WO2018121616A9 - 一种双连接方法及接入网设备 - Google Patents

一种双连接方法及接入网设备 Download PDF

Info

Publication number
WO2018121616A9
WO2018121616A9 PCT/CN2017/119034 CN2017119034W WO2018121616A9 WO 2018121616 A9 WO2018121616 A9 WO 2018121616A9 CN 2017119034 W CN2017119034 W CN 2017119034W WO 2018121616 A9 WO2018121616 A9 WO 2018121616A9
Authority
WO
WIPO (PCT)
Prior art keywords
access network
network device
identifier
request message
core
Prior art date
Application number
PCT/CN2017/119034
Other languages
English (en)
French (fr)
Other versions
WO2018121616A1 (zh
Inventor
杨晓东
权威
张戬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17888992.9A priority Critical patent/EP3557939B1/en
Publication of WO2018121616A1 publication Critical patent/WO2018121616A1/zh
Publication of WO2018121616A9 publication Critical patent/WO2018121616A9/zh
Priority to US16/457,072 priority patent/US11622406B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points

Definitions

  • the present application relates to the field of mobile communications, and in particular, to a dual connectivity of a Long Term Evolution (LTE) system and a fifth generation mobile communication technology (5th Generation, 5G) system.
  • LTE Long Term Evolution
  • 5G fifth generation mobile communication technology
  • the wireless communication network resources are divided into different resource groups according to the transmission characteristics of different services as a whole, wherein one resource group is called a network slice. (slice).
  • the network can be divided into three types of slices, which are respectively ultra-reliable and low latency machine type communications (uMTC) service slices.
  • uMTC ultra-reliable and low latency machine type communications
  • mMTC massive machine type communication
  • eMBB enhanced mobile broadband
  • the service on the uMTC slice is a low-latency, high-reliability service, which is mainly used for communication between objects in the Internet of Things. For example, driverless, telemedicine surgery, transportation safety, etc.
  • the service on the mMTC slice is a service that is insensitive to data throughput and data transmission delay, and the number of user equipment (UE) is large. For example, smart water meters, etc.
  • the traffic on the eMBB slice is a service that requires huge throughput and has a higher data rate and a larger mobile broadband. For example, fast transmission of ultra high definition video, etc.
  • LTE and 5G dual connectivity refer to that the UE simultaneously connects to the LTE access network device and the 5G access network device, and one access network device is the primary connection.
  • the access network device is a secondary access network device, and the UE establishes a connection with the same core network through the primary access network device and the secondary access network device.
  • the access network device is likely to be connected to two or more core network devices at the same time.
  • the prior art does not provide a method for how the secondary access network device determines the core network corresponding to the UE, so that the secondary access network device cannot be connected to The UE corresponds to the core network, so that dual connectivity cannot be achieved.
  • the embodiment of the present application provides a dual connectivity method and an access network device, which implements dual connectivity between an LTE system and a 5G system.
  • an embodiment of the present application provides a dual connectivity method.
  • the first access network device sends a request message to the second access network device, where the request message is used to request the second access network device as the secondary access network device of the terminal served by the first access network device.
  • the first access network device receives an acknowledgment message from the second access network device, where the acknowledgment message is used to confirm to the first access network device that the second access network device agrees to be an auxiliary access of the terminal Network equipment.
  • an embodiment of the present application provides a first access network device.
  • the first access network device includes a transmitter and a receiver.
  • the transmitter is configured to send a request message to the second access network device, where the request message is used to request the second access network device as a secondary access network device of the terminal served by the first access network device.
  • the receiver is configured to receive an acknowledgment message from the second access network device, where the acknowledgment message is used to confirm to the first access network device that the second access network device agrees to be the secondary access network device of the terminal.
  • the first access network device in the embodiment of the present application sends a request message to the second access network device, and the request message is used to request the second access network device to serve as a secondary device for the terminal served by the first access network device.
  • the network access device realizes the dual connection between the LET network and the 5G network.
  • the confirmation message further includes at least one of a downlink tunnel identifier between the second access network device and the core network, and an uplink tunnel identifier between the second access network device and the core network.
  • the first access network device in the embodiment of the present application receives the acknowledgement message from the second access network device, and includes the downlink tunnel identifier between the second access network device and the core network, the first An uplink tunnel identifier between the access network device and the core network, so that the first access network device learns the downlink data and/or the commanded transmission tunnel of the second access network device and learns the second access network device The transmission tunnel of the uplink data.
  • the confirmation message further includes: the first access network device corresponding to the identifier of the device of the core network.
  • the first access network device in the embodiment of the present application receives the acknowledgement message from the second access network device, and includes the identifier of the device corresponding to the core network of the second access network device in the message, so that the second access
  • the network access device can learn the identity of the core network device corresponding to the UE, so that when the first access network device is connected to multiple core networks, the second access network device can determine the core network that establishes a connection with the terminal, and further The second access network device is connected to the first access network device.
  • the request message further includes one or more of the following quality of service Qos attributes: security level, service continuity level, delay level, service flow priority indicator FPI, feedback quality of service indicator RQI, and packet loss.
  • the priority indicates the PDPI and the service filtering template TFT.
  • the request message further includes an identifier of a network slice that accesses the terminal, and the identifier of the network slice corresponds to one or more of the QoS attributes.
  • an embodiment of the present application provides a dual connectivity method.
  • the first access network device receives a message from the second access network device, where the request message is used to request the first access network device as a secondary access network device of the terminal served by the second access network device.
  • the first access network device sends an acknowledgment message to the second access network device, where the acknowledgment message is used to confirm to the second access network device that the first access network device agrees to be the secondary access network of the terminal. device.
  • an embodiment of the present application provides a first access network device.
  • the first access network device includes a receiver and a transmitter.
  • the receiver is configured to receive a message from a second access network device, where the request message is used to request the first access network device as a secondary access network device of a terminal served by the second access network device.
  • the transmitter is configured to send an acknowledgment message to the second access network device, where the acknowledgment message is used to confirm to the second access network device that the first access network device agrees to be the secondary access network device of the terminal.
  • the first access network device receives the request message from the second access network device, and the request message is used to request the first access network device to serve as a secondary device for the terminal served by the second access network device.
  • the network access device realizes the dual connection between the LET network and the 5G network.
  • the confirmation message further includes at least one of a downlink tunnel identifier between the first access network device and the core network, and an uplink tunnel identifier between the first access network device and the core network.
  • the confirmation message further includes an identifier of a device of the core network corresponding to the second access network device.
  • the request message further includes one or more of the QoS attributes: a security level, a service continuity level, a delay level, a service flow priority indicator FPI, a feedback quality of service indicator RQI, and a packet loss priority.
  • the level indicates the PDPI and the service filtering template TFT.
  • the request message further includes a network slice identifier that accesses the terminal, and the identifier of the network slice corresponds to one or more of the QoS attributes.
  • the first embodiment of the present application sends a request message to the second access network device by using the first access network device, to request the second access network device to be the secondary access network device of the first access network device, and to pass the first
  • the access network device receives an acknowledgment message from the second access network device to determine to be a secondary access network device, thereby implementing dual connectivity between the LTE network and the 5G network.
  • FIG. 1 is a schematic diagram of an application of a network slice
  • FIG. 2 is a schematic diagram of dual connectivity between an LTE access network device and a 5G access network device;
  • FIG. 3 is a schematic diagram of an application scenario of dual connectivity between an LTE system and a 5G system according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a dual connection method between an LTE system and a 5G system according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of an access network device according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another access network device according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a dual connection between a UE and an LTE access network device and a 5G access network device.
  • the dual connection between the UE and the LTE access network device and the 5G access network device means that the UE establishes a connection with the same core network through the LTE access network device and the 5G access network device, and the core network may be the LTE core network. It may also be a 5G core network, and one of the LTE access network device and the 5G access network device is the primary access network device, and the other access network device is the secondary access network device.
  • the user equipment UE involved in the present application may be various forms of user equipment, including a mobile station (MS), a terminal, a terminal equipment, and the like.
  • MS mobile station
  • terminal terminal
  • terminal equipment terminal equipment
  • the above mentioned devices are collectively referred to as user equipment UE.
  • the access network device involved in the present application is a device deployed in a radio access network to provide a wireless communication function for a UE.
  • the access network device may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the UE can establish a connection with the 5G core network (New Radio Access Technology core net, New RAT CN) through the LTE access network device, or establish a connection with the 5G core network through the 5G access network device, thereby implementing dual connectivity.
  • FIG. 2 is an example of establishing a dual connection between a UE through an LTE access network device, a 5G access network device, and a 5G core network.
  • the UE may also establish a dual connection with the LTE core network through the LTE access network device and the 5G access network device.
  • the LTE access network device establishes a connection with the 5G core network through the eS1-U/1A UP interface, and the 5G access network device establishes a connection with the 5G core network through the S1-C/S1-U interface, and the LTE access
