WO2020199415A1 - 动力电池热失控安全性综合评价方法与系统 - Google Patents

动力电池热失控安全性综合评价方法与系统 Download PDF

Info

Publication number
WO2020199415A1
WO2020199415A1 PCT/CN2019/095770 CN2019095770W WO2020199415A1 WO 2020199415 A1 WO2020199415 A1 WO 2020199415A1 CN 2019095770 W CN2019095770 W CN 2019095770W WO 2020199415 A1 WO2020199415 A1 WO 2020199415A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
thermal runaway
temperature
battery cell
safety
Prior art date
Application number
PCT/CN2019/095770
Other languages
English (en)
French (fr)
Inventor
王昱
冯旭宁
任东生
卢兰光
欧阳明高
何向明
王莉
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2020199415A1 publication Critical patent/WO2020199415A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables

Definitions

  • This application relates to the field of battery technology, and in particular to a method and system for comprehensive evaluation of the safety of power battery thermal runaway.
  • Electric vehicles are the main body of new energy vehicles, and power batteries are the core energy source of electric vehicles.
  • the driving range of an electric vehicle depends on the specific energy of the power battery and the number of batteries in the electric vehicle. Due to the space and cost constraints of electric vehicles, increasing the specific energy of power batteries has become the key to increasing the range of electric vehicles.
  • a power battery with a higher specific energy under the same volume stores more energy, and may release more energy when the heat is out of control, bringing more serious safety hazards. Therefore, it is necessary to fully evaluate and consider the thermal runaway safety of the power battery of the designed system in the power battery design process.
  • a comprehensive evaluation method for the safety of power battery thermal runaway including:
  • S10 Provide battery materials, and perform one or more of component analysis, morphology analysis, structure analysis, and surface and interface analysis on the battery material to obtain a performance analysis diagram of the battery material;
  • S20 Provide a positive electrode sheet, a negative electrode sheet, a separator, and an electrolyte, and perform thermal characteristic analysis and reaction kinetics on a sample formed by combining the positive electrode sheet, the negative electrode sheet, the separator, the electrolyte and the foregoing materials Analysis to obtain a database of thermal runaway characteristics;
  • the comprehensive evaluation method and system for the safety of thermal runaway of the power battery provided in this application.
  • the comprehensive evaluation method carries out a multi-scale mechanism analysis and comprehensive evaluation of battery thermal runaway.
  • the comprehensive evaluation method for the safety of the thermal runaway of the power battery performs thermal stability related tests on the three dimensions of battery materials, battery pole pieces and battery cells. And through the comprehensive comparative analysis of the test data, combined with in-situ and ex-situ observations and material characterization methods, it is confirmed that the thermal characteristics of different components and the mutual coupling between the components affect the thermal runaway of battery cells.
  • the comprehensive evaluation method combines the test results of the battery cell's adiabatic thermal runaway, and provides the mechanism analysis and thermal safety qualitative and quantitative evaluation of the battery's thermal runaway. It has important practical value and guiding significance for the safety design and thermal runaway prevention and control of power batteries for electric vehicles.
  • FIG. 1 is a schematic flow chart of a comprehensive evaluation method for thermal runaway safety of a power battery provided in an embodiment of this application;
  • Figure 2 is a flow chart of steps for analyzing and testing thermal characteristics provided in an embodiment of this application;
  • Figure 3 is this application A flowchart of the kinetic parameter fitting steps provided in an embodiment;
  • FIG. 4 is a flowchart of the steps for establishing a battery material thermal runaway characteristic database provided in an embodiment of the application;
  • FIG. 5 is a flowchart provided in an embodiment of the application A schematic diagram of the test results of in-situ X-ray diffraction and mass spectrometry;
  • FIG. 6 is a scanning electron microscope test result diagram before and after thermal runaway provided in an embodiment of this application;
  • FIG. 7 is a differential scan of a positive electrode material provided in an embodiment of this application Schematic diagram of the calorimeter test results;
  • Figure 8 is a schematic diagram of the negative electrode material differential scanning calorimeter test results provided in an embodiment of the application;
  • Figure 9 is the positive electrode material + negative electrode material differential scanning volume provided in an embodiment of the application Schematic diagram of the test results of the calorimeter;
  • Figure 10 is a schematic diagram of the test results of the PE diaphragm differential scanning calorimeter provided in an embodiment of the application;
  • Figure 11 is an analysis of the side reaction temperature sequence of each link of the battery thermal runaway provided in an embodiment of the application Schematic diagram;
  • FIG. 12 is a schematic diagram of the test results of the battery cell adiabatic accelerated calorimeter and the chain reaction process and the reaction characteristic temperature provided in an embodiment of the application.
  • the battery material may include a battery cathode active material, a battery anode active material, an electrolyte, and a separator.
  • the method for obtaining battery materials may include disassembling battery cells and disassembling button batteries.
  • battery positive active materials, battery negative active materials, electrolytes and separators purchased from manufacturers that have not undergone processes such as coating, chemical conversion, and battery assembly.
  • S20 Provide a positive electrode sheet, a negative electrode sheet, an electrolyte, and a separator, and perform thermal characteristic analysis and reaction power on a sample formed by a combination of the positive electrode sheet, the negative electrode sheet, the electrolyte, the separator, and the foregoing materials.
  • the thermal characteristic analysis and reaction kinetic analysis of the combined sample of the positive electrode sheet, the negative electrode sheet, the electrolyte, the separator, and the foregoing materials are mainly realized.
  • the main test content of the thermal characteristic analysis is the thermal stability of the positive electrode sheet, the negative electrode sheet, the electrolyte and the separator, and the thermal stability of the coupling between different components.
  • a differential scanning calorimeter, adiabatic accelerating calorimeter or other calorimeters can be used as the testing instrument.
  • the battery cell to be tested may be any one of a soft pack battery, a square battery or a cylindrical battery.
  • the battery cells that can be detected in this embodiment may also be battery cells of other forms, which are not limited here.
  • the adiabatic runaway test can be performed in a large calorimeter that can provide an adiabatic environment. Before performing the adiabatic runaway test, it is necessary to ensure that the calorimeter has completed calibration and calibration to avoid danger during the test. In addition, before the adiabatic runaway test is performed, it is necessary to adjust the battery cell to be tested to a specified state of charge through a charging and discharging device according to test requirements.
  • the qualitative evaluation of the thermal runaway of the battery cell is realized, including the analysis of the thermal runaway side reaction mechanism of the battery cell in combination with the battery cell thermal runaway side reaction temperature sequence diagram.
  • the sequence analysis of the side reaction temperature of each process of the battery cell thermal runaway is to confirm the temperature of each main side reaction of the battery cell during the thermal runaway process, so as to confirm the chain reaction process and reaction mechanism of the thermal runaway.
  • the thermal runaway of the battery cell is finally caused by a series of chain reaction processes.
  • the initial temperature and heat release of the side reactions are also very different. Therefore, it is necessary to confirm the sequence and temperature of the side reactions of the battery cells in the process of thermal runaway, and the contribution of the side reactions to the thermal runaway of the battery.
  • the thermal runaway safety evaluation of the battery cell to be tested can be compared with the size of the characteristic value.
  • a reference battery and a reference characteristic value can also be set, and the relationship between the characteristic value and the reference characteristic value can be compared to determine the battery cell under test The safety of thermal runaway.
  • the setting of the reference battery can be adjusted according to empirical values or according to the needs of the actual application environment.
  • a multi-scale mechanism analysis and comprehensive evaluation method for the safety of power battery thermal runaway is provided.
  • the comprehensive evaluation method for the safety of thermal runaway of the power battery performs thermal stability related tests on three dimensions of battery materials, battery pole pieces and battery cells. And through the comprehensive comparative analysis of the test data, combined with in-situ and ex-situ observations and material characterization methods, it is confirmed that the thermal characteristics of different components and the mutual coupling between the components affect the thermal runaway of battery cells.
  • the comprehensive evaluation method combines the test results of the battery cell's adiabatic thermal runaway, and provides the mechanism analysis and thermal safety quantitative evaluation of the battery's thermal runaway. It has important practical value and guiding significance for the safety design and thermal runaway prevention and control of power batteries for electric vehicles.
  • Disassembling battery cells to obtain battery positive and negative electrode active materials may include the following steps:
  • S101 Use a charging and discharging device to adjust the state of charge of a battery cell to a specified value (0-100%).
  • S102 Separate the battery core from the casing in the glove box or dry room, and take out the core.
  • S103 Use a sealed container to transfer all the cores to the glove box, use insulating ceramic scissors, take a certain amount of positive pole pieces, negative pole pieces, and separators as samples, and store them in insulated containers to avoid short circuits.
  • the taken samples can be washed.
  • the specific washing method can be soaking in dimethyl carbonate for 30 minutes to 2 hours. After soaking, the samples were taken out and dried in an inert atmosphere in the glove box. After drying, they were stored in an insulated container again.
  • the sample may be a solid (such as an active material powder or directly cut a little pole piece) or a solution dissolved in an acid. Avoid contact with air as much as possible during sample preparation and transfer.
  • ceramic scissors can be used to cut off a small number of pole pieces, or a scraper can be used to scrape a certain amount of active material.
  • S111 Use a charging and discharging device to adjust the state of charge of the button battery to a specified value (0-100%).
  • S113 Take out the positive pole piece, the negative pole piece and the separator from the button battery as samples, and store them in insulated containers to avoid short circuits.
  • the taken samples can be washed.
  • the specific method can be to soak in dimethyl carbonate for 30 minutes to 2 hours and then take them out, then dry them in an inert atmosphere in a glove box, and store them in an insulated container after drying.
  • the samples may be solid (such as active material powder or directly cut a little pole piece) or a solution dissolved in acid. Avoid contact with air as much as possible during sample preparation and transfer. s contact.
  • ceramic scissors can be used to cut off a small number of pole pieces, or a scraper can be used to scrape a certain amount of active material.
  • two methods for obtaining the battery material are provided. The two methods provided in this embodiment can easily and conveniently obtain various battery materials.
  • the method for obtaining the battery material is not specifically limited.
  • the battery material may be directly obtained by chemical synthesis.
  • obtaining the performance analysis diagram of the battery material may include high-temperature in-situ or high-temperature ex-situ data characterization.
  • the specific high-temperature in-situ or high-temperature ex-situ data characterization is mainly to observe the performance of the positive electrode active material of the battery, the negative electrode active material of the battery and the separator components during the heating process or to characterize the material properties before and after the heating process. And contrast.
  • the elemental composition analysis of the battery material may include but is not limited to the following analysis methods, such as: meteorological chromatography-mass spectrometry, ion chromatography, plasma emission spectroscopy, Fourier infrared spectroscopy, X-ray fluorescence spectroscopy or energy spectrum analysis .
  • analysis methods such as: meteorological chromatography-mass spectrometry, ion chromatography, plasma emission spectroscopy, Fourier infrared spectroscopy, X-ray fluorescence spectroscopy or energy spectrum analysis .
  • the topography analysis of the battery material may include, but is not limited to, scanning electron microscopy analysis and transmission electron microscopy analysis. These two types of electron microscopy analysis are mainly used to observe the changes in the morphology of battery materials during or before and after heating.
  • the structural analysis of the battery material may include, but is not limited to, for example, X-ray diffraction spectrum analysis and nuclear magnetic resonance spectrum analysis. These two kinds of analysis can be used to analyze the changes in the crystal structure and composition of battery materials in situ.
  • the surface analysis of the battery material may include, but is not limited to, for example, X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry. These two analyses are mainly used to analyze the changes in the surface composition of battery materials. Among them, X-ray diffraction spectrum analysis, transmission electron microscopy analysis, mass spectrometry analysis and other methods can all achieve in-situ observation during the heating process of multi-cell materials. It can be understood that the above four types of test methods are used as required in battery safety evaluation, and not all of them are required.
  • Figures 5 and 6 show the test results of some high-temperature in-situ/ex-situ characterization methods.
  • Figure 5 shows the test results of in-situ X-ray diffraction and mass spectrometry. From the left side of Figure 5, it can be seen that the ternary material undergoes a transformation process from layered to spinel to rock salt structure during heating. As the valence state of transition metal ions changes with the phase transition, oxygen is released, and the determination of the oxygen release temperature is an important link in the analysis of the thermal runaway mechanism of ternary materials. In situ X-ray diffraction results confirmed that the spinel phase change oxygen release started at about 100°C.
  • the right side of Figure 5 shows the test results of in-situ mass spectrometry.
  • the mass spectrometry detected that the oxygen peak started at 250°C, and the oxygen release was delayed compared to the spinel phase transition. Comparing the scanning electron microscopy results of the active material particles before and after thermal decomposition, the morphology of the positive electrode particles changed significantly and the particles cracked.
  • the test results of in-situ X-ray diffraction and mass spectrometry of different materials can be obtained, and comparative analysis can be performed to finally qualitatively evaluate the performance that the materials can exhibit when used as battery components.
  • Figure 6 shows the scanning electron microscope test results before and after thermal runaway.
  • performing the thermal characteristic analysis test on the battery material may include the following steps:
  • the battery material may be obtained by disassembling battery cells and disassembling button batteries.
  • the two methods provided in this embodiment can easily and conveniently obtain various battery materials.
  • the method for obtaining the battery material is not specifically limited.
  • the battery material may be directly obtained by chemical synthesis.
  • S202 Prepare a sample for thermal stability test according to test requirements and put it into a test container; the sample includes a separate positive electrode, negative electrode, separator or electrolyte; the sample also includes a positive electrode + electrolyte coupled sample, and negative electrode + Electrolyte coupling sample, positive electrode + negative electrode coupling sample, separator + electrolyte coupling sample, or positive electrode + negative electrode + electrolyte coupling sample.
