WO2020199763A1 - 显示面板、显示装置、显示面板的驱动方法及存储介质 - Google Patents

显示面板、显示装置、显示面板的驱动方法及存储介质 Download PDF

Info

Publication number
WO2020199763A1
WO2020199763A1 PCT/CN2020/075365 CN2020075365W WO2020199763A1 WO 2020199763 A1 WO2020199763 A1 WO 2020199763A1 CN 2020075365 W CN2020075365 W CN 2020075365W WO 2020199763 A1 WO2020199763 A1 WO 2020199763A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
display panel
substrate
layer
liquid crystal
Prior art date
Application number
PCT/CN2020/075365
Other languages
English (en)
French (fr)
Inventor
王方舟
梁蓬霞
王维
陈小川
孟宪芹
孟宪东
凌秋雨
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/962,853 priority Critical patent/US11327360B2/en
Publication of WO2020199763A1 publication Critical patent/WO2020199763A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133565Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements inside the LC elements, i.e. between the cell substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133524Light-guides, e.g. fibre-optic bundles, louvered or jalousie light-guides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133567Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the back side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/19Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-reflection or variable-refraction elements not provided for in groups G02F1/015 - G02F1/169
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/305Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating diffraction grating

Definitions

  • the embodiments of the present disclosure relate to, but are not limited to, the field of optoelectronic technology, and particularly to a display panel, a display device, a driving method of the display panel, and a computer-readable storage medium.
  • LCD liquid crystal display
  • the LCD panel achieves a transparent display effect through the side-lit backlight.
  • the entire LCD panel has the problem of uneven display brightness and low energy, especially for the application scenarios of large-size LCD panels, the uneven brightness and low energy in the display The problem is more obvious.
  • the embodiments of the present disclosure provide a display panel, a display device, a driving method of the display panel, and a computer-readable storage medium.
  • an embodiment of the present disclosure provides a display panel, including: a first substrate and a second substrate provided to a box, and an array of dots are provided on the side of the first substrate away from the second substrate A light source, a side of the first substrate close to the second substrate is provided with a light coupling device corresponding to the point light source, and a grating layer is provided on the side of the light coupling device away from the first substrate, A liquid crystal layer is arranged between the first substrate and the second substrate;
  • the optical coupling device is configured to reflect the light emitted by the corresponding point light source and passing through the first substrate to the optical coupling device into the first substrate.
  • the display panel is configured to control the opening or closing of the grating in the grating layer by adjusting the refractive index of the liquid crystal, so that the light in the first substrate can escape from the grating layer. Emit from the opened grating.
  • the display panel is configured to adjust the difference between the refractive index of the liquid crystal and the refractive index of the grating in the grating layer to achieve display of different gray levels.
  • the display panel as described above further includes: a first electrode layer disposed between the light coupling device and the grating layer, and a first electrode layer disposed on the liquid crystal layer close to the first electrode layer;
  • the second electrode layer on one side of the two substrates, the first electrode layer and the second electrode layer are set to be applied with a voltage, so as to control the refractive index of the liquid crystal in the liquid crystal layer.
  • the display panel as described above further includes: a flat layer disposed between the light coupling device and the first electrode layer;
  • the refractive index of the first substrate, the flat layer and the first electrode layer are equal and greater than the refractive index of the grating layer.
  • the refractive index of the second substrate and the second electrode layer are equal, and the grating layer, the second substrate and the second electrode The refractive index of the layers are all less than the refractive index of the first substrate.
  • the point light source includes a light emitting diode or a micro light emitting diode.
  • the light coupling device includes a radial grating or a holographic grating.
  • the light coupling device includes a radial grating
  • the radial grating includes a plurality of ring-shaped wire grids arranged as concentric circles, and the radial grating Along the radius of the ring-shaped wire grid, the grating period gradually increases from a position close to the center of the circle to a position far from the center of the circle.
  • the light coupling device includes a holographic grating
  • the holographic grating includes a plurality of strip-shaped wire gratings arranged in parallel, and the grating period of the holographic grating is along the first One direction becomes larger gradually, and the first direction is perpendicular to the strip wire grid.
  • the pixel size of the display panel is 5 to 50 times the grating period in the grating layer.
  • embodiments of the present disclosure also provide a display device, including: the display panel as described in any one of the above.
  • embodiments of the present disclosure also provide a method for driving a display panel, the display panel being the display panel described in any one of the above, and the driving method includes:
  • the light coupling device corresponding to the point light source reflects the light emitted by the point light source and passing through the first substrate to the light coupling device to the first substrate Inside;
  • the refractive index of the liquid crystal layer in the display panel is adjusted to control the opening or closing of the grating in the grating layer, so that the light in the first substrate emerges from the opened grating in the grating layer.
  • the adjusting the refractive index of the liquid crystal layer in the display panel to control the opening or closing of the grating in the grating layer includes at least one of the following item:
  • Adjusting the refractive index of the liquid crystal in the first region of the liquid crystal layer is not equal to the refractive index of the grating layer, so as to control the opening of the grating in the orthographic projection area of the plane of the grating layer in the first region, so that the The light of the grating emerges from the open grating; wherein the diffraction efficiency of the light passing through the open grating changes with the refractive index of the liquid crystal;
  • the refractive index of the liquid crystal in the second region of the liquid crystal layer is adjusted to be equal to the refractive index of the grating layer to control the grating closing of the second region in the orthographic projection area of the plane where the grating layer is located, so that the grating is closed
  • the light is totally reflected on the surface of the closed grating close to the first substrate.
  • the adjusting the refractive index of the liquid crystal in the first region of the liquid crystal layer to be not equal to the refractive index of the grating layer includes:
  • the refractive index of the liquid crystal in the first area of the liquid crystal layer is controlled to change within a preset refractive index range, so that the diffraction efficiency of the light passing through the open grating is changed, so as to realize the display of different gray levels.
  • the embodiments of the present disclosure also provide a computer-readable storage medium, the computer-readable storage medium stores executable instructions, and when the executable instructions are executed by a processor, it can implement any of the above The driving method of the display panel described above.
  • Figure 1 is a schematic diagram of a light source structure in an LCD display panel
  • FIG. 2 is a graph showing the relationship between the number of pixels in the LCD display panel shown in FIG. 1 and the light extraction energy;
  • FIG. 3 is a schematic structural diagram of a display panel provided by an embodiment of the disclosure.
  • FIG. 4 is a schematic structural diagram of another display panel provided by an embodiment of the disclosure.
  • FIG. 5 is a graph showing the relationship between the refractive index of a liquid crystal layer and the light transmittance of the grating layer in the display panel provided by an embodiment of the disclosure
  • FIG. 6 is a schematic structural diagram of an optical coupling device in a display panel provided by an embodiment of the disclosure.
  • FIG. 7 is a schematic structural diagram of a radial grating in a display panel provided by an embodiment of the disclosure.
  • Fig. 8 is a grating structure in the K1 direction of the regional cells in the radial grating shown in Fig. 7;
  • FIG. 9 is a flowchart of a method for driving a display panel according to an embodiment of the disclosure.
  • FIG. 10 is a flowchart of another method for driving a display panel provided by an embodiment of the disclosure.
  • FIG. 1 shows a schematic diagram of a light source structure in an LCD display panel.
  • the left side of the lower substrate 210 of the LCD display panel 200 shown in FIG. 1 is provided with an edge-type backlight module 220.
  • the light source energy is 1, the diffracted light efficiency of bright pixels is 1%, that is, the light extraction ratio is 1%.
  • FIG. 1 the light energy of the Nth pixel from the left to the right of the display panel 200 is 0.99 N *0.01.
  • Figure 2 is a graph showing the relationship between the number of pixels in the LCD display panel shown in Figure 1 and the light extraction energy. It can be seen that the light loss of the edge light source set on a single side is a very serious problem. Because light travels in one direction in the substrate. Therefore, the LCD panel realizes the transparent display effect through the side-lit backlight, which is affected by the light-emitting mode of the side-lit backlight, and there are problems of uneven display brightness and low energy in the entire LCD panel.
  • FIG. 3 is a schematic structural diagram of a display panel provided by an embodiment of the disclosure.
  • the display panel 100 provided by the embodiment of the present disclosure may include: a first substrate 110 and a second substrate 120 arranged in a box, and a side of the first substrate 110 away from the second substrate 120 is provided with point light sources 130 arranged in an array.
  • a side of a substrate close to the second substrate 120 is provided with an optical coupling device 140 corresponding to the point light source 130, and a grating layer 150 is provided on the side of the optical coupling device 140 away from the first substrate 110.
  • the first substrate 110 and the second substrate 110 A liquid crystal layer 161 is provided between the two substrates 120.
  • the first substrate 110 and the second substrate 120 are aligned and filled with liquid crystal, namely The liquid crystal layer 161 in FIG. 3 can be obtained.
  • the light coupling device 140 is configured to reflect the light emitted by the corresponding point light source 130 and passing through the first substrate 110 to the light coupling device 140 into the first substrate 110.
  • the light in 110 is totally reflected and propagated in the first substrate 110 (in this case, the first substrate 110 can be regarded as a waveguide layer);
  • the opening or closing of the grating in the grating layer 150 can be controlled by adjusting the refractive index of the liquid crystal in the liquid crystal layer 161, so that the light in the first substrate 110 is removed from the grating opened in the grating layer 150.
  • the display panel 100 can be configured to control the opening or closing of the grating in the grating layer 150 by adjusting the refractive index of the liquid crystal, so that the light in the first substrate 110 is emitted from the opened grating in the grating layer 150.
  • the refractive index of the liquid crystal is different from the refractive index of the grating in the grating layer 150, the grating is turned on.
  • the display panel 100 can realize different gray scale displays by adjusting the difference between the refractive index of the liquid crystal and the refractive index of the grating in the grating layer 150.
  • the display panel 100 provided by the embodiments of the present disclosure is an LCD panel that can realize transparent display.
  • the light source of the display panel 100 does not use an edge-lit backlight module, but is on the lower substrate (ie, the first substrate) of the display panel 100. 110) on the lower surface (that is, the side of the first substrate 110 away from the second substrate 120) is provided with point light sources 130 arranged in an array. These point light sources 130 may be attached to the lower surface of the first substrate 110.
  • the upper surface of a substrate (that is, the side of the first substrate 110 close to the second substrate 120) is provided with light coupling devices 140 arranged in one-to-one correspondence with the aforementioned point light sources 130.
  • the point light sources 130 and the light coupling devices 140 can be viewed It is the backlight module of the display panel 100.
  • the light emitted by the point light source 130 may be divergent, and the divergence angle of the light is about ⁇ 60 degrees (°).
  • the light emitted by these point light sources 130 passes through the first substrate 110 and irradiates the light coupling device 140 corresponding to one-to-one.
  • the rays of these angles can be coupled into the first substrate 110 at an angle greater than (or equal to) the total reflection angle of the first substrate 110, so that the rays of light propagate in the first substrate 110 in a total reflection manner.
  • the light propagating through total reflection in a substrate 110 is regarded as a waveguide backlight of the display panel 100.
  • the point light source 130 is arranged on the side of the first substrate 110 away from the second substrate 120, and the light coupling device 140 is arranged on the side of the first substrate 110 close to the second substrate 120.
  • the light sources 130 and the light coupling devices 140 are arranged in an array form and have a one-to-one correspondence.
  • the light source devices (ie, the point light sources 130 and the light coupling devices 140) in the display panel 100 are arranged at a large distance.
  • the light source device is formed by using the above-mentioned point light source 130 combined with the light coupling device 140.
  • the light coupling device 140 can expand the divergence angle of a common single point light source 130, that is, from about ⁇ 60° In the entire waveguide, therefore, the number of point light sources 130 required can be reduced, thereby reducing power consumption and achieving a transparent display; and due to the arrayed arrangement, the uniformity and total brightness of the backlight are compared to edge-lit backlight models.
  • the group's program has been greatly improved. That is to say, using the light source device in the embodiment of the present disclosure (that is, including the point light source 130 and the light coupling device 140) to replace the backlight module in the ordinary LCD panel, the backlight module can be made into a transparent form, that is, the edge type is not used.
  • the backlight module can achieve the transparent display effect of the LCD panel, and compared with the LCD panel of the direct backlight module, the number of point light sources 130 can be reduced to a large extent, which is beneficial to reduce power consumption and material cost.
  • the waveguide backlight that is, the light propagating through total reflection in the first substrate 110
  • the light coupling device 140 into the first substrate 110 has a considerable Light intensity and visible area can provide a light source basis for high-brightness transparent display panels.
  • the optical coupling devices 140 are arranged on the upper surface of the first substrate 110 and arranged in an array. Since the optical coupling devices 140 are convex structures on the first substrate 110, in order to ensure that light rays reach the grating layer 150 to maintain total reflection propagation, In addition to the light coupling device 140 provided between the first substrate 110 and the grating layer 150, other regions (111 in FIG. 3) can be filled with a material with the same refractive index as that of the first substrate 110, so as to ensure that the light is in the first substrate 110. A substrate 110 and a region 111 propagate in a straight line. At this time, the waveguide layer of the waveguide backlight is the first substrate 110 and the region 111.
  • the point light source 130 and the light coupling device 140 are used as a backlight module to guide light into the first substrate 110 for total reflection and propagation.
  • the light emitting structure of the display panel 100 includes a grating layer 150 and liquid crystal Layer 161, where the grating layer 150 can be a light-extracting grating.
  • the liquid crystal layer 161 determines the opening and closing of the light-extracting grating.
  • the opening or closing of the grating layer 150 can be controlled by adjusting the refractive index of the liquid crystal layer 161.
  • controlling the refractive index of the liquid crystal layer 161 may be to control the refractive index of the liquid crystal in the first region 161a of the liquid crystal layer 161 to be different from the refractive index of the liquid crystal in the second region 161b.
  • the grating in the grating layer 150 is also divided The opening and closing of the area and the opening and closing of the grating are related to the refractive index of the liquid crystal at the corresponding position.
  • the first area 161a has an orthographic projection area on the plane where the grating layer 150 is located, and the opening or closing of the grating in the orthographic projection area is determined by the refractive index of the liquid crystal in the first area 161a.
  • the opening or closing of the grating in the orthographic projection area can be controlled.
  • the grating in the orthographic projection area is opened, the light is taken out and emitted from the position of the first area 161a.
  • the first area 161a where light is emitted is represented by low-density black dot filling
  • the grating in FIG. 3 is closed
  • the second area 161b where no light is emitted is represented by high-density black dot filling.