  • the network device and the 5G access network device are connected through the eX2-U/3C UP interface.
  • the LTE access network device and the 5G access network device are both connected to the same core network (New RAT CN), the data between the UE and the core network can be transmitted through the LTE access network device. It can also be transmitted through a 5G access network device.
  • 5G In this connection mode, whether the LTE access network device is used as the primary access network device, the 5G access network device is used as the secondary access network device, or the LTE access network device is used as the secondary access network device, 5G is connected.
  • the network access device acts as the primary access network device, and the secondary access network device can determine the core network corresponding to the UE. The reason is that the primary access network device is connected to only one core network, and the core network corresponding to any UE served in the coverage area of the primary access network device is the same core network.
  • the primary access network device is connected to multiple core networks, for example, the primary access network device and the LTE core network, that is, the Evolved Packet Core (EPC) network and the 5G core network, that is, the new wireless connection
  • EPC Evolved Packet Core
  • 5G core network 5G core network
  • FIG. 3 is a schematic diagram of an application scenario of dual connectivity between an LTE access network device and a 5G access network device according to an embodiment of the present application.
  • FIG. 3 shows a case where an LTE access network device and a 5G access network device are both connected to an LTE core network and a 5G core network, and the LTE access network device is simultaneously connected to an LTE core network (EPC) and a 5G core network (New RAT CN). Connected, the 5G access network equipment is also connected to the LTE core network (EPC) and the 5G core network.
  • EPC LTE core network
  • New RAT CN 5G core network
  • the LTE access network device is a primary access network device
  • the 5G access network device is a secondary access network device
  • the UE establishes a connection with the LTE core network (EPC) through the LTE access network device, and also needs the UE.
  • a connection is established with the LTE core network (EPC) through the 5G access network device.
  • the 5G access network device is connected to the LTE core network (EPC) and the 5G core network (New RAT CN) at the same time, in the prior art, the 5G access network device as the secondary access network device is uploaded from the device.
  • the core network corresponding to the UE cannot be determined, and it is impossible to determine whether the uplink data should be transmitted to the LTE core network (EPC) or the 5G core network (New RAT CN); and 5G as the secondary access network device.
  • the access network device cannot receive the downlink data correctly because the 5G access network device is connected to both the LTE core network (EPC) and the 5G core network (New RAT CN). Therefore, the 5G is used as the secondary access network device.
  • the access network device cannot determine whether the downlink data should be received through the data interface of the receiving LTE core network (EPC), or should receive the downlink data through the data interface of the receiving 5G core network (New RAT CN).
  • the following describes in detail how the embodiment of the present application determines the core network that establishes a connection with the UE for the secondary access network device, so that the UE implements dual connectivity between the LTE access network device and the 5G access network device.
  • FIG. 4 is a schematic diagram of a dual connection method between an LTE system and a 5G system, where FIG. 4 is an example of establishing a connection between a UE and an LTE core network (EPC).
  • EPC LTE core network
  • the UE may also establish a connection with a 5G core network (New RAT CN). The same, no longer repeat here.
  • New RAT CN 5G core network
  • Step 401 The UE sends a random access request, attempts to access the network by sending a random access preamble, and then establishes a signaling connection with the Master Radio Access Nework (MRAN) device, so that the UE accesses the primary connection.
  • MRAN Master Radio Access Nework
  • Step 402 The primary access network MRAN device determines a secondary radio access network (SRAN) device for the UE.
  • SRAN secondary radio access network
  • the UE generates a measurement report by uplink measurement, the measurement report including at least the number of neighboring cells (eg, six), the signal quality of each neighboring cell (eg, the power of the received signal), and the like.
  • the UE sends the measurement report to the primary access network MRAN device, and the primary access network MRAN device determines the secondary access network device for the UE from the access network device indicated in the measurement report according to a preset matching rule.
  • the measurement report includes that the access network device closest to the UE is the xx access network device, and the preset matching rule is that the access network device closest to the UE is used as the secondary access network device, and the primary access is
  • the network MRAN device determines for the UE that the secondary access network device is the xx access network device.
  • Step 403 The primary access network MRAN device sends a request message to the secondary access network SRAN device.
  • the request message is a request message (SRAN Addition Request) for the access network device, and the SRAN Addition Request is used to request the SRAN device of the secondary access network as the UE served by the secondary access network device.
  • a secondary access network device of the terminal, and the secondary access network addition request message (SRAN Addition Request) carries information of a core network connected to the primary access network device.
  • the request message sent by the primary access network MRAN device to the secondary access network SRAN device is the secondary access network addition request message SRAN Addition Request message as an example.
  • the primary access network MRAN device sends a secondary access network device add request message to another access network device
  • the other access network device is notified, and the identifier of the core network device connected to the primary access network device is (id), so that the other access network device can know the identity of the core network device connected to the primary access network MRAN device after agreeing to be the secondary access network device of the UE, that is, the core corresponding to the UE is learned.
  • the identifier of the network device is
  • the information of the core network includes an identification of a core network device connected to the primary access network device. Further, the information of the core network further includes a type of the core network, that is, the core network is an LTE core network or a 5G core network.
  • Qos Quality of Service attributes
  • the security level refers to the security level of the UE.
  • the security level of the UE is a high security level.
  • the service continuity level refers to the level of continuity of services supported by the UE, and may be represented by a time when the transmission data is interrupted, for example, data. The interrupt time is 1 ms.
  • the delay level refers to the delay level of the services supported by the UE.
  • the service supported by the UE is a low-latency service.
  • the primary access network MRAN device includes the above parameters in the SRAN Addition Request message sent to the secondary access network SRAN device, and the purpose is to notify the secondary access network SRAN device, the service attribute of the UE, so that The secondary access network SRAN device can determine whether the secondary access network SRAN device can meet the requirements of the UE. For example, whether the security level, service continuity level, delay level, and the like of the secondary access network SRAN device can meet the requirements of the UE.
  • the slice identifier (Slice ID) of the UE is also included in the secondary access network addition request message (SRAN Addition Request).
  • an operation management and maintenance (OAM) in the network is provided to each access network device, including the secondary access network SRAN device, and the Qos attribute corresponding to the network slice ID is configured, as shown in Table 1 below.
  • OAM operation management and maintenance
  • the Qos attributes corresponding to the slice ID 0001 include: (1) the required access delay level is less than 10 ms; (2) the required service interruption time is less than 5 ms; and (3) the service reliability is the data loss rate. It is 10e-9. Those skilled in the art will appreciate that the specific numerical values in Table 1 are only one example.
  • the SRAN Addition Request message sent by the primary access network MRAN device to the secondary access network SRAN device adds a slice id corresponding to one bearer of the UE.
  • the secondary access network device determines the Qos attribute of the bearer of the UE according to the slice id, so as to perform data transmission on the bearer according to the QoS attribute.
  • Step 404 The secondary access network SRAN device sends an acknowledgement message to the primary access network MRAN device.
  • the acknowledgment message is a SRAN Addition Request Acknowledge message, which carries information that is agreed to be the secondary access network device of the UE or does not agree to be the secondary access network device of the UE.
  • the following is an example of the acknowledgment message sent by the secondary access network SRAN device to the primary access network MRAN device, which is an auxiliary access network addition request acknowledgement message SRAN Addition Request Acknowledge message.
  • the secondary access network device add request acknowledgement message includes a downlink tunnel between the secondary access network device and the core network (here, a core network connected to the primary access network device, such as an EPC). ID (DL GTP Tunnel Endpoint).
  • the secondary access network device add request acknowledgement message may further include an uplink tunnel identifier between the secondary access network device and the core network.
  • the secondary access network SRAN device includes a request confirmation message added to the secondary access network device sent by the primary access network MRAN device.
  • the downlink tunnel identifier and/or the uplink tunnel identifier are used to notify the primary access network device of the downlink data and/or the commanded transmission tunnel and the transmission tunnel for notifying the primary access network device of the uplink data.
  • Step 405 The primary access network MRAN device sends an RRC message to the UE, and carries related information of the secondary access network SRAN device in the RRC message.
  • the RRC message is an RRC Connection Reconfiguration message.
  • the RRC message includes an identification of the secondary access network SRAN device. Further, the RRC message further includes a type of the secondary access network SRAN device, such as an LTE access network device or a 5G access network device.
  • the RRC message further includes an air interface resource of the secondary access network SRAN device, for example, a frequency point and a bandwidth corresponding to the secondary access network device.
  • Step 406 The UE returns an RRC configuration complete message to the primary access network MRAN device.
  • the RRC configuration complete message is an RRC Connection Reconfiguration Complete message.
  • the RRC configuration complete message may further carry a slice identifier (id) of the UE, a slice type of the UE, and the like.
  • Step 407 The primary access network MRAN device returns a secondary access network device reconfiguration complete message (SRAN Reconfiguration Complete) to the secondary access network SRAN device, and the secondary access network device reconfiguration complete message (SRAN Reconfiguration Complete) is used for notification.
  • the secondary access network SRAN device has configured the secondary access network device to be a secondary access network device of the UE.
  • the secondary access network device reconfiguration complete message (SRAN Reconfiguration Complete) carries the UE identity (id). Further, the secondary access network device reconfiguration complete message (SRAN Reconfiguration Complete) may further carry a slice identifier (id) of the UE, a slice type of the UE, and the like.
  • the RRC connection reconfiguration is intended to modify the RRC connection, for example, to establish/modify/release resource blocks (RBs) through RRC connection reconfiguration, and to perform handover, preparation/modification/release measurement, and the like.