  • the sample includes a separate positive electrode, negative electrode, separator or electrolyte; the sample also includes a positive electrode + electrolyte coupled sample, and negative electrode + Electrolyte coupling sample, positive electrode + negative electrode coupling sample, separator + electrolyte coupling sample, or positive electrode + negative electrode + electrolyte coupling sample.
  • different battery components need to be prepared according to the actual mass ratio or empirical ratio in the single cell/button cell.
  • S203 Use an adiabatic accelerating calorimeter, a differential scanning calorimeter or other calorimeters to test the thermal characteristics of the sample, and record the temperature change data of the sample during the thermal runaway process.
  • Figure 7-10 shows the schematic diagram of the results of the differential scanning calorimeter test of battery materials. Figures 7-10 provide the constant heating rate thermal characteristic curves of the samples prepared from four different battery materials.
  • the main test content of the reaction kinetic analysis is that the sample formed by the combination of the positive electrode sheet, the negative electrode sheet, the separator and the above-mentioned materials is subjected to different temperature rise rates. Temperature changes.
  • a differential scanning calorimeter can be used as a test instrument.
  • the reaction kinetic analysis mainly includes three parts: (first) confirmation of the main reaction, (second) kinetic parameter fitting, and (third) establishment of a kinetic parameter database.
  • the main reaction confirmation needs to be based on the material thermal stability test results.
  • the decomposition of the ternary cathode material has three main exothermic peaks, which can be judged as three main reactions.
  • the graphite anode material has three main exothermic peaks, which are also three main reactions.
  • the positive electrode material + negative electrode material has three main exothermic peaks, which can be judged as three main reactions.
  • the PE membrane material has only one obvious endothermic peak at about 140°C, which is judged to be a main reaction.
  • the kinetic parameter fitting includes the following steps: S211, putting the sample into a differential scanning calorimetry test crucible.
  • a sample is prepared according to test requirements and placed in a differential scanning calorimetry test crucible.
  • the sample can be a separate positive electrode, negative electrode, separator, or electrolyte.
  • the samples in the coupled thermal characteristic test are positive electrode + electrolyte, negative electrode + electrolyte, positive electrode + negative electrode, separator + electrolyte or positive electrode + negative electrode + electrolyte, and different battery components need to be in accordance with the single cell/button cell The actual mass ratio or empirical ratio in the preparation.
  • the scanning rate is changed and S212 is repeated to obtain at least 5 sets of thermal characteristic curves of the constant heating rate of the sample with different scanning rates.
  • the scanning rate of the differential scanning calorimeter may be any 5 of 1°C/min, 2°C/min, 5°C/min, 10°C/min, 15°C/min, and 20°C/min.
  • S214 Based on the chemical reaction kinetics equation and combining with the data in the thermal characteristic curve of the constant heating rate, the basic reaction kinetic parameters of each main reaction are fitted, wherein the basic reaction kinetic parameters of each main reaction include at least activation energy, precursor To factor and enthalpy of reaction.
  • the test result of S213 needs to be used to obtain the reaction kinetic parameters of the main reaction confirmed in (1).
  • a fitting method of n-order reaction kinetic parameters based on the Arrhenius equation is given here.
  • Table 1 shows the peak temperature of a certain ternary material.
  • Peak/heating rate 2°C/min 5°C/min 10°C/min 15°C/min 20°C/min Peak 1 peak temperature 237.4 250 260.3 267.8 269 Peak 2 peak temperature 391.8 409.2 423.8 434 435.7 Peak 3 peak temperature 439.7 453.9 466.2 479.1 484.3
  • reaction activation energy and the reaction forward factor are obtained, where ⁇ is the heating rate, ⁇ is the conversion rate of the reaction, A is the reaction forward factor, E is the reaction activation energy, Tp is the peak temperature of the reaction, and R is the ideal gas constant 8.314J ⁇ Mol-1 ⁇ K-1.
  • reaction exothermic formula combining genetic algorithm and non-linear fitting method, the reaction enthalpy change and reaction order are obtained.
  • the reaction exothermic formula includes:
  • is the conversion rate of the reaction
  • the reaction start can be set to 1
  • n is the reaction order
  • ⁇ H is the reaction enthalpy change
  • Q is the reaction exothermic power
  • A is the reaction forward factor
  • E is the reaction activation energy
  • T is the reaction temperature
  • R is the ideal gas constant 8.314J ⁇ mol-1 ⁇ K-1.
  • equation (1) linear fitting, the activation energy and forward factor of peak 1 reaction can be obtained, and then according to the reaction exothermic formulas (2)-(5), the nonlinear fitting method such as genetic algorithm can be used to obtain the peak 1 reaction Enthalpy change and reaction order.
  • the reaction kinetic parameters for peak 2 and peak 3 can be obtained in the same way.
  • Table 2 it is a schematic diagram of the reaction kinetic parameters obtained by fitting a certain ternary material:
  • the establishment of a database of thermal reaction characteristics of different materials requires (1) the confirmation of the main reaction and (2) the original data tested in the kinetic parameter fitting. The starting temperature, maximum temperature and ending temperature of each main reaction peak at different rates are calculated. The activation energy, forward factor and reaction enthalpy of the reaction are recorded. In addition, the type and ratio of the sample used, the instrument used, and the crucible model are also recorded.
  • S221 Establish a thermal characteristic data entry of the sample. Specifically, create new thermal characteristics data entries of the sample to be tested and the coupled sample to be tested in the database.
  • data entries are stored according to the classification and name of the sample.
  • the electrolyte can be named according to the main salt components.
  • the basic information may include the name of the sample, the amount of the test sample, the composition/chemical formula of the different components of the sample, the manufacturer, the batch, and other known information, and fill in the database entry.
  • the information related to the sample needs to be recorded, including but not limited to the particle size, specific surface area, specific capacity of the positive and negative active material materials, the amount of conductive graphite and binder added, and the additives and content of the electrolyte.
  • S223 Confirm the test time for testing the sample, the instrument model used, the crucible model used, and the temperature rise rate. Confirm the basic conditions of the test data, including test time, instrument model used, crucible model used, temperature rise rate selection, and other test-related information, and fill in the database entry.
  • S224 Confirm the original data before real-time testing of the sample.
  • the original data includes original time, temperature, and heat flow at different temperature rise rates. And fill the original data into the data entry. If the device is connected to other synchronous test instruments, such as mass spectrometers, the raw data needs to be recorded and stored together.
  • At least 5 sets of sample test raw data with different temperature rise rates are stored. If other synchronous test instruments are connected, including but not limited to gas chromatographs, mass spectrometers, etc., the raw data needs to be recorded and stored together.
  • reaction kinetic parameters of different peaks of the sample include but are not limited to reaction activation energy E, reaction forward factor A, reaction order n, and reaction enthalpy change ⁇ H. If a certain reaction peak does not belong to the standard n-order reaction type, the corresponding reaction type (such as continuous reaction, autocatalytic reaction, etc.) and the corresponding reaction kinetic parameters need to be recorded.
  • the battery material thermal runaway characteristic database includes: battery material types, test data of each battery material, test results of each battery material, and basic dynamics of each battery material. parameter.
  • the battery material thermal runaway characteristic database includes: a database layer, a single material layer, a combined material layer and a reaction recording layer.
  • searching data first search according to the sample name. If there are multiple records, you can assist in searching for information such as sample size, manufacturer, and model.
  • the raw data and parameter fitting results of the thermal characteristic test of different types of battery materials are systematically stored.
  • the existing data can be directly extracted from the material thermal characteristics database for analysis. It is also possible to change a certain material composition to compare and predict the thermal runaway characteristics of the battery after the change. Further, based on the predicted results, a safer material system can be selected, or the thermal runaway characteristics of the determined material system can be improved.
  • step S30 performing an adiabatic thermal runaway test on the battery cell specifically includes:
  • S302 Confirm temperature conditions and voltage conditions, and confirm that the environmental conditions are in an adiabatic state.
  • the test can be carried out in a special explosion-proof experiment box or a large-capacity adiabatic accelerated calorimeter.
  • thermocouple When setting the thermocouple, the thermocouple can be placed inside the battery core in the dry room or glove box, or the thermocouple can be placed in the center of the large surface of the battery.
  • multiple voltage acquisition devices can be arranged at the tabs of the battery according to test requirements. After the battery cell is connected to the voltage acquisition device, connect the charging and discharging equipment according to the test needs.
  • S304 Perform an adiabatic thermal runaway test on the battery cell to be tested, and record the battery cell voltage during the thermal runaway process and the battery cell temperature during the thermal runaway process to generate an adiabatic thermal runaway test curve.
  • the battery cell can be subjected to cell thermal runaway tests under different trigger conditions, such as adiabatic stepped heating, heating plate heating, overcharge or acupuncture and other mechanical-electric-thermal abuse tests, etc., and record the battery's thermal Voltage changes and temperature changes during a runaway process.
  • the adiabatic runaway test curve is generated according to the test data, as shown in Figure 12.
  • the abscissa in the left figure of Figure 12 is time
  • the coordinate time range is the test time range, that is, the time from when the data acquisition device starts to record data until the battery temperature returns to below 100°C.
  • the right figure in FIG. 12 shows the three characteristic temperatures obtained, namely characteristic values (the first temperature T1, the second temperature T2 and the maximum temperature Tmax).
  • adiabatic thermal runaway test can be performed on n types of different types of battery cells, and the voltage and temperature during the thermal runaway process of the n types of battery cells can be recorded to guide the safety of the n types of different types of power batteries. Quantitative evaluation method.
  • the steps given in the previous embodiment can be repeated to perform the adiabatic runaway test.
  • the steps given in the previous embodiment can be repeated to perform the adiabatic runaway test.
  • the voltage test frequency and the temperature test frequency are the same, and the voltage test frequency and the temperature test frequency are greater than or equal to 1 Hz.
  • the frequency of data collection should be greater than 1 Hz (that is, data is collected at least once per second).
  • the voltage and temperature measurement frequency must be consistent to ensure that the characteristic value can be accurately obtained.
  • one or more temperature detection devices are respectively provided on the outer surface and inside of the battery cell to be tested, and a voltage acquisition device is connected to the tabs of the battery cell to be tested, include:
  • the temperature detection device may be a thermocouple.
  • the partial disassembly of the battery cell to be tested can be understood as: when the battery cell to be tested is a soft pack battery, a small opening can be made on the aluminum plastic film outside of the soft pack battery (the size of the small opening is large enough to connect the thermocouple Just plug it in), then insert the thermocouple into the battery from a small opening, and then perform corresponding fixing operations to complete the layout of the temperature detection device.
  • the partial disassembly of the battery unit to be tested can also be understood as: when the battery unit to be tested is a square-shell battery, saw along the top cover of the battery, and then insert the thermocouple into the battery.
  • the fixing operation (such as sealing with glue) to complete the layout of the temperature detection device.
  • a protective layer is provided, and the protective layer may be protected by a diaphragm or other materials to protect the temperature detection device.
  • the protected temperature detection device is arranged inside the battery to be tested (for example, it can be between the positive electrode and the separator, or between the negative electrode and the separator).
  • One or more protected temperature detection devices may be arranged inside the battery to be tested.
  • S313 Perform a secondary sealing arrangement on the battery under test, and set one or more sets of voltage acquisition devices at the tabs of the battery under test after sealing.
  • the temperature detection device is arranged inside the battery cell (the temperature detection device may be (temperature sensor).
  • the temperature detection device may be (temperature sensor).
  • the temperature sensor is arranged inside the disassembled battery cell, and the battery cell is sealed twice.
  • multiple temperatures can be arranged at different positions inside the battery cell and on different positions on the battery cell surface as required Sensors.
  • Multiple temperature sensors are provided to accurately obtain the temperature values of the battery cells at different positions during the thermal runaway process.
  • multiple sets of voltage sensors can be used for measurement to prevent the battery cells from being thermally runaway. Data is missing or unstable due to the sensor falling off.
  • the battery cell thermal runaway side reaction temperature sequence analysis mainly includes the following steps:
  • S401 From the performance analysis graph, confirm the temperature at which the phase change of the positive electrode of the battery cell starts. In this step, the temperature at which the phase change of the positive electrode of the battery cell starts can be confirmed from the test results characterized by the high temperature in situ.
  • S402 From the thermal runaway characteristic database, confirm the temperature, the maximum temperature, and the termination temperature at which the first interface begins to lose thermal stability.
  • the results of the thermal stability test of the negative electrode + electrolyte or positive electrode + electrolyte material can be used to confirm the temperature and instability at which the first interface begins to lose thermal stability (for the conventional liquid organic electrolyte system, the negative electrode SEI decomposition peak) The maximum temperature and termination temperature of the reaction peak.
  • the position of the peak at which the interface begins to destabilize is about 100°C, that is, peak 1 of the negative electrode in FIG.
  • S403 From the thermal runaway characteristic database, confirm the starting temperature, the maximum temperature and the ending temperature of the reaction peak of the negative electrode and the electrolyte. In this step, the starting temperature, maximum temperature, and ending temperature of the reaction peak of the negative electrode and the electrolyte can be confirmed from the results of the thermal stability test of the negative electrode material. In this step, the reaction peak of the negative electrode and the electrolyte immediately follows the interface instability peak, that is, peak 2 of the negative electrode in FIG. 8.
  • S404 From the thermal runaway characteristic database, confirm the starting temperature, the maximum temperature, and the ending temperature of the first decomposition reaction peak of the positive electrode.