  • the light-emitting method of the grating can be used to realize directional display, which can make the display panel 100 provided by the embodiment of the present disclosure be applied to projection, near-eye display, and augmented reality (Augmented Reality, referred to as AR) and virtual Reality (Virtual Reality, referred to as VR) and other technical fields.
  • AR Augmented Reality
  • VR Virtual Reality
  • the display panel 100 provided by the embodiment of the present disclosure includes a first substrate 110 and a second substrate 120 arranged in a box.
  • the first substrate 110 is provided with an array of point light sources 130 on a side away from the second substrate 120.
  • the first substrate The side of 110 close to the second substrate 120 is provided with an optical coupling device 140 corresponding to the point light source 130, and the side of the optical coupling device 140 away from the first substrate 110 is provided with a grating layer 150.
  • the first substrate 110 and the second substrate A liquid crystal layer 161 is arranged between 120, and the light coupling device 140 provided in a one-to-one correspondence with the point light source 130 reflects the light emitted by the corresponding point light source 130 and passing through the first substrate 110 to reach the light coupling device 140 Into the first substrate 110, so that the light is totally reflected and propagated in the waveguide layer.
  • the refractive index of the liquid crystal layer 161 is adjustable, the refractive index of the liquid crystal in the liquid crystal layer 161 can be adjusted to control the grating layer 150 The opening or closing of the grating makes the light in the first substrate 110 emerge from the opened grating in the grating layer 150.
  • the display panel 100 provided by the embodiments of the present disclosure adopts a combination of a point light source 130 and a light coupling device 140 as a light source device, which can couple light with a certain divergence angle emitted by the point light source 130 into the first substrate 110, thereby expanding to The entire waveguide forms a waveguide backlight, and the point light sources 130 and the light coupling devices 140 are arranged in an array.
  • the grating layer 150 and the liquid crystal layer 161 are used as the light-emitting structure, and the pixelized light extraction method of the liquid crystal layer 161 is beneficial to reduce the pixel size of the display panel 100 Therefore, the pixel density of the display panel 100 (Pixels Per Inch, PPI for short) is greatly increased.
  • the light-emitting mode of the grating can be used to achieve directional display, that is, the display panel 100 provided by the embodiment of the present disclosure can be applied to projection , Near-eye display, and AR and VR technology fields.
  • FIG. 4 is a schematic structural diagram of another display panel provided by an embodiment of the disclosure.
  • the display panel 100 of the embodiment of the present disclosure may further include: a first electrode layer 162 disposed between the light coupling device 140 and the grating layer 150, and a first electrode layer 162 disposed on the liquid crystal layer 161
  • the second electrode layer 163 on the side close to the second substrate 120. It can be seen from FIG. 4 that the second electrode layer 163 and the first electrode layer 162 are respectively provided on the upper and lower sides of the liquid crystal layer 161.
  • a voltage can be applied to the first electrode layer 162 and the second electrode layer 163 through a processing device connected to the first electrode layer 162 and the second electrode layer 163, thereby controlling the refractive index of the liquid crystal in the liquid crystal layer 161 That is, the first electrode layer 162 and the second electrode layer 163 are set to be applied with a voltage, thereby controlling the refractive index of the liquid crystal in the liquid crystal layer 161.
  • the structure of the liquid crystal layer 161 and its upper and lower electrode layers in the embodiment of the present disclosure is shown in FIG. 4, the first electrode layer 162 is the lower electrode of the liquid crystal layer 161, and the second electrode layer 163 is the upper electrode of the liquid crystal layer 161.
  • the processing device passes The upper and lower electrodes of the liquid crystal layer 161 are controlled to drive the refractive index of the liquid crystal in the liquid crystal layer 161 to change, and to ensure that the refractive index of the liquid crystal matches the upper and lower substrates, so that the display effect of the liquid crystal layer 161 will not be affected.
  • the liquid crystal layer 161 is a key factor for realizing display, and controlling the change of the refractive index of the liquid crystal layer 161 can realize the brightness control of the pixels in the display panel 100.
  • the structure of the first electrode layer 162 and the second electrode layer 163 may be provided to control the liquid crystal layer 161 when the first electrode layer 162 and the second electrode layer 163 are used to apply a voltage to the liquid crystal layer 161.
  • the refractive index of the inner liquid crystal exhibits a pixelated distribution, as shown in the first area 161a and the second area 161b in FIG. 3 and FIG. 4, and only a part of the first area 161a and the second area 161b are shown in FIG. 3 and FIG.
  • both the first electrode layer 162 and the second electrode layer 163 may include a plurality of pixel electrodes, and the pixel electrodes in the first electrode layer 162 and the second electrode layer 163 form an upper and lower pixel electrode pair.
  • the first electrode layer 162 may be a common electrode layer
  • the second electrode layer 163 includes a plurality of pixel electrodes.
  • a reference voltage is applied to the first electrode layer 162 to The pixel electrodes in the second electrode layer 163 are applied with different voltages to realize the pixelized distribution of the refractive index of the liquid crystal.
  • the grating structure in the grating layer 150 may be regarded as a pixel grating corresponding to the pixels of the display panel on a one-to-one basis.
  • the pixel grating in the grating layer 150 may be a unified grating structure or may be an independent grating structure.
  • a certain pixel of the display panel has an orthographic projection area on the plane where the grating layer 150 is located.
  • the grating in the orthographic projection area is regarded as the pixel grating corresponding to the pixel. Therefore, the refractive index of the liquid crystal in the liquid crystal layer 161 is controlled.
  • An implementation method can be:
  • the display panel 100 can control the refractive index of the liquid crystal in the first area 161a of the liquid crystal layer 161 to be not equal to the refractive index of the grating layer 150, so that the grating in the first area 161a in the orthographic projection area of the plane where the grating layer 150 is located is turned on to reach The light with the opened grating is emitted from the opened grating; referring to FIG. 4, the first area 161a in this case may correspond to one or more pixels in the display panel 100;
  • the display panel 100 can control the refractive index of the liquid crystal in the second area 161b of the liquid crystal layer 161 to be equal to the refractive index of the grating layer 150, so that the grating in the second area 161b in the orthographic projection area of the plane where the grating layer 150 is located is closed to reach the The light of the closed grating is totally reflected on the surface of the closed grating close to the first substrate 110; referring to FIG. 4, the second area 161b in this case may correspond to one or more pixels in the display panel 100.
  • the size of the pixels of the display panel 100 can be made smaller.
  • the pixel size of the display panel 100 can be 5 to 50 times the grating period in the grating layer 150, and usually several grating periods (a few microns) can be used as the pixel pitch of the display panel 100.
  • the grating period is usually in the order of hundreds of nanometers (nm), such as 300nm to 800nm, and the use of gratings for diffraction requires multiple grating periods. Usually 5 to 10 grating periods can be used to meet the diffraction requirements.
  • the pixel period is about 1.5 microns (um) to 4um.
  • the number of periods is not fixed, and is related to factors such as incident light and grating material; for example, if the pixel size is about 40um, the grating period is 1um or less That is to say, there can be 40 or more grating periods in a pixel, and it can meet the requirement of "the grating deflects light to a specific angle to emit light"; when the directivity of the display is not high, you can use less
  • the number of grating periods (such as the 5 grating periods in the above example) is used to obtain a larger range of light output angles to achieve a larger viewing angle display, and the upper limit number of grating periods can be calculated according to the size of the display panel and PPI (such as In the above example, 40 or more grating periods).
  • the pixel size of the display panel 100 can be reduced, thereby greatly improving the PPI of the display panel 100.
  • the optical coupling device 140 is, for example, a grating structure, that is, the optical coupling device 140 is a convex structure on the first substrate 110, and a flat layer 170 may be provided between the optical coupling device 140 and the first electrode layer 162 to fill the optical coupling device 140 The convex part to ensure the stability of the structure.
  • the light coupled into the first substrate 110 and propagated by total reflection takes the first substrate 110, the flat layer 170, and the first electrode layer 162 as the waveguide layer for light transmission, that is, the first substrate 110,
  • the flat layer 170 and the first electrode layer 162 may both be made of materials with higher refractive index to ensure that the light is totally reflected and propagated in the above-mentioned waveguide layer before entering the liquid crystal layer 161.
  • the display panel 100 can cooperate with the low refractive index grating layer 150, the second electrode layer 163 and the second substrate 120 to ensure that the light from the light source can be locked in the waveguide layer in the dark state pixels to prevent light leakage; The light will not be totally reflected on the surface of the second electrode layer 163 and the second substrate 120 to ensure the effective light emission of the bright pixels.
  • the refractive index of the first substrate 110, the flat layer 170, and the first electrode layer 162 are all 1.7, and the refractive index of the grating layer 150 is 1.5.
  • the interface of the waveguide layer ie, the first electrode layer
  • the interface between 162 and grating layer 150 can be regarded as two layers of uniform media.
  • the second region 161b corresponds to The pixel is in the dark state; when the refractive index of the liquid crystal in the first region 161a is controlled to be 1.7, a periodic refractive index change is formed with the corresponding grating layer 150, the grating in the corresponding region is turned on, and the light is diffracted here and out of the waveguide Layer, the pixel corresponding to the first area 161b is in a bright state.
  • the refractive index of the liquid crystal in the liquid crystal layer 161 may be controlled not to be equal to the refractive index of the grating layer 150 to achieve bright display. In this manner, the display panel 100 can control the refractive index of the liquid crystal in the first region 161a to change within a preset refractive index range, so that the diffraction efficiency of the light passing through the open grating changes, so as to achieve different grayscale displays.
  • FIG. 5 is a graph showing the relationship between the refractive index of the liquid crystal layer and the light transmittance of the grating layer in the display panel provided by an embodiment of the present disclosure.
  • the refractive index of the liquid crystal layer 161 is controlled to change within a preset refractive index range (for example, 1.52 ⁇ 1.7), and the light transmittance curve shown in FIG. 5 is obtained. Since the graph shown in Figure 5 is obtained through multiple discrete points, the simulated graph may have errors due to the selection of discrete points, but it can be seen that the obvious trend is: the refractive index of the liquid crystal layer 161 is between 1.58 and 1.58.
  • the light transmittance of the grating layer 150 is significantly improved, and the refractive index of the liquid crystal layer 161 can be changed between 1.58 and 1.7 to achieve different grayscale displays. That is, the degree of difference between the refractive index of the liquid crystal in the first region of the liquid crystal layer and the refractive index of the grating layer is adjusted to achieve different gray scale changes. The greater the difference between the refractive index of the liquid crystal and the refractive index of the grating, the emitted light The higher the intensity, but it is not ruled out that as the difference increases, the intensity of the emitted light has similar periodic fluctuations.
  • the light transmittance of light passing through the open grating in the embodiment of the present disclosure refers to the diffraction efficiency of the light passing through the open grating or the light intensity coupled out.
  • the point light source 130 may be a light emitting diode (Light Emitting Diode, referred to as LED for short), or may be a micro LED (Micro LED) with a smaller volume.
  • LED Light Emitting Diode
  • Micro LED Micro LED
  • the embodiment of the present disclosure does not limit the device type of the point light source 130, as long as it can achieve a divergence angle of about ⁇ 60°, has a small volume and can be attached to the light source device provided on the lower surface of the first substrate 110, it can be used as the present The point light source 130 in the embodiment is disclosed.
  • the light coupling device 140 may adopt a radial grating or a holographic grating structure.
  • FIG. 6 is a schematic structural diagram of an optical coupling device in a display panel provided by an embodiment of the present disclosure.
  • FIG. 6 is a top view of the optical coupling device 140, and the optical coupling device 140 in FIG. 6 is a radial grating
  • FIG. 7 is An embodiment of the present disclosure provides a schematic structural diagram of a radial grating in a display panel.
  • FIG. 7 illustrates the overall structure of the radial grating 140a and the partial enlarged structure of the radial grating 140a.
  • the radial grating 140a in the embodiment of the present disclosure includes a plurality of ring-shaped wire grids 141a arranged as concentric circles, and the grating period of the radial grating 140a is along the radius of the ring-shaped wire grid 141a from close to the center of the circle to a position far away from the center of the circle. Gradually become bigger. It can be seen that the radial grating 140a is radially symmetric, that is, the grating period corresponding to the same radius r is the same, and the radial grating is a special grating whose period p changes along the radius r, and the grating vector k radiates outward along the center of the circle. . As shown in FIG.
  • the period of the radial grating 140a increases along its radius r from P1 close to the center of the circle to P3 far from the center of the circle.
  • the radial grating 140a has a circular ring shape as a whole (as shown in Figure 7).
  • the radial grating can be divided into multiple regional cells, such as P1 to P3 in Figure 7, each regional cell can be It should be as small as possible, so that the radial grating can be closer to the ring.
  • Figure 7 shows the regional cells P1 to P3 in different grating directions, for example, the regional cells P1 to P3 in the directions K1 and K2, but within the same radius r
  • the grating period is the same.
  • the area 11 shown in Fig. 7 (the area with the light gray background in Fig. 7) is rotated counterclockwise to a certain angle with the area 21 (the background color in Fig. 7 is dark gray). Area) completely overlap, so the design can only consider the radial grating in one grating direction. Take the K1 direction as an example for illustration. As shown in Fig. 8, the regional cells in the radial grating shown in Fig. 7 are The grating structure in the K1 direction. It can be seen that the grating periods of the pixels P1, P2, and P3 in different regions are gradual.
  • the radial grating is similar to the ordinary diffraction grating, except that the grating lines are radially symmetrical, the interval of the grating lines is variable in the entire plane (referring to the plane where the radial grating is located), and the base is an even-order aspherical shape .
  • the light tracing to the grating is refracted according to the following formula:
  • p is the period of the radial grating
  • ⁇ 1 is the angle of the incident angle
  • ⁇ 2 is the angle of the exit angle
  • m is the diffraction order
  • is the wavelength of the light
  • n 1 is the light passed by the grating layer.
  • n 2 is the refractive index of the medium (ie, the liquid crystal layer) after the light is extracted by the grating layer.
  • the incident angle ⁇ 1 of the point light source 130 reaching different positions of the radial grating is different.
  • each The grating period of each area (P1, P1 and P3) should be related to the light incident angle ⁇ 1 at that position. Since the incident angle ⁇ 1 is gradual, the grating period p is also gradual, that is, P1, P2 and P3 are gradual . Since there is no perfect continuous gradient grating, each area of the micro-element has a certain width. For example, the period of P1 is fixed, but the incident angle ⁇ 1 changes continuously, so the exit angle ⁇ 2 will also change continuously. The margins can be considered in the period of each regional cell, so that all the exit angles ⁇ 2 in each regional cell meet the condition of total reflection.
  • Ai is the expansion coefficient
  • d is the normalized polar coordinate
  • d is defined by the following formula:
  • r is the polar coordinate on the above surface, and R is the normalized radius of the radial grating surface.
  • the grating parameters applicable to the embodiments of the present disclosure can be designed, and the light emitted by the point light source 130 and reaching the radial grating is coupled into the waveguide layer at a total reflection angle, thereby covering the entire first Within a substrate 110.
  • the radial grating is designed to diffract all light at an angle greater than the critical angle of total reflection 62°, and the point light source 130 can be emitted. The light is coupled into the first substrate 110.