  • the embodiment of the present application implements the access of the UE to the secondary access network device by modifying the RRC connection reconfiguration.
  • Step 408 The UE initiates a random access request to the secondary access network SRAN device to obtain synchronization, and the secondary access network SRAN device allocates a unique Cell Radio Network Temporary Identifier (C-RNTI) to the UE to enable the UE. Accessing the secondary access network SRAN device.
  • C-RNTI Cell Radio Network Temporary Identifier
  • the cell radio network temporary identifier C-RNTI is a dynamic identifier that is allocated to the UE by the access network device, and uniquely identifies the UE under one cell air interface, and only the UE in the connected state, the C-RNTI is valid.
  • the transmission path is updated. That is, before step 411, when there is uplink or downlink data to be transmitted, the data transmission is performed first and then the transmission path is updated (because the UE has accessed the secondary access network device before transmitting the data, the data transmission path can be modified) To enable data to be transmitted through the secondary access network device). This situation will be explained by the following steps 409-414.
  • MME Mobility Management Entity
  • step 411 to step 414 may be performed before step 409 and step 410 are performed.
  • Step 409 The primary access network MRAN device sends Service Data Unit Number Staus Transfer (SN Staus Transfer) information to the secondary access network SRAN device, and the SN Staus Transfer information is used to indicate The secondary access network SRAN device receives the starting location of the data.
  • SN Staus Transfer Service Data Unit Number Staus Transfer
  • the primary access network MRAN device transmits a certain proportion of data through the secondary access network SRAN device according to its preset control policy. For example, when the local spectrum resource usage rate of the primary access network MRAN device is above 80%, part of the data is transmitted through the secondary access network device SRAN.
  • the serving gateway (Serving GateWay, S-GW) sends downlink data to the primary access network MRAN device, and the primary access network MRAN device receives the downlink data, and offloads a part of the downlink data to the secondary access network SRAN device.
  • the secondary access network device SRAN receives the downlink data.
  • the secondary access network device SRAN determines the starting position of the data that it needs to receive according to the received data state transition information (SN Staus Transfer), and receives the downlink data according to the starting location.
  • SN Staus Transfer received data state transition information
  • the serving gateway S-GW sends downlink data to the primary access network MRAN device and the secondary access network SRAN device, respectively, and the primary access network MRAN device and the secondary access network SRAN device respectively transfer information according to the data state (SN Staus Transfer)
  • the starting position of the data received by the MRAN and the SRAN is required to receive the corresponding downlink data.
  • step 409 and step 410 are examples of downlink data transmission.
  • the uplink data transmission and the downlink data transmission are performed in the same manner. The difference is that the downlink data transmission is sent by the serving gateway to the access network device, and the uplink data transmission is sent by the terminal to the access network device, which will not be described in detail herein.
  • Step 411 The primary access network MRAN device sends a request message for updating the parameters of the evolved radio access bearer (E-RAB) to the Mobility Management Entity (MME) of the core network (EPC). .
  • E-RAB evolved radio access bearer
  • MME Mobility Management Entity
  • the mobility management entity MME is a node of the control plane and is mainly used for mobility management, session management, load balancing, access control, and the like.
  • the P-GW is a gateway of a Public Data Network (PDN), which belongs to the data plane node and is mainly used for data forwarding.
  • PDN Public Data Network
  • E-RAB is typically used to transfer data between a UE and a core network, such as voice, multimedia services, and the like.
  • the E-RAB is usually initiated by the core network. After the E-RAB is successfully established, the UE enters the service transmission process.
  • There are multiple parameters of the E-RAB for example, QoS Class Identifier (Qos), Allocation and Retention Priority (ARP), etc.
  • QCI is a reference for parameters related to the access network device.
  • the scalar is used to control the packet forwarding process of the bearer level.
  • the main purpose of ARP is to decide whether to accept or reject a bearer setup/modification request according to the resource status. In fact, there are a plurality of parameters of the existing E-RAB, which are not enumerated here.
  • the request message for updating the E-RAB parameter includes an increase indication parameter
  • the indication parameter is used to indicate whether the core network corresponding to the UE is an EPC or a new RAT CN (EPC or new RAT CN)
  • the indication parameter is used to refer to
  • the core network in which the UE establishes a connection is an LTE core network EPC or a 5G core network new RAT CN.
  • the request message for updating the E-RAB parameter further includes an increase parameter Slice ID, where the slice ID is used to indicate a slice ID corresponding to the UE, for example, the slice ID of the UE is 3.
  • the request message for updating the E-RAB parameter further includes an update parameter E-RAB Level QoS Parameters.
  • the parameter E-RAB Level QoS Parameters is used to indicate the value of the Qos parameter corresponding to each E-RAB level. That is to say, each E-RAB level corresponds to a set of Qos parameters, that is, the parameter E-RAB Level QoS Parameters represents a set of Qos parameters.
  • the update parameter E-RAB Level QoS Parameters is: adding one or more of the following parameters: security level, service continuity level, delay level, service flow priority indicator FPI, feedback service quality indicator RQI, lost
  • the packet priority indicates the PDPI and the service filtering template TFT.
  • the request message for updating the E-RAB parameter is an increased parameter security level of 3.
  • Step 412 The MME updates the parameters of the evolved radio access bearer E-RAB, for example, the MME increases the parameter EPC or new RAT CN, and feeds the update result to the S-GW, so that the S-GW is based on the updated transmission.
  • the path sends data to the UE.
  • Step 413 The S-GW sends, according to the updated data transmission path, information to the primary access network MRAN device to end the transmission of the data packet, for example, sending a data packet (End Marker Packet) indicating that the transmission data is terminated, to notify the The primary access network MRAN device data transmission has ended.
  • the primary access network MRAN device After receiving the information of ending the transmission of the data packet, the primary access network MRAN device sends the information of ending the transmission of the data packet to the secondary access network device SRAN, for example, sending an end marker packet indicating the end of the transmission data. To notify the secondary access network device that the SRAN data transmission has ended.
  • Step 414 The MME sends an E-RAB parameter update confirmation message (End Marker Packet) to the primary access network MRAN device to notify the primary access network that the MRAN device has updated the data transmission path.
  • E-RAB parameter update confirmation message End Marker Packet
  • the step 401 to step 414 is that the core network connected to the UE is an LTE core network EPC. Therefore, the control plane node is the MME, and the data plane node is the S-GW. In fact, the core network connected to the UE may also be a 5G core network New RAT CN. In this case, the control plane node is New RAT MME and the data plane node is New RAT S-GW.
  • FIG. 5 is a schematic diagram of a first access network device according to an embodiment of the present disclosure, and the first access network device 500 can perform the method and the steps performed by the foregoing primary access network MRAN device.
  • the first access network device 500 includes a transmitter 510 and a receiver 520.
  • the transmitter 510 is configured to send a request message to the second access network device, where the request message is used to request the second access network device as a secondary access network device of the terminal served by the first access network device.
  • the receiver 520 is configured to receive an acknowledgment message from the second access network device, where the acknowledgment message is used to confirm to the first access network device that the second access network device agrees to be the secondary access network device of the terminal.
  • the confirmation message further includes at least one of a downlink tunnel identifier between the second access network device and the core network, and an uplink tunnel identifier between the second access network device and the core network.
  • the confirmation message further includes an identifier of the device of the first access network device 500 corresponding to the core network.
  • the request message further includes one or more of the following quality of service Qos attributes: security level, service continuity level, delay level, service flow priority indicator FPI, feedback quality of service indicator RQI, and packet loss.
  • the priority indicates the PDPI and the service filtering template TFT.
  • the request message further includes an identifier of a network slice that accesses the terminal, and the identifier of the network slice corresponds to one or more of the QoS attributes.
  • the first access network device 500 in FIG. 5 may perform the steps performed by the primary access network MRAN device in the foregoing method embodiment, including step 402, step 403, step 405, step 407, and step. 408, step 409, step 410, step 411, step 413, and the like, and details are not described herein again.
  • FIG. 6 is a second access network device according to an embodiment of the present application.
  • the second access network device 600 can perform the methods and steps performed by the foregoing secondary access network SRAN device.
  • the second access network device 600 includes a receiver 610 and a transmitter 620.
  • the receiver 610 is configured to receive a request message from the first access network device, where the request message is used to request the second access network device as a secondary access network device of the terminal served by the first access network device;
  • the transmitter 620 is configured to send an acknowledgement message to the first access network device, where the acknowledgement message is used to confirm to the first access network device that the second access network device agrees to be the secondary access network device of the terminal.
  • the confirmation message further includes at least one of a downlink tunnel identifier between the second access network device and the core network, and an uplink tunnel identifier between the second access network device and the core network.
  • the confirmation message further includes: the first access network device corresponding to the identifier of the device of the core network.
  • the request message further includes one or more of the QoS attributes: a security level, a service continuity level, a delay level, a service flow priority indicator FPI, a feedback service quality indicator RQI, and a packet loss.
  • the priority indicates the PDPI and the service filtering template TFT.
  • the request message further includes a network slice identifier that accesses the terminal, and the identifier of the network slice corresponds to one or more of the QoS attributes.
  • the primary access network device 600 in FIG. 6 may perform the steps performed by the secondary access network SRAN device in the foregoing method embodiment, including step 404, step 410, step 413, and the like. Let me repeat.
  • the controller/processor for performing the above-mentioned access network device, UE or core network device function of the present application may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC). , Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the user equipment.
  • the processor and the storage medium may also reside as discrete components in the user equipment.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及移动通信领域,尤其涉及一种双连接方法。首先第一接入网设备向第二接入网设备发送请求消息,该请求消息用于请求该第二接入网设备作为该第一接入网设备服务的终端的辅接入网设备。然后该第一接入网设备接收来自该第二接入网设备的确认消息,该确认消息用于向该第一接入网设备确认该第二接入网设备同意成为该终端的辅助接入网设备。本申请实施例实现了LTE网络与5G网络的双连接。