  • the starting temperature, maximum temperature, and ending temperature of the first decomposition reaction peak of the positive electrode can be confirmed from the results of the thermal stability test of the positive electrode material.
  • the first thermal decomposition peak of the positive electrode is the peak 1 of the positive electrode in FIG. 7.
  • S405 From the thermal runaway characteristic database, confirm the starting temperature of the main heat generation peak after the positive and negative electrodes are mixed.
  • the result of the thermal stability test of the positive electrode + negative electrode material coupling can be used to confirm the starting temperature of the main heat generation peak after the positive and negative electrodes are mixed.
  • the main heat generation peak of the positive electrode + negative electrode is the peak 4 of the positive electrode + negative electrode in FIG. 9.
  • S406 From the thermal runaway characteristic database, confirm the temperature at which the diaphragm begins to decompose and completely collapse.
  • the temperature at which the diaphragm begins to decompose and completely collapse can be confirmed from the result of the thermal stability test of the diaphragm material.
  • the temperature at which the diaphragm begins to decompose and completely collapse is the starting temperature and ending temperature of the endothermic peak of the PE diaphragm in FIG. 10.
  • the diaphragm + electrolyte coupling sample can also be used for testing.
  • S407 From the adiabatic thermal runaway test curve, confirm the temperature at which the large-scale internal short circuit of the battery begins. In this step, the temperature at which the large-scale internal short circuit of the battery starts can be confirmed from the result of the thermal runaway test of the single cell.
  • the onset temperature of the large-scale internal short circuit is the temperature at which the voltage drops sharply in FIG. 12.
  • the temperature at which the large-scale heat generation of the battery starts can be confirmed from the result of the single thermal runaway test.
  • the large-scale exothermic start temperature is the temperature T2 in FIG. 12. If the reaction peak does not end within the test temperature range, the final temperature of the test is the reaction termination temperature.
  • S409 Drawing a thermal runaway side reaction temperature sequence diagram of the battery cell according to the temperature parameter and the time to reach the temperature parameter, and qualitatively evaluating the thermal runaway characteristic of the battery cell.
  • a temperature sequence diagram of the side reaction of thermal runaway can be drawn, as shown in Figure 11, to analyze the thermal runaway process of the battery cell.
  • FIG. 11 it is a schematic diagram of the temperature sequence of the thermal runaway side reaction of the battery cell.
  • the solid line is the temperature curve during adiabatic thermal runaway
  • the dashed line is the voltage curve
  • the block diagram is the temperature range corresponding to the side reaction of thermal runaway.
  • the battery does not generate large-scale heat generation when the voltage drops sharply, and the large-scale heat generation in the thermal runaway of the battery cell occurs at the main heat generation peak of the positive and negative electrodes. Therefore, it can be considered that for the battery cell illustrated in FIG. 11, the internal short circuit caused by the breakdown of the diaphragm is not the cause of the thermal runaway of the battery, and the violent exothermic reaction between the positive and negative electrodes of the battery is the main reason for the thermal runaway.
  • the quantitative evaluation of the thermal runaway of the battery cell requires the use of test data of the thermal runaway of the battery cell.
  • the safety of the battery’s thermal runaway can be evaluated using the three characteristic temperatures of the battery in adiabatic thermal runaway, namely the battery’s self-generated heat starting temperature T1, the battery’s thermal runaway starting temperature T2, And the battery's maximum thermal runaway temperature T3.
  • the instrument will perform a stepped temperature rise. When it detects that the battery starts to generate heat spontaneously, it enters the adiabatic mode, and the cell's own heat production continues to accumulate, eventually causing thermal runaway.
  • the self-generated heat starting temperature T1 is the temperature at which self-generated heat of the battery is detected;
  • the thermal runaway starting temperature T2 is the temperature at which the battery heating rate reaches a certain threshold.
  • the threshold temperature can usually be set to 10°C/
  • the maximum temperature of thermal runaway T3 is the maximum temperature of the battery in the process of adiabatic thermal runaway, which is usually determined by the total enthalpy change of the battery and the specific heat capacity of the battery.
  • the quantitative evaluation standards for the safety of battery thermal runaway are as follows: the lower the T1, the more self-heating of the battery, and the worse the battery safety; the lower the T2, the more likely the battery will cause thermal runaway after self-heating, and the worse the battery safety; The lower the T3, the less harm the battery will cause after thermal runaway, and the better the safety of the battery.
  • the thermal runaway safety of the battery cell to be tested is quantitatively evaluated based on the characteristic value.
  • one or more sets of quantitative indicators can be used to evaluate their thermal runaway characteristics.
  • the quantitative evaluation index ie, the characteristic value of the battery to be tested mentioned in this application
  • the quantitative evaluation index is directly related to the internal process of the thermal runaway of the single battery, which can point out a clear direction for the improvement of the battery's thermal safety.
  • the characteristic value further includes: the maximum temperature rise rate, the first time period, and the second time period during the thermal runaway process of the power battery to be tested.
  • Obtained from the adiabatic thermal runaway test curve the time from the start of self-generation of the battery cell under test to the start of the thermal runaway of the battery cell under test is recorded as the first time period.
  • Obtained from the adiabatic thermal runaway test curve the time from the start of the thermal runaway of the battery cell under test to the time when the battery cell under test reaches the highest temperature of the thermal runaway process is recorded as the second time period.
  • This embodiment also includes obtaining the reference value of the maximum temperature rise rate during the thermal runaway process of the standard battery.
  • This embodiment also includes generating a temperature-temperature change rate change curve of the battery cell to be tested according to the adiabatic thermal runaway test curve.
  • the maximum temperature rise rate, the first time period and the second time period of the battery cell to be tested are obtained from the temperature-temperature change rate change curve.
  • the thermal runaway safety of the battery under test is higher than that of the standard battery. If the first time period is greater than the first time period reference value, the thermal runaway safety of the battery under test is higher than the thermal runaway safety of the standard battery. If the second time period is greater than the second time period reference value, the thermal runaway safety of the battery under test is higher than the thermal runaway safety of the standard battery.
  • the maximum temperature rise rate, the first time period, and the second time period are provided as the other three types of characteristic values.
  • the thermal runaway safety of the battery cell is evaluated by the maximum temperature rise rate, the first time period and the second time period. The lower the maximum temperature rise rate of the battery cell during the thermal runaway process, the higher the safety of the battery cell. During the thermal runaway process of the battery cell, the longer the first time period and the second time period are, the less likely the battery cell is to cause thermal runaway, or the easier it is to prevent thermal runaway before the thermal runaway occurs. The higher the safety is out of control.
  • the above six characteristic values are taken as examples to comprehensively analyze the safety of the thermal runaway of the battery cell to be tested.
  • the battery cell built-in sensor (which can be a thermocouple) is closest to the true temperature of the battery material in the thermal runaway process, the battery built-in sensor is used to measure the characteristic value of the temperature data (the first temperature T1, the second temperature)
  • the temperature T2, the maximum temperature T3, the maximum temperature rise rate dT/dt, the first time period t1 and the second time period t2) are used as indicators for quantitative evaluation of battery thermal safety, which are more reasonable and accurate of.
  • the evaluation method of battery cell thermal runaway can refer to the following:
  • the T1 value is the quantitative evaluation index of the battery's self-generated heat safety.
  • the T2 value is a quantitative evaluation index for the safety of battery thermal runaway.
  • the lower the T3, the smaller the harm caused by the battery cell after thermal runaway, and the better the safety of the battery cell.
  • the T3 value is the quantitative evaluation index for the hazard of battery thermal runaway.
  • the dT/dt value is the quantitative evaluation index of the hazard of battery thermal runaway.
  • the longer t1 the longer it takes for the battery cell to develop into thermal runaway after self-generated heat, the slower the rate of heat accumulation, and the better the safety of the battery cell.
  • the longer t2 is, the longer it takes for the battery cell to reach the highest temperature of thermal runaway after thermal runaway, the slower the release of thermal runaway energy, and the better the safety of the battery cell.
  • the values of t1 and t2 are the quantitative evaluation indexes of the heat accumulation speed and energy release speed of battery thermal runaway.
  • the above quantitative evaluation index is the characteristic value of the battery to be tested mentioned in this application.
  • a battery cell built-in sensor such as a thermocouple
  • the thermal safety of different battery cells is evaluated according to the characteristic value.
  • the quantitative evaluation of the thermal runaway safety of the battery cell to be tested based on the characteristic value also includes: One or more of the steps evaluate the safety of the thermal runaway of the battery cell to be tested:
  • the absolute value of the difference of the first temperature minus the first reference temperature is used to quantitatively evaluate the safety of the battery cell under test for thermal runaway;
  • the absolute value of the difference between the second temperature minus the second reference temperature is used to quantitatively evaluate the safety of the battery cell to be tested for thermal runaway;
  • the absolute value of the difference between the third reference temperature minus the maximum temperature is used to quantitatively evaluate the safety of the thermal runaway of the battery cell to be tested.
  • the absolute value of the difference between the maximum temperature rise rate and the reference value minus the maximum temperature rise rate is used to quantitatively evaluate the safety of the thermal runaway of the battery cell to be tested;
  • the absolute value of the difference between the length of the first time period minus the length of the reference value of the first time period is used to quantitatively evaluate the safety of the thermal runaway of the battery cell to be tested;
  • the absolute value of the difference between the length of the second time period minus the length of the reference value of the second time period is used to quantitatively evaluate the safety of the thermal runaway of the battery cell to be tested.
  • the thermal runaway safety of the battery cell to be tested is quantitatively evaluated by using six characteristic values. For example, referring to other battery evaluation methods, it can be concluded that the battery to be tested is safer than another battery (or the reference battery), but it is impossible to know in which aspects the thermal runaway characteristics perform better, and it is impossible to Know how much better a certain performance of the thermal runaway characteristic is.
  • the battery under test has an increase of 20°C compared to another battery (or a reference battery).
  • the quantitative evaluation method provided can also provide guidance for improving battery safety. For example, by knowing the self-generated heat temperature difference of the battery under test through the method of this application, you can focus on increasing the self-generated heat temperature of the battery under test. Specific methods for increasing the self-heating temperature of the battery to be tested may include finding new materials to replace, using some coating methods or adjusting electrolyte, but it is not limited to the above adjustment methods.
  • the application also provides a comprehensive evaluation system for the safety of power battery thermal runaway.
  • the system includes: a qualitative evaluation subsystem, a quantitative evaluation subsystem and a comprehensive evaluation result output subsystem.
  • the qualitative evaluation subsystem includes: a thermal characteristic parameter acquisition module, a battery material thermal runaway characteristic database establishment module, a battery cell model establishment module, and a thermal runaway evaluation module.
  • the thermal characteristic parameter acquisition module is used to perform thermal characteristic tests on multiple battery materials to obtain thermal characteristic parameters of the multiple battery materials.
  • the battery material thermal runaway characteristic database establishment module is used to perform reaction kinetic analysis on multiple battery materials based on the thermal characteristic parameters to establish a battery material thermal runaway characteristic database.
  • the battery cell model establishment module is used to select a positive electrode material, a negative electrode material, a diaphragm material and an electrolyte material from the battery material thermal runaway characteristic database to form a battery cell model.
  • the thermal runaway evaluation module is used to qualitatively evaluate the thermal runaway characteristics of the battery cell model.
  • the quantitative evaluation subsystem includes a thermal insulation device, a voltage acquisition device, a temperature detection device and a control device.
  • the thermal insulation device is used to provide thermal insulation conditions for the battery cells.
  • One or more sets of the voltage collecting devices are arranged at the tabs of the battery to be tested for testing the voltage of the battery cell.
  • One or more of the temperature detection devices are arranged on the inner or outer surface of the battery cell for testing the temperature of the battery cell.
  • the control device is electrically connected with the multiple sets of voltage acquisition devices and the multiple temperature detection devices, respectively, for generating an adiabatic runaway test curve according to the temperature and voltage of the battery cell and for evaluating the battery cell The safety of thermal runaway.
  • the comprehensive evaluation result output subsystem includes: a data acquisition device, a data analysis device, and a result output device.
  • the data acquisition device is used to acquire the performance analysis graph of the battery material, the thermal runaway characteristic database, and the adiabatic thermal runaway test curve; it is also used to obtain the characteristic value of a standard battery and draw the battery cell Temperature sequence diagram of side reaction of thermal runaway.
  • the data analysis device is used for realizing data comparison between the battery cells, or data comparison between the battery cells and the standard battery.
  • the result output device is used to output the data comparison result of the data analysis device.
  • each sub-system in the power battery thermal runaway safety comprehensive evaluation system and each device in each sub-system is not limited, and may be any structure that can realize the above-mentioned functions.
  • the present application may also provide a computer device including a memory and a processor, the memory stores a computer program, and the processor implements the steps of any one of the foregoing methods when the computer program is executed.
  • the present application may also provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of any one of the above methods are implemented.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Channel (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种动力电池热失控安全性综合评价方法及系统,所述综合评价方法对电池热失控进行了多尺度机理分析与综合评价。所述动力电池热失控安全性综合评价方法在电池材料、电池极片以及电池单体三个尺度进行热稳定性相关测试。并通过测试数据的综合对比分析,并结合原位和非原位的观测及材料表征方法,确认不同组分热特性及组分间的相互耦合作用对于电池单体热失控的影响。所述综合评价方法结合电池单体绝热热失控的测试结果,给出电池热失控的机理分析与热安全定量评价。对于电动车用动力电池的安全设计与热失控防控具有重要的实用价值和指导意义。

