device. After the first device receives the delay data of the sub-transmission path sent by the second device, it can save the corresponding relationship between the sub-transmission path and the delay data.
  • the corresponding relationship between the sub-transmission path and the delay data is saved, that is, the identifier of the second device, the identifier of the third device, and the corresponding relationship between the delay data are saved.
  • a corresponding relationship includes only one first The identification of the second device, and the identification of the third device.
  • the second device and the third device can directly establish a transmission path, that is, in the process of data transmission
  • the second device and the third device are two logically adjacent devices.
  • the terminal accesses the service to the service node, Data packets need to be transmitted through multiple devices, and there are multiple delays.
  • This application separately obtains the delay data between the devices that can directly establish the transmission path, and realizes the segmented acquisition of the delay data.
  • the second device is an access network device
  • the third device is a core network device
  • the second device is an access network device
  • the third device is a terminal device, or the second device is a core network device.
  • the third device is also a core network device
  • the access network device is for example a base station, a core network device, such as a user plane function network element UPF.
  • the centralized unit (CU) and distributed unit (DU) in the base station are deployed separately, and the control plane (CP) and user plane (UP) are separated
  • the core network equipment includes a first UPF and a second UPF.
  • the first UPF is a device that directly establishes a transmission path with the access network
  • the second UPF is a device that does not directly establish a transmission path with the access network.
  • the second device can be a CU-UP, then the third device is a DU or the first UPF; or the second device can be a DU, and the third device is a terminal; or the second device is a first UPF, then The third device is a second UPF.
  • the identifier of each third device in the correspondence between the sub-transmission path and the delay data stored by the first device may be the same, that is, it does not distinguish which terminal the third device is.
  • the identifier of the terminal is only the delay data used to indicate that the third device is a DU or a sub-transmission path between the base station and the terminal, and may be the average value of the delay values between the DU or the base station and multiple terminals.
  • the second device is a user plane device, and when the first device sends a request message to the second device, it may be forwarded to the second device through standardized signaling between the control plane device and the second device , The first device may also receive the response message sent by the second device through the control plane device.
  • the control plane device corresponding to CU-UP or DU is CU-CP.
  • the second device is CU-UP or DU; when the first device sends a request message to the second device, it can be the first device to the control plane network element CU- The CP sends a request message, and the CU-CP sends the request message to the second device; when the first device receives the response message sent by the second device, it may be that the first device receives the response message sent by the CU-CP , The response message is sent by the second device to the CU-CP.
  • the control plane device corresponding to the UPF is a session management function network element (session management function, SMF).
  • the first device is the first UPF
  • the first device when the first device sends a request message to the second device, the first device can send a request to the SMF Message, the SMF sends the request message to the second device; when the first device receives the response message sent by the second device, it may be that the first device receives the response message sent by the SMF, and the response message is the first The second device sent to the SMF.
  • the CU-CP or SMF When the CU-CP or SMF sends the request message to the second device, it may directly forward the request message, or it may encapsulate the request message into other existing messages and send it to the second device; CU -When the CP or SMF sends the response message to the first device, it may directly forward the response message, or it may encapsulate the response message into other existing messages and send it to the first device.
  • a delay optimization method based on the delay acquisition method of the first aspect.
  • the fourth device sends a request message to the first device, and the first device receives the request message sent by the fourth device.
  • the message is used to obtain the first transmission path that meets the delay requirements of the terminal service.
  • the first transmission path requested in the request message may be the transmission path between the terminal and the core network device, and the request message includes the transmission path from the fourth device.
  • the identification of each device under management; the first device determines the time that can meet the delay requirement according to the identification of each device included in the request message and the stored correspondence between multiple sub-transmission paths and delay data Extend the multiple sub-transmission paths corresponding to the data, and the determined multiple sub-transmission paths constitute the target first transmission path.
  • the target first transmission path is composed of multiple sub-transmission paths, which respectively correspond to the device identification group indicating that the multiple sub-transmission paths include the identity of the fifth device managed by the fourth device, and the identity of the fifth device managed by the fifth device.
  • the identifier is the identifier of a certain device included in the request message
  • the fifth device is a device on the transmission path between the terminal and the core network device.
  • the first device may send a response message to the fourth device, where the response message includes the identity of the fifth device and the identities of other devices that form a device identity group with the identity of the fifth device;
  • the fourth device receives the response message sent by the first device, and the fourth device controls the fifth device to establish transmission paths with the other devices according to the response message, and the established transmission paths are used to transmit terminal services.
  • the fourth device may be SMF, and the multiple devices managed by the fourth device are multiple first UPFs; or the fourth device may be CU-CP, and the multiple devices managed by the fourth device Each device is multiple CU-UP.
  • the first device selects multiple device identifiers corresponding to the transmission path that meets the delay requirement of the terminal service, and the transmission path established by the multiple devices meets the delay requirement of the terminal service, so that the service data transmission delay is optimized.
  • the fourth device is an SMF
  • the multiple devices managed by the fourth device included in the request message are multiple first UPFs
  • the first device may send the The device sends a response message, and the response message includes device identification groups respectively corresponding to the multiple sub-transmission paths constituting the target first transmission path;
  • the fourth device sends the device identification groups in the response message to: capable of controlling the respective The device corresponding to each device ID in the device ID group establishes different management devices of the transmission path, and the different management devices control the device corresponding to each device ID to establish the transmission path, and the established transmission path is used to transmit terminal services.
  • the service data transmission delay is optimized.
  • a delay optimization method based on the delay acquisition method of the first aspect.
  • the fourth device sends a request message to the first device, and the request message is used to acquire the time between the first sub-transmission paths.
  • the request message includes the identifier of each seventh device managed by the fourth device, and the first sub-transmission path is the sub-transmission path represented by the device identifier group where the identifier of the seventh device is located.
  • the first device receives the request message sent by the fourth device. If the fourth device is SMF, the seventh device may be the first UPF; if the fourth device is CU-CP, the seventh device may be CU-UP.
  • the first device determines the device identification group of the seventh device in the request message according to the pre-stored sub-transmission path, and sends a response message to the fourth device.
  • the response message includes a response message for each first device.
  • the device identification group of the sub-transmission path, and the delay data corresponding to each first sub-transmission path; the device identification group used to indicate each first sub-transmission path in the response message is the device where the identifier of the seventh device is located Identify the group.
  • the fourth device selects the target device identification group from the device identification group in the response message according to the delay requirements of the terminal service, and controls the target seventh device in the target device identification group to establish transmission paths with other devices.
  • the transmission path is used to transmit terminal services.
  • the seventh device may be the first UPF
  • the device identity group where the identity of the first UPF is located may be the identity of the CU-UP and the first UPF.
  • the device identification group formed by the identifiers may also be the device identification group formed by the first UPF and the second UPF.
  • the response message can also carry other sub-transmission paths and their corresponding delay data, such as a device identification group used to indicate the sub-transmission path between the terminal and the DU, and the delay data corresponding to the sub-transmission path, such as carrying The device identification group of the sub-transmission path between the CU-UP and the DU, and the delay data corresponding to the sub-transmission path.
  • the seventh device may be CU-UP
  • the device identification group where the CU-UP identifier is located may be the identifier of the CU-UP and the first
  • the device identification group formed by the identifier of a UPF may also be the device identification group formed by the CU-UP and DU.
  • the response message can also carry other sub-transmission paths and their corresponding delay data, such as a device identification group used to indicate the sub-transmission path between the terminal and the DU, and the delay data corresponding to the sub-transmission path, such as carrying The device identification group of the sub-transmission path between the second UPF and the first UPF, and the delay data corresponding to the sub-transmission path. Since a transmission path is established between devices that meet the delay requirements of the terminal service, the optimization of the delay in the data transmission process is realized, and the fast transmission of the terminal service can be guaranteed.
  • a delay optimization method based on the delay acquisition method in the first aspect is provided.
  • the MEC application orchestrator (MEAO) can deploy device instances based on the delay data, and MEAO can provide A device sends a request message, the request message includes the identities of multiple sixth devices, the type of the sixth device is the same as the type of the device to be deployed, and the request message is used to obtain the delay data of the second transmission path,
  • the second transmission path is a transmission path between the terminal and the sixth device corresponding to the identifier in the request message, and the sixth device may be the first UPF.
  • the first device receives the request message sent by MEAO, and the first device calculates the delay data of each second transmission path according to the obtained delay data corresponding to the sub-transmission path and the identification of each sixth device in the request message ;
  • a response message sent by the first device to MEAO, the response message includes multiple second transmission paths, and the delay data corresponding to each second transmission path, wherein each second transmission path is based on multiple device identifiers In terms of group, it corresponds to the identification of a sixth device included in the plurality of device identification groups constituting each second transmission path.
  • MEAO selects the target second transmission path that meets the delay requirements of the terminal service. There may be one target second transmission path that meets the delay requirements of the terminal service.
  • Each target second transmission path corresponds to an identity of the sixth device.
  • the terminal can select the identity of the target sixth device from the identity of the sixth device corresponding to the target second transmission path, and according to each sixth device
  • the location information corresponding to the device identifier determines the target location information corresponding to the selected target sixth device identifier.
  • the location information corresponding to each sixth device identifier may be pre-stored in the MEAO or may be in the first Stored in the third-party storage medium, MEAO deploys the same type of equipment as the sixth equipment at the target location information.
  • the previously tested delay data of each sub-transmission path can be used to select the deployment location, so that the deployment location can meet the service requirements of the terminal, and the delay in the data transmission process is optimized.
  • MEAO can deploy the service platform on the service node, and then obtain the delay data of the transmission path between the deployed device of the same type as the sixth device and the service platform on the service node, and respond according to the response
  • the delay data corresponding to the second transmission path between each terminal and the sixth device in the message determines the delay data of the target second transmission path between the terminal and the target sixth device;
  • MEAO is based on the delay data between the terminal and the target sixth device
  • the delay data from the terminal to the service platform is obtained in segments, when the delay data from the terminal to the service platform does not meet the service requirements of the terminal, only the service platform needs to be re-deployed instead of other equipment between the terminal and the service platform.
  • the business platform can be deployed efficiently.
  • a device for obtaining a time delay has a functional module that implements any one of the foregoing first aspect and the possible implementation method of the first aspect.
  • the functional modules can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device may be a chip or an integrated circuit.
  • the device includes a transceiver and a processor, and the device may execute the foregoing first aspect and any one of the possible implementation methods of the first aspect through the processor.
  • the above-mentioned transceiver may be an interface circuit.
  • the device may further include a memory; the memory is used to store a computer program.
  • a delay optimization device in a sixth aspect, has a functional module that implements the foregoing aspects and any possible implementation method of each aspect.
  • the functional modules can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the device may be a chip or an integrated circuit.
  • the device includes a transceiver and a processor, and the device can execute the method in any one of the foregoing first to fourth aspects and each of the possible implementations through the processor.
  • the above-mentioned transceiver may be an interface circuit.
  • the device may further include a memory; the memory is used to store a computer program.
  • a computer-readable storage medium is provided, and computer-readable instructions are stored in the computer storage medium.
  • the device can execute the above aspects and any of the aspects. Possible implementation methods.
  • a computer program product is provided.
  • the device can execute the foregoing aspects and any possible implementation method of the aspects.
  • a chip is provided, the chip is coupled with a memory, and the chip is used to read and execute a software program stored in the memory, so as to implement the above aspects and any possible implementation of the aspects. method.
  • FIG. 1A is a schematic diagram of a data transmission process provided in the prior art
  • FIG. 1B is an architecture diagram of a communication system provided in an embodiment of this application.
  • FIG. 1C is a schematic structural diagram of a base station provided in an embodiment of this application.
  • FIG. 1D is a schematic diagram of a data transmission process provided in an embodiment of this application.
  • FIG. 1E is a diagram of a sub-transmission path provided in an embodiment of this application.
  • FIG. 2 is a schematic diagram of a delay acquisition process provided in an embodiment of this application.
  • FIG. 3A is a schematic diagram of a delay acquisition process provided in an embodiment of this application.
  • FIG. 3B is a schematic diagram of a delay acquisition process provided in an embodiment of this application.
  • FIG. 3C is a schematic diagram of a delay acquisition process provided in an embodiment of this application.
  • FIG. 4 is a schematic diagram of a delay optimization process in a PDU session establishment process provided in an embodiment of the application
  • FIG. 5 is a schematic diagram of a delay optimization process in a PDU session establishment process provided in an embodiment of the application
  • FIG. 6 is a schematic diagram of a delay optimization process in a handover process provided in an embodiment of the application.
  • FIG. 7 is a schematic diagram of a delay optimization process in a handover process provided in an embodiment of the application.
  • FIG. 8 is a schematic diagram of a delay optimization process in a device deployment process provided in an embodiment of this application.
  • FIG. 9 is a communication device provided in an embodiment of this application.
  • FIG. 10 is a communication device provided in an embodiment of this application.
  • the embodiments of the present application provide a delay acquisition method and device, and an optimization method and device to solve the problem that the test cannot be performed in segments in the prior art, which results in the inability to optimize the delay in the data transmission process.
  • the method, device, and system are based on the same inventive concept. Since the method, device, and system have similar principles for solving problems, the implementation of the device, system, and method can be referred to each other, and repetitions will not be repeated.
  • the technical solutions of the embodiments of this application can be applied to various communication systems, such as: the future 5th Generation (5G) system, the new generation of radio access technology (NR), and the future communication system , Such as 6G systems.
  • 5G 5th Generation
  • NR radio access technology
  • 6G 6th Generation
  • the term "exemplary” is used to indicate an example, illustration, or illustration. Any embodiment or implementation solution described as an "example” in this application should not be construed as being more preferable or advantageous than other embodiments or implementation solutions. Rather, the term example is used to present the concept in a concrete way.
  • Terminal also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • terminal devices include handheld devices and vehicle-mounted devices with wireless connection functions.
  • terminal devices can be: mobile phones (mobile phones), tablet computers, notebook computers, palmtop computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, and smart grids (smart grid)
  • the wireless terminal in the transportation safety (transportation safety), the wireless terminal in the smart city (smart city), or the wireless terminal in the smart home (smart home), etc.
  • CU-CP control plane network element in the centralized unit of radio access network (RAN), logical node carrying radio resource control (RRC) and group data aggregation of gNB-CU
  • RRC radio resource control
  • PDCP Packet Data Convergence Protocol
  • CU-UP the user plane network element in the RAN centralized unit, which carries the user plane part of the PDCP protocol used for gNB-CU and the service data adaptation protocol (Service Data Adaptation Protocol, SDAP) protocol.
  • SDAP Service Data Adaptation Protocol
  • DU RAN distributed unit, carrying gNB's radio link control (radio link control, RLC), media access control (Media Access Control, MAC) and physical layer (Physical Layer, PHY) logical node, and its operation Partly controlled by gNB-CU.
  • RLC radio link control
  • MAC media access control
  • PHY Physical Layer
  • UPF User port function
  • PCF Policy Control Function
  • MEC Application Orchestrator MEC application orchestrator in a network function virtualization environment, which mainly completes the functions of resource management and instance deployment of the MEC platform and MEC applications.
  • Access and mobility management function network element (access and mobility management function, AMF), core network control plane function, provides user mobility management and access management functions.
  • AMF access and mobility management function
  • core network control plane function provides user mobility management and access management functions.
  • Virtualization Infrastructure computing, storage, and network resources in a virtualized environment of network functions, which carry the deployment of MEC APP.
  • Multi-access edge computing platform deployed on MEC nodes, provides necessary functions for MEC APP running on virtualized infrastructure.
  • Multi-access edge computing platform manager (MEC Platform Manager), the node-level management function in MEC, provides life cycle management of APP and MEC platform.
  • the session management function network element (SMF), the core network control plane network element, is mainly responsible for allocating addresses, tunnel identifiers, and charging identifiers to the UE and interacts with the PCF to obtain policies and pass them to the UPF.
  • SMF session management function network element
  • the "and/or” in this application describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone. This situation.
  • the character "/" generally indicates that the associated objects are in an "or” relationship.
  • the multiple involved in this application refers to two or more.
  • the terminal accesses a certain service, the terminal needs to send data to the service node.
  • the data can be a request packet or what it can be.
  • the data transmission process from the terminal to the service node includes: the terminal sends the data to the base station, and the base station sends the data to The UPF of the core network, the UPF of the core network sends data to the service node.
  • the delay data of (1), (2), (3) shown in FIG. 1A can be generated.
  • PCA Performance Collection and Analysis
  • the PCA can obtain the delay data through the control plane or directly send the request to the user plane network element (such as RAN or UPF).
  • the user plane network element reports the delay data after the test; it can also directly communicate with the user plane network. Meta is requested and obtained through the Client-Server model. Then, on the one hand, the PCA uses the delay data for the user plane network element selection in the 5G process, and on the other hand, provides the UPF deployment location for the MEC application orchestrator, so as to optimize the E2E delay.
  • PCA can be deployed independently as a network element that integrates the control plane and the management plane, and can also be used as an enhancement to the network data analysis function NWDAF (Network Data Analysis Function) under the current 5G architecture.
  • NWDAF Network Data Analysis Function
  • this application provides a schematic diagram of a delay acquisition process:
  • Step 21 The first device sends a request message to the second device.
  • the request message is used to obtain the delay data of the sub-transmission path between the second device and the third device. Transmission paths can be established directly between devices.
  • the transmission path here is a path for transmitting user data
  • the second device and the third device are both user plane devices.
  • Step 22 The first device receives a response message sent by the second device, where the response message includes the delay data of the sub-transmission path between the second device and the third device.
  • the second device can test the delay data of the sub-transmission path between the second device and each third device, and the delay data can be obtained online by the second device.
  • the acquisition method is the duration value from one device sending a data packet with a typical number of bytes to another device to receiving a confirmation packet from another device, or the duration value from sending a data packet to receiving a data packet average value.
  • the second device may also test the delay data of the sub-transmission path with each third device in advance.
  • the second device sends a response message to the first device.
  • the response message includes the delay data of the sub-transmission path between the second device and each third device.
  • the response message may be based on the identification of the second device and the third device.
  • the device identifier group formed by the identifiers indicates the transmission path between the second device and the third device.
  • Step 23 The first device saves the corresponding relationship between the sub-transmission path and the delay data, where the sub-transmission path is represented based on the device identification group formed by the identifier of the second device and the identifier of the third device.
  • the first device After the first device receives the delay data of the sub-transmission path sent by the second device, it can save the corresponding relationship between the sub-transmission path and the delay data. If the sub-transmission path is formed based on the identity of the second device and the identity of the third device The corresponding relationship between the sub-transmission path and the delay data is saved, that is, the identifier of the second device, the identifier of the third device, and the corresponding relationship between the delay data are saved. A corresponding relationship includes only one first The identification of the second device, and the identification of the third device.