Description

一种双连接方法及接入网设备
本申请要求于2016年10月30日提交中国国家知识产权局专利局、申请号为201611269925.1、发明名称为“一种双连接方法及接入网设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信领域,尤其涉及长期演进(Long Term Evolution,简称LTE)系统与第五代移动通信技术(5th Generation,5G)系统的双连接。
背景技术
在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的5G技术中,无线通信网络资源作为一个整体按照不同业务的传输特点划分为不同资源组,其中,一个资源组被称为一个网络切片(slice)。
如图1所示,按照业务的传输特点,可将网络划分为三种类型的切片,分别为超可靠和低时延的机器通讯(Ultra-reliable and low latency Machine Type Communications,uMTC)业务切片、海量机器类型通讯(massive machine type communication,mMTC)业务切片、增强的移动宽带(Enhanced Mobile broadband,eMBB)业务切片。
通过不同类型的切片服务于不同的业务,可以更好的满足业务的需求。图1中,uMTC切片上的业务是低时延高可靠的业务,主要应用于物联网中物与物之间的通信。例如,无人驾驶、远程医疗手术、运输安全等。mMTC切片上的业务是对数据吞吐量和数据传输时延不敏感的业务,且用户设备(user equipment,UE)的数量庞大。例如,智能水电表等。eMBB切片上的业务是需要巨大吞吐量的业务,且具有更高的数据速率以及更大的移动宽带。例如,超高清视频的快速传输等。
目前,在讨论5G部署时还在讨论LTE和5G双连接的部署情况,LTE和5G双连接是指UE同时连接LTE接入网设备和5G接入网设备,其中一个接入网设备是主接入网设备,另一个接入网设备是辅接入网设备,且UE通过该主接入网设备、辅接入网设备分别与同一个核心网建立连接。
虽然,UE只能与一个核心网建立连接,然而接入网设备很可能会同时与两个或两个以上核心网设备相连。在主接入网设备与多个核心网进行连接的情况下,由于现有技术并没有给出辅接入网设备如何确定UE所对应的核心网的方法,导致辅接入网设备无法连接到该UE对应的核心网上,从而无法实现双连接。
发明内容
本申请实施例提供了一种双连接方法及接入网设备,实现了LTE系统与5G系统的双连接。
第一方面,本申请实施例提供了一种双连接方法。首先第一接入网设备向第二接入网 设备发送请求消息,该请求消息用于请求该第二接入网设备作为该第一接入网设备服务的终端的辅接入网设备。然后该第一接入网设备接收来自该第二接入网设备的确认消息,该确认消息用于向该第一接入网设备确认该第二接入网设备同意成为该终端的辅助接入网设备。
在第二方面,本申请实施例提供了一种第一接入网设备。该第一接入网设备包括发射器和接收器。该发射器用于向第二接入网设备发送请求消息,该请求消息用于请求该第二接入网设备作为该第一接入网设备服务的终端的辅接入网设备。该接收器用于接收来自该第二接入网设备的确认消息,该确认消息用于向该第一接入网设备确认该第二接入网设备同意成为该终端的辅助接入网设备。
本申请实施例的第一接入网设备通过向第二接入网设备发送请求消息,且该请求消息用于请求第二接入网设备作为该第一接入网设备服务的终端的辅接入网设备,从而实现了LET网络与5G网络的双连接。
在一个示例中,该确认消息还包括该第二接入网设备与该核心网之间的下行隧道标识、该第二接入网设备与该核心网之间的上行隧道标识中的至少一个。
本申请实施例的第一接入网设备通过接收来自第二接入网设备的确认消息,且在该消息中包括该第二接入网设备与该核心网之间的下行隧道标识、该第二接入网设备与该核心网之间的上行隧道标识,从而使第一接入网设备获知第二接入网设备的下行数据和/或命令的传输隧道以及获知第二接入网设备的上行数据的传输隧道。
在一个示例中,该确认消息还包括,该第一接入网设备对应核心网的设备的标识。
本申请实施例的第一接入网设备通过接收来自第二接入网设备的确认消息,且在该消息中包括第二接入网设备对应核心网的设备的标识,从而使该第二接入网设备能够获知该UE对应的核心网设备的标识,从而使第一接入网设备与多个核心网连接时,第二接入网设备能够确定与终端建立连接的核心网,进而使该第二接入网设备连接至第一接入网设备中。
在一个示例中,该请求消息中还包括以下服务质量Qos属性中的一个或多个:安全等级、业务连续性等级、时延等级、业务流优先级指标FPI、反馈服务质量指标RQI、丢包优先级指示PDPI、业务过滤模板TFT。
在一个示例中,该请求消息中还包括接入该终端的网络切片的标识,该网络切片的标识与该Qos属性中的一个或多个相对应。
在第三方面,本申请实施例提供了一种双连接方法。首先第一接入网设备接收来自第二接入网设备的消息,该请求消息用于请求该第一接入网设备作为该第二接入网设备服务的终端的辅接入网设备。然后该第一接入网设备向该第二接入网设备发送确认消息,该确认消息用于向该第二接入网设备确认该第一接入网设备同意成为该终端的辅助接入网设备。
在第四方面,本申请实施例提供了一种第一接入网设备。该第一接入网设备包括接收器和发射器。该接收器用于接收来自第二接入网设备的消息,该请求消息用于请求该第一接入网设备作为该第二接入网设备服务的终端的辅接入网设备。该发射器用于向该第二接入网设备发送确认消息,该确认消息用于向该第二接入网设备确认该第一接入网设备同意成为该终端的辅助接入网设备。
本申请实施例第一接入网设备通过接收来自第二接入网设备请求消息,且该请求消息用于请求该第一接入网设备作为该第二接入网设备服务的终端的辅接入网设备,从而实现了LET网络与5G网络的双连接。
在一个示例中,该确认消息还包括该第一接入网设备与该核心网之间的下行隧道标识、该第一接入网设备与该核心网之间的上行隧道标识中的至少一个。
在一个示例中,该确认消息还包括,该第二接入网设备对应的核心网的设备的标识。
在一个示例中,该请求消息中还包括服务质量Qos属性中的一个或多个:安全等级、业务连续性等级、时延等级、业务流优先级指标FPI、反馈服务质量指标RQI、丢包优先级指示PDPI、业务过滤模板TFT。
在一个示例中,在该请求消息中还包括接入该终端的网络切片标识,该网络切片的标识与该Qos属性中的一个或多个相对应。
本申请实施例通过第一接入网设备向第二接入网设备发送请求消息,以请求该第二接入网设备成为该第一接入网设备的辅接入网设备,以及通过第一接入网设备接收来自第二接入网设备的确认消息,以确定同意成为辅接入网设备,从而实现了LTE网络与5G网络的双连接。
附图说明
图1为一种网络切片的应用示意图;
图2为一种LTE接入网设备与5G接入网设备双连接示意图;
图3为本申请实施例的LTE系统与5G系统双连接的应用场景示意图;
图4为本申请一个实施例的LTE系统与5G系统双连接方法示意图;
图5为本申请一个实施例的一种接入网设备示意图;
图6为本申请一个实施例的另一种接入网设备示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
图2是一种UE与LTE接入网设备、5G接入网设备双连接的示意图。
所谓UE与LTE接入网设备、5G接入网设备的双连接是指UE通过LTE接入网设备和5G接入网设备分别与同一个核心网建立连接,该核心网即可以是LTE核心网,也可以是5G核心网,并且LTE接入网设备、5G接入网设备中的一个接入网设备为主接入网设备,另一个接入网设备为辅接入网设备。
本申请所涉及到的用户设备UE可以是各种形式的用户设备,包括移动台(Mobile station,简称MS),终端(terminal),终端设备(Terminal Equipment)等等。为方便描述,本申请中,上面提到的设备统称为用户设备UE。本申请所涉及到的接入网设备是一种部署在无线接入网中用以为UE提供无线通信功能的装置。该接入网设备可以包括各种形式的宏基站,微基站,中继站,接入点等等。
图2中,UE可以通过LTE接入网设备与5G核心网(New radio access technology core net,New RAT CN)建立连接,也可以通过5G接入网设备与5G核心网建立连接,从而实 现双连接。图2是以UE通过LTE接入网设备、5G接入网设备与5G核心网建立双连接为例。UE也可以通过LTE接入网设备、5G接入网设备与LTE核心网建立双连接。
如图2所示,LTE接入网设备通过eS1-U/1A UP接口与5G核心网建立连接,5G接入网设备通过S1-C/S1-U接口与5G核心网建立连接,LTE接入网设备与5G接入网设备通过eX2-U/3C UP接口相连。
图2中,由于LTE接入网设备与5G接入网设备都仅与同一个核心网(New RAT CN)连接,因此,UE与核心网之间的数据即可以通过LTE接入网设备传输,也可以通过5G接入网设备传输。在此种连接方式下,不论是将LTE接入网设备作为主接入网设备,5G接入网设备作为辅接入网设备,还是将LTE接入网设备作为辅接入网设备,5G接入网设备作为主接入网设备,辅接入网设备都能够确定UE对应的核心网。原因是,主接入网设备仅与一个核心网连接,主接入网设备覆盖区中所服务的任何UE对应的核心网都是同一个核心网。
然而对于主接入网设备与多个核心网相连的情况,例如,主接入网设备与LTE核心网,即演进的分组核心(Evolved Packet Core,EPC)网、5G核心网,即新无线接入技术核心网(New Radio Access Technology Core Net,New RAT CN)相连的情况,参见图3,目前还没有任何一种方法能够使辅接入网设备确定UE对应的核心网,从而实现双连接。
