WO2020199631A1 - 一种用于光伏组件的选择性反射器及其制作方法 - Google Patents

一种用于光伏组件的选择性反射器及其制作方法 Download PDF

Info

Publication number
WO2020199631A1
WO2020199631A1 PCT/CN2019/122603 CN2019122603W WO2020199631A1 WO 2020199631 A1 WO2020199631 A1 WO 2020199631A1 CN 2019122603 W CN2019122603 W CN 2019122603W WO 2020199631 A1 WO2020199631 A1 WO 2020199631A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic module
infrared
layer
reflector
silver mirror
Prior art date
Application number
PCT/CN2019/122603
Other languages
English (en)
French (fr)
Inventor
黄忠
Original Assignee
四川钟顺太阳能开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川钟顺太阳能开发有限公司 filed Critical 四川钟顺太阳能开发有限公司
Publication of WO2020199631A1 publication Critical patent/WO2020199631A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the field of photovoltaic technology, and particularly relates to a selective reflector for photovoltaic modules and a manufacturing method thereof.
  • the double-glass double-sided module is a photovoltaic module that can generate electricity on both the front and the back, and the efficiency of the back can reach 90% of the front.
  • the rear battery due to the directivity of sunlight, the rear battery can only receive scattered light in the atmosphere, which greatly limits the output of the battery.
  • a typical existing method is to use a reflector to reflect part of the direct sunlight to the back of the module, so that the price of a module can be replaced by the price of a reflector, thereby greatly reducing the cost of electricity.
  • the above technical solution reflects sunlight to the back of the module through a reflector, which is equivalent to increasing the amount of light received by a single module, but at the same time it brings a problem that the temperature of the photovoltaic module will increase.
  • the temperature will increase by an average of 7°C.
  • the temperature will increase by 1°C, and the efficiency will decrease by about 0.39%, and this effect is not only on the back side, but the front side will still be the same decline.
  • the main reason for the temperature rise is that the infrared band above 1100nm in the solar spectrum can hardly be absorbed by the battery to produce photovoltaic effect, but converted into heat energy, which shows that it seriously affects the electrical output.
  • the purpose of the present invention is to provide a selective reflector and a manufacturing method thereof that can effectively reduce the temperature of the photovoltaic module to improve the output efficiency of the photovoltaic module in view of the above-mentioned existing problems.
  • a selective reflector for photovoltaic modules uses a silver mirror as a reflector for reflecting direct sunlight to the back of the photovoltaic module, and the silver mirror It includes a glass substrate, on which a sensitization layer and an activation layer are sequentially arranged on the surface of the glass substrate, characterized in that: an infrared band absorption layer is arranged between the sensitization layer and the activation layer on the surface of the glass substrate, so The infrared band absorption layer is used to absorb or channel the spectrum that is not absorbed by the crystalline silicon solar cell of the photovoltaic module, so that only the wavelength band that can be absorbed by the solar cell is reflected to the photovoltaic module.
  • the infrared band absorption layer is used to absorb or diffuse the spectrum in the solar spectrum in the 1100nm-1300nm and 1400nm-1800nm wavelength bands.
  • the selective reflector for photovoltaic modules of the present invention is provided with a photonic crystal layer on the surface of the reflector, and the photonic crystal layer is used to guide the light not absorbed by the crystalline silicon solar cell of the photovoltaic module to Invalid area.
  • a photonic crystal layer is arranged on the glass of the photovoltaic module.
  • the band gap of the photonic crystal layer is set in two wavebands of 1100nm-1300nm and 1400nm-1800nm, and the photonic crystals of the two wavebands are stacked up and down.
  • the manufacturing method of the selective reflector for photovoltaic modules of the present invention adds an infrared dye coating process in the manufacturing process of the silver mirror, and the coated infrared dye is absorbed by the solar spectrum without being absorbed by the solar cell
  • the specific production method of the unfavorable band spectra of the silver mirror is as follows: first, prepare the infrared dye solution, then spray the configured infrared dye solution after the silver mirror sensitization process, and dry, and finally, perform the subsequent steps of the silver mirror process.
  • the manufacturing method of the selective reflector for photovoltaic modules of the present invention adopts infrared dyes composed of 1,3-bis(4-N,N-dimethylaminophenyl) squaraine and diimines ,