Description

动力电池热失控安全性综合评价方法与系统
相关申请
本申请要求2019年04月02日申请的,申请号为201910260107.2,名称为“动力电池热失控安全性综合评价方法与系统”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及电池技术领域,特别是涉及一种动力电池热失控安全性综合评价方法与系统。
背景技术
电动汽车是新能源汽车的主体,动力电池是电动汽车的核心能量源。电动汽车的续驶里程取决于动力电池的比能量和电动汽车搭载的电池数量。由于电动汽车的空间和成本的限制,提高动力电池的比能量成为增加电动汽车续驶里程的关键。一般地,相同体积下更高比能量的动力电池存储的能量更多,在热失控时可能释放出更多的能量,带来更加严重的安全隐患。因此,需要在动力电池设计过程中就对所设计体系的动力电池的热失控安全性进行充分评价和考量。
传统的,对动力电池安全性进行评价时,有通过“试错”的方法进行逆向评价。传统的,对动力电池安全性进行评价时,有通过硬件对所测得的模型和热失控反应参数进行存储和计算。但传统的方案均未基于电池热失控机理对热失控安全性进行有效评价。
发明内容
基于此,有必要针对传统的方案均未基于电池热失控机理对热失控安全性进行有效评价的问题,提供基于电池材料、电池极片以及电池单体的多尺度热稳定性相关测试,并通过测试数据进行综合对比分析,得出一种动力电池热失控安全性综合评价方法及系统。
一种动力电池热失控安全性综合评价方法,包括:
S10,提供电池材料,并对所述电池材料进行成分分析、形貌分析、结构分析以及表面和界面分析中的一种或多种,以得到所述电池材料的性能分析图;
S20,提供正极片、负极片、隔膜和电解液,并对分别所述正极片、所述负极片、所述隔膜、所述电解液和上述材料组合形成的样品进行热特性分析和反应动力学分析,以得到热失控特性数据库;
S30,提供电池单体,并对所述电池单体进行绝热热失控测试,以得到所述电池单体的绝热热失控测试曲线;
S40,根据所述电池材料的性能分析图、所述热失控特性数据库和所述绝热热失控测试曲线绘制所述电池单体热失控副反应温度序列图,以实现对所述电池单体热失控的定性评价;以及
S50,从所述绝热热失控测试曲线中,获取所述电池单体的特征值,以实现对所述电池单体热失控的定量评价,其中,所述特征值包括:所述电池单体自身开始产热时的第一温度、所述电池单体内部大规模放热开始时的第二温度和所述电池单体在热失控过程中的最高温度。
本申请中提供的所述动力电池热失控安全性综合评价方法与系统。所述综合评价方法对 电池热失控进行了多尺度机理分析与综合评价。所述动力电池热失控安全性综合评价方法在电池材料、电池极片以及电池单体三个尺度进行热稳定性相关测试。并通过测试数据的综合对比分析,并结合原位和非原位的观测及材料表征方法,确认不同组分热特性及组分间的相互耦合作用对于电池单体热失控的影响。所述综合评价方法结合电池单体绝热热失控的测试结果,给出电池热失控的机理分析与热安全定性及定量评价。对于电动车用动力电池的安全设计与热失控防控具有重要的实用价值和指导意义。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为本申请一个实施例中提供的动力电池热失控安全性综合评价方法的流程示意图;图2为本申请一个实施例中提供的对热特性分析测试的步骤流程图;图3为本申请一个实施例中提供的动力学参数拟合步骤的流程图;图4为本申请一个实施例中提供的建立电池材料热失控特性数据库的步骤流程图;图5为本申请一个实施例中提供的原位X射线衍射和质谱分析的测试结果示意图;图6为本申请一个实施例中提供的热失控前后的扫描电镜测试结果图;图7为本申请一个实施例中提供的正极材料差示扫描量热仪测试结果示意图;图8为本申请一个实施例中提供的负极材料差示扫描量热仪测试结果示意图;图9为本申请一个实施例中提供的正极材料+负极材料差示扫描量热仪测试结果示意图;图10为本申请一个实施例中提供的PE隔膜差示扫描量热仪测试结果示意图;图11为本申请一个实施例中提供的电池热失控各环节副反应温度序列分析示意图;图12为本申请一个实施例中提供的电池单体绝热加速量热仪测试结果与链式反应过程,反应特征温度示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,本申请提供一种动力电池热失控安全性综合评价方法,包括:
S10,提供电池材料,并对所述电池材料进行成分分析、形貌分析、结构分析以及表面和界面分析,以得到所述电池材料的性能分析图。所述电池材料可以包括电池正极活性材料、电池负极活性材料、电解液及隔膜。电池材料的获取方法可以包括拆解电池单体和拆解纽扣电池。当然还可以使用从厂商购买的未经过涂覆、化成和电池组装等过程的电池正活性材料、电池负极活性材料、电解液及隔膜。
S20,提供正极片、负极片、电解液和隔膜,并对分别所述正极片、所述负极片、所述电解液、所述隔膜和上述材料的组合形成的样品进行热特性分析和反应动力学分析,以得到热失控特性数据库。本步骤中主要实现对所述正极片、所述负极片、所述电解液、所述隔膜和上述材料的组合样品进行热特性分析和反应动力学分析。具体的,所述热特性分析的主要 测试内容为所述正极片、所述负极片、所述电解液和所述隔膜的热稳定性及不同组分间的耦合热稳定性。在实施所述热特性分析时,可以使用差示扫描量热仪、绝热加速量热仪或其它量热仪作为测试仪器。
S30,提供电池单体,并对所述电池单体进行绝热热失控测试,以得到所述电池单体的绝热热失控测试曲线。本步骤中,所述待测电池单体可以为软包电池、方形电池或者圆柱形电池中的任意一种。
本实施例中所能够检测的电池单体还可以是其他形态的电池单体,在此不作限定。在对所述待测电池单体实施绝热热失控测试之前需要确认绝热热失控的实验条件与测试环境是否满足热失控的安全测试要求。所述绝热热失控测试可以在能够提供绝热环境的大型量热仪中进行,在进行绝热热失控测试之前需确保量热仪已经完成校准和标定工作,避免测试过程中发生危险。另外,在所述绝热热失控测试进行前,需要通过充放电设备按测试需求将所述待测电池单体调整至指定的荷电状态。
S40,根据所述电池材料的性能分析图、所述热失控特性数据库和所述绝热热失控测试曲线绘制所述电池单体热失控副反应温度序列图,以实现对所述电池单体热失控的定性评价。
本步骤中实现对所述电池单体热失控的定性评价,包括结合所述电池单体热失控副反应温度序列图实现对电池单体的热失控副反应机理的分析。所述电池单体热失控各过程副反应温度序列分析是确认电池单体在热失控过程中,各主要副反应发生的温度,以确认热失控的链式反应过程和反应机理。如图12左侧附图所示,电池单体热失控是由一系列链式反应过程最终导致的。其中包括电池内部界面失去热稳定性、负极材料与电解液反应、隔膜中的PE组分熔化、正极相变释氧、隔膜中的陶瓷组分崩溃、电解液分解、内短路/电池内部大规模物质交换、电解液燃烧等副反应过程。对于目前广泛使用的液态有机电解质锂离子动力电池,在受热时首先是负极的固体电解质膜(Solid Electrolyte Interface,SEI)界面失去稳定性。在实际电池热失控的过程中,各副反应的顺序并不是确定的,对于不同的电池材料和耦合过程,各副反应的起始温度、放热量也有很大差别。因此,需要确认电池单体在热失控的过程中,各副反应的发生顺序与温度,以及各副反应放热对电池热失控的贡献。
S50,从所述绝热热失控测试曲线中,获取所述电池单体的特征值,以实现对所述电池单体热失控的定量评价,其中,所述特征值包括:所述电池单体自身开始产热时的第一温度、所述电池单体内部大规模放热开始时的第二温度和所述电池单体在热失控过程中的最高温度。
本步骤中,对于所述待测电池单体的热失控安全性的评价可以比较所述特征值的大小,所述第一温度和第二温度越大,所述待测电池单体的热失控安全性越高,所述最高温度越大,所述待测电池单体的热失控安全性越低。对于所述待测电池单体的热失控安全性的评价,也可以设定参考电池以及参考特征值,比较所述特征值与所述参考特征值的关系,来判定所述待测电池单体的热失控安全性。本步骤中,所述参考电池的设定可以根据经验值也可以根据实际应用环境的需要进行调整。
本实施例中,提供了一种动力电池热失控安全性的多尺度机理分析与综合评价方法。所 述动力电池热失控安全性综合评价方法在电池材料、电池极片以及电池单体三个尺度进行热稳定性相关测试。并通过测试数据的综合对比分析,并结合原位和非原位的观测及材料表征方法,确认不同组分热特性及组分间的相互耦合作用对于电池单体热失控的影响。所述综合评价方法结合电池单体绝热热失控的测试结果,给出电池热失控的机理分析与热安全定量评价。对于电动车用动力电池的安全设计与热失控防控具有重要的实用价值和指导意义。
在一个实施例中,所述步骤S10中,通过拆解电池单体获取所述电池材料的具体步骤和通过拆解纽扣电池获取所述电池材料的具体步骤参见以下描述。(一)拆解电池单体获得电池正负极活性材料可以包含以下步骤:
S101,使用充放电设备调整电池单体荷电状态至指定数值(0-100%)。
S102,在手套箱或者干房中,将电池卷芯与外壳分离,取出卷芯。
S103,使用密封容器将所有卷芯转移至手套箱,使用绝缘陶瓷剪刀,取一定量的正极极片、负极极片和隔膜作为样品,使用绝缘容器分别保存避免短路。
S104,根据测试需要,可以对取出的样品进行洗涤。洗涤的具体方法可以为在碳酸二甲酯中浸泡30分钟-2小时。浸泡完成之后取出样品,而后在手套箱惰性气氛内进行干燥,干燥后再次使用绝缘容器保存。
S105,根据表征方法的需要制备样品,样品可能为固体(比如活性材料粉末或者直接剪取一点点极片)或用酸溶解后的溶液。在样品制备和转移的过程中应尽可能避免与空气的接触。样品初步制备可以用陶瓷剪刀剪去少量极片,或用刮刀刮取一定量的活性材料。
(二)拆解纽扣电池获得电池正负极活性材料可以包含以下步骤:
S111,使用充放电设备调整纽扣电池荷电状态至指定数值(0-100%)。
S112,在手套箱中将纽扣电池拆解。
S113,取出纽扣电池中的正极极片、负极极片和隔膜作为样品,使用绝缘容器分别保存避免短路。
S114,根据测试需要,可以对取出的样品进行洗涤,具体方法可以为在碳酸二甲酯中浸泡30分钟-2小时后取出,后在手套箱惰性气氛内进行干燥,干燥后使用绝缘容器保存。
S115,根据表征方法的需要制备样品,样品可能为固体(比如活性材料粉末或者直接剪取一点点极片)或用酸溶解后的溶液,在样品制备和转移的过程中应尽可能避免与空气的接触。样品初步制备可以用陶瓷剪刀剪去少量极片,或用刮刀刮取一定量的活性材料。本实施例中,提供了两种获取所述电池材料的方法。本实施例中提供的这两种方法可以简单、方便的获取各种电池材料。当然可以理解,所述电池材料的获取方法不作具体的限定,比如还可以通过化学合成直接获取所述电池材料。
在一个实施例中获取所述电池材料的性能分析图可以包括高温原位或者高温非原位的数据表征。具体的高温原位或者高温非原位的数据表征主要是对电池正极活性材料、电池负极活性材料以及隔膜组分在受热升温过程中的表现进行原位观测或对受热升温前后的材料属性进行表征和对比。
第一,对所述电池材料进行元素成分分析可以包括但不限于以下的分析方法,比如:气象色谱-质谱、离子色谱、等离子发射光谱、傅里叶红外光谱、X射线荧光光谱或者能谱分析。 再比如,还可以对所述电池材料在受热前后的元素成分改变进行对比分析,或原位观测所述电池材料在受热过程中的产气情况。
第二,对所述电池材料的形貌分析可以包括但不限于扫描电镜分析与透射电镜分析。这两种电镜分析主要用于观测电池材料在受热过程中或受热前后的形貌变化。
第三,对所述电池材料的结构分析可以包括但不限于,比如,X射线衍射谱分析和核磁共振谱分析。这两种分析可以用于原位分析电池材料晶体结构变化、成分变化。
第四,对所述电池材料的表面分析可以包括但不限于,比如,X射线光电子能谱分析和飞行时间二次离子质谱分析。这两种分析主要用于分析电池材料表面成分的改变。其中,X射线衍射谱分析、透射电镜分析、质谱分析等方法均可以实现在多电池材料的升温过程中的原位观测。可以理解,以上四类测试方法在电池安全性评价中视需求采用,并不需要全部进行。
请参见图5和图6,提供了部分高温原位/非原位表征方法的测试结果。图5为原位X射线衍射和质谱分析的测试结果,由图5中左侧可以看出三元材料会在受热中发生由层状到尖晶石再到岩盐结构的转变过程。随相转变过渡金属离子价态改变释放出氧,释氧温度的判断是三元材料热失控机理分析中的重要环节。原位X射线衍射结果证实尖晶石相变释氧起始于约100℃。图5中右侧为原位质谱分析的测试结果。如图5右侧测试结果所示,质谱检测到氧气峰起始于250℃,氧气释放相比于尖晶石相变延后。对比热分解前后的活性材料颗粒扫描电镜结果,正极颗粒形貌发生明显改变,颗粒开裂。在一个实施例中,可以获得不同材料的原位X射线衍射和质谱分析的测试结果,进行对比分析,最终定性评价材料作为电池组分时能够展现的性能高低。图6为热失控前后的扫描电镜测试结果图。