图3是本申请实施例的LTE接入网设备与5G接入网设备双连接应用场景示意图。图3示出了LTE接入网设备和5G接入网设备均与LTE核心网和5G核心网相连的情况,LTE接入网设备同时与LTE核心网(EPC)、5G核心网(New RAT CN)相连,5G接入网设备也同时与LTE核心网(EPC)、5G核心网相连。
图3中,假设LTE接入网设备是主接入网设备,5G接入网设备是辅接入网设备,UE通过LTE接入网设备与LTE核心网(EPC)建立连接,同时也需要UE通过5G接入网设备与该LTE核心网(EPC)建立连接。然而,由于5G接入网设备同时与LTE核心网(EPC)及5G核心网(New RAT CN)相连,因此,在现有技术中,作为辅接入网设备的5G接入网设备在上传来自该UE的数据时,无法确定UE对应的核心网,也就无法确定应当将该上行数据传输至LTE核心网(EPC)还是5G核心网(New RAT CN);同时作为辅接入网设备的5G接入网设备也无法正确接收下行数据,原因是5G接入网设备既与LTE核心网(EPC)相连,又与5G核心网(New RAT CN)相连,因此,作为辅接入网设备的5G接入网设备无法确定是应当通过接收LTE核心网(EPC)的数据接口接收下行数据,还是应当通过接收5G核心网(New RAT CN)的数据接口接收下行数据。
下面将详细阐述,本申请实施例如何为辅接入网设备确定与UE建立连接的核心网,从而使UE实现LTE接入网设备与5G接入网设备的双连接。
图4是LTE系统与5G系统双连接方法示意图,该图4是以UE与LTE核心网(EPC)建立连接为例,实际上,UE也可以与5G核心网(New RAT CN)建立连接,方法相同,在此不再赘述。
步骤401,UE发送随机接入请求,通过发送随机接入前导码尝试接入网络,然后与主接入网(Master Radio Access Nework,MRAN)设备建立信令连接,从而使UE接入至主接入网中。
步骤402,主接入网MRAN设备为该UE确定辅接入网(Secondary Radio Access Network, SRAN)设备。
在一个示例中,UE通过上行测量生成测量报告,该测量报告至少包括邻区的数量(如6个)、各邻区的信号质量(例如,接收信号的功率)等。UE将该测量报告发送至主接入网MRAN设备,主接入网MRAN设备根据预设的匹配规则,从该测量报告中指示的接入网设备中为该UE确定辅接入网设备。例如,该测量报告包括距离UE最近的接入网设备是xx接入网设备,且该预设的匹配规则是将距离UE最近的接入网设备作为辅接入网设备,则该主接入网MRAN设备为该UE确定辅接入网设备为该xx接入网设备。
步骤403,主接入网MRAN设备向辅接入网SRAN设备发送请求消息。例如,该请求消息为接入网设备添加请求消息(SRAN Addition Request),该辅接入网添加请求消息(SRAN Addition Request)用于请求辅接入网SRAN设备作为辅接入网设备服务的UE的终端的辅接入网设备,且该辅接入网添加请求消息(SRAN Addition Request)携带了与该主接入网设备连接的核心网的信息。
下面将以主接入网MRAN设备向辅接入网SRAN设备发送的请求消息是,辅接入网添加请求消息SRAN Addition Request消息为例进行阐述。
具体地,主接入网MRAN设备在向另一接入网设备发送辅接入网设备添加请求消息时,通知该另一接入网设备,该主接入网设备连接的核心网设备的标识(id),以便该另一接入网设备在同意作为该UE的辅接入网设备之后,能够获知该与主接入网MRAN设备连接的核心网设备的标识,即获知该UE对应的核心网设备的标识。
在一个示例中,该核心网的信息包括与该主接入网设备连接的核心网设备的标识。进一步地,该核心网的信息还包括该核心网的类型,即该核心网是LTE核心网或者5G核心网。
在一个示例中,在该辅接入网添加请求消息(SRAN Addition Request)中还包括以下服务质量(Quality of Service,Qos)属性的一个或多个:
安全等级、业务连续性等级、时延等级、业务流优先级指标(flow priority indicator,FPI)、反馈服务质量指标(reflective Qos indicator,RQI)、丢包优先级指示(packet drop priority indicator,PDPI)、业务过滤模板(Traffic Filter Template,TFT)。其中,安全等级是指UE的安全级别,例如,UE的安全级别为高安全级别;业务连续性等级是指UE支持的业务的连续性的等级,可以由传输数据中断的时间来表示,例如数据中断时间1ms;时延等级是指UE支持的业务的时延等级,例如,UE支持的业务是低时延业务。
主接入网MRAN设备在向辅接入网SRAN设备发送辅接入网添加请求消息(SRAN Addition Request)中包括以上参数,目的是通知该辅接入网SRAN设备,该UE的业务属性,以便该辅接入网SRAN设备能够判定该辅接入网SRAN设备是否能够满足UE的需求。例如,辅接入网SRAN设备的安全级别、业务连续性等级、时延等级等等是否能够满足UE的需求。
在另一个示例中,在该辅接入网添加请求消息(SRAN Addition Request)中还包括UE的切片标识(Slice ID)。
具体地,网络中的操作管理维护设备(Operation Administration and Maintenance,OAM)给各接入网设备,包括辅接入网SRAN设备,配置网络切片ID对应的Qos属性,参 见下表1。
Figure PCTCN2017119034-appb-000001
表1
表1中,切片ID 0001对应的Qos属性包括:(1)需要的接入时延等级低于10ms;(2)需要的业务中断时间为低于5ms;(3)业务可靠性为数据丢失率为10e-9。本领域技术人员可以理解,表1中具体数值仅是一个例子。
主接入网MRAN设备向辅接入网SRAN设备发送的SRAN Addition Request消息中,添加UE的一个承载对应的切片id。辅接入网设备根据该切片id确定该UE的该承载的Qos属性,以便根据该Qos属性在该承载上进行数据传输。
步骤404,辅接入网SRAN设备向主接入网MRAN设备发送确认消息。例如,该确认消息为辅接入网添加请求确认消息(SRAN Addition Request Acknowledge),该消息携带同意作为该UE辅接入网设备的信息或者不同意作为该UE辅接入网设备的信息。
下面将以辅接入网SRAN设备向主接入网MRAN设备发送的确认消息是,辅接入网添加请求确认消息SRAN Addition Request Acknowledge消息为例进行阐述。
在一个示例中,该辅接入网设备添加请求确认消息包括该辅接入网设备与该核心网(在此是指与主接入网设备连接的核心网,如EPC)之间的下行隧道标识(DL GTP Tunnel Endpoint)。
进一步地,该辅接入网设备添加请求确认消息中还可以包括该辅接入网设备与该核心网之间的上行隧道标识。
接入网设备与核心网之间信息传输的隧道有多条,例如,10条隧道,辅接入网SRAN设备在向主接入网MRAN设备发送的辅接入网设备添加请求确认消息中包括下行隧道标识和/或上行隧道标识,目的是通知主接入网设备下行数据和/或命令的传输隧道以及通知主接入网设备上行数据的传输隧道。
步骤405,主接入网MRAN设备向UE发送RRC消息,并在该RRC消息中携带辅接入网SRAN设备的相关信息。例如,主接入网MRAN设备为LTE接入网设备,则该RRC消息为RRC连接重配置消息(RRC Connection Reconfiguration)。
在一个示例中,该RRC消息包括辅接入网SRAN设备的标识。进一步地,该RRC消息还包括辅接入网SRAN设备的类型,如LTE接入网设备或5G接入网设备。
在另一个示例中,该RRC消息还包括辅接入网SRAN设备的空口资源,例如辅接入网设备对应的频点和带宽。
步骤406,UE向主接入网MRAN设备返回RRC配置完成消息。例如,该RRC配置完成消息为RRC连接重配置完成消息(RRC Connection Reconfiguration Complete)。进一步地,该RRC配置完成消息还可以携带该UE的切片标识(id)、该UE的切片类型等。
步骤407,主接入网MRAN设备向辅接入网SRAN设备返回辅接入网设备重配置完成消息(SRAN Reconfiguration Complete),该辅接入网设备重配置完成消息(SRAN Reconfiguration Complete)用于通知该辅接入网SRAN设备该UE已经将该辅接入网设备配置成为该UE的辅接入网设备。
在一个示例中,该辅接入网设备重配置完成消息(SRAN Reconfiguration Complete)携带了UE标识(id)。进一步地,该辅接入网设备重配置完成消息(SRAN Reconfiguration Complete)还可以携带该UE的切片标识(id)、该UE的切片类型等。
RRC连接重配置旨在修改RRC连接,例如,通过RRC连接重配置实现建立/修改/释放资源块(resource block,RB),以及进行切换,准备/修改/释放测量等。本申请实施例通过修改RRC连接重配置,实现UE对辅接入网设备的接入。
步骤408,UE向辅接入网SRAN设备发起随机接入请求,获得同步,辅接入网SRAN设备为UE分配唯一一个小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI),使UE接入该辅接入网SRAN设备。