  • the point light sources 130 and radial gratings arranged in an array can greatly improve the uniformity and overall light intensity of the light in the first substrate 110, and can ensure that the distance between the point light sources 130 is not too small, thereby maintaining the whole
  • the transparency of the light source device that is, including the point light source 130 and the radial grating.
  • Different regions of the radial grating have different grating structures, that is, the periods of the different regions of the cells in each radial grating in FIG. 7 are different.
  • processing can be divided into regions, for example, interference exposure, laser direct writing or nanoimprinting techniques can be used to make different grating patterns in different regions; or a pre-designed master can be used for nanoimprinting.
  • Radial gratings are made at one time by area. The position of the radial grating and the point light source 130 can be kept matched during processing.
  • the embodiment of the present disclosure does not limit the optical coupling device 140 to only a holographic grating or a radial grating, as long as it is a grating structure or other structure that can realize total reflection propagation after coupling light emitted by a point light source into the waveguide layer.
  • the optical coupling device 140 in the embodiment of the present disclosure does not limit the optical coupling device 140 to only a holographic grating or a radial grating, as long as it is a grating structure or other structure that can realize total reflection propagation after coupling light emitted by a point light source into the waveguide layer.
  • FIG. 8 can be regarded as a schematic structural diagram of a holographic grating.
  • the above-mentioned radial grating uses a method of region division to discretize the required optical device into a plurality of ordinary grating regions to achieve a relatively continuous effect.
  • the structure of the holographic grating may be a grating with a gradually changing period.
  • the holographic grating in an embodiment of the present disclosure may include a plurality of strip-shaped wire gratings arranged in parallel, and the grating period of the holographic grating gradually changes along the first direction.
  • the first direction is perpendicular to the bar-shaped wire grid.
  • the holographic grating is the smallest, and the grating period P3 in the right area is the largest.
  • the first direction in Fig. 8 is from left to right.
  • the holographic grating The grating lines are similar to the strips of ordinary gratings.
  • the holographic grating's periodic gradual change is similar to the radial grating shown in Figure 7 in one direction.
  • the total reflection of light is also similar to the radial grating.
  • the role of the grating is to deflect light.
  • the above-mentioned radial grating and holographic grating deflect light into the first substrate 110, while the grating layer 150 in the embodiment of the present disclosure deflects the light in the waveguide layer, that is, from the waveguide layer.
  • the basic principle of deflection into and out of the waveguide layer is the same, which is based on the above formula (1).
  • the light deflection effect of the grating is produced by the periodic change of the material.
  • the refractive index of the grating layer 150 is n1
  • the refractive index of the liquid crystal layer 161 is n2
  • the periodically changing n1 and n2 achieve the diffraction effect, where the diffraction angle is The period is determined, and the diffraction efficiency is determined by n1 and n2. Since n1 is fixed after the grating layer is fabricated, the diffraction efficiency can be adjusted by controlling the change of the refractive index n2 of the liquid crystal layer 161, that is, by controlling the change of the refractive index n2 of the liquid crystal layer 161 to achieve different Grayscale display effect.
  • a direct-lit point light source 130 is used as a backlight.
  • the density of the point light source 130 may not be large, and an arrayed light source arrangement (ie, array Arranged point light sources 130 and light coupling devices 140), so that the propagation of light in the substrate has enough directions, and the attenuation direction tends to be uniform.
  • the light coupling device 140 can couple the light emitted by the point light sources 130 into the waveguide layer.
  • the amplitude increases the light-emitting range of a single point light source 130, which can effectively avoid the problem of uneven energy in the lower substrate caused by the edge-type backlight light extraction method, and greatly improve the brightness of the display.
  • the distance between different point light sources 130 is sufficiently large to ensure the transparency of the first substrate, and will not affect the transparent display function of the overall display panel 100.
  • the liquid crystal layer 161 and the controllable grating layer 150 are used as the light extraction structure, and the electrode layer is used to control the pixelized distribution of the liquid crystal refractive index in the liquid crystal layer 161, thereby controlling the on and off states of the pixel grating.
  • the grating When the refractive index is equal to the refractive index of the liquid crystal, the grating is closed, and the light is totally reflected and propagated in the waveguide layer, showing a dark state of light; when the refractive index of the grating is different from the refractive index of the liquid crystal (that is, not equal), the grating is turned on and the light is Light is diffracted as a bright state.
  • the use of grating to emit light can realize the directivity of the display, improve the PPI of the display panel, and can be applied to projection, near-eye display, etc., with a transparent light source device, it can also be used as an AR display, compared with general AR equipment. Great portability.
  • an embodiment of the present disclosure further provides a display device, which includes the display panel 100 provided in any of the foregoing embodiments of the present disclosure.
  • the display device may be an LCD display device for implementing transparent display.
  • the display device provided by the embodiments of the present disclosure can also avoid the problems of uneven display brightness and low energy in the transparent LCD display device using the edge-lit backlight module.
  • the PPI of the display device can be improved, and the directional display can be realized by using the grating to emit light, so that the display device can be applied to technical fields such as projection, near-eye display, and AR and VR.
  • an embodiment of the present disclosure also provides a method for driving a display panel, which is executed by the display panel provided by any of the foregoing embodiments of the present disclosure, as shown in FIG. 9
  • An embodiment of the present disclosure provides a flow chart of a method for driving a display panel. The driving method includes the following steps:
  • S320 Adjust the refractive index of the liquid crystal layer in the display panel to control the opening or closing of the grating in the grating layer, so that the light in the first substrate emerges from the opened grating in the grating layer.
  • the driving method provided by the embodiments of the present disclosure is executed by the display panel 100 in any one of the embodiments shown in FIGS. 3 to 4, and FIGS. 6 to 8.
  • the structure of the display panel 100, and the devices and film layers therein are implemented The function of has been described in detail in the above embodiment, so it will not be repeated here.
  • the point light source of the display panel is first turned on, and the point light source is driven after the point light source is turned on, that is, the point light source emits light, and the light coupling device couples the light into the first substrate to propagate through total reflection.
  • the driving method realizes the transparent display effect of the display panel; subsequently, the opening or closing of the grating layer is controlled by adjusting the refractive index of the liquid crystal layer in the display panel.
  • the grating layer is opened, the waveguide backlight in the first substrate can be taken out and removed from the first substrate.
  • the second substrate emits light.
  • the grating layer is closed, the waveguide backlight in the first substrate still reflects and propagates completely, showing a dark state where no light is emitted.
  • the light emitted by the point light source can be divergent, for example, the divergence angle is about ⁇ 60°.
  • the light emitted by these point light sources penetrates the first substrate and irradiates the light coupling device corresponding to one-to-one.
  • the light is coupled into the first substrate at an angle greater than (or equal to) the total reflection angle of the first substrate so that the light propagates in the first substrate in a total reflection manner.
  • the light propagated by the total reflection in the first substrate can be regarded as a display panel Waveguide backlight.
  • the point light source is arranged on the side of the first substrate away from the second substrate
  • the light coupling device is arranged on the side of the first substrate close to the second substrate
  • the point light source and the light coupling device are both arrays
  • the arrangement is in a one-to-one relationship, and the light source devices (that is, point light sources and light coupling devices) in the display panel are arranged at a large distance.
  • the light source device formed by using the above-mentioned point light source combined with the light coupling device structure.
  • the light coupling device can expand the divergence angle of a common single point light source, that is, from ⁇ 60° to the entire waveguide, so , Can reduce the number of point light sources required, thereby reducing power consumption and achieving transparent display; and due to the arrayed arrangement, the uniformity and total brightness of the backlight can be greater than the display solution of the edge-type backlight module The increase in amplitude. That is to say, by using the light source device (including point light source and light coupling device) in the embodiment of the present disclosure to replace the backlight module in the ordinary LCD panel, the backlight module can be made into a transparent form, that is, no edge-type backlight module is used.
  • the LCD panel can achieve the transparent display effect of the LCD panel, and compared with the LCD panel of the direct backlight module, the number of point light sources can be reduced to a large extent, which is beneficial to reduce power consumption and material costs; in addition, based on the above points
  • the light source device used in conjunction with the light source and the optical coupling device, the waveguide backlight (that is, the light propagating through the total reflection on the first substrate) coupled by the optical coupling device into the first substrate, has considerable light intensity and visible area, and can be high brightness
  • the transparent display panel provides the light source foundation.
  • controlling the refractive index of the liquid crystal layer 161 may not control the entire liquid crystal layer 161 to have the same refractive index.
  • the refractive index of the liquid crystal in the first region 161a in the liquid crystal layer 161 can be controlled with respect to the second region.
  • the refractive indices of the liquid crystals in 162b are different.
  • the opening and closing of the grating layer 150 may not be uniformly opened or closed for the entire grating layer 150, and the gratings in the grating layer can be opened and closed in different regions.
  • the opening and closing of the grating is related to the refractive index of the liquid crystal at the corresponding position.
  • the first area 161a has an orthographic projection area on the plane where the grating layer 150 is located, and the opening or closing of the grating in the orthographic projection area is determined by the liquid crystal in the first area 161a.
  • the opening or closing of the grating in the orthographic projection area can be controlled.
  • the grating in the orthographic projection area is opened, the light is taken out and removed from the first area. The position of the area 161a is emitted.
  • the light-emitting mode of the grating can be used to realize directional display, which can make the display panel in the embodiment of the present disclosure be applied to the technical fields such as projection, near-eye display, and AR and VR.
  • the light coupling device corresponding to the point light source reflects the light that is emitted by the point light source and reaches the light coupling device through the first substrate Into the first substrate, so that the light is totally reflected and propagated in the first substrate.
  • the opening or closing of the grating in the grating layer is controlled, so that the light in the first substrate can escape from the grating layer. Emit from the opened grating.
  • the driving method of the display panel provided by the present disclosure has the same beneficial effect as any one of the above-mentioned embodiments shown in FIGS. 3 to 8, that is, a combination of a point light source and an optical coupling device is used as
  • the light source device can couple the light with a certain divergence angle emitted by the point light source into the first substrate, thereby expanding the entire waveguide to form a waveguide backlight, and the point light source and the light coupling device are arranged in an array, which not only reduces the display panel
  • the number of point light sources required can reduce power consumption and achieve transparent display, and the uniformity and total amount of the backlight have been greatly improved; the directional display can be achieved by driving the liquid crystal layer to achieve the light output of the grating.
  • the display panel provided by the disclosed embodiment can be applied to the technical fields such as projection, near-eye display, and AR and VR.
  • the display panel used to perform the driving method may further include a first electrode layer and a second electrode layer, wherein the first electrode layer is disposed on the light Between the coupling device and the grating layer, the second electrode layer is arranged on the side of the liquid crystal layer close to the second substrate.
  • the second electrode layer is the upper electrode of the liquid crystal layer
  • the first electrode layer is The bottom electrode of the liquid crystal layer.
  • An implementation manner of adjusting the refractive index of the liquid crystal layer in the display panel in the embodiment of the present disclosure may include:
  • Voltage is applied to the first electrode layer and the second electrode layer respectively, so as to adjust the refractive index in the liquid crystal layer in the display panel.
  • the display panel controls the upper and lower electrodes of the liquid crystal layer (ie, the second electrode layer and the first electrode layer) to drive the change in the refractive index of the liquid crystal layer, and ensure that the refractive index of the liquid crystal layer is consistent with the upper and lower substrates. Matching, so that the display effect of the liquid crystal layer will not be affected.
  • the liquid crystal layer is a key factor for realizing display, and controlling the change of the refractive index of the liquid crystal layer can realize the brightness control of the pixels in the display panel.
  • FIG. 10 is a flowchart of another method for driving a display panel provided by an embodiment of the disclosure.
  • the structure of the first electrode layer and the second electrode layer can be provided.
  • the refractive index of the liquid crystal in the liquid crystal layer can be controlled to be a pixel. ⁇ distribution.
  • the grating structure in the grating layer 150 can be regarded as a pixel grating corresponding to the pixels of the display panel on a one-to-one basis.
  • the pixel grating in the grating layer may be a unified grating structure, or may be an independent grating structure.
  • a certain pixel of the display panel has an orthographic projection area on the plane where the grating layer 150 is located, and the grating in the orthographic projection area is regarded as the pixel grating corresponding to the pixel. Therefore, based on the process shown in FIG. 9
  • the foregoing adjustment of the refractive index of the liquid crystal layer in the display panel to control the opening or closing of the grating in the grating layer may include at least one of the following:
  • step S321 and step S322 can be executed individually or in combination. When executed in combination, the execution order is not limited.
  • the device types of the point light source and the optical coupling device, the flat layer provided between the optical coupling device and the first electrode layer, the waveguide layer (including the first substrate, the flat layer and the The first electrode layer) has a higher refractive index, the grating layer, the second electrode layer, and the second substrate have lower refractive index and other features are the same as the foregoing embodiments of the present disclosure, and a method for realizing bright state and dark state display
  • the and beneficial effects are also the same as the foregoing embodiments of the present disclosure, so they will not be repeated here.
  • the driving method of the embodiment of the present disclosure is implemented based on the pixelized light extraction design of the liquid crystal layer, and the size of the pixel can be made small, and several grating periods (several microns) can be used as the pixel size of the display panel, that is, the display panel can be reduced Pixel size, thereby greatly improving the PPI of the display panel.
  • the embodiments of the present disclosure also provide a computer-readable storage medium, the computer-readable storage medium stores executable instructions, and when the executable instructions are executed by a processor, the display panel provided by any of the foregoing embodiments of the present disclosure can be driven.
  • the driving method of the display panel can be used to drive the display panel provided by the above-mentioned embodiments of the present disclosure for display, so as to realize the transparent display effect of the display panel.
  • the method for driving the display panel to display by executing executable instructions is basically the same as the method for driving the display panel provided in the above-mentioned embodiments of the present disclosure, and will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种显示面板(100)、显示装置、显示面板的驱动方法。显示面板包括:对盒设置的第一基板(110)和第二基板(120),第一基板(110)远离第二基板(120)的一侧设置有阵列排布的点光源(130),第一基板(110)接近第二基板(120)的一侧设置有与点光源(130)一一对应的光耦合器件(140),光耦合器件(140)远离第一基板(110)的一侧设置有光栅层(150),第一基板(110)与第二基板(120)之间设置有液晶层(161);光耦合器件(140),设置为将对应的点光源(130)发出的、且穿过第一基板(110)到达光耦合器件(140)的光线反射到第一基板(110)内。