请参阅图2,在一个实施例中,所述步骤S20中,对电池材料进行所述热特性分析测试可以包含以下步骤:
S201,从密封设置的手套箱中取用保存的所述电池材料。所述电池材料可以是通过拆解电池单体和拆解纽扣电池获取的。本实施例中提供的这两种方法可以简单、方便的获取各种电池材料。当然可以理解,所述电池材料的获取方法不作具体的限定,比如还可以通过化学合成直接获取所述电池材料。
S202,按照测试需要制备进行热稳定性测试的样品,并放入测试容器;所述样品包括单独的正极、负极、隔膜或电解液;所述样品还包括正极+电解液的耦合样品、负极+电解液的耦合样品、正极+负极的耦合样品、隔膜+电解液的耦合样品或正极+负极+电解液的耦合样品。另外,在制备耦合热特性测试的样品时,不同电池组分需要按照单体电池/纽扣电池中的实际质量比例或经验比例制备。
S203,使用绝热加速量热仪、差示扫描量热仪或其它量热仪对所述样品的热特性进行测试,并记录所述样品在热失控过程中的温度变化数据。如图7-图10所示为电池材料差示扫描量热仪测试的结果示意图。图7-图10提供了四种不同的电池材料制备的所述样品的恒升温速率热特性曲线。
在一个实施例中,所述步骤S20中,所述反应动力学分析的主要测试内容为所述正极片、所述负极片、所述隔膜和上述材料的组合形成的样品在不同温升速率下的温度变化情况。在 实施所述反应动力学分析时,可以使用差示扫描量热仪作为测试仪器。所述反应动力学分析主要包含(第一)主反应确认、(第二)动力学参数拟合和(第三)动力学参数数据库建立三个部分。
(第一)主反应确认需要依据材料热稳定性测试结果。如图7所示三元正极材料分解有三个主要的放热峰,可以判定为三个主反应。如图8所示,石墨负极材料有三个主要的放热峰,也为三个主反应。如图9所示,正极材料+负极材料有三个主要的放热峰,可以判定为三个主反应。图10所示,PE隔膜材料只有在约140℃处的一个明显的吸热峰,判定为一个主反应。
(第二)请参阅图3,动力学参数拟合包含以下步骤:S211,将所述样品放入差示扫描量热测试坩埚。按照测试需要制备样品并放入差示扫描量热测试坩埚,所述样品可以是单独的正极、负极、隔膜或电解液。在耦合热特性测试时的所述样品是正极+电解液、负极+电解液、正极+负极、隔膜+电解液或正极+负极+电解液,且不同电池组分需要按照单体电池/纽扣电池中的实际质量比例或经验比例制备。
S212,使用差示扫描量热仪对样品进行恒升温扫描速率的测试。
S213,改变扫描速率,重复多次所述使用差示扫描量热仪对样品进行恒升温扫描速率的测试的步骤,以得到多组不同扫描速率的恒升温速率热特性曲线。
本步骤中,改变扫描速率重复S212以得到至少5组不同扫描速率的样品恒升温速率热特性曲线。具体的,差示扫描量热仪的扫描速率可以为1℃/min,2℃/min,5℃/min,10℃/min,15℃/min,20℃/min中的任意5个。S214,基于化学反应动力学方程,结合所述恒升温速率热特性曲线中的数据,拟合各主反应的反应动力学基本参数,其中各主反应的反应动力学基本参数至少包括活化能、前向因子与反应焓。
具体的,本步骤中需利用S213的测试结果获得(1)中确认的主反应的反应动力学参数。在此给出一种基于Arrhenius方程的n级反应动力学参数拟合方法,先确认不同主反应在不同升温速率下的峰值温度,如表1所示。表1是某种三元材料的峰值温度。
表1某三元正极材料不同升温速率峰值温度
峰/升温速率 2℃/分钟 5℃/分钟 10℃/分钟 15℃/分钟 20℃/分钟
峰1峰值温度 237.4 250 260.3 267.8 269
峰2峰值温度 391.8 409.2 423.8 434 435.7
峰3峰值温度 439.7 453.9 466.2 479.1 484.3
对于峰1,峰值温度与升温速率满足的公式:
Figure PCTCN2019095770-appb-000001
得到反应活化能和反应前向因子,其中,β为升温速率,α为反应的转化率,A为反应前向因子,E为反应活化能,Tp为反应峰值温度,R为理想气体常数8.314J·mol-1·K-1。
根据反应放热公式,结合遗传算法和非线性拟合方法得到反应焓变和反应级数。所述反应放热公式包括:
Figure PCTCN2019095770-appb-000002
Figure PCTCN2019095770-appb-000003
f(α(t))=(α(t)) n  (4)
Figure PCTCN2019095770-appb-000004
其中,α为反应的转化率,反应起始可设为1,n为反应级数,ΔH为反应焓变,Q为反应放热功率,A为反应前向因子,E为反应活化能,T为反应温度,R为理想气体常数8.314J·mol-1·K-1。根据式(1)线性拟合可以得到峰1反应的活化能及前向因子,再根据反应放热公式(2)-(5),采用遗传算法等非线性拟合方法可以得到峰1反应的焓变及反应级数。对于峰2和峰3的反应动力学参数可以用同样的方法获得。如表2所示,是某种三元材料拟合得到的反应动力学参数示意:
表2某三元正极材料各主反应反应动力学参数拟合结果
反应动力学参数/反应峰 峰1 峰2 峰3
A/s -1 7.1×10 12 8.71×10 12 8.71×10 12
E/J·mol -1 1.51×10 5 2.00×10 5 2.13×10 5
n 1.14 1.61 1.65
ΔH/J 50 78.5 15.6
不同材料热反应特性数据库建立需要将(1)主反应确认和(2)动力学参数拟合中测试的原始数据,不同速率下各主反应峰的起始温度、最高温度和结束温度,计算得到的反应活化能、前向因子与反应焓进行记录,此外还要记录使用的样品种类及配比,使用的仪器、坩埚型号等。
(第三)请参阅图4,建立电池材料热失控特性数据库可以包括以下步骤:
S221,建立所述样品的热特性数据条目。具体的,在数据库中新建待测试样品、待测试耦合样品的热特性数据条目。
本步骤中,数据条目按照样品的分类和名称进行存储。其中在存储时,电解液可以按照主要的盐成分进行命名。
S222,确认存储所述样品的基本信息。所述基本信息可以包括样品名称、测试样品量、样品不同组分的组成/化学式、厂商、批次以及其它已知信息,并填入数据库条目中。
本步骤中与样品相关的信息均需要记录,包括但不限于正负极活性物质材料的粒度、比表面积、比容量、添加导电石墨和粘结剂量,以及电解液的添加剂及含量。
S223,确认对所述样品进行测试的测试时间、使用的仪器型号、使用坩埚型号以及温升速率。确认测试数据的基本情况,包括测试时间、使用的仪器型号、使用坩埚型号、温升速率选取以及其它测试相关信息,并填入数据库条目中。
S224,确认对所述样品实时测试前的原始数据。其中,所述原始数据包括不同温升速率的原始时间、温度、热流量。并将所述原始数据填入数据条目中。此处如果设备有连接其他的同步测试仪器,如质谱仪等,原始数据需要一并记录和存储。
本步骤中,至少存储5组不同温升速率的样品测试原始数据,如有连接其他的同步测试仪器,包括但不限于气相色谱仪、质谱仪等,原始数据需要一并记录和存储。
S225,确认原始数据的处理结果、不同温升速率曲线的温度峰位置、以及不同峰值的反应动力学参数。并将确认好的数据填入数据库条目中。本步骤中,样品不同峰值的反应动力学参数包括但不限于反应活化能E,反应前向因子A,反应级数n,反应焓变ΔH。如果某个反应峰不属于标准n级反应类型,需要记录该反应峰对应的反应类型(如连续反应、自催化反应等)及相应的反应动力学参数。
S226,确认无误后,保存该数据库条目。具体的,在一个实施例中,所述电池材料热失控特性数据库包括:电池材料种类、每一种电池材料的测试数据、每一种电池材料的测试结果以及每一种电池材料的动力学基本参数。
在另一个实施例中,所述电池材料热失控特性数据库,包括:数据库层、单一材料层、组合材料层和反应记录层。在数据进行查找时,首先按照样品名称进行查找,如有多条记录,可以辅助样品量、厂商、型号等信息查找。
本实施例中,在所述电池材料热失控特性数据库的建立时,系统地存储不同种类电池材料热特性测试的原始数据及参数拟合结果。在进行不同材料体系电池单体的热失控特性预测时,可以直接从材料热特性数据库中提取已有的数据进行分析。也可以更改某一材料组分,对改变后的电池热失控特性进行对比预测。进一步可根据预测结果,选取较为安全的材料体系,或对已确定的材料体系热失控特性进行改进。
在一个实施例中,所述步骤S30中,对所述电池单体进行绝热热失控测试具体包括:
S301,选取电池单体。
S302,确认温度条件和电压条件,确认环境条件处于绝热状态。所述试验可以在专门的防爆实验箱或大容量绝热加速量热仪中进行。
S303,在所述待测电池单体的外表面和内部分别设置一个或多个温度检测装置,在所述待测电池单体的极耳处连接电压采集装置。所述温度检测装置可以是热电偶。设置热电偶时可以在干房或手套箱内将热电偶置于电池卷芯内部,或将热电偶布置于电池大面中心位置。另外,根据测试需要可以在电池的极耳处布置多个电压采集装置。电池单体连接电压采集装置后,根据测试需要连接充放电设备。
S304,对所述待测电池单体实施绝热热失控测试,并记录热失控过程中的电池单体电压和热失控过程中的电池单体温度,以生成绝热热失控测试曲线。
本步骤中,可以对电池单体进行不同触发条件的单体热失控测试,比如绝热阶梯式升温、加热片加热、过充或针刺等其它机-电-热滥用测试等,记录电池在热失控过程中的电压变化和温度变化。本步骤中,根据测试数据生成所述绝热热失控测试曲线,可以参阅图12。图12左图中的横坐标为时间,坐标时间范围即测试时间范围,即从数据采集装置开始记录数据到电池温度恢复至100℃以下的时间。图12中右图为得到的三个特征温度,即特征值(所述第一温度T1,所述第二温度T2和所述最高温度Tmax)。
本实施例中,给出了对所述待测电池单体实施绝热热失控测试的具体步骤。可以理解所述具体步骤并不限定,还可以通过其他的方式来实现。
在一个实施例中,可以对n类不同种类的电池单体实施绝热热失控测试,记录n类电池单体热失控过程中的电压和温度,以指导n类不同种类动力电池热失控安全性的定量评价方法。
本实施例中,在对n类不同种类的电池单体实施绝热热失控测试时可以重复上一个实施例中给出的步骤进行绝热热失控测试。以获得n类不同种类的电池单体在热失控中的温度特性及所述特征值,以指导n类不同种类动力电池热失控安全性的定量评价方法。
在一个实施例中,在对所述待测电池单体实施绝热热失控测试过程中:电压测试频率和温度测试频率相同,且电压测试频率和温度测试频率大于等于1Hz。
本实施例中,在进行电池单体的绝热热失控测试时,需要实时记录热失控过程中电池单体的电压、电池单体的温度。在对电池单体电压和电池单体温度进行测量时,采集数据的频率应大于1Hz(即每秒最少采集一次数据)。并且电压和温度测量频率需保持一致,以保证能够准确的获取所述特征值。
在一个实施例中,所述S303,在所述待测电池单体的外表面和内部分别设置一个或多个温度检测装置,在所述待测电池单体的极耳处连接电压采集装置,包括:
S311,在干房或者手套箱中对所述待测电池单体部分拆解,以便于布置温度检测装置。本步骤中,所述温度检测装置可以是热电偶。对所述待测电池单体部分拆解可以理解为,当所述待测电池单体是软包电池,可以在软包电池外包的铝塑膜上开一个小口(小口的大小足够将热电偶塞进去即可),然后从小口把热电偶插入电池内部,之后进行相应的固定操作,以完成所述温度检测装置的布设。对所述待测电池单体部分拆解还可以理解为,当所述待测电池单体是方壳电池,沿所述方可电池的顶盖锯开,把热电偶插入电池内部之后进行相应的固定操作(比如用胶封上),以完成所述温度检测装置的布设。
S312,提供保护层,所述保护层可以用隔膜或其他材料对所述温度检测装置进行保护。并将保护后的所述温度检测装置布置在所述待测电池的内部(比如可以是正极与隔膜间,或负极与隔膜间)。可以在所述待测电池的内部布置一个或多个保护后的所述温度检测装置。
S313,对所述待测电池进行二次密封设置,并在密封后的所述待测电池的极耳处设置一组或多组电压采集装置。