小区无线网络临时标识C-RNTI是由接入网设备分配给UE的一个动态标识,唯一标志了一个小区空口下的UE,并且只有处于连接态下的UE,C-RNTI才有效。
需要说明的是,在UE接入辅接入网设备之后,即在步骤408之后,且在核心网设备,如LTE核心网中的移动性管理实体(Mobility Management Entity,MME),更新传输路径之前,即在步骤411之前,当有上行或下行数据需要传输时,先进行数据传输再更新传输路径(由于在传输数据之前,UE已经接入了辅接入网设备,因此可以通过修改数据传输路径,使数据能够通过辅接入网设备传输)。此种情况将通过以下步骤409-步骤414进行阐述。
实际上,也可以在UE接入辅接入网设备之后,且在核心网设备,如LTE核心网中的MME,更新传输路径之后,即在步骤414之后,当有上行或下行数据需要传输时,再进行数据传输。也就是说,也可以先执行步骤411-步骤414之后再执行步骤409、步骤410。
步骤409,主接入网MRAN设备向辅接入网SRAN设备发送业务数据单元号状态转移(Service data unit Number Staus Transfer,SN Staus Transfer)信息,该数据状态转移(SN Staus Transfer)信息用于指示该辅接入网SRAN设备接收数据的起始位置。该数据状态转移(SN Staus Transfer)信息的一个例子为,当前传输的数据有n个数据包,SRAN从该数据的第m个数据包开始接收数据;例如,n=80,m=50。
例如,该主接入网MRAN设备根据其预设的控制策略,将一定比例的数据通过辅接入网SRAN设备传输。该控制策略例如,当主接入网MRAN设备的本地频谱资源使用率在80%以上时,将部分数据通过辅接入网设备SRAN传输。步骤410,服务网关(Serving GateWay,S-GW)向主接入网MRAN设备发送下行数据,主接入网MRAN设备接收该下行数据,并将该下行数据的一部分分流给辅接入网SRAN设备,辅接入网设备SRAN接收该下行数据。且该辅接入网设备SRAN根据其接收到的数据状态转移信息(SN Staus Transfer)确定其需要接收的数据的起始位置,根据该起始位置接收该下行数据。
或者,服务网关S-GW分别向主接入网MRAN设备、辅接入网SRAN设备发送下行数据,主接入网MRAN设备、辅接入网SRAN设备分别根据该数据状态转移信息(SN Staus Transfer)中的需要该MRAN、SRAN各自接收的数据的起始位置,分别接收相应的下行数据。
需要说明的是,步骤409、步骤410是以下行数据传输为例,实际上,上行数据传输与下行数据传输的方法相同。区别在于,下行数据传输是由服务网关向接入网设备发送数据,而上行数据传输则是由终端向接入网设备发送数据,在此不再详述。
步骤411,主接入网MRAN设备向核心网(EPC)的移动性管理实体(Mobility Management Entity,MME)发送更新演进的无线接入承载(Evolved Radio Access Bearer,E-RAB)的参数的请求消息。
移动性管理实体MME是控制面的节点,主要用于移动性管理、会话管理、负载均衡、接入控制等。而P-GW是公用数据网(Packet Data Network,PDN)的网关,属于数据面的节点,主要用于数据转发等。
E-RAB通常用于在UE和核心网之间传送数据,例如,语音、多媒体业务等。通常由核心网发起建立E-RAB,当E-RAB建立成功后,UE进入业务传输过程。E-RAB的参数有多个,例如,服务质量等级标识(QoS Class Identifier,Qos)、分配和抢占优先级(Allocation and Retention Priority,ARP)等,QCI是与接入网设备相关的参数的参考标量,用来控制承载级别的数据包转发处理过程,ARP主要目的是根据资源状况决定接受还是拒绝一个承载建立/修改请求。实际上,现有E-RAB的参数有多个,在此不一一列举。
在一个示例中,该更新E-RAB参数的请求消息包括增加指示参数该指示参数用于表示UE对应的核心网是EPC还是new RAT CN(EPC or new RAT CN),该指示参数用于指与UE建立连接的核心网是LTE核心网EPC还是5G核心网new RAT CN。
在一个示例中,该更新E-RAB参数的请求消息还包括增加参数Slice ID,该参数Slice ID用于表示UE对应的切片ID,例如,UE的切片ID为3。
在一个示例中,该更新E-RAB参数的请求消息还包括更新参数E-RAB Level QoS Parameters。该参数E-RAB Level QoS Parameters用于表示每个E-RAB级别对应的Qos参数的取值。也就是说,每个E-RAB级别对应一组Qos参数的取值,即该参数E-RAB Level QoS Parameters表示的是一组Qos参数。进一步地,该更新参数E-RAB Level QoS Parameters为,增加以下参数中的一个或多个:安全等级、业务连续性等级、时延等级、业务流优先级指标FPI、反馈服务质量指标RQI、丢包优先级指示PDPI、业务过滤模板TFT。例如,该更新E-RAB参数的请求消息为增加参数安全等级为3。
步骤412,MME更新该演进的无线接入承载E-RAB的参数,例如,MME增加参数EPC or new RAT CN等,并将该更新结果反馈给S-GW,以便S-GW根据更新后的传输路径向UE下发数据。
步骤413,S-GW根据该更新后的数据传输路径,向主接入网MRAN设备发送结束发送数据包的信息,例如,发送标识有结束发送数据的数据包(End Marker Packet),以通知该主接入网MRAN设备数据传输已结束。主接入网MRAN设备在接收到结束发送数据包的信息之后,再向辅接入网设备SRAN发送结束发送数据包的信息,例如,发送标识有结束发送数据的数据包(End Marker Packet),以通知该辅接入网设备SRAN数据传输已结束。
步骤414,MME向主接入网MRAN设备发送该E-RAB参数更新完成的确认消息(End Marker Packet),以通知该主接入网MRAN设备已更新完数据传输路径。
本领域技术人员可以理解,步骤401-步骤414是以与UE连接的核心网是LTE核心网EPC为例,因此,控制面节点为MME,数据面节点为S-GW。实际上,与UE连接的核心网也可以是5G核心网New RAT CN,此种情况下,控制面节点为New RAT MME,数据面节点为New RAT S-GW。
图5是本申请一个实施例提供的第一接入网设备示意图,且该第一接入网设备500可以执行前述主接入网MRAN设备所执行的方法、步骤。
图5中,该第一接入网设备500包括发射器510和接收器520。
发射器510用于向第二接入网设备发送请求消息,该请求消息用于请求该第二接入网设备作为该第一接入网设备服务的终端的辅接入网设备。
接收器520用于接收来自该第二接入网设备的确认消息,该确认消息用于向该第一接入网设备确认该第二接入网设备同意成为该终端的辅助接入网设备。
在一个示例中,该确认消息还包括该第二接入网设备与该核心网之间的下行隧道标识、该第二接入网设备与该核心网之间的上行隧道标识中的至少一个。
在一个示例中,该确认消息还包括,该第一接入网设备500对应核心网的设备的标识。
在一个示例中,该请求消息中还包括以下服务质量Qos属性中的一个或多个:安全等级、业务连续性等级、时延等级、业务流优先级指标FPI、反馈服务质量指标RQI、丢包优先级指示PDPI、业务过滤模板TFT。
在一个示例中,该请求消息中还包括接入该终端的网络切片的标识,该网络切片的标识与该Qos属性中的一个或多个相对应。
需要说明的是,图5中的第一接入网设备500可以执行上述如图4方法实施例中主接入网MRAN设备执行的步骤,包括步骤402、步骤403、步骤405、步骤407、步骤408、步骤409、步骤410、步骤411、步骤413等,在此不再赘述。
图6是本申请一个实施例提供的第二接入网设备。该第二接入网设备600可以执行前述辅接入网SRAN设备所执行的方法、步骤。
图6中,该第二接入网设备600包括接收器610和发射器620。
接收器610用于接收来自第一接入网设备的请求消息,该请求消息用于请求该第二接入网设备作为该第一接入网设备服务的终端的辅接入网设备;
发射器620向用于向该第一接入网设备发送确认消息,该确认消息用于向该第一接入网设备确认该第二接入网设备同意成为该终端的辅助接入网设备。
在一个示例中,该确认消息还包括该第二接入网设备与该核心网之间的下行隧道标识、该第二接入网设备与该核心网之间的上行隧道标识中的至少一个。
在一个示例中,该确认消息还包括,该第一接入网设备对应核心网的设备的标识。
在一个示例中,该请求消息中还包括服务质量Qos属性中的一个或多个::安全等级、业务连续性等级、时延等级、业务流优先级指标FPI、反馈服务质量指标RQI、丢包优先级指示PDPI、业务过滤模板TFT。
在一个示例中,在该请求消息中还包括接入该终端的网络切片标识,该网络切片的标识与该Qos属性中的一个或多个相对应。
需要说明的是,图6中的主接入网设备600可以执行上述如图4方法实施例中的辅接入网SRAN设备执行的步骤,包括步骤404、步骤410、步骤413等,在此不再赘述。
用于执行本申请上述接入网设备,UE或核心网络装置功能的控制器/处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于用户设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (21)