  • the second device and the third device can directly establish a transmission path, that is, in the process of data transmission
  • the second device and the third device are two logically adjacent devices.
  • the terminal accesses the service to the service node, Data packets need to be transmitted through multiple devices, and there are multiple delays.
  • This application separately obtains the delay data between the devices that can directly establish the transmission path, and realizes the segmented acquisition of the delay data.
  • the request message for obtaining the delay data and/or the response message for reporting the delay data may be a message defined in the existing 3GPP protocol, or a new message format defined to complete the delay data Request and report.
  • the delay data request message can include PTL (performance type list, performance type list) information element, which is used to carry the delay data between which two devices the delay data to be obtained is.
  • PTL performance type list, performance type list
  • the definition of PTL information element can be as follows 1 shown.
  • the latency data response message may include LDL (latency data list, latency data list), which is used to carry latency data.
  • LDL latency data list, latency data list
  • the definition of LDL cell can be shown in Table 2 below.
  • the request message when the first device sends a request message for delay data to the second device, the request message can carry PTL information elements.
  • Table 1 only shows the specific content that can be included in the PTL information element.
  • the PTL information element in the request message may include one or more of the performance types in Table 1 above.
  • the response message can include the LDL information element in Table 2.
  • Table 2 only shows the specific content that can be included in the LDL information element.
  • the second device ID, the third The device ID and the delay value have a one-to-one correspondence, that is, the corresponding relationship between the sub-transmission path and the delay data is carried in the LDL.
  • the sub-transmission path is represented based on the device identification group formed by the identification of the second device and the identification of the third device .
  • the delay data entry can be understood as a piece of delay data, that is, the delay data between the first second device and a third device is a piece of delay data.
  • the LDL can also carry performance type, which is used to indicate the type of delay data, and the delay data is the delay data between two devices, specifically: the device corresponding to the source ID and the target ID Delay data of the transmission path between the corresponding devices.
  • the LDL information element in the request message may include one delay data entry, that is, one piece of delay data; it may also include multiple delay data entries, that is, multiple pieces of delay data.
  • the first device obtains the delay data of the transmission path between the second device and the third device from the second device.
  • the third device is a core network device; or the second device is an access network device, the third device is a terminal device, or the second device is a core network device,
  • the three devices are also core network devices, and access network devices such as base stations and core network devices such as user plane network elements UPF.
  • the access network equipment can be a base station, and the core network equipment can be a UPF.
  • the core network equipment includes a first UPF and a second UPF.
  • the first UPF is a device that directly establishes a transmission path with the access network
  • the second UPF is a device that is not directly connected to the access network.
  • the first UPF generally refers to intermediate UPF (intermediate UPF, I-UPF) and the second generally refers to anchor UPF.
  • the second device may be a base station, and the third device may be a terminal;
  • the second device is the first UPF
  • the third device is the second UPF
  • a base station contains 1 CU-CP, several CU-UPs and several DUs.
  • the CU-CP can be connected to each CU-UP contained in the base station, for example, it can be connected through an E1 interface, and the CU-CP can be connected to the base station
  • Each DU included in the DU is connected, for example, through an F1-C interface.
  • One CU-UP is connected to several DUs, for example, through an F1-U interface.
  • a CU-UP is connected to only one CU-CP, and a DU is also connected to only one CU-CP.
  • the second device may be a CU-UP, and the third device is a DU;
  • the second device may be CU-UP, and the third device is the first UPF;
  • the second device may be a DU
  • the third device is a terminal.
  • the identifier of each third device in the correspondence between the sub-transmission path and the delay data saved by the first device can be the same, that is, it does not distinguish whether the third device is Which terminal, the terminal identifier in the corresponding relationship is only used to indicate that the third device is a terminal.
  • a schematic diagram of the data transmission process is provided.
  • the terminal first transmits the data to the DU in the base station, the DU transmits the data to the CU-UP, and the CU-UP transmits the data
  • the data is transmitted to the UPF, and the UPF transmits the data to other UPFs, and the other UPF transmits the data to the service node.
  • the access network delay in Figure 1A includes the delay between the terminal and the DU, and the delay between the DU and CU-UP; (2) the transmission network delay in Figure 1A includes the CU-UP and Delay between UPFs; (3) The data processing delay within the core network in Figure 1A includes the delay between UPF and UPF.
  • a new UPF can be inserted between the RAN and the PDU session anchor UPF.
  • the UPF can be an upstream classifier of the data stream. The function is to identify the upstream characteristics of the service stream and distribute the data to the local data network. Or it is the remote PDU session anchor point UPF; the UPF can also be a branch point, which is inserted as a branch point for IPV6. Therefore, there will be a delay in transmitting data between two UPFs.
  • the delay data of the sub-transmission path between the terminal and the DU, between the DU and the CU-UP, between the UP and the first UPF, and between the first UPF and the second UPF can be obtained respectively, and according to the obtained multiple
  • select DU, CU-UP, UPF, etc. that can make the data transmission delay meet the terminal service requirements to achieve the optimization of the delay.
  • this application provides a schematic diagram of the delay acquisition process: a server unit is provided in the PCA for acquiring delay data, and a client is respectively provided in DU, CU-UP, and UPF (client), which is used to interact with the server in the PCA for time-delayed data acquisition.
  • Each second device can test the delay data between the third device that directly establishes a communication path with it, then the DU can test the delay data of the sub-transmission path between the terminal and the CU-UP, and the CU-UP can test the delay data between the DU and the CU-UP.
  • the delay data of the sub-transmission path between UPF, UPF can test the delay data of the sub-transmission path between CU-UP and the second UPF
  • the server unit of PCA sends the client respectively set in DU, CU-UP and UPF
  • the client sends a request message for the delay data
  • the client clients set in DU, CU-UP, and UPF can send a response message to the server unit of the PCA, and report the delay data of each test.
  • the second device is a user plane device, such as DU, CU-UP, UPF, etc.
  • the first device when the first device sends a request message to the second device, it can be through the control plane device (such as CU-CP, SMF Etc.) It is forwarded to the second device, and the first device may also receive the response message sent by the second device through the control plane device.
  • the control plane device such as CU-CP, SMF Etc.
  • the control plane device corresponding to CU-UP or DU is CU-CP.
  • the second device is CU-UP or DU; when the first device sends a request message to the second device, it can be the first device to the control plane network element CU-
  • the CP sends a request message, and the CU-CP sends the request message to the second device; when the first device receives the response message sent by the second device, it may be that the first device receives the response message sent by the CU-CP , The response message is sent by the second device to the CU-CP.
  • the CU-CP When the CU-CP sends the request message to the second device, it may directly forward the request message, or it may encapsulate the request message into other existing messages and send it to the second device; CU-CP When sending the response message to the first device, the response message may be directly forwarded, or the response message may be encapsulated in other existing messages and sent to the first device.
  • this application provides a schematic diagram of the process of obtaining the delay on the access network side:
  • Step 311 The PCA sends a request message for delay data to the CU-CP.
  • Step 312 After receiving the request message from the PCA, the CU-CP sends a CU-CP configuration update configuration update message to each CU-UP it manages to notify the CU-UP to initiate a delay test.
  • the CU-CP configuration update message may include indication information for indicating test delay data, and the CU-CP configuration update message may also include the type of delay data to be obtained between DU and CU-UP.
  • Delay data the delay data between the CU-CP and the first UPF. For example, it includes cell PTL, where the delay types in Performance Type are L_CU_DU and L_CU_UPF.
  • Step 313 After receiving the message sent by the CU-CP, the CU-UP can send a confirmation message CU-CP configuration update ack to the CU-CP, indicating that the test request has been received.
  • Step 314a The CU-UP initiates a delay test to all UPFs (1...n) that can directly establish a transmission path with it, for example, it can be initiated through the N3 interface.
  • Step 314b The CU-UP initiates a delay test to all DUs (1...n) that can directly establish a transmission path with it, for example, it can be initiated on the F1-U interface.
  • Step 315 After the CU-UP delay test ends, send a CU-UP configuration update message to the CU-CP to report the delay data.
  • the CU-UP configuration update message may include information elements LDL, where Performance Type includes delay types L-CU_DU and L_CU_UPF.
  • Step 316 After receiving the CU-UP configuration update message sent by the CU-UP, the CU-CP sends a confirmation message CU-UP configuration update ack to the CU-UP, indicating that the delay data has been received.
  • the CU-CP may report the delay data in step 313, and the CU-CP configuration update ack message may include the information element LDL, where the Performance Type includes the delay types L-CU_DU and L_CU_UPF.
  • Step 317 After receiving the request message from the PCA, the CU-CP sends a CU configuration update message to each DU managed by it to notify the DU to initiate a delay test.
  • the CU configuration update message may include indication information for indicating test delay data, and the CU configuration update message may also include the type of delay data to be obtained as the delay data between the DU and the terminal. For example, it includes cell PTL, where the delay type in Performance Type is L_UE_DU.
  • Step 318 After receiving the CU-CP message, the DU initiates a delay test with the UE.
  • the DU has pre-tested the delay data with the terminal.
  • Step 319 The DU sends a CU configuration update ack message to the CU-CP to report the delay data.
  • the CU configuration update ack message may include the cell LDL, and the Performance Type includes the delay type L_UE_DU.
  • the ID of the UE is empty or a certain default value.
  • Step 310 The CU-CP sends a response message to the PCA, and summarizes the delay data reported in step 315 and step 319 and then reports it to the PCA.
  • the delay data in step 315 and the delay data in step 319 may be reported in different response messages.
  • the control plane device corresponding to UPF is SMF. If the first device is the first UPF and the first device sends a request message to the second device, it may be that the first device sends a request message to the SMF, and the SMF sends the request message Sent to the second device; when the first device receives the response message sent by the second device, the first device may receive the response message sent by the SMF, and the response message is sent by the second device to the SMF.
  • SMF sends the request message to the second device it can directly forward the request message, or it can encapsulate the request message into other existing messages and send it to the second device; SMF is sending the request message to the second device.
  • the response message is sent to the first device, the response message may be directly forwarded, or the response message may be encapsulated in other existing messages and sent to the first device.
  • this application provides a schematic diagram of the process of obtaining the delay on the core network side:
  • Step 321 The PCA sends a request message for delay data to the SMF.
  • Step 322 After receiving the request message from the PCA, the SMF sends an N4 association update request association update request message to each first UPF managed by the SMF to notify the UPF to initiate a delay test.
  • the N4 association update request message may include indication information for indicating test delay data, and the N4 association update request message may also include the type of delay data to be obtained between the first UPF and the second UPF.
  • Delay data For example, it includes cell PTL, where the delay type in Performance Type is L_UPF_UPF.
  • Step 323 After receiving the message sent by the SMF, the first UPF may send a response message N4 association update request response to the PCA, indicating that the test request has been received.
  • Step 324 The first UPF initiates a delay test to all second UPFs (1...n) that can directly establish a transmission path with it, for example, it can be initiated through the N9 interface.
  • Step 325 After the first UPF delay test is completed, the N4 report message is sent to the SMF to report the delay data.
  • the CU-UP configuration update message may include the cell LDL, and the Performance Type includes the delay type L_UPF_UPF.
  • Step 326 After the SMF receives the N4 report message sent by the UPF, the N4 report ack sent to the UPF indicates that the delay data has been received.
  • Step 327 The SMF sends a response message to the PCA, reporting the delay data between UPFs.
  • the delay data of the sub-transmission path between the terminal and the DU, between the DU and the CU-UP, between the UP and the first UPF, and between the first UPF and the second UPF are obtained, and then according to the obtained multiple sub-transmissions
  • select DU, CU-UP, UPF, etc. which can make the data transmission delay meet the terminal service requirements, and realize the optimization of the delay.
  • Step 41 The fourth device sends a request message to the first device.
  • the first device receives the request message sent by the fourth device, where the request message is used to obtain the first transmission path that meets the delay requirement of the terminal service.
  • the first transmission path may be a transmission path between the terminal and the core network device, and the request message includes the identifier of each device managed by the fourth device.
  • Step 42 The first device determines, according to the identifier of each device included in the request message, and the stored correspondence between multiple sub-transmission paths and the delay data, the corresponding delay data that can meet the delay requirement A plurality of sub-transmission paths, and the determined plurality of sub-transmission paths constitute the target first transmission path.
  • the fourth device generally requests a first transmission path, or according to communication requirements, the terminal only needs one transmission path to access the service, then the first device
  • the final target first transmission path is determined among the multiple first transmission paths that meet the delay requirement. Generally, there is only one target first transmission path determined.
  • Step 43 The first device may send a response message to the fourth device.
  • the device identification groups respectively corresponding to the multiple sub-transmission paths constituting the target first transmission path include the identification of the fifth device managed by the fourth device, and the response message includes the identification of the fifth device ID, and IDs of other devices that form a device ID group with the ID of the fifth device.
  • the identifier of the fifth device is the identifier of a certain device included in the request message, and the fifth device is a device on the target first transmission path.
  • the first device may send a response message to the fourth device, the corresponding fourth device receives the response message sent by the first device, and the fourth device controls the fifth device to communicate with the other device according to the response message.
  • the transmission path is established, and the established transmission path is used to transmit terminal services.
  • the fourth device may be SMF, and the multiple devices managed by the fourth device are multiple first UPFs; or the fourth device may be CU-CP, and the multiple devices managed by the fourth device Each device is multiple CU-UP.
  • the fourth device is SMF
  • the target first transmission path is from the terminal to the DU to the CU-UP to the first UPF.
  • the first device PCA not only informs the SMF of the identity of the first UPF (fifth device), but also informs the SMF of the identity of the CU-UP (other devices) that forms the identity group with the identity of the first UPF, so that the SMF
  • the identifier of the CU-UP may be notified to the first UPF, that is, the SMF controls the first UPF to establish a transmission path with the CU-UP that can directly establish a transmission path with the first UPF.
  • the first device selects multiple device identifiers corresponding to the transmission path that meets the delay requirement of the terminal service, and the transmission path established by the multiple devices meets the delay requirement of the terminal service, so that the service data transmission delay is optimized.
  • the response message includes device identification groups respectively corresponding to multiple sub-transmission paths constituting the target first transmission path; the fourth device sends the device identification groups in the response message to: Different management devices that control the device corresponding to each device ID in the device ID group to establish a transmission path, and different management devices control the device corresponding to each device ID to establish a transmission path, and the established transmission path is used to transmit terminal services. If the fourth device is an SMF, the multiple devices managed by the fourth device included in the request message are multiple first UPFs.
  • the fourth device is SMF
  • the target first transmission path is from the terminal to the DU to the CU-UP to the first UPF.
  • the first device PCA not only informs the SMF of the identity of the first UPF (fifth device), but also the identity of the DU that constitutes the identity group in the target first transmission path, the identity of the CU-UP, and the identity of the identity group.
  • the ID of the CU-UP and the ID of the first UPF inform the CU-CP (management device) that can control the DU corresponding to the DU ID and the CU-UP corresponding to the CU-UP ID to establish the transmission path, and the CU-CP also
  • the CU-UP can be controlled to establish a secondary transmission path with the first UPF
  • the CU-UP can be controlled to establish a transmission path between the DU and the CU-UP
  • the CU-UP can be controlled to establish a transmission path with the first UPF.
  • the service data transmission delay is optimized.
  • Step 401 The SMF sends a request message to the PCA to request an optimal first transmission path that meets the delay requirements of the terminal service.
  • the first transmission path is between the terminal and the core network device, where the core network device may Understand as the first UPF.
  • the request message may also include the identifier of each first UPF managed by the SMF.
  • the transmission path that meets the delay requirements of the terminal service can be a transmission path in which the delay value of the transmission path from the terminal to the first UPF is less than the preset delay value, or the transmission path from the terminal to the first UPF has the smallest delay.
  • the transmission path can be a transmission path in which the delay value of the transmission path from the terminal to the first UPF is less than the preset delay value, or the transmission path from the terminal to the first UPF has the smallest delay.
  • the PCA after the PCA receives the SMF request message, it can obtain the delay data corresponding to the sub-transmission path between the terminal and the DU, between the DU and the UP, and between the UP and the first UPF, and the delay data in the request message.
  • the identifiers of the multiple first UPFs select multiple transmission paths between the terminal and the multiple first UPFs, as shown in the schematic diagram of the sub-transmission path shown in Fig. 1E.
  • the terminal can establish a sub-transmission path with one or more DUs, and each DU It can establish a sub-transmission path with one or more CU-UPs, each CU-UP can establish a sub-transmission path with one or more first UPFs, and each first UPF can establish a sub-transmission with one or more second UPFs From this, it can be seen that there may be multiple transmission paths between the terminal and any first UPF.
  • the PCA determines multiple transmission paths between the terminal and the multiple first UPFs in the request message, and determines a target first transmission path (optimum path) that meets the delay requirement among the multiple transmission paths.
  • the target first transmission path may be from the terminal to the DU to the CU-UP to the first UPF.
  • the target first transmission path includes three sub-transmission paths from the terminal to the DU, DU to CU-UP, and CU-UP to the first UPF. .
  • the first UPF in the target first transmission path is the first UPF managed by the SMF that sends the request message.
  • Step 402 The PCA sends a response message to the SMF to issue an optimal transmission path that meets the delay requirement of the terminal service.
  • the response message includes the identification of the target first UPF corresponding to the target first transmission path, and the determined identification of the target first UPF constitutes the identification of the target CU-UP of the device identification group.
  • the SMF performs PCF selection.
  • the SMF may send a request message to the PCA through the selected PCF, and receive a response message sent by the SMF through the selected PCF.
  • Step 403 The SMF uses the first UPF corresponding to the identifier of the target first UPF in the response message as the UPF in the PDU session.
  • This application provides a way for SMF to select UPF, that is, the target first UPF in the response message is used as the UPF in the selected PDU session.
  • Step 403a The SMF sends an N4 Session Establishment/Modification Request to the selected UPF.
  • Step 403b UPF sends N4 Session Establishment/Modification Response to SMF.
  • Steps 403a and 403b are the same as in the prior art.
  • CU-UP selection is also required.
  • the RAN or CU-CP requests the PCA to establish the CU-UP identifier for the PDU session establishment.
  • RAN or CU-CP does not make a CU-UP request, but forwards the CU-UP identifier to itself through other devices (such as SMF).
  • Fig. 4 provides an exemplifying manner.
  • the SMF sends the target CU-UP identifier in the response message to the RAN or CU-CP.
  • the specific process can refer to the following steps:
  • Step 404 The SMF sends the optimal path to the AMF. For example, it can be sent through the Namf_Communication_N1N2MessageTransfer message; then the Namf_Communication_N1N2MessageTransfer message carries the optimal path.
  • the optimal path can be represented by the identifier of the target CU-UP, and the message includes the target CU -The identifier of the UP can also include the identifier of the target UPF.
  • Step 405 The AMF sends the optimal path to the RAN.
  • the N2 PDU Session Request message can be sent through the N2 PDU Session Request message.
  • the N2 PDU Session Request message carries the optimal path.
  • the optimal path can be represented by the identifier of the target CU-UP. It includes the CU-UP identifier and may also include the target UPF identifier.
  • Step 406 The RAN uses the target CU-UP in the optimal path as the CU-UP in the PDU session, and controls the CU-UP to perform terminal service transmission.
  • the optimal transmission path from the terminal to the first UPF is selected through the delay data of multiple sub-transmission paths
  • SMF uses the UPF in the optimal transmission path as the UPF selected in the PDU session
  • the RAN regards the CU-UP in the optimal transmission path as the CU-UP selected in the PDU session, so in the PDU session, the delay optimization is realized.
  • Step 51 The fourth device sends a request message to the first device.
  • the request message is used to obtain the delay data between the first sub-transmission paths.
  • the request message includes the information of each seventh device managed by the fourth device. Identification, the first sub-transmission path is the sub-transmission path represented by the device identification group where the identifier of the seventh device is located.
  • the first device receives the request message sent by the fourth device.
  • the seventh device may be a first UPF
  • the seventh device may be CU-UP.
  • Step 52 The first device determines the device identification group of the seventh device in the request message according to the pre-saved sub-transmission path, and sends a response message to the fourth device.
  • the device identification group of the first sub-transmission path, and the delay data corresponding to each first sub-transmission path; the device identification group used to indicate each first sub-transmission path in the response message is the identifier of the seventh device The device identification group it belongs to.
  • the seventh device may be the first UPF, and the device identity group where the identity of the first UPF is located may be the device identity group formed by the identity of the CU-UP and the identity of the first UPF , It may also be a device identification group formed by the first UPF and the second UPF.