  • the infrared dyes are respectively dissolved in the mixed solution of n-propanol and water to obtain the required infrared dye solution.
  • the present invention enables the silver mirror to remove the unfavorable wavelength bands for the efficiency of the photovoltaic module, thereby effectively reducing the surface temperature of the module while maintaining the advantages of the double-glass double-sided module, thereby greatly improving the efficiency of the entire system .
  • Figure 1 is a schematic diagram of the structure of the present invention.
  • Figure 2 is a reflection spectrum diagram of an existing silver mirror.
  • Figure 3 is a reflection spectrum diagram of the silver mirror of the present invention.
  • Fig. 4 is a schematic diagram of the structure of the present utility model with a photonic crystal layer.
  • 1 is a glass substrate
  • 2 is a sensitizing layer
  • 3 is an active layer
  • 4 is an infrared band absorption layer
  • 5 is.
  • a selective reflector for photovoltaic modules uses a silver mirror as a reflector to reflect direct sunlight to the back of the photovoltaic module.
  • the silver mirror includes a glass substrate. 1.
  • a sensitized layer 2 and an active layer 3 are sequentially arranged on the surface of the glass substrate 1, and an infrared band absorption layer 4 is arranged between the sensitized layer 2 and the active layer 3 on the surface of the glass substrate 1, so The infrared band absorption layer 4 is used to absorb or channel the spectrum that is not absorbed by the crystalline silicon solar cell of the photovoltaic module, so that only the wavelength band that can be absorbed by the solar cell is reflected to the photovoltaic module.
  • the infrared band absorption layer 4 is used to absorb or channel the spectrum that has higher energy in the solar spectrum in the two wavelength bands of 1100 nm to 1300 nm and 1400 nm to 1800 nm, but is not absorbed by the crystalline silicon solar cell.
  • the ordinary silver mirror has good reflection performance in the entire solar spectrum; as shown in Figure 3, in order to remove the band that is unfavorable to the system efficiency, this application
  • the silver mirror in the mirror is used as a reflective mirror.
  • an infrared dye coating process in the silver mirror manufacturing process an infrared wave band absorption layer is formed in the ordinary silver mirror, which can absorb the unfavorable wave band during the reflection of sunlight. Only the wavelength band that can be absorbed by the solar cell is reflected to the photovoltaic module.
  • the reflection spectrum after processing is shown in Figure 3.
  • the reflector made by this method can effectively reduce the surface temperature of the module. Experiments show that this method can make The temperature rise caused by reflection is reduced by 80%.
  • a photonic crystal layer 5 is provided on the surface of the reflector, and a photonic crystal layer 5 can also be provided on the glass of the photovoltaic module.
  • the band gap of 5 is set in the two wavelength bands of 1100nm ⁇ 1300nm and 1400nm ⁇ 1800nm.
  • the photonic crystals of the two bands are stacked up and down, so that the two crystalline silicon solar cells that are not absorbed by the photovoltaic module can be absorbed by the photonic crystal.
  • the light is directed to the ineffective area, so as to achieve the purpose of lowering the temperature.
  • a method for manufacturing a selective reflector for photovoltaic modules adding an infrared dye coating process to the manufacturing process of the silver mirror, and using the coated infrared dye to absorb the unfavorable band spectrum in the solar spectrum that is not absorbed by the solar cell
  • the specific production method is as follows: first, prepare the infrared dye solution, then spray the configured infrared dye solution after the silver mirror sensitization process, and dry, and finally, perform the subsequent steps of the silver mirror process.
  • a photonic crystal layer is fabricated on the surface of the reflector, and the light of the corresponding wavelength band is guided to the ineffective area through the photonic crystal to achieve the purpose of cooling.
  • an infrared dye combining 1,3-bis(4-N,N-dimethylaminophenyl) squaraine and diimines is used, and the infrared dyes are dissolved in n-propanol.
  • the mixed solution with water the desired infrared dye solution is obtained.
  • the materials specifically used in this embodiment are only used for illustration, and it does not mean that only this type of material can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种用于光伏组件的选择性反射器及其制作方法,所述反射器采用银镜作为反射镜,用于将太阳直射光反射至光伏组件的背面,所述银镜包括玻璃基片(1),在所述玻璃基片(1)表面依次设置有敏化层(2)和活化层(3),在所述玻璃基片(1)表面的敏化层(2)和活化层(3)之间设置有红外波段吸收层(4),所述红外波段吸收层(4)用于对不被光伏组件的晶硅太阳电池吸收的光谱进行吸收或疏导,仅使可被太阳电池吸收的波段反射至光伏组件。通过对普通银镜的改进,使银镜能够去掉对光伏组件效率不利的波段,从而在保持双玻双面组件优点的情况下,有效降低组件的表面温度,从而大大提高整个系统的效率。