  1. 一种双连接方法,其特征在于,所述方法包括:
    第一接入网设备向第二接入网设备发送请求消息,所述请求消息用于请求所述第二接入网设备作为所述第一接入网设备服务的终端的辅接入网设备;
    所述第一接入网设备接收来自所述第二接入网设备的确认消息,所述确认消息用于向所述第一接入网设备确认所述第二接入网设备同意成为所述终端的辅助接入网设备。
  2. 如权利要求1所述的方法,其特征在于,所述确认消息还包括所述第二接入网设备与所述核心网之间的下行隧道标识、所述第二接入网设备与所述核心网之间的上行隧道标识中的至少一个。
  3. 如权利要求2所述的方法,其特征在于,所述确认消息还包括,所述第一接入网设备对应核心网的设备的标识。
  4. 如权利要求1至3任意一项所述的方法,其特征在于,所述请求消息中还包括以下服务质量Qos属性中的一个或多个:
    安全等级;
    业务连续性等级;
    时延等级;
    业务流优先级指标FPI;
    反馈服务质量指标RQI;
    丢包优先级指示PDPI;
    业务过滤模板TFT。
  5. 如权利要求4所述的方法,其特征在于,所述请求消息中还包括接入所述终端的网络切片的标识,所述网络切片的标识与所述Qos属性中的一个或多个相对应。
  6. 如权利要求1至5任意一项所述的方法,其特征在于,在所述第一接入网设备接收来自所述第二接入网设备的确认消息之后,所述方法还包括:所述第一接入网设备通知所述核心网中的控制面节点设备更新演进的无线接入承载参数;所述第一接入网设备接收来自所述核心网中的控制面节点设备的指示消息,所述指示消息息指示所述演进的无线接入承载参数更新完成。
  7. 一种双连接方法,其特征在于,所述方法包括:
    第一接入网设备接收来自第二接入网设备的请求消息,所述请求消息用于请求所述第一接入网设备作为所述第二接入网设备服务的终端的辅接入网设备;
    所述第一接入网设备向所述第二接入网设备发送确认消息,所述确认消息用于向所述第二接入网设备确认所述第一接入网设备同意成为所述终端的辅助接入网设备。
  8. 如权利要求7所述的方法,其特征在于,所述确认消息还包括所述第一接入网设备与所述核心网之间的下行隧道标识、所述第一接入网设备与所述核心网之间的上行隧道标识中的至少一个。
  9. 如权利要求7或8所述的方法,其特征在于,所述确认消息还包括,所述第二接入网设备对应核心网的设备的标识。
  10. 如权利要求7至9任意一项所述的方法,其特征在于,所述请求消息中还包括服 务质量Qos属性中的一个或多个:
    安全等级;
    业务连续性等级;
    时延等级;
    业务流优先级指标FPI;
    反馈服务质量指标RQI;
    丢包优先级指示PDPI;
    业务过滤模板TFT。
  11. 如权利要求10所述的方法,其特征在于,在所述请求消息中还包括接入所述终端的网络切片标识,所述网络切片的标识与所述Qos属性中的一个或多个相对应。
  12. 一种第一接入网设备,其特征在于,包括:
    发射器,用于向第二接入网设备发送请求消息,所述请求消息用于请求所述第二接入网设备作为所述第一接入网设备服务的终端的辅接入网设备;
    接收器,用于接收来自所述第二接入网设备的确认消息,所述确认消息用于向所述第一接入网设备确认所述第二接入网设备同意成为所述终端的辅助接入网设备。
  13. 如权利要求12所述的第一接入网设备,其特征在于,所述确认消息还包括所述第二接入网设备与所述核心网之间的下行隧道标识、所述第二接入网设备与所述核心网之间的上行隧道标识中的至少一个。
  14. 如权利要求12或13所述的第一接入网设备,其特征在于,所述确认消息还包括,所述第一接入网设备对应核心网的设备的标识。
  15. 如权利要求12至14任意一项所述的第一接入网设备,其特征在于,所述请求消息中还包括以下服务质量Qos属性中的一个或多个:
    安全等级;
    业务连续性等级;
    时延等级;
    业务流优先级指标FPI;
    反馈服务质量指标RQI;
    丢包优先级指示PDPI;
    业务过滤模板TFT。
  16. 如权利要求12至14任意一项所述的第一接入网设备,其特征在于,所述请求消息中还包括接入所述终端的网络切片的标识,所述网络切片的标识与所述Qos属性中的一个或多个相对应。
  17. 一种第一接入网设备,其特征在于,包括:
    接收器,用于接收来自第二接入网设备的请求消息,所述请求消息用于请求所述第一接入网设备作为所述第二接入网设备服务的终端的辅接入网设备;
    发射器,用于向所述第二接入网设备发送确认消息,所述确认消息用于向所述第二接入网设备确认所述第一接入网设备同意成为所述终端的辅助接入网设备。
  18. 如权利要求17所述的第一接入网设备,其特征在于,所述确认消息还包括所述第一接入网设备与所述核心网之间的下行隧道标识、所述第一接入网设备与所述核心网之间 的上行隧道标识中的至少一个。
  19. 如权利要求17或18所述的第一接入网设备,其特征在于,所述确认消息还包括,所述第二接入网设备对应核心网的设备的标识。
  20. 如权利要求17至19任意一项所述的第一接入网设备,其特征在于,所述请求消息中还包括服务质量Qos属性中的一个或多个:
    安全等级;
    业务连续性等级;
    时延等级;
    业务流优先级指标FPI;
    反馈服务质量指标RQI;
    丢包优先级指示PDPI;
    业务过滤模板TFT。
  21. 如权利要求20所述的第一接入网设备,其特征在于,在所述请求消息中还包括接入所述终端的网络切片标识,所述网络切片的标识与所述Qos属性中的一个或多个相对应。
PCT/CN2017/119034 2016-12-30 2017-12-27 一种双连接方法及接入网设备 WO2018121616A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17888992.9A EP3557939B1 (en) 2016-12-30 2017-12-27 Dual connection method and access network equipment
US16/457,072 US11622406B2 (en) 2016-12-30 2019-06-28 Dual connectivity method and access network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611269925.1A CN108617025B (zh) 2016-12-30 2016-12-30 一种双连接方法及接入网设备
CN201611269925.1 2016-12-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/457,072 Continuation US11622406B2 (en) 2016-12-30 2019-06-28 Dual connectivity method and access network device