  • the response message can also carry other sub-transmission paths and their corresponding delay data, such as a device identification group used to indicate the sub-transmission path between the terminal and the DU, and the delay data corresponding to the sub-transmission path, such as carrying The device identification group of the sub-transmission path between the CU-UP and the DU, and the delay data corresponding to the sub-transmission path.
  • the seventh device may be a CU-UP
  • the device identification group in which the CU-UP identifier is located may be a device composed of the CU-UP identifier and the first UPF identifier
  • the identification group may also be a device identification group formed by the CU-UP and DU.
  • the response message can also carry other sub-transmission paths and their corresponding delay data, such as a device identification group used to indicate the sub-transmission path between the terminal and the DU, and the delay data corresponding to the sub-transmission path, such as carrying The device identification group of the sub-transmission path between the second UPF and the first UPF, and the delay data corresponding to the sub-transmission path.
  • Step 53 The fourth device selects the target device identification group from the device identification group in the response message according to the delay requirement of the terminal service, and controls the target seventh device in the target device identification group to establish transmission paths with other devices , The established transmission path is used to transmit terminal services.
  • Step 501 The SMF sends a request message to the PCA.
  • the PCA receives the request message sent by the SMF.
  • the request is used to request the delay data of each sub-transmission path from the terminal to the first UPF.
  • the request message includes The ID of the UPF managed by the SMF.
  • Step 502 The PCA sends a response message to the SMF.
  • the SMF receives the response message sent by the PCA.
  • the response message includes the response message between the terminal and the DU, the DU and the CU-UP, and the CU-UP and the first UPF. , And each sub-transmission path between the first UPF and the second UPF, and the delay data corresponding to each sub-transmission path.
  • each sub-transmission path can be represented based on the device identification group.
  • the sub-transmission path sent by the PCA to the SMF may be filtered according to the identifier of the UPF sent by the SMF.
  • the response message also includes the sub-transmission path between the first UPF and the second UPF and the corresponding delay data.
  • Step 503 SMF can determine multiple transmission paths from the terminal to the first UPF according to each sub-transmission path in the response message, and select the first PDU session according to the delay data corresponding to the transmission path from the terminal to the first UPF.
  • One of the UPF parameters, and other parameters can be found in 23.501 6.3.3.3.
  • multiple transmission paths from the terminal to the second UPF can be determined, and the delay data corresponding to the transmission path from the terminal to the second UPF is used as one of the parameters for selecting the first UPF in the PDU session.
  • the delay data corresponding to the transmission path from the terminal to the second UPF is used as one of the parameters for selecting the first UPF in the PDU session.
  • the PCA determines the delay data corresponding to the transmission paths from multiple terminals to the first UPF or the second UPF, and sends them to the SMF. SMF does not need to go through this process.
  • Step 504a The SMF sends an N4 Session Establishment/Modification Request to the selected UPF.
  • Step 504b UPF sends N4 Session Establishment/Modification Response to SMF.
  • Step 504c The SMF sends the Namf_Communication_N1N2MessageTransfer message to the AMF.
  • Step 504d AMF sends N2 PDU Session Request to the RAN.
  • Steps 504a to 504d are the same as in the prior art.
  • CU-UP selection is also required.
  • the RAN or CU-CP requests the PCA for the identification of the CU-UP for PDU session establishment. Due to the above process, the first UPF has been determined. When selecting the CU-UP next, the time delay data between the first UPF and the second UPF may not be considered.
  • the SMF may also inform the RAN of the identifier of the first UPF selected, so that when the RAN requests the delay data of the sub-transmission path, it does not need to request all the sub-transmission paths.
  • Step 505 The RAN sends a request message to the PCA.
  • the PCA receives the request message sent by the RAN.
  • the request is used to request the delay data of each sub-transmission path from the terminal to the first UPF.
  • the request message includes The identifier of each CU-UP managed by the CU-CP and the identifier of the first UPF selected by the SMF.
  • Step 506 The PCA sends a response message to the RAN.
  • the RAN receives the response message sent by the PCA.
  • the response message includes the response message between the terminal and the DU, the DU and the CU-UP, and the CU-UP and the first UPF.
  • each sub-transmission path can be represented based on the device identification group.
  • the sub-transmission path sent by the PCA to the RAN may be filtered according to the identifier of the first UPF sent by the RAN and the identifier of the CU-UP.
  • Step 507 According to each sub-transmission path in the response message, the RAN can determine the transmission path with the least delay between the terminal and the first UPF, and use the CU-UP in the transmission path with the least delay as the selected PDU session CU-UP.
  • the RAN and the selected CU-UP, and the RAN controls the CU-UP to transmit terminal services.
  • the PCA determines the terminal to the first UPF based on each sub-transmission path between the terminal and the DU, between the DU and the CU-UP, between the CU-UP and the first UPF, and the delay data corresponding to the sub-transmission path And send the CU-UP identifier in the transmission path with the smallest time delay to the CU-CP in the RAN.
  • the SMF needs to perform UPF selection
  • the CU-CP needs to perform CU-UP selection.
  • Figures 6 and 7 of this application provide information obtained from the above embodiments.
  • the delay data between each sub-transmission path is used as one of the parameters, and the modes of UPF and CU-UP are selected, and the other processes of switching are the same as the existing standards.
  • the handover here can be a regional handover during the movement of the terminal, which causes the equipment that provides access network services for the terminal to need to be handed over. Specific scenarios can be cell handover, base station handover, macro base station handover, etc.
  • a schematic diagram of the delay optimization process of the UE handover based on the Xn interface is provided:
  • Step 601 During the handover preparation process, the target RAN after the handover may send a request message to the PCA.
  • the PCA receives the request message sent by the target RAN, and the request message is used to request communication between the DU managed by the RAN and the CU-UP.
  • the delay data optionally, may also request the delay data between the CU-UP and the first UPF, and the request message may include the identifier of the CU-UP managed by the target RAN.
  • Step 602 The PCA sends the delay data between the DU and the CU-UP managed by the PCA to the target RAN.
  • the delay data between the CU-UP and the first UPF can also be sent.
  • Step 603 The target RAN selects the sub-transmission path between the CU-UP with the smallest delay data and the first UPF according to the delay data between the DU and the CU-UP, and the CU-UP in the sub-transmission path with the smallest delay As the CU-UP after the handover, the selection of the CU-UP is completed, and the RAN manages the service of the CU-UP transmission terminal after the handover.
  • the target RAN determines the delay data of the transmission path between the DU and the first UPF according to the delay data between the DU and the CU-UP and between the CU-UP and the first UPF, and selects the DU with the smallest delay data For the transmission path from the CU-UP to the first UPF, the CU-UP in the transmission path with the smallest delay data is used as the CU-UP after the switch.
  • the PCA selects the transmission path between the CU-UP and the first UPF with the smallest delay according to the delay data between the DU and the CU-UP, or according to the transmission path between the DU and the CU-UP, and the CU-UP and the first UPF Time delay data, determine the transmission path between the DU with the smallest delay and the first UPF, and carry the CU-UP identifier in the transmission path with the smallest delay in the response message and send it to the RAN.
  • Step 604 The target RAN sends an N2 path switch request path switch request to the AMF.
  • Step 605 AMF sends Nsmf_PDUSession_UpdateSMContext Request to SMF.
  • Step 604 and step 605 are the same as in the prior art.
  • UPF selection is also required, because the CU-UP has been determined after the above process.
  • the time delay data between the terminal and the CU-UP may not be considered.
  • the RAN can also inform the SMF of the selected CU-UP identifier, so that when the SMF requests the delay data of the sub-transmission path, it does not need to request all the sub-transmission paths.
  • Step 606 The SMF sends a request message to the PCA.
  • the PCA receives the request message sent by the SMF.
  • the request is used to request the delay data of each sub-transmission path from the CU-UP to the second UPF.
  • the request message It includes the identifier of the UPF managed by the SMF and the identifier of the CU-UP selected by the RAN.
  • Step 607 The PCA sends a response message to the SMF.
  • the SMF receives the response message sent by the PCA.
  • the response message includes the sub-transmissions between the CU-UP and the first UPF and between the first UPF and the second UPF. Path, and the delay data corresponding to each sub-transmission path.
  • each sub-transmission path can be represented based on the device identification group.
  • the sub-transmission path sent by the PCA to the SMF may be filtered according to the identifier of the UPF sent by the SMF and the identifier of the CU-UP.
  • Step 608 The SMF can determine multiple transmission paths from the CU-UP to the second UPF according to each sub-transmission path in the response message, and select the PDU according to the delay data corresponding to the transmission path from the CU-UP to the second UPF One of the parameters of the first UPF in the session, and other parameters can be found in 23.501 6.3.3.3. After selecting the first UPF, the SMF may send an N4 Session Establishment Request to the first UPF.
  • the PCA determines the delay data corresponding to multiple transmission paths from the CU-UP to the second UPF, and sends it to the SMF. SMF does not need to go through this process.
  • Step 701 The SMF sends a request message to the PCA.
  • the PCA receives the request message sent by the SMF.
  • the request is used to request the delay data of each sub-transmission path from the terminal to the second UPF.
  • the request message includes The ID of the UPF managed by the SMF.
  • Step 702 The PCA sends a response message to the SMF.
  • the SMF receives the response message sent by the PCA.
  • the response message includes the response message between the terminal and the DU, the DU and the CU-UP, and the CU-UP and the first UPF. , And each sub-transmission path between the first UPF and the second UPF, and the delay data corresponding to each sub-transmission path.
  • each sub-transmission path can be represented based on the device identification group.
  • the sub-transmission path sent by the PCA to the SMF may be filtered according to the identifier of the UPF sent by the SMF.
  • Step 703 SMF can determine multiple transmission paths from the terminal to the second UPF according to each sub-transmission path in the response message, and use the delay data corresponding to the transmission path from the terminal to the second UPF as one of the parameters for selecting the first UPF 1.
  • parameters please refer to 23.701 6.3.3.3.
  • the PCA determines the delay data corresponding to multiple transmission paths from the terminal to the second UPF, and sends it to the SMF. SMF does not need to go through this process.
  • Step 704a The SMF sends an N4 Session Establishment Request to the selected first UPF.
  • Step 704b UPF sends N4 Session Establishment Response to SMF.
  • Step 704c The SMF sends an Nsmf_PDUSession_UpdateSMContext Response message to the AMF.
  • Step 704d AMF sends a Handover Request to the RAN.
  • Steps 704a to 704d are the same as in the prior art.
  • the RAN or CU-CP requests the PCA for the identification of the CU-UP for PDU session establishment. Due to the above process, the first UPF has been determined.
  • the SMF may also inform the RAN of the identification of the first UPF selected, so that when the RAN requests the delay data of the sub-transmission path, it does not need to request all the sub-transmission paths.
  • Step 705 The RAN sends a request message to the PCA.
  • the PCA receives the request message sent by the RAN.
  • the request is used to request the delay data of each sub-transmission path from the terminal to the first UPF.
  • the request message includes The identifier of each CU-UP managed by the CU-CP and the identifier of the first UPF selected by the SMF.
  • Step 706 The PCA sends a response message to the RAN.
  • the RAN receives the response message sent by the PCA.
  • the response message includes the response message between the terminal and the DU, the DU and the CU-UP, and the CU-UP and the first UPF.
  • each sub-transmission path can be represented based on the device identification group.
  • the sub-transmission path sent by the PCA to the RAN may be filtered according to the identifier of the first UPF sent by the RAN and the identifier of the CU-UP.
  • Step 707 The RAN can determine the transmission path with the least delay from the terminal to the first UPF according to each sub-transmission path in the response message, and use the CU-UP in the transmission path with the least delay as the selected PDU session CU-UP in.
  • the RAN and the selected CU-UP, and the RAN controls the CU-UP to transmit terminal services.
  • the PCA determines the terminal to the first UPF based on each sub-transmission path between the terminal and the DU, between the DU and the CU-UP, between the CU-UP and the first UPF, and the delay data corresponding to the sub-transmission path And send the CU-UP identifier in the transmission path with the smallest time delay to the CU-CP in the RAN.
  • MEAO can deploy each device on the transmission path.
  • the embodiment of this application provides an existing deployment method. First, deploy UPF; then select service node deployment Service platform, such as MEC platform; then, obtain the delay data between the terminal and the service platform, and determine whether the obtained delay data meets the delay requirement from the terminal to the service platform. If not, perform UPF and service platform again deploy.
  • FIG. 8 a schematic diagram of a delay optimization process for device deployment is provided
  • Step 801 MEAO sends a request message to the first device.
  • the request message includes the identities of multiple sixth devices.
  • the request message is used to obtain the delay data of the second transmission path.
  • the second transmission path is the terminal and the request.
  • the sixth device may be the first UPF.
  • the first device receives the request message sent by MEAO.
  • the second device is of the same type as the device instance to be deployed by MEAO.
  • Step 802 The first device calculates the delay data of each second transmission path according to the acquired delay data corresponding to the sub-transmission path.
  • the first device obtains the second interval between the terminal and each first UPF in the request message. Delay data of the transmission path.
  • Step 803 A response message sent by the first device to MEAO, where the response message includes multiple second transmission paths and delay data corresponding to each second transmission path.
  • each second transmission path in the response message is represented based on the identifier of the device identifier group, for example, it may be based on the device identifier group formed by the terminal identifier and the DU identifier, and the device identifier group formed by the DU identifier and the CU-UP identifier.
  • the device identification group formed by the CU-UP identifier and the UPF identifier, these three identifier groups represent a second transmission path.
  • redundancy can also be removed, and the DU logo, the CU-UP logo, and the UPF logo indicate a second transmission path.
  • Corresponding to each of the multiple device identification groups that constitute each second transmission path includes the identity of the sixth device in a request message. If the sixth device is the first UPF, multiple device identities corresponding to one second transmission path The group must include a first UPF logo.
  • Step 804 According to the delay data corresponding to each second transmission path in the response message, MEAO first selects the target second transmission path that meets the delay requirements of the terminal service, and selects the first target second transmission path corresponding to the selected target second transmission path. Select the identity of the target sixth device from the identity of the six devices.
  • the second transmission path that meets the delay requirements of the terminal’s service is called the target second transmission path.
  • the target second transmission path can be understood as a transmission path in which the delay data between the terminal and the sixth device is less than the set delay value. , Or the transmission path corresponding to the minimum value of the delay data between the terminal and the sixth device.
  • the target second transmission path may be one or multiple.
  • the MEAO can also send the delay requirements of the terminal service to the first device.
  • the first device selects the target second transmission path that meets the delay requirements of the terminal service according to the delay data corresponding to each second transmission path.
  • the response message sent by the device to the MEAO includes the target second transmission path, and the response message may specifically include multiple device identification groups used to represent the target second transmission path.
  • Each target second transmission path corresponds to the identity of a sixth device. If there is a target second transmission path, it corresponds to the identity of multiple sixth devices. MEAO can be in the sixth device corresponding to multiple target second transmission paths. Select the identity of a target sixth device.
  • Step 805 MEAO determines the target location information corresponding to the selected target sixth device identifier according to the location information corresponding to the identifier of each sixth device, and deploys the device of the same type as the sixth device at the target location information. If the sixth device is the first UPF, the device of the same type as the sixth device is also UPF.
  • the previously tested delay data of each sub-transmission path can be used to select the deployment location, so that the UPF deployment location can meet the service requirements of the terminal and optimize the delay in the data transmission process.
  • Step 806 MEAO selects the service node, deploys the service platform, and obtains the delay data of the transmission path between the deployed device of the same type as the sixth device and the service node.
  • MEAO can select business nodes according to APP requirements and virtual resource requirements.
  • Step 807 The MEAO determines the delay data of the transmission path between the terminal and the target sixth device according to the delay data corresponding to the transmission path between each terminal and the sixth device in the second message.
  • step 806 and step 807 are not limited.
  • Step 808 MEAO determines whether the terminal is connected to the service node according to the delay data of the transmission path between the terminal and the target sixth device, and the acquired delay data of the transmission path between the device of the same type as the sixth device and the service node. Whether the delay data of the transmission path between service nodes meets the delay requirements of the terminal service; if not, proceed to step 806, MEAO selects a new service node to deploy the service platform, and then proceed to step 808 without repeating step 807. MEAO can also delete the deployed service platform when the delay requirement is not met.
  • the delay data from the terminal to the service platform is obtained in segments, when the delay data from the terminal to the service platform does not meet the service requirements of the terminal, only the service platform needs to be re-deployed instead of the UPF between the terminal and the service platform. Deploy the business platform efficiently.
  • an embodiment of the present application also provides a system for delay acquisition.
  • the system includes a system for performing the delay acquisition of FIG. 2, FIG. 3A, FIG. 3B, and FIG. 3C.
  • an embodiment of the present application also provides a system for delay optimization.
  • the system includes the SMF and UPF used to perform the delay optimization method in FIGS. 4-7.
  • PCA, RAN may also include AMF, etc., or include the first device and MEAO used to perform the delay optimization method in FIG. 8 above.
  • an embodiment of the present application also provides a communication device 900, which can be used to perform the above-mentioned time-delayed acquisition.
  • the first device and the second device in the method perform operations as shown in FIG. 2, FIG. 3A, FIG. 3B, and FIG. 3C.
  • the communication device 900 may be referred to as a delay obtaining device.
  • the communication device 900 can also be used to perform the operations of the first device and the fourth device in the above-mentioned delay optimization method, as well as SMF, UPF, PCA, and RAN.
  • the communication device 900 may be referred to as a delay optimization device. It can also be used to perform operations as shown in FIG. 8 performed by the first device and MEAO in the above-mentioned delay optimization method.
  • the communication transmission device 900 includes: a processing module 901, a sending module 902, and a receiving module 903; the processing module 901 is used for processing data, the sending module 902 is used for sending data; the receiving module 903 is used for receiving data.
  • the sending module 902 is used to send a request message to the second device, and the request message is used to obtain the sub-transmission between the second device and the third device.
  • Path delay data a transmission path can be directly established between the third device and the second device;
  • the receiving module 903 is configured to receive a response message sent by the second device, where the response message includes the delay data of the sub-transmission path between the second device and the third device;
  • the processing module 901 is configured to save the correspondence between the sub-transmission path and the delay data, where the sub-transmission path is represented based on the device identification group formed by the identifier of the second device and the identifier of the third device.
  • the sending module 902 is configured to send a request message to the first device, and the request message is used to obtain the delay data between the first sub-transmission paths.
  • the request message includes the identifier of each seventh device managed by the fourth device, and the first sub-transmission path is the sub-transmission path represented by the device identifier group where the identifier of the seventh device is located;
  • the receiving module 903 is configured to receive a response message sent by the first device.
  • the response message includes a device identification group used to indicate each first sub-transmission path, and a time corresponding to each first sub-transmission path. Delay data;
  • the processing module 901 is configured to select a target device identification group according to the response message and the delay requirements of the terminal service, and control the target seventh device in the target device identification group to establish a transmission path with other devices, and the established transmission path is used For transmission terminal services.
  • an embodiment of the present application also provides a communication device 1000, which is configured to perform the foregoing delay acquisition And/or the operation in the delay optimization method.
  • the communication device 1000 includes a processor 1001, a transceiver 1002, and optionally, a memory 1003.
  • the processor 1001 is configured to call a set of programs, and when the programs are executed, the processor 1001 is caused to perform the operations in the above-mentioned delay acquisition and/or delay optimization method.
  • the memory 1003 is used to store programs executed by the processor 1001.
  • the processing module 901 in FIG. 9 can be implemented by the processor 1001, and the sending module 902 and the receiving module 903 can be implemented by the communication interface 1002.
  • the processor may be a central processing unit (CPU), a network processor (NP), or a combination of CPU and NP.
  • CPU central processing unit
  • NP network processor
  • the processor may further include a hardware chip or other general-purpose processors.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (generic array logic, GAL) and other programmable logic devices , Discrete gates or transistor logic devices, discrete hardware components, etc. or any combination thereof.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM, SLDRAM synchronous connection dynamic random access memory
  • DR RAM Direct Rambus RAM
  • the embodiment of the present application provides a computer storage medium storing a computer program, and the computer program includes a method for performing the above-mentioned time delay acquisition and/or time delay optimization.
  • the embodiment of the present application provides a computer program product containing instructions, which when running on a computer, causes the computer to execute the above-provided method for delay acquisition and/or delay optimization.
  • Any communication device provided in the embodiments of the present application may also be a chip.
  • the embodiments of the present application can be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请涉及通信技术领域,公开了一种时延获取方法及装置、优化方法及装置,用以解决现有技术中不能分段进行测试,从而导致不能对数据传输过程中的时延进行优化的问题。时延获取方法包括:第一设备向第二设备发送请求消息,请求消息用于获取第二设备与第三设备间的子传输路径的时延数据,第三设备与第二设备之间能够直接建立传输路径;第一设备接收第二设备发送的回应消息,回应消息包括第二设备与第三设备间的子传输路径的时延数据;第一设备保存子传输路径与时延数据的对应关系,其中,子传输路径基于第二设备的标识和第三设备的标识构成的设备标识组来表示。本申请分别获取能够直接建立传输路径的设备间的时延数据,实现了分段获取时延数据。