Description

一种用于光伏组件的选择性反射器及其制作方法 技术领域
本发明属于光伏技术领域,特别涉及一种用于光伏组件的选择性反射器及其制作方法。
背景技术
随着光伏发电平价上网时代的到来,如何降低度电成本,成为占领市场的最关键因素。为此,在技术层面,太阳电池效率、组件效率不断被刷新,涌现出了很多新的技术与构想,特别是双玻双面组件以其独特的优势,成为光伏领域最耀眼的明星。
双玻双面组件是一种正面背面都可以发电的光伏组件,且背面的效率可以达到正面的90%。但由于太阳光的方向性,背面电池只能接受到大气中的散射光,这极大地限制了电池的输出。
目前行业内已有企业对改善背面电池的受光,提升组件发电量,降低光伏度电成本等问题开展了相关的研究。现有一种典型的方式是通过反射镜,将一部分太阳直射光反射至组件背面,这样就能够以一片反射镜的价格代替一片组件的价格,从而大幅缩减度电成本。
上述技术方案通过反射镜将太阳光反射至组件背面,相当于增加了单块组件的受光量,但是同时带来了一个问题在于光伏组件的温度将提升。实验表明,每增加0.5倍光通量,温度平均提升7℃,而对于晶硅组件而言,温度升高1℃,效率降低0.39%左右,而且这个影响是不仅仅是针对背面的,正面依然会同等下降。经过研究发现,引起温度升高的主要原因在于太阳光谱中1100nm以上红外波段几乎不能被电池吸收产生光伏效应,而是转化成了热能,可见其严重影响了电能输出。
发明内容
本发明的目的在于:针对上述存在的问题,提供一种能够有效降低光伏组件的温度,从而达到提高光伏组件输出效率目的的选择性反射器及其制作方法。
本发明的技术方案是这样实现的:一种用于光伏组件的选择性反射器,所述反射器采用银镜作为反射镜,用于将太阳直射光反射至光伏组件的背面,所述银镜包括玻璃基片,在所述玻璃基片表面依次设置有敏化层和活化层,其特征在于:在所述玻璃基片表面的敏化层和活化层之间设置有红外波段吸收层,所述红外波段吸收层用于对不被光伏组件的晶硅太阳电池吸收的光谱进行吸收或疏导,仅使可被太阳电池吸收的波段反射至光伏组件。
本发明所述的用于光伏组件的选择性反射器,其所述红外波段吸收层用于对太阳光谱中1100nm~1300nm以及1400nm~1800nm波段的光谱进行吸收或疏导。
本发明所述的用于光伏组件的选择性反射器,其在所述反射镜表面设置有光子晶体层,所述光子晶体层用于将不被光伏组件的晶硅太阳电池吸收的光导向至无效区域。
本发明所述的用于光伏组件的选择性反射器,其在所述光伏组件的玻璃上设置光子晶体层。
本发明所述的用于光伏组件的选择性反射器,其所述光子晶体层的禁带设置在1100nm~1300nm以及1400nm~1800nm两个波段,所述两个波段的光子晶体上下堆叠而成。
本发明所述的用于光伏组件的选择性反射器制作方法,其在所述银镜的制作工艺中增加红外染料涂覆工艺,通过涂覆的红外染料吸收掉太阳光谱中不被太阳电池吸收的不利波段光谱,具体制作方法是:首先,制备红外染料溶液, 然后,在银镜敏化工艺后喷涂配置的红外染料溶液,并干燥,最后,再进行银镜工艺的后续步骤。