Publications (2)

Publication Number Publication Date
WO2018121616A1 WO2018121616A1 (zh) 2018-07-05
WO2018121616A9 true WO2018121616A9 (zh) 2018-12-13

Family

ID=62706871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119034 WO2018121616A1 (zh) 2016-12-30 2017-12-27 一种双连接方法及接入网设备

Country Status (4)

Country Link
US (1) US11622406B2 (zh)
EP (1) EP3557939B1 (zh)
CN (2) CN108617025B (zh)
WO (1) WO2018121616A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10200241B2 (en) * 2015-05-13 2019-02-05 Stryker Corporation Method of wireless discovery and networking of medical devices in care environments
CN108566309B (zh) * 2017-01-26 2019-08-06 华为技术有限公司 一种接入目标小区的方法以及设备
CN111200625B (zh) * 2018-11-19 2021-07-09 华为技术有限公司 服务质量控制的方法、设备及系统
US10827549B2 (en) * 2019-01-07 2020-11-03 At&T Intellectual Property I, L.P. Facilitating automatic neighbor relationships for 5G or other next generation network
WO2020151802A1 (en) * 2019-01-21 2020-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for packet dropping in a fronthaul network
CN110536477B (zh) * 2019-04-03 2023-11-14 中兴通讯股份有限公司 连接方法、装置、网络设备及存储介质
CN110445712B (zh) * 2019-07-17 2022-02-25 新华三技术有限公司成都分公司 数据转发方法、装置及系统
EP3883298B1 (en) 2019-09-23 2023-11-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for system interoperation
CN111278019B (zh) * 2020-01-21 2022-12-20 达闼机器人股份有限公司 网络接入的方法、装置、存储介质及网络设备
CN113271635B (zh) * 2020-02-14 2024-06-25 华为技术有限公司 系统间切换方法和通信装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2456690T3 (es) * 2006-06-20 2014-04-23 Interdigital Technology Corporation Realización de transferencia en un sistema de comunicación inalámbrico
CN102469557B (zh) * 2010-11-15 2014-08-13 华为技术有限公司 接入基站方法、基站和用户设备
US8787351B2 (en) * 2011-04-14 2014-07-22 Alcatel Lucent Method and apparatus for scheduling transmissions in a communication network
CN103517257A (zh) * 2012-06-28 2014-01-15 华为技术有限公司 业务信息提供方法、装置及网络系统
KR102078866B1 (ko) * 2013-08-09 2020-02-19 삼성전자주식회사 듀얼 커넥티비티 지원을 위한 pdcp 분산 구조의 보안 키 생성 및 관리 방안
JPWO2015115629A1 (ja) * 2014-01-31 2017-03-23 京セラ株式会社 通信制御方法、マスタ基地局、及びセカンダリ基地局
CN105338572B (zh) * 2014-06-23 2020-07-31 北京三星通信技术研究有限公司 一种双连接中分割承载的数据分配方法和装置
WO2016013814A1 (en) * 2014-07-23 2016-01-28 Samsung Electronics Co., Ltd. Method and apparatus for generating and transmitting power headroom report in mobile communication system
GB2528913B (en) * 2014-08-04 2017-03-01 Samsung Electronics Co Ltd Signalling in dual connectivity mobile communication networks
CN106717108B (zh) * 2014-10-16 2020-04-28 Lg电子株式会社 在无线通信系统中处理双连接性的e-rab切换问题的方法和设备
EP3257320B1 (en) * 2015-06-01 2020-04-08 Huawei Technologies Co., Ltd. System and method for virtualized functions in control and data planes
JP6725703B2 (ja) * 2016-02-16 2020-07-22 アイディーエーシー ホールディングス インコーポレイテッド ネットワークスライシング操作
US20170339688A1 (en) * 2016-05-17 2017-11-23 Industrial Technology Research Institute Method of network slicing and related apparatuses using the same
CN108307423B (zh) * 2016-08-26 2023-03-24 中兴通讯股份有限公司 一种无线接入网络切片选择方法和装置

Also Published As

Publication number Publication date
US20190327782A1 (en) 2019-10-24
CN110493849A (zh) 2019-11-22
EP3557939A4 (en) 2019-12-11
CN108617025B (zh) 2021-02-12
CN110493849B (zh) 2020-11-10
US11622406B2 (en) 2023-04-04
EP3557939A1 (en) 2019-10-23
EP3557939B1 (en) 2021-08-04
WO2018121616A1 (zh) 2018-07-05
CN108617025A (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
WO2018121616A9 (zh) 一种双连接方法及接入网设备
CN113615253B (zh) 到潜在目标节点的有条件切换执行概率信息
CN109151915B (zh) 用于数据分组递送的方法、用户设备和基站
RU2649873C2 (ru) Способ и устройство для конфигурирования совокупной максимальной битовой скорости
US20200213821A1 (en) Charging system and method, and network device
US10728882B2 (en) Method for allocating aggregate maximum bit rate of UE, method for allocating aggregate bit rates of non-GBR services and base stations
US20230147304A1 (en) Communication Method and Communications Apparatus
JPWO2018029933A1 (ja) 無線アクセスネットワークノード、無線端末、コアネットワークノード、及びこれらの方法
JPWO2018029930A1 (ja) 無線アクセスネットワークノード、無線端末、コアネットワークノード、及びこれらの方法
WO2020019961A1 (zh) 通信方法、接入网设备和终端设备
WO2020216099A1 (zh) 通信方法及相关设备
WO2022073491A1 (zh) 切换方法、装置、终端设备、网络设备及存储介质
CN114586405B (zh) 测量报告上报方法及装置
WO2015143607A1 (zh) 回程链路的承载分流方法及网络设备
EP4398632A1 (en) Communication method and apparatus
WO2022082518A1 (zh) 信号的接收和发送方法、装置和通信系统
US11381979B2 (en) Standalone unlicensed spectrum carrier aggregation combinations using dynamic frequency selection (DFS) spectrum
CN115398975A (zh) 用于侧链路中继通信的信令传输的系统和方法
US9549423B2 (en) Method and device for increasing gateway capacity in LTE mode Femto cell system
WO2021056703A1 (zh) 信息更新方法、设备及系统
TW201836382A (zh) 通信方法、輔網絡節點和終端
EP3840474B1 (en) Multi-hop data transmission method and apparatus
WO2015117325A1 (zh) 双连接拆建方法和装置
US20220182910A1 (en) Data Processing Method, Apparatus, And System
WO2018127182A1 (zh) 一种系统间信息交互方法,无线通信系统和用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017888992

Country of ref document: EP

Effective date: 20190715