Description

显示面板、显示装置、显示面板的驱动方法及存储介质
本申请要求于2019年4月2日提交中国专利局、申请号为201910262587.6、发明名称为“一种显示面板、显示装置,以及显示面板的驱动方法”的中国专利申请的优先权,其内容应理解为通过引用的方式并入本申请中。
技术领域
本公开实施例涉及但不限于光电子技术领域,尤指一种显示面板、显示装置、显示面板的驱动方法以及计算机可读存储介质。
背景技术
随着显示技术的发展以及显示器件的广泛应用,透明显示器件以其广泛的应用场景成为显示类产品中一种主流产品类型。为了实现透明显示效果,普通液晶显示(Liquid Crystal Display,简称为:LCD)器件通常采用侧入式的背光模组,即光源从下基板的侧面进入,并通过背光模组实现显示效果。
LCD面板通过侧入式背光实现透明显示效果的方案,在整个LCD面板中存在显示亮度不均匀,以及能量低下的问题,尤其对于大尺寸LCD面板的应用场景,显示中的亮度不均和能量低下的问题更为明显。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开实施例提供了一种显示面板、显示装置、显示面板的驱动方法以及计算机可读存储介质。
第一方面,本公开实施例提供了一种显示面板,包括:对盒设置的第一基板和第二基板,所述第一基板远离所述第二基板的一侧设置有阵列排布的点光源,所述第一基板接近所述第二基板的一侧设置有与所述点光源一一对 应的光耦合器件,所述光耦合器件远离所述第一基板的一侧设置有光栅层,所述第一基板与所述第二基板之间设置有液晶层;
所述光耦合器件,设置为将对应的所述点光源发出的、且穿过所述第一基板到达所述光耦合器件的光线反射到所述第一基板内。
在一示例性实施例中,如上所述的显示面板中,所述显示面板设置为通过调整液晶的折射率来控制光栅层中光栅的开启或关闭,从而使得第一基板中的光线从光栅层中开启的光栅中出射。
在一示例性实施例中,如上所述的显示面板中,所述显示面板设置为通过调整液晶的折射率与所述光栅层中光栅的折射率的差异,以实现不同灰度的显示。
在一示例性实施例中,如上所述的显示面板中,还包括:设置于所述光耦合器件与所述光栅层之间的第一电极层,以及设置于所述液晶层接近所述第二基板一侧的第二电极层,所述第一电极层和第二电极层设置为被施加电压,从而控制液晶层中液晶的折射率。
在一示例性实施例中,如上所述的显示面板中,还包括:设置于所述光耦合器件与所述第一电极层之间的平坦层;
所述第一基板、所述平坦层和所述第一电极层的折射率相等,且大于所述光栅层的折射率。
在一示例性实施例中,如上所述的显示面板中,所述第二基板和所述第二电极层的折射率相等,且所述光栅层、所述第二基板和所述第二电极层的折射率都小于所述第一基板的折射率。
在一示例性实施例中,如上所述的显示面板中,所述点光源包括发光二极管或微型发光二极管。
在一示例性实施例中,如上所述的显示面板中,所述光耦合器件包括径向光栅或全息光栅。
在一示例性实施例中,如上所述的显示面板中,所述光耦合器件包括径向光栅,所述径向光栅包括多个设置为同心圆的环状线栅,且所述径向光栅的光栅周期沿所述环状线栅的半径,从接近圆心到远离圆心的位置逐渐变大。
在一示例性实施例中,如上所述的显示面板中,所述光耦合器件包括全息光栅,所述全息光栅包括平行设置的多个条状线栅,且所述全息光栅的光栅周期沿第一方向逐渐变大,且所述第一方向与所述条状线栅垂直。
在一示例性实施例中,如上所述的显示面板中,所述显示面板的像素大小为所述光栅层中光栅周期的5到50倍。
第二方面,本公开实施例还提供了一种显示装置,包括:如上述任一项所述的显示面板。
第三方面,本公开实施例还提供了一种显示面板的驱动方法,所述显示面板为上述任一项所述的显示面板,所述驱动方法包括:
开启所述显示面板中的点光源,使得与所述点光源对应的光耦合器件将所述点光源发出的、且穿过所述第一基板到达所述光耦合器件的光线反射到第一基板内;
调整所述显示面板中液晶层的折射率,以控制所述光栅层中光栅的开启或关闭,使得所述第一基板中的光线从所述光栅层中开启的光栅中出射。
在一示例性实施例中,如上所述的显示面板的驱动方法中,所述调整所述显示面板中液晶层的折射率,以控制所述光栅层中光栅的开启或关闭,包括以下至少一项:
调整所述液晶层中第一区域内液晶的折射率不等于所述光栅层的折射率,以控制所述第一区域在所述光栅层所在平面的正投影区域内的光栅开启,使得到达开启光栅的光线从所述开启光栅中出射;其中,穿过所述开启光栅的光线的衍射效率随液晶的折射率发生变化;
调整所述液晶层中第二区域内液晶的折射率等于所述光栅层的折射率,以控制所述第二区域在所述光栅层所在平面的正投影区域内的光栅关闭,使得到达关闭光栅的光线在所述关闭光栅接近所述第一基板一侧的表面发生全反射。
在一示例性实施例中,如上所述的显示面板的驱动方法中,所述调整所述液晶层中第一区域内液晶的折射率不等于所述光栅层的折射率,包括:
控制所述液晶层中第一区域内液晶的折射率在预置折射率范围内变化, 使得穿过所述开启光栅的光线的衍射效率发生变化,以实现不同灰度的显示。
第四方面,本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有可执行指令,所述可执行指令被处理器执行时可以实现如上述任一项所述的显示面板的驱动方法。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
图1为一种LCD显示面板中光源结构的示意图;
图2为图1所示LCD显示面板中像素个数与取光能量的关系曲线图;
图3为本公开实施例提供的一种显示面板的结构示意图;
图4为本公开实施例提供的另一种显示面板的结构示意图;
图5为本公开实施例提供的显示面板中一种液晶层折射率与光栅层透光率的关系曲线图;
图6为本公开实施例提供的显示面板中一种光耦合器件的结构示意图;
图7为本公开实施例提供的显示面板中一种径向光栅的结构示意图;
图8为图7所示径向光栅中的区域微元在K1方向上的光栅结构;
图9为本公开实施例提供的一种显示面板的驱动方法的流程图;
图10为本公开实施例提供的另一种显示面板的驱动方法的流程图。
具体实施方式
下文中将结合附图对本公开的实施例进行详细说明。在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
对于普通LCD显示面板,为了实现透明显示,往往用到边缘入光的方式,即采用侧入式的背光模组,这就会导致取光强度随着取光次数的增加而减弱。为此,可以针对不同取光位置设计不同的取光口大小,但这对于加工来说增加了一定的成本,且不利于器件的大尺寸化。图1所示为一种LCD显示面板中一种光源结构的示意图。图1所示LCD显示面板200的下基板210的左侧 面设置有侧入式背光模组220,假设光源能量为1,亮态像素的衍射出光效率为1%,即取光比例为1%,那么从第一次出光到第N次出光的亮度会递减,如图1所示,显示面板200从左到右第N个像素的光能量为0.99 N*0.01。图2所示为图1所示LCD显示面板中像素个数与取光能量的关系曲线图,可以看出,设置于单侧的侧入式光源的光损耗是一个很严重的问题,这是因为光在基板中是单向传播的。因此,LCD面板通过侧入式背光实现透明显示效果的方案,受侧入式背光源出光方式的影响,在整个LCD面板中存在显示亮度不均匀,以及能量低下的问题。
本公开提供的以下实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图3为本公开实施例提供的一种显示面板的结构示意图。本公开实施例提供的显示面板100可以包括:对盒设置的第一基板110和第二基板120,第一基板110远离第二基板120的一侧设置有阵列排布的点光源130,该第一基板接近第二基板120的一侧设置有与点光源130一一对应的光耦合器件140,该光耦合器件140远离第一基板110的一侧设置有光栅层150,第一基板110与第二基板120之间设置有液晶层161。从制作工艺角度来说,在第一基板110上形成上述结构(包括点光源130、光耦合器件140和光栅层150)后,且第一基板110与第二基板120对盒后填充液晶,即可得到图3中的液晶层161。
本公开实施例的上述结构中,光耦合器件140,设置为将对应的点光源130发出的、且穿过第一基板110到达光耦合器件140的光线反射到第一基板110内,第一基板110内的光线在第一基板110中全反射传播(此时第一基板110可视为波导层);
本公开实施例的显示面板100,可以通过调整液晶层161中液晶的折射率来控制光栅层150中光栅的开启或关闭,从而使得第一基板110中的光线从光栅层150中开启的光栅中出射。即显示面板100可设置为通过调整液晶的折射率来控制光栅层150中光栅的开启或关闭,从而使得第一基板110中的光线从光栅层150中开启的光栅中出射。当液晶的折射率与光栅层150中光栅的折射率不同时光栅开启,光栅开启时,第一基板110中的光线从光栅 层150中开启的光栅中出射。该显示面板100可以通过调整液晶的折射率与所述光栅层150中光栅的折射率的差异,可以实现不同灰度的显示。
本公开实施例提供的显示面板100,为一种可以实现透明显示的LCD面板,该显示面板100的光源未采用侧入式背光模组,而是在显示面板100的下基板(即第一基板110)的下表面(即该第一基板110远离第二基板120的一侧)设置阵列排布的点光源130,这些点光源130可以是贴附到第一基板110的下表面的,该第一基板的上表面(即该第一基板110接近第二基板120的一侧)则设置有与上述点光源130一一对应排布的光耦合器件140,该点光源130和光耦合器件140可以视为显示面板100的背光模组。
点光源130发出的光线可以为发散性的,光线的发散角约为±60度(°),这些点光源130发出的光线穿过第一基板110照射到与之一一对应的光耦合器件140上,可以将这些角度的光线以大于(或等于)第一基板110全反射角的角度耦合进入第一基板110,从而使得光线在第一基板110中以全反射方式进行传播,可以将该第一基板110中全反射传播的光线视为显示面板100的波导背光。由于本公开实施例提供的显示面板100中,点光源130设置于第一基板110远离第二基板120的一侧,光耦合器件140设置于第一基板110接近第二基板120的一侧,点光源130与光耦合器件140均为阵列形式排布,且为一一对应的关系,显示面板100中的光源器件(即点光源130和光耦合器件140)的排布间距大。采用上述点光源130结合光耦合器件140的结构形成的光源器件,该光源器件的结构设计中,光耦合器件140可以将普通单颗点光源130的发散角扩大,即从约±60°扩大到整个波导内,因此,可以降低所需的点光源130的数量,从而降低功耗并实现透明显示;并且由于阵列化的排布方式,背光的均一性和总亮度相比于侧入式背光模组的方案有大幅度的提升。也就是说,采用本公开实施例中的光源器件(即包括点光源130和光耦合器件140)替换普通LCD面板中的背光模组,可以将背光模组做成透明形态,即不采用侧入式背光模组就可以实现LCD面板的透明显示效果,并且与直下式背光模组的LCD面板相比,可以在很大程度上减少点光源130的数量,有利于降低功耗和物料成本。另外,基于上述点光源130和光耦合器件140配合使用的光源器件,由光耦合器件140耦合进入第一基板110中 的波导背光(即在第一基板110中全反射传播的光线)具有相当大的光强度和可视区域,可以为高亮度透明显示面板提供光源基础。
光耦合器件140设置于第一基板110的上表面、呈阵列式排布,由于光耦合器件140为第一基板110上的凸起结构,为了保证光线到达光栅层150之前保持全反射传播,在第一基板110与光栅层150之间除了设置有上述光耦合器件140之外,其它区域(图3中的111)可采用折射率与第一基板110相同的材料填充,这样可以保证光线在第一基板110和区域111中直线传播,此时,波导背光的波导层为第一基板110和区域111。
上述说明本公开实施例提供的显示面板100中,点光源130和光耦合器件140作为背光模组,将光线导入第一基板110内全反射传播,该显示面板100的出光结构包括光栅层150和液晶层161,其中,光栅层150可以为取光光栅,液晶层161决定取光光栅的开启和关闭,可以通过调整该液晶层161的折射率来控制光栅层150的开启或关闭,当光栅层150开启时,可以将第一基板110中的波导背光取出并从第二基板120侧出射,当光栅层150关闭时,第一基板110中的波导背光仍然全反射传播,呈现不出光的暗态。