本发明所述的用于光伏组件的选择性反射器制作方法,其采用1,3-二(4-N,N-二甲胺基苯基)方酸菁与二亚胺类组合的红外染料,将所述红外染料分别溶于正丙醇与水的混合溶液中,得到所需的红外染料溶液。
本发明通过对普通银镜的改进,使银镜能够去掉对光伏组件效率不利的波段,从而在保持双玻双面组件优点的情况下,有效降低组件的表面温度,从而大大提高整个系统的效率。
附图说明
图1是本发明的结构示意图。
图2是现有银镜反射光谱图。
图3是本发明的银镜反射光谱图。
图4是本实用新型设置光子晶体层的结构示意图。
图中标记:1为玻璃基片,2为敏化层,3为活化层,4为红外波段吸收层,5为。
具体实施方式
下面结合附图,对本发明作详细的说明。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,一种用于光伏组件的选择性反射器,所述反射器采用银镜作为反射镜,用于将太阳直射光反射至光伏组件的背面,所述银镜包括玻璃基片1,在所述玻璃基片1表面依次设置有敏化层2和活化层3,在所述玻璃基片1表面 的敏化层2和活化层3之间设置有红外波段吸收层4,所述红外波段吸收层4用于对不被光伏组件的晶硅太阳电池吸收的光谱进行吸收或疏导,仅使可被太阳电池吸收的波段反射至光伏组件。
在本实施例中,所述红外波段吸收层4用于对太阳光谱中1100nm~1300nm以及1400nm~1800nm两处波段存在较高能量,而又不被晶硅太阳电池吸收的光谱进行吸收或疏导。
如图2所示,采用现有普通银镜作为反射镜时,普通银镜在整个太阳光谱中均具有良好的反射性能;如图3所示,为去掉对系统效率不利的波段,采用本申请中的银镜作为反射镜,其通过在银镜制作工艺中增加了红外染料涂覆工艺,在普通银镜内形成了红外波段吸收层,从而能够在太阳光线反射过程中,吸收掉不利于波段的光谱,仅使可被太阳电池吸收的波段反射至光伏组件,处理后的反射光谱如图3,而通过本方法制作的反射镜可以有效的降低组件表面温度,实验表明,通过本方法可以使反射引起的温度提升降低80%。
如图4所示,为了进一步降低光伏组件的工作温度,在所述反射镜表面设置有光子晶体层5,同时也可在所述光伏组件的玻璃上设置光子晶体层5,所述光子晶体层5的禁带设置在1100nm~1300nm以及1400nm~1800nm两个波段,所述两个波段的光子晶体上下堆叠而成,这样可以通过光子晶体将上述两个不被光伏组件的晶硅太阳电池吸收波段的光导向至无效区域,从而达到降低温度的目的。
一种用于光伏组件的选择性反射器制作方法,在所述银镜的制作工艺中增加红外染料涂覆工艺,通过涂覆的红外染料吸收掉太阳光谱中不被太阳电池吸收的不利波段光谱,具体制作方法是:首先,制备红外染料溶液,然后,在银镜敏化工艺后喷涂配置的红外染料溶液,并干燥,最后,再进行银镜工艺的后 续步骤。此外,为了进一步降低光伏组件的工作温度,在反射镜表面制作光子晶体层,通过光子晶体将对应波段的光导向至无效区域,以达到降温的目的。