Description

时延获取方法及装置、优化方法及装置
相关申请的交叉引用
本申请要求在2019年03月31日提交中国专利局、申请号为201910254689.3、申请名称为“时延获取方法及装置、优化方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种时延获取方法及装置、优化方法及装置。
背景技术
目前,移动互联网、物联网、自动驾驶和远程医疗等业务迅速发展,为满足这些网络新需求和新特性,第五代移动通信(5G)已经成为全球通信行业的研发热点,5G中的典型场景之一:低时延高可靠场景(ultra reliable low latency communication,URLLC)是具有研发挑战的一个,端到端(end to end,E2E)在进行数据传输时,如何保证毫秒级别的E2E时延是5G需要解决的关键问题,也是5G区别于4G的主要特性之一。
图1A给出了典型的5G架构下的终端到应用(application,APP)总时延的构成,其中APP可以理解为终端访问的业务,例如访问微信的某个业务。图1A中以多接入边缘计算(multi-access edge computing,MEC)业务为例,MEC业务的APP部署在MEC主机Host上,该MEC Host可以理解为业务节点,终端到APP的数据传输时延可以分解为4部分,即(1)终端到无线接入网(radio access network,RAN)即基站的接入网时延;(2)基站到核心网的用户面功能网元(user plane function,UPF)的传输网时延;(3)核心网内部的数据处理时延;(4)核心网UPF到MEC Host的互联网时延。由于业务节点的位置通常独立于移动网络部署,因此标准和业界讨论的E2E时延一般不包括图1A中的互联网时延(4)。
现有技术中仅存在对终端到UPF间的时延进行测试的方法,具体为在终端和UPF间增加新的协议层,来测试终端到UPF间的总时延,不能分段进行测试,并且不能对时延进行优化。
发明内容
本申请实施例提供一种时延获取方法及装置、优化方法及装置,用以解决现有技术中不能分段进行测试,从而导致不能对数据传输过程中的时延进行优化的问题。
第一方面,提供了一种时延获取方法,第一设备可以向第二设备发送请求消息,所述请求消息用于获取所述第二设备与第三设备间的子传输路径的时延数据,第二设备与第三设备之间能够直接建立传输路径,此处的传输路径为传输用户数据的路径,第二设备与第三设备均为用户面设备。第二设备接收到第一设备发送的请求消息后,第二设备可以测试第二设备与每个第三设备间的子传输路径的时延数据,该时延数据例如可以是从一个设备 向另一设备发送数据包,至接收到另一设备回复的确认数据包持续的时长值,也可以是从发送数据包到接收数据包持续的时长值的平均值。第二设备也可以提前测试好与每个第三设备间的子传输路径的时延数据。第二设备向第一设备发送回应消息,所述回应消息中包括第二设备与每个第三设备间的子传送路径的时延数据,回应消息中可以基于第二设备的标识和第三设备的标识构成的设备标识组来表示第二设备与第三设备间的传输路径。第一设备在接收到第二设备发送的子传输路径的时延数据后,可以保存子传输路径与时延数据的对应关系,如果子传输路径基于第二设备的标识与第三设备的标识构成的设备标识组来表示,保存子传输路径与时延数据的对应关系,也就是保存第二设备的标识,第三设备的标识,与时延数据的对应关系,一条对应关系中仅包括一个第二设备的标识,一个第三设备的标识。
由于第二设备与第三设备之间能够直接建立传输路径,也就是在数据传输的过程中,第二设备与第三设备是逻辑上相邻的两个设备,终端向业务节点访问业务时,数据包需要经过多个设备的传输,存在多段时延,本申请分别获取能够直接建立传输路径的设备间的时延数据,实现了分段获取时延数据。
在一种可能的实现中,第二设备是接入网设备,则第三设备是核心网设备;或者第二设备是接入网设备,则第三设备是终端设备,或者第二设备是核心网设备,第三设备也是核心网设备,接入网设备例如基站,核心网设备,例如用户面功能网元UPF。
在一种可能的实现中,基站中的集中单元(centralized unit,CU)和分布单元(distributed unit,DU)分离部署,以及控制面(control plane,CP)和用户面(user plane,UP)分离部署,核心网设备包括第一UPF和第二UPF,第一UPF为直接与接入网建立传输路径的设备,第二UPF为不直接与接入网建立传输路径的设备。第二设备可以是CU-UP,则所述第三设备为DU或第一UPF;或者第二设备可以是为DU,则所述第三设备为终端;或者第二设备为第一UPF,则所述第三设备为第二UPF。
在一种可能的实现中,DU或基站在测试与终端间的时延数据时,由于终端众多,如果测试每个终端与DU或基站的时延数据显然是不合理且不可行的,因此,如果第三设备为终端,第一设备保存的所述子传输路径与时延数据的对应关系中的每个第三设备的标识可以相同,也就是不区分第三设备是哪个终端,对应关系中的终端的标识仅是用于指示第三设备为DU或基站与终端间的子传输路径的时延数据,可以是DU或基站与多个终端间的时延值的平均值。
在一种可能的实现中,第二设备为用户面设备,第一设备在向第二设备发送请求消息时,可以是通过控制面设备与第二设备之间的标准化信令转发给第二设备,第一设备也可以通过控制面设备接收第二设备发送的回应消息。CU-UP或DU对应的控制面设备为CU-CP,如果第二设备为CU-UP或DU;第一设备向第二设备发送请求消息时,可以是第一设备向控制面网元CU-CP发送请求消息,由所述CU-CP将所述请求消息发送给第二设备;第一设备接收所述第二设备发送的回应消息时,可以是第一设备接收CU-CP发送的回应消息,所述回应消息为第二设备发送给所述CU-CP的。UPF对应的控制面设备为会话管理功能网元(session management function,SMF),如果第一设备为第一UPF,第一设备向第二设备发送请求消息时,可以是第一设备向SMF发送请求消息,由所述SMF将所述请求消息发送给第二设备;第一设备接收所述第二设备发送的回应消息时,可以是第一设备接收SMF发送的回应消息,所述回应消息为第二设备发送给所述SMF的。CU-CP或 SMF在将所述请求消息发送给第二设备时,可以是直接转发所述请求消息,也可以是将所述请求消息封装到现有的其他消息中发送给第二设备;CU-CP或SMF在将所述回应消息发送给第一设备时,可以是直接转发所述回应消息,也可以是将所述回应消息封装到现有的其他消息中发送给第一设备。
第二方面,提供了一种基于上述第一方面的时延获取方法的时延优化方法,第四设备向第一设备发送请求消息,第一设备接收第四设备发送的请求消息,所述请求消息用于获取满足终端业务的时延需求的第一传输路径,请求消息中请求的第一传输路径可以是终端与核心网设备间的传输路径,所述请求消息中包括由所述第四设备管理的每个设备的标识;第一设备根据所述请求消息中包括的每个设备的标识,以及保存的多个子传输路径与时延数据的对应关系,确定能够满足所述时延需求的时延数据所对应的多个子传输路径,确定出的所述多个子传输路径构成目标第一传输路径。
在一种可能的实现中,目标第一传输路径由多个子传输路径构成,分别对应表示所述多个子传输路径的设备标识组中包括第四设备管理的第五设备的标识,第五设备的标识为请求消息中包括的某个设备的标识,第五设备为终端与核心网设备间的传输路径上的一个设备。第一设备可以向所述第四设备发送回应消息,所述回应消息中包括所述第五设备的标识,以及与所述第五设备的标识构成设备标识组的其他设备的标识;所述第四设备接收第一设备发送的回应消息,第四设备根据所述回应消息控制所述第五设备分别与所述其他设备建立传输路径,建立的传输路径用于传输终端业务。所述第四设备可以为SMF,则由所述第四设备管理的多个设备为多个第一UPF;或者所述第四设备可以为CU-CP,则由所述第四设备管理的多个设备为多个CU-UP。
通过第一设备选择出满足终端业务的时延需求的传输路径对应的多个设备标识,多个设备建立的传输路径,满足终端业务的时延需求,使业务数据传输得到了时延优化。
在一种可能的实现中,如果所述第四设备为SMF,则请求消息中包括的由所述第四设备管理的多个设备为多个第一UPF;第一设备可以向所述第四设备发送回应消息,所述回应消息中包括分别对应表示构成目标第一传输路径的多个子传输路径的设备标识组;第四设备将回应消息中的设备标识组分别发送给:能够分别控制所述设备标识组中每个设备标识对应的设备建立传输路径的不同管理设备,不同的管理设备控制每个设备标识对应的设备建立传输路径,建立的传输路径用于传输终端业务。
通过选择出满足终端业务的时延需求的传输路径对应的多个设备标识,多个设备建立的传输路径,满足终端业务的时延需求,使业务数据传输得到了时延优化。
由于满足终端业务的时延需求的设备间建立传输路径,实现了在数据传输过程中的时延的优化,可以保证终端的业务快速传输。
第三方面,提供了一种基于上述第一方面的时延获取方法的时延优化方法,第四设备向第一设备发送请求消息,所述请求消息用于获取第一子传输路径间的时延数据,所述请求消息中包括由第四设备管理的每个第七设备的标识,第一子传输路径为所述第七设备的标识所在的设备标识组所表示的子传输路径。相应的,第一设备接收第四设备发送的请求消息。如果所述第四设备为SMF,所述第七设备可以为第一UPF;如果所述第四设备为CU-CP,所述第七设备可以为CU-UP。第一设备根据预先保存的子传输路径,确定请求消 息中的第七设备的标识所在的设备标识组,并向第四设备发送回应消息,所述回应消息中包括分别用于表示每个第一子传输路径的设备标识组,及每个第一子传输路径对应的时延数据;回应消息中的用于表示每个第一子传输路径的设备标识组即为第七设备的标识所在的设备标识组。第四设备根据终端业务的时延需求,在所述回应消息中的设备标识组中选择出目标设备标识组,并控制目标设备标识组中的目标第七设备与其他设备建立传输路径,建立的传输路径用于传输终端业务。
由于满足终端业务的时延需求的设备间建立传输路径,实现了在数据传输过程中的时延的优化,可以保证终端的业务快速传输。
一种可能的实现中,如果所述第四设备为SMF,所述第七设备可以为第一UPF,第一UPF的标识所在的设备标识组可以是CU-UP的标识与所述第一UPF的标识构成的设备标识组,还可以是所述第一UPF与第二UPF构成的设备标识组。回应消息中还可以携带其它子传输路径及其对应的时延数据,例如携带用于表示终端与DU间的子传输路径的设备标识组,及该子传输路径对应的时延数据,例如携带表示CU-UP与DU间的子传输路径的设备标识组,及该子传输路径对应的时延数据。
一种可能的实现中,如果所述第四设备为CU-CP,所述第七设备可以为CU-UP,CU-UP的标识所在的设备标识组可以是所述CU-UP的标识与第一UPF的标识构成的设备标识组,还可以是所述CU-UP与DU构成的设备标识组。回应消息中还可以携带其它子传输路径及其对应的时延数据,例如携带用于表示终端与DU间的子传输路径的设备标识组,及该子传输路径对应的时延数据,例如携带表示第二UPF与第一UPF间的子传输路径的设备标识组,及该子传输路径对应的时延数据。由于满足终端业务的时延需求的设备间建立传输路径,实现了在数据传输过程中的时延的优化,可以保证终端的业务快速传输。
第四方面,提供了一种基于上述第一方面的时延获取方法的时延优化方法,MEC应用编排器(MEC application orchestrator,MEAO)可以根据时延数据进行设备实例的部署,MEAO可以向第一设备发送请求消息,所述请求消息中包括多个第六设备的标识,第六设备的类型与待部署的设备的类型相同,所述请求消息用于获取第二传输路径的时延数据,第二传输路径为终端与请求消息中的标识对应的第六设备间的传输路径,第六设备可以是第一UPF。第一设备接收MEAO发送的请求消息,第一设备根据获取到的子传输路径对应的时延数据,以及请求消息中的每个第六设备的标识,计算每个第二传输路径的时延数据;第一设备向MEAO发送的回应消息,所述回应消息中包括多条第二传输路径,以及每条第二传输路径对应的时延数据,其中,每条第二传输路径基于多个设备标识组来表示,则分别对应表示构成每条第二传输路径的多个设备标识组中包括一个第六设备的标识。MEAO根据回应消息中的每条第二传输路径对应的时延数据,选择满足终端业务的时延需求的目标第二传输路径,满足终端业务的时延需求的目标第二传输路径可能是一个,也可能是多个,每条目标第二传输路径对应一个第六设备的标识,终端可以在目标第二传输路径对应的第六设备的标识选择目标第六设备的标识,并根据每个第六设备的标识对应的位置信息,确定选择出的目标第六设备的标识对应的目标位置信息,每个第六设备的标识对应的位置信息可以是所述MEAO中预先保存的,也可能是在第三方存储介质中保存的,MEAO在目标位置信息处部署与第六设备类型相同的设备。
在进行设备的部署时,可以采用之前测试好的各个子传输路径的时延数据进行部署位 置的选择,使部署位置满足终端的业务需求,实现了在数据传输过程中的时延的优化。
在一种可能的实现中,MEAO可以在业务节点上部署业务平台,然后获取部署好的与第六设备类型相同的设备与业务节点上的业务平台间的传输路径的时延数据,并根据回应消息中的每个终端与第六设备间的第二传输路径对应的时延数据,确定终端与目标第六设备间的目标第二传输路径的时延数据;MEAO根据终端与目标第六设备间的传输路径的时延数据,以及获取到的部署好的与第六设备类型相同的设备与业务节点间的传输路径的时延数据,确定终端与业务节点间的传输路径的时延数据是否满足终端业务的时延需求;如果否,则可以把部署的业务平台删除,重新选择业务节点进行业务平台的部署,并在重新部署好业务平台后,再次确定终端与业务节点间的传输路径的时延数据是否满足终端业务的时延需求,如果不满足,再重新选择业务节点进行业务平台的部署……,直至终端与业务节点间的传输路径的时延数据是否满足终端业务的时延需求为止。
由于分段获取终端至业务平台的时延数据,当终端至业务平台的时延数据不满足终端的业务需求时,只需重新部署业务平台,不需要重新部署终端至业务平台间的其他设备,可以高效地部署好业务平台。
第五方面,提供了一种时延获取的装置,该装置具有实现上述第一方面和第一方面的任一种可能的实现中方法的功能模块。所述功能模块可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现中,该装置可以是芯片或者集成电路。
在一种可能的实现中,该装置包括收发器和处理器,所述装置可以通过处理器执行上述第一方面和第一方面中任一种可能的实现中的方法。
其中,上述的收发器可以是接口电路。
在一种可能的实现中,该装置还可以包括存储器;所述存储器,用于存储计算机程序。
第六方面,提供了一种时延优化的装置,该装置具有实现上述各方面和各方面的任一种可能的实现中方法的功能模块。所述功能模块可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现中,该装置可以是芯片或者集成电路。
在一种可能的实现中,该装置包括收发器和处理器,所述装置可以通过处理器执行上述第一方面至第四方面和各个方面中任一种可能的实现中的方法。
其中,上述的收发器可以是接口电路。
在一种可能的实现中,该装置还可以包括存储器;所述存储器,用于存储计算机程序。
第七方面,提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当所述计算机可读指令被运行时,使得装置可以执行上述各方面和各方面的任一可能的实现中的方法。
第八方面,提供一种计算机程序产品,当所述计算机程序产品被运行时,使得装置可以执行上述各方面和各方面的任一可能的实现中的方法。
第九方面,提供一种芯片,所述芯片与存储器耦合,所述芯片用于读取并执行所述存储器中存储的软件程序,以实现上述各方面和各方面的任一可能的实现中的方法。
附图说明
图1A为现有技术中提供的一种数据传输过程示意图;
图1B为本申请实施例中提供的一种通信系统架构图;
图1C为本申请实施例中提供的一种基站结构示意图;
图1D为本申请实施例中提供的一种数据传输过程示意图;
图1E为本申请实施例中提供的一种子传输路径图;
图2为本申请实施例中提供的一种时延获取过程示意图;
图3A为本申请实施例中提供的一种时延获取过程示意图;
图3B为本申请实施例中提供的一种时延获取过程示意图;
图3C为本申请实施例中提供的一种时延获取过程示意图;
图4为本申请实施例中提供的一种PDU会话建立过程中的时延优化过程示意图;
图5为本申请实施例中提供的一种PDU会话建立过程中的时延优化过程示意图;
图6为本申请实施例中提供的一种切换过程中的时延优化过程示意图;
图7为本申请实施例中提供的一种切换过程中的时延优化过程示意图;
图8为本申请实施例中提供的一种设备部署过程中的时延优化过程示意图;
图9为本申请实施例中提供的一种通信装置;
图10为本申请实施例中提供的一种通信装置。
具体实施方式
下面将结合附图,对本申请实施例进行详细描述。
本申请实施例提供一种时延获取方法及装置、优化方法及装置,用以解决现有技术中不能分段进行测试,从而导致不能对数据传输过程中的时延进行优化的问题。其中,方法、装置和系统是基于同一发明构思的,由于方法、装置和系统解决问题的原理相似,因此装置及系统与方法的实施可以相互参见,重复之处不再赘述。
本申请实施例的技术方案可以应用于各种通信系统,例如:未来的第五代(5th Generation,5G)系统,新一代无线接入技术(new radio access technology,NR),及未来的通信系统,如6G系统等。
本申请实施例描述的业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或实现方案不应被解释为比其它实施例或实现方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
为便于理解本申请实施例,以下对本申请实施例的部分用语进行解释说明,以便于本领域技术人员理解。
1)、终端,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备。例如,终端设备包括具有无线连接功能的手持式设备、车载设备等。目前,终端设备可以是: 手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端等。
2)、CU-CP:无线接入网(radio access network,RAN)集中式单元中的控制面网元,承载无线资源控制(radio resource control,RRC)的逻辑节点和gNB-CU的分组数据汇聚协议(packet data convergence protocol,PDCP)的控制平面部分。
3)、CU-UP:RAN集中式单元中的用户面网元,承载用于gNB-CU的PDCP协议的用户平面部分和业务数据适配协议(Service Data Adaptation Protocol,SDAP)协议。
4)、DU:RAN分布式单元,承载gNB的无线链接控制(radio link control,RLC),媒体访问控制(Media Access Control,MAC)和物理层(Physical Layer,PHY)的逻辑节点,并且其操作部分地由gNB-CU控制。
5)、用户面功能(user port function,UPF):通常为连接RAN和互联网的网关。
6)、策略控制功能(Policy Control Function,PCF)(中英文):核心网控制面网元,提供策略控制功能。
7)MEC应用编排器(MEAO):网络功能虚拟化环境下的MEC应用编排器,主要完成MEC平台和MEC应用的资源管理和实例部署等功能。
8)、接入以及移动性管理功能网元(access and mobility management function,AMF),核心网控制面功能,提供用户的移动性管理以及接入管理的功能。
9)、虚拟化基础设施(Virtualization Infrastructure),网络功能虚拟化环境下的计算、存储和网络资源,承载MEC APP的部署。
10)、多接入边缘计算平台(MEC Platform),部署在MEC节点上,为运行在虚拟化基础设施上的MEC APP提供所需的必要功能。
11)、多接入边缘计算平台管理器(MEC Platform Manager),MEC中的节点级管理功能,提供APP和MEC平台的生命周期管理。
12)会话管理功能网元(SMF),核心网控制面网元,主要负责给UE分配地址,隧道标识,计费标识并和PCF交互获取策略并传递给UPF。
本申请中的“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中所涉及的多个,是指两个或两个以上。
在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
为便于理解本申请实施例,接下来对本请的应用场景进行介绍。终端在访问某个业务时,终端需要发送数据至业务节点,该数据可以是个请求数据包,可以是什么,终端到业务节点的数据传输过程包括:终端将数据发送至基站,基站将数据发送至核心网的UPF,核心网的UPF将数据发送值业务节点,在数据发送的过程中,至少可产生如图1A所示的(1)、(2)、(3)的时延数据。现有技术中仅存在对终端与UPF间的总时延进行测试的方 法,不能分段进行测试。
为便于理解本申请实施例,接下来对本请的系统架构图进行介绍。具体参见如图1B所示的系统架构示意图:UE发出的数据经过RAN,再经过UPF,达到MEC Platform下的Virtualization Infrastructure,通过Virtualization Infrastructure进行业务的访问,图中的性能收集和分析Performance Collection and Analysis,PCA)模块是本申请新增的连接控制面(例如5G网络控制面(5G Control Plane))和管理面(例如MEC Orchestrator)的时延数据收集和分析模块。PCA在时延数据的获取上,可以通过控制面或直接将请求下发给用户面网元(例如RAN或UPF),用户面网元测试后将时延数据上报;也可以直接与用户面网元通过Client-Server的模式请求与获取。然后,PCA一方面将时延数据用于5G流程中的用户面网元选择,另一方面为MEC应用编排器提供UPF部署位置,从而实现E2E时延的优化。PCA可以作为控制面与管理面融合网元独立部署,也可以作为当前5G架构下的网络数据分析功能NWDAF(Network Data Analytics Function)的增强。在本申请中,将部署PCA模块的设备称为第一设备。
如图2所示,本申请提供了一种时延获取的过程示意图:
步骤21:第一设备向第二设备发送请求消息,所述请求消息用于获取所述第二设备与第三设备间的子传输路径的时延数据,所述第三设备与所述第二设备之间能够直接建立传输路径。
此处的传输路径为传输用户数据的路径,第二设备与第三设备均为用户面设备。
步骤22:第一设备接收所述第二设备发送的回应消息,所述回应消息包括所述第二设备与第三设备间的子传输路径的时延数据。
第二设备接收到第一设备发送的请求消息后,第二设备可以测试第二设备与每个第三设备间的子传输路径的时延数据,该时延数据可以由第二设备在线获取,获取方法为从一个设备向另一设备发送典型字节数的数据包,至接收到另一设备回复的确认数据包持续的时长值,也可以是从发送数据包到接收数据包持续的时长值的平均值。第二设备也可以提前测试好与每个第三设备间的子传输路径的时延数据。第二设备向第一设备发送回应消息,所述回应消息中包括第二设备与每个第三设备间的子传送路径的时延数据,回应消息中可以基于第二设备的标识和第三设备的标识构成的设备标识组来表示第二设备与第三设备间的传输路径。
步骤23:第一设备保存所述子传输路径与时延数据的对应关系,其中,所述子传输路径基于第二设备的标识和第三设备的标识构成的设备标识组来表示。
第一设备在接收到第二设备发送的子传输路径的时延数据后,可以保存子传输路径与时延数据的对应关系,如果子传输路径基于第二设备的标识与第三设备的标识构成的设备标识组来表示,保存子传输路径与时延数据的对应关系,也就是保存第二设备的标识,第三设备的标识,与时延数据的对应关系,一条对应关系中仅包括一个第二设备的标识,一个第三设备的标识。
由于第二设备与第三设备之间能够直接建立传输路径,也就是在数据传输的过程中,第二设备与第三设备是逻辑上相邻的两个设备,终端向业务节点访问业务时,数据包需要经过多个设备的传输,存在多段时延,本申请分别获取能够直接建立传输路径的设备间的时延数据,实现了分段获取时延数据。
可选的,用于获取时延数据的请求消息和/或上报时延数据的回应消息可以是现有的 3GPP协议中已定义的消息,也可以是定义新的消息格式来完成时延数据的请求和上报。
时延数据的请求消息中可以包括PTL(performance type list,性能类型列表)信元,用以承载待获取的时延数据是哪两个设备间的时延数据,PTL信元的定义可以如下表1所示。
时延数据的回应消息中可以包括LDL(latency data list,时延数据列表),用于承载时延数据。LDL信元的定义可以如下表2所示。
Figure PCTCN2020080710-appb-000001
表1
如表1所示,第一设备在向第二设备发送时延数据的请求消息时,请求消息中可以携带PTL信元,表1中仅是示出了PTL信元中可以包括的具体内容,实际应用中,请求消息中的PTL信元中,可以包括上述表1中的性能类型performance type中的一种或多种。
Figure PCTCN2020080710-appb-000002
表2
第二设备在向第一设备发送回应消息时,回应消息中可以包括表2中的LDL信元,表2仅是示出了LDL信元中可以包括的具体内容,第二设备ID,第三设备ID,时延数值具有一一对应关系,也就是LDL中携带子传输路径与时延数据的对应关系,子传输路径基于第二设备的标识和第三设备的标识构成的设备标识组来表示。时延数据条目可以理解为一条时延数据,也就是第一第二设备与一个第三设备间的时延数据为一条时延数据。LDL中 还可以携带性能类型performance type,所述性能类型performance type用于指示时延数据的类型,即时延数据是哪两个设备间的时延数据,具体为:源ID对应的设备与目标ID对应的设备间的传输路径的时延数据。实际应用中,请求消息中的LDL信元中,可以包括一个时延数据条目,即包括一条时延数据;也可以包括多个时延数据条目,即包括多条时延数据。
第一设备向第二设备获取第二设备与第三设备间的传输路径的时延数据。
示例性的,第二设备是接入网设备,则第三设备是核心网设备;或者第二设备是接入网设备,则第三设备是终端设备,或者第二设备是核心网设备,第三设备也是核心网设备,接入网设备例如基站,核心网设备,例如用户面网元UPF。接入网设备可以是基站,核心网设备可以是UPF,核心网设备包括第一UPF和第二UPF,第一UPF为直接与接入网建立传输路径的设备,第二UPF为不直接与接入网建立传输路径的设备。第一UPF一般指中间UPF(intermediate UPF,I-UPF)第二一般指锚点(anchor)UPF。
示例性的,第二设备可以是基站,第三设备可以是终端;
或者第二设备为第一UPF,第三设备为第二UPF。
在本申请中,分段测试以及时延优化的方法可以应用在集中单元CU和分布单元DU分离部署,以及控制面CP和用户面UP分离部署的架构下,在该架构下,基站的内部结构如图1C所示。一个基站包含1个CU-CP、若干各CU-UP和若干个DU,其中,CU-CP可以与基站中包含每个CU-UP相连,例如可以是通过E1接口相连,CU-CP可以与基站中包含的每个DU相连,例如可以是通过F1-C接口相连。一个CU-UP与若干个DU相连,例如可以是通过F1-U接口。一个CU-UP只与一个CU-CP相连,一个DU也只与一个CU-CP相连。
基于图1C所示的架构下,第二设备可以是CU-UP,则所述第三设备为DU;
或者第二设备可以是CU-UP,则所述第三设备为第一UPF;
或者第二设备可以是为DU,则所述第三设备为终端。
在本申请中,DU或基站在测试与终端间的时延数据时,由于终端众多,并且终端处于移动状态,频繁进行区域的切换,如果测试每个终端与DU或基站的时延数据显然是不合理的,因此,如果第三设备为终端,第一设备保存的所述子传输路径与时延数据的对应关系中的每个第三设备的标识可以相同,也就是不区分第三设备是哪个终端,对应关系中的终端的标识仅是用于指示第三设备为终端。
基于图1C所示的基站结构示意图,如图1D所示,提供了一种数据传输过程示意图,终端首先将数据传输到基站中的DU,DU将数据传输到CU-UP,CU-UP将数据传输到UPF,UPF再将数据传输至其他UPF,由其他UPF将数据传输至业务节点。则图1A中的(1)接入网时延包括终端与DU之间的时延,DU与CU-UP之间的时延;图1A中的(2)传输网时延包括CU-UP与UPF之间的时延;图1A中的(3)核心网内部的数据处理时延包括UPF与UPF之间的时延。根据3GPP相关协议的定义,RAN和PDU会话锚点UPF之间可以插入新的UPF,该UPF可以是数据流的上行分类器,作用是基于对业务流上行特征的识别,分流数据到本地数据网络或者是远端PDU会话锚点UPF;该UPF也可以是一个分支点(Branch Point),作为针对IPV6的分流点插入。所以两个UPF间传输数据也会存在时延。
在数据传输过程中,选择不同的DU,CU-UP,UPF建立传输路径,数据传输的过程 会导致不同的时延。在本申请中,可以分别获取终端与DU间,DU与CU-UP间,UP与第一UPF间,以及第一UPF与第二UPF间的子传输路径的时延数据,以及根据获取的多个子传输路径的时延数据,选择能够使数据传输时延满足终端业务需求的DU,CU-UP,UPF等,实现时延的优化。
如图3A所示,本申请提供了一种时延获取的过程示意图:PCA中设置有服务(server)单元,用于获取时延数据,并且DU,CU-UP,UPF中分别设置有客户端(client),用于与PCA中的server进行时延数据获取的交互过程。每个第二设备可以测试与其直接建立通信路径的第三设备间的时延数据,则DU可以测试与终端和CU-UP间的子传输路径的时延数据,CU-UP可以测试与DU和UPF间的子传输路径的时延数据,UPF可以测试与CU-UP和第二UPF间的子传输路径的时延数据,PCA的server单元向DU,CU-UP,UPF中分别设置的客户端client下发时延数据的请求消息,DU,CU-UP,UPF中分别设置的客户端client可以向PCA的server单元发送回应消息,上报各自测试的时延数据。
在本申请中,如果第二设备为用户面设备,如DU,CU-UP,UPF等,第一设备在向第二设备发送请求消息时,可以是通过控制面设备(例如CU-CP、SMF等)转发给第二设备,第一设备也可以通过控制面设备接收第二设备发送的回应消息。
CU-UP或DU对应的控制面设备为CU-CP,如果第二设备为CU-UP或DU;第一设备向第二设备发送请求消息时,可以是第一设备向控制面网元CU-CP发送请求消息,由所述CU-CP将所述请求消息发送给第二设备;第一设备接收所述第二设备发送的回应消息时,可以是第一设备接收CU-CP发送的回应消息,所述回应消息为第二设备发送给所述CU-CP的。CU-CP在将所述请求消息发送给第二设备时,可以是直接转发所述请求消息,也可以是将所述请求消息封装到现有的其他消息中发送给第二设备;CU-CP在将所述回应消息发送给第一设备时,可以是直接转发所述回应消息,也可以是将所述回应消息封装到现有的其他消息中发送给第一设备。
如图3B所示,本申请提供了一种接入网侧的时延获取的过程示意图:
步骤311:PCA向CU-CP发送时延数据的请求消息。
步骤312:CU-CP收到PCA的请求消息后,向其管理的每个CU-UP发送CU-CP配置更新configuration update消息,用以通知CU-UP发起时延测试。
所述CU-CP configuration update消息中可以包括用于指示测试时延数据的指示信息,所述CU-CP configuration update消息中还可以包括待获取的时延数据的类型为DU与CU-UP间的时延数据,CU-CP与第一UPF间的时延数据。例如包括信元PTL,其中Performance Type中时延类型为L_CU_DU和L_CU_UPF。
步骤313:CU-UP收到CU-CP发送的消息后,可以向CU-CP发送确认消息CU-CP configuration update ack,表示已收到测试请求。
步骤314a:CU-UP向能够直接与其建立传输路径的所有UPF(1……n)发起时延测试,例如可以通过N3接口发起。
步骤314b:CU-UP向能够直接与其建立传输路径的所有DU(1……n)发起时延测试,例如可以F1-U接口发起。
步骤315:CU-UP时延测试结束后,向CU-CP发送CU-UP configuration update消息上报时延数据。
具体的上报DU与CU-UP间的子传输路径的时延数据,CU-UP与第一UPF间的子传输路径的时延数据,例如,所述CU-UP configuration update消息中可以包括信元LDL,其中Performance Type中包含时延类型L-CU_DU和L_CU_UPF。
步骤316:CU-CP收到CU-UP发送的CU-UP configuration update消息后,向CU-UP发送确认消息CU-UP configuration update ack,表示时延数据已收到。
一种可选的方案中,CU-CP可以通过步骤313上报时延数据,则CU-CP configuration update ack消息中可以包括信元LDL,其中Performance Type中包含时延类型L-CU_DU和L_CU_UPF。
步骤317:CU-CP收到PCA的请求消息后,向其管理的每个DU发送CU configuration update消息,用以通知DU发起时延测试。
所述CU configuration update消息中可以包括用于指示测试时延数据的指示信息,所述CU configuration update消息中还可以包括待获取的时延数据的类型为DU与终端间的时延数据。例如包括信元PTL,其中Performance Type中时延类型为L_UE_DU。
步骤318:DU收到CU-CP的消息后,发起与UE之间的时延测试。
一种可选的方案中,DU已经预先测试好与终端间的时延数据。
步骤319:DU向CU-CP发送CU configuration update ack消息上报时延数据。
具体的上报DU与终端间的子传输路径的时延数据,例如,所述CU configuration update ack消息中可以包括信元LDL,其中Performance Type中包含时延类型为L_UE_DU。UE的ID为空或某个缺省值。
步骤310:CU-CP向PCA发送回应消息,将步骤315和步骤319上报的时延数据汇总去重后上报给PCA。
一种可选的方案中,步骤315的时延数据和步骤319的时延数据可以采用不同的回应消息上报。
至此接入网侧的时延数据获取流程完毕。
UPF对应的控制面设备为SMF,如果第一设备为第一UPF,第一设备向第二设备发送请求消息时,可以是第一设备向SMF发送请求消息,由所述SMF将所述请求消息发送给第二设备;第一设备接收所述第二设备发送的回应消息时,可以是第一设备接收SMF发送的回应消息,所述回应消息为第二设备发送给所述SMF的。SMF在将所述请求消息发送给第二设备时,可以是直接转发所述请求消息,也可以是将所述请求消息封装到现有的其他消息中发送给第二设备;SMF在将所述回应消息发送给第一设备时,可以是直接转发所述回应消息,也可以是将所述回应消息封装到现有的其他消息中发送给第一设备。
如图3C所示,本申请提供了一种核心网侧的时延获取的过程示意图:
步骤321:PCA向SMF发送时延数据的请求消息。
步骤322:SMF收到PCA的请求消息后,向其管理的每个第一UPF发送N4关联更新请求association update request消息,用以通知UPF发起时延测试。
所述N4 association update request消息中可以包括用于指示测试时延数据的指示信息,所述N4 association update request消息中还可以包括待获取的时延数据的类型为第一UPF与第二UPF间的时延数据。例如包括信元PTL,其中Performance Type中时延类型为L_UPF_UPF。
步骤323:第一UPF收到SMF发送的消息后,可以向PCA发送响应消息N4 association update request response,表示已收到测试请求。
步骤324:第一UPF向能够直接与其建立传输路径的所有第二UPF(1……n)发起时延测试,例如可以通过N9接口发起。
步骤325:第一UPF时延测试结束后,向SMF发送N4报告report消息上报时延数据。
具体的上报第一UPF与第二UPF间的子传输路径的时延数据,例如,所述CU-UP configuration update消息中可以包括信元LDL,其中Performance Type中包含时延类型L_UPF_UPF。
步骤326:SMF收到UPF发送的N4 report消息后,向UPF发送的N4 report ack,表示时延数据已收到。
步骤327:SMF向PCA发送回应消息,上报UPF间的时延数据。
至此核心网侧的时延数据获取流程完毕。
经过上述过程获取了终端与DU间,DU与CU-UP间,UP与第一UPF间,以及第一UPF与第二UPF间的子传输路径的时延数据,接下来根据获取的多个子传输路径的时延数据,选择能够使数据传输时延满足终端业务需求的DU,CU-UP,UPF等,实现时延的优化。
本申请实施例提供了一种时延优化的过程:
步骤41:第四设备向第一设备发送请求消息,相应的,第一设备接收第四设备发送的请求消息,所述请求消息用于获取满足终端业务的时延需求的第一传输路径。第一传输路径可以是终端与核心网设备间的传输路径,所述请求消息中包括由所述第四设备管理的每个设备的标识。
步骤42:第一设备根据所述请求消息中包括的每个设备的标识,以及保存的多个子传输路径与时延数据的对应关系,确定能够满足所述时延需求的时延数据所对应的多个子传输路径,确定出的所述多个子传输路径构成目标第一传输路径。
满足时延需求的第一传输路径可能是一条,也可能是多条,第四设备一般请求一条第一传输路径,或者根据通信需求,终端只需一条传输路径就可以访问业务,则第一设备在多条满足时延需求的第一传输路径中确定出最终的目标第一传输路径,一般确定出的目标第一传输路径可以认为是只有一条。
步骤43:第一设备可以向所述第四设备发送回应消息。
一种可选的方案中,分别对应表示构成目标第一传输路径的多个子传输路径的设备标识组中包括所述第四设备管理的第五设备的标识,所述回应消息包括第五设备的标识,以及与所述第五设备的标识构成设备标识组的其他设备的标识。第五设备的标识为请求消息中包括的某个设备的标识,第五设备为目标第一传输路径上的一个设备。第一设备可以向所述第四设备发送回应消息,相应的所述第四设备接收第一设备发送的回应消息,第四设备根据所述回应消息控制所述第五设备分别与所述其他设备建立传输路径,建立的传输路径用于传输终端业务。所述第四设备可以为SMF,则由所述第四设备管理的多个设备为多个第一UPF;或者所述第四设备可以为CU-CP,则由所述第四设备管理的多个设备为多个CU-UP。
例如,第四设备为SMF,目标第一传输路径为终端至DU至CU-UP至第一UPF。第 一设备(PCA)不仅要将第一UPF(第五设备)的标识告知SMF,还要将与第一UPF的标识共同构成标识组的CU-UP(其它设备)的标识告知SMF,这样SMF可以将CU-UP的标识告知第一UPF,也就是SMF控制第一UPF与能够直接与所述第一UPF建立传输路径的CU-UP建立传输路径。
通过第一设备选择出满足终端业务的时延需求的传输路径对应的多个设备标识,多个设备建立的传输路径,满足终端业务的时延需求,使业务数据传输得到了时延优化。
一种可选的方案中,所述回应消息中包括分别对应表示构成目标第一传输路径的多个子传输路径的设备标识组;第四设备将回应消息中的设备标识组分别发送给:能够分别控制所述设备标识组中每个设备标识对应的设备建立传输路径的不同管理设备,不同的管理设备控制每个设备标识对应的设备建立传输路径,建立的传输路径用于传输终端业务。如果所述第四设备为SMF,则请求消息中包括的由所述第四设备管理的多个设备为多个第一UPF。
例如,第四设备为SMF,目标第一传输路径为终端至DU至CU-UP至第一UPF。第一设备(PCA)不仅要将第一UPF(第五设备)的标识告知SMF,还要将目标第一传输路径中的构成标识组的DU的标识、CU-UP的标识,以及构成标识组的CU-UP的标识和第一UPF的标识告知能够控制DU的标识DU对应的DU、和CU-UP的标识对应的CU-UP建立传输路径的CU-CP(管理设备),CU-CP也可以控制CU-UP与第一UPF建立从传输路径,由CU-UP控制DU与CU-UP建立传输路径,以及控制CU-UP与第一UPF建立传输路径。
通过选择出满足终端业务的时延需求的传输路径对应的多个设备标识,多个设备建立的传输路径,满足终端业务的时延需求,使业务数据传输得到了时延优化。
在现有的3GPP标准中,UE在建立PDU会话的过程中,SMF需要进行UPF selection,CU-CP需要进行CU-UP的选择,本申请的图4和图5提供了将上述实施例获取到的各个子传输路径间的时延数据作为参数之一,选择UPF和CU-UP的方式,PDU会话建立的其他过程与现有的标准相同。
如图4所示,提供了一种在PDU会话建立过程中的时延优化过程示意图;
步骤401:SMF向PCA发送请求消息,用于请求满足终端业务的时延需求的最优的第一传输路径,该第一传输路径为终端与核心网设备间的,此处的核心网设备可以理解为第一UPF。
请求消息中还可以包括由所述SMF管理的每个第一UPF的标识。
满足终端业务的时延需求的传输路径可以是终端至第一UPF的传输路径的时延值小于预设的时延值的传输路径,也可以是终端至第一UPF的传输路径中时延最小的传输路径。
相应的,PCA接收到SMF的请求消息后,可以根据获取到的终端与DU间的,DU与UP间的,UP与第一UPF间的子传输路径对应的时延数据,以及请求消息中的多个第一UPF的标识,选择出终端与多个第一UPF间的多条传输路径,如图1E所示子传输路径示意图,终端可与一个或多个DU建立子传输路径,每个DU可与一个或多个CU-UP建立子传输路径,每个CU-UP可与一个或多个第一UPF建立子传输路径,每个第一UPF可与一个或多个第二UPF建立子传输路径,由此可以看出,终端与任一第一UPF间就可能有多条传输路径。
PCA确定出终端与请求消息中的多个第一UPF间的多条传输路径,并在多条传输路径中确定出一条满足时延需求的目标第一传输路径(最优路径),确定出的目标第一传输路径可以是终端至DU至CU-UP至第一UPF,目标第一传输路径中包括终端至DU,DU至CU-UP,CU-UP至第一UPF这三条子传输路径,其中。目标第一传输路径中的第一UPF为发送请求消息的SMF管理的第一UPF。
步骤402:PCA向SMF发送回应消息,用于下发满足终端业务的时延需求的最优传输路径。
例如,所述回应消息中包括目标第一传输路径对应的目标第一UPF的标识,以及确定出的所述目标第一UPF的标识构成设备标识组的目标CU-UP的标识。
一种可选的方案中,在步骤401之前,SMF进行PCF selection。在后续步骤401和步骤402中,可以是SMF通过选择出的PCF向PCA发送请求消息,以及通过选择出的PCF接收SMF发送的回应消息。
步骤403:SMF将回应消息中的目标第一UPF的标识对应的第一UPF作为PDU会话中的UPF。本申请给出了一种SMF选择UPF的方式,即将回应消息中的目标第一UPF作为选择出的PDU会话中的UPF。
步骤403a:SMF向选择的UPF发送N4 Session Establishment/Modification Request。
步骤403b.:UPF向SMF发送N4 Session Establishment/Modification Response。
步骤403a与步骤403b与现有技术相同。
在PDU会话建立过程中,也需要进行CU-UP的选择,一种可选的方案中,RAN或CU-CP向PCA请求进行PDU会话建立的CU-UP的标识,另一可选的方案中,RAN或CU-CP不进行CU-UP的请求,而是通过其他设备(例如SMF)将CU-UP的标识转发给自己。
图4提供了一种可实施例的方式,SMF将回应消息中的目标CU-UP的标识发送给RAN或CU-CP。具体的过程可参见以下步骤:
步骤404:SMF向AMF发送最优路径,例如可以通过Namf_Communication_N1N2MessageTransfer消息发送的;则该Namf_Communication_N1N2MessageTransfer消息中携带最优路径,最优路径可以用目标CU-UP的标识来表示,则该消息中包括目标CU-UP的标识,还可以包括目标UPF的标识。
步骤405:AMF向RAN发送最优路径,例如可以通过N2 PDU Session Request消息发送,则N2 PDU Session Request消息中携带最优路径,最优路径可以用目标CU-UP的标识来表示,则该消息中包括CU-UP的标识,还可以包括目标UPF的标识。