本实施例中,至少在电池单体的内部布置一个温度检测装置(所述温度检测装置可以是(温度传感器)。在设置所述温度传感器时需要在干房或手套箱中将电池部分拆解。将温度传感器布置在拆解后的电池单体的内部,并对电池单体进行二次密封。具体的可以根据需要在电池单体内部的不同位置及电池单体表面不同位置布置多个温度传感器。设置多个温度传感器是为了能够准确的获取所述电池单体在热失控过程中的不同位置的温度值。另外,可以使用多组电压传感器进行测量,以防止电池单体在热失控过程中由于传感器脱落造成的数据缺失或不稳定。
在一个实施例中,所述步骤S40中,电池单体热失控副反应温度序列分析主要包含以下步骤:
S401,从所述性能分析图中,确认所述电池单体正极相变开始的温度。本步骤中,可以由高温原位表征的测试结果,确认电池单体正极相变开始的温度。
S402,从所述热失控特性数据库中,确认首个界面开始失去热稳定性的温度、最高温度与终止温度。本步骤中,可以由负极+电解液或者正极+电解液材料热稳定性测试的结果,确认首个界面开始失去热稳定性(对于常规液态有机电解质体系为负极SEI分解峰)的温度、失稳反应峰的最高温度与终止温度。本步骤中,对于通常的液态有机电解液体系,界面开始失稳的峰(负极SEI分解峰)位置为100℃左右,即附图8中负极的峰1。
S403,从所述热失控特性数据库中,确认负极与电解液反应峰的起始温度、最高温度与终止温度。本步骤中,可以由负极材料热稳定性测试的结果,确认负极与电解液反应峰的起始温度、最高温度与终止温度。本步骤中,负极与电解液反应峰紧随界面失稳峰之后,即附图8中负极的峰2。
S404,从所述热失控特性数据库中,确认正极第一个分解反应峰的起始温度、最高温度与终止温度。
本步骤中,可以由正极材料热稳定性测试的结果,确认正极第一个分解反应峰的起始温度、最高温度与终止温度。本步骤中,正极第一个热分解峰即附图7中正极的峰1。
S405,从所述热失控特性数据库中,确认正负极混合后主产热峰的起始温度。
本步骤中,可以由正极+负极材料耦合热稳定性测试的结果,确认正负极混合后主产热峰的起始温度。本步骤中,正极+负极主产热峰即附图9中正极+负极的峰4。
S406,从所述热失控特性数据库中,确认隔膜开始分解与完全崩溃的温度。
本步骤中,可以由隔膜材料热稳定性测试的结果,确认隔膜开始分解与完全崩溃的温度。本步骤中,隔膜开始分解与完全崩溃的温度即附图10中PE隔膜吸热峰的起始温度与终止温度。此步骤中也可使用隔膜+电解液耦合样品进行测试。
S407,从所述绝热热失控测试曲线中,确认电池大规模内短路开始的温度。本步骤中,可以由单体热失控测试的结果,确认电池大规模内短路开始的温度。
本步骤中,大规模内短路开始温度为附图12中电压陡降的温度。S408,从所述绝热热失控测试曲线中,确认电池大规模放热开始的温度。本步骤中,可以由单体热失控测试的结果,确认电池大规模放热开始的温度。本步骤中,大规模放热开始温度为附图12中的温度T2。如在测试温度范围内反应峰没有终止,以测试最终温度为反应终止温度。
S409,根据所述温度参数和达到所述温度参数的时间,绘制所述电池单体的热失控副反应温度序列图,对所述电池单体的热失控特性进行定性评价。本步骤中,可以根据以上温度范围,画出热失控副反应温度序列图如图11所示,对电池单体的热失控过程进行分析。
本实施例中,如附图11所示为电池单体的热失控副反应温度序列示意图。图11中实线为绝热热失控过程中的温度曲线,虚线为电压曲线,框图为对应热失控副反应的温度范围。此示意图中电池在电压陡降时未发生大规模放热,电池单体热失控中的大规模放热发生在正负极耦合主产热峰处。因此可以认为对于图11中示意的电池单体,隔膜崩溃导致内短路不是电池热失控发生的原因,电池正负极间的剧烈放热反应是热失控的主要原因。
在一个实施例中,所述步骤S50中,对所述电池单体实施热失控的定量评价需要使用电池单体绝热热失控的测试数据。如附图12所示,可以用电池在绝热热失控中的3个特征温度对电池的热失控安全性进行评价,即电池的自产热起始温度T1,电池的热失控起始温度 T2,以及电池的热失控最高温度T3。在进行电池单体的绝热热失控测试时,仪器会进行台阶式升温,当检测到电池开始自发产生热量时进入绝热模式,单体自身产热不断积累,最终引发热失控。所述自产热起始温度T1,即为开始检测到电池自生热的温度;所述热失控起始温度T2为电池升温速率达到一定阈值的温度,通常可以将阈值温度设定为10℃/分钟;所述热失控最高温度T3即为电池在绝热热失控过程中的最高温度,通常由电池的总焓变与电池比热容决定。
对电池热失控安全性的定量评价标准如下:T1越低,电池越容易发生自生热,电池安全性越差;T2越低,电池在自生热后越容易引发热失控,电池安全性越差;T3越低,电池在热失控后造成的危害越小,电池的安全性越好。
本申请中根据所述特征值定量的评价所述待测电池单体的热失控安全性。对于不同类型与材料体系的电池,可以用统一的一组或多组定量指标来评价其热失控特性。且定量评价指标(即本申请中提到的所述待测试电池的特征值)与单体电池热失控内部过程直接相关,可以给电池热安全性的改进指出明确的方向。
在一个实施例中,所述特征值还包括:所述待测试动力电池发生热失控过程中的最大温升速率、第一时间段以及第二时间段。从所述绝热热失控测试曲线中获取,从所述待测电池单体自产热开始到所述待测电池单体热失控开始的时间记为所述第一时间段。从所述绝热热失控测试曲线中获取,从所述待测电池单体热失控开始到所述待测电池单体达到热失控过程最高温度的时间记为所述第二时间段。
本实施例中还包括,获取所述标准电池发生热失控过程中的最大温升速率参考值。所述标准电池发生热失控过程中的第一时间段参考值和第二时间段参考值。
本实施例中还包括,根据所述绝热热失控测试曲线,生成所述待测电池单体的温度-温度变化率的变化曲线。从所述温度-温度变化率的变化曲线中获取所述待测电池单体的所述最大温升速率、所述第一时间段和所述第二时间段。
根据所述特征值定量的评价所述待测电池单体的热失控安全性,包括:
所述最大温升速率小于所述最大温升速率的参考值,则所述待测电池热失控安全性高于所述标准电池的热失控安全性。所述第一时间段大于所述第一时间段参考值,则所述待测电池热失控安全性高于所述标准电池的热失控安全性。所述第二时间段大于所述第二时间段参考值,则所述待测电池热失控安全性高于所述标准电池的热失控安全性。
本实施例中,提供所述最大温升速率、所述第一时间段和所述第二时间段作为另外三种所述特征值。通过所述最大温升速率、所述第一时间段和所述第二时间段来评价电池单体的热失控安全性的。电池单体在热失控过程中所述最大温升速率越小,电池单体的安全性越高。电池单体在热失控过程中所述第一时间段和所述第二时间段越长,电池单体越不容易发生热失控,或者说在发生热失控之前越容易预防,电池单体的热失控安全性越高。
在一个具体的实施例中以上述六种特征值为例,综合分析所述待测电池单体的热失控安全性。由于电池单体内置传感器(可以是热电偶)最接近电池材料在热失控过程中的真实温度,因此使用电池内置传感器测量温度数据的所述特征值(所述第一温度T1、所述第二温度T2、所述最高温度T3、所述最大温升速率dT/dt、所述第一时间段t1和所述第二时间段t2) 作为电池热安全性定量评价的指标,是较为合理并且准确的。具体的,电池单体热失控的评价方法可以参照以下:
T1越低,电池单体越容易发生自生热,电池单体安全性越差。T1数值即为电池自生热安全性的定量评价指标。T2越低,电池单体在自生热后越容易引发热失控,电池单体安全性越差。T2数值即为电池热失控安全性的定量评价指标。T3越低,电池单体在热失控后造成的危害越小,电池单体的安全性越好。T3数值即为电池热失控危害性的定量评价指标。
dT/dt越小,电池单体在热失控后造成的危害越小,热量越不易传导至周边电池或其它可燃物,电池单体的安全性越好。dT/dt数值即为电池热失控危害性的定量评价指标。t1越长,电池单体在自生热后发展成热失控所需的时间越长,热量累积速度慢,电池单体的安全性越好。t2越长,电池单体在热失控后达到热失控最高温度所需的时间越长,热失控能量释放速度慢,电池单体的安全性越好。t1、t2数值即为电池热失控热量积累速度与能量释放速度的定量评价指标。
本实施例中,上述定量评价指标即本申请中提到的所述待测试电池的特征值。本实施例中,使用电池单体内置传感器(比如热电偶)测量所述特征值,根据所述特征值实现对不同电池单体的热安全性的评价。
在一个实施例中,可以综合上述六种特征值对电池热安全性定量评价的过程中,根据所述特征值定量的评价所述待测电池单体的热失控安全性,还包括,通过以下步骤中的一种或多种评价所述待测电池单体的热失控安全性的高低:
通过所述第一温度减去所述第一参考温度的差值的绝对值的大小用于定量评价所述待测电池单体的热失控安全性的高低;或者
通过所述第二温度减去所述第二参考温度的差值的绝对值的大小用于定量评价所述待测电池单体的热失控安全性的高低;或者
通过所述第三参考温度减去所述最高温度的差值的绝对值的大小用于定量评价所述待测电池单体的热失控安全性的高低;或者
通过所述最大温升速率的参考值减去所述最大温升速率的差值的绝对值的大小用于定量评价所述待测电池单体的热失控安全性的高低;或者
通过所述第一时间段的长度减去所述第一时间段参考值的长度的差值的绝对值的大小用于定量评价所述待测电池单体的热失控安全性的高低;或者
通过所述第二时间段的长度减去所述第二时间段参考值的长度的差值的绝对值的大小用于定量评价所述待测电池单体的热失控安全性的高低。
本实施例中,通过将六种特征值进行定量的评价所述待测电池单体的热失控安全性的高低。比如,参照其他的电池评价方法可能够得出所述待测试电池会比另外一块电池(或者是参考电池)的安全性好,但无法得知热失控特性在哪些方面表现的更好,也无法知道热失控特性的某一个性能具体好了多少。
本实施例中,可以具体得知,如:从自生热温度的角度,所述待测电池相比于另外一块电池(或者是参考电池)有20℃的提升。
本实施例中,提供的定量评价方法,还可以给电池的安全性改进提供指导方向。比如通 过本申请的方法得知,所述待测电池的自生热温度差,就可以专注于提高所述待测试电池的自生热温度。具体提高所述待测试电池的自生热温度的方法可以包括找新材料替代、通过一些包覆方法或者调整电解液的方法来实现,但也并不仅仅限于以上的调节方法。
本申请还提供一种动力电池热失控安全性综合评价系统。所述系统包括:定性评价子系统、定量评价子系统和综合评价结果输出子系统。所述定性评价子系统包括:热特性参数获取模块、电池材料热失控特性数据库建立模块、电池单体模型建立模块以及热失控评价模块。
所述热特性参数获取模块用于对多种电池材料分别进行热特性测试以获得所述多种电池材料的热特性参数。所述电池材料热失控特性数据库建立模块用于基于所述热特性参数对多种电池材料分别进行反应动力学分析建立电池材料热失控特性数据库。所述电池单体模型建立模块用于从所述电池材料热失控特性数据库中选取正极材料、负极材料、隔膜材料和电解液材料组成电池单体模型。所述热失控评价模块用于对所述电池单体模型的热失控特性进行定性评价。
所述定量评价子系统包括:绝热装置、电压采集装置、温度检测装置以及控制装置。
所述绝热装置用于为电池单体提供绝热条件。一组或多组所述电压采集装置设置于所述待测电池极耳处用于测试所述电池单体的电压。一个或多个所述温度检测装置设置于所述电池单体的内部或外表面用于测试所述电池单体的温度。所述控制装置与所述多组电压采集装置和所述多个温度检测装置分别电连接用于根据所述电池单体的温度和电压生成绝热热失控测试曲线以及用于评价所述电池单体的热失控安全性。
所述综合评价结果输出子系统包括:数据获取装置、数据分析装置以及结果输出装置。
所述数据获取装置,用于获取所述电池材料的性能分析图、所述热失控特性数据库和所述绝热热失控测试曲线;还用于获取标准电池的特征值,并绘制所述电池单体热失控副反应温度序列图。所述数据分析装置,用于实现所述电池单体之间的数据对比,或者是所述电池单体与所述标准电池之间的数据对比。所述结果输出装置,用于将所述数据分析装置的数据对比结果输出。
本实施例中,所述动力电池热失控安全性综合评价系统中各个子系统,以及各个子系统中各个装置的结构并不限定,可以是任意能够实现上述功能的结构。
本申请还可以提供一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现上述任一项所述方法的步骤。
本申请还可以提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一项所述的方法的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形 式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (20)