在本实施例中,采用1,3-二(4-N,N-二甲胺基苯基)方酸菁与二亚胺类组合的红外染料,将所述红外染料分别溶于正丙醇与水的混合溶液中,得到所需的红外染料溶液。但是需要说明的,组成本方案中所述的红外染料类型很多,本实施例中具体采用的材料仅用于举例说明,并不代表仅仅只有这一种材料才能使用。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种用于光伏组件的选择性反射器,所述反射器采用银镜作为反射镜,用于将太阳直射光反射至光伏组件的背面,所述银镜包括玻璃基片(1),在所述玻璃基片(1)表面依次设置有敏化层(2)和活化层(3),其特征在于:在所述玻璃基片(1)表面的敏化层(2)和活化层(3)之间设置有红外波段吸收层(4),所述红外波段吸收层(4)用于对不被光伏组件的晶硅太阳电池吸收的光谱进行吸收或疏导,仅使可被太阳电池吸收的波段反射至光伏组件。
  2. 根据权利要求1所述的用于光伏组件的选择性反射器,其特征在于:所述红外波段吸收层(4)用于对太阳光谱中1100nm~1300nm以及1400nm~1800nm波段的光谱进行吸收或疏导。
  3. 根据权利要求1或2所述的用于光伏组件的选择性反射器,其特征在于:在所述反射镜表面设置有光子晶体层(5),所述光子晶体层(5)用于将不被光伏组件的晶硅太阳电池吸收的光导向至无效区域。
  4. 根据权利要求3所述的用于光伏组件的选择性反射器,其特征在于:在所述光伏组件的玻璃上设置光子晶体层(5)。
  5. 根据权利要求4所述的用于光伏组件的选择性反射器,其特征在于:所述光子晶体层(5)的禁带设置在1100nm~1300nm以及1400nm~1800nm两个波段,所述两个波段的光子晶体上下堆叠而成。
  6. 根据权利要求1至5中任意一项所述的用于光伏组件的选择性反射器制作方法,其特征在于:在所述银镜的制作工艺中增加红外染料涂覆工艺,通过涂覆的红外染料吸收掉太阳光谱中不被太阳电池吸收的不利波段光谱,具体制作方法是:首先,制备红外染料溶液,然后,在银镜敏化工艺后喷涂配置的红外染料溶液,并干燥,最后,再进行银镜工艺的后续步骤。
  7. 根据权利要求6所述的用于光伏组件的选择性反射器制作方法,其特征 在于:采用1,3-二(4-N,N-二甲胺基苯基)方酸菁与二亚胺类组合的红外染料,将所述红外染料分别溶于正丙醇与水的混合溶液中,得到所需的红外染料溶液。
PCT/CN2019/122603 2019-04-04 2019-12-03 一种用于光伏组件的选择性反射器及其制作方法 WO2020199631A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910269399.6 2019-04-04
CN201910269399.6A CN110034204A (zh) 2019-04-04 2019-04-04 一种用于光伏组件的选择性反射器及其制作方法