步骤406:RAN将最优路径中的目标CU-UP的作为PDU会话中的CU-UP,控制CU-UP进行终端业务的传输。
由于在建立PDU会话的过程中,通过多个子传输路径的时延数据,选择出终端至第一UPF的最优传输路径,SMF将最优传输路径中的UPF作为PDU会话中选择出的UPF,以及RAN将最优传输路径中的CU-UP作为PDU会话中选择出的CU-UP,所以在PDU会话中,实现了时延的优化。
本申请实施例中提供了一种时延优化过程:
步骤51:第四设备向第一设备发送请求消息,所述请求消息用于获取第一子传输路径 间的时延数据,所述请求消息中包括由第四设备管理的每个第七设备的标识,第一子传输路径为所述第七设备的标识所在的设备标识组所表示的子传输路径。
相应的,第一设备接收第四设备发送的请求消息。
如果所述第四设备为SMF,所述第七设备可以为第一UPF;
如果所述第四设备为CU-CP,所述第七设备可以为CU-UP。
步骤52:第一设备根据预先保存的子传输路径,确定请求消息中的第七设备的标识所在的设备标识组,并向第四设备发送回应消息,所述回应消息中包括分别用于表示每个第一子传输路径的设备标识组,及每个第一子传输路径对应的时延数据;回应消息中的用于表示每个第一子传输路径的设备标识组即为第七设备的标识所在的设备标识组。
如果所述第四设备为SMF,所述第七设备可以为第一UPF,第一UPF的标识所在的设备标识组可以是CU-UP的标识与所述第一UPF的标识构成的设备标识组,还可以是所述第一UPF与第二UPF构成的设备标识组。回应消息中还可以携带其它子传输路径及其对应的时延数据,例如携带用于表示终端与DU间的子传输路径的设备标识组,及该子传输路径对应的时延数据,例如携带表示CU-UP与DU间的子传输路径的设备标识组,及该子传输路径对应的时延数据。
如果所述第四设备为CU-CP,所述第七设备可以为CU-UP,CU-UP的标识所在的设备标识组可以是所述CU-UP的标识与第一UPF的标识构成的设备标识组,还可以是所述CU-UP与DU构成的设备标识组。回应消息中还可以携带其它子传输路径及其对应的时延数据,例如携带用于表示终端与DU间的子传输路径的设备标识组,及该子传输路径对应的时延数据,例如携带表示第二UPF与第一UPF间的子传输路径的设备标识组,及该子传输路径对应的时延数据。
步骤53:第四设备根据终端业务的时延需求,在所述回应消息中的设备标识组中选择出目标设备标识组,并控制目标设备标识组中的目标第七设备与其他设备建立传输路径,建立的传输路径用于传输终端业务。
由于满足终端业务的时延需求的设备间建立传输路径,实现了在数据传输过程中的时延的优化,可以保证终端的业务快速传输。
图5所示,提供了一种UE在建立PDU会话过程中的时延优化过程示意图:
步骤501:SMF向PCA发送请求消息,相应的,PCA接收SMF发送的请求消息,所述请求用于请求终端至第一UPF间的各个子传输路径的时延数据,所述请求消息中的包括SMF管理的UPF的标识。
步骤502:PCA向SMF发送回应消息,相应的,SMF接收PCA发送的回应消息,所述回应消息中包括终端与DU间的,DU与CU-UP间的,CU-UP与第一UPF间的,以及第一UPF与第二UPF间的各个子传输路径,及各个子传输路径对应的时延数据。在回应消息中,各个子传输路径可以基于设备标识组表示。PCA向SMF发送的子传输路径可以是根据SMF发送的UPF的标识过滤后的。可选的,回应消息中还包括第一UPF与第二UPF间的子传输路径,及对应的时延数据。
步骤503:SMF根据回应消息中的各个子传输路径,可以确定多条终端至第一UPF的传输路径,并根据终端至第一UPF的传输路径对应的时延数据作为选择PDU会话中的第一UPF的参数之一,其余参数可以参见23.501 6.3.3.3。
可选的,可以确定多条终端至第二UPF的传输路径,并根据终端至第二UPF的传输路径对应的时延数据作为选择PDU会话中的第一UPF的参数之一,其余参数可以参见23.501 6.3.3.3。
可选的,PCA确定多条终端至第一UPF或第二UPF的传输路径对应的时延数据,并发送给SMF。则SMF无需进行此过程。
在PDU会话建立过程中,SMF在选择出UPF后,可以进行以下步骤:
步骤504a:SMF向选择的UPF发送N4 Session Establishment/Modification Request。
步骤504b:UPF向SMF发送N4 Session Establishment/Modification Response。
步骤504c:SMF向AMF发送Namf_Communication_N1N2MessageTransfer消息。
步骤504d:AMF向RAN发送N2 PDU Session Request。
步骤504a至步骤504d与现有技术相同。
在PDU会话建立过程中,也需要进行CU-UP的选择,一种可选的方案中,RAN或CU-CP向PCA请求进行PDU会话建立的CU-UP的标识。由于经过上述过程第一UPF已经确定下来了。接下来进行CU-UP的选择时,可以不考虑第一UPF与第二UPF间的时延数据。SMF还可以将选择出的第一UPF的标识告知RAN,这样RAN在请求子传输路径的时延数据时,就无需请求所有的子传输路径的了。
步骤505:RAN向PCA发送请求消息,相应的,PCA接收RAN发送的请求消息,所述请求用于请求终端至第一UPF间的各个子传输路径的时延数据,所述请求消息中的包括CU-CP管理的每个CU-UP的标识,以及SMF选择出的第一UPF的标识。
步骤506:PCA向RAN发送回应消息,相应的,RAN接收PCA发送的回应消息,所述回应消息中包括终端与DU间的,DU与CU-UP间的,CU-UP与第一UPF间的各个子传输路径,及子传输路径对应的时延数据。在回应消息中,各个子传输路径可以基于设备标识组表示。PCA向RAN发送的子传输路径可以是根据RAN发送的第一UPF的标识,以及CU-UP的标识过滤后的。
步骤507:RAN根据回应消息中的各个子传输路径,可以确定出终端至第一UPF间的时延最小的传输路径,并将时延最小的传输路径中的CU-UP作为选择出PDU会话中的CU-UP。RAN与选择出的CU-UP,RAN控制CU-UP进行终端业务的传输。
可选的,PCA根据终端与DU间的,DU与CU-UP间的,CU-UP与第一UPF间的各个子传输路径,及子传输路径对应的时延数据,确定终端至第一UPF间的时延最小的传输路径,并将时延最小的传输路径中的CU-UP的标识发送给RAN中的CU-CP。
在现有的3GPP标准中,UE在进行切换的过程中,SMF需要进行UPF selection,CU-CP需要进行CU-UP的选择,本申请的图6和图7提供了将上述实施例获取到的各个子传输路径间的时延数据作为参数之一,选择UPF和CU-UP的方式,切换的其他过程与现有的标准相同。此处的切换可以是终端移动的过程中进行区域切换,而导致为终端提供接入网服务的设备需要切换,具体的场景可以是小区切换,基站切换、宏基站切换等。
图6所示,提供了一种在UE基于Xn接口进行切换的时延优化过程示意图:
步骤601:在切换准备过程中,切换后的目标RAN可以向PCA发送请求消息,相应的,PCA接收目标RAN发送的请求消息,所述请求消息用于请求RAN管理的DU与CU-UP间的时延数据,可选的,还可以请求CU-UP与第一UPF间时延数据,该请求消息中可以 包括所述目标RAN管理的CU-UP的标识。
步骤602:PCA向目标RAN发送其管理的DU与CU-UP间时延数据,可选的,还可以发送CU-UP与第一UPF间时延数据。
步骤603:目标RAN根据DU与CU-UP间时延数据,选择的时延数据最小的CU-UP与第一UPF间的子传输路径,将该最小时延的子传输路径中的CU-UP,作为切换后的CU-UP,完成了CU-UP的选择,RAN管理切换后的CU-UP传输终端的业务。
可选的,目标RAN根据DU与CU-UP间,以及CU-UP与第一UPF间的时延数据,确定DU与第一UPF间的传输路径的时延数据,选择时延数据最小的DU至CU-UP至第一UPF的传输路径,将时延数据最小的传输路径中的CU-UP作为切换后的CU-UP。
可选的,PCA根据DU与CU-UP间时延数据,选择最小时延的CU-UP与第一UPF间的传输路径,或者根据DU与CU-UP间,以及CU-UP与第一UPF间的时延数据,确定时延最小的DU与第一UPF间的传输路径,将时延最小的传输路径中的CU-UP的标识携带在回应消息中发送给RAN。
步骤604:目标RAN向AMF发送N2路径切换请求path switch request。
步骤605:AMF向SMF发送Nsmf_PDUSession_UpdateSMContext Request。
步骤604和步骤605与现有技术相同。
在切换过程中,也需要进行UPF的选择,由于经过上述过程CU-UP已经确定下来了。接下来进行UPF的选择时,可以不考虑终端与CU-UP间的时延数据。RAN还可以将选择出的CU-UP的标识告知SMF,这样SMF在请求子传输路径的时延数据时,就无需请求所有的子传输路径的了。
步骤606:SMF向PCA发送请求消息,相应的,PCA接收SMF发送的请求消息,所述请求用于请求CU-UP至第二UPF间的各个子传输路径的时延数据,所述请求消息中的包括SMF管理的UPF的标识,以及RAN选择出的CU-UP的标识。
步骤607:PCA向SMF发送回应消息,相应的,SMF接收PCA发送的回应消息,所述回应消息中包括CU-UP与第一UPF间的,以及第一UPF与第二UPF间的各个子传输路径,及各个子传输路径对应的时延数据。在回应消息中,各个子传输路径可以基于设备标识组表示。PCA向SMF发送的子传输路径可以是根据SMF发送的UPF的标识以及CU-UP的标识过滤后的。
步骤608:SMF根据回应消息中的各个子传输路径,可以确定多条CU-UP至第二UPF间的传输路径,并根据CU-UP至第二UPF的传输路径对应的时延数据作为选择PDU会话中的第一UPF的参数之一,其余参数可以参见23.501 6.3.3.3。在选择第一UPF后,SMF可以向第一UPF发送N4 Session Establishment Request。
可选的,PCA确定多条CU-UP至第二UPF的传输路径对应的时延数据,并发送给SMF。则SMF无需进行此过程。
图7所示,提供了一种UE在基于N2接口进行切换的时延优化过程示意图:
步骤701:SMF向PCA发送请求消息,相应的,PCA接收SMF发送的请求消息,所述请求用于请求终端至第二UPF间的各个子传输路径的时延数据,所述请求消息中的包括SMF管理的UPF的标识。
步骤702:PCA向SMF发送回应消息,相应的,SMF接收PCA发送的回应消息,所 述回应消息中包括终端与DU间的,DU与CU-UP间的,CU-UP与第一UPF间的,以及第一UPF与第二UPF间的各个子传输路径,及各个子传输路径对应的时延数据。在回应消息中,各个子传输路径可以基于设备标识组表示。PCA向SMF发送的子传输路径可以是根据SMF发送的UPF的标识过滤后的。
步骤703:SMF根据回应消息中的各个子传输路径,可以确定多条终端至第二UPF的传输路径,并根据终端至第二UPF的传输路径对应的时延数据作为选择第一UPF的参数之一,其余参数可以参见23.701 6.3.3.3。
可选的,PCA确定多条终端至第二UPF的传输路径对应的时延数据,并发送给SMF。则SMF无需进行此过程。
在PDU会话建立过程中,SMF在选择出第一UPF后,可以进行以下步骤:
步骤704a:SMF向选择的第一UPF发送N4 Session Establishment Request。
步骤704b:UPF向SMF发送N4 Session Establishment Response。
步骤704c:SMF向AMF发送Nsmf_PDUSession_UpdateSMContext Response消息。
步骤704d:AMF向RAN发送Handover Request。
步骤704a至步骤704d与现有技术相同。
在PDU会话建立过程中,也需要进行CU-UP的选择,一种可选的方案中,RAN或CU-CP向PCA请求进行PDU会话建立的CU-UP的标识。由于经过上述过程第一UPF已经确定下来了。接下来进行CU-UP的选择时,SMF还可以将选择出的第一UPF的标识告知RAN,这样RAN在请求子传输路径的时延数据时,就无需请求所有的子传输路径的了。
步骤705:RAN向PCA发送请求消息,相应的,PCA接收RAN发送的请求消息,所述请求用于请求终端至第一UPF间的各个子传输路径的时延数据,所述请求消息中的包括CU-CP管理的每个CU-UP的标识,以及SMF选择出的第一UPF的标识。
步骤706:PCA向RAN发送回应消息,相应的,RAN接收PCA发送的回应消息,所述回应消息中包括终端与DU间的,DU与CU-UP间的,CU-UP与第一UPF间的各个子传输路径,及子传输路径对应的时延数据。在回应消息中,各个子传输路径可以基于设备标识组表示。PCA向RAN发送的子传输路径可以是根据RAN发送的第一UPF的标识,以及CU-UP的标识过滤后的。
步骤707:RAN根据回应消息中的各个子传输路径,可以确定出终端至第一UPF间的时延最小的传输路径,并将时延最小的传输路径中的CU-UP作为选择出的PDU会话中的CU-UP。RAN与选择出的CU-UP,RAN控制CU-UP进行终端业务的传输。
可选的,PCA根据终端与DU间的,DU与CU-UP间的,CU-UP与第一UPF间的各个子传输路径,及子传输路径对应的时延数据,确定终端至第一UPF间的时延最小的传输路径,并将时延最小的传输路径中的CU-UP的标识发送给RAN中的CU-CP。
为了实现终端对业务平台的访问,实现MEC业务传输,MEAO可以进行传输路径上的各个设备的部署,本申请实施例提供了一种现有的部署方式,首先,部署UPF;然后选择业务节点部署业务平台,例如MEC platform;再然后,获取终端与业务平台间的时延数据,确定获取到的时延数据是否满足终端至业务平台的时延需求,如果不满足,重新进行UPF和业务平台的部署。
因为不清楚是哪个环节导致时延不满足业务需求,一般需要重新进行UPF的部署,再 重新部署业务平台,直至终端与业务平台间的时延数据满足终端至业务平台的时延需求,在这个过程中,需要多次的部署调试,带来了业务部署的测试开销,而且部署效率很低。
图8所示,提供了一种设备部署的时延优化过程示意图;
步骤801:MEAO向第一设备发送请求消息,所述请求消息中包括多个第六设备的标识,所述请求消息用于获取第二传输路径的时延数据,第二传输路径为终端与请求消息中的标识对应的第六设备间的传输路径。第六设备可以是第一UPF。
对应的,第一设备接收MEAO发送的请求消息。第二设备与MEAO待部署的设备实例的类型相同。
步骤802:第一设备根据获取到的子传输路径对应的时延数据,计算每个第二传输路径的时延数据。
例如第一设备根据终端与DU间的,DU与CU-UP间的,CU-UP与UPF间的子传输路径的时延数据,获取终端至请求消息中的每个第一UPF间的第二传输路径的时延数据。
如图1E所示,终端与任一第一UPF间的传输路径可能就有多条。
步骤803:第一设备向MEAO发送的回应消息,所述回应消息中包括多条第二传输路径,以及每条第二传输路径对应的时延数据。
对应的,MEAO接收第一设备发送的回应消息。具体的,回应消息中的每条第二传输路径基于设备标识组的标识来表示,例如可以是基于终端标识与DU标识构成的设备标识组,DU标识与CU-UP标识构成的设备标识组,CU-UP标识与UPF标识构成的设备标识组,这个三个标识组表示一条第二传输路径。当然也可以是去除冗余,采用DU标识,CU-UP标识,UPF标识表示一条第二传输路径。分别对应表示构成每条第二传输路径的多个设备标识组中包括一个请求消息中的第六设备的标识,如果第六设备为第一UPF,则一条第二传输路径对应的多个设备标识组中一定会包括一个第一UPF的标识。
步骤804:MEAO根据回应消息中的每条第二传输路径对应的时延数据,先选择满足终端业务的时延需求的目标第二传输路径,并在选择出的目标第二传输路径对应的第六设备的标识中选择目标第六设备的标识。
满足终端的业务的时延需求的第二传输路径称为的目标第二传输路径,目标第二传输路径可以理解为终端与第六设备间的时延数据小于设定的时延值的传输路径,或者终端与第六设备间的时延数据的最小值对应的传输路径。目标第二传输路径可能是一条,也可能是多条。
MEAO也可以将终端业务的时延需求发送给第一设备,第一设备根据每条第二传输路径对应的时延数据,选择满足终端业务的时延需求的目标第二传输路径,则第一设备向MEAO发送的回应消息中包括目标第二传输路径,回应消息中具体可以包括用于表示构成目标第二传输路径的多个设备标识组。
每个目标第二传输路径对应一个第六设备的标识,如果有一个目标第二传输路径,就对应多个第六设备的标识,MEAO可以在多个目标第二传输路径对应的第六设备中选择出一个目标第六设备的标识。
步骤805:MEAO根据每个第六设备的标识对应的位置信息,确定选择出的目标第六设备的标识对应的目标位置信息,在目标位置信息处部署与第六设备类型相同的设备。如果第六设备为第一UPF,与第六设备类型相同的设备也为UPF。
在进行设备的部署时,可以采用之前测试好的各个子传输路径的时延数据进行部署位 置的选择,使UPF部署位置满足终端的业务需求,实现了在数据传输过程中的时延的优化。
步骤806:MEAO选择业务节点,部署业务平台,并获取部署好的与第六设备类型相同的设备与业务节点间的传输路径的时延数据。
MEAO可以根据APP需求,虚拟资源需求选择业务节点。
步骤807:MEAO根据第二消息中的每条终端与第六设备间的传输路径对应的时延数据,确定终端与目标第六设备间的传输路径的时延数据。
步骤806与步骤807的先后顺序不限。
步骤808:MEAO根据终端与目标第六设备间的传输路径的时延数据,以及获取到的部署好的与第六设备类型相同的设备与业务节点间的传输路径的时延数据,确定终端与业务节点间的传输路径的时延数据是否满足终端业务的时延需求;如果否,则进行步骤806,MEAO选择新的业务节点部署业务平台,再进行步骤808,无需重复进行步骤807。MEAO还可以在不满足时延需求时,将部署好的业务平台删除。
由于分段获取终端至业务平台的时延数据,当终端至业务平台的时延数据不满足终端的业务需求时,只需重新部署业务平台,不需要重新部署终端至业务平台间的UPF,可以高效地部署好业务平台。
基于与时延获取方法的同一技术构思,本申请实施例还提供了一种时延获取的系统,该系统,包括用于执行上述图2、图3A、图3B、图3C的时延获取的方法中的第一设备,第二设备,第三设备。
基于与时延优化方法的同一技术构思,本申请实施例还提供了一种时延优化的系统,该系统,包括用于执行上述图4-图7的时延优化的方法中的SMF,UPF,PCA,RAN,还可以包括AMF等,或者包括用于执行上述图8的时延优化的方法中的第一设备和MEAO。
基于与上述时延获取或时延邮件的方法的同一技术构思,如图9所示,本申请实施例还提供了一种通信装置900,该通信装置900,可以用于执行上述时延获取的方法中的第一设备和第二设备执行的如图2、图3A、图3B、图3C的操作。此时该通信装置900可以称为时延获取装置。该通信装置900,还可以用于执行上述时延优化的方法中的第一设备和第四设备,以及SMF,UPF,PCA,RAN执行的如图4-图7的操作。此时该通信装置900可以称为时延优化装置。还可以用于执行上述时延优化的方法中的第一设备和MEAO执行的如图8的操作。
该通信传输的装置900包括:处理模块901、发送模块902和接收模块903;所述处理模块901用于处理数据,所述发送模块902用于发送数据;所述接收模块903用于接收数据。
该通信装置在执行第一设备执行的步骤时,示例的,发送模块902,用于向第二设备发送请求消息,所述请求消息用于获取所述第二设备与第三设备间的子传输路径的时延数据,所述第三设备与所述第二设备之间能够直接建立传输路径;
接收模块903,用于接收所述第二设备发送的回应消息,所述回应消息包括所述第二设备与第三设备间的子传输路径的时延数据;
处理模块901,用于保存所述子传输路径与时延数据的对应关系,其中,所述子传输路径基于第二设备的标识和第三设备的标识构成的设备标识组来表示。
该通信装置在执行第四设备执行的步骤时,示例的,发送模块902,用于向第一设备发送请求消息,所述请求消息用于获取第一子传输路径间的时延数据,所述请求消息中包括由第四设备管理的每个第七设备的标识,第一子传输路径为所述第七设备的标识所在的设备标识组所表示的子传输路径;
接收模块903,用于接收所述第一设备发送的回应消息,所述回应消息中包括分别用于表示每个第一子传输路径的设备标识组,及每个第一子传输路径对应的时延数据;
处理模块901,用于根据所述回应消息和终端业务的时延需求,选择出目标设备标识组,并控制目标设备标识组中的目标第七设备与其他设备建立传输路径,建立的传输路径用于传输终端业务。
基于与上述时延获取和/或时延优化的方法的同一技术构思,如图10所示,本申请实施例还提供了一种通信装置1000,该通信装置1000,用于执行上述时延获取和/或时延优化的方法中的操作。
该通信装置1000包括:处理器1001和收发器1002,可选的,还包括存储器1003。处理器1001用于调用一组程序,当程序被执行时,使得处理器1001执行上述时延获取和/或时延优化的方法中的操作。存储器1003用于存储处理器1001执行的程序。图9中的处理模块901均可以通过处理器1001来实现,发送模块902和接收模块903可以通过通信接口1002来实现。
处理器可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。
处理器还可以进一步包括硬件芯片或其他通用处理器。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)及其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等或其任意组合。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本申请描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例提供了一种计算机存储介质,存储有计算机程序,该计算机程序包括用于执行上述时延获取和/或时延优化的方法。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述提供的时延获取和/或时延优化的方法。
本申请实施例提供的任一种通信装置还可以是一种芯片。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (22)