  1. 一种动力电池热失控安全性综合评价方法,其特征在于,包括:
    S10,提供电池材料,并对所述电池材料进行成分分析、形貌分析、结构分析以及表面和界面分析中的一种或多种,以得到所述电池材料的性能分析图;
    S20,提供正极片、负极片、隔膜和电解液,并对分别所述正极片、所述负极片、所述隔膜、所述电解液和上述材料组合形成的样品进行热特性分析和反应动力学分析,以得到热失控特性数据库;
    S30,提供电池单体,并对所述电池单体进行绝热热失控测试,以得到所述电池单体的绝热热失控测试曲线;
    S40,根据所述电池材料的性能分析图、所述热失控特性数据库和所述绝热热失控测试曲线绘制所述电池单体热失控副反应温度序列图,以实现对所述电池单体热失控的定性评价;以及
    S50,从所述绝热热失控测试曲线中,获取所述电池单体的特征值,以实现对所述电池单体热失控的定量评价,其中,所述特征值包括:所述电池单体自身开始产热时的第一温度、所述电池单体内部大规模放热开始时的第二温度和所述电池单体在热失控过程中的最高温度。
  2. 如权利要求1所述的动力电池热失控安全性综合评价方法,其特征在于,提供电池材料的具体步骤包括:
    通过拆解电池单体获得所述电池材料,或者通过拆解纽扣电池获得所述电池材料;
    通过拆解电池单体获得所述电池材料的具体步骤包括:
    使用充放电设备调整所述电池单体的荷电状态至指定数值,所述指定数值包括0%-100%;
    在手套箱或者干房中,将电池卷芯与外壳分离,并取出所述电池卷芯;
    使用密封容器将所有所述电池卷芯转移至手套箱,使用绝缘陶瓷剪刀,取一定量的正极极片、负极极片和隔膜作为电池材料半成品,并使用绝缘容器分别保存;
    根据测试需要,对所述电池材料半成品进行洗涤和浸泡,浸泡完成之后取出所述电池材料半成品,而后在手套箱惰性气氛内进行干燥,干燥后再次使用绝缘容器分别保存;
    根据表征方法的需要制备所述电池材料,所述电池材料可以为固体或溶液;
    通过拆解纽扣电池获得所述电池材料的具体步骤包括:
    使用充放电设备调整所述纽扣电池的荷电状态至指定数值,所述指定数值包括0%-100%;
    在手套箱中对所述纽扣电池进行拆解;
    取出所述纽扣电池中的正极极片、负极极片和隔膜作为电池材料半成品,使用绝缘容器分别保存所述电池材料半成品;
    根据测试需要,对所述电池材料半成品进行洗涤和浸泡,浸泡完成之后取出所述电池材料半成品,而后在手套箱惰性气氛内进行干燥,干燥后再次使用绝缘容器分别保存;
    根据表征方法的需要制备所述电池材料,所述电池材料可以为固体或溶液。
  3. 如权利要求1所述的动力电池热失控安全性综合评价方法,其特征在于,
    在实施所述热特性分析时,采用差示扫描量热仪或者绝热加速量热仪。
  4. 如权利要求1所述的动力电池热失控安全性综合评价方法,其特征在于,所述待测电池单体包括软包电池、方形电池或者圆柱形电池中的任意一种。
  5. 如权利要求1所述的动力电池热失控安全性综合评价方法,其特征在于,在所述绝热热失控测试进行前,对所述待测电池单体进行充电或放电操作,以使得所述待测电池单体调整至指定的荷电状态。
  6. 如权利要求1所述的动力电池热失控安全性综合评价方法,其特征在于,
    通过气象色谱-质谱、离子色谱、等离子发射光谱、傅里叶红外光谱、X射线荧光光谱或者能谱分析中的任意一种或多种方法,对所述电池材料进行元素成分分析;
    通过扫描电镜分析或者透射电镜分析的方法,对所述电池材料的形貌分析;
    通过X射线衍射谱分析或者核磁共振谱分析的方法对所述电池材料的结构分析;
    通过X射线光电子能谱分析或者飞行时间二次离子质谱分析的方法对所述电池材料的表面分析。
  7. 如权利要求1所述的动力电池热失控安全性综合评价方法,其特征在于,所述步骤S20中,所述热特性分析包括:从密封设置的手套箱中取用保存的所述电池材料;
    在惰性气体环境中按照测试需要制备进行热稳定性测试的样品,并放入测试容器;所述样品包括单独的正极、负极、隔膜或电解液;所述样品还包括正极+电解液的耦合样品、负极+电解液的耦合样品、正极+负极的耦合样品、隔膜+电解液的耦合样品或正极+负极+电解液的耦合样品;
    使用绝热加速量热仪、差示扫描量热仪或其它量热仪对所述样品的热特性进行测试,并记录所述样品在热失控过程中的温度变化数据。
  8. 如权利要求7所述的动力电池热失控安全性综合评价方法,其特征在于,所述步骤S20中,所述反应动力学分析包括:主反应确认、动力学参数拟合和动力学参数数据库建立三个部分;其中,所述动力学参数拟合包括以下步骤:
    将所述样品放入差示扫描量热测试坩埚;
    使用差示扫描量热仪对样品进行恒升温扫描速率的测试;
    改变扫描速率,重复多次所述使用差示扫描量热仪对样品进行恒升温扫描速率的测试的步骤,以得到多组不同扫描速率的恒升温速率热特性曲线;
    基于化学反应动力学方程,结合所述恒升温速率热特性曲线中的数据,拟合各主反应的反应动力学基本参数,其中各主反应的反应动力学基本参数至少包括活化能、前向因子与反应焓。
  9. 如权利要求8所述的动力电池热失控安全性综合评价方法,其特征在于,所述反应动力学分析中,所述动力学参数数据库建立的步骤包括:
    建立所述样品的热特性数据条目;
    确认存储所述样品的基本信息;
    确认对所述样品进行测试的测试时间、使用的仪器型号、使用坩埚型号以及温升速率;
    确认对所述样品实时测试前的原始数据;
    确认原始数据的处理结果、不同温升速率曲线的温度峰位置、以及不同峰值的反应动力学参数;以及
    将以上全部数据条目保存至所述动力学参数数据库。
  10. 如权利要求1所述的动力电池热失控安全性综合评价方法,其特征在于,所述步骤S30中,对所述电池单体进行绝热热失控测试具体包括:
    选取电池单体;
    确认温度条件和电压条件,确认环境条件可满足绝热状态;
    在所述待测电池单体的外表面和内部分别设置一个或多个温度检测装置,在所述待测电池单体的极耳处连接电压采集装置;以及
    对所述待测电池单体实施绝热热失控测试,并记录热失控过程中的电池单体电压和热失控过程中的电池单体温度,以生成所述绝热热失控测试曲线。
  11. 如权利要求10所述的动力电池热失控安全性综合评价方法,其特征在于,在所述待测电池单体的外表面和内部分别设置一个或多个温度检测装置,在所述待测电池单体的极耳处连接电压采集装置的步骤包括:
    在干房或者手套箱中对所述待测电池单体部分拆解,以便于布置温度检测装置;
    提供保护层,所述保护层对所述温度检测装置进行保护;
    对所述待测电池进行二次密封设置,并在密封后的所述待测电池的极耳处设置一组或多组电压采集装置。
  12. 如权利要求1所述的动力电池热失控安全性综合评价方法,其特征在于,所述步骤S40中,绘制所述电池单体热失控副反应温度序列图,以实现对所述电池单体热失控的定性评价的步骤具体包括:
    从所述性能分析图中,确认所述电池单体正极相变产氧开始的温度;
    从所述热失控特性数据库中,确认电池内首个界面开始失去热稳定性反应的起始温度、最高温度与终止温度;
    从所述热失控特性数据库中,确认负极与电解液反应峰的起始温度、最高温度与终止温度;
    从所述热失控特性数据库中,确认正极第一个分解反应峰的起始温度、最高温度与终止温度;
    从所述热失控特性数据库中,确认正负极混合后主产热峰的起始温度;
    从所述热失控特性数据库中,确认隔膜开始分解与完全崩溃的温度;
    从所述绝热热失控测试曲线中,确认电池大规模内短路开始的温度;
    从所述绝热热失控测试曲线中,确认电池大规模放热开始的温度;以及
    根据所述温度参数和达到所述温度参数的时间,绘制所述电池单体的热失控副反应温度序列图,对所述电池单体的热失控特性进行定性评价。
  13. 如权利要求1所述的动力电池热失控安全性综合评价方法,其特征在于,还包括:
    提供标准电池,以及与所述标准电池对应的第一参考值、第二参考值和第三参考值,其 中,所述标准电池开始产热时的温度为所述第一参考温度、所述标准电池内部大规模放热开始时的温度为所述第二参考温度、所述标准电池在热失控过程中的最高温度为所述第三参考温度;
    将所述电池单体的所述第一温度、所述第二温度和所述最高温度,分别与所述标准电池的所述第一参考温度、所述第二参考温度和所述第三参考温度进行对比;
    若某一个所述电池单体的所述第一温度小于所述第一参考温度,则所述电池单体的热失控安全性低于所述标准电池的热失控安全性;
    若某一个所述电池单体的所述第二温度小于所述第二参考温度,则所述电池单体的热失控安全性低于所述标准电池的热失控安全性;
    若某一个所述电池单体的所述最高温度小于所述第三参考温度,则所述电池单体的热失控安全性高于所述标准电池的热失控安全性。
  14. 如权利要求13所述的动力电池热失控安全性综合评价方法,其特征在于,通过所述第一温度减去所述第一参考温度的差值的绝对值的大小来定量评价不同的所述电池单体的热失控安全性的高低;
    通过所述第二温度减去所述第二参考温度的差值的绝对值的大小来定量评价不同的所述电池单体的热失控安全性的高低;或者
    通过所述最高温度减去所述第三参考温度的差值的绝对值的大小来定量评价不同的所述电池单体的热失控安全性的高低。
  15. 如权利要求13所述的动力电池热失控安全性综合评价方法,其特征在于,所述步骤S30之后还包括:
    根据所述绝热热失控测试曲线,生成所述电池单体的温度-温度变化率的变化曲线;
    从所述温度-温度变化率的变化曲线中获取所述电池单体的所述最大温升速率;
    所述特征值包括:所述待测试动力电池发生热失控过程中的最大温升速率;所述标准电池发生热失控过程中的最大温升速率参考值;
    所述S50中,实现对所述电池单体热失控的定量评价,还包括:
    若某一个所述电池单体的所述最大温升速率小于所述最大温升速率的参考值,则所述待测电池热失控安全性高于所述标准电池的热失控安全性。
  16. 如权利要求15所述的动力电池热失控安全性综合评价方法,其特征在于,通过所述最大温升速率的参考值减去所述最大温升速率的差值的绝对值的大小来定量评价不同的所述电池单体的热失控安全性的高低。
  17. 如权利要求15所述的动力电池热失控安全性综合评价方法,其特征在于,所述步骤S30之后还包括:
    从所述绝热热失控测试曲线中获取,从所述电池单体自产热开始到所述电池单体热失控开始的时间记为所述第一时间段;以及
    从所述绝热热失控测试曲线中获取,从所述电池单体热失控开始到所述电池单体达到热失控过程最高温度的时间记为所述第二时间段;
    所述特征值包括:所述待测试电池单体的所述第一时间段和所述第二时间段;所述标准 电池发生热失控过程中的第一时间段参考值和第二时间段参考值;
    所述S50中,实现对所述电池单体热失控的定量评价,还包括:
    若某一个所述电池单体的所述第一时间段大于所述第一时间段参考值,则所述待测电池热失控安全性高于所述标准电池的热失控安全性;
    若某一个所述电池单体的所述第二时间段大于所述第二时间段参考值,则所述待测电池热失控安全性高于所述标准电池的热失控安全性;
  18. 如权利要求17所述的动力电池热失控安全性综合评价方法,其特征在于,通过所述第一时间段的长度减去所述第一时间段参考值的长度的差值的绝对值的大小来定量评价不同的所述电池单体的热失控安全性的高低;或者
    通过所述第二时间段的长度减去所述第二时间段参考值的长度的差值的绝对值的大小来定量评价不同的所述电池单体的热失控安全性的高低。
  19. 一种动力电池热失控安全性综合评价系统,其特征在于,所述系统包括:定性评价子系统、定量评价子系统和综合评价结果输出子系统;
    所述定性评价子系统包括:
    热特性参数获取模块,用于对多种电池材料分别进行热特性测试,以获得所述多种电池材料的热特性参数;
    电池材料热失控特性数据库建立模块,用于基于所述热特性参数对多种电池材料分别进行反应动力学分析,建立电池材料热失控特性数据库;
    电池单体模型建立模块,用于从所述电池材料热失控特性数据库中选取正极材料、负极材料、隔膜材料和电解液材料,组成电池单体模型;以及
    热失控评价模块,用于对所述电池单体模型的热失控特性进行定性评价;
    所述定量评价子系统包括:
    绝热装置,用于为电池单体提供绝热条件;
    一组或多组电压采集装置,设置于所述待测电池极耳处,用于测试所述电池单体的电压;
    一个或多个温度检测装置,设置于所述电池单体的内部或外表面,用于测试所述电池单体的温度;
    控制装置,与所述多个电压采集装置和所述多个温度检测装置分别电连接,用于根据所述电池单体的温度和电压,生成绝热热失控测试曲线,以及用于评价所述电池单体的热失控安全性;
    所述综合评价结果输出子系统包括:
    数据获取装置,用于获取所述电池材料的性能分析图、所述热失控特性数据库和所述绝热热失控测试曲线;还用于获取标准电池的特征值;
    数据分析装置,用于实现所述电池单体之间的数据对比,或者是所述电池单体与所述标准电池之间的数据对比;以及
    结果输出装置,用于将所述数据分析装置的数据对比结果输出。
  20. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现权利要求1-18中任一项所述方法的步骤。
PCT/CN2019/095770 2019-04-02 2019-07-12 动力电池热失控安全性综合评价方法与系统 WO2020199415A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910260107.2A CN110095722B (zh) 2019-04-02 2019-04-02 动力电池热失控安全性综合评价方法与系统
CN201910260107.2 2019-04-02