本公开实施例中控制液晶层161的折射率可以是控制液晶层161中第一区域161a内液晶的折射率与第二区域161b内液晶的折射率不同,相应地,光栅层150中光栅也分区域开启和关闭,光栅的开启和关闭与相应位置的液晶折射率相关。例如,第一区域161a在光栅层150所在平面具有正投影区域,该正投影区域内的光栅的开启或关闭由该第一区域161a内液晶的折射率决定,当调整该第一区域161a内液晶的折射率时,可以控制该正投影区域内光栅的开启或关闭,当该正投影区域内的光栅开启时,光线被取出且从第一区域161a的位置出射。图3中出射光线的第一区域161a以低密度黑点填充表示,图3中光栅为关闭状态,未出射光线的第二区域161b以高密度黑点填充表示。另外,本公开实施例中利用光栅出光的方式可以实现指向性显示,可以使得本公开实施例提供的显示面板100应用于投影、近眼显示,以及增强现实(Augmented Reality,简称为:AR)和虚拟现实(Virtual Reality,简称为VR)等技术领域中。
本公开实施例提供的显示面板100,包括对盒设置的第一基板110和第 二基板120,第一基板110远离第二基板120的一侧设置有阵列排布的点光源130,第一基板110接近第二基板120的一侧设置有与点光源130一一对应的光耦合器件140,光耦合器件140远离第一基板110的一侧设置有光栅层150,第一基板110与第二基板120之间设置有液晶层161,其中,通过与点光源130一一对应设置的光耦合器件140,将对应点光源130发出的、且穿过第一基板110到达该光耦合器件140的光线反射到第一基板110内,从而使得光线在波导层中全反射传播,另外,由于液晶层161的折射率具有可调节的性能,可以通过调节液晶层161中液晶的折射率以控制光栅层150中光栅的开启或关闭,使得第一基板110中的光线从光栅层150中开启的光栅中出射。本公开实施例提供的显示面板100,一方面,采用点光源130和光耦合器件140的组合作为光源器件,可以将点光源130发出的具有一定发散角的光线耦合进入第一基板110,从而扩大到整个波导形成波导背光,并且点光源130和光耦合器件140为阵列化排布的,这样,不仅降低了显示面板100中所需点光源130的数量,从而降低功耗和实现透明显示,而且使得背光的均匀性和总量度得到了大幅度的提高;另一方面,采用光栅层150和液晶层161作为出光结构,通过液晶层161的像素化取光方式,有利于降低显示面板100的像素尺寸,从而大幅度提高显示面板100的像素密度(Pixels Per Inch,简称为:PPI);再者,利用光栅出光的方式可以实现指向性显示,即本公开实施例提供的显示面板100可以应用于投影、近眼显示,以及AR和VR等技术领域中。
在一示例性实施例中,图4为本公开实施例提供的另一种显示面板的结构示意图。在图3所示显示面板100的结构基础上,本公开实施例的显示面板100还可以包括:设置于光耦合器件140与光栅层150之间的第一电极层162,以及设置于液晶层161接近第二基板120一侧的第二电极层163。从图4可以看出,液晶层161的上下两侧分别设置有第二电极层163和第一电极层162。
在本公开实施例中可以通过与第一电极层162和第二电极层163相连接的处理器件对第一电极层162和第二电极层163施加电压,从而控制液晶层161中液晶的折射率,即第一电极层162和第二电极层163设置为被施加电 压,从而控制液晶层161中液晶的折射率。
本公开实施例中液晶层161及其上下电极层的结构如图4所示,第一电极层162为液晶层161的下电极,第二电极层163为液晶层161的上电极,处理器件通过控制液晶层161的上下电极来驱动液晶层161中液晶的折射率发生变化,并且保证液晶的折射率与上下基板匹配,这样就不会影响液晶层161的显示效果。液晶层161为实现显示的关键因素,控制液晶层161的折射率的变化可以实现显示面板100中像素的亮暗控制。
在一示例性实施例中,可以通过设置第一电极层162和第二电极层163的结构,在采用第一电极层162和第二电极层163对液晶层161施加电压时,控制液晶层161内液晶的折射率呈像素化分布,如图3和图4中第一区域161a和第二区域161b,图3和图4中仅示出部分第一区域161a和第二区域161b。例如,第一电极层162和第二电极层163中都可以包括多个像素电极,且第一电极层162和第二电极层163中的像素电极形成上下像素电极对,通过对这些上下电极对加电,实现液晶折射率的像素化分布;再例如,第一电极层162可以为一公共电极层,第二电极层163中包括多个像素电极,对第一电极层162施加基准电压,对第二电极层163中的像素电极施加不同的电压,实现液晶折射率的像素化分布。
在一示例性实施例中,可以将光栅层150中的光栅结构视为与显示面板的像素一一对应的像素光栅。光栅层150中的像素光栅可以为统一的光栅结构,或者可以为独立的光栅结构。本公开实施例中,显示面板的某个像素在光栅层150所在平面具有正投影区域,该正投影区域内的光栅视为该像素对应的像素光栅,因此,控制液晶层161中液晶折射率的一种实现方法可以为:
显示面板100可以通过控制液晶层161中第一区域161a内液晶的折射率不等于光栅层150的折射率,使得该第一区域161a在光栅层150所在平面的正投影区域内的光栅开启,到达该开启光栅的光线从该开启光栅中出射;参照图4,该情况中的第一区域161a可以对应于显示面板100中的一个或多个像素;
显示面板100可以通过控制液晶层161中第二区域161b内液晶的折射率等于光栅层150的折射率,使得该第二区域161b在光栅层150所在平面的正 投影区域内的光栅关闭,到达该关闭光栅的光线在关闭光栅接近第一基板110一侧的表面发生全反射;参照图4,该情况中的第二区域161b可以对应于显示面板100中的一个或多个像素。
在本公开实施例中,基于上述液晶层161的像素化取光设计,可以将显示面板100的像素的尺寸做小。例如,显示面板100的像素大小可以为光栅层150中光栅周期的5到50倍,通常可以采用几个光栅周期(几微米)作为显示面板100的像素大小(pitch)。例如,光栅周期通常为百纳米(nm)级别,例如为300nm至800nm,而利用光栅进行衍射需要多个光栅周期,通常采用5至10个光栅周期就可以满足衍射要求,以5个光栅周期为例,像素周期就是1.5微米(um)至4um左右,当然这个周期数目不是固定的,与入射光情况以及光栅材料等因素相关;再例如,若像素尺寸大约为40um,光栅周期为1um或更小,也就是说一个像素内可以有40个甚至更多个光栅周期,并且可以满足“光栅偏转光线至特定角度出光”这样的需求;当对于显示的指向性要求不高时,可以用较少的光栅周期数(如采用上述示例中的5个光栅周期)来获得较大的出光角度范围,来实现更大视角的显示,而光栅周期的上限数量可以根据显示面板的尺寸以及PPI来计算(如上述示例中为40个或者更多个光栅周期)。基于本公开实施例的出光结构(液晶层161和光栅层150)以及显示面板100的像素大小与光栅周期的数量关系,可以降低显示面板100的像素尺寸,从而大幅度提高显示面板100的PPI。
光耦合器件140例如为光栅结构,即光耦合器件140为第一基板110上的凸起结构,在该光耦合器件140与第一电极层162之间可设置平坦层170以填充光耦合器件140的凸起部分,保证结构的稳定性。本公开实施例的显示面板100中,耦合进入第一基板110内全反射传播的光线以第一基板110、平坦层170和第一电极层162作为光传输的波导层,即第一基板110、平坦层170和第一电极层162可以均采用折射率较高的材料,以保证光线进入液晶层161之前在上述波导层中全反射传播。另外,该显示面板100可以配合低折射率的光栅层150、第二电极层163和第二基板120,保证暗态像素下可以将光源的光线锁在波导层中,防止漏光;并满足出射的光线不会在第二电极层163和第二基板120的表面发生全反射,保证亮态像素的有效出光。
举例来说,第一基板110、平坦层170和第一电极层162的折射率均为1.7,光栅层150的折射率为1.5,当控制第二区域161b内液晶的折射率等于光栅层150的折射率(n=1.5),对应区域内的光栅关闭,并且第二区域161b内液晶的折射率小于第一基板110的折射率(n=1.7)时,波导层的界面(即第一电极层162与光栅层150的界面)可以看作是两层均匀介质,此时,光线以大于全反射临界角(62°)的光线被锁在波导层中全反射传播,该第二区域161b对应的像素为暗态;当控制第一区域161a内液晶的折射率为1.7时,与对应的光栅层150形成周期性折射率变化,对应区域内的光栅开启,光线在此处发生衍射,传出波导层,该第一区域161b对应的像素为亮态。
由于显示面板的灰度通常为0至255,在显示中通常要求实现不同灰度的显示效果。在一示例性实施例中,可以通过控制液晶层161中液晶的折射率不等于光栅层150的折射率,以实现亮态显示。该方式中,显示面板100可以通过控制第一区域161a内液晶的折射率在预置折射率范围内变化,使得穿过开启光栅的光线的衍射效率发生变化,以实现不同灰度的显示。
图5所示为本公开实施例提供的显示面板中一种液晶层折射率与光栅层透光率的关系曲线图,假设波导层的折射率为1.7,光栅层150的折射率为1.52,可以控制液晶层161的折射率在预置折射率范围(例如1.52~1.7)内变化,得到图5所示透光率曲线。由于图5所示曲线图是通过多个离散点得到的,模拟出的曲线图因离散点的选取可能会有误差,但可以看出明显的趋势为:在液晶层161的折射率在1.58到1.62之间,光栅层150的透光率有明显的提升,液晶层161的折射率可以在1.58到1.7之间变化,以实现不同灰度的显示。即调整所述液晶层中第一区域内液晶的折射率与所述光栅层的的折射率的差异程度,实现不同的灰阶变化,液晶的折射率与光栅的折射率差异越大,出射光强度越高,但不排除出现随着差异增大,出射光强度出现类似周期波动的情况。本公开实施例所述光线穿过所述开启光栅的透光率是指穿过所述开启光栅的光线的衍射效率或耦合出的光强度。
在一示例性实施例中,点光源130可以选用发光二极管(Light Emitting Diode,简称为:LED),或者可以选用体积更小的微型发光二极管(Micro LED)。
本公开实施例不限制点光源130的器件类型,只要是可以实现发散角约为±60°,且体积较小,可以贴合设置于第一基板110的下表面的光源器件,都可以作为本公开实施例中的点光源130。
在一示例性实施例中,光耦合器件140可以采用径向光栅或全息光栅的光栅结构。
以采用径向光栅作为本公开实施例中光耦合器件140的光栅结构为例,说明该径向光栅的实施方式。图6所示为本公开实施例提供的显示面板中一种光耦合器件的结构示意图,图6为光耦合器件140的俯视图,且图6中的光耦合器件140为径向光栅,图7为本公开实施例提供的显示面板中一种径向光栅的结构示意图,图7中示意出了径向光栅140a的整体结构和该径向光栅140a的局部放大结构。本公开实施例中的径向光栅140a包括多个设置为同心圆的环状线栅141a,且该径向光栅140a的光栅周期沿环状线栅141a的半径,从接近圆心到远离圆心的位置逐渐变大。可以看出,径向光栅140a是径向对称的,即相同半径r对应的光栅周期是相同的,且径向光栅为周期p沿半径r变化的特殊光栅,光栅矢量k沿着圆心向外辐射。如图7所示,径向光栅140a的周期从接近圆心的P1到远离圆心的P3沿其半径r变大。径向光栅140a整体上呈圆环形(如图7所示),在加工时可将径向光栅划分为多个区域微元,如图7中的P1到P3,每个区域微元可以做得尽量小,这样径向光栅可以更接近于圆环,图7示意出不同光栅方向上的区域微元P1至P3,例如方向K1和K2上的区域微元P1至P3,但相同半径r内的光栅周期相同。由于每个区域微元的结构是旋转对称的,图7所示区域11(图7中底色为浅灰色的区域)逆时针旋转一定角度后与区域21(图7中底色为深灰色的区域)完全重叠,所以设计时可以只考虑径向光栅在一个光栅方向上的光栅,以K1方向为例予以说明,如图8所示,为图7所示径向光栅中的区域微元在K1方向上的光栅结构。可以看出,不同区域微元P1、P2、P3的光栅周期是渐变的。
径向光栅与普通的衍射光栅相似,除了光栅线是径向对称的,光栅线的间隔在整个平面(指径向光栅所在的平面内)上是可变的,并且基底是偶次非球面形状。对于一个平面光栅,光线追迹到光栅后按照以下公式折射:
Figure PCTCN2020075365-appb-000001
上述(1)式中,p为径向光栅的周期,θ 1为入射角的角度,θ 2为出射角的角度,m为衍射级次,λ为光的波长,n 1为光线被光栅层取出前所在介质(即波导层)的折射率,n 2为光线被光栅层取出后所在介质(即液晶层)的折射率。如图8所示,点光源130到达径向光栅不同位置的入射角θ 1是不同的,根据上述(1)式,为了保证出射角θ 2满足第一基板110的全反射条件,计算得到每个区域(P1、P1和P3)的光栅周期应该与该位置的光线入射角θ 1有关,由于入射角θ 1是渐变的,所以光栅周期p也是渐变的,即P1、P2和P3为渐变的。由于不存在完美连续的渐变光栅,每个区域微元都存在一定宽度,如P1的周期是固定的,但是入射角θ 1是连续变化的,因此出射角θ 2也会连续变化,在设计每个区域微元的周期时可以考虑富余量,使得每个区域微元内所有的出射角θ 2都满足全反射条件。
另外,径向光栅所在平面上允许周期p在面上根据下列等式变化:
p(d)=A 0+A 1d 1+A 2d -1+A 3d 2+A 4d -2+…;           (2)
上述(2)式中,A i为展开系数,d为归一化的极坐标,d由下式定义:
Figure PCTCN2020075365-appb-000002
上述(3)式中,r为上述面上的极坐标,R为径向光栅面的归一化半径。
根据上述的径向光栅的表示方法,可以设计出适用本公开实施例的光栅参数,将点光源130发出且到达该径向光栅的光线以全反射角度耦合进入波导层中,从而布满整个第一基板110内。同样以第一基板110的折射率等于1.7,第二基板120折射率等于1.5为例说明,设计径向光栅将所有光线以大于全反射临界角62°的角度衍射,就可以将点光源130发出的光线耦合入第一基板110中。利用阵列化的排布的点光源130和径向光栅可以使得第一基板110中光的均一性和总体光强度大幅提升,并能够保证点光源130之间的间距不会太小,进而保持整体光源器件(即包括点光源130和径向光栅)的透明度。
径向光栅的不同区域微元内具有不同光栅结构,即上述图7中每个径向 光栅内不同区域微元的周期不同。在制作过程中,可以分区域加工,例如可以利用干涉曝光、激光直写或纳米压印等技术在不同区域做出不同的光栅图案;或者可以采用预先设计好的母版进行纳米压印,不分区域一次性制作出径向光栅。在加工时可以保持径向光栅与点光源130的位置匹配。另外,本公开实施例不限制光耦合器件140仅为全息光栅或径向光栅,只要是可以实现将点光源发出的光线耦合进入波导层后实现全反射传播的光栅结构或其它结构,都可以作为本公开实施例中的光耦合器件140。
在一示例性实施例中,图8所示可以视为一种全息光栅的结构示意图。上述径向光栅是利用区域划分的方法,将所需的光学器件离散成多个普通光栅的区域微元来实现相对连续的效果。全息光栅的结构可以为周期渐变的光栅,如图8所示,本公开实施例中的全息光栅可以包括平行设置的多个条状线栅,且该全息光栅的光栅周期沿第一方向逐渐变大,且该第一方向与条状线栅垂直,图8中左边区域的光栅周期P1最小,右边区域的光栅周期P3最大,图8中的第一方向为从左到右的方向,全息光栅的光栅线类似普通光栅的条状,全息光栅的周期渐变方式与图7所示径向光栅在一个方向上的线栅结构类似,对光线的全反射作用也与径向光栅类似。
光栅的作用是偏转光线,上述径向光栅和全息光栅是将光线偏转进入第一基板110中,而本公开实施例中的光栅层150则是将波导层中的光线偏转出来,即从波导层中取出光线以实现显示,偏转进入波导层或从波导层中取出遵循的基本原理是相同的,即以上述公式(1)为依据。光栅的光线偏转效果是由材料的周期性变化产生的,假设光栅层150的折射率为n1,液晶层161的折射率为n2,周期性变化的n1和n2实现了衍射效果,其中衍射角度由周期决定,衍射效率由n1和n2决定,由于光栅层制作完成后n1固定,控制液晶层161折射率n2的变化,就可以调节衍射效率,即通过控制液晶层161的折射率n2变化,实现不同灰度的显示效果。
本公开实施例提供的显示面板100,一方面,利用直下式点光源130作为背光,为了保证显示面板100的透明度,点光源130的密度可以不大,并且采用阵列化的光源排布(即阵列排布的点光源130和光耦合器件140),使得光在基板中的传播具有足够多的方向,衰减方向趋于均匀,光耦合器件 140可以将点光源130发出的光线耦合入波导层中,大幅度的提升了单个点光源130的发光范围,可以有效地避免侧入式背光取光方式导致的下基板内能量不均匀问题,并且极大提高了显示的亮度。并且不同点光源130之间间距足够大,能够保证第一基板的透明度,不会影响整体显示面板100的透明显示功能。另一方面,以液晶层161和可控光栅层150作为取光结构,利用电极层控制液晶层161中液晶折射率的像素化分布,从而控制像素光栅的开启和关闭两种状态,当光栅折射率与液晶折射率相等时,光栅关闭,光在波导层内全反射传播,呈现不出光的暗态;当光栅折射率与液晶折射率相差(即不相等)时,光栅开启,光在界面被衍射出光,作为亮态。再一方面,利用光栅出光的方式可以实现显示的指向性,提升显示面板的PPI,可以应用于投影、近眼显示等,配合透明的光源器件还可以作为AR显示器,与一般的AR设备相比具有极大的轻便性。
基于本公开上述实施例提供的显示面板100,本公开实施例还提供一种显示装置,该显示装置包括本公开上述任一实施例提供的显示面板100。该显示装置可以为用于实现透明显示的LCD显示装置。基于上述实施例提供的显示面板100的技术效果,本公开实施例提供的显示装置同样可以避免出现采用侧入式背光模组的透明LCD显示装置中存在的显示亮度不均匀和能量低下的问题。另外,可以提高显示装置的PPI,并且利用光栅出光的方式可以实现指向性显示,使得显示装置可以应用于投影、近眼显示,以及AR和VR等技术领域中。
基于本公开上述实施例提供的显示面板100,本公开实施例还提供一种显示面板的驱动方法,该显示面板的驱动方法由本公开上述任一实施例提供的显示面板执行,图9所示为本公开实施例提供的一种显示面板的驱动方法的流程图,该驱动方法包括如下步骤:
S310,开启显示面板中的点光源,使得与点光源对应的光耦合器件将该点光源发出的、且穿过第一基板到达该光耦合器件的光线反射到第一基板内;
S320,调整显示面板中液晶层的折射率,以控制光栅层中光栅的开启或 关闭,使得第一基板中的光线从光栅层中开启的光栅中出射。
本公开实施例提供的驱动方法由上述图3到图4,以及图6到图8所示任一实施例中的显示面板100执行,该显示面板100的结构,以及其中器件和膜层所实现的功能在上述实施例中已经详细描述,故在此不再赘述。本公开实施例中驱动方法中,首先开启显示面板的点光源,在点光源点亮后进行驱动,即点光源发出光线,并由光耦合器件将光线耦合进入第一基板中全反射传播,通过驱动方法实现显示面板的透明显示效果;随后,通过调整显示面板中液晶层的折射率来控制光栅层的开启或关闭,当光栅层开启时,可以将第一基板中的波导背光取出并从第二基板侧出射,当光栅层关闭时,第一基板中的波导背光仍然全反射传播,呈现不出光的暗态。
点光源发出的光线可以为发散性的,例如发散角约为±60°,这些点光源发出的光线穿过第一基板照射到与之一一对应的光耦合器件上,可以将这些角度的光线以大于(或等于)第一基板全反射角的角度耦合进入第一基板从而使得光线在第一基板中以全反射方式进行传播,可以将该第一基板中全反射传播的光线视为显示面板的波导背光。由于本公开实施例的显示面板中,点光源设置于第一基板远离第二基板的一侧,光耦合器件设置于第一基板接近第二基板的一侧,点光源与光耦合器件均为阵列形式排布,且为一一对应的关系,显示面板中的光源器件(即点光源和光耦合器件)的排布间距大。采用上述点光源结合光耦合器件的结构形成的光源器件,该光源器件的结构设计中,光耦合器件可以将普通单颗点光源的发散角扩大,即从±60°扩大到整个波导内,因此,可以降低所需的点光源的数量,从而降低功耗并实现透明显示;并且由于阵列化的排布方式,背光的均一性和总亮度相比于侧入式背光模组的显示方案能够大幅度的提升。也就是说,采用本公开实施例中的光源器件(即包括点光源和光耦合器件)替换普通LCD面板中的背光模组,可以将背光模组做成透明形态,即不采用侧入式背光模组就可以实现LCD面板的透明显示效果,并且与直下式背光模组的LCD面板相比,可以在很大程度上减少点光源的数量,有利于降低功耗和物料成本;另外,基于上述点光源和光耦合器件配合使用的光源器件,由光耦合器件耦合进入第一基板中的波导背光(即在第一基板全反射传播的光线)具有相当大的光强度和可视 区域,可以为高亮度透明显示面板提供光源基础。
本公开实施例中控制液晶层161的折射率可以不是控制整个液晶层161为相同的折射率,参照图3所示,可以控制液晶层161中第一区域161a内液晶的折射率与第二区域162b内液晶的折射率不同,相应地,光栅层150的开启和关闭可以不是整个光栅层150统一开启或统一关闭,光栅层中光栅可以分区域开启和关闭。光栅的开启和关闭与相应位置的液晶折射率相关,例如,第一区域161a在光栅层150所在平面具有正投影区域,该正投影区域内的光栅的开启或关闭由该第一区域161a内液晶的折射率决定,当调整该第一区域161a内液晶的折射率时,可以控制该正投影区域内光栅的开启或关闭,当该正投影区域内的光栅开启时,光线被取出且从第一区域161a的位置出射。另外,本公开实施例中利用光栅出光的方式可以实现指向性显示,可以使得本公开实施例中的显示面板应用于投影、近眼显示,以及AR和VR等技术领域中。
本公开实施例提供的显示面板的驱动方法,通过开启显示面板中的点光源,使得与点光源对应的光耦合器件将该点光源发出的、且穿过第一基板到达光耦合器件的光线反射到第一基板内,以使得光线在第一基板中全反射传播,另外,通过调整液晶层的折射率,以控制光栅层中光栅的开启或关闭,使得第一基板中的光线从光栅层中开启的光栅中出射。本公开提供的显示面板的驱动方法,基于上述实施例中显示面板的结构,具有与上述图3到图8所示任一实施例相同的有益效果,即,采用点光源和光耦合器件的组合作为光源器件,可以将点光源发出的具有一定发散角的光线耦合进入第一基板,从而扩大到整个波导形成波导背光,并且点光源和光耦合器件为阵列化排布,这样,不仅降低了显示面板中所需点光源的数量,从而降低功耗和实现透明显示,而且使得背光的均匀性和总量度得到了大幅度的提高;通过驱动液晶层达到光栅出光的方式可以实现指向性显示,即本公开实施例提供的显示面板可以应用于投影、近眼显示,以及AR和VR等技术领域中。
在一示例性实施例中,在本公开实施例提供的驱动方法中,用于执行该驱动方法的显示面板还可以包括第一电极层和第二电极层,其中,第一电极层设置于光耦合器件与光栅层之间,第二电极层设置于液晶层接近第二基板 的一侧,参考图4所示显示面板的结构,第二电极层为液晶层的上电极,第一电极层为液晶层的下电极。本公开实施例中调整显示面板中液晶层的折射率的一种实现方式,可以包括:
分别对第一电极层和第二电极层施加电压,从而调整显示面板中液晶层中的折射率。
在本公开实施例中,显示面板通过控制液晶层的上下电极(即第二电极层和第一电极层)用来驱动液晶层的折射率的发生变化,并且保证液晶层的折射率与上下基板匹配,这样就不会影响液晶层的显示效果。液晶层为实现显示的关键因素,控制液晶层的折射率的变化可以实现显示面板中像素的亮暗控制。
在一示例性实施例中,图10为本公开实施例提供的另一种显示面板的驱动方法的流程图。上述实施例中已经说明,可以通过设置第一电极层和第二电极层的结构,在采用第一电极层和第二电极层对液晶层施加电压时,控制液晶层内液晶的折射率呈像素化分布。另外,可以将光栅层150中的光栅结构视为与显示面板的像素一一对应的像素光栅。光栅层中的像素光栅可以为统一的光栅结构,或者可以为独立的光栅结构。本公开实施例中,显示面板的某个像素在光栅层150所在平面具有正投影区域,该正投影区域内的光栅视为该像素对应的像素光栅,因此,在图9所示流程的基础上,上述调整显示面板中液晶层的折射率,以控制光栅层中光栅的开启或关闭,即S320的实现方法,可以包括以下至少一项:
S321,调整液晶层中第一区域内液晶的折射率不等于光栅层的折射率,以控制该第一区域在光栅层所在平面的正投影区域内的光栅开启,使得到达开启光栅的光线从该开启光栅中出射;其中,穿过开启光栅的光线的衍射效率随液晶的折射率发生变化;
S322,调整液晶层中第二区域内液晶的折射率等于光栅层的折射率,以控制该第二区域在光栅层所在平面的正投影区域内的光栅关闭,使得到达关闭光栅的光线在该关闭光栅接近第一基板一侧的表面发生全反射。
上述步骤S321和步骤S322可以单独执行,或者可以组合执行,组合执行时,执行顺序不限。
本公开实施例的显示面板中的其它结构特征,例如,点光源和光耦合器件的器件类型,光耦合器件与第一电极层之间设置的平坦层,波导层(包括第一基板、平坦层和第一电极层)具有较高的折射率,光栅层、第二电极层和第二基板具有较低的折射率等特征均与本公开前述实施例相同,且实现亮态和暗态显示的方法和有益效果也与本公开前述实施例相同,故在此不再赘述。
本公开实施例的驱动方法是基于液晶层的像素化取光设计实现的,可以将像素的尺寸做小,可以采用几个光栅周期(几微米)作为显示面板的像素大小,即可以降低显示面板的像素尺寸,从而大幅度提高显示面板的PPI。
本公开实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有可执行指令,该可执行指令被处理器执行时可以实现本公开上述任一实施例提供的显示面板的驱动方法,该显示面板的驱动方法可以用于驱动本公开上述实施例提供的显示面板进行显示,从而实现显示面板的透明显示效果。通过执行可执行指令驱动显示面板进行显示的方法与本公开上述实施例提供的显示面板的驱动方法基本相同,在此不做赘述。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本公开的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (16)