  1. 一种时延获取方法,其特征在于,包括:
    第一设备向第二设备发送请求消息,所述请求消息用于获取所述第二设备与第三设备间的子传输路径的时延数据,所述第三设备与所述第二设备之间能够直接建立传输路径;
    第一设备接收所述第二设备发送的回应消息,所述回应消息包括所述第二设备与第三设备间的子传输路径的时延数据;
    第一设备保存所述子传输路径与时延数据的对应关系,其中,所述子传输路径基于第二设备的标识和第三设备的标识构成的设备标识组来表示。
  2. 如权利要求1所述的方法,其特征在于,如果所述第二设备为接入网设备,则所述第三设备为核心网设备或终端;或者;
    如果所述第二设备为核心网设备,则所述第三设备为核心网设备;
    如果所述第三设备为终端,第一设备保存的所述子传输路径与时延数据的对应关系中的每个第三设备的标识相同。
  3. 如权利要求2所述的方法,其特征在于,所述核心网设备包括:CU-UP和DU,所述接入网设备包括第一用户面功能网元UPF和第二UPF,第一UPF为直接与接入网建立传输路径的设备,第二UPF为不直接与接入网建立传输路径的设备;
    如果所述第二设备为用户面网元CU-UP,则所述第三设备为分布单元DU或第一UPF;或者
    如果所述第二设备为DU,则所述第三设备为终端;或者
    如果所述第二设备为第一UPF,则所述第三设备为第二UPF。
  4. 如权利要求3所述的方法,其特征在于,第二设备为CU-UP或DU;
    第一设备向第二设备发送请求消息,包括:
    第一设备向控制面网元CU-CP发送请求消息,由所述CU-CP将所述请求消息发送给第二设备;
    第一设备接收所述第二设备发送的回应消息,包括:
    第一设备接收CU-CP发送的回应消息,所述回应消息为第二设备发送给所述CU-CP的。
  5. 如权利要求3所述的方法,其特征在于,所述第二设备为第一UPF;
    第一设备向第二设备发送请求消息,包括:
    第一设备向会话管理功能网元SMF发送请求消息,由所述SMF将所述请求消息发送给第二设备;
    第一设备接收所述第二设备发送的回应消息,包括:
    第一设备接收SMF发送的回应消息,所述回应消息为第二设备发送给所述SMF的。
  6. 一种基于上述权利要求1-5任一项所述的时延获取方法的时延优化方法,其特征在于,包括:
    第一设备接收第四设备发送的请求消息,所述请求消息用于获取满足终端业务的时延需求的第一传输路径,所述第一传输路径为终端与核心网设备间的传输路径,所述请求消息中包括由所述第四设备管理的每个设备的标识;第一设备根据所述请求消息中包括的每个设备的标识,以及保存的多个子传输路径与时延数据的对应关系,确定能够满足所述时 延需求的时延数据所对应的多个子传输路径,确定出的所述多子传输路径构成目标第一传输路径。
  7. 如权利要求6所述的方法,其特征在于,所述方法还包括:
    第一设备向所述第四设备发送回应消息,所述回应消息中包括第五设备的标识,以及与所述第五设备的标识构成设备标识组的其他设备的标识;以使所述第四设备根据所述回应消息控制所述第五设备分别与所述其他设备建立传输路径,建立的传输路径用于传输终端业务。
  8. 如权利要求7所述的方法,其特征在于,如果所述第四设备为SMF,则由所述第四设备管理的多个设备为多个第一UPF;或
    如果所述第四设备为CU-CP,则由所述第四设备管理的多个设备为多个CU-UP。
  9. 如权利要求6所述的方法,其特征在于,如果所述第四设备为SMF,则由所述第四设备管理的多个设备为多个第一UPF;所述方法还包括:
    第一设备向所述第四设备发送回应消息,所述回应消息中包括分别对应表示构成目标第一传输路径的多个子传输路径的设备标识组;以使第四设备将回应消息中的设备标识组分别发送给:能够分别控制所述设备标识组中每个设备标识对应的设备建立传输路径的不同管理设备,以使不同管理设备控制每个设备标识对应的设备建立传输路径,建立的传输路径用于传输终端业务。
  10. 一种基于权利要求1-5任一项所述的时延获取方法的时延优化方法,其特征在于,包括:
    MEAO向第一设备发送请求消息,所述请求消息中包括多个第六设备的标识,所述请求消息用于获取第二传输路径的时延数据,其中,第二传输路径为终端与所述请求消息中的所述标识对应的第六设备间的传输路径;
    MEAO接收所述第一设备发送的回应消息,所述回应消息中包括分别用于表示构成每个第二传输路径的设备标识组,以及每条第二传输路径对应的时延数据;
    MEAO根据回应消息中的每条第二传输路径对应的时延数据,选择满足终端业务的时延需求的目标第二传输路径,确定选择出的目标第二传输路径对应的目标第六设备的标识,并根据每个第六设备的标识对应的位置信息,确定选择出的目标第六设备的标识对应的目标位置信息,在目标位置信息处部署与第六设备类型相同的设备。
  11. 如权利要求10所述的方法,其特征在于,在目标位置信息处部署与第六设备类型相同的设备之后,还包括:
    MEAO部署业务平台,并获取部署好的与第六设备类型相同的设备与业务平台间的传输路径的时延数据,并根据第二消息中的每条第二传输路径对应的时延数据,确定终端与目标第六设备间的传输路径的时延数据;
    MEAO根据终端与目标第六设备间的传输路径的时延数据,以及获取到的部署好的与第六设备类型相同的设备与业务平台间的传输路径的时延数据,确定终端与业务平台间的传输路径的时延数据是否满足终端业务的时延需求;
    如果否,则重新部署业务平台。
  12. 如权利要求10或11所述的方法,其特征在于,第六设备为第一UPF。
  13. 一种时延优化方法,其特征在于,包括:
    第一设备接收MEAO发送的请求消息,所述请求消息中包括多个第六设备的标识,所 述请求消息用于获取第二传输路径的时延数据,其中,第二传输路径为终端与所述请求消息中的所述标识对应的第六设备间的传输路径;
    第一设备根据获取到的子传输路径对应的时延数据,计算每个第二传输路径的时延数据;
    第一设备向MEAO发送的回应消息,所述回应消息中包括多条第二传输路径,以及每条第二传输路径对应的时延数据。
  14. 如权利要求13所述的方法,其特征在于,第六设备为第一UPF。
  15. 一种基于上述权利要求1-5任一项所述的时延获取方法的时延优化方法,其特征在于,包括:
    第四设备向第一设备发送请求消息,所述请求消息用于获取第一子传输路径间的时延数据,所述请求消息中包括由第四设备管理的每个第七设备的标识,第一子传输路径为所述第七设备的标识所在的设备标识组所表示的子传输路径;
    第四设备接收所述第一设备发送的回应消息,所述回应消息中包括分别用于表示每个第一子传输路径的设备标识组,及每个第一子传输路径对应的时延数据;
    第四设备根据所述回应消息和终端业务的时延需求,选择出目标设备标识组,并控制目标设备标识组中的目标第七设备与其他设备建立传输路径,建立的传输路径用于传输终端业务。
  16. 如权利要求15所述的方法,其特征在于,如果所述第四设备为SMF,则所述第七设备为第一UPF;
    如果所述第四设备为CU-CP,所述第七设备为CU-UP。
  17. 一种基于上述权利要求1-5任一项所述的时延获取方法的时延优化方法,其特征在于,包括:
    第一设备接收第四设备发送的请求消息,所述请求消息用于获取第一子传输路径间的时延数据,所述请求消息中包括由第四设备管理的每个第七设备的标识,第一子传输路径为所述第七设备的标识所在的设备标识组所表示的子传输路径;
    第一设备向所述第四设备发送回应消息,所述回应消息中包括分别用于表示每个第一子传输路径的设备标识组,及每个第一子传输路径对应的时延数据。
  18. 如权利要求17所述的方法,其特征在于,如果所述第四设备为SMF,则所述第七设备为第一UPF;
    如果所述第四设备为CU-CP,所述第七设备为CU-UP。
  19. 一种数据传输的装置,其特征在于,用于实现如权利要求1-5任一项所述的方法,或者如权利要求6-9任一项所述的方法,或者如权利要求10-12任一项所述的方法,或者如权利要求13-14任一项所述的方法,或者如权利要求15-16任一项所述的方法,或者如权利要求17-18任一项所述的方法。
  20. 一种计算机可读存储介质,其特征在于,所述计算机存储介质中存储有计算机可读指令,当所述计算机可读指令被运行时,使得装置执行如权利要求1-5任一项所述的方法,或者如权利要求6-9任一项所述的方法,或者如权利要求10-12任一项所述的方法,或者如权利要求13-14任一项所述的方法,或者如权利要求15-16任一项所述的方法,或者如权利要求17-18任一项所述的方法。
  21. 一种计算机程序产品,其特征在于,当计算机读取并执行所述计算机程序产品时, 使得计算机执行如权利要求1-5任一项所述的方法,或者如权利要求6-9任一项所述的方法,或者如权利要求10-12任一项所述的方法,或者如权利要求13-14任一项所述的方法,或者如权利要求15-16任一项所述的方法,或者如权利要求17-18任一项所述的方法。
  22. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的软件程序,以实现如权利要求1-5任一项所述的方法,或者如权利要求6-9任一项所述的方法,或者如权利要求10-12任一项所述的方法,或者如权利要求13-14任一项所述的方法,或者如权利要求15-16任一项所述的方法,或者如权利要求17-18任一项所述的方法。
PCT/CN2020/080710 2019-03-31 2020-03-23 时延获取方法及装置、优化方法及装置 WO2020199960A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20782927.6A EP3930357A4 (en) 2019-03-31 2020-03-23 METHOD AND DEVICE FOR DETECTING LATENT PERIOD AND OPTIMIZATION METHOD AND DEVICE
US17/490,756 US20220021596A1 (en) 2019-03-31 2021-09-30 Latency Obtaining Method And Apparatus, And Latency Optimization Method And Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910254689.3A CN111770475B (zh) 2019-03-31 2019-03-31 时延获取方法及装置、优化方法及装置
CN201910254689.3 2019-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/490,756 Continuation US20220021596A1 (en) 2019-03-31 2021-09-30 Latency Obtaining Method And Apparatus, And Latency Optimization Method And Apparatus