Publications (1)

Publication Number Publication Date
WO2020199415A1 true WO2020199415A1 (zh) 2020-10-08

Family

ID=67444215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095770 WO2020199415A1 (zh) 2019-04-02 2019-07-12 动力电池热失控安全性综合评价方法与系统

Country Status (2)

Country Link
CN (1) CN110095722B (zh)
WO (1) WO2020199415A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110687455B (zh) * 2019-10-12 2021-10-26 深圳市比克动力电池有限公司 一种评估锂离子电池放热量的方法
CN112751094B (zh) * 2019-10-29 2022-03-25 北京新能源汽车股份有限公司 一种电池热稳定性评估方法、装置及系统
SE544643C2 (en) * 2019-11-08 2022-10-04 Northvolt Ab Arrangement and method for detecting malfunction in a battery
CN110957545B (zh) * 2019-12-16 2021-05-28 国联汽车动力电池研究院有限责任公司 一种电池内部热失控扩散的检测方法
CN114982044A (zh) * 2020-01-15 2022-08-30 3M创新有限公司 用于可再充电的电能存储系统的热逸溃屏障
CN113497281B (zh) * 2020-04-01 2023-02-03 北京新能源汽车股份有限公司 一种测定锂离子电池热失控边界条件的方法和检测系统
CN112092675B (zh) * 2020-08-31 2022-03-25 长城汽车股份有限公司 一种电池热失控预警方法、系统及服务器
CN112162202B (zh) * 2020-09-14 2024-02-20 欣旺达动力科技股份有限公司 电池内部温度检测方法、系统、设备及存储介质
CN112630670B (zh) * 2020-12-16 2023-07-07 蜂巢能源科技股份有限公司 电池安全性参数获取方法、装置、存储介质及电子设备
CN113381082A (zh) * 2020-12-30 2021-09-10 天津力神电池股份有限公司 一种高准确性锂离子电池热失控预警方法
CN113567865B (zh) * 2021-07-07 2023-11-28 国网浙江省电力有限公司电力科学研究院 一种梯次利用三元电池热失控能量释放估算方法
CN113659214B (zh) * 2021-07-12 2023-03-17 深圳市比克动力电池有限公司 兼顾电化学性能和安全性能的高比能锂离子电池设计方法
CN113567872A (zh) * 2021-07-14 2021-10-29 无锡市产品质量监督检验院 电池包的热安全检测方法
CN114383708A (zh) * 2021-12-23 2022-04-22 东莞市巴能检测技术有限公司 一种锂离子电池的热失控数据采集方法及其采集分析系统
CN114798503B (zh) * 2022-06-07 2023-12-08 蜂巢能源科技股份有限公司 一种基于安全性的锂离子电池筛选方法、装置和电子设备
CN115575830A (zh) * 2022-10-10 2023-01-06 中国标准化研究院 一种锂电池热失控的诱因识别方法及系统
CN115602268B (zh) * 2022-10-19 2024-04-16 四川新能源汽车创新中心有限公司 电极材料安全性评估方法及相关装置
CN115954989B (zh) * 2023-03-09 2023-05-19 中能建储能科技(武汉)有限公司 一种储能电站运行监测管理系统
CN117577978B (zh) * 2024-01-19 2024-04-02 四川新能源汽车创新中心有限公司 一种电池热稳定条件的确定方法和电池储存方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170117725A1 (en) * 2015-10-23 2017-04-27 Oxfordian, Llc Thermal Monitoring of Battery Packs
CN108446435A (zh) * 2018-02-07 2018-08-24 清华大学 动力电池电极材料热稳定性判断方法、判断装置和计算机可读存储介质
CN108446434A (zh) * 2018-02-07 2018-08-24 清华大学 动力电池热失控安全性的预测方法、装置及计算机可读存储介质
CN108445039A (zh) * 2018-02-07 2018-08-24 清华大学 动力电池热失控安全性能预测方法、装置及计算机可读存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060088769A1 (en) * 2004-10-22 2006-04-27 Celgard Llc Battery separator with Z-direction stability
CN103837834B (zh) * 2014-02-18 2016-05-18 清华大学 电池热失控特性的测试方法
CN105372291A (zh) * 2015-12-06 2016-03-02 北京工业大学 一种车用动力电池热性能测试系统
CN106066457A (zh) * 2016-05-25 2016-11-02 烟台创为新能源科技有限公司 一种电池热失控检测系统及其检测方法
CN107861065A (zh) * 2017-09-30 2018-03-30 中国汽车技术研究中心 一种动力电池试验热失控测试方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170117725A1 (en) * 2015-10-23 2017-04-27 Oxfordian, Llc Thermal Monitoring of Battery Packs
CN108446435A (zh) * 2018-02-07 2018-08-24 清华大学 动力电池电极材料热稳定性判断方法、判断装置和计算机可读存储介质
CN108446434A (zh) * 2018-02-07 2018-08-24 清华大学 动力电池热失控安全性的预测方法、装置及计算机可读存储介质
CN108445039A (zh) * 2018-02-07 2018-08-24 清华大学 动力电池热失控安全性能预测方法、装置及计算机可读存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FENG XUNING: "Thermal Runaway Initiation and Propagation of Lithium-Ion Traction Battery for Electric Vehicles: Test, Modeling and Prevention", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 1 October 2016 (2016-10-01), pages 1 - 276, XP055738948, ISSN: 1674-022X *

Also Published As

Publication number Publication date
CN110095722B (zh) 2020-04-17
CN110095722A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
WO2020199415A1 (zh) 动力电池热失控安全性综合评价方法与系统
Abada et al. Combined experimental and modeling approaches of the thermal runaway of fresh and aged lithium-ion batteries
Li et al. Thermal runaway triggered by plated lithium on the anode after fast charging
Wang et al. A comparative analysis on thermal runaway behavior of Li (NixCoyMnz) O2 battery with different nickel contents at cell and module level
Noelle et al. Internal resistance and polarization dynamics of lithium-ion batteries upon internal shorting
Zhang et al. Comprehensive investigation of a slight overcharge on degradation and thermal runaway behavior of lithium-ion batteries
Peng et al. Thermal safety of lithium-ion batteries with various cathode materials: A numerical study
Ouyang et al. Influence of low temperature conditions on lithium-ion batteries and the application of an insulation material
CN110109020B (zh) 数据库驱动的动力电池热失控安全性正向评价方法及装置
Du et al. Impact of high-power charging on the durability and safety of lithium batteries used in long-range battery electric vehicles
WO2020199416A1 (zh) 动力电池热失控安全性的定量评价方法及系统
Zhu et al. Studies on the medium-frequency impedance arc for Lithium-ion batteries considering various alternating current amplitudes
An et al. Rate dependence of cell-to-cell variations of lithium-ion cells
Wang et al. Experimental and numerical study on penetration-induced internal short-circuit of lithium-ion cell
JP6058161B2 (ja) 蓄電デバイスの安定性評価試験装置および安定性評価試験方法
CN108446435B (zh) 动力电池电极材料热稳定性判断方法、判断装置和计算机可读存储介质
Panchal et al. Measurement of temperature gradient (dT/dy) and temperature response (dT/dt) of a prismatic lithium-ion pouch cell with LiFePO 4 cathode material
Chen et al. Thermal runaway modeling of LiNi0. 6Mn0. 2Co0. 2O2/graphite batteries under different states of charge
Shelke et al. Characterizing and predicting 21700 NMC lithium-ion battery thermal runaway induced by nail penetration
Zhang et al. Revealing the impact of fast charge cycling on the thermal safety of lithium-ion batteries
Duh et al. Thermal runaway on 18650 lithium-ion batteries containing cathode materials with and without the coating of self-terminated oligomers with hyper-branched architecture (STOBA) used in electric vehicles
Parmananda et al. Thermo-electrochemical stability analytics of electrode materials
Lalinde et al. Applied method to model the thermal runaway of lithium-ion batteries
Duh et al. Experimental study on the runaway behaviors of Panasonic 21,700 LiNi0. 8Co0. 15Al0. 05O2 battery used in electric vehicle under thermal failure
Yan et al. Electrothermal characterization and modeling of lithium-ion pouch cells in thermal runaway

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19922696

Country of ref document: EP

Kind code of ref document: A1