Publications (1)

Publication Number Publication Date
WO2020199631A1 true WO2020199631A1 (zh) 2020-10-08

Family

ID=67237498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122603 WO2020199631A1 (zh) 2019-04-04 2019-12-03 一种用于光伏组件的选择性反射器及其制作方法

Country Status (2)

Country Link
CN (1) CN110034204A (zh)
WO (1) WO2020199631A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110034204A (zh) * 2019-04-04 2019-07-19 四川钟顺太阳能开发有限公司 一种用于光伏组件的选择性反射器及其制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7349151B2 (en) * 2005-07-12 2008-03-25 Hewlett-Packard Development Company, L.P. IR absorbing reflector
CN102089598A (zh) * 2008-05-14 2011-06-08 3M创新有限公司 太阳能聚光反射镜
CN102822745A (zh) * 2010-03-26 2012-12-12 住友电木株式会社 感光性树脂组合物及受光装置
CN102753886B (zh) * 2010-04-23 2014-07-02 海洋王照明科技股份有限公司 聚光装置、其制造方法和太阳能电池系统
CN104898192A (zh) * 2015-06-19 2015-09-09 芜湖市晨曦新型建材科技有限公司 一种太阳能热发电的镀银反射镜玻璃及其制备方法
CN110034204A (zh) * 2019-04-04 2019-07-19 四川钟顺太阳能开发有限公司 一种用于光伏组件的选择性反射器及其制作方法
CN209859962U (zh) * 2019-04-04 2019-12-27 四川钟顺太阳能开发有限公司 一种用于光伏组件的选择性反射器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2954000B1 (fr) * 2009-12-14 2012-01-06 Commissariat Energie Atomique Dispositif reflecteur pour module photovoltaique a cellules bifaciales
CN203659887U (zh) * 2013-12-11 2014-06-18 上海空间电源研究所 一种用于空间三结砷化镓太阳电池的红外截止滤光片
CN204478557U (zh) * 2014-11-28 2015-07-15 中国建筑材料科学研究总院 一种双吸收层太阳光谱选择性吸收涂层
CN208400859U (zh) * 2018-01-18 2019-01-18 中南大学 一种晶硅双玻光伏组件
CN108183145A (zh) * 2018-01-18 2018-06-19 中南大学 一种晶硅双玻光伏组件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7349151B2 (en) * 2005-07-12 2008-03-25 Hewlett-Packard Development Company, L.P. IR absorbing reflector
CN102089598A (zh) * 2008-05-14 2011-06-08 3M创新有限公司 太阳能聚光反射镜
CN102822745A (zh) * 2010-03-26 2012-12-12 住友电木株式会社 感光性树脂组合物及受光装置
CN102753886B (zh) * 2010-04-23 2014-07-02 海洋王照明科技股份有限公司 聚光装置、其制造方法和太阳能电池系统
CN104898192A (zh) * 2015-06-19 2015-09-09 芜湖市晨曦新型建材科技有限公司 一种太阳能热发电的镀银反射镜玻璃及其制备方法
CN110034204A (zh) * 2019-04-04 2019-07-19 四川钟顺太阳能开发有限公司 一种用于光伏组件的选择性反射器及其制作方法
CN209859962U (zh) * 2019-04-04 2019-12-27 四川钟顺太阳能开发有限公司 一种用于光伏组件的选择性反射器

Also Published As

Publication number Publication date
CN110034204A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
Liang et al. A novel spectral beam splitting photovoltaic/thermal hybrid system based on semi-transparent solar cell with serrated groove structure for co-generation of electricity and high-grade thermal energy
CN101494248B (zh) 一种平板聚光太阳能电池及其制作方法
Saw et al. Enhancing optical performance of bifacial PV modules
CN103236463A (zh) 一种太阳能聚光分频光伏光热综合利用装置
CN101316082B (zh) 高效率低成本太阳能热电联产系统
Kumar et al. Reassessment of different antireflection coatings for crystalline silicon solar cell in view of their passive radiative cooling properties
CN107170869B (zh) 一种兼顾光热协同管理的半导体器件
CN111446886B (zh) 一种能有效增大端差温度的温差发电装置
Zhang et al. Photonic crystal concentrator for efficient output of dye-sensitized solar cells
CN103888050A (zh) 一种聚光反射式光伏模组的发电、供热联产装置
WO2020199631A1 (zh) 一种用于光伏组件的选择性反射器及其制作方法
TWI381141B (zh) 太陽能系統
CN105789340B (zh) 一种高强度双层减反膜的制备方法
CN101795100A (zh) 一种太阳能光伏发电系统
CN103441167A (zh) 一种硅基薄膜太阳能电池组件及其制备方法
CN209859962U (zh) 一种用于光伏组件的选择性反射器
CN205407659U (zh) 一种太阳能分布式热电联产能源系统
CN107222163A (zh) 一种基于碟式聚光的复合分频太阳能光伏光热联产装置
CN203659887U (zh) 一种用于空间三结砷化镓太阳电池的红外截止滤光片
CN209434211U (zh) 一种双面双玻太阳能组件
CN205428968U (zh) 太阳能电池组件
Seifert et al. Light management in solar modules
CN202996871U (zh) 一种聚光反射式光伏模组的发电、供热联产装置
CN205545129U (zh) 应用于碟式反射型面聚光光伏系统的太阳能电池阵列模组
CN107611184B (zh) 一种基于分光谱系统的太阳能电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19923506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19923506

Country of ref document: EP

Kind code of ref document: A1