Publications (1)

Publication Number Publication Date
WO2020199960A1 true WO2020199960A1 (zh) 2020-10-08

Family

ID=72664935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080710 WO2020199960A1 (zh) 2019-03-31 2020-03-23 时延获取方法及装置、优化方法及装置

Country Status (4)

Country Link
US (1) US20220021596A1 (zh)
EP (1) EP3930357A4 (zh)
CN (1) CN111770475B (zh)
WO (1) WO2020199960A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112752297B (zh) * 2019-10-31 2022-11-22 华为技术有限公司 一种通信方法及设备
CN112702759B (zh) * 2020-12-09 2023-03-14 深圳市日海飞信信息系统技术有限公司 面向垂直行业的数据链路性能测试方法及系统
US11902169B2 (en) * 2021-07-21 2024-02-13 Verizon Patent And Licensing Inc. Latency evaluation and management resolution
CN114024876B (zh) * 2021-10-15 2023-06-16 中国联合网络通信集团有限公司 一种网络拨测方法、装置、设备及存储介质
CN114641026A (zh) * 2022-02-17 2022-06-17 成都中科微信息技术研究院有限公司 一种提升NR系统中NG-RAN侧QoS监控精度的方法
CN114884864B (zh) * 2022-06-17 2023-05-09 广东电网有限责任公司 一种路由配置方法及数据传输系统
CN115767614B (zh) * 2022-11-15 2023-12-15 广州爱浦路网络技术有限公司 一种通信系统、方法及装置
CN115884229B (zh) * 2023-01-29 2023-05-12 深圳开鸿数字产业发展有限公司 传输时延的管理方法、电子设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150188804A1 (en) * 2013-12-31 2015-07-02 Futurewei Technologies, Inc. System and method for source routing with one or more delay segments
CN104935514A (zh) * 2014-11-14 2015-09-23 北京盈进科技有限公司 一种路径分配方法和装置
CN106878170A (zh) * 2016-12-29 2017-06-20 北京华为数字技术有限公司 一种转发路径确定方法和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8566441B2 (en) * 2010-11-22 2013-10-22 Microsoft Corporation Network latency estimation for mobile devices
US10469362B1 (en) * 2015-09-30 2019-11-05 Amazon Technologies, Inc. Network routing utilization of application programming interfaces
US10476946B2 (en) * 2017-07-27 2019-11-12 Citrix Systems, Inc. Heuristics for selecting nearest zone based on ICA RTT and network latency
US10716096B2 (en) * 2017-11-07 2020-07-14 Apple Inc. Enabling network slicing in a 5G network with CP/UP separation
US10699023B1 (en) * 2017-11-20 2020-06-30 Amazon Technologies, Inc. Encryption profiles for encrypting user-submitted data
US10516601B2 (en) * 2018-01-19 2019-12-24 Citrix Systems, Inc. Method for prioritization of internet traffic by finding appropriate internet exit points
US10904335B2 (en) * 2018-09-04 2021-01-26 Cisco Technology, Inc. Reducing distributed storage operation latency using segment routing techniques
US11240156B2 (en) * 2019-09-06 2022-02-01 Netflix, Inc. Techniques for steering network traffic to regions of a cloud computing system
US11570636B2 (en) * 2020-06-28 2023-01-31 Ambeent Inc. Optimizing utilization and performance of Wi-Fi networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150188804A1 (en) * 2013-12-31 2015-07-02 Futurewei Technologies, Inc. System and method for source routing with one or more delay segments
CN104935514A (zh) * 2014-11-14 2015-09-23 北京盈进科技有限公司 一种路径分配方法和装置
CN106878170A (zh) * 2016-12-29 2017-06-20 北京华为数字技术有限公司 一种转发路径确定方法和装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
3GPP: "Technical Specification Group Services and System Aspects; Study on enhancement of Ultra-Reliable Low-Latency Communication (URLLC) support in the 5G Core network (5GC) (Release 16)", 3GPP TR 23.725 DRAFT V16.0.0+, 28 February 2019 (2019-02-28), pages 1 - 76, XP051591217 *
3GPP: "Technical Specification Group Services and System Aspects; Study on enhancement of Ultra-Reliable Low-Latency Communication (URLLC) support in the 5G Core network (5GC) (Release 16)", 3GPP TR 23.725 DRAFT V16.0.0+, 28 February 2019 (2019-02-28), XP051591217 *
ERICSSON: "Latency for URLLC", 3GPP TSG-RAN WG1 MEETING #92 TDOC R1-1802882, 2 March 2018 (2018-03-02), XP051397367 *
See also references of EP3930357A4 *
WEI, SONGJIE ET AL.: "Traffic Latency Characterization and Fingerprinting in Mobile Cellular Networks", JOURNAL OF COMPUTER RESEARCH AND DEVELOPMENT, vol. 56, no. 2, 28 February 2019 (2019-02-28), pages 363 - 374, XP009523696, DOI: 10.7544/issn1000-1239.2019.20170501 *
ZANZI, LANFRANCO ET AL.: "On Guaranteeing End-to-End Network Slice Latency Constraints in 5G Networks", 2018 15TH INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS (ISWCS), 15 October 2018 (2018-10-15), pages 1 - 6, XP033420042 *

Also Published As

Publication number Publication date
EP3930357A4 (en) 2022-04-27
US20220021596A1 (en) 2022-01-20
EP3930357A1 (en) 2021-12-29
CN111770475A (zh) 2020-10-13
CN111770475B (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
WO2020199960A1 (zh) 时延获取方法及装置、优化方法及装置
US11871283B2 (en) Service continuity implementation method, device, and service continuity implementation system
JP7123920B2 (ja) 切り替え方法及び装置
US20230180349A1 (en) Bearer configuration method and apparatus, context information management method and apparatus, releasing method and apparatus, and device
US11432297B2 (en) Method for improving service reliability, device, and system
WO2020147761A1 (zh) 一种pdu会话切换方法及其装置
KR102469973B1 (ko) 통신 방법 및 장치
WO2018121616A9 (zh) 一种双连接方法及接入网设备
CN110649997B (zh) 数据处理方法及装置
CN110351194B (zh) 一种组播组创建、组播组加入方法及装置
US12010018B2 (en) Wireless communication method and device
JP2022540475A (ja) データ伝送方法、装置、第1通信ノードおよび第2通信ノード
US11689956B2 (en) Relocation method and apparatus
WO2020103517A1 (zh) 终端的能力信息的获取方法、装置及系统
JP2021524204A (ja) サービス品質監視方法、及びシステム、並びに装置
US20230189054A1 (en) Relay communication method, and communication apparatus
US20230029292A1 (en) Data transmission method and apparatus
US20230189057A1 (en) Service traffic steering method and apparatus
US20220263879A1 (en) Multicast session establishment method and network device
JP2022521088A (ja) ポリシー管理方法及び装置
WO2023185428A1 (zh) 一种重构用户面功能网元关键服务能力的方法及通信装置
US10051508B2 (en) System and method for mobility support selection
WO2018006359A1 (zh) 一种本地网关之间建立隧道的方法及网关
US20220116798A1 (en) Data transmission method, apparatus, and device
WO2019091221A1 (zh) 以太广播帧的处理方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782927

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020782927

Country of ref document: EP

Effective date: 20210921

NENP Non-entry into the national phase

Ref country code: DE