  1. 一种显示面板,包括:对盒设置的第一基板和第二基板,所述第一基板远离所述第二基板的一侧设置有阵列排布的点光源,所述第一基板接近所述第二基板的一侧设置有与所述点光源一一对应的光耦合器件,所述光耦合器件远离所述第一基板的一侧设置有光栅层,所述第一基板与所述第二基板之间设置有液晶层;
    所述光耦合器件,设置为将对应的所述点光源发出的、且穿过所述第一基板到达所述光耦合器件的光线反射到所述第一基板内。
  2. 根据权利要求1所述的显示面板,其中,所述显示面板设置为通过调整液晶的折射率来控制光栅层中光栅的开启或关闭,从而使得第一基板中的光线从光栅层中开启的光栅中出射。
  3. 根据权利要求2所述的显示面板,其中,所述显示面板设置为通过调整液晶的折射率与所述光栅层中光栅的折射率的差异,以实现不同灰度的显示。
  4. 根据权利要求1或2所述的显示面板,还包括:设置于所述光耦合器件与所述光栅层之间的第一电极层,以及设置于所述液晶层接近所述第二基板一侧的第二电极层,所述第一电极层和第二电极层设置为被施加电压,从而控制液晶层中液晶的折射率。
  5. 根据权利要求4所述的显示面板,还包括:设置于所述光耦合器件与所述第一电极层之间的平坦层;
    所述第一基板、所述平坦层和所述第一电极层的折射率相等,且大于所述光栅层的折射率。
  6. 根据权利要求5所述的显示面板,其中,所述第二基板和所述第二电极层的折射率相等,且所述光栅层、所述第二基板和所述第二电极层的折射率都小于所述第一基板的折射率。
  7. 根据权利要求1~6中任一项所述的显示面板,其中,所述点光源包括发光二极管或微型发光二极管。
  8. 根据权利要求1~6中任一项所述的显示面板,其中,所述光耦合器件包括径向光栅或全息光栅。
  9. 根据权利要求8所述的显示面板,其中,所述光耦合器件包括径向光栅,所述径向光栅包括多个设置为同心圆的环状线栅,且所述径向光栅的光栅周期沿所述环状线栅的半径,从接近圆心到远离圆心的位置逐渐变大。
  10. 根据权利要求8所述的显示面板,其中,所述光耦合器件包括全息光栅,所述全息光栅包括平行设置的多个条状线栅,且所述全息光栅的光栅周期沿第一方向逐渐变大,且所述第一方向与所述条状线栅垂直。
  11. 根据权利要求1~6中任一项所述的显示面板,其中,所述显示面板的像素大小为所述光栅层中光栅周期的5到50倍。
  12. 一种显示装置,包括:如权利要求1~11中任一项所述的显示面板。
  13. 一种显示面板的驱动方法,所述显示面板为如权利要求1~11中任一项所述的显示面板,所述驱动方法包括:
    开启所述显示面板中的点光源,使得与所述点光源对应的光耦合器件将所述点光源发出的、且穿过所述第一基板到达所述光耦合器件的光线反射到第一基板内;
    调整所述显示面板中液晶层的折射率,以控制所述光栅层中光栅的开启或关闭,使得所述第一基板中的光线从所述光栅层中开启的光栅中出射。
  14. 根据权利要求13所述的显示面板的驱动方法,其中,所述调整所述显示面板中液晶层的折射率,以控制所述光栅层中光栅的开启或关闭,包括以下至少一项:
    调整所述液晶层中第一区域内液晶的折射率不等于所述光栅层的折射率,以控制所述第一区域在所述光栅层所在平面的正投影区域内的光栅开启,使得到达开启光栅的光线从所述开启光栅中出射;其中,穿过所述开启光栅的光线的衍射效率随液晶的折射率发生变化;
    调整所述液晶层中第二区域内液晶的折射率等于所述光栅层的折射率,以控制所述第二区域在所述光栅层所在平面的正投影区域内的光栅关闭,使得到达关闭光栅的光线在所述关闭光栅接近所述第一基板一侧的表面发生全 反射。
  15. 根据权利要求14所述的显示面板的驱动方法,其中,所述调整所述液晶层中第一区域内液晶的折射率不等于所述光栅层的折射率,包括:
    控制所述液晶层中第一区域内液晶的折射率在预置折射率范围内变化,使得穿过所述开启光栅的光线的衍射效率发生变化,以实现不同灰度的显示。
  16. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求13-15中任一项所述的方法。
PCT/CN2020/075365 2019-04-02 2020-02-14 显示面板、显示装置、显示面板的驱动方法及存储介质 WO2020199763A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/962,853 US11327360B2 (en) 2019-04-02 2020-02-14 Display panel, display apparatus, driving method of the display panel, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910262587.6A CN109856861B (zh) 2019-04-02 2019-04-02 一种显示面板、显示装置,以及显示面板的驱动方法
CN201910262587.6 2019-04-02

Publications (1)

Publication Number Publication Date
WO2020199763A1 true WO2020199763A1 (zh) 2020-10-08

Family

ID=66902966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075365 WO2020199763A1 (zh) 2019-04-02 2020-02-14 显示面板、显示装置、显示面板的驱动方法及存储介质

Country Status (3)

Country Link
US (1) US11327360B2 (zh)
CN (1) CN109856861B (zh)
WO (1) WO2020199763A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109856861B (zh) 2019-04-02 2021-04-16 京东方科技集团股份有限公司 一种显示面板、显示装置,以及显示面板的驱动方法
CN110764654B (zh) * 2019-10-31 2024-04-12 京东方科技集团股份有限公司 一种显示面板、书写显示装置及其显示方法
CN111308757B (zh) * 2020-02-28 2022-11-04 京东方科技集团股份有限公司 一种透明显示面板及显示装置

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010749A1 (ja) * 2008-07-22 2010-01-28 シャープ株式会社 バックライトユニットおよび液晶表示装置
WO2014081415A1 (en) * 2012-11-20 2014-05-30 Hewlett-Packard Development Company, Lp Directional waveguide-based pixel for use in a multiview display screen
CN106292049A (zh) * 2016-09-30 2017-01-04 京东方科技集团股份有限公司 显示面板和显示装置
CN106324897A (zh) * 2016-10-28 2017-01-11 京东方科技集团股份有限公司 显示面板和显示装置
CN107193070A (zh) * 2017-08-01 2017-09-22 京东方科技集团股份有限公司 一种光场调制层、背光结构及显示装置
CN107422532A (zh) * 2017-08-16 2017-12-01 京东方科技集团股份有限公司 一种透明显示面板、其制作方法及显示系统
CN107533255A (zh) * 2015-04-23 2018-01-02 镭亚股份有限公司 基于双光导光栅的背光以及使用该背光的电子显示器
CN107621729A (zh) * 2017-09-27 2018-01-23 京东方科技集团股份有限公司 背光模组及使用其的液晶显示器
CN108051915A (zh) * 2018-01-03 2018-05-18 京东方科技集团股份有限公司 显示面板和显示装置
CN108398830A (zh) * 2018-03-07 2018-08-14 京东方科技集团股份有限公司 一种背光模组及液晶显示装置
CN108646338A (zh) * 2018-07-02 2018-10-12 京东方科技集团股份有限公司 一种背光模组及显示装置
CN108717243A (zh) * 2018-05-29 2018-10-30 京东方科技集团股份有限公司 显示装置
CN109061948A (zh) * 2018-10-30 2018-12-21 京东方科技集团股份有限公司 光学基板和显示装置
CN109212834A (zh) * 2018-11-08 2019-01-15 京东方科技集团股份有限公司 一种显示面板、显示装置及驱动方法
CN109856861A (zh) * 2019-04-02 2019-06-07 京东方科技集团股份有限公司 一种显示面板、显示装置,以及显示面板的驱动方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107817629B (zh) * 2017-09-28 2020-06-02 京东方科技集团股份有限公司 一种液晶显示装置
KR102377175B1 (ko) * 2017-09-28 2022-03-21 엘지디스플레이 주식회사 백라이트 유닛 및 이를 포함한 액정표시장치
CN109343243B (zh) * 2018-11-16 2020-11-24 京东方科技集团股份有限公司 光调制装置、单通道光谱检测系统
CN109541850B (zh) * 2019-01-07 2021-10-29 京东方科技集团股份有限公司 显示装置及其驱动方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010749A1 (ja) * 2008-07-22 2010-01-28 シャープ株式会社 バックライトユニットおよび液晶表示装置
WO2014081415A1 (en) * 2012-11-20 2014-05-30 Hewlett-Packard Development Company, Lp Directional waveguide-based pixel for use in a multiview display screen
CN107533255A (zh) * 2015-04-23 2018-01-02 镭亚股份有限公司 基于双光导光栅的背光以及使用该背光的电子显示器
CN106292049A (zh) * 2016-09-30 2017-01-04 京东方科技集团股份有限公司 显示面板和显示装置
CN106324897A (zh) * 2016-10-28 2017-01-11 京东方科技集团股份有限公司 显示面板和显示装置
CN107193070A (zh) * 2017-08-01 2017-09-22 京东方科技集团股份有限公司 一种光场调制层、背光结构及显示装置
CN107422532A (zh) * 2017-08-16 2017-12-01 京东方科技集团股份有限公司 一种透明显示面板、其制作方法及显示系统
CN107621729A (zh) * 2017-09-27 2018-01-23 京东方科技集团股份有限公司 背光模组及使用其的液晶显示器
CN108051915A (zh) * 2018-01-03 2018-05-18 京东方科技集团股份有限公司 显示面板和显示装置
CN108398830A (zh) * 2018-03-07 2018-08-14 京东方科技集团股份有限公司 一种背光模组及液晶显示装置
CN108717243A (zh) * 2018-05-29 2018-10-30 京东方科技集团股份有限公司 显示装置
CN108646338A (zh) * 2018-07-02 2018-10-12 京东方科技集团股份有限公司 一种背光模组及显示装置
CN109061948A (zh) * 2018-10-30 2018-12-21 京东方科技集团股份有限公司 光学基板和显示装置
CN109212834A (zh) * 2018-11-08 2019-01-15 京东方科技集团股份有限公司 一种显示面板、显示装置及驱动方法
CN109856861A (zh) * 2019-04-02 2019-06-07 京东方科技集团股份有限公司 一种显示面板、显示装置,以及显示面板的驱动方法

Also Published As

Publication number Publication date
US20210382351A1 (en) 2021-12-09
CN109856861B (zh) 2021-04-16
US11327360B2 (en) 2022-05-10
CN109856861A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
WO2020199763A1 (zh) 显示面板、显示装置、显示面板的驱动方法及存储介质
WO2020233543A1 (zh) 光波导元件及其控制方法、显示装置及其显示方法
US10921633B2 (en) Display panel and display device
US20080084709A1 (en) Light Guide Plate and Back-Light Module Having Light Guide Plate
US10613266B2 (en) Backlight unit and display device including the same
WO2020253567A1 (zh) 透明显示基板及透明显示装置
CN108562965A (zh) 背光模组及显示装置
US10606144B2 (en) Display apparatus
US11860400B2 (en) Backlight component, method for manufacturing backlight component, and display device
CN112987388B (zh) 调光模组及其制作方法、背光组件、显示装置和调光方法
US9310546B2 (en) Backlight unit and display device having the same
US20220113591A1 (en) Diffusion plate and backlight module
US11226514B2 (en) Display panel and display device
TWM584524U (zh) 視角可切換顯示裝置
CN112445022B (zh) 一种液晶显示面板及显示装置
TW201314314A (zh) 導光板、面光源裝置及透過型圖像顯示裝置
WO2020062600A1 (zh) 偏光结构及显示装置
TW575759B (en) Brightness enhanced light guided panel and liquid crystal display device using the same
CN111665664B (zh) 柔性显示装置
CN109709723A (zh) 导光板、背光模组和显示面板
CN115097669B (zh) 一种显示装置及其工作方法
CN208848011U (zh) 一种背光源
US20240126000A1 (en) Frontlight module and display apparatus
US20220317359A1 (en) Light source module, method of manufacturing light source module, and display module
US20220350068A1 (en) Light source module and method for manufacturing the same, and display module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20781940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20781940

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC 04.02.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20781940

Country of ref document: EP

Kind code of ref